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“Scientific knowledge is in perpetual evolution;

it finds itself changed from one day to the next.”

— JEAN PIAGET
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ABSTRACT

Efficiently managing large deposits and warehouses is not an easy task. The amount of

variables and processes involved from the moment a consumer purchases a single product

until its receipt is quite considerable. There are two major problems involving warehouses

processes: the order picking problem (OPP) and the order batching problem (OBP). The

OPP aims to minimize the distance traveled by a picker while collecting a set of products

(orders). The OBP seeks to assign orders to batches with a capacity limit to minimize the

sum of distances traveled during the retrieving of products from all batches. When these

two problems are approached together, they become the Joint Order Batching and Picking

Routing Problem (JOBPRP). This work proposes a novel formulation for JOBPRP and

develops a dynamic programming based heuristic, and a grouping genetic algorithm with

controlled gene transmission to JOBPRP. To assess our proposals, we executed compu-

tational experiments over literature datasets. The mathematical model was used within a

mixed-integer programming solver (Gurobi) and tested on the smaller instances to evalu-

ate the quality of the solutions of our metaheuristic approach. Our computational results

evidence high stability for all tested instances and much lower objective value than the

previously reported in the literature while maintaining a reasonable computational time.

Keywords: Metaheuristic. Genetic algorithm. Order batching problem. Order picking

problem. Warehouses.



Problema do loteamento e coleta simultânea de pedidos: formulações e algoritmos

RESUMO

Administrar grandes depósitos e armazéns de forma eficiente não é uma tarefa fácil. A

quantia de variáveis e processos envolvidos desde o momento em que o consumidor rea-

liza a compra de um único produto, até o seu recebimento, é bastante considerável. Dentro

deste contexto, existem dois principais problemas envolvendo processos em armazéns: o

problema de coleta de pedidos (OPP) e o problema de loteamento de pedidos (OBP). O

OPP tem por objetivo minimizar a distância viajada por um funcionário enquanto ele faz

a coleta de uma lista de produtos (pedidos). O OBP busca agrupar pedidos em lotes, que

possuem um determinado limite de capacidade, de forma que a soma das distâncias via-

jadas durante a coleta dos produtos de todos os lotes seja minimizada. Quando estes dois

problemas são abordados de forma conjunta, a estratégia é conhecida como problema de

loteamento e coleta simultânea de pedidos (JOBPRP). Este trabalho propõe uma nova

formulação matemática para o JOBPRP e apresenta novas soluções algorítmicas para tal

problema: uma heurística baseada em dois níveis de programação dinâmica e um algo-

ritmo genético de agrupamento com controle de transmissão de genes. Para avaliar nossas

propostas, executamos experimentos computacionais com conjuntos de dados fornecidos

pela literatura. O modelo matemático foi utilizado em um software solucionador de pro-

gramas inteiros-mistos (Gurobi), onde se realizaram testes com pequenas instâncias para

aferir a qualidade das soluções da nossa abordagem metaheurística. Nossos resultados

computacionais evidenciaram alta estabilidade para todas as instâncias testadas e meno-

res valores objetivo que os reportados previamente na literatura, mantendo um tempo de

execução razoável.

Palavras-chave: Metaheurística, Algoritmo Genético, Problema de loteamento de pedi-

dos, Problema de coleta de pedidos, Armazéns.
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1 INTRODUCTION

Traditionally, the efficient management of large deposits and warehouses is not an

easy task. The amount of variables and processes involved from the moment a consumer

purchases a single product until its receipt is quite considerable. Now, imagine the case

of retailers and wholesalers who sell a large number of products and receive thousands of

different orders daily, so that each order demands different quantities and types of each

item: the problem gets a little more complex.

In the last decades, the growth of internet services boosted e-commerce (sales

through websites and applications) that has been standing out as a sustainable, scalable,

and profitable business model. Just in 2021, the estimated movement of this sales model

was around $ 469.2 billion, only in the United States (HOFSTETTERL, 2021). Statistics

also point to a projection of $ 563.388 billion for 2025 (DEPARTMENT, 2022). This

huge market is based on attractive prices, intuitiveness at the purchase moment, and, of

course, short delivery times. In this way, to improve all logistics from sale to receipt, ef-

ficient warehouse management systems (WMS) interconnected with Enterprise Resource

Planning (ERP) systems become indispensable for merchants that aim financial health on

their companies (BOYSEN; de Koster; WEIDINGER, 2019).

Taking into account the current WMS, a significant challenge within the ware-

houses is the dynamics that involve the picking of products purchased by customers, once

studies indicate that about 55% of the operational costs in these places are related to this

process (PANSART; CATUSSE; CAMBAZARD, 2018). As a result of this fact, practical

combinatorial optimization problems arise, such as the Order Picking Problem (OPP) and

the Order Batching Problem (OBP).

The OPP aims to minimize the distance traveled by a human or robot (Figure 1.1)

employee (pickers) in the aisles of a warehouse during the picking of a product’s list. OBP

is an interconnected problem that aims to group customer orders in batches to be assigned

to the pickers, where each batch must satisfy a maximum capacity limit (weight/volume).

The idea is to find a distribution of orders into batches that minimizes the distance’s sum

of the routes traveled by each picker to retrieve the requested products. Both OPP and

OBP are problems that belong to NP-Hard complexity class (GADEMANN; VELDE,

2005; KULAK; ŞAHIN; TANER, 2012).

Note that OBP depends on some routing metric to find possible order batches.

When this problem is treated isolated, options to deal with distances may use order-
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Figure 1.1 – Amazon’s Kiva robots. Source: <https://roboticsandautomationnews.com/2020/01/
21/amazon-now-has-200000-robots-working-in-its-warehouses/28840/>. Accessed in Jan.

2022.

picking routing policies (e.g., S-Shape, Largest Gap, Midpoint) or advanced heuristics.

However, an alternative is to optimize the correspondent route of each batch during the

batching process individually, that is, an approach that performs OBP jointly with OPP

(SCHOLZ; WäSCHER, 2017). This strategy is known as Joint Order Batching and Pick-

ing Routing Problem (JOBPRP) (BRIANT et al., 2020).

In this work, we present a novel mathematical model and propose a heuristic and

a grouping genetic approach to JOBPRP on single-blocks warehouses. Our model works

independently on the warehouse layout (i.e., it could be multi-block, multi-floor, or as-

sume other formats beyond rectangular) and was used for solving smaller instances. The

heuristic is based on two levels of dynamic programming (DP) and provides suitable re-

sults in contrast to the literature. The metaheuristic approach applies another heuristic

process to generate the initial solutions, assigning the most similar orders to the same

batch. The distance traveled in each batch is computed with a DP algorithm, and the

crossover applies a controlled gene transmission technique.

To assess our metaheuristic proposal, we executed comparative tests with a math-

ematical optimization solver running our model. Also, we extend the metaheuristic ex-

periments over large datasets. Our results evidence high stability in terms of standard

deviation (considering 30 experiments with different seeds, for each instance) and lower

objective values when confronted with other studies.

The remainder of this work is organized as follows: in the next chapter we for-

mally define the JOBPRP. In chapter 3 we review the literature. In chapter 4, our new

mathematical formulation is presented. In chapter 5, we explain our two level DP heuris-

tic approach to JOBPRP. In chapter 6, we give a detailed explanation of our genetic

algorithm. Chapter 7 shows the results of experimental tests, including comparisons with

previous approaches of the literature. In the last section, we discuss important points of

this research, highlighting our future work directions.

https://roboticsandautomationnews.com/2020/01/21/amazon-now-has-200000-robots-working-in-its-warehouses/28840/
https://roboticsandautomationnews.com/2020/01/21/amazon-now-has-200000-robots-working-in-its-warehouses/28840/
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2 PROBLEM DEFINITION

In this chapter, we give an intuitive overview of JOBPRP, show examples of

use, and formalize the problem definition. As discussed before, reducing warehouses

operational costs is a quite challenging task and involves many processes. We focus on

those that occur at the dispatch area (also known as depot), where the manager receives

orders from clients and assigns them to employees that will pick the specified consumer

goods in the warehouse.

In this scenario, a warehouse layout is usually represented by a rectangular area

(Figure 2.1) divided into parallel aisles (Figure 2.2), which interconnect through two other

cross aisles (one below and one above) (Figure 2.3).

Figure 2.1 – Warehouse with rectangular area. Source: the author.

The products are stored on shelves located to the right and left of each parallel

aisle (Figure 2.4). Each shelve has an associated code, called picking-position (Figure

2.5), and any two shelves facing each other at the same aisle are considered to have the

same picking-position. Figure 2.7 illustrates a warehouse with 5 parallel aisles and some

products on their shelves.

Each product has an associated address (Figure 2.6) defined by a pair 〈aisle,

picking-position〉, that aims to identify the product’s locations in the warehouse. In the

example of Figure 2.7, if we consider the parallel aisles numbered from left to right, be-

ginning at 0 and ending at 4, and the picking-position at each aisle from bottom to top,

beginning at 0 and ending at 6, then the graphic card is located at address ⟨0,2⟩, while

the video-game is at address ⟨3,3⟩, the same address of the Pen Drive. In the same figure,
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Figure 2.2 – The warehouse aisles. Source: the author.

Figure 2.3 – The warehouse cross aisles. Source: the author.

Figure 2.4 – The warehouse shelves. Source: the author.
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Figure 2.5 – Example of picking positions. Source: the author.

Figure 2.6 – Example warehouse’s addresses. Source: the author.

Figure 2.7 – An example of warehouse with highlighted products. Source: the author.
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the location D denotes the depot, placed at the interception between the aisle 0 and the

inferior cross-aisle; thus, its address is ⟨0,-1⟩.

An order is a collection of pairs ⟨product, address⟩ (examples on Table 2.1), and

represents goods to be retrieved. A batch is a set of orders. The orders are indivisible,

i.e., all the products specified in an order must be allocated to the same batch. Each batch

is assigned to a picker to collect the requested products.

Table 2.1 – Orders example. Source: the author.

Orders
Order 1 Order 2

Product Address Product Address
Headset ⟨4,5⟩ RAM Memory ⟨1,5⟩

Keyboard ⟨4,2⟩ Pen Drive ⟨3,3⟩
Bluetooth Mouse ⟨2,4⟩

Pen Drive ⟨3,3⟩
Order 3 Order 4

Product Address Product Address
Soundbar ⟨1,1⟩ Motherboard ⟨0,3⟩
Smart TV ⟨3,0⟩ Graphic card ⟨0,2⟩
Headset ⟨4,5⟩ Video-game ⟨3,3⟩

Pen Drive ⟨3,3⟩
Order 5 Order 6

Product Address Product Address
Headset ⟨4,5⟩ RAM Memory ⟨1,5⟩

Pen Drive ⟨3,3⟩ RAM Memory ⟨1,5⟩
Keyboard ⟨4,2⟩

The path traveled by the picker during the batches’ products retrieving is known as

picking-route (Figure 2.8), defined as a list of pairs ⟨label, address⟩, where label can be

a product to be picked or the depot. Each picking-route has an associated distance equal

to the sum of length units between each pair of consecutive addresses in its list. Every

picking-route starts and ends at the depot. Each product has an associated weight, and

since pickers have a capacity limit (weight/volume), each batch also needs a load bound.

We define c-capacitated picking-route as a picking-route with the maximum capacity

equal to c (i.e., the weight’s sum of all products picked at the route should be less than or

equal to c).

To guarantee the existence of feasible solutions, we assume that the total weight

of an order does not exceed the capacity limit of a picker. Besides, we suppose that when

a product is contained in an order, its availability is guaranteed on the stock. Note that
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Figure 2.8 – An example of picking-route. Source: the author.

some products can be requested in multiple orders, as well as some orders may demand

more than just a single unit of a product.

To exemplify the JOBPRP, consider the orders in Table 2.1 and assume that each

item has a weight 1 and the capacity limit of each picker is equal to 6. The task is to group

the orders so that the total weight of each batch does not exceed 6, as this is the maximum

load that a picker can carry on. Hence, each batch has a corresponding 6-capacitated

picking-route, and the objective is to minimize the sum of its distances.

A possible solution to the problem is the following batches configuration:

• Batch 1: order 1 and order 2

• Batch 2: order 3 and order 6

• Batch 3: order 4

• Batch 4: order 5

Furthermore, feasible options to 6-capacitated picking-routes are:

• Batch 1: Depot, ⟨0,-1⟩ → Ram Memory, ⟨1,5⟩ → Bluetooth Mouse, ⟨2,4⟩ → Pen

Drive, ⟨3,3⟩ → Headset, ⟨4,5⟩ → Keyboard, ⟨4,2⟩ → Depot, ⟨0,-1⟩

• Batch 2: Depot, ⟨0,-1⟩ → Soudbar, ⟨1,1⟩ → RAM Memory, ⟨1,5⟩ → Headset,

⟨4,5⟩ → Smart TV, ⟨3,0⟩ → Depot, ⟨0,-1⟩

• Batch 3: Depot, ⟨0,-1⟩ → Graphic Card, ⟨0,2⟩ → Motherboard, ⟨0,3⟩ → Video-

game and Pen Drive, ⟨3,3⟩ → Depot, ⟨0,-1⟩

• Batch 4: Depot, ⟨0,-1⟩ → Pen Drive, ⟨3,3⟩ → Headset, ⟨4,5⟩ → Keyboard, ⟨4,2⟩)

→ Depot, ⟨0,-1⟩
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However, thinking about distance minimization, is the above solution an optimal

batches-routes assignment? This is the central question that JOBPRP aims to answer,

which is formally defined below.

Problem 1 Joint Order Batching and Picking Routing Problem JOBPRP

Input: a tuple ⟨n, c, E , ω, ϕ, δ⟩, where:

• n ∈ N indicates the total number of orders;

• c ∈ N indicates the maximum weight capacity of the batches;

• E is the warehouse addresses set. The depot is contained on E . We denote as |E|

the total number of warehouse addresses;

• ω is a vector, where ωo represents the weight’s sum of the products in the o-th

order (1 ≤ o ≤ n);

• ϕ is a vector, where ϕo : E → {0, 1} is a binary function that assumes value 1 if

address i ∈ E is required at the o-th order, and 0 otherwise (1 ≤ o ≤ n);

• δ : E × E → R is a function that returns the distance between a pair of addresses

i, j ∈ E .

Output: a set of c-capacitated picking-routes, such that each order is completely

contained in exactly one picking-route, and the sum of all picking-routes’ distances is

minimized.

In this chapter, we intuitively present the main concepts and definitions concern-

ing the target problem of this work. We also define the JOBPRP formally and provide

application examples. In the next chapter, we present a quick literature review about OPP,

OBP and JOBPRP.
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3 LITERATURE REVIEW

In this chapter, we present the theoretical foundation of our research. In the sec-

tions 3.1 and 3.2 we realize a brief overview about OPP, OBP and JOBPRP, highlighting

the most relevant results found at scientific journals and events proceedings from opti-

mization and operational research areas.

3.1 Order Picking Problem

A common problem faced within warehouses is the OPP. An order is a set of

products from the warehouse storage. When an order arrives, the manager assigns it to

a picker for collecting the orders’ items. The picker leaves from the shipping area (also

known as dispatch or depot), retrieves the products and returns to depot. The problem

objective is to minimize the distance traveled by the picker.

A well-known DP algorithm for solving the OPP in rectangular single-block ware-

houses (multiple parallel aisles with two cross-aisles, one above, one below) was pre-

sented by (RATLIFF; ROSENTHAL, 1983). The proposed DP algorithm finds an optimal

solution for these layouts in linear time on the number of aisles and picking locations. We

discuss this approach in detail in subsection 3.1.1.

An extension of Ratliff and Rosenthal’s DP approach was proposed by (ROOD-

BERGEN, 2001), to the case where the warehouse’s layout is two-block, i.e., when it also

has a cross-aisle in the middle of parallel aisles, resulting in 3 cross-aisles. The picking

lists sizes of their experiments varied from 1 to 50 items, and the results attested that

their DP maintains the quality and a proportional computation time from the single-block

original approach. Another point is the laborious implementation, which demands many

details.

The OPP can be generalized for multi-blocks and considered as a Steiner traveling

salesman problem (STSP). Authors from (THEYS et al., 2010) formulated this problem as

a TSP. They proposed a heuristic which, despite being more generic than state-of-the-art

from that epoch, presents more improved results considering the specific implementation

process that other works destined to implement solutions to the same problem.

Specific mathematical programming approaches were also applied to OPP. In

(SCHOLZ et al., 2016), the authors presented a huge mathematical programming for-

mulation for the single-picker routing problem (another name to OPP) on single-block
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warehouses. They adapted the theory delivered by (RATLIFF; ROSENTHAL, 1983) to

develop particular constraints based on the possible movements and transitions between

aisles and cross-aisles. They proved that their formulation was superior to standard TSP

formulations applied to the picking routing problem on benchmark tests. A sparse mixed-

integer programming (MIP) formulation strengthened by preprocessing and valid inequa-

lities was developed by (PANSART; CATUSSE; CAMBAZARD, 2018). They reported

and compared the results with the TSP solver Concorde.

The OPP accept variations, as the picker routing in rectangular mixed/scattered

shelves. This problem also receives (as part of the input) an order with the respective

products to be picked; however, the products have multiple items scattered on shelves

around the warehouse. The task is to decide the picking sequence and which unit of

each product should be picked to minimize the total traveled distance. The research of

(WEIDINGER, 2018) and (WEIDINGER; BOYSEN; SCHNEIDER, 2019) dealt with

this problem through heuristics and MIP Models. The latter work considered the variation

of multiple depots.

3.1.1 A Dynamic Programming approach

In this subsection, we summarize and rewrite the content of (RATLIFF; ROSEN-

THAL, 1983), a DP approach to OPP, once their mechanism and theory are essential for

developing our work (we discuss how this DP is applied to our algorithms in chapters 5

and 6). Ratliff and Rosenthal treat the warehouse single-block configuration, jointly with

the respective products to be picked, as a graph.

Their algorithm’s main idea is based on proven theorems and aims to find a mini-

mum length tour sub-graph representing the picking-route (defined in the previous chap-

ter). The approach constructs the minimum length tour sub-graph from the union of the

shortest partial tours sub-graphs (PTS). PTS are also sub-graphs, and their meaning is

explained below.

They assume that the warehouse has m aisles, and the order has n products. The

most left aisle is identified by 1, the next aisle by 2, and so on. The above intersection

of an aisle j with the superior cross-aisle is identified by aj , while the below intersection

with the inferior cross-aisle is identified by bj . The depot is identified by v0, and the points

to be visited (the product’s locations, among aj and bj) are identified from v1 to vn. The

sub-graph which represents the route traveled at aisle j is defined by Aj .
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The single-block layout allows the definition of two types of PTS: the L−
j and the

L+
j PTS. The first one considers all the sub-graph to the left from aj and bj . The second

is the union between L−
j and Aj (L+

j = L−
j ∪ Aj). The relation between these two PTS

is depicted in Figure 3.1. Observe that a tour always starts at L+
1 PTS, and the minimum

length tour is at L+
m PTS.

Figure 3.1 – Relation L+
j = L−

j ∪Aj . Source: the author.

In Figure 3.1, are abstracted the content and the route of aisles and cross-aisles.

Still, there are only six possibilities of arc configurations for any aisle j (Figure 3.2) and

five possibilities of arc configurations between aisle j and j + 1 (Figure 3.3).

These arc configurations occur in the following situations for the aisles:

(i) when the picker traverse the aisle, from a cross-aisle to another, one time;

(ii) when the picker enters at the aisle by the superior interception (aj), pick the prod-

ucts from the order which are located there, and leaves the aisle by the same inter-

ception aj;

(iii) when the picker enters at the aisle by the inferior interception (bj), pick the products

from the order which are located there, and leaves the aisle by the same interception

bj;

(iv) when the picker enters at the aisle by aj (or bj), pick products at aisle j, leaves j

by the same interception, continues the picking route at the warehouse, and while

returning to depot, enters again at j, but now by bj (or aj) and leaves the aisle by

the same interception;

(v) when the picker traverse the aisle twice, from a cross-aisle to another;
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(vi) when the picker do not enter at the aisle, because the order do not request products

from there.

Figure 3.2 – Possible arc configuration in aisles. Source: adapted from (RATLIFF;
ROSENTHAL, 1983).

The five arc configurations of cross-aisles occur in the following situations:

(i) when the transition between aisles j and j + 1 is effected with one arc in both

superior and inferior cross-aisles;

(ii) when the transition between aisles j and j + 1 is effected with two arcs in the

superior cross-aisle;

(iii) when the transition between aisles j and j+1 is effected with two arcs in the inferior

cross-aisle;

(iv) when the transition between aisles j and j + 1 is effected with two arcs in both

cross-aisles;

(v) when there are not transitions between aisles j and j+1. This last case occurs when

there are no products to be picked to the right of aisle j.

Ratliff and Rosenthal proved that with the arc configurations depicted in Figures

3.2 and 3.3 a PTS can be represented through patterns, which they defined as equivalence

classes. An equivalence class is a triplet (degree parity of aj , degree parity of bj , connec-

tivity), where the first element informs if the number of arcs linked to aj is odd (U), even

(E) or zero (0), the second gives the same information to bj , and the third informs about

the components arrangement (0C, if there are no component; 1C, if one component; or

2C, if two components). Purposely, they use U to denote odd (“uneven”) to avoid confu-

sion with zero. The possible equivalence classes are the following seven: (U, U, 1C), (0,

E, 2C), (E, 0, 2C), (E, E, 1C), (E, E, 2C), (0, 0, 0C) and (0, 0, 1C).
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Figure 3.3 – Possible arc configuration in cross-aisles. Source: adapted from (RATLIFF;
ROSENTHAL, 1983).

The optimal tour sub-graph is composed by connecting the PTS. This process is

guided by two tables (Tables 3.1 and 3.2), that delivery which equivalence class we find

when append some configuration of Figure 3.2 to a L−
j PTS or when we append some

configuration of Figure 3.3 to a L+
j PTS.

Table 3.1 – Resultant equivalent classes from adding each of arc configurations in Figure 3.2 to
the PTS in the L−

j equivalence classes. Source: adapted from (RATLIFF; ROSENTHAL, 1983).

L−
j Equiv. Class (i) (ii) (iii) (iv) (v) (vi)

(U, U, 1C) (E, E, 1C) (U, U, 1C) (U, U, 1C) (U, U, 1C) (U, U, 1C) (U, U, 1C)
(E, 0, 1C) (U, U, 1C) (E, 0, 1C) (E, E, 2C) (E, E, 2C) (E, E, 1C) (E, 0, 1C)
(0, E, 1C) (U, U, 1C) (E, E, 2C) (0, E, 1C) (E, E, 2C) (E, E, 1C) (0, E, 1C)
(E, E, 1C) (U, U, 1C) (E, E, 1C) (E, E, 1C) (E, E, 1C) (E, E, 1C) (E, E, 1C)
(E, E, 2C) (U, U, 1C) (E, E, 2C) (E, E, 2C) (E, E, 2C) (E, E, 1C) (E, E, 2C)
(0, 0, 0C) (U, U, 1C) (E, 0, 1C) (0, E, 1C) (E, E, 2C) (E, E, 1C) (0, 0, 0C)
(0, 0, 1C) - - - - - (0, 0, 1C)

Table 3.2 – Resultant equivalent classes from adding each of arc configurations in Figure 3.3 to
the PTS in the L+

j equivalence classes. Source: adapted from (RATLIFF; ROSENTHAL, 1983).

L+
j Equiv. Class (i) (ii) (iii) (iv) (v)

(U, U, 1C) (U, U, 1C) - - - -
(E, 0, 1C) - (E, 0, 1C) - (E, E, 2C) (0, 0, 1C)
(0, E, 1C) - - (0, E, 1C) (E, E, 2C) (0, 0, 1C)
(E, E, 1C) - (E, 0, 1C) (0, E, 1C) (E, E, 1C) (0, 0, 1C)
(E, E, 2C) - - - (E, E, 2C) -
(0, 0, 0C) - - - - (0, 0, 0C)
(0, 0, 1C) - - - - (0, 0, 1C)

Ratliff and Rosenthal describe that to find the distance of the minimum length

tour, we assemble a solution table with seven lines (which of them corresponding to an

equivalence class e), and the columns indexed from 1 to 2m − 1: considering an aisle j,

the odd indexes store at the lines data about the L+
j PTS, and the even indexes store data
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about L−
j PTS. There is a triplet in each cell of the table: the first element is the minimum

distance length PTS for the equivalence class, the second indicates the equivalence class

of the predecessor PTS from which the current PTS was constructed, and the third informs

which arc configuration (from Figure 3.2 to L+
j PTS or from Figure 3.3 to L−

j PTS) was

added to the predecessor PTS to obtain the current PTS.

The algorithm starts the solution table filling process at L+
1 . Repair that L−

1 does

not exist, once there is nothing to the left of a1 and b1. It also justifies the first operation:

for each equivalence class e associated to the first column of the solution table, we search

at Table 3.1 which arc configurations could be appended to (0,0,0C) (a null graph) that

have the equivalence class e as a result. Among the possible arc configurations, we choose

the one that minimizes the PTS distance. In the cell, we store the distance, the equivalent

class of the predecessor (in this case, null), and the chosen arc configuration.

The process is similar to the next PTS, L−
2 . For each equivalence class e, we

search at Table 3.2 which operations results e: from the options (an equivalence class

f and an arc configuration g), we choose the one that minimizes the sum between the

distance associated to the equivalent class f at last PTS and the distance traveled on

arc configuration g. We again store at the cell the distance, the equivalent class of the

predecessor f , and the arc configuration g. Thus, the idea to complete the fields of L+
2 is

the same as L+
1 , the difference is the total distance of the PTS, which is computed from

those that we just calculated for the L−
2 ’ equivalence classes.

The solution table is filled until the column 2m − 1, and the optimal distance of

the tour can be found in one of (E, 0, 1C), (0, E, 1C), (E, E, 1C), or (0, 0, 1C) from this

column.

We can determine the physical graph that represents the order-picking route. The

triplets stored in each cell inform the distance, the equivalence class of the predecessor,

and the arc configuration. Hence, we trace back the solution table, starting from the

optimal PTS in 2m − 1. The composition of aisles and cross-aisles arcs give us the

complete minimum length tour sub-graph.

3.2 Order Batching Problem

Besides determining the best route to pick the products from some order, another

recurrent problem in warehouses is how to increase the efficiency factor of the order

picking process as a whole. Imagine the case of companies that receive thousands of
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orders daily - is it advantageous to assign a single order to a picker, considering that

maybe the trolley is not full yet? This question leaves us to the Order Batching Problem

(OBP), a common strategy widely applied in industry, aiming to reduce operational costs.

The idea is to assign more than one order to a picker without exceeding a capacity

limit, and we call these orders groups by batches. An order is indivisible, i.e., products

from an order should be picked at the same picking route. Thus, the problem aims to

minimize the sum of distances traveled by each picker, dividing a set of orders received

by management in batches.

A well-known study about OBP was conducted by Henn and Wäscher (HENN;

WäSCHER, 2012), where two approaches based on the Tabu Search (TS) principle were

proposed: a classic TS and an attribute-based hill climber (ABHC), achieving very com-

petitive results. The instances’ groups provided by these authors are still used nowadays

as a standard benchmark in warehouse optimization problems.

Koch and Wäscher (KOCH; WäSCHER, 2016) also explored OBP, developing a

grouping genetic algorithm (GGA), which works with a local search procedure to improve

the results, and the routing was done by S-Shape strategy. Their approach has been proven

to be more performative than genetic algorithms (GA) based on object-oriented encoding

schemes previously used in the literature.

To the best of our knowledge, the results found by Menéndez, Pardo, Alonso-

Ayuso, Molina, and Duarte (MENéNDEZ et al., 2017) with a Variable Neighborhood

Search (VNS) methodology are the best to OBP, outperforming previous attempts in state

of the art. Their approach (MS-VNS) is a multi-start VNS, where each iteration starts

by generating a different initial solution, improved with a basic VNS, and post-optimized

with a general VNS strategy.

Just like OPP, OBP also have variations and extensions. Recently, motivated by

the new warehouse layouts and automatizing technologies being adopted by these places,

(XIE et al., 2021) introduced the OBP with split orders, meaning that it is allowed to divide

the orders and mix their products into batches that must be recomposed at the end of the

picking.

Note that OBP depends on some routing metric to find possible order batches.

When this problem is treated isolated, options to deal with distances may use order-

picking routing policies (e.g., S-Shape, Largest Gap, Midpoint) or advanced heuristics.

However, an alternative is to individually optimize the correspondent route of each batch

during the batching process, that is, an approach that performs OBP jointly with OPP - this
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strategy is known as Joint Order Batching and Picking Routing Problem (JOBPRP).

3.2.1 Joint Order Batching and Picking Routing Problem

In (KULAK; ŞAHIN; TANER, 2012), the authors presented novel tabu search

(TS) algorithms integrated with a novel clustering algorithm to solve JOBPRP for multi-

blocks warehouses. The clustering algorithm generates an initial solution for the TS al-

gorithms to provide fast and effective solutions to the order batching procedure. They

randomly generated various instances, considering the number of orders, the weight of

items, and picking coordinates. Their results indicated advantages (solution quality and

computational efficiency) in calculating OPP and OBP jointly.

In (CHENG et al., 2015), an efficient hybrid algorithm was proposed for solving

the JOBPRP. This algorithm is composed of particle swarm optimization (PSO) for find-

ing the best batches configuration by minimizing the sum of the traveling distances. These

distances are calculated by an ant colony optimization (ACO) algorithm, which searches

for the most effective path for each batch. Their results reinforce that the JOBPRP strat-

egy improves picking performance and allows customer demands to be met rapidly.

Once that JOBPRP is a strategy to improve objective values of OBP through OPP,

it is possible to compare the results of both JOBPRP and OBP. In this sense, recently,

Aerts, Cornelissens, and Sörensen (AERTS; CORNELISSENS; SöRENSEN, 2021) ap-

proached JOBPRP on single-block warehouses, modeling the problem as a clustered

vehicle routing problem (CluVRP) and solving it with a two-level VNS metaheuristic.

They delivered good results compared with the literature, except with Menéndez et. al.

(MENéNDEZ et al., 2017) that maintains its superiority, mainly with larger batches ca-

pacities.

This chapter presented papers and methods that support and justify our work, re-

viewing the OPP, OBP, and finally, the JOBPRP. In the next chapter, we present a new

mathematical formulation to JOBPRP.
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4 MATHEMATICAL FORMULATION

We propose a new integer linear program (ILP) for JOBPRP. We use this model

within an exact solver to solve small instances, which also helps estimate the accuracy

of the algorithm proposed in the next section. From now on, we consider an instance

I = ⟨n, c, E , ωo, ϕo, δ⟩ of JOBPRP.

Our formulation is defined over two sets of binary variables and one of integer

variables. The first set of binary variables controls the assignment of orders to batches.

Once there are n orders (labeled from 1 to n), and each order is inserted in exactly one

batch, the minimum number of batches necessary to satisfy the problem is 1 (when all

orders are assigned to the same batch), and the maximum number is n (when each order

is assigned to a different batch). To simplify notation, we define the set N = {m ∈

N|1 ≤ m ≤ n}, and the variables xob are declared for each o ∈ N and b ∈ {m ∈ N|1 ≤

m ≤ o}. We enforce b ≤ o to avoid some symmetric solutions in which the batches are

interchangeable:

xob =

 1, if order o is in batch b

0, otherwise.

The second set of binary variables describes the picking-routes, declaring a varia-

ble for all i, j ∈ E (i ̸= j), b ∈ N :

zijb =


1, if i is visited immediately before j in the

picking-route of batch b

0, otherwise.

The integer variables indicate the ordinality of the addresses visited in the batches’

picking-routes. If the address i ∈ E is visited by the picking-route of batch b ∈ N , then

uib indicates the ordinal position (starting at the depot) in which b visits i. These variables

take value from 1 to |E| (there are no more than |E| addresses), and they are mainly used

to avoid sub-tours in a feasible solution.

The problem’s objective is to minimize the sum of all picking-routes’ distances,

which can be written as follows:

min
n∑

b=1

∑
i∈E

∑
j∈E
j ̸=i

δ(i, j)zijb
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To guarantee that each order is assigned to exactly one batch, we define the set of

constraints below:

o∑
b=1

xob = 1 ∀o ∈ N (4.1)

To ensure that the capacity limit of each batch is not exceeded, we state the follo-

wing group of constraints:

n∑
o=b

ωoxob ≤ c ∀ b ∈ N (4.2)

The next two constraints groups guarantee, for all addresses and batches, that if

an address i is not requested in some of the orders of batch b, then i cannot precede nor

succeed any other address in the picking-route of b:

∑
j∈E
j ̸=i

zjib ≤
n∑

o=b

ϕo(i)xob ∀ b ∈ N , i ∈ E (4.3)

∑
j∈E
j ̸=i

zijb ≤
n∑

o=b

ϕo(i)xob ∀ b ∈ N , i ∈ E (4.4)

Also, we need to guarantee that every address has at most one predecessor and

one successor at each picking-route:

∑
j∈E
j ̸=i

zjib ≤ 1 ∀ b ∈ N , i ∈ E (4.5)

∑
j∈E
j ̸=i

zijb ≤ 1 ∀ b ∈ N , i ∈ E (4.6)

To include an address in a picking-route, we need to assure for all addresses,

orders, and batches, that if an address i is requested in at least one of the orders in batch

b, then i must be preceded and succeeded by another address in the picking-route of b:

∑
j∈E
j ̸=i

zjib ≥ ϕo(i)xob ∀ b ∈ N , b ≤ o ≤ n, i ∈ E (4.7)

∑
j∈E
j ̸=i

zijb ≥ ϕo(i)xob ∀ b ∈ N , b ≤ o ≤ n, i ∈ E (4.8)
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Another important issue is to avoid sub-routes on picking-routes. Thus, we in-

cluded the next constraints’ set, based on Miller-Tucker-Zemlin (MTZ) (MILLER; TUCKER;

ZEMLIN, 1960) formulation of the traveling salesman problem (TSP):

ujb ≥ uib + 1− |E|(1− zijb) ∀b ∈ N , i ̸= j ∈ E \ {0} (4.9)

The following constraints aim to reduce symmetric solutions and establish a di-

rection to the picker. Observe that, for each batch, the same picking-route can be traveled

in two different directions; hence we can reduce the search space by enforcing feasi-

ble solutions to only use one of those directions. For that, we define a sorting function

σ : E → N which associates a different natural index to each address, being 0 the depot’s

index (i.e., σ(d) = 0). Since all picking-routes start at the depot, our proposal is to follow

the direction where the second address will have a lower σ value:

∑
i∈E\{d}

zdibσ(i) ≤
∑

i∈E\{d}

zidbσ(i) ∀ b ∈ N (4.10)

Finally, we focus on breaking batch symmetries. Note that exchanging the to-

tal content from a batches’ pair does not affect the objective value, and if there are empty

batches, then equivalent solutions are obtained by swapping any used batch with an empty

one. Thus, the following constraints’ set enforces the usage of the first batches, guaran-

teeing that empty batches will be the last ones of a feasible solution:

n∑
o=b

xobn ≥
n∑

o=b+1

xo(b+1) ∀ 1 ≤ b ≤ n− 1 (4.11)

The above discussion lead us to the following model for JOBPRP:

Model 1 Integer linear program for instance ⟨n, c, E , ωo, ϕo, δ⟩ of JOBPRP:

min
n∑

b=1

∑
i∈E

∑
j∈E
j ̸=i

δ(i, j)zijb

s.t. constraints (4.1)− (4.11)

xob, zijb ∈ {0, 1} , uib ∈ N
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5 A DP-BASED HEURISTIC APPROACH

Our heuristic approach is named “2-level-DP-JOBPRP” (Algorithm 1). It works

in two DP phases: first, the algorithm groups the orders into batches with a knapsack-

based (KARP, 1972) strategy. Then, we filter the addresses that should be visited for each

batch and compute the respective picking-route. The lengths’ sum of all picking-routes

is the problem objective value. The idea behind this approach is to reduce the number of

batches (with the knapsack strategy, the batches are filled to the possible fullest), which

implies fewer visits to the depot to unload items, resulting in a total picking-route’s length

decreasing.

Input : an instance ⟨n, c, E , ω, ϕ, δ⟩ of JOBPRP
Output : the solution S, which corresponds to the batches’ picking-routes

1 begin
2 B ← ∅;
3 L ← ∅;
4 S ← ∅;
5 B ← generateInitialBatches(ω, c);
6 for b← 1 to |B| do
7 L ← L ∪ {prepareLocations(n, E , ϕ, Bb)};
8 end
9 for b← 1 to |B| do

10 S ← S ∪ {optDistance(Lb, δ)};
11 end
12 return S;
13 end

Algorithm 1: 2-level-DP-JOBPRP heuristic

In Algorithm 1, between lines 2 and 4, we initialize the vectors B, L and S. B

represents the batches configuration, such that each array item stores the orders indexes

which are included in the batch. Each position of L contains the addresses that should

be visited in the correspondent batch picking-route, and S stores the problem solution,

which is the batches’ picking-routes.

At line 5, the batches are arranged, process described by Algorithm 2. Between

lines 6 and 11, the following procedures are performed: at line 7, for each batch, the

algorithm analyzes and filters the addresses required by the orders and appends them

to L. At line 10, the picking-routes are computed with the DP procedure explained in

subsection 3.1.1 and are appended to S. At line 12, we return the problem solution.

The generation of the initial batches’ configuration is represented by Algorithm 2.

It receives as input the weights of each order (ω) and the capacity limit of each batch (c),

and returns the batches’ arrangement B. At line 2 the set B is initialized as empty, and
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Input : ω, c
Output : the batches configuration B

1 begin
2 B ← ∅;
3 I ← indexes from ω;
4 while |I| > 0 do
5 X ← knapsack(ω, c);
6 for x ∈ X do
7 O ← O ∪ {Ix};
8 end
9 B ← B ∪ {O};

10 for x ∈ X do
11 ω ← ω \ {ωx};
12 I ← I \ {Ix};
13 end
14 O ← ∅;
15 end
16 return B;
17 end

Algorithm 2: generateInitialBatches procedure

at line 3, I receives the indexes of the orders’ weights vector (which corresponds to an

identification to each order).

Between lines 4 and 15, while there are non-allocated orders, the following pro-

cedures are executed: at line 5, an algorithm based on knapsack (depicted by Algorithm

3) is performed to determine which orders from those available (the orders which there

are still in ω) should be included in the current batch. The indexes of the chosen orders

are stored in X . At line 7 we append the selected indexes from I to O, the set of orders,

which is appended to B at line 9. At lines 11 and 12 we update ω and I, respectively.

Latter, we reset O to empty at line 14. The batches arrangement B is returned at line 16.

The Algorithm 3 always receives as input an updated vector ω and the fixed ca-

pacity limit c. This algorithm returns a vector X , containing the indexes of the current

ω which maximizes the total weight of the batch without exceed the capacity limit c. At

line 2, the indexes’ set is declared as empty, and at line 3, a table M with dimensions |ω|

and c (starting the indexing from 0) is initialized and filled with the value 0. The posi-

tion M [i][j] from the table informs the maximum weight that the batch can hold, case the

orders from 1 to i are included or not in the batch, without exceed the capacity limit j.

Between lines 4 and 12 we iteratively fill the table M from bottom to top. If

the weight of the order is greater than j (line 6), this order is not included to the batch;

in another case, we decide if the order is included or not (line 9). From line 13 to line

23 we just trace-back the table M to determine which are the selected orders. Their

correspondent ω indexes are appended to X , which is returned to Algorithm 2 at line 24.
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Input : ω, c
Output : the set X of ω’s indexes, which should be included in the batch

1 begin
2 X ← ∅;
3 M ← 0(|ω|+1)×(c+1);
4 for i← 1 to |ω| do
5 for j ← 1 to c do
6 if ω[i− 1] > j then
7 M [i][j]←M [i− 1][j];
8 else
9 M [i][j] = max(M [i− 1][j], ω[i− 1] +M [i− 1][j − ω[i− 1]]);

10 end
11 end
12 end
13 p← |ω|;
14 q ← c;
15 while p > 0 and q > 0 do
16 if M [p][q] = M [p− 1][q] then
17 p← p− 1;
18 else
19 X ← X ∪ {p− 1};
20 p← p− 1;
21 q ← q − ω[p];
22 end
23 end
24 return X ;
25 end

Algorithm 3: knapsack procedure

The highlight of the 2-level-DP-JOBPRP heuristic is the fast execution time, which

for the large instances tested, does not exceed two-hundredths of a second. Although the

objective values delivered by this heuristic are higher than those provided by the literature,

they are consistent and follow a pattern according to the results already reported (more

details in the chapter 7). Thus, we present a new metaheuristic in the next section, which

aims to refine the objective values found when solving JOBPRP.
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6 A GGA WITH GENE TRANSMISSION FOR JOBPRP

Genetic algorithms are evolution-based algorithm design strategies that aim to

optimize complex combinatorial problems. Many of them are directly inspired by the

evolutionary process of the species of living beings. The main idea of these algorithms is

to encode a possible solution to a particular problem on a representation known as a chro-

mosome. Operations are realized over these structures aiming to optimize the objective

function of the target problem until a stop criterion is reached (ROZENBERG; BÄCK;

KOK, 2012).

Focusing on nature-inspired approaches, the fundamental steps of a genetic algo-

rithm are the generation of an initial population of solutions, the evaluation, the crossover,

the mutation, and the population replacement. The operations executed over these proce-

dures can be summarized as follows (WHITLEY, 1994):

• Generation of an initial population: generally, the construction of a determined

set of solutions occurs randomly or using a heuristic strategy, composing the initial

population of individuals;

• Evaluation: the solutions are evaluated according to their fitness, i.e., how much

these solutions satisfies the problem. It is frequent to associate the fitness to the

objective function value;

• Crossover: usually, the parents are randomly paired to cross and generate a child,

inheriting both parents’ genetic characteristics. The set of children composes the

offspring;

• Mutation: all individuals have a chance to suffer a mutation. A mutation repre-

sents an external factor from a crossover that modifies the individual. This step is

essential to ensure genetic variability and reduce the probability of local optimum

solutions;

• Population replacement: a new population is generated from the original solutions

and the offspring.

During all the processes, the individual with the best fitness is appointed as a pos-

sible solution to the problem. In most cases, the stop criteria are given by a certain number

of generations, several iterations without a solution update, or a program execution time.

The following section discusses possible ways to represent a solution, introducing

the idea of grouped genetic algorithms.
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6.1 Grouped Genetic Algorithms

The chromosomes’ encoding scheme significantly influences the genetic algo-

rithm design and performance. The object-oriented genetic algorithm (OO-GA) and the

grouped genetic algorithm (GGA) are the most common representations. Below, the pros

and cons of these encodings are analyzed.

To explain the differences between OO-GA and GGA, we contextualize with the

OBP. Given a set with 8 orders, we need to assign them to batches, such that the prob-

lem’s constraints are satisfied. A possible manner of assembling a chromosome for this

problem is declaring a vector with exactly 8 positions, each of them containing an integer.

The vector’s positions represent the orders, and the respective integer values indicate the

batches to which the orders are assigned. In Figure 6.1, we depict two possible solutions

encoded with this schema.

Figure 6.1 – Example of object-oriented scheme chromosomes. Source: the author.

In Figure 6.1, at solution A, orders 1 and 2 are assigned to batch 1, order 3 is

assigned to batch 2, orders 4, 5 and 6 are assigned to batch 3, order 7 is assigned to batch

4 and order 8 is assigned to batch 5. At solution B, order 1 is assigned to batch 1, orders

2 and 3 are assigned to batch 2, orders 4 and 5 are assigned to batch 3 and orders 6, 7 and

8 are assigned to batch 4.

Note that even though solution A splits the orders into 5 batches and solution B

splits the orders into 4 batches, the solution size keeps fixed to 8, the number of orders.

The orders are the “objects” that we are manipulating and assigning to other entities (the

batches) - this structure “one gene per item” is the most notable feature of OO-GA (HOL-

LAND, 1992).

This kind of schema has advantages such as faster implementation and easier ap-

plication of the genetic operators over the chromosomes. On the other hand, it carries

disadvantages as redundant solutions (FALKENAUER, 1996). To exemplify the concept
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of redundancy, let’s suppose a chromosome A′ that is feasible to the OBP cited above:

A′ = {2 2 3 4 4 4 5 1}. In this case, solutions A and A′ are redundant because des-

pite their different phenotype (how a solution is visualized, by itself), they have the same

meaning, which is the two first orders joined at some batch (the name or label from batch,

do not matter), the third order in a different batch, orders 4, 5 and 6 together in another

separate batch, and orders 7 and 8 in their own batches.

The problem of redundant solutions is that they increase exponentially with the

problem input size, which implies an increase in total computation time and a higher

probability of falling in local optimal due to the expansion of the search space. An al-

ternative to such an issue is to design another chromosome’s representation. Figure 6.2

illustrates equivalent solutions to A and B in a GGA scheme.

Figure 6.2 – Example of grouped genetic algorithm’s chromosomes. Source: the author.

Figure 6.2 shows that C and D represent the same result of A (or A′) and B,

respectively. Each gene is treated as a group that contains minor elements, and it justifies

why this schema fits so well to grouping problems, such as the OBP. The main advantage

of GGA is the exclusion of redundant solutions, resulting in faster executions for larger

inputs (FALKENAUER, 1994).

The inconveniences of GGA are the genetic operators that demand special atten-

tion once the chromosome’s size is not fixed, and we have no guarantee about the dis-

tribution of the objects over the groups. Then, procedures such as crossover or mutation

may cause problems like object replication in the solution or improper assignments in

the groups. Attempts to avoid these problems could require more processing time than

OO-GA. Thus, it is crucial to evaluate the trade-off due to the chromosomes’ encoding

schema and the input size over the project.

As we deal with large instances in this work, we opted for GGA. One of the

possible techniques to crossover the solutions in this schema is the controlled gene trans-

mission, which consists of selecting the best genes from both parents for the resulting
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child based on an efficiency criterion specific to each problem. During the presentation of

our approach, we explain how we classify the genes as inheritable or not.

6.2 Main approach

Our metaheuristic approach to JOBPRP is called “Grouping Genetic Algorithm

with Controlled Gene Transmission for Joint Order Batching and Picking Routing Prob-

lem” (GGACGT-JOBPRP). We choose the grouping genetic algorithm (GGA) schema

instead of an object-oriented GA (OO-GA) because Falkenauer demonstrated several

advantages from GGA over OO-GA on Bin Packing Problem (BPP) (FALKENAUER,

1996). Notice that the BPP seeks to minimize the number of bins (batches) used to pack-

age a set of items (orders) with different weights, such that the weight’s limit of bins

(maximum pickers capacity) is not exceeded. Consequently, BPP is the particular case of

JOBPRP when all distances are the same.

A remarkable feature of GGA is the chromosome, which by definition is a set of

groups that contains minor elements without repetition (the solution is a partition set).

This representation implies in exclusion of symmetric solutions, allowing a faster conver-

gence to the expected objective value (FALKENAUER, 1996). Focusing on JOBPRP,

the solution’s groups (i.e., the chromosomes’ genes) can be interpreted as the batches,

and their contents are the orders. Also, each solution’s batch has an associated picking-

route.

Thus, considering that a chromosome encodes the orders distribution into batches,

we summarize the main algorithm’s pseudo-code at Algorithm 4, which receives an in-

stance ⟨n, c, E , ω, ϕ, δ⟩ of JOBPRP and returns the best chromosome found β at line 30.

An empty population P of individuals is initialized at line 2. This population is

filled with POP_SIZE members through a heuristic procedure (line 4) that is further de-

tailed by Algorithm 5. The fitness evaluation of the new individuals is performed during

the generation process. The fitness value is equal to the objective value, which is equiv-

alent to the sum of picking-route’s distances. These distances are optimal, and are calcu-

lated through a dynamic programming approach proposed in (RATLIFF; ROSENTHAL,

1983), explained in subsection 3.1.1. To avoid recalculations, we store the distances trav-

eled in each batch every time we evaluate the fitness because this information is required

at crossover. After the initialization process, the most adapted individual from P is as-

signed to β (line 7), the best solution found, which is updated whenever a better solution
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is found between lines 14-17 and lines 23-25.

Input : an instance ⟨n, c, E , ω, ϕ, δ⟩ of JOBPRP
Output : β, best chromosome found

1 begin
2 P ← ∅;
3 for i← 1 to POP_SIZE do
4 C ← generateIndividual(n, c, E , ω, ϕ, δ);
5 P ← P ∪ {C};
6 end
7 β ← most adapted individual from P , considering F(β);
8 for t← 1 to ITERATION_LIMIT do
9 G ← selectParents(P , PARENTS_SIZE);

10 Z ← crossover(G, n, ω, c);
11 for each x ∈ Z do
12 F(x)← x’s fitness;
13 end
14 βz ← best solution of Z ;
15 if F(βz) < F(β) then
16 β ← βz;
17 end
18 for x ∈ Z \ {βz} do
19 m← mutation(x, ω);
20 if m is valid then
21 update x’s chromosome;
22 F(x)← x’s fitness;
23 if F(x) < F(β) then
24 β ← x;
25 end
26 end
27 end
28 P ← best POP_SIZE solutions from P ∪ Z;
29 end
30 return β;
31 end

Algorithm 4: Main GGACGT-JOBPRP approach

Between lines 8 and 29 the algorithm executes ITERATION_LIMIT times the pro-

cedures that are described next. First, PARENTS_SIZE individuals fromP are selected to

be the parents G (line 9) of the next generation. These parents are chosen with a discrete

probability distribution proportional to the ranking provided by the fitness. The resulting

offspring from the parents’ crossover is assigned to the set Z (line 10), which is evaluated

between lines 11 and 13. To ensure variability without losing genetic characteristics over

generations, all individuals, excepting the best individual from Z , can be mutated (line

19). The mutation process involves exchanging a pair of orders from different random

batches, which may cause a batch overload (phenomena defined as invalid mutation).

Aiming feasible solutions, if an invalid mutation is detected, it is discarded (line 20). Fi-

nally, at line 28 we define the new population as the best POP_SIZE solutions from the
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offspring Z and the current population P .

In the sections 6.3 and 6.4, we detail, respectively the generateIndividual (gene-

ration of new individuals) and crossover procedures.

6.3 Individual generation

The individual generation heuristic described by Algorithm 5, aims to provide an

initial population with lower objective function values. Therefore, its main proposal is to

group the most similar orders into the same batches, decreasing the associated picking-

route. Hence, given a set of orders, we should analyze their content (i.e., which products

are required in each order), and from a random order, to define which orders may be

combined according to their products’ locations.

To exemplify, let’s suppose that a picker travels 210 length units (LU) to collect

products from an order “A”, and the same picker travels 210 LU to collect products from

an order “B”. If the total distance traveled by the picker to retrieve the items from these

orders stills 210 LU when these orders are assigned to the same batch (without exceeding

its capacity limit), it means that we have a perfect match between these two orders in the

batch.

Input : an instance ⟨n, c, E , ω, ϕ, δ⟩ of JOBPRP
Output : a new individual I

1 begin
2 I ← ∅;
3 O ← {1, 2, . . . , n};
4 i← 0;
5 while |O| > 0 do
6 b← new batch with index i;
7 r ← remove random order from O;
8 b← b ∪ {r};
9 w ← total weight of b;

10 while some order of O fits in b do
11 s← o ∈ O s.t min. OSD(b, o, δ, ϕ, E), w + ωo ≤ c;
12 if s ̸= ∅ then
13 O ← O \ {s};
14 b← b ∪ {s};
15 w ← total weight of b;
16 end
17 end
18 I ← I ∪ {b} ;
19 i← i+ 1;
20 end
21 return I;
22 end

Algorithm 5: Individual generation algorithm
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The algorithm receives as input an instance ⟨n, c, E , ω, ϕ, δ⟩ of JOBPRP, and re-

turns a new feasible solution I. It starts creating an empty individual I, and a set O, that

contains the orders (numbered from 1 to n) which are not allocated in solution (lines 2

and 3). At line 4, we assign the value 0 to the variable i, which represents the current

batch that we are accessing.

Between lines 5 and 20, we execute the main loop of the algorithm until all orders

are included in some batch. At each iteration, we initialize a new batch b with index i

(line 6) and choose a random order r to be removed from O and be pushed to b (lines 7

and 8). The total weight of b’s orders is stored in the variable w (line 9). While some

order from O fits in b (line 10), we assign to s the order o from O which minimizes OSD

(Orders similarity degree) function without exceed the capacity limit c (line 11). If no

order satisfies the load constraint, then s becomes empty. If s is not empty (line 12), then

we remove it from O, push it into b (lines 13 and 14) and update w at line 15. When the

batch construction is concluded, the batch b is appended to solution (line 18).

The insight of using an OSD function is to determine which order o ∈ O generates

the minimum distance for the picking-route when combined with the orders already in

b. Hence, the OSD of an order o ∈ O consists of applying the dynamic programming

algorithm of (RATLIFF; ROSENTHAL, 1983) to compute an optimal picking-route for

retrieving all products of the orders in b ∪ {o}.

6.4 Crossover procedure

The crossover algorithm applies a controlled gene transmission technique, that

provides gains over other crossover methods (QUIROZ-CASTELLANOS et al., 2015).

At the end of this process, the batches with more orders and shorter picking distances

come first at the solution, which implies lower objective values.

Our crossover procedure is described by Algorithm 6 and applies the ideas pro-

posed for BPP in (QUIROZ-CASTELLANOS et al., 2015) to JOBPRP. The algorithm

receives as input a set of parents G, the number of orders n, the weight’s vector ω, and

the maximum pickers’ capacity c, returning the offspringO (a vector of individuals). The

main loop of this algorithm (lines 3-30) evaluates if there are parents to be crossed. If so,

at line 4, we define an empty set L that stores the orders which are not in any batch (L is

also known as free list). At line 5, we declare two individuals: T , that we call by “tape”

(which is the crude product from the parents’ crossover) and C, that is the child itself. At
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line 6, we choose two different parents from G to perform the crossover an remove them

from G (line 7).

Input : G, n, ω, c
Output : an offspring O

1 begin
2 O ← ∅;
3 while |G| > 0 do
4 L ← ∅;
5 T , C ← ∅, ∅;
6 G1,G2 ← random individuals from G;
7 G ← G \ {G1,G2};
8 sort G1 and G2 batches’ descending by number of orders;
9 for i← 0 to min(|G1|,|G2|) - 1 do

10 if D(G1) ≤ D(G2) then
11 T ← T ∪ {G1[i]} ∪ {G2[i]}
12 else
13 T ← T ∪ {G2[i]} ∪ {G1[i]}
14 end
15 end
16 if |G1| ≠ |G2| then
17 append sequentially the remaining batches to T ;
18 end
19 for each g ∈ T do
20 if all g’s orders are not in C then
21 C ← C ∪ {g};
22 else
23 append non-repeated orders from g to L;
24 end
25 end
26 for each o ∈ L do
27 insert o in some C’s batch with first-fit heuristic;
28 end
29 O ← O ∪ {C};
30 end
31 return O;
32 end

Algorithm 6: Crossover procedure

As we are applying a controlled gene transmission technique, we select the best

genes (batches) from both parents at each crossover, ensuring a high-quality child in terms

of fitness. To implement this, at line 8, both G1 and G2 solutions’ batches are sorted

decreasingly according to their number of orders (i.e., batches with more orders come

first on the sorting).

Considering D as the picking-route distance associated to a batch (computed dur-

ing the fitness evaluation from Algorithm 4), we construct T as follows: from line 9 to

line 15 we compare batch-per-batch from G1 and G2, pushing first to T the batch with

the lower distance, then the second lower and so on. If the parents have different sizes,

we append to T the genes from the larger individual, which were not submitted to the
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previous comparison (line 17).

Note that by analyzing T at the end of its construction, we may verify the occur-

rence of repeated orders over the batches. Hence, we execute a filter step that consists of

traversing T (line 19) while checking if all the orders from the batch g ∈ T are not in

the child C (line 20). If this is the case, the batch is appended to the child C (line 21),

otherwise g is not appended to C and the non-repeated orders from g are pushed to the

free list L (line 23). At the end of the filtering step, we insert each order o from free list

L in some batch of C using a first-fit heuristic (line 29).

To exemplify the crossover procedure, let’s say that the two individuals C and D

from Figure 6.2 are crossing. The first step is to sort C and D according to the number of

orders which are inside each batch (Figure 6.3):

Figure 6.3 – Individuals C and D sorted by orders. Source: the author.

Note that each batch has a correspondent blue number below it in Figure 6.3.

These numbers represent the batches picking-route distances, which were calculated dur-

ing the fitness evaluation. The next step is to create an auxiliary individual T , which will

receive the batches from C and D. We compare both C and D, batch-per-batch, append-

ing first to T the batch which has the shortest associated distance, as illustrated in Figure

6.4:

Figure 6.4 – Crude product from parent’s crossover. Source: the author.

Finalizing this mixing step from the crossover, some orders can appear in more

than one batch, which is why we effectuate a filtering step. It consists in exploring the

solution, batch-per-batch, highlighting an order if it is already in the chromosome (Figure

6.5). The batches which contain highlighted elements are excluded from the solution.
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The not highlighted orders from some excluded batches are appended in a “free list” (i.e.,

a list of non-allocated orders). At the end of the filtering step, we reallocate orders from

the free list with a first-fit heuristic (following the batches’ sequence, we introduce a free

order to the first batch with enough capacity limit).

Figure 6.5 – Repeated orders. Source: the author.

In this chapter, we briefly review important features of genetic algorithms and

possible solution encoding schemes. In addition, we present a group genetic algorithm

for JOBPRP, which performs the generation of individuals with a heuristic based on the

degree of order similarity, and performs the crossover procedure with a controlled gene

transmission technique. In the next chapter, we discuss about the experimental results.
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7 EXPERIMENTS AND RESULTS

To validate our metaheuristic, we conducted several experiments of our GGACGT-

JOBPRP approach over Henn’s set of instances (HENN; WäSCHER, 2012), provided by

(MENéNDEZ et al., 2017). The same dataset was used to evaluate 2-level-DP-JOBPRP

heuristic. Also, we adapted a subset of these instances to confront our results with those

provided by a commercial ILP solver running Model 1. Our implementations, complete

and detailed results, instances, outputs, and documentation can be found at the Github

(LORENCI; RAVELO, 2022) repository.

In the rest of this chapter, we present our computational environment, the datasets,

the metaheuristic parameters and analyze the summarized results.

7.1 Computational environment

The algorithms were implemented in C++ language using the compiler g++ ver-

sion 9.3.0. The support scripts (instance treatment, tests automatizing, and input/output

control) were written in Python version 3.8.10. The tests were single-core simultane-

ously executed in an AMD Ryzen 9 3900X 12-Core Processor (3.8GHz) with 32 GB

RAM and Ubuntu 20.04 LTS operational system. We implemented and solved Model 1

with the mathematical optimization solver Gurobi 9.0.3.

To generate pseudo-random numbers we used the Mersenne Twister algorithm

(SAITO; MATSUMOTO, 1993). Each instance was tested 30 times on the metaheuristic,

with integer seeds from [1,30] interval.

7.2 Instances

Henn’s set of instances is the most cited datasets over warehouse problems studies

that we found. Their public files are compound by 64 instances, equally divided into

four groups: ABC1, ABC2 (most requested items closer from depot), and RAN1, RAN2

(items are randomly scattered on warehouse).

We choose to work with this dataset due to its popularity and conciseness to single-

block warehouse layout. Another decisive fact was the linked results: some papers present

interesting jobs but don’t show granular results, which harms a possible data comparison.
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Henn’s dataset has solid documented results, including those from (MENéNDEZ et al.,

2017), that to the best of our knowledge are the best for OBP, both in execution time and

objective function. We remember that even our approach aims to solve JOBPRP, it is

possible to compare its yielded objective values with those produced by OBP, since the

difference is that we are also optimizing each of the picking-routes. Still, the problem

essence is the same.

Each instance has the same warehouse layout configuration: a single-block ware-

house (two cross-aisles, one at bottom another on the top) with 10 parallel aisles and 45

picking positions, resulting in 450 addresses plus depot. Each aisle has products on both

sides, right and left. Each picking position has 1 length unit (LU), and when a picker

leaves or enters an aisle, it travels 1 LU more. Also, the horizontal distance from one aisle

to another is 5 LU. The depot is located on the inferior cross-aisle, in front of aisle 0.

These instances are shaped by combining 40, 60, 80, and 100 orders and 30, 45,

60, and 75 as possible maximum pickers’ capacities. We used this dataset as input to

check the overall performance of GGACGT-JOBPRP and confront the results with the

literature. From the same dataset, we randomly selected one instance from each group to

be modified to a smaller instance, which we truncated to the 10 first orders and fixed the

capacity limit to 30. These smaller instances were used to test our formulation and assess

the quality of our algorithm solutions.

7.3 Parameters

We used the iRace package (LóPEZ-IBáñEZ et al., 2016) to determine POP_SIZE

and PARENTS_SIZE GGACGT-JOBPRP’s parameters. This tool automatically detects

the best parameter configuration over a parameters domain, focusing on stability and so-

lution quality.

The parameters domain is defined as follows:

• POP_SIZE is an integer, multiple of 10, belonging to the interval defined from 40

(the minimum possible number of orders) to 400 (four times the maximum possible

number of orders);

• PARENTS_SIZE is an integer, multiple of 10, and its possible values are condi-

tional to POP_SIZE, belonging to the interval defined from 10 to POP_SIZE/2+10.

The iRace package provided us the values 340 for POP_SIZE and 120 for PAR-
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ENTS_SIZE. The ITERATION_LIMIT parameter was obtained through controlled tests.

These isolated experiments aimed to find an adequate value to this parameter so that it was

possible to analyze the objective function value progression over the generations. Such

value was fixed to 500. The solver execution time limit was set to 3600 s. We emphasize

that since the crossover always happens in pairs, the offspring size is PARENTS_SIZE/2.

7.4 Results and analysis

To assess GGACGT-JOBPRP, we conducted experiments over the smaller ins-

tance group. The solver just interrupted the process at the time limit (3600 s) in all the

tests. The results of these experiments are shown in Table 7.1, where: NA represents

the number of visited addresses during the picking-route (number of different products

plus depot); LB is the lower bound; the column GAP (%) within Gurobi column, is the

objective GAP; OBJ and TIME represents the objective values and the execution time (in

seconds); and GAP (%) within GGACGT-JOBPRP column, represents the relative differ-

ence between our metaheuristic objective value and solver LB (i.e., to simplify notation,

considering our approach as G, OBJG − LB
OBJG

· 100). Our results are promising, considering

the relation between the solution quality (lower than the best feasible solution provided by

the solver) and the execution time, which is approximately 60 times smaller than Gurobi.

Table 7.1 – Comparative between GGACGT-JOBPRP and Gurobi

Instance Gurobi GGACGT-JOBPRP
NA LB OBJ TIME GAP(%) OBJ TIME GAP (%)

1 101 1577 1892 3600 16.64 1794 74.48 12.09
2 112 1832 2070 3600 11.49 1990 60.96 7.93
3 131 2258 2620 3600 13.81 2500 70.60 9.68
4 138 2478 3038 3600 18.43 2918 89.84 15.07

The heuristic 2-level-DP-JOBPRP runs very fast. However, the delivered objective

values were inferior from the state-of-art works from the literature. Table 7.2 summarizes

the experimental results, where the first column indicates the instance name. Instances

names indicates the set (ABC1, ABC2, RAN1, and RAN2), the warehouse identification,

the number of orders, and the capacity limit. The results are organized in three columns,

where MS-VNS represents results from (MENéNDEZ et al., 2017), 2-level-JOBPRP con-

tains the heuristic results, and GGACGT-JOBPRP contains the metaheuristic experimen-
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tal data.

Columns OBJ and TIME represents the objective value and the execution time

(in seconds), respectively. Column RD (%) express the relative difference between the

objective value of our approach X ∈ {2-level-DP-JOBPRP, GGACGT-JOBPRP} and

MS-VNS’s objective value (i.e., OBJMS−V NS − OBJX
OBJMS−V NS

· 100). Despite not returning the best

solutions, the 2-level-DP-JOBPRP demonstrated potential as a faster method to obtain

fair upper bounds to the problem.

When compared with the approach of (MENéNDEZ et al., 2017) (identified as

MS-VNS), the GGACGT-JOBPRP proved superiority on the solutions’ quality. Over the

64 experiments on the dataset provided by (MENéNDEZ et al., 2017), our algorithm got

a better average objective value in the 64 cases (100% of the experiments). The summary

of these results can be found in Table 7.2, where SD is the standard deviation, and CV

is the coefficient of variation (%) from our tests. According to Table 7.2, our GGACGT-

JOBPRP presented high stability, with small coefficient of variations (< 1.1%, average

0.5%) over all tested seeds for each instance.

The improvement of our GGACGT-JOBPRP over the MS-VNS represents 3.5% of

the average solution value and can be visualized in the graphics from figures 7.1, 7.2, 7.3

and 7.4. These figures illustrate the objective function contrast between the algorithms’

solutions for the instances from ABC1, ABC2, RAN1 and RAN2 groups, respectively.

Although the GGACGT-JOBPRP’s average execution time (400.4 s) is more ele-

vated than MS-VNS (43.8 s), the latter uses a faster S-Shape routing policy, avoiding

solving the batches’ picking-routes optimally and increasing the routes’ lengths. We con-

tact (MENéNDEZ et al., 2017) requesting for their MS-VNS implementation to reproduce

the experiments in our CPU. They answered that they were seeking the correct code ver-

sion, but we did not receive the executable until the publication date of this work. The

information provided about their hardware description was that they implemented their

algorithms in Java 6, and the experiments were executed on an Intel QuadCore with 2.5

GHz. Thus, we converted their computational time for a fair comparison with ours. In

that direction, we used the values from CPUBenchmark (PASSMARK, 2022) for an Intel

Core2 Quad Q9300 @ 2.50GHz, and the average execution time of the MS-VNS was

reduced to 31.23 s.

The most expansive process of GGACGT-JOBPRP is the initial population gene-

ration, where the algorithm finds the best batches configuration according to the orders

similarity degree. Another fact that impacted our approach execution time is the high fixed
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Table 7.2 – Summary of experimental results
Instance MS-VNS 2-level-DP-JOBPRP GGACGT-JOBPRP

OBJ TIME OBJ TIME RD OBJ TIME RD SD CV
abc1/29s-40-30 6914.0 3.4 7274.0 0.012 -5.2 6542.1 242.0 5.3 15.7 0.2
abc1/30s-40-45 4683.0 6.1 5046.0 0.008 -7.8 4469.3 183.6 4.5 29.6 0.6
abc1/31s-40-60 4255.0 9.6 4702.0 0.008 -10.5 4143.4 183.9 2.6 20.7 0.5
abc1/32s-40-75 3174.0 9.1 3536.0 0.005 -11.4 3099.5 135.9 2.3 24.0 0.7
abc1/37s-60-30 11234.0 6.9 11554.0 0.014 -2.8 10667.8 392.1 5.0 45.9 0.4
abc1/38s-60-45 7278.0 14.3 8002.0 0.013 -9.9 7026.2 312.6 3.4 32.1 0.4
abc1/39s-60-60 5727.0 34.5 6288.0 0.009 -9.8 5608.1 289.6 2.0 56.1 1.0
abc1/40s-60-75 3997.0 45.7 4738.0 0.008 -18.5 3959.1 251.8 0.9 30.1 0.7
abc1/61s-80-30 14654.0 15.2 15026.0 0.02 -2.5 14169.8 581.1 3.3 97.3 0.6
abc1/62s-80-45 10370.0 32.1 11164.0 0.013 -7.7 9925.9 489.4 4.2 34.7 0.3
abc1/63s-80-60 7301.0 57.5 8002.0 0.012 -9.6 7205.0 426.3 1.3 82.3 1.1
abc1/64s-80-75 6008.0 89.6 7024.0 0.011 -16.9 5918.6 427.3 1.4 41.3 0.6
abc1/9s-100-30 15637.0 29.7 16736.0 0.024 -7.0 14794.8 640.9 5.3 131.0 0.8
abc1/0s-100-45 10420.0 64.2 11976.0 0.025 -14.9 10308.2 631.2 1.0 51.1 0.4
abc1/1s-100-60 8449.0 116.6 9806.0 0.014 -16.1 8327.0 600.8 1.4 83.6 1.0
abc1/2s-100-75 7218.0 95.8 8414.0 0.013 -16.6 7160.4 597.2 0.7 54.7 0.7
abc2/x9l-40-30 7091.0 3.6 7584.0 0.011 -7.0 6800.2 247.2 4.1 67.8 0.9
abc2/10l-40-45 5393.0 8.4 5788.0 0.009 -7.3 5163.9 219.8 4.2 14.6 0.2
abc2/11l-40-60 3748.0 10.5 4244.0 0.008 -13.2 3624.2 166.9 3.3 30.8 0.8
abc2/12l-40-75 3128.0 13.2 3546.0 0.004 -13.4 3061.6 147.9 2.1 19.5 0.6
abc2/17l-60-30 10250.0 7.6 10330.0 0.014 -0.8 9651.5 376.1 5.8 64.6 0.6
abc2/18l-60-45 7509.0 16.7 8108.0 0.01 -8.0 7195.0 322.9 4.1 39.0 0.5
abc2/19l-60-60 5431.0 36.5 6092.0 0.008 -12.2 5313.0 287.6 2.1 42.2 0.7
abc2/20l-60-75 4207.0 33.6 4872.0 0.007 -15.8 4151.1 256.2 1.3 27.6 0.6
abc2/45l-80-30 13428.0 14.6 14260.0 0.018 -6.2 12920.4 520.5 3.7 85.1 0.6
abc2/46l-80-45 8735.0 33.5 9812.0 0.014 -12.3 8388.6 449.2 3.9 45.9 0.5
abc2/47l-80-60 7062.0 52.7 8234.0 0.01 -16.6 6864.8 436.4 2.7 46.9 0.6
abc2/48l-80-75 6048.0 93.2 6868.0 0.012 -13.6 5977.3 421.9 1.1 40.0 0.6
abc2/3l-100-30 17408.0 24.4 18258.0 0.029 -4.9 16668.3 682.7 4.2 93.6 0.5
abc2/4l-100-45 11005.0 65.4 12390.0 0.016 -12.6 10602.2 618.1 3.6 61.5 0.5
abc2/5l-100-60 9920.0 101.2 11140.0 0.014 -12.3 9676.0 638.2 2.4 68.7 0.7
abc2/6l-100-75 7069.0 86.8 8376.0 0.015 -18.5 6984.5 599.6 1.1 50.7 0.7
ran1/29s-40-30 9569.0 3.3 9664.0 0.011 -1.0 9099.8 256.6 4.9 40.1 0.4
ran1/30s-40-45 6243.0 6.6 6718.0 0.007 -7.6 5901.4 181.2 5.4 22.3 0.3
ran1/31s-40-60 5631.0 8.8 5868.0 0.006 -4.2 5400.4 163.6 2.2 20.8 0.3
ran1/32s-40-75 4385.0 26.0 4652.0 0.007 -6.1 4289.0 155.5 1.1 40.7 0.9
ran1/37s-60-30 14960.0 7.6 15234.0 0.027 -1.8 14417.0 406.8 3.6 94.2 0.6
ran1/38s-60-45 9626.0 29.5 10106.0 0.013 -5.0 9190.0 312.1 4.4 109.9 1.1
ran1/39s-60-60 7760.0 48.2 8326.0 0.011 -7.3 7453.5 299.2 3.9 33.3 0.4
ran1/40s-60-75 5473.0 24.9 5934.0 0.01 -8.4 5334.8 241.5 2.5 36.6 0.6
ran1/61s-80-30 19677.0 17.2 19948.0 0.024 -1.4 18654.0 597.0 5.1 74.9 0.4
ran1/62s-80-45 14003.0 49.8 14800.0 0.019 -5.7 13470.0 479.0 3.8 122.8 0.9
ran1/63s-80-60 9784.0 102.0 10572.0 0.015 -8.1 9487.4 421.7 2.0 40.7 0.4
ran1/64s-80-75 8010.0 67.1 8662.0 0.015 -8.1 7763.7 411.1 1.0 41.8 0.5
ran1/9s-100-30 21127.0 29.6 22628.0 0.025 -7.1 20285.0 646.6 3.9 160.4 0.7
ran1/0s-100-45 14425.0 64.1 15506.0 0.019 -7.5 13929.8 631.6 3.4 65.7 0.4
ran1/1s-100-60 11417.0 167.6 12362.0 0.014 -8.3 11230.0 620.7 1.6 52.9 0.4
ran1/2s-100-75 9395.0 108.0 10270.0 0.016 -9.3 9218.8 600.7 1.8 50.7 0.5
ran2/x9l-40-30 10020.0 3.5 10480.0 0.01 -4.6 9372.8 256.7 6.4 76.7 0.8
ran2/10l-40-45 7357.0 7.1 7642.0 0.01 -3.9 6877.8 210.7 6.5 36.9 0.5
ran2/11l-40-60 4998.0 10.7 5366.0 0.005 -7.4 4799.8 155.3 3.9 24.2 0.5
ran2/12l-40-75 4028.0 15.7 4234.0 0.006 -5.1 3921.8 138.1 2.6 22.4 0.5
ran2/17l-60-30 14009.0 9.4 14368.0 0.021 -2.6 13338.5 393.3 4.7 106.3 0.7
ran2/18l-60-45 10275.0 28.9 10872.0 0.014 -5.8 9890.8 337.2 3.7 57.7 0.5
ran2/19l-60-60 7323.0 32.0 7994.0 0.009 -9.2 7013.4 277.9 4.2 46.4 0.6
ran2/20l-60-75 5541.0 24.7 6004.0 0.007 -8.4 5359.4 241.6 3.2 39.7 0.7
ran2/45l-80-30 17558.0 17.7 18368.0 0.035 -4.6 16975.0 507.1 3.3 55.9 0.3
ran2/46l-80-45 11879.0 67.1 12654.0 0.016 -6.5 11516.3 469.6 3.0 48.0 0.4
ran2/47l-80-60 9806.0 47.8 10456.0 0.012 -6.6 9484.5 425.8 3.2 49.8 0.5
ran2/48l-80-75 8076.0 87.9 8728.0 0.01 -8.1 7883.2 410.7 2.3 30.3 0.3
ran2/3l-100-30 23532.0 31.9 24578.0 0.021 -4.4 22388.7 693.2 4.8 152.9 0.6
ran2/4l-100-45 14423.0 94.4 15868.0 0.019 -10.0 13944.4 652.8 3.3 81.2 0.5
ran2/5l-100-60 13203.0 93.8 14360.0 0.017 -8.8 12756.0 639.0 3.3 44.3 0.3
ran2/6l-100-75 9553.0 238.0 10248.0 0.014 -7.3 9479.8 616.6 0.7 106.7 1.1
Average 9340.8 43.7 10041.5 0.013 -8.4 9007.7 400.4 3.1 56.4 0.5
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iteration limit value, which we purposely defined to extract the objective convergence over

the generations (as example, in the graphic in Figure 7.5, we detail the objective function

decay in an experiment with seed 2 and the instance abc1/29s-40-30). The complete set of

graphics (objective value over generations) can be found in Appendix A, where the gains

from the genetic procedures over the initial heuristic solution become evident due to the

curve decay for all the seeds.

Figure 7.1 – ABC1 instances group - comparative with (MENéNDEZ et al., 2017)

Figure 7.2 – ABC2 instances group - comparative with (MENéNDEZ et al., 2017)
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Figure 7.3 – RAN1 instances group - comparative with (MENéNDEZ et al., 2017)

Figure 7.4 – RAN2 instances group - comparative with (MENéNDEZ et al., 2017)
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Figure 7.5 – Objective function from abc1/29s-40-30-0 instance over generations (seed 2)
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8 CONCLUSIONS

In this work, we presented a novel ILP model, a heuristic (2-level-DP-JOBPRP),

and a genetic algorithm (GGACGT-JOBPRP) for the JOBPRP. The 2-level-DP-JOBPRP

applies first a knapsack-based DP procedure to generate an initial batches arrangement;

another DP algorithm is performed in each batch to compute the traveled distance in the

picking-routes. This heuristic proved to be a fast and straightforward method to generate

feasible solutions to JOBPRP. These upper bounds can be improved with post optimiza-

tion algorithms.

The GGACGT-JOBPRP constructs a chromosome’s population using a heuristic

that assigns the orders to the batches, providing initial solutions with lower objective

values based on the order’s similarity degree. Another differential of our approach is the

crossover operator that adapts controlled gene transmission, generating high-quality new

individuals.

We tested our GGACGT-JOBPRP over several instances from the literature, and

our results were superior in solutions to the previously best-known approach, consider-

ing the objective values in 100% of the experiments. We also tested our mathematical

formulation within a commercial solver over a small dataset, verifying the quality of our

metaheuristic solutions for these smaller instances.

One of the major difficulties encountered during this work was to find clear datasets

accompanied by granular and specific results. Thus, we also plan to construct and share

new detailed datasets of instances in warehouse problems.

As future work, we intend to improve our mathematical model and present a new

matheuristic to JOBPRP, hybridizing the crossover operator from GGACGT-JOBPRP. We

are evaluating faster ways to generate the initial population, maintaining the robustness

and the effectiveness of the orders similarity degree approach. Finally, we are planning to

extend the operations for multi-block warehouses.
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APPENDIX A - OBJECTIVE VALUES OVER GENERATIONS PER SEED

Figure 8.1 – Obj. Value over generations - instance abc1/29s-40-30. Source: the author.

Figure 8.2 – Obj. Value over generations - instance abc1/30s-40-45. Source: the author.



56

Figure 8.3 – Obj. Value over generations - instance abc1/31s-40-60. Source: the author.

Figure 8.4 – Obj. Value over generations - instance abc1/32s-40-75. Source: the author.

Figure 8.5 – Obj. Value over generations - instance abc1/37s-60-30. Source: the author.
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Figure 8.6 – Obj. Value over generations - instance abc1/38s-60-45. Source: the author.

Figure 8.7 – Obj. Value over generations - instance abc1/39s-60-60. Source: the author.

Figure 8.8 – Obj. Value over generations - instance abc1/40s-60-75. Source: the author.
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Figure 8.9 – Obj. Value over generations - instance abc1/61s-80-30. Source: the author.

Figure 8.10 – Obj. Value over generations - instance abc1/62s-80-45. Source: the author.

Figure 8.11 – Obj. Value over generations - instance abc1/63s-80-60. Source: the author.
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Figure 8.12 – Obj. Value over generations - instance abc1/64s-80-75. Source: the author.

Figure 8.13 – Obj. Value over generations - instance abc1/69s-100-30. Source: the author.

Figure 8.14 – Obj. Value over generations - instance abc1/70s-100-45. Source: the author.
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Figure 8.15 – Obj. Value over generations - instance abc1/71s-100-60. Source: the author.

Figure 8.16 – Obj. Value over generations - instance abc1/72s-100-75. Source: the author.

Figure 8.17 – Obj. Value over generations - instance abc2/10l-40-45. Source: the author.
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Figure 8.18 – Obj. Value over generations - instance abc2/11l-40-60. Source: the author.

Figure 8.19 – Obj. Value over generations - instance abc2/12l-40-75. Source: the author.

Figure 8.20 – Obj. Value over generations - instance abc2/17l-60-30. Source: the author.
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Figure 8.21 – Obj. Value over generations - instance abc2/18l-60-45. Source: the author.

Figure 8.22 – Obj. Value over generations - instance abc2/19l-60-60. Source: the author.

Figure 8.23 – Obj. Value over generations - instance abc2/20l-60-75. Source: the author.
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Figure 8.24 – Obj. Value over generations - instance abc2/45l-80-30. Source: the author.

Figure 8.25 – Obj. Value over generations - instance abc2/46l-80-45. Source: the author.

Figure 8.26 – Obj. Value over generations - instance abc2/47l-80-60. Source: the author.
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Figure 8.27 – Obj. Value over generations - instance abc2/48l-80-75. Source: the author.

Figure 8.28 – Obj. Value over generations - instance abc2/53l-100-30. Source: the author.

Figure 8.29 – Obj. Value over generations - instance abc2/54l-100-45. Source: the author.
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Figure 8.30 – Obj. Value over generations - instance abc2/55l-100-60. Source: the author.

Figure 8.31 – Obj. Value over generations - instance abc2/56l-100-75. Source: the author.

Figure 8.32 – Obj. Value over generations - instance abc2/9l-40-30. Source: the author.
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Figure 8.33 – Obj. Value over generations - instance ran1/29s-40-30. Source: the author.

Figure 8.34 – Obj. Value over generations - instance ran1/30s-40-45. Source: the author.

Figure 8.35 – Obj. Value over generations - instance ran1/31s-40-60. Source: the author.
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Figure 8.36 – Obj. Value over generations - instance ran1/32s-40-75. Source: the author.

Figure 8.37 – Obj. Value over generations - instance ran1/37s-60-30. Source: the author.

Figure 8.38 – Obj. Value over generations - instance ran1/38s-60-45. Source: the author.
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Figure 8.39 – Obj. Value over generations - instance ran1/39s-60-60. Source: the author.

Figure 8.40 – Obj. Value over generations - instance ran1/40s-60-75. Source: the author.

Figure 8.41 – Obj. Value over generations - instance ran1/61s-80-30. Source: the author.
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Figure 8.42 – Obj. Value over generations - instance ran1/62s-80-45. Source: the author.

Figure 8.43 – Obj. Value over generations - instance ran1/63s-80-60. Source: the author.

Figure 8.44 – Obj. Value over generations - instance ran1/64s-80-75. Source: the author.
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Figure 8.45 – Obj. Value over generations - instance ran1/69s-100-30. Source: the author.

Figure 8.46 – Obj. Value over generations - instance ran1/70s-100-45. Source: the author.

Figure 8.47 – Obj. Value over generations - instance ran1/71s-100-60. Source: the author.
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Figure 8.48 – Obj. Value over generations - instance ran1/72s-100-75. Source: the author.

Figure 8.49 – Obj. Value over generations - instance ran2/10l-40-45. Source: the author.

Figure 8.50 – Obj. Value over generations - instance ran2/11l-40-60. Source: the author.
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Figure 8.51 – Obj. Value over generations - instance ran2/12l-40-75. Source: the author.

Figure 8.52 – Obj. Value over generations - instance ran2/17l-60-30. Source: the author.

Figure 8.53 – Obj. Value over generations - instance ran2/18l-60-45. Source: the author.
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Figure 8.54 – Obj. Value over generations - instance ran2/19l-60-60. Source: the author.

Figure 8.55 – Obj. Value over generations - instance ran2/20l-60-75. Source: the author.

Figure 8.56 – Obj. Value over generations - instance ran2/45l-80-30. Source: the author.
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Figure 8.57 – Obj. Value over generations - instance ran2/46l-80-45. Source: the author.

Figure 8.58 – Obj. Value over generations - instance ran2/47l-80-60. Source: the author.

Figure 8.59 – Obj. Value over generations - instance ran2/48l-80-75. Source: the author.
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Figure 8.60 – Obj. Value over generations - instance ran2/53l-100-30. Source: the author.

Figure 8.61 – Obj. Value over generations - instance ran2/54l-100-45. Source: the author.

Figure 8.62 – Obj. Value over generations - instance ran2/55l-100-60. Source: the author.
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Figure 8.63 – Obj. Value over generations - instance ran2/56l-100-75. Source: the author.

Figure 8.64 – Obj. Value over generations - instance ran2/9l-40-30. Source: the author.
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APPENDIX B - RESUMO EXPANDIDO

Tradicionalmente, administrar eficientemente grandes depósitos e armazéns não

é uma tarefa fácil. A quantia de variáveis e processos envolvidos desde o momento em

que um cliente realiza a compra de um único produto até o seu recebimento, são bastante

consideráveis. Assim, suponha o caso de varejistas e atacadistas que vendem uma larga

quantia de produtos e recebem milhares de pedidos diferentes diariamente, sendo que

cada pedido demanda diferentes quantias e tipos de cada item: o problema torna-se um

pouco mais complexo.

Nas últimas décadas, o crescimento de serviços digitais e internet impulsionou o

e-commerce (vendas através de websites e aplicações), que vem se destacando como um

modelo de negócio sustentável, escalável e rentável. Apenas no ano de 2021, estima-

se que este mercado movimentou cerca de U$ 469.2 bilhões, apenas nos estados unidos

(HOFSTETTERL, 2021). Estatísticas ainda apontam uma projeção para U$ 563.3 bilhões

para 2025 (DEPARTMENT, 2022). Este grande mercado é baseado em preços atrativos,

intuitividade e facilidade no momento das compras, e é claro, curtos períodos de en-

trega. Dessa forma, para otimizar todo o processo logístico, da venda ao recebimento,

sistemas de gerenciamento de armazéns (WMS) eficientes, interconectados com sistemas

integrados de gestão empresarial (ERP) tornam-se indispensáveis para lojistas que alme-

jam sucesso financeiro em suas companhias (BOYSEN; de Koster; WEIDINGER, 2019).

Levando-se em consideração os WMS atuais, um desafio significativo dentro do

contexto de armazéns é a dinâmica que envolve a coleta de produtos comprados pelos

consumidores, uma vez que estudos indicam que certa de 55% dos custos operacionais

nestes locais estão relacionados à este processo (PANSART; CATUSSE; CAMBAZARD,

2018). Assim, emergem problemas combinatórios práticos como o problema de coleta de

pedidos (OPP) e o problema de loteamento de pedidos (OBP).

O OPP visa minimizar a distância viajada por um coletador (funcionário respon-

sável por coletar os produtos das prateleiras dos armazéns) humano ou robô, durante a

coleta de uma lista de produtos. O OBP é um problema interconectado, que tem por obje-

tivo agrupar os pedidos dos clientes em lotes (que serão repassados aos coletadores). Os

lotes devem respeitar um limite de capacidade (peso/volume). A ideia é encontrar uma

distribuição dos pedidos em lotes, de forma que o somatório das distâncias percorridas

pelos coletadores durante a retirada dos produtos requiridos seja minimizada. Tanto o

OPP quanto o OBP são problemas que pertencem à classe de complexidade NP-Difícil
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(GADEMANN; VELDE, 2005; KULAK; ŞAHIN; TANER, 2012).

Note que o OBP depende de alguma métrica de roteamento para encontrar possí-

veis lotes de pedidos. Quando este problema é tratado isoladamente, opções para lidar

com as distâncias são usar políticas de roteamento (S-Shape, Largest Gap, Midpoint) ou

heurísticas mais avançadas. Entretanto, uma alternativa é otimizar individualmente cada

rota respondente à um lote durante o processo de loteamento, isso é, uma abordagem que

execute o OBP simultaneamente com o OPP (SCHOLZ; WäSCHER, 2017). Esta estratégia

é conhecida como problema de loteamento e coleta simultânea de pedidos (JOBPRP)

(BRIANT et al., 2020).

Neste trabalho, apresentamos um novo modelo matemático e propomos uma heurís-

tica baseada em programação dinâmica e um algoritmo genético de agrupamento para o

JOBPRP em armazéns com layout de bloco único. Nosso modelo funciona indepen-

dentemente do layout do armazém (pode ser multi-bloco, multi-andar ou assumir outros

formatos além do retangular) e pode ser usado para resolver instâncias pequenas.

A abordagem heurística aplica dois níveis de programação dinâmica: em um

primeiro momento, executa um procedimento baseado na solução do problema da mochila

para gerar uma configuração inicial de lotes; após, executa um algoritmo de programação

dinâmica pra encontrar a rota ótima de cada lote. O valor objetivo é dado pelo somatório

das distâncias percorridas em cada lote.

A abordagem metaheurística aplica uma heurística para gerar soluções iniciais,

que atribui os pedidos mais similares ao mesmo lote. A distância percorrida em cada

lote é calculada de forma ótima através de um algoritmo de programação dinâmica, e o

procedimento de crossover utiliza uma técnica de transmissão controlada de genes.

Para avaliar nossas propostas, executamos experimentos computacionais com con-

juntos de dados fornecidos pela literatura. O modelo matemático foi utilizado em um

software solucionador de programas inteiros-mistos (Gurobi), onde se realizaram testes

com pequenas instâncias para aferir a qualidade das soluções da nossa abordagem meta-

heurística. Nossos resultados computacionais evidenciaram alta estabilidade para todas as

instâncias testadas e menores valores objetivo que os reportados previamente na literatura,

mantendo um tempo de execução razoável.
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