
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

LEONARDO DE LIMA CORRÊA

A Memetic Algorithm Framework for
Multimodal Continuous Optimization

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Márcio Dorn

Porto Alegre
July 2022

CIP — CATALOGING-IN-PUBLICATION

Corrêa, Leonardo de Lima

A Memetic Algorithm Framework for Multimodal Continu-
ous Optimization / Leonardo de Lima Corrêa. – Porto Alegre:
PPGC da UFRGS, 2022.

255 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2022. Advisor: Márcio Dorn.

1. Multimodal optimization. 2. Metaheuristic. 3. Evolutionary
algorithm. 4. Swarm intelligence. 5. Knowledge-based memetic
algorithm. 6. Structural bioinformatics. I. Dorn, Márcio. II. Tí-
tulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Pós-Graduação: Profa. Cintia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Despite the advances in computational methods and the wide range of metaheuristics

proposed for multimodal continuous optimization, there is still a strong demand for de-

veloping new strategies focused on issues related to the algorithms’ performance when

applied to challenging problems with complicated objective functions. The general idea

of this work is centered around the investigation of distinct metaheuristic characteristics

to deal with multimodal problems in the continuous domain. In this sense, we defined

the multimodal 3-D protein structure prediction problem as our real case study, one of

the most important problems in Structural Bioinformatics. Thus, we proposed an adap-

tive memetic algorithm as a general framework-based method with multiple populations

and niching strategies, which incorporates concepts of bio-inspired algorithms for global

optimization with separate local improvement. To evaluate the proposed approach, we

designed different versions of the framework for three scenarios of multimodal optimiza-

tion: (i) the general framework for single global continuous optimization with multimodal

objective function; (ii) the framework with archive strategy for multimodal optimization

with more than one global optimum; and (iii) the framework with specific-problem com-

ponents for the multimodal problem of predicting the 3-D protein structures. With the de-

velopment of this work, we aimed to create, via a constructive and incremental approach,

an evolutionary method capable of dealing with the inherent multimodality and issues of

a range of optimization functions while preserving accurate results. Our focus was also

to evaluate the behavior of the presented methods and search components facing multiple

multimodal problems. The memetic algorithm framework was able to perform well on all

the optimization scenarios explored by reaching promising results compared with relevant

methods related to the corresponding research fields. Nonetheless, despite the obtained

results, we highlight that each implemented algorithmic version still needs improvements

regarding each of the delineated case studies to further enhance the method’s performance

and results.

Keywords: Multimodal optimization. metaheuristic. evolutionary algorithm. swarm

intelligence. knowledge-based memetic algorithm. structural bioinformatics.

Proposta de um Framework Baseado em Algoritmo Memético para Otimização de

Problemas Multimodais

RESUMO

Apesar dos avanços computacionais e da ampla gama de meta-heurísticas propostas na

literatura para lidar com problemas de otimização multimodal, ainda existe a necessidade

de desenvolver novas estratégias de busca voltadas ao desempenho dos algoritmos quando

aplicados a problemas difíceis com complexas funções de avaliação. A ideia geral deste

trabalho consiste na investigação de diferentes aspectos relativos as meta-heurísticas utili-

zadas para tratar problemas multimodais de domínio contínuo. Neste sentido, definiu-se,

como estudo de caso principal para o trabalho, a predição de estruturas 3-D de proteínas, o

qual representa um dos mais importantes problemas da Bioinformática Estrutural. Neste

trabalho, foi proposto um algoritmo memético adaptativo na forma de um framework

computacional de propósito geral, o qual incorpora múltiplas populações, conceitos de al-

goritmos evolutivos e inteligência de enxame, combinados a funções adicionais de busca

local, controle de convergência e performance. Como forma de avaliação do método pro-

posto, foram idealizadas diferentes versões, as quais foram empregadas em três cenários

distintos de otimização: (i) versão mais geral para tratar funções multimodais com um

único ótimo global; (ii) versão com arquivamento externo de soluções focada em otimi-

zação multimodal com diversos ótimos globais; e (iii) versão baseada em conhecimento

com componentes de busca específicos para lidar com o problema de predição de estru-

turas 3-D de proteínas. Com isso, objetivou-se prover, através do desenvolvimento de

uma abordagem incremental, um método de busca para lidar com as complexidades rela-

tivas à multimodalidade inerente a diversos problemas de otimização. De maneira geral,

concluiu-se que a abordagem proposta obteve êxito quanto à otimização dos problemas

concernentes aos diferentes cenários de otimização idealizados. O método atingiu resul-

tados promissores em relação aos algoritmos mais relevantes das áreas relativas a cada

estudo de caso. No entanto, ressalta-se que cada uma das versões implementadas ainda

necessita de melhorias em relação a cada um dos estudos de caso delineados, objetivando

aprimorar ainda mais o desempenho obtido, bem como os resultados do método como um

todo.

Palavras-chave: Otimização multimodal, algoritmos evolutivos, inteligência de enxame,

algoritmo memético baseado em conhecimento, bioinformática estrutural.

LIST OF ABBREVIATIONS AND ACRONYMS

3-D Three-Dimensional

NMR Nuclear Magnetic Resonance

EM Electron Microscopy

PSP Protein Structure Prediction

FM Free-Modeling

RefSeq NCBI Reference Sequence Database

PDB Protein Data Bank

NFL No Free Lunch

EA Evolutionary Algorithm

SI Swarm Intelligence

MA Memetic Algorithm

LS Local Search

ABC Artificial Bee Colony

SW Solis and Wets

RTS Restricted Tournament Selection

Expr/Expt Exploration and Exploitation

CV Coefficient of Variation

SCN Similarity to the Closest Neighbor

PS Primary Structure

SS Secondary Structure

TS Tertiary Structure

QS Quaternary Structure

IDP Intrinsically Disordered Proteins

SCOP Structural Classification of Protein Database

RG Radius of Gyration

CM Protein Contact Map

CASP Critical Assessment of Protein Structure Prediction

SA Simulated Annealing

AI Artificial Intelligence

ES Evolution Strategies

GA Genetic Algorithm

DE Differential Evolution

CMA-ES Covariance Matrix Adaptation Evolution Strategy

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

GABC Gbest-Guided ABC

IABC Improved ABC

ILABC Information Learning ABC

DFS Depth-First Search

GRO Gene Recombination Operator

BFGS Broyden-Fletcher-Goldfarb-Shanno

AMPS Adaptive Method for the Population Size

SABC-GB Self-Adaptive ABC based on the Gbest

CSGS Candidate Solution Generating Strategy

DNABC Dynamic Best Neighbor-Guided ABC

NABC Best Neighbor-Guided ABC

HABCDE Hybrid ABC with DE

sdABC Self-Adaptive Differential ABC

CEC Congress on Evolutionary Computation

SHADE Success-History based Adaptive DE

LPSR Linear Population Size Reduction Mechanism

GECCO Genetic and Evolutionary Computation Conference

SEMCCO Swarm, Evolutionary and Memetic Computing Conference

CF Crowding Factor

DC Deterministic Crowding

HV Hill-Valley

LIPS Locally Informed Particle Swarm

CDE Crowding DE

SDE Species-based DE

NCDE Neighborhood based CDE

NSDE Neighborhood based SDE

NShDE Neighborhood based Sharing DE

DSDE Dual-Strategy DE

APC Affinity Propagation Clustering

AM-ACO Adaptive Multimodal ACO

RS-CMSA Covariance Matrix Self-adaption Evolution Strategy with Repelling Sub-

populations

EDA Estimation of Distribution Algorithm

MEDA Multimodal EDA

HillVallEA Hill-Valley EA

ANDE Automatic Niching DE

TLLS Two-Level Local Search

CPA Contour Prediction Approach

MaHDE Multi-Angle Hierarchical Differential Evolution

FHM Fitness Hierarchical Mutation

DGS Directed Global Search

ELS Elite Local Search

DIDE Distributed Individuals Differential Evolution

DIMP Distributed Individuals for Multiple Peaks

ELM Elite Learning Mechanism

AGDE Adaptive Guidance-based Differential Evolution

AMS Adaptive Mutation Strategy

IFA Iterative Feedback Archive

GDEL Gaussian Disturbance-based Elite Learning

SDDLCSDE Self-Adaptive Double-Layer-Clustering Speciation Differential Evolution

UCT Upper Confidence Tree

MCTS Monte Carlo Tree Search

RDS Random Restarts with Decreasing Step-Size

NBC Nearest-Better Clustering

WGraD Weighted Gradient and Distance-based Clustering method

MST Minimum Spanning Tree

MSTDE MST with DE

DPR Dynamic Pruning Ratio

VM Virtual Machine

MMDE Memetic Differential Evolution

XLS Crossover-based Local Search

RMAwA Region-based Memetic Algorithm with Archive

REMC Replica Exchange Monte Carlo

MSA Multiple Sequence Alignment

AMW Associative Memory Hamiltonian with Water

APL Angle Probability List

NSGA-II Non-Dominated Sorting Genetic Algorithm

LIP Local Improvement Procedure

DNSP Dynamic Niche Size Procedure

TRP Tree Resizing Procedure

SMA Simple Moving Average

RMSD Root-Mean-Square-Deviation

PR Peak Ratio

SR Success Rate

GDT_TS Global Distance Total Score test

LIST OF SYMBOLS

φ Angle Phi

ψ Angle Psi

ω Angle Omega

χ Angle Chi

LIST OF FIGURES

Figure 2.1 Relationship between the points of interest outlined for this thesis work36

Figure 3.1 Schematic model of the peptide formation..41
Figure 3.2 Representation of the four levels of structural protein abstraction................42
Figure 3.3 Representation of the multimodal energy landscape49

Figure 4.1 Summarization of the concerns regarding multimodal optimization83

Figure 5.1 Hierarchical organization of the framework-based MA106
Figure 5.2 Exemplification of the tree resizing procedure..116
Figure 5.3 Exemplification of the priority order of execution for each procedure129
Figure 5.4 Schematic representation of the different APL types142

Figure 6.1 3-D landscape representation for 2-D F4 ..162
Figure 6.2 3-D landscape representation for 2-D F5 ..162
Figure 6.3 3-D landscape representation for 2-D F6 ..163
Figure 6.4 3-D landscape representation for 2-D F7 ..164
Figure 6.5 3-D landscape representation for 2-D F8 ..164
Figure 6.6 3-D landscape representation for 2-D F9 ..165
Figure 6.7 3-D landscape representation for 2-D F10 ..166
Figure 6.8 Representation of the total score of each MA version.................................186
Figure 6.9 Convergence of the MA regarding the best fitness values during 50 runs...190
Figure 6.10 Convergence of the MA for the best fitness values of each tree node191
Figure 6.11 Variation in the average exploration of all tree nodes193
Figure 6.12 Variation in the exploration of each tree node ...194
Figure 6.13 3-D landscape representation for 1-D multimodal F1197
Figure 6.14 3-D landscape representation for 1-D multimodal F2198
Figure 6.15 3-D landscape representation for 1-D multimodal F3199
Figure 6.16 3-D landscape representation for 2-D multimodal F4199
Figure 6.17 3-D landscape representation for 2-D multimodal F5200
Figure 6.18 3-D landscape representation for 2-D multimodal F6201
Figure 6.19 3-D landscape representation for 2-D multimodal F7201
Figure 6.20 3-D landscape representation for 2-D multimodal F8202
Figure 6.21 3-D landscape representation for 2-D multimodal F9204
Figure 6.22 3-D landscape representation for 2-D multimodal F10204
Figure 6.23 3-D landscape representation for 2-D F11 ..205
Figure 6.24 3-D landscape representation for 2-D multimodal F12205
Figure 6.25 PR values for the four compared methods for all functions213
Figure 6.26 Convergence of the MA regarding the best fitness values of tree nodes ...214
Figure 6.27 Box diagrams obtained from the 8 runs of the MA and Rosetta221
Figure 6.28 MA Convergence regarding the best energy values during 8 runs224
Figure 6.29 MA Convergence regarding the best energy values of each tree node225
Figure 6.30 Cartoon representation of the best models reached by MA and Rosetta...227

LIST OF TABLES

Table 4.1 Summarization of the ABC variants and their main components75
Table 4.2 Summarization of the multimodal algorithms and their search components ..96

Table 5.1 Summarization of the MA components and their search strategies129
Table 5.2 Set of filters applied in the database generation for the RG threshold147
Table 5.3 Summary of the protein classes generated from the PDB database148

Table 6.1 Summarization of the 100-Digit Challenge benchmark test functions160
Table 6.2 Summarization of the input parameters of the MA and their initial values ..169
Table 6.3 Summarization of the MA variants and their search strategies.....................185
Table 6.4 Total score of each MA version...186
Table 6.5 Fifty runs for each function sorted by the number of correct digits..............188
Table 6.6 Rank for the difficulty degree of functions..189
Table 6.7 Summarization of the multimodal test functions ..196
Table 6.8 Max_Evls adopted for three ranges of benchmark functions207
Table 6.9 Results of the MA regarding PR and SR values for all functions210
Table 6.10 PR values for the four compared methods for all functions........................212
Table 6.11 Set of target proteins used in the computational experiments.....................217
Table 6.12 Results regarding RMSD and GDT_TS of MA and Rosetta220

CONTENTS

1 INTRODUCTION...15
1.1 Research Problem ...15
1.2 Research Motivation ...17
1.3 Research Scope..19
1.4 Research Proposal...20
1.5 Research Objectives..22
1.6 Thesis Overview ..23
2 COMPUTATIONAL OPTIMIZATION BACKGROUND25
2.1 Introduction...25
2.2 Single Global Continuous Optimization ...25
2.3 Multimodal Continuous Optimization..26
2.3.1 Niching Strategies ..28
2.4 Exploration and Exploitation ..28
2.5 Population Diversity ...30
2.6 Exploration and Exploitation Trade-off Definition ...34
2.7 Connecting the Points of Interest ..35
2.8 Strategies for Achieving Diversity, Exploration and Exploitation37
2.9 Final Remarks ...38
3 BIOLOGICAL BACKGROUND ..40
3.1 Introduction...40
3.2 Physicochemical Protein Composition ..40
3.3 Levels of Structural Protein Abstraction..40
3.4 Structural Protein Classes..43
3.5 Computational Representation of Protein Structures ...44
3.6 PSP Problem Definition..46
3.6.1 Stereochemistry..46
3.6.2 Computational Modeling of the PSP Problem...46
3.7 Objective Function for the PSP Problem..48
3.7.1 Rosetta Energy Function..51
3.7.2 Protein Contact Maps...52
3.7.3 Final Objective Function..54
3.8 Final Remarks ...54
4 RELATED WORKS ...56
4.1 Introduction...56
4.2 Bio-inspired Metaheuristics ...57
4.3 Parameter Control Strategies ..59
4.4 Hybrid and Memetic Algorithms ..62
4.5 Single Global Metaheuristics ...64
4.5.1 Artificial Bee Colony Algorithm ...65
4.5.2 Relevant Artificial Bee Colony Variants ..68
4.5.3 Differential Evolution Algorithm...74
4.6 Multimodal Metaheuristics ..78
4.6.1 Classical Niching Algorithms..80
4.6.2 Relevant Niching Algorithms ..82
4.7 Computational Methods and Metaheuristics Applied to the PSP......................97
4.7.1 Rosetta Method ..98
4.7.2 AlphaFold Method ...98
4.7.3 PSP Metaheuristics ..99

4.8 Final Remarks ...102
5 MATERIAL AND METHODS..104
5.1 Introduction...104
5.2 Proposed Method for Single Global Optimization...104
5.2.1 Algorithmic Structure of the Method...105
5.2.2 Initialization of the Tree...107
5.2.3 Optimization Steps of the MA ...108
5.2.4 Inner Node Recombination and Selection ...109
5.2.5 Interactions Between Nodes ..110
5.2.6 Local Improvement Procedure...112
5.2.7 Tree Resizing Procedure ..115
5.2.8 Control Procedure for Convergence and Performance ..117
5.2.9 Dynamic Niche Size Procedure ...123
5.2.10 Priority Order of the Components..127
5.2.11 Summarization of the Framework-based MA..128
5.2.12 Core Metaheuristic...130
5.3 Proposed Method for Multimodal Optimization ...137
5.4 Proposed Method for the 3-D PSP Problem...139
5.4.1 Conformational Preferences of Amino Acids..139
5.4.2 Sampling of Protein Structures and Solution Initialization143
5.4.3 Optimization of the Protein Structures ..151
5.5 Final Remarks ...153
6 COMPUTATIONAL EXPERIMENTS...159
6.1 Introduction...159
6.2 Scenario of Single Global Optimization..159
6.2.1 Evaluation Criteria ...166
6.2.2 MA Versions and Parameterization of the Method..167
6.2.2.1 Version 1: Baseline algorithm...169
6.2.2.2 Version 2 ...174
6.2.2.3 Version 3 ...175
6.2.2.4 Version 4 ...176
6.2.2.5 Version 5 ...179
6.2.2.6 Version 6: Final version ..183
6.2.2.7 Summarization of the MA Versions..184
6.2.3 Results and Discussion ..184
6.2.4 MA Versions ..184
6.2.5 Final Method for Global Optimization ..187
6.3 Scenario of Multimodal Optimization ..195
6.3.1 Evaluation Criteria ...205
6.3.2 Parameterization of the Method...207
6.3.3 Results and Discussion ..209
6.4 Prediction of 3-D Protein Structures...215
6.4.1 Evaluation Criteria and Parameterization of the Method.....................................216
6.4.2 Results and Discussion ..219
6.5 Final Remarks ...229
7 CONCLUSIONS ...230
7.1 Research Perspectives and Future Works ..234
7.2 Publications ...236
REFERENCES...238

15

1 INTRODUCTION

General-purpose optimization is the effort of seeking the best possible solution

among multiple alternatives to a given problem. In many cases, the dimensions of the-

oretical and commercial optimization problems may grow too fast, characterizing a hard

optimization issue (TEZEL; MERT, 2020). Hard optimization, which may be continuous

optimization, is concerned with problems that cannot be optimally solved, or to any guar-

anteed bound, by any exact method within a reasonable time limit (BOUSSAÏD; LEPAG-

NOT; SIARRY, 2013). Depending on the complexity of the problem under study, it can

be solved through deterministic methods or heuristic-based solutions. On one hand, exact

algorithms can achieve optimal results. However, when applied to hard problems (COOK,

1983), they present non-polynomial execution time, which is computationally impracti-

cable. On the other hand, heuristic or approximate methods, if well-designed, can reach

sufficiently good solutions within a reasonable execution time when applied to real-life

problems. However, they do not guarantee optimal results (TALBI, 2009).

Real-life problems often represent challenging problems. Thus, researchers have

been proposed several methods to deal with these issues, and among them, stochastic

metaheuristics are being widely explored (DRÉO et al., 2006; BOUSSAÏD; LEPAGNOT;

SIARRY, 2013; LUKE, 2013). Metaheuristics are practically problem-independent tech-

niques and are defined as high-level heuristics that can be used in a wide range of domains

with minor modifications in their components. Furthermore, such algorithms have been

successfully applied into a variety of real-life domains in academia and industry, in areas

ranging from finance to production management, life sciences, and engineering (BOUS-

SAÏD; LEPAGNOT; SIARRY, 2013; SER et al., 2019; HUSSAIN et al., 2019).

1.1 Research Problem

Among the several application of metaheuristics, one of them encompasses the re-

search field of Structural Bioinformatics, which corresponds to the study area focused on

the three-dimensional (3-D) structure of molecules and macromolecules (CHOU, 2004),

including 3-D protein structure prediction (DILL; MACCALLUM, 2012), molecular dock-

ing and modeling (YURIEV; HOLIEN; RAMSLAND, 2015), and studies about the re-

lationship between protein structure and its function (WHISSTOCK; LESK, 2003). The

structural information corresponding to each molecule, such as DNA, protein, ligand, are

16

mainly obtained through experimental methods, such as X-ray crystallography (MCREE,

1999), Nuclear Magnetic Resonance (NMR) (CAVANAGH et al., 2006) and Electron

Microscopy (EM) (UNWIN; HENDERSON, 1975).

Currently, regarding the research scenarios of Structural Bioinformatics, many

problems remain partially unsolved, such as the molecular docking (YURIEV; HOLIEN;

RAMSLAND, 2015) and the 3-D protein structure prediction (PSP) (DILL; MACCAL-

LUM, 2012; DORN et al., 2014). Some of the reasons in which these problems impose

significant challenges are due to the high cost and considerable required time of exper-

imental methods, high computational complexity, and also the lack of complete com-

prehension of the rules that conduct the biochemical processes and their relations (AN-

FINSEN, 1973). Specifically, PSP configures a key issue in this field and describes the

efforts to develop computational strategies to determine the 3-D protein structure (DILL;

MACCALLUM, 2012). A single sequence of chained amino acids defines a protein that

under specific physiological conditions folds into a particular conformation (ANFINSEN,

1973). Proteins are in all living systems and perform an extensive set of fundamental life

functions, where the protein function’s nature is directly related to its assumed 3-D struc-

ture. Then, protein folding can provide valuable understandings about the protein roles in

the cell (BRANDEN; TOOZE, 1999; LASKOWSKI; WATSON; THORNTON, 2005).

Over the last decades, the PSP focused on the structure modeling just from the

amino acid (aa) sequence (free-modeling (FM) category) has challenged biologists, bio-

chemists, physicists, computer scientists, and mathematicians, remaining a critical chal-

lenge in Structural Bioinformatics (BAXEVANIS; OUELLETTE, 2004). The problem is

classified according to the computational complexity theory (COOK, 1983) as NP-hard

problem (UNGER; MOULT, 1993; CRESCENZI et al., 1998) due to the high dimension-

ality of variables and its multimodal search space, presenting an exponential growth of

difficulty as the amino acid number increases (GUYEUX et al., 2014). The problem com-

plexity relies on the combinatorial explosion of plausible conformations, where an amino

acid chain can give rise to a few structures around native states among several existing

possibilities (BAXEVANIS; OUELLETTE, 2004).

As consequence of the difficulty in predicting the 3-D protein structures by exper-

imental methods, there is a considerable gap between the data volume (non-redundant aa

sequences) generated through Genome Projects, which are stored in the NCBI Reference

Sequence Database1 (RefSeq) (PRUITT; TATUSOVA; MAGLOTT, 2005) and the exper-

1<www.ncbi.nlm.nih.gov/refseq>

www.ncbi.nlm.nih.gov/refseq

17

imentally determined and non-redundant 3-D structures stored in the Protein Data Bank2

(PDB) (BERMAN et al., 2000). Currently, less than 1% of known and non-redundant

protein sequences have representatives in the PDB (BERMAN et al., 2000). RefSeq and

PDB are currently the largest and most popular databases for storing aa sequences, DNA

genomics, non-redundant transcripts, and 3-D protein structures, respectively.

The modeling process of protein structures as computational optimization can be

seen as a way to overcome some of the PSP complexities and ease the protein structure-

based studies. Therefore, several methods have been proposed to address the prob-

lem (DORN et al., 2014). These methods can be classified, but not strictly, into two

different classes, where they are grouped concerning the use or not of structural infor-

mation from the PDB: (i) first principle methods or ab initio (OSGUTHORPE, 2000);

and (ii) fold recognition and comparative modeling methods (BOWIE; LUTHY; EISEN-

BERG, 1991; MARTÍ-RENOM et al., 2000). Specifically, in this work, we are interested

in a group of methods located between these two classes, which consists of a hybrid

class of knowledge-based methods that make use of template information from experi-

mental protein structures associated with an ab initio strategy based on simulations of

physicochemical properties of the folding process in nature (ROHL et al., 2004). Thus,

to predict 3-D protein structures adopting these concepts, a wide range of stochastic opti-

mization algorithms and metaheuristics are being proposed to find approximate solutions

to the PSP (DORN et al., 2014). As already introduced, such techniques do not always

guarantee the optimal solution, but they provide a reasonable approximation with a lim-

ited computational effort (TALBI, 2009). Also, the knowledge incorporation of protein

structures from the PDB represents a critical strategy to support the modeling methods,

reducing the conformational search space size (ABRIATA et al., 2018; MOULT et al.,

2018; KRYSHTAFOVYCH et al., 2019; KUHLMAN; BRADLEY, 2019).

1.2 Research Motivation

Regardless of the computational advances to deal with the PSP, it lasts an open

challenge. The development of novel approaches from biological data sources combined

with state-of-the-art computational techniques, such as optimization and machine learning

methods, have shown relevant results in recent years and should be further explored in the

coming years so that computer simulation is increasingly closer to reality (BRADLEY;

2<www.rcsb.org>

www.rcsb.org

18

MISURA; BAKER, 2005; DORN et al., 2014).

It is well known that the PSP success depends on an accurate energy function that

may reflect the native state of conformations (KIM et al., 2009), as well as a robust meta-

heuristic in search space exploration and maintenance of solutions’ diversity throughout

the prediction process due to the evaluation function’s multimodality and high dimen-

sionality of variables (GARZA-FABRE et al., 2016). Thus, combining these factors with

knowledge-based strategies from previously known protein structures, we believe that

through the development of search algorithms focused on multimodal optimization prob-

lems and their adaptation to the PSP issues, it is possible to enhance the method’s potential

while obtaining satisfactory outcomes for the problem (ISLAM; CHETTY, 2009).

Furthermore, especially in real-life problems as the PSP, the simple use of canon-

ical metaheuristics does not always present the expected behavior. The main reasons are

the severe roughness (multimodality) of the problem fitness landscape and the complexity

of managing local and global points of the objective function, where, in this case, even

a small chain of amino acids can assume several conformations (BELDA et al., 2007;

HANDL; LOVELL; KNOWLES, 2008; GARZA-FABRE et al., 2016).

The success of metaheuristic design on a given optimization problem is defined

primarily if the search process can provide an efficient search strategy and a satisfactory

balance (trade-off) between search space exploration and exploitation. The exploration

process is related to the solutions’ diversification and aims to identify regions of the search

space with high-quality solutions. In contrast, the exploitation of solutions is the search in-

tensification around promising areas of the accumulated search experience (ČREPINŠEK;

LIU; MERNIK, 2013; XU; ZHANG, 2014). The main differences between them are re-

lated to the particular way in which they try to reach such goals, wherein several algo-

rithms are being proposed to achieve these needs. Metaheuristics are classified accord-

ing to many criteria, but a fundamental distinction in the literature is the differentiation

between single-solution and population-based algorithms. The most studied population-

based methods are related to bio-inspired concepts of evolutionary algorithms (EAs) and

swarm intelligence (SI) (LUKE, 2013; SER et al., 2019). In general, population-based al-

gorithms are more exploration-oriented, whereas single-solution metaheuristics are more

exploitation oriented (BOUSSAÏD; LEPAGNOT; SIARRY, 2013).

It is well-known that metaheuristics as strategies of optimization are suitable for

many real-world applications. Nevertheless, according to the No Free Lunch (NFL) theo-

rem, proposed by Wolpert and Macready (WOLPERT; MACREADY, 1997), there is not

19

any optimization algorithm able to present higher performance than others under any met-

ric in solving all possible optimization problems (BEHESHTI; SHAMSUDDIN, 2013;

SER et al., 2019). With this, it can be stated that there are optimization algorithms better

than others for specific application domains. Still, according to the NFL theorem, to im-

prove the average performance of a given method, it should use previous information and

search components focused on the problem under study or on similar problems from the

same domain to validate the proposed search method to the problem.

Existing metaheuristics suffer from some drawbacks such as slow convergence

rate, trapping into local optima and weak diversity, complex search operators, need to

control many parameters and adapt for specific search spaces (BEHESHTI; SHAMSUD-

DIN, 2013). Hence, in-depth investigations around metaheuristic design are needed to

overcome such problems and minimize the disadvantages focused on specific optimiza-

tion domains.

1.3 Research Scope

This thesis delimits the work’s scope regarding the multimodal continuous opti-

mization domain (DAS et al., 2011; LI et al., 2016). Essentially, multimodal optimization

aims to overcome obstacles imposed by the functions’ multimodality over adaptations in

the algorithms. Its goal is to find a variety of optimal or suboptimal solutions and not

just a single solution to the problem (DAS et al., 2011). However, according to literature,

multimodal strategies are also used to tackle global continuous optimization problems,

seeking to find a single global optimum solution on a multimodal search space (LI et al.,

2016). Both scenarios of multimodal optimization are addressed in this work.

Within this context, we highlight the points of interest of this work related to the

metaheuristic design: (i) discovery and maintenance of the search space optimal or sub-

optimal points through multimodal strategies (LI et al., 2016); (ii) the balance between

exploration and exploitation search operations (ČREPINŠEK; LIU; MERNIK, 2013); and

(iii) the parameter control problem (KARAFOTIAS; HOOGENDOORN; EIBEN, 2014;

PARPINELLI et al., 2019). The first point concerns the adoption of multimodal meta-

heuristics and strategies to explore better and refine the search space to find and maintain

the existing local and global optima over the search process. The second one is addressed

in terms of the effectiveness of exploration and exploitation efforts. Depending on the

defined trade-off, it can lead the optimization process to a high diversity and slow conver-

20

gence rate, low diversity and algorithm stagnation, or unnecessary computation, among

other scenarios. Regarding the third point, the parameter control problem deals with the

careful variation of the parameter values over the run of a metaheuristic since the algo-

rithm performance greatly depends on the values of its parameters. This point can be

investigated through adaptive mechanisms, which allow the method to use satisfactory

dynamic parameterization in different stages of the process.

However, it is noteworthy that one point is strictly related to the others (SER et

al., 2019). For instance, if the first point fails, the effort to ensure an appropriate trade-off

between exploration and exploitation, and parameterization becomes irrelevant. Alterna-

tively, suppose the method does not present a satisfactory balance in the second point.

In that case, a multimodal search strategy may be useless since the method can reach a

premature convergence or never converge. Also, parameter selection is directly respon-

sible for the method’s performance. Depending on the parameterization and the search

operators used, they can influence the optimization process, such as population diversity

and convergence rates. These concerns represent some of the most critical challenges of

the population-based algorithms, and addressing them means investigating a considerable

part of the concerns when designing a metaheuristic. So the decision-making over one

issue may cause an impact on all other method’s components and, consequently, on the

performance measures. Hence, the address of a single issue may determine the success of

others, which is why they should be investigated together.

Moreover, it is also necessary to consider the NFL theorem as more algorithms

are being proposed. These methods should be tested in a real-life problem, which can

be distinct in terms of complexity from the benchmarks functions. The validation on

benchmark problems may somehow show that a metaheuristic is robust enough. How-

ever, it is not guaranteed that the performance will remain the same when solving real

problems (WONG; MING, 2019; TZANETOS; DOUNIAS, 2020).

1.4 Research Proposal

The general idea of this thesis is centered around the investigation of distinct meta-

heuristic’s characteristics to deal with optimization problems in the multimodal continu-

ous domain. To do so, we defined the NP-hard problem of predicting the 3-D protein

structures as our real case study. Based on this, we intend to address the PSP from a

constructive perspective, starting from more general benchmark optimization functions,

21

gradually improving the proposed algorithms and advancing the optimization functions.

As a baseline for developing this thesis, we used the author’s previously published algo-

rithms, which are further presented. At this point, we emphasize that such papers were

proposed to deal with the PSP. However, one of the goals of this work is to connect and

apply them combined with other optimization strategies and analyses. Thus, by an incre-

mental design, we aim to create a search method that can deal with a range of optimization

functions, trying to preserve accurate results.

We proposed the development of an adaptive Memetic Algorithm (MA) (MOSCATO,

1989) as a framework-based method with multiple populations, which incorporates con-

cepts of bio-inspired methods and local search (LS) technique (MOSCATO; COTTA,

2019). Following the previously introduced points of interest outlined for this thesis, it

aims to efficiently explore the functions’ search space, increase the exploitation perfor-

mance and the diversity maintenance of solutions, and control the metaheuristic parameter

values to better deal with the multimodal optimization functions.

MAs simulate the behavior and interactions of individuals (population) based on

the “meme” concept of replicating ideas (DAWKINS, 1976). This concept originated

from cultural evolution and can be explained as a component of cultural transmission.

Complex ideas are divided between agents of a given population who propagate and mod-

ify them. Interactions between members of the same community or distinct communities

are simulated through global search operations and local refinements that lead to the con-

stant evolution and improvement of the individuals. Still, it is inferred that ideas are the

results of search operators, and, as in a cultural environment, good ideas tend to survive.

In contrast, bad ones disappear over generations, resulting in a final set of acceptable solu-

tions (NERI; COTTA; MOSCATO, 2012). Due to the enormous complexity addressed by

multimodal functions and the PSP, the metaheuristic adopted in this work was motivated

from the basic definition of the MAs, which allows great flexibility in the use of global

and local optimization heuristics, facilitating the exploration, population diversification,

and refinement of the local minima found (MOSCATO; COTTA, 2010).

Besides all concerns regarding metaheuristic design for multimodal functions, our

method incorporates the knowledge of 3-D protein structures stored in the PDB to better

deal with the PSP. Also, analyzing from a biological perspective, the application of MAs

favors the exploration of the protein conformational space through the use of global search

strategies. It aims to find distinct structural models while making minor adjustments in

the structures found to improve these models correcting eventual conformational errors.

22

The proposed MA was combined with a modified Artificial Bee Colony (ABC)

algorithm (KARABOGA; BASTURK, 2007) used as an exploratory method applied to

the MA populations and with the Solis and Wets (SW) algorithm (SOLIS; WETS, 1981)

as LS strategy. The ABC is a SI-based metaheuristic that emulates the foraging process of

honeybee swarms. It is suitable for multivariate numerical function optimization (AKAY;

KARABOGA, 2012). Numerous studies have been published demonstrating its competi-

tiveness with other population-based metaheuristics (KARABOGA; BASTURK, 2007;

KARABOGA; BASTURK, 2008; KARABOGA; AKAY, 2009; KARABOGA et al.,

2014). Thus, the synergy of concepts between the MA with LS and ABC algorithms

seems to be initially reasonable to the problem domain understudy in the sense of search

space exploration and refinement.

This study provides an overview of some of the most relevant methods for mul-

timodal optimization in general and also for the PSP problem. The key objective is to

develop an adaptive population-based metaheuristic with parameter control strategies,

assuring an acceptable exploration, exploitation, and diversity of the model applied to

continuous and multimodal benchmark functions and the PSP problem. Hence, the most

significant contribution of this work is the design and assessment of an optimization tech-

nique, aiming to deal with the points of interest and challenges already mentioned regard-

ing metaheuristics and the PSP.

1.5 Research Objectives

The general objective of this thesis is the study and development of a framework-

based metaheuristic for multimodal optimization. The method aims to reach acceptable

rates of population diversity and convergence according to the optimization process sta-

tus, an adequate trade-off between exploration and exploitation through the rugged search

spaces, and a suitable parameter setting when applied to distinct benchmarks of continu-

ous functions and the PSP problem.

The goals to be achieved with the development of this work are:

1. To study the most relevant bio-inspired metaheuristics and search techniques in the

literature related to the multimodal optimization and its issues, in addition to the

state-of-the-art methods for the prediction of 3-D protein structures;

2. To consider the main characteristics of the PSP problem, related to the FM category,

23

aiming at its modeling as an optimization problem, as well as its constraints and

challenges;

3. Based on the survey conducted, to propose a MA for multimodal optimization func-

tions, in order to efficiently deal with these complex landscapes;

4. To implement and validate the proposed approach by tests conducted over well-

known benchmark test functions in the continuous optimization domain;

5. To evaluate the obtained results for more general optimization scenarios;

6. Based on the obtained results in the benchmark functions, to adapt the method to

deal with the PSP problem and predict approximate solutions;

7. To adapt the metaheuristic to deal with the multimodality and complexities of the

PSP and its energy function, aiming to overcome some existing inefficiencies;

8. To evaluate the method performance regarding computational aspects and biologi-

cal significance of the results;

9. To point out the suitable search strategies regarding each multimodal fitness land-

scape tested and compare them when analyzing the performance on benchmark and

real problems;

10. To validate the proposed algorithm by comparing it with relevant works and state-

of-the-art methods in the PSP field (MOULT et al., 2018; ABRIATA et al., 2018).

Finally, it is expected to generate a framework-based MA with different search

components and strategies, which can deal with multimodal optimization landscapes,

and that intelligently incorporates problem-specific components to predict good-enough

native-like protein conformations.

1.6 Thesis Overview

The next chapters of this thesis are organized as follows:

• Chapter 2: The Computational Optimization Background chapter presents a de-

scription of computational optimization concepts regarding its definition and ac-

cording to the scope of this work, which encompasses global and multimodal con-

tinuous optimization, optimization strategies, and the main concerns about the search

algorithms and the optimization process;

• Chapter 3: The Biological Background chapter provides biological foundation con-

24

cepts required to understand the protein structure prediction field. The goal of the

chapter is to discuss the central notions that comprise the computational prediction

of 3-D protein structures, its definition as an optimization problem aiming at the

theoretical basis of the PSP problem, as well as the issues related to it;

• Chapter 4: The Related Works chapter presents a review of the most relevant and

state-of-the-art metaheuristics used for global and multimodal continuous optimiza-

tion. The chapter focuses on the literature concerning search strategies to deal with

the optimization issues mentioned earlier, such as multimodal search strategies,

population diversity and convergence, exploration and exploitation trade-off, and

hybrid and parameter control algorithms. The chapter also describes an overview

of methods applied to the PSP problem;

• Chapter 5: The Material and Methods chapter presents the algorithms and search

strategies used in this work to deal with optimization problems regarding the multi-

modal continuous domain, as well as the constructive methodology of the proposed

methods;

• Chapter 6: The Computational Experiments chapter describes the experiments con-

ducted to analyze the defined optimization case studies and the corresponding algo-

rithms. The chapter also describes the benchmark test functions employed in each

scenario of optimization, the algorithms used for comparison, the parameter set-

ting and the metrics applied for evaluation, and the results obtained regarding the

performance of the proposed methods facing each one of the case studies;

• Chapter 7: The Conclusions chapter presents the conclusions and final considera-

tions of this work, as well as the future works delineated from the development of

this thesis and the obtained results.

25

2 COMPUTATIONAL OPTIMIZATION BACKGROUND

2.1 Introduction

In this chapter, computational optimization concepts regarding its definition and

according to the scope of this work are presented, which encompass global and multi-

modal continuous optimization, optimization strategies, and the main concerns about the

search algorithms and the optimization process.

An optimization problem is defined as the effort of finding the best possible solu-

tion to a specific problem from all feasible candidates (TEZEL; MERT, 2020). Such prob-

lems are found in many real-life applications, such as science, engineering, management,

and business (SER et al., 2019; HUSSAIN et al., 2019). These problems can be divided

into several categories, whether continuous or discrete, constrained or unconstrained,

mono or multi-objective, static or dynamic (BOUSSAÏD; LEPAGNOT; SIARRY, 2013).

As already introduced, this work is focused on the continuous optimization domain.

2.2 Single Global Continuous Optimization

The global optimization process represents the search for the single best objective

variables of a given problem that correspond to either minimum or maximum value of an

objective function (TALBI, 2009; KRAMER, 2014). A general global optimization prob-

lem can be defined by the tuple (S, f), where S represents the set of feasible solutions

(search space), and the relation f : S → R the objective or fitness function to be opti-

mized. The objective function assigns a real value indicating its fitness to every solution

x ∈ S of the search space. The fitness function f allows defining a total order relation be-

tween any pair of solutions in the search space. For continuous domain, the search space

S is the set R of continuous values. In most cases, many values have to be optimized at

the same time, resulting in an N -dimensional search problem, which defines S = RN .

Regarding the optimality definition, a global optimal solution x∗ ∈ RN has a

better fitness f(x∗) than all other solutions of the search space RN , that is, for a global

optimum, it ensures f(x∗) ≤ f(x), ∀x ∈ RN . Without loss of generality, this definition is

made in terms of minimization problems. Maximization problems can be transformed into

minimization by inversion of the fitness function fmin(x) = −fmax(x). Also, a solution

x∗ with a better fitness f(x∗) < f(x) than the solutions in its neighborhood x ∈ RN with

26

‖ x− x∗ ‖< ε for an ε > 0 is considered a local optimum.

Therefore, the main goal of a global continuous optimization problem is to find

a single global optimal solution x∗ ∈ RN . Many global optima may exist for a given

problem, depending on the optimization function. Thus, to get more alternatives, such

as in the multimodal optimization (LI et al., 2016), the problem may also be defined as

finding all existing global optimal solutions (TALBI, 2009).

2.3 Multimodal Continuous Optimization

It is well-known that numerous problems in many distinct areas present complex

objective functions to determine possible solutions (GLIBOVETS; GULAYEVA, 2013).

For example, the energy functions used in the prediction process of 3-D protein structures

fall into the complex category of multimodal objective functions (HANDL; LOVELL;

KNOWLES, 2008; KIM et al., 2009). Multimodal optimization seeks to overcome the

complexities imposed by functions multimodality through adaptations in the search algo-

rithms. Its goal is to find all possible optimal or acceptable suboptimal solutions, not just

a single solution to the problem (DAS et al., 2011). In literature, the term multimodal

optimization also refers to seeking a single global optimum on a multimodal fitness land-

scape (LI et al., 2016). In this thesis, the optimization goal varies depending on the

optimization function and the number of global optima associated with it.

From the previously described definition of a continuous optimization problem,

a multimodal continuous optimization represents the relation (S, f), where S = R is

the multimodal search space and f : S → R the multimodal objective function that

maps elements of S into a real domain R. Assuming minimization, as min f(x), x ∈

RN , where x is an N -dimensional vector [x1, · · · , xn]. In multimodal optimization, a

niching method aims to locate all possible x∗ ∈ RN , not just a single x∗, which holds

the minimum possible objective values as f(x∗) ≤ f(x),∀x ∈ RN . The fitness values in

the neighborhood of an optimal point x∗ should be all equal or higher than f(x∗), which

minimizes its objective value.

Finding multiple solutions in a single run can improve the metaheuristic perfor-

mance, given that many points of the search space are optimized at the same time and

can be easily changed without affecting the overall performance of the process (GLI-

BOVETS; GULAYEVA, 2013). Multimodal optimization may increase the probability

of a metaheuristic finding global optima since search efforts are not concentrated just in

27

one region of the search space but in different areas. The discovery of many solutions in

distinct regions of the search space can also maintain a diverse population, preventing a

premature population convergence to local optima (LI et al., 2016; SER et al., 2019).

Single-solution-based algorithms aim to optimize a single solution per run and are

commonly used to find only an optimal result of the evaluation function. When algo-

rithms of this type are used in multimodal optimization, they must be applied repeatedly,

expecting to find a different solution for each run. In this sense, population-based meta-

heuristics, such as EAs, have advantages over other more classical search heuristics that

are not based on a population of solutions. Ideally, suppose a search algorithm can main-

tain the diversity of solutions from a satisfactory exploration of the search space at the end

of the algorithm’s execution. In that case, it is possible to reach multiple good-enough so-

lutions instead of just one (DAS et al., 2011). However, regarding larger search spaces,

due to the genetic drift inherent to the population evolution (BELDA et al., 2007), evo-

lutionary metaheuristics also tend to converge to a single global optimum naturally. The

genetic drift can lead the entire population to be restricted and spend all the computational

effort to optimize only such a point. With this, the preservation of population diversity by

the discovery and maintenance of multiple solutions throughout the algorithm’s execution

configures one of the main challenges in metaheuristics over multimodal optimization.

Solutions’ diversity is a critical issue regarding the metaheuristic’s ability to ex-

plore the search space. In population-based metaheuristics, the population convergence,

i.e., the population diversity loss, means that the search process has lost its optimization

capacity. As already mentioned, reaching a good balance between preserving the diver-

sity by exploration and refining the local points by exploitation is a common path for

population-based algorithms aiming at locating a global optimum (LI et al., 2016).

With this, niching strategies can maintain a more diverse population while locat-

ing more than one global optimum. Niching is primarily used to prevent the best popu-

lation’s solution from replacing others with similar objective value but distant objective

variables (LI et al., 2016). It is noted that simply preserving a high level of population

diversity is not enough for niching since a high population diversity could encompass

only random points. This means that a niching algorithm must converge to global optima

locally, promoting the formation of distinct subpopulations. So each subpopulation is

located around one of the unknown optima (GLIBOVETS; GULAYEVA, 2013).

28

2.3.1 Niching Strategies

The most common strategies used in multimodal optimization are based on the

niching concept (MAHFOUD, 1995; GLIBOVETS; GULAYEVA, 2013), which concerns

the attempt to find and preserve multiple solutions around distinct niches or regions of the

search space to avoid convergence to a single optimal point. In the case of global opti-

mization with the multimodal objective function, niching may prevent that the algorithm

converges prematurely.

Commonly, this niching effect is induced by modifying the selection mechanism

of individuals, which considers the fitness function and the distribution of individuals

in the solution space (objective variables) or objective space. It is used some distance

metric to measure the closeness or differences among individuals in the same or different

niches (LI et al., 2016).

Several niching algorithms have been proposed in literature over the years (QU;

SUGANTHAN; DAS, 2013), such as Crowding strategy (JONG, 1975; THOMSEN,

2004), Restricted Tournament Selection (RTS) (HARIK, 1995), Fitness Sharing (GOLD-

BERG; RICHARDSON et al., 1987) and Speciation (LI et al., 2002). Nevertheless, in-

dependent of the niching strategy, for multimodal optimization, it is imperative to find

global optima by an efficient exploration of the search space and refinement of discovered

regions, not to lose them throughout the optimization process. That is the need to distin-

guish distinct regions of the search space and provide better guidance for the process. A

detailed discussion about multimodal algorithms is given in Section 4.6.

2.4 Exploration and Exploitation

Population-based metaheuristic holds a population of individuals and applies spe-

cific search equations to find candidates within a feasible search space. It is a consensus

among researchers that metaheuristics can reach a better performance when an appropri-

ate balance between exploration and exploitation (Expr/Expt) of solutions is achieved.

Also, empirical experiments have shown a strong relationship between the Expr/Expt ca-

pacity of a search method and its convergence rate (MORALES-CASTAÑEDA et al.,

2020). It means that a good balance can be a factor for the ideal convergence of the

metaheuristic. On the other hand, a non-satisfactory ratio can increase the probabil-

ity of entrapment into local optima (premature convergence) or deteriorate the algo-

29

rithm’s convergence speed. However, according to Morales-Castañeda et al. (MORALES-

CASTAÑEDA et al., 2020) and Črepinšek et al. (ČREPINŠEK; LIU; MERNIK, 2013),

despite the general agreement on these concepts, there is no clear understanding of what

the Expr/Expt trade-off really represents. With this, many measures have been proposed

to quantify this balance during the optimization. Most of them are related to the monitor-

ing of the current population diversity.

Thus, the term exploration is related to the solutions’ diversification, while ex-

ploitation represents the search intensification around promising areas of the search space.

Diversification means the ability to visit different regions of the search space, and in-

tensification concerns the method’s capacity to reach high-quality solutions within those

regions (BOUSSAÏD; LEPAGNOT; SIARRY, 2013). A metaheuristic may address a rea-

sonable balance strategy between these two distinct goals (MORALES-CASTAÑEDA et

al., 2020). Search operators and optimization strategies present abilities both of Expr/Expt,

and try to reach such a balance. However, it is noted that frequently some of them present

a particular specialization in diversification and others toward intensification. Despite this,

they tend to get trapped in local optima rather than a global optimum. The main reason

is the difficulty to balance such abilities properly by the parameter setting (XU; ZHANG,

2014). An alternative to force the trade-off on metaheuristics could be the design of

hybrid algorithms, with specialized search operators in both discovery and refinement

solutions (SER et al., 2019).

By characterizing problem difficulties, it was shown that Expr/Expt balance is

strictly problem-dependent (XU; ZHANG, 2014). In this sense, considering that meta-

heuristics can be different in terms of search components and optimization strategies, it is

tough to establish an appropriate Expr/Expt ratio that works for all existing methods. It

is crucial to understand the mechanisms in these algorithms to devise an efficient search

strategy (MORALES-CASTAÑEDA et al., 2020).

For example, in EAs, Expr/Expt is reached by the selection, mutation, and crossover

operators (ČREPINŠEK; LIU; MERNIK, 2013). The search components and their pa-

rameters are responsible for determining a good Expr/Expt ratio over the search space.

Thus, several strategies to deal with the Expr/Expt trade-off in metaheuristics have been

proposed. Regarding the search mechanisms, they can encompass adaptive and hybrid

approaches. This ratio can be balanced by parameter control in search components for

exploration or exploitation and strategies based on population diversity preservation, such

as multimodal and niching methods (ČREPINŠEK; LIU; MERNIK, 2013). Besides, an

30

incremental design of metaheuristics may ease clarify the contributions of each compo-

nent during the search process.

Nonetheless, the parameter control is also problem-dependent, as the optimal pa-

rameter set for a particular problem may not be ideal for another (ALETI; MOSER,

2016; PARPINELLI et al., 2019). Still, different parameter values can be the best at

different optimization stages, and then the Expr/Expt efforts may also change during the

process (ČREPINŠEK; LIU; MERNIK, 2013; LACERDA et al., 2021). The parameter

control explicitly controls search components but only implicitly regulates the population

diversity, which, in turn, describes Expr/Expt. Therefore, the goal of any search algo-

rithm is to achieve proper diversification to find a good balance between Expr/Expt for

different optimization functions. This relationship can be regulated adaptively during the

run, addressing parameter control and population diversity issues (ČREPINŠEK; LIU;

MERNIK, 2013; XU; ZHANG, 2014). A detailed discussion about parameter control

algorithms is given in Section 4.3.

2.5 Population Diversity

As the Expr/Expt ratio, the population diversity is directly related to the conver-

gence rate (SER et al., 2019). At the wrong time, the population diversity loss is consid-

ered the primary reason for premature convergence and stagnation (GUPTA; GHAFIR,

2012). Premature convergence means that the metaheuristic’s population has reached

such a suboptimal state where the search operators can no longer produce new solutions

that outperform their current ones in terms of objective values.

In population-based algorithms, the best solutions tend to attract the search pro-

cess towards them. Consequently, the distance among solutions decreases (diversity loss),

whereas the exploitation effort increases, hence the convergence rate. On the other hand,

when the distance among solutions increases (diversity gain), the exploration effort pre-

vails (MORALES-CASTAÑEDA et al., 2020). Then, diversity is related to differences

among individuals, which can be at the genotype (objective variables) or phenotype (ob-

jective values) levels (ČREPINŠEK; LIU; MERNIK, 2013).

Several measures for diversity have been proposed in the literature, aiming to eval-

uate the differences among solutions of the population (HALIM; ISMAIL; DAS, 2020).

However, as diversity measures are problem-dependent, no single measure fits all prob-

lems and algorithms. If any measure is used in the optimization process, it is necessary

31

to investigate if positive correlations exist between better performance and the diversity

rate (ČREPINŠEK; LIU; MERNIK, 2013). As previously stated, a diverse population is

mandatory for exploration to avoid premature convergence. For example, a diverse popu-

lation can deal with multimodal functions, simultaneously exploring several peaks in the

fitness landscape. On the contrary, high diversity at all phases of an optimization process

may not be ideal since there exist stages where exploitative behavior is needed (ČRE-

PINŠEK; LIU; MERNIK, 2013).

Regarding the continuous optimization domain, diversity measures can be classi-

fied as distance-based, entropy-based, and ancestry-based distances (ČREPINŠEK; LIU;

MERNIK, 2013). The distance-based measure is the most widely used type of diver-

sity measure. Several distances are considered, including Hamming, Euclidean, cosine

distance of similarity, edit distance, and distance to the average point. Entropy-based is

a promising measure representing the population disorder, where higher entropy means

higher diversity. Moreover, the ancestry-based measure is calculated by comparing the

current population with those populations of previous generations, considering ancestries

or history. Among these types, some of them are described below (ČREPINŠEK; LIU;

MERNIK, 2013; HALIM; ISMAIL; DAS, 2020).

The dimension-wise diversity measure can be considered to calculate the dis-

tance variation between solutions (CHENG et al., 2014; MORALES-CASTAÑEDA et

al., 2020). Such measure is distance-based and can be defined according to the Equa-

tion 2.1.

Divdimension(P) =
1

D

D∑
j=1

1

N

N∑
i=1

| xij −median(xj) | (2.1)

Where median(xj) represents the median of the j-th dimension in the whole population

P . xij is the j-th dimension of solution i. N is the population size and D is the problem

dimension. The diversity of each dimension is calculated as the distance between the j-th

dimension of every solution and the median of that dimension, averaged. The use of the

median value avoids inconsistencies by using a reference element. However, one possible

shortcoming of this measure is the smoothing effect produced by the average combination

of all dimensions, where small changes in diversity are partially smoothed (MORALES-

CASTAÑEDA et al., 2020). The diversity of the whole population Divdimension is the

average of every diversity in each dimension. Regarding the equation result Divdimension,

higher Divdimension values means higher population diversity rate.

32

Another similar measure to the above aims to measure the diversification of solu-

tions around the population center (KRINK; VESTERSTROM; RIGET, 2002; HALIM;

ISMAIL; DAS, 2020). The measure is based on the average distance of solutions over the

center of population P , calculated as the average of each dimension variables, as follows:

Divcenter(P) =
1

N

N∑
i=1

√√√√ D∑
j=1

| xij − x̄j | (2.2)

Where N is the population size, D is the problem dimension, xij is the j-th variable value

of the i-th solution, and x̄j is the j-th value of the average point of solutions. A lower

Divcenter value indicates lower diversity. Hence convergence around the population cen-

ter, while higher values indicate a higher dispersion of solutions away from the population

center.

A similar diversity measure can be expressed by Equation 2.3. This measure tends

to amplify greater distances between pairs of solutions. However, a potential drawback is

that the squaring will also amplify the distances produced by outliers.

Div2center(P) =
1

N

N∑
i=1

√√√√ 1

D

D∑
j=1

(xij − x̄j)2 (2.3)

Another possible measure is an entropy-based measure (TANG et al., 2015; HALIM;

ISMAIL; DAS, 2020) that divides the phenotype search space intoQ regions of equal size

with Zi solutions in each region, considering a population P of size N . The probability

of solutions situated in the i-th region is determined by Zi/N . The population-entropy

diversity measure describes where solutions are distributed among the various domains in

search space considering their fitness values. Such diversity distribution can be achieved

by the identification of evolutionary states and is given by the following steps (TANG et

al., 2015):

1. Assuming minimization of objective function f(x), and that Fp is an array with

size N , where each Fpi represents a fitness value corresponding to the i-th solution

of the population, let fmax = max(Fp) and fmin = (Fpbest);

2. Consider an interval [fmin, fmax];

3. Divide [fmin, fmax] into N intervals of equal length.

4. Assign each solution considering its fitness to the correspondent interval and find

the specific number ni for each of those intervals;

33

5. Diversity of the population distribution is then given by Equation 2.4, where Q =

N .

Diventropy(P) = −
Q∑
j=1

Zi
N
loge

(
Zi
N

)
(2.4)

Regarding the equation result Diventropy, high value of Diventropy means high population

diversity rate.

The population diversity can also be measured in terms of the differences among

the fitness of the population’s solutions (SABAR; ALETI, 2017). The degree of popu-

lation diversity is directly estimated using the objective values of solutions regarding the

average, best and worst fitness values of the current population, according to Equation 2.5.

Divfitness(P) =

∣∣∣∣ favg − fbestfworst − fbest

∣∣∣∣ (2.5)

Where favg, fbest and fworst represent the average, best and worst fitness values of the

population, respectively. Assuming minimization problem, higher values of Divfitness

means higher population diversity rates.

Also, the coefficient of variation (CV) of a population can be used as a diversity

measure (CORRÊA; DORN, 2020), which calculates the relative variability to estimate

the sample diversity degree (BEDEIAN; MOSSHOLDER, 2000). The CV represents the

ratio of the standard deviation σ(P) of a given population P to the population mean P̄ ,

according to the Equation 2.6. Lower CV values indicate that the population tends to be

similar.

CV (P) =
σ(P)

P̄
(2.6)

Finally, the most used strategy for reaching a satisfactory Expr/Expt balance is

maintaining a diverse population. Although a diverse population is mandatory for a good

Expr/Expt trade-off, it is not guaranteed. A successful optimization process also depends

on the Expr/Expt abilities of the metaheuristic’s components and parameterization.

34

2.6 Exploration and Exploitation Trade-off Definition

Investigations around the efficiency of metaheuristics have attracted attention, no-

tably concerning the potential of a good balance between Expr/Expt. Many strategies have

been proposed to quantify this trade-off numerically, such as measuring different diversity

metrics over a population of solutions, which might indicate the level of diversification

of the metaheuristic along with generations. Moreover, diversity has been identified as

a guidance for the metaheuristic’s success. However, it is also known that some loss of

diversity is required for some search algorithms to converge properly (SER et al., 2019).

According to Črepinšek et al. (ČREPINŠEK; LIU; MERNIK, 2013), one can define the

Expr/Expt trade-off as follows.

Adopting any diversity measure, let d(·, ·) denotes the diversity between two so-

lutions of a population P , where d is a diversity function d : PxP → R. Then, the

similarity to the closest neighbor (SCN) can be used to distinguish exploration from

exploitation. When a new solution solnew is created, a similarity measure to the closest

neighbor (SCN) can be defined, but not strictly, regarding: (i) the similarity to its parents;

(ii) the similarity to the most similar solution within the entire population P ; and (iii) the

similarity to the most similar solution in the subpopulation or niche P ′ ∧ (P ′ ⊂ P). Fol-

lowing the multimodal principles and considering the third point mentioned above, SCN

is given by Equation 2.7.

SCN(solnew, P
′) = min

sol∈P ′∧(P ′⊂P)
solnew 6=sol

d(solnew, sol) (2.7)

Exploration occurs when SCN(solnew, P
′) > X , where X denotes a threshold value that

defines the neighborhood’s limit of the closest neighbor and is problem-dependent. Then,

the exploration process explores points that are outside of the current neighborhood of the

closest neighbor. Contrarily, exploitation occurs when SCN(solnew, P
′) ≤ X .

Another definition of Expr/Expt trade-off is presented in Morales-Castañeda et

al. (MORALES-CASTAÑEDA et al., 2020), and represent it as the percentage of Expr/Expt

invested by a given metaheuristic. Given any diversity measure, the Expr/Expt ratio is de-

fined as follows.

Expr% =

(
Div

Divmax

)
× 100 (2.8)

35

Expt% =

(
| Div −Divmax |

Divmax

)
× 100 (2.9)

Where Div is the diversity rate of the current iteration and Divmax is the maximum diver-

sity value found in the entire optimization process. The percentage of explorationExpr%

describes the exploration effort as the relationship between the diversity in each iteration

and the maximum reached diversity. The percentage of exploitation Expt% is calculated

as the complementary percentage to Expr% and describes the exploitation effort. It is

noted that both Expr% and Expt% are mutually conflicting and complementary.

Therefore, such definitions of Expr/Expt can be used to evaluate the relationship

between the population diversity, the Expr/Expt trade-off, and the metaheuristic’s perfor-

mance. Thus, if positive correlations exist between better performance and the diversity

measure, it is also possible to relate such correlation to the current Expr/Expt balance.

2.7 Connecting the Points of Interest

In essence, since a proper Expr/Expt trade-off can improve the metaheuristic’s

performance, the population diversity is strictly related to this issue. Assuming that the

trade-off is a concept used to understand better the behavior of metaheuristic search mech-

anisms and their efforts to explore and refine the solutions. Then, the metaheuristic search

components are the real responsible for the success of the algorithm. Their operation and

parameter setting define how well the algorithm explores and refines the search space, es-

tablishing the balance between them based on its configuration. The search components

and their parameter set define the population diversity rate, which, in turn, describes the

Expr/Expt balance and defines the convergence rate. Finally, the convergence rate, and

if the method has converged ideally to global optima, determine the success of the opti-

mization process.

Therefore, based on this cause and effect relationship, there are signs that the

metaheuristic components and parameterization are the most important optimization as-

pects. They can regulate all the rest of the established factors, which encompass the

diversity/convergence rates, Expr/Expt trade-off, and the final optimization results. Thus,

if we adopt improper search algorithms and parameter values, then the diversification of

solutions may be impacted negatively. It can cause premature or non-convergence and,

consequently, adverse outcomes.

To tackle an optimization problem, it is necessary to choose the metaheuristic ap-

36

propriately, incorporate the strategies suitable for the problem under study, and define an

acceptable parameter setting. By the monitoring of population diversification, it is pos-

sible to regulate the Expr/Expt efforts. An acceptable diversity rate has the potential to

guide the algorithm’s convergence to success as long as the search mechanisms and pa-

rameter settings are equally efficient, e.g., based on population diversity preservation. If

the diversity is not as good as expected, the components and the parameterization can

be changed throughout the execution. In this sense, it is necessary to address the pa-

rameter control problem, which was already introduced as one of the points of interest

of this work and will be further examined (Section 4.3). Adapting the parameteriza-

tion during the optimization process based on the metaheuristic’s feedback regarding the

current level of population diversification can adjust parameter setting errors and reduce

search bias, leading to an acceptable trade-off between Expr/Expt. This may lead to a

satisfactory convergence and better optimization results. We emphasize that the relation-

ship between components/parameter set with population diversification can be seen as

a “two-way channel” since the metaheuristic’s configuration defines the diversity level.

The diversity can change the configuration via parameter control during the process. It is

a complex cause and effect relationship where those involved can be the cause and also

the effect. Figure 2.1 illustrates the relationship between the points of interest discussed

in this chapter and outlined for this thesis concerning continuous optimization aspects.

Figure 2.1: Relationship between the points of interest outlined for this thesis work re-
garding continuous optimization by metaheuristics

Source: From the author (2022).

Finally, this section was written based on the previously explored concepts about

the efficient exploration of the search space, Expr/Expt trade-off, population diversity, and

convergence factors. It is an attempt to establish a connection among them and guide the

design of our metaheuristics.

37

2.8 Strategies for Achieving Diversity, Exploration and Exploitation

From the Expr/Expt perspective, a higher diversity indicates that the search algo-

rithm is in the exploration stage, while a decrease in diversity indicates an exploitation

search. Such relationship between exploration and diversity is defined by the search com-

ponents and strategies which preserve the population diversity. According to Črepinšek et

al. (ČREPINŠEK; LIU; MERNIK, 2013), search methods can address the Expr/Expt bal-

ance, but are not limited to, through: (i) diversity preservation; (ii) diversity control; and

(iii) other more direct strategies. The first two groups are primarily focused on population

diversity and only implicitly address Expr/Expt issue. The latter deals with the trade-off

more directly.

The first group aims to improve the Expr/Expt ratio assuming that the search

techniques can preserve diversity per se and reach a good Expr/Expt balance. Several

methods have been proposed for diversity preservation. They can be categorized as nich-

ing (LI et al., 2016) and non-niching strategies (TOFFOLO; BENINI, 2003). Both of

them can maintain a diverse population, but niching methods are also able to locate mul-

tiple optimal solutions. It is noted that niching methods can be considered more robust

diversification methods. Therefore, besides the niching methods already mentioned in

Section 2.3.1, some popular non-niching strategies used to maintain the population di-

versity in evolutionary metaheuristics comprise: (i) population-based, where diversity is

achieved by varying the population size, duplicate elimination of similar solutions, in-

fusion or reinitialization techniques, external archives, or migration between subpopula-

tions; (ii) selection-based, where diversity is achieved by changing selection pressure or

replacement restrictions between new solutions and the current population; (iii) crossover

or mutation-based, where mating restrictions or disruptive operators achieve diversity;

and (iv) hybrid approaches, where ensembles of these strategies achieve diversity.

The second group deals with the Expr/Expt efforts by the diversity control. It

considers population diversity, objectives values of population, or fitness improvements

as feedback to guide an optimization process towards exploration or exploitation. In this

category, methods can be classified according to the strategy or operator responsible for

diversification. Some of them include: (i) diversity is controlled by selection mechanism,

where survival probability can be considered in terms of population diversity; (ii) diver-

sity is regulated by crossover and mutation operators, which is the most adopted category

and intends to increase or decrease the probability of operators after the computation of

38

population diversity, objective values, or fitness improvements. In this group, methods

differ from each other mainly on how diversity is calculated, i.e., explicitly by diversity

measures or implicitly by fitness or improvements; and (iii) diversity is regulated by pop-

ulation changes, where the population size or the population itself can be changed, e.g.,

in a reinitialization process.

The third group comprises strategies that try to control the Expr/Expt ratio more

directly. Such methods suggest direct control between Expr/Expt, and these two stages are

identified and interleaved. The strategies can be divided into three groups. The first group

uses distinct subpopulations for a specific phase of exploration or exploitation. Subpopu-

lations are used to delimit exploration from exploitation, and some of them are exclusively

used for a particular search stage. The second group uses the same population of solu-

tions, but different triggers cause alternation between Expr/Expt. The last one considers

an ancestry tree-based approach for explicitly measuring Expr/Expt. The evolution of a

population over the optimization process is recorded on an ancestry tree, where diversity

measures can be applied to find similarities between solutions on the ancestry tree and the

current ones.

Finally, we emphasize that the diversity and the Expr/Expt balance can be ad-

dressed by an ensemble of optimization strategies. The concept of ensemble or hybridiza-

tion in optimization encompasses the combination of multiple search strategies, subpop-

ulations, algorithms, rules for solution selection, operators, and parameterization to deal

with an optimization problem. This concept is based on the principle that a hybrid method

may reach better results than a single strategy to a given problem (SER et al., 2019).

2.9 Final Remarks

This chapter described computational optimization concepts regarding its theo-

retical definition as global and multimodal continuous optimization. Also, it provided

a characterization of the main issues about metaheuristics and optimization problems,

which included: (i) a description and formalization of the Expr/Expt trade-off; (ii) con-

cerns about population diversity and convergence rate, as well as diversity measures; (iii)

an attempt to establish a connection among these issues to guide this thesis; and (iv)

search strategies and methods for achieving population diversity and Expr/Expt of the

search space.

The goal of this thesis is the development of a population-based metaheuristic

39

applied to global and multimodal continuous benchmark functions and the PSP problem.

In this sense, the next chapter presents the biological background necessary to understand

the protein structure prediction problem and how it can be formalized as a computational

optimization problem.

40

3 BIOLOGICAL BACKGROUND

3.1 Introduction

The goal of the chapter is to discuss the central notions that comprise the com-

putational prediction of 3-D protein structures, its definition as an optimization problem

aiming at the theoretical basis of the PSP problem, and the issues related to it.

3.2 Physicochemical Protein Composition

From a structural perspective, proteins or polypeptides are folded chains of amino

acids (aa). An aa is a small molecule consisting of an amino group (NH2), a carboxyl

group (COOH), and a hydrogen atom (H) attached to the central alpha carbon (Cα), as

illustrated in Figure 3.1. In addition, each aa has also an organic group R (side chain)

attached to the backbone Cα. The R group is responsible for differentiating one aa from

another and gives the specific physicochemical properties of each aa (LODISH et al.,

2007). There are 20 types of common amino acids, whereas each one has its characteris-

tics. The aa side chains may differ in size, electric charge, and polarity.

Peptides are molecules composed of two or more amino acids linked through

chemical chains, known as peptide bonds (Figure 3.1). The peptide bond (C-N) is formed

when the carboxyl group of an aa reacts to the amino group of another aa, and thus

releases a water molecule (H2O). Two or more chained amino acids are referred to as pep-

tides, and larger peptides are polypeptides or proteins (CREIGHTON, 1990; BRADLEY;

MISURA; BAKER, 2005). Each protein is defined by a unique linear sequence of amino

acids responsible for determining its conformation. This conformation or folding pro-

vides the protein-specific biochemical properties, which determine its role in the organ-

ism (LESK, 2010).

3.3 Levels of Structural Protein Abstraction

Proteins can be divided into four levels of structural abstraction to ease the struc-

tures’ understanding (BRANDEN; TOOZE, 1999; LODISH et al., 2007): (i) primary

structure (PS); (ii) secondary structure (SS); (iii) tertiary structure (TS); and (iv) quater-

41

Figure 3.1: Chemical representation of two amino acids and a schematic model of the
peptide formation. The carboxyl group (COOH) of one aa (1) reacts with the amino group
(NH2) of another aa (2), thus releasing a water molecule (H2O) and creating a peptide
bond (C-N). N represents nitrogen atoms; C denotes carbon atoms; O represents oxygen
particles, and H are hydrogen atoms

Source: From Corrêa and Dorn (CORRÊA; DORN, 2020).

nary structure (QS). Figure 3.2 illustrates the four levels of structural protein abstraction.

The PS describes only the aa sequence in linear order (BRANDEN; TOOZE,

1999). The SS is defined by the stable aa arrays primarily determined by the presence of

hydrogen bond patterns formed through interactions between H and O or N atoms. Due

to the high force intensity in molecular interactions of this nature, these structures are

responsible for ensuring the protein structure conformational stability in the 3-D space.

The SS can be classified into helices (PAULING; COREY; BRANSON, 1951),

β-sheets (PAULING; COREY, 1951), and loops (turns and coils). The helices and sheets

structures are more stable conformations and therefore are called regular structures. He-

lices are stabilized by hydrogen bonds between the N atom of a peptide bond or the O

atom of the carboxyl group of the third (310-helix), fourth (α-helix) or fifth (π-helix) aa

of the N-terminal region. β-sheets are chains of extended amino acids combined with

other neighboring chains in parallel or antiparallel. The amino and carboxyl groups of

42

Figure 3.2: Representation of the four levels of structural protein abstraction

Source: From Corrêa and Dorn (CORRÊA; DORN, 2020).

the peptide bonds come closer in the same plane to allow hydrogen bonds between ad-

jacent polypeptide chains. Turns and coils represent highly flexible structures. They are

originated in regions where the protein changes its conformation, which means that they

occur between regular SSs. These are known as disordered regions, as they present a high

flexibility degree due to the greater exposure to the solvent. For this reason, they are more

difficult prediction conformations (SCHEEF; FINK, 2009).

The protein TS is related to its 3-D topology, defined by the SS arrangements

and connections, besides their positioning in the 3-D space. It is also called the native

or functional protein structure. The conformation is constituted and stabilized by several

thermodynamic factors, such as hydrogen bonds, hydrophobic and electrostatic interac-

tions, attraction and repulsion van der Waals forces, among others (ANFINSEN, 1973).

The QS represents the combination and the 3-D arrangement of two or more

polypeptide chains (TS) of the protein. This structure is influenced by the same forces

that determine the SSs and TSs (LODISH et al., 2007).

The comprehension of protein folding allows more direct investigations about the

biological processes, with greater resolutions and details, despite the complexity involved

in those processes. According to the “sequence-to-structure-to-function” paradigm, spe-

cific proteins only assume their biological functions when folded in a single and sta-

ble conformation (ANFINSEN, 1973). However, it is known that not all functions per-

formed by proteins are directly associated with a native and stable state (TOMPA, 2002;

43

DUNKER et al., 2008b). In some cases, proteins must remain disordered to perform

their functions correctly (GUNASEKARAN et al., 2003). These proteins are called in-

trinsically disordered proteins (IDP) (DUNKER et al., 2001) and comprise about 30%

of known protein sequences. Despite the IDPs, a critical aspect to explain the func-

tion of a given protein involves the analysis of complex molecular interactions present

in its conformation. These interactions can be intramolecular (ionic, covalent, metallic

bonds) or intermolecular (hydrogen bonds and other non-covalent bonds, such as elec-

trostatic and van der Waals) forces. Thus, the knowledge concerning the 3-D structure

of polypeptides provides researchers with valuable information about the protein’s role

in the organism (BRANDEN; TOOZE, 1999; LASKOWSKI; WATSON; THORNTON,

2005).

3.4 Structural Protein Classes

It is well-known that most proteins have structural similarities, and in many cases,

they also share the same evolutionary origins (FOX; BRENNER; CHANDONIA, 2015).

The protein classification into different structural classes, considering the SS arrange-

ments and the conformations adopted, can provide detailed descriptions of the relation-

ships among proteins with known 3-D structures. These classes represent several inter-

molecular interactions, which originate from different structural SS arrangements and 3-D

topologies.

The Structural Classification of Protein database1 (SCOP) (CONTE et al., 2000)

aims to classify structural protein conformations, considering the similarities of aa se-

quences and structures. SCOP was developed to provide detailed categorizations regard-

ing protein structures of the PDB. These resources provide extensive reviews about dif-

ferent protein conformations, besides information about proteins structurally similar to

any other protein already classified (FOX; BRENNER; CHANDONIA, 2015). Accord-

ing to the SCOP, proteins can be classified into different hierarchical levels. The highest

level composes the division by classes, aiming to categorize them regarding SS types and

arranged arrays. The other hierarchy levels represent more specific categories, such as

folding patterns, superfamilies, and families.

In this work, we have defined structural protein classes similar to those presented

in the SCOP project. It has aimed to find more specific information about the target

1<scop.mrc-lmb.cam.ac.uk/scop/>

scop.mrc-lmb.cam.ac.uk/scop/

44

proteins under study. Proteins were classified according to their SS composition and

arrangements (CHOU; ZHANG, 1995). We note that a more simplified categorization

was adopted, which tends to be more general but easier to obtain. The predominance

values of SS follow the guidelines delineated by the SCOP and also in the work (CHOU;

ZHANG, 1995). In this way, proteins were classified into four distinct classes:

• Class of irregular regions: comprises structures that have more than 80% of turns

or coils in their SS composition;

• Class of β-sheets: encompasses proteins that have the predominance of more than

60% of β-sheets in their SS;

• Class of helices: covers structures with more than 60% of helices in their SS; and

• Hybrid class: comprises arrangements that do not fit into any previous classes, i.e.,

they present a combination of the three SS types.

3.5 Computational Representation of Protein Structures

Proteins can assume diverse conformations in a 3-D space, and the structure of a

given protein, defined by the aa sequence, spontaneously folds in nature during or after

biosynthesis. The relationship between the amino acid sequence of a protein and its 3-D

structure was demonstrated, for the first time, by experiments carried out in the works of

Anfinsen et al. (ANFINSEN et al., 1961; ANFINSEN, 1973). It is characterized as a com-

plex process dependent on many factors, such as solvation elements, salt concentration,

and temperature. Therefore, the computational representation of 3-D protein structures is

a challenging task due to the difficulty in representing the atomic structure and molecular

interactions, as well as simulating all the factors responsible for the protein stabilization,

as it occurs in nature or even in structural determination performed by experimental meth-

ods (ANFINSEN, 1973).

The computational configuration of a protein model is associated with the detail

level used to describe its 3-D structure, since the higher the detail level used to describe the

model, the higher is the ability to express the protein as in nature, and consequently, the

greater the computational complexity involved (MIRNY; SHAKHNOVICH, 2001; COR-

RÊA; DORN, 2017). More detailed representations encompass all the protein atoms and

describe the solvent molecules necessary to the folding process, while others, more sim-

plified ones, abstract some concepts to reduce the computational complexity. However,

45

the simpler the computational representation used, the more significant the information

loss and representativity compared to real proteins (MIRNY; SHAKHNOVICH, 2001).

The geometric representation of structures is one of the essential components in

computational methods to predict the 3-D protein structures. It is also responsible for

reducing or increasing the search space complexity. Thus, overly detailed models, which

seek to represent most of the protein atoms and other molecules involved in the folding

process, end up rendering the representation computationally expensive. Thus, more sim-

plified representations are often preferable when applied to the PSP (CHIVIAN et al.,

2003; CORRÊA; DORN, 2017).

Commonly, two computational representations appear in the literature. The first

model represents the 3-D protein structure through the Cartesian position (x, y, z) of the

aa atoms. In this case, a polypeptide chain can be described as a set of atoms at arranged

in the 3-D space, where {at | at ∈ R3}. The second model represents the protein struc-

ture by its dihedral angles, compounded by the chain of amino acids and peptide bonds.

This representation is based on the fact that the bond lengths are almost always constant

in a polypeptide chain, which enables the reconstruction of the model to represent all

the protein atoms (NEUMAIER, 1997; MIRNY; SHAKHNOVICH, 2001). So the dihe-

dral angles serve as the basis for the atoms’ positioning and the model reconstruction. A

frequently adopted variation of the second model is the centroid-based protein represen-

tation (ROHL et al., 2004). In such representation, the main chain remains fully atomic.

However, the representation of each aa side chain is simplified to a single pseudo-atom

arranged in the side chain center of mass. The centroid-based representation simplifies

the side chain complexity whereas keeping the overall protein folding by preserving the

backbone integrity (LEAVER-FAY et al., 2011).

The main advantage of using torsion angles, compared to the Cartesian model, is

the ability to reduce the degree of freedom of the structural model, reducing conforma-

tions and complexity. However, the main disadvantage of such representation is that a

slight change in a dihedral angle can cause drastic changes in the rest of the 3-D struc-

ture. In Cartesian representations, point changes in atoms have little effect on the overall

model structure. There are also other simplified representations, such as the lattice mod-

els (KOLINSKI; SKOLNICK, 2004) and the off-lattice AB toy model (STILLINGER;

HEAD-GORDON; HIRSHFELD, 1993).

In this thesis, we adopted the computational structural representation based on the

torsion angles of the polypeptide chains to reduce the complexity of the all-atom repre-

46

sentation while keeping a certain degree of accuracy compared to real protein structures.

3.6 PSP Problem Definition

This section presents the stereochemistry of protein amino acid bonds and the set

of dihedral angles formed from them. From this set of dihedral angles, we intend to model

the PSP problem computationally.

3.6.1 Stereochemistry

The specific characteristics of peptide bonds between amino acids have significant

implications in protein conformations. The peptide bond (C-N), responsible for the dihe-

dral angle Omega (ω) formation, has a double partial bond and tends to be planar with two

allowed states: trans, ω = 180◦ (usually) and cis, ω = 0◦ (rarely), with little or no rotation

around its axis. Free rotations are allowed around the N-Cα and Cα-C bonds (BRADLEY;

MISURA; BAKER, 2005). These bonds represent the dihedral angles Phi (φ) and Psi (ψ),

respectively. The angles can be freely rotated in the continuous range [−180◦, 180◦] and

are considered the main responsible for the conformation adopted by the protein back-

bone. However, the free rotation around φ and ψ is limited by stereochemical constraints

among the protein main and side chains (SCHEEF; FINK, 2009). As a consequence, the

conformation of a specific protein becomes dependent on the aa chemical properties.

Similar to the main chain, the side chain also has dihedral angles, called angles

Chi (χ). The aa side chain conformation contributes to the protein stabilization and pack-

ing (LEVITT et al., 1997). The number of side chain angles χ depends on the aa type,

ranging from 0 to 4 angles with rotational freedom varying from -180◦ to +180◦.

Therefore, the set of angles φ, ψ and ω of all protein’s amino acids defines the

backbone conformation, as the combination of angles χ of each aa configures the protein

side chain (HOVMÖLLER; ZHOU; OHLSON, 2002; LIGABUE-BRAUN et al., 2018).

3.6.2 Computational Modeling of the PSP Problem

According to the stereochemistry of amino acids, it is known that from the com-

plete set of all dihedral angles that define the protein conformation, it is possible to re-

47

construct the computational model to represent all the atoms since the bond lengths are

almost always constant in a polypeptide chain. Thus, the computational representation by

torsion angles becomes feasible.

Thereby, the 3-D structure of a protein P with n amino acids can be computation-

ally defined only by assigning the main and side chain dihedral angles to the amino acids

that encompass the protein (Equation 3.1) since the bond lengths between the atoms are

little variable.

P = [aa1, aa2, · · · , aan−1, aan] (3.1)

aai = [φi, ψi, ωi, χi(0···3)] (3.2)

For the main chain representation of the protein P , the model with n amino acids

has 3n freedom degrees or objective variables to be optimized, but noting that ω angles

have little or no variation: trans, ω ≈ 180º (usually) and cis, ω ≈ 0º (rarely) (BRANDEN;

TOOZE, 1999). Then, considering the side chain dihedral angles, the cardinality of the

angle set of P (dimensionality of variables) is determined by the Equation 3.3. We note

that the φ angle of the N-terminal region of the main chain and the ψ angle of the C-

terminal region of the polypeptide are disregarded because they are nonexistent.

|P | = 3n(
n∑
1

|χi|)− 2 (3.3)

Nonetheless, in this thesis, the computational representation adopted in the opti-

mization processes is based only on the backbone dihedral angles, disregarding the side

chain angles. As mentioned earlier, such representation is known as centroid-based and

focuses on the target protein’s overall folding. This representation maintains the main

chain fully atomic. However, the representation of each aa side chain is simplified to a

single pseudo-atom arranged in the side chain center of mass. The centroid-based repre-

sentation simplifies the side chain complexity whereas keeping the overall protein folding

by preserving the backbone integrity. Rewriting the Equation 3.1, in centroid-based mod-

els, the 3-D structure of a protein P with n amino acids can be defined only by assigning

the main dihedral angles to the amino acids that encompass the protein, according to the

48

Equation 3.4.

P = [aa1, aa2, · · · , aan−1, aan] (3.4)

aai = [φi, ψi, ωi] (3.5)

With this, the PSP problem can be mathematically described as an optimization

problem (LEUNG; WANG, 2001). Considering f(x) as the objective function used in

the solution evaluation, such that f(x) must be minimized in relation to the range of real

numbers defined by l ≤ x ≤ u, where x = P = [aa1, aa2, · · · , aan−1, aan] (Equation 3.1)

is a vector of objective variables in space R|P |, as each x is also a vector of objective

variables that encompasses the angular values of a given aa (Equation 3.2). l and u define

the solution space allowed to each variable, where l = −180º and u = 180º. The interval

[l, u] is common to all variables (dihedral angles) of x.

So we note that in this work, the computational representation used in the opti-

mization processes is based on the dihedral angles of the protein’s main chain. However,

the model evaluations are performed using the Cartesian representation. We adopted the

centroid-based objective function of Rosetta2, and the model conversion between the di-

hedral angle representation to the atomic coordinate is done by the own Rosetta’s energy

function implementation (ROHL et al., 2004; CHAUDHURY; LYSKOV; GRAY, 2010;

KAUFMANN et al., 2010).

3.7 Objective Function for the PSP Problem

Predicting protein structures involves the generation of several structural solutions

to find the closest model to the native protein structure, which represents the one with the

lowest potential energy (DILL; MACCALLUM, 2012; FARAGGI; KLOCZKOWSKI,

2014). Energy functions are used in prediction processes to estimate the folding condi-

tion of a given model, considering the distribution of its energy value on the energy land-

scape. They are used as minimization functions and should have the ability to differenti-

ate between more or less stable protein configurations since, theoretically, conformations

around a native state must reflect global minimum regions of their free energy (ANFIN-

SEN, 1973). It is said “theoretically” as energy functions used in molecular modeling

processes have great difficulties representing real protein structures in nature due to the

2<www.rosettacommons.org>

www.rosettacommons.org

49

enormous complexity of such systems (KIM et al., 2009).

Energy functions used in the PSP problem comprise the category of multimodal

objective functions (Section 2.3), characterized by the highly rough landscape, which

gives rise to several valleys seen as local and global optima of the function (HANDL;

LOVELL; KNOWLES, 2008), as shown in Figure 3.3. For the same input data, the same

multimodal function can present two or more distinct solutions located in different regions

of the search space but with similar fitness value (GLIBOVETS; GULAYEVA, 2013).

Figure 3.3: Multimodal landscape with several valleys seen as local and global optima of
the energy function

Source: From Dill and MacCallum (DILL; MACCALLUM, 2012).

Concerning the problem, the same energy value may represent distinct conforma-

tions for the same target protein, making it difficult to differentiate between models from

two different local minima. Also, optimal points tend not to reflect conformations around

the polypeptide native state (KIM et al., 2009). Also, it is emphasized the existence of

IDPs, which are protein structures that do not count with stable states or are disordered

under certain physiological conditions (DUNKER et al., 2008a), where a single global

minimum can not represent the native and functional state.

Generally, energy functions designed to the PSP represent potential functions

50

empirically derived from experimentally determined structures from the PDB (HAO;

SCHERAGAT, 1999; LAZARIDIS; KARPLUS, 2000). Some of them also incorporate

terms from molecular mechanics, which model the forces responsible for determining the

protein conformations through physically parameterized functional formats, considering

data from small molecules or based on quantum mechanics calculations (JORGENSEN;

TIRADO-RIVES, 2005). More generic prototypes of potential energy functions, given

by Equation 3.6, can be expressed by linear summation, weighted or not, of some en-

ergy terms representing the forces that determine macromolecular conformations, such as

bond angles and bond lengths, dihedral angle values, van der Waals forces, electrostatic

interactions, hydrogen bonds, implicit solvation components, etc. (HANDL; LOVELL;

KNOWLES, 2008; MACKERREL, 2010).

Ef = Eb + Enb (3.6)

Where Ef represents the final energy function, which can be divided into two other equa-

tions, which denote the energy terms concerning bonded atoms (Eb) (Equation 3.7) and

non-bonded atoms (Enb) (Equation 3.8).

Eb = Ebl + Eba + Epta + Eta (3.7)

Where Eb denotes the combination of the bonded energy terms, encompassing bond

lengths (Ebl), bond angles (Eba), prohibited torsion angles (Epta) and torsion angle values

(Eta), respectively.

Enb = Evdw + Eelet + Ehb + Esolv (3.8)

Where Enb represents the combination of the non-bonded energy terms, comprising the

van der Waals attraction and repulsion forces (Evdw), electrostatic interactions (Eelet),

hydrogen bonds (Ehb) and implicit solvation components (Esolv), respectively.

In this work, although the optimization of structural solutions is performed through

changes in the dihedral angles of the target protein structure, the energy evaluations of

these models are performed using the Cartesian representation, through the centroid-based

energy function of Rosetta3 (ROHL et al., 2004; KAUFMANN et al., 2010).

3<www.rosettacommons.org>

www.rosettacommons.org

51

3.7.1 Rosetta Energy Function

The Rosetta energy function (ROHL et al., 2004), implemented by the PyRosetta

molecular modeling suite4 (CHAUDHURY; LYSKOV; GRAY, 2010), was used as an ob-

jective function responsible for evaluating the predicted solutions’ quality. According to

Combs et al. (COMBS et al., 2013), the Rosetta energy function is a knowledge-based

energy function developed through an empirical analysis of experimentally determined

protein structures of the PDB. It considers biological information, such as radius of gy-

ration (RG), packing density, hydrogen bonding distance, and aa pairwise interactions.

Such information is converted into energy terms by Bayesian statistics. It should be noted

that the Rosetta energy function is one of the most popular potential functions concerning

the PSP field (MOULT et al., 2018; ABRIATA et al., 2018).

Rosetta provides two distinct representations for the atom modeling: centroid-

based and all-atom models (LEAVER-FAY et al., 2011). The difference between both

consists in the side chain representation, where the first model generates a reduced de-

scription, through a higher-level approach, of the 3-D protein structure. So in the centroid-

based model, each aa side chain is represented by a centroid located in the chain’s center

of mass. The second option provides greater atomic detail, where all atoms in the side

chain, including hydrogen atoms, are represented (ROHL et al., 2004). As we are inter-

ested in the overall folding of protein models, we adopted the centroid-based representa-

tion model for energy evaluations in this work.

Commonly, a potential energy function, as mentioned earlier, can incorporate two

distinct categories of energy terms (HANDL; LOVELL; KNOWLES, 2008; MACKER-

REL, 2010): bonded and non-bonded terms. The Rosetta function considers more than

18 energy terms, most derived from knowledge-based terms (ROHL et al., 2004). The

function has terms based on Newtonian physics, such as 6-12 Lennard-Jones poten-

tial, divided into attraction and repulsion terms needed to describe the van der Waals

interactions (KUHLMAN; BAKER, 2000), and the Lazaridis-Karplus solvation energy

model (LAZARIDIS; KARPLUS, 2000). It also combines terms of knowledge-based

interatomic electrostatic interactions obtained through potentials between pairs of amino

acids and hydrogen bonding energies dependent on the orientation (KORTEMME; MO-

ROZOV; BAKER, 2003). The scoring function still uses terms to estimate the free energy

of conformation-dependent amino acids. These terms aim to evaluate the positioning

4<www.pyrosetta.org>

www.pyrosetta.org

52

of the aa side chain, according to the Dunbrack rotamer library (DUNBRACK; COHEN,

1997), and validate the conformational preference of the φ and ψ angles of the aa, through

a Ramachandran plot (RAMACHANDRAN; RAMAKRISHNAN; SASISEKHARAN,

1963). The final energy value of the Rosetta function (Erosetta) is given by the summation

of all weights performed on the energy terms considered in the calculation. The weight

of each term was assigned based on the energy function Score3, which is the standard

Rosetta function used to evaluate centroid-based structural models (LEAVER-FAY et al.,

2013; O’MEARA et al., 2015).

3.7.2 Protein Contact Maps

Predicting protein contact maps (CM) is based on the knowledge discovery from

experimental protein structures data and tries to determine which residues are in con-

tact probabilistically. There are several proposed contact map predictors in the litera-

ture (SCHAARSCHMIDT et al., 2018). Most of them explore machine learning strate-

gies, such as Deep Learning networks and Support Vector Machines with classical bio-

logical features, like SS, solvent accessibility, and sequence profile (ADHIKARI; HOU;

CHENG, 2018). Incorporating contact predictions from coevolution-based methods as

additional features also significantly improved their performance (SCHAARSCHMIDT

et al., 2018; ADHIKARI; HOU; CHENG, 2018).

In the last years, contact predictions were shown to be a valuable addition to the

PSP methods (SCHAARSCHMIDT et al., 2018). As reported, improved contact meth-

ods can lead to improved FM model accuracy (ABRIATA et al., 2018). However, despite

the improvement in the residue-residue contact prediction, its use in an efficient way into

the PSP algorithms configures the major challenge (SCHAARSCHMIDT et al., 2018).

Various factors determine the methods’ performance, such as the number of contacts con-

sidered and how they are incorporated in the modeling. Hence, the most suitable contact

prediction technique and the number of contacts to consider are dependent on the PSP

algorithm.

As pointed out by the Critical Assessment of Protein Structure Prediction (CASP)

report (SCHAARSCHMIDT et al., 2018; SHRESTHA et al., 2019; XU; WANG, 2019;

KRYSHTAFOVYCH et al., 2019), the use of size lists of L/2 contacts can improve the

performance, reducing the false positives and taking into account the predicted residue

contacts with higher probabilities of being in contact. L represents the target aa sequence

53

length. By the prediction results carried out in the experiments, list sizes of L/2 seemed to

be one of the best choices. In this work, we used a reduced list of L/2 predicted contacts.

The CMs were predicted by the TripletRes predictor5 (LI et al., 2020). TripletRes was

ranked as one of the top servers in the 13-th CASP experiment for automated protein

contact-map prediction.

In a CM, two amino acids are close enough or in contact if the distance between

their Cβ side chain atoms, or Cα of backbone for Glycine, is less than or equal to a dis-

tance threshold, generally 8Å. A given term of distance constraint is generally used to

get the information from CMs and to overcome some inaccuracies of the energy func-

tion (KIM et al., 2014). In this work, besides the Rosetta energy terms, we used a scheme

to employ the information of CMs in the problem as a new term in the energy function.

This term was idealized based on an atom distance constraint function presented in the

work of Kim et al. (KIM et al., 2014) and adapted by Corrêa and Dorn (CORRÊA; DORN,

2019). The CM term is a function of the distances between the aa contained in the CMs.

It aims to positively reinforce the aa pairs that are within the contact bounds or to penalize

the ones that are out of the threshold, according to Equation 3.9.

CMterm =

CMpairsL/2∑
i,j

=


p×−c, d(i, j) ≤ ub

p×−c÷ 2, ub < d(i, j) ≤ ub+ 2

p×+c, d(i, j) > ub+ 2

(3.9)

Where p denotes the probability that the residues are in contact, c is a constant, ub is

a residue contact upper bound, and d(i, j) represents the Euclidean distance between a

pair of amino acids in the predicted contact list. The TripletRes considers the ub contact

threshold of 8Å, so we adopted the same threshold of distance. For the constant c, we

adopted c = 1000 to follow the reinforcement values defined in the SS term, described in

the next section.

Thus, for a target protein, the procedure goes through the L/2 aa pairs in the pre-

dicted CM, measuring the distances between these pairs regarding a given protein model.

It gives: (i) a positive reinforcement to the term summation, adding a negative constant

(−c) multiplied by the probability of the residues are being in contact, if the distance

between them is less than or equal to the ub threshold; (ii) a positive reinforcement to the

term summation but considering the negative constant divided by 2 (−c ÷ 2), if the dis-

tance between the amino acids is greater than the ub but does not exceed ub+2 (tolerance

5<https://zhanglab.ccmb.med.umich.edu/TripletRes/>

https://zhanglab.ccmb.med.umich.edu/TripletRes/

54

threshold); or (iii) a negative reinforcement to the term summation, adding a positive con-

stant (+c) multiplied by the probability of the residues are being in contact, if the distance

between the residues is greater than the threshold ub+ 2.

3.7.3 Final Objective Function

In addition to the Rosetta and CM energy terms, a SS term (Equation3.10) was in-

corporated in the objective function to favor the correct formation of secondary structures.

The procedure consists of giving a positive reinforcement by adding a negative constant

(−const) to the sum of all amino acids of the protein P , when the SS (zpi) corresponding

to the i-th amino acid (aai) is equal to the SS (zei), equivalent to the same residue but

provided as input to the algorithm. On the other hand, the technique negatively reinforces

the summation by adding a positive constant (+const), when the SS of the correspond-

ing amino acids are not equal. All amino acids of the protein are compared during the

evaluation of the solution. The DSSP (KABSCH; SANDER, 1983) algorithm was used

to assign the SS throughout the simulation.

SSterm =
i+1∑

aa ∈ P

Vaa,zp,ze(aai, zpi, zei) (3.10)

Vaa,zp,ze(aa, zp, ze) =

 -const, zp = ze

+const, zp 6= ze
(3.11)

Finally, the terms described above are then added to the Rosetta energy function’s

result, forming the final evaluation function (Efinal) adopted in this work (Equation 3.12).

It was firstly proposed by Corrêa et al. (CORRÊA et al., 2016) and improved by Corrêa

and Dorn (CORRÊA; DORN, 2019).

Efinal = Erosetta + SSterm + CMterm (3.12)

3.8 Final Remarks

This chapter presented concepts of biological foundations required to the under-

standing of the PSP problem, as well as issues related to it.

55

The main concepts described include: (i) physicochemical protein composition;

(ii) levels of structural protein abstraction; (iii) structural protein classes, describing how

the proteins are classified in this thesis; (iv) computational representation of protein struc-

tures, which defined the adopted computational representation of this work as the set

of amino acid dihedral angles; (v) PSP problem definition regarding protein stereochem-

istry, computational modeling, and theoretical formalization of the PSP as an optimization

problem; and (vi) objective functions for the problem.

56

4 RELATED WORKS

4.1 Introduction

This chapter presents a review of the related works of global and multimodal

continuous optimization through metaheuristic algorithms. Its goal is to focus on the

literature concerning search strategies to deal with the optimization issues previously

discussed, such as multimodal search strategies, population diversity and convergence,

Expr/Expt trade-off, hybrid and parameter control algorithms. The chapter also describes

an overview of methods applied to the PSP problem.

Over the last decades, several algorithms have been proposed to solve optimiza-

tion problems (BOUSSAÏD; LEPAGNOT; SIARRY, 2013). Notably, many of these

problems are classified as NP-hard (COOK, 1983), particularly those of real relevance,

which means that there is no polynomial-time algorithm or deterministic method to solve

them optimally. Usually, these problems are solved with stochastic metaheuristics that

allow finding approximate solutions within a reasonable computational cost, but with-

out guaranteeing optimality (TALBI, 2009). Metaheuristics are algorithmic frameworks

used to solve a wide range of optimization problems without deeply adapting to each

problem. The Greek prefix “meta” is used to contrast with heuristics dependent on the

application domain (BOUSSAÏD; LEPAGNOT; SIARRY, 2013). Thus, metaheuristics

are good options for problems which there no problem-specific algorithms (KVASOV;

MUKHAMETZHANOV, 2018).

According to Boussaïd et al. (BOUSSAÏD; LEPAGNOT; SIARRY, 2013), al-

most all metaheuristics share similar characteristics, which include: (i) bio-inspired con-

cepts, usually based on some principles of biology, physics or ethology; (ii) stochastic

algorithms, which explore the concept of randomness or random variables; (iii) non-

dependency of the gradient or Hessian matrix of the objective function; and (iv) several

parameters that need to be adjusted regarding the problem’s domain. Metaheuristics can

be classified according to many criteria, in terms of the adopted search strategies and ap-

plication domain, the use of memory, the technique of neighborhood exploration, or the

number of current solutions carried from one iteration to the next (BOUSSAÏD; LEP-

AGNOT; SIARRY, 2013). A fundamental distinction in literature is the differentiation

between single-solution and population-based algorithms. Single-solution metaheuris-

tics, also known as trajectory or LS strategies, start with a single initial solution and

57

move away from it, describing a trajectory in the search space. Typical examples of LS

algorithms include the Simulated Annealing (SA), the Solis and Wets (SW), the Tabu

Search, the GRASP method, the Variable Neighborhood Search, among others (LUKE,

2013; DOKEROGLU et al., 2019). On the contrary, population-based metaheuristics deal

with a population of solutions. The most studied population-based methods are related

to bio-inspired concepts of EAs (BACK, 1996) and SI (KENNEDY et al., 2001; LUKE,

2013).

Metaheuristics can deal with many different applications with diverse require-

ments. This is possible by combining search components regarding the exploration and

refinement of the search space, escape from local optima, and determination when satis-

factory solutions have been found (TORRES-JIMÉNEZ; PAVÓN, 2014). Nevertheless,

particularly in real-life problems, including the PSP, the simple application of canon-

ical methods is not always enough to achieve good performance. This is due to the

search space’s complexities or the high dimensionality of objective variables (BELDA

et al., 2007; HANDL; LOVELL; KNOWLES, 2008). Therefore, several techniques have

been considered to improve the metaheuristic’s performance. By combining constructive

methods with local and population-based strategies, novel hybrid search mechanisms pro-

vide more robust and efficient ways to address hard optimization problems (SERGEYEV;

KVASOV; MUKHAMETZHANOV, 2018).

4.2 Bio-inspired Metaheuristics

Bio-inspired optimization is an area of artificial intelligence (AI) that has been

largely explored over the last decades. Several methods have been proposed, illustrating

the application of distinct bio-inspired behaviors and characteristics to handle a near-

optimal performance over a wide range of complex problems, such as multimodal op-

timization functions (SER et al., 2019). The most notable contribution to the field is

mainly the analysis, adaptation, and improvement of different search algorithms (SER et

al., 2019).

The most known methods are related to concepts of EAs (BACK, 1996) and

SI (KENNEDY et al., 2001). EAs are inspired by Darwin’s evolutionary theory, where a

population of solutions is modified through recombination and mutation search operators.

SI algorithms are based on the exploration of simple analogs of social interaction, mim-

icking the behavioral patterns of biological agents such as fish, birds, and bees (BOUS-

58

SAÏD; LEPAGNOT; SIARRY, 2013). Typical examples of EAs are the Evolution Strate-

gies (ES), the Genetic Algorithms (GA), the Differential Evolution (DE), and other EA

variants, such as the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and the

SHADE algorithm (LUKE, 2013; DOKEROGLU et al., 2019). Besides that, SI, which

is a branch of bio-inspired computation that originated from EAs, is based on the emer-

gence of collective intelligence from populations of individuals with simple behaviors

for interaction and evolution. Typical methods encompass the Particle Swarm Optimiza-

tion (PSO), the Artificial Bee Colony (ABC), and the Ant Colony Optimization (ACO)

algorithms (SER et al., 2019; DOKEROGLU et al., 2019).

In this thesis work, our research is toward the PSP problem, which comprises

a multimodal objective function characterized by the highly rough landscape (HANDL;

LOVELL; KNOWLES, 2008). Hence, we intend to deal with multimodal continuous

optimization to overcome obstacles imposed by the functions’ multimodality over adap-

tations in the algorithms. Within this context, our concerns are regarding the discovery

of optimal or suboptimal solutions of the search space through the development of multi-

modal strategies capable of keeping a diverse population throughout the process. As stated

earlier (Section 2.7), a proper ratio between Expr/Expt can improve the metaheuristic’s

performance, and the population diversity is strictly related to this in a kind of cause and

effect relationship (ČREPINŠEK; LIU; MERNIK, 2013). However, the metaheuristic’s

search components and parameterization are key factors to control such measures and de-

termine the final optimization results (ALETI; MOSER, 2016; LACERDA et al., 2021).

Thus, regarding the search mechanisms, adaptive and hybrid approaches are com-

monly explored. The parameter setting is directly related to the metaheuristic’s per-

formance. The correct regulation of such values by parameter control strategies re-

quires using the most promising setting over the process to achieve acceptable perfor-

mance (ALETI; MOSER, 2016; PARPINELLI et al., 2019). In addition, the concept

of hybridization in optimization includes the combination of multiple specialized search

strategies in discovery and refinement solutions, rules for solution selection, niching-

based algorithms focused on diversity preservation, and adaptive parameterization during

the algorithm’s run (XU; ZHANG, 2014). This concept is based on the principle that a

hybrid method by the search mechanism’s synergy, such as MAs (MOSCATO; COTTA,

2019), may reach better results than a single strategy to a given problem (SER et al.,

2019; ČREPINŠEK; LIU; MERNIK, 2013). The issues regarding multimodal optimiza-

tion are complementary to each other. Hence the proposed methods may be more broadly

59

designed.

4.3 Parameter Control Strategies

The success of a metaheuristic is strongly related to the correct adjustment of the

parameter set that dictates its optimization behavior, such as the choice of representa-

tion, parent selection, recombination, and mutation operators (ALETI; MOSER, 2016;

PARPINELLI et al., 2019). Manual or off-line parameter adjustment can be challenging

and time-consuming as parameters are generally problem-dependent and different values

may be optimal at different stages of the optimization process. The parameter search

space can become computationally infeasible even for a few options depending on the

number of parameters and their explored range of values. Then, automating this task has

been one of the most significant challenges in the metaheuristic research field (SER et al.,

2019). The automatic parameter adjustment approaches can be divided into two groups

as following (HUANG; LI; YAO, 2019; LACERDA et al., 2021; PHAN et al., 2020).

The first group is the parameter or off-line tuning, where satisfactory parameter

values are identified before the execution of the algorithm, usually through many previous

runs that aim to maximize the chances of success to the target problem (LACERDA et al.,

2021). The defined parameter setting remains constant during the whole execution of the

optimization process. The parameter tuning can be divided into brute force experiments,

experimental design, racing procedures, and meta-optimization (PHAN et al., 2020).

The second group is parameter control or online tuning, where the values of con-

trolled parameters are adjusted according to some strategies during the optimization exe-

cution. Usually, in these strategies, the initial values for the algorithm are determined so

that it runs for a given amount of time and, then, return a performance measure (LAC-

ERDA et al., 2021). The parameter control can identify appropriate values during dif-

ferent optimization stages and gather fitness landscape information to enhance the late

stages of the search process. These control strategies can be deterministic, adaptive, or

self-adaptive (PARPINELLI et al., 2019; PHAN et al., 2020). Since parameter tuning

algorithms define the parameter values before the run and keep them constant during the

entire process, only control methods can perform such a dynamic adjustment. So we

highlight that in this work, we are particularly interested in parameter control strategies.

Deterministic or predefined algorithms adapt parameters following deterministic

rules based on time without relying on any feedback from the search process. Adaptive

60

methods regulate parameters according to feedback from the optimization process as it

runs, such as the quality of solutions. The change in algorithm properties serves as guid-

ance to regulate parameter values in the subsequent generations. Self-adaptive methods

usually encode the metaheuristics’ parameters alongside the objective variables in a sin-

gle vector, which are evolved together during the process. Better solutions tend to survive

to the next generation and propagate their variables along with the parameter set respon-

sible for high-quality (ALETI; MOSER, 2016). Parameters can be grouped according

to the adjusted functionality, i.e., representation of individuals, population size, mutation

rate/step-size, crossover rate, among others.

According to Lacerda et al. (LACERDA et al., 2021), parameter control methods

should regulate any parameter of a metaheuristic, but in most of the works, only part of

them are regulated. The others are generally kept constant, defined by tuning methods or

in an ad-hoc way. Even the partial parameter regulation makes the problem easier to deal

with, simplifying the parameter space. It is noted that the parameters of any metaheuristic

do not exert the same influence on the optimization process, which gives them different

levels of importance. Thus, it is promising to focus on the most critical ones.

Popular metaheuristics, such as GA, PSO, DE, and ABC, have been largely ex-

plored in terms of parameter adaptation in the literature (LACERDA et al., 2021). Pa-

rameter control algorithms try to find optimal parameter values for a given period during

the optimization. Hence, parameters of search algorithms are regulated through their be-

haviors in terms of assumed values and optimization state information (ALETI; MOSER,

2016; LACERDA et al., 2021).

Formally, the parameter set Pset to be adjusted can be defined as Pset = [υ1, · · · , υn],

where n is the number of parameters. Each parameter υi = [υi1, · · · , υim] has m possi-

ble values, where m is the number of discrete values or the upper bound of a continuous

range. The control algorithm aims to find the next parameter value υij such that υi could

positively influence on the method’s performance.

The main steps for parameter control include (ALETI; MOSER, 2016): (i) feed-

back, which represents properties (behavior) of a search algorithm in a given optimization

stage. The interpretation of the quality of the parameter values depends on the informa-

tion provided by the feedback strategy, which can encompass the solutions’ positions and

their fitness values, best fitness, fitness mean or standard deviation, population diversity,

and feasibility feedback; (ii) parameter effect assessment, which establishes the influence

(positive or negative) of parameter values on the algorithm’s performance based on the

61

output from the feedback strategy, such as the fitness difference of offspring compared to

its parents and the best solution; (iii) quality attribution, which tries to determine a suc-

cessful parameter value for the following iterations. The quality is calculated based on

predefined rules that use the effect measured in the previous iterations; and (iv) parameter

update to the next generation, which is based on the trade-off between using parameter

values with high quality and exploring new values. It can update a probability vector for

parameter values based on estimated quality and determines how frequently a parameter

value is chosen.

Regarding feedback information, most control algorithms use the fitness improve-

ment of solutions to indicate the optimization performance. Also, the population diversity

is another feedback information employed as an indicator of the exploration degree of the

search space (GINLEY et al., 2011; LIU et al., 2013; ALETI; MOSER, 2016). Besides,

the most used strategies for estimating the effect of parameter values on the algorithm’s

performance are related to the change in the properties of the current solution directly or

concerning the best solution, parents, or the entire population (ALETI; MOSER, 2016).

For example, in Srinivas and Patnaik (SRINIVAS; PATNAIK, 1994), the effect of muta-

tion and crossover rates is estimated based on the population’s best fitness and average

fitness. Eiben et al. (EIBEN; MARCHIORI; VALKO, 2004) control the population size

based on the fitness improvement of the best solution in the population. The popula-

tion size grows if the best fitness increases or does not change for a certain number of

iterations. The resizing of the population size is focused on big population size when

exploration is required and small population size for exploiting the search space.

Parameter quality refers to a scalar value attributed to a parameter to describe its

performance based on current or past observations. The most common control methods

use a model to predict the parameter quality and the immediate effect as quality. How-

ever, the dependency between search components and parameters represents an issue in

parameter control. For instance, the Predictive Quality Attribution strategy (ALETI et al.,

2014) uses time-series forecasting to infer the performance of parameter values based on

past performance. Aleti et al. (ALETI et al., 2014) proposed a parameter control method

that uses historical performance measures to approximate the probability distribution that

determines the chances of each parameter value producing an optimal result for each gen-

eration. Lastly, parameter update strategies mainly encompass greedy schemes, where the

parameter value with the best quality is selected, and probability matching techniques,

where the probability of applying a specific parameter value is proportional to the quality

62

of that parameter among all possibilities (ALETI; MOSER, 2016).

By relating the topics concerning the metaheuristics’ concepts, it is known that the

balance between Expr/Expt is an important factor in the success of these algorithms (BOUS-

SAÏD; LEPAGNOT; SIARRY, 2013; SER et al., 2019). Many of them use this behavior

to improve the search performance by controlling parameters as they execute (PHAN et

al., 2020). For instance, exploration can be promoted at the beginning of the run by a high

level of randomness of solutions’ movement. It may also be enhanced during the process

when there is stagnation in the search results. Contrarily, the exploitation can be improved

by shrinking the search space or lowering the level of randomness. Besides, strategies to

control the transition between Expr/Expt phases can be employed. Commonly, they rely

on deterministic factors, such as the number of iterations or fitness evaluations of the

search algorithm (PHAN et al., 2020). Therefore, most parameter control algorithms are

proposed to ensure the proper levels of population diversity in an attempt to balance the

Expr/Expt capabilities of the algorithms during the optimization process.

4.4 Hybrid and Memetic Algorithms

Ensemble or hybrid optimization methods are related to using multiple search

strategies, subpopulations, algorithms, rules for selection and population replacement,

operators, and parameter values to deal with an optimization problem. The idea is that the

hybridization of components can reach better results than ensemble composites working

on their own. Ensembles of search strategies and components can be classified according

to the characteristics of the adopted technique. A low-level ensemble is a method that

combines different types of search strategies and operators. Contrarily, high-level ensem-

bles refer to methods that adaptively select the best optimization algorithm for a problem

among a set of candidate algorithms (SER et al., 2019).

Thus, one of the main challenges under research related to hybrid methods refers

to the specific selection of algorithms to be assembled. Generally, it is possible to choose

among a large set of low-level methods or heuristics, but the appropriate selection of these

components remains an issue concerning real applications. Also, combining multiple-

methods approaches with multiple strategies can lead to challenging problems related to

the ensemble’s tuning and computational complexity (SER et al., 2019).

One of the most prominent metaheuristics to solve complex optimization problems

are the MAs (MOSCATO, 1989; MOSCATO; COTTA, 2019). MAs were proposed as a

63

branch of bio-inspired computation characterizing a specific kind of hybrid evolutionary

metaheuristics. It was initially defined as modifications of GAs employing LS mecha-

nisms (SER et al., 2019). Thus, they can be defined as hybrid metaheuristics that incorpo-

rate concepts and operators of evolutionary population-based methods for global searches,

combined with a simpler LS heuristic responsible for solution exploitation (MOSCATO,

1989). These algorithms are based on the combination of existing algorithmic structures,

thus avoiding the limited use of a single method for the problem and providing greater

flexibility in dealing with the concerned complexities (MOSCATO; COTTA, 2010; NERI;

COTTA; MOSCATO, 2012).

It should be noted that many evolutionary and SI algorithms can perform both

global and LS since their search procedure is based on the difference between any pair

of individuals, such as in DE and ABC. Therefore, the concept behind MAs has evolved

to a more generic approach, defined as the combination of bio-inspired algorithms for

global optimization with separate local improvement and individual learning mechanisms,

possibly incorporating domain-specific knowledge of the problem at hand (SER et al.,

2019). Thus, novel research contributions for MAs have been focused on discovering

new synergistic memetic approaches with biological inspiration at their core.

One of the most significant challenges in structuring the MAs is the definition

of how the solution space may be explored. It is important to find the correct balanc-

ing between global and local search efforts associated with the correct parameterization

to achieve good results added to satisfactory performance (MOSCATO; COTTA, 2010;

BOUSSAÏD; LEPAGNOT; SIARRY, 2013).

Therefore, a reasonable balance between Expr/Expt is needed to enhance the

workability of the method (MOSCATO; COTTA, 2019). For instance, too much exploita-

tion and too little exploration can lead to premature convergence. At the same time, too

much exploration and too little exploitation can slow down the convergence and increase

the computational costs dramatically. This is uniquely critical in bio-inspired MAs, where

diversification is performed by the bio-inspired metaheuristic, and intensification is done

by the LS algorithm. Different mechanisms of collaboration between these two search

procedures may provide distinct ratios of Expr/Expt. Hence, according to Del Ser et

al. (SER et al., 2019), further research is needed towards achieving new procedures for

detecting the level of diversity or convergence, as well as suitable countermeasures (di-

versity or convergence induction) to be inserted in the memetic frameworks (SER et al.,

2019). Also, strategies related to adaptive mechanisms to balance such efforts can be

64

investigated.

4.5 Single Global Metaheuristics

Research on single objective continuous optimization, also known as global con-

tinuous optimization, represents the foundation for more complex scenarios, such as nich-

ing algorithms in multimodal optimization and both multi-objective and constrained op-

timization algorithms (SER et al., 2019). Traditionally, single objective benchmark prob-

lems are the first test for new evolutionary and swarm algorithms (PRICE et al., 2019).

For instance, one can transform single global problems into dynamic, niching compo-

sition, computationally expensive and other classes of problems. Thus, in the following

sections, we describe some relevant metaheuristic works focused on global continuous op-

timization, then multimodal optimization, considering the previously discussed research

topics. Such works address aspects intrinsically related to metaheuristics’ performance,

such as Expr/Expt abilities, regulation of the population diversity and convergence over

the optimization process, hybridization of search algorithms, and parameter control. Fur-

thermore, we highlight that the development of this thesis is based on the investigation of

these optimization concepts aiming at providing an optimizer for search problems regard-

ing the multimodal continuous domain.

In this work, we intend to present an adaptive MA framework with a LS strategy

for multimodal optimization, combined with a modified ABC algorithm used as an ex-

ploratory method to support the MA. In addition, the modified ABC was implemented as

a hybrid algorithm that uses a self-adaptive strategy for its control parameters, population

division based on the solutions’ quality, and DE-based mutation operation to enhance the

search abilities of the algorithm. According to the literature, we believe that the synergy

of strategies incorporated in the framework seems suitable to the multimodal continuous

domain in terms of search space exploration and refinement of solutions.

Thereby, the methods presented in this work were designed based on a construc-

tive approach, encompassing a more general MA focused on single global continuous

optimization for multimodal functions, a MA to deal with multimodal problems with

many global optima, and a latter variant of the MA for the real problem of 3-D PSP. The

following sections present relevant works related to the algorithms implemented in this

work, such as variants of the ABC, DE algorithm, multimodal and niching algorithms,

and methods for the PSP problem.

65

4.5.1 Artificial Bee Colony Algorithm

The ABC consists of a metaheuristic based on the foraging behavior of a bee

colony, which was recently proposed, focusing on multivariate numerical function op-

timization (KARABOGA; BASTURK, 2007; AKAY; KARABOGA, 2012). ABC has

become a popular optimizer because it presents few control parameters, simple struc-

ture, ease of implementation, and robust optimization performance (GAO; LIU; HUANG,

2012; DOKEROGLU et al., 2019). Several studies have been published demonstrating

its competitiveness on a large set of benchmark functions when compared with other

population-based metaheuristics, such as GA, PSO, and DE algorithms (KARABOGA;

BASTURK, 2008; KARABOGA; AKAY, 2009; KARABOGA et al., 2014).

In a real bee swarm, some tasks are performed by specialized individuals whose

aim is to maximize the amount of nectar stored in the hive through division of labor and

self-organization (AKAY; KARABOGA, 2012). The foraging task is crucial to a honey-

bee, and it depends primarily on the ability of individuals to be recruited and to abandon

depleted food sources. The ABC simulates three types of existing bees, responsible for the

foraging task (KARABOGA; BASTURK, 2007): (i) employed bees; (ii) onlooker bees;

and (iii) scout bees. Half of the colony includes employed bees, and the other covers

onlooker bees. The intelligent behavior that emerges from the cooperation and interac-

tion of bees, necessary for foraging food, is represented in the following stages (AKAY;

KARABOGA, 2012).

1. Employed bees’ stage: employed bees are responsible for exploiting the food sources

they have previously known. Returning to the hive, they store the collected nectar

while sharing information with the onlooker bees about the quality of their food

sources through the Waggle dance in the hive designated area. The nature of the

dance is related to the quality of the food source and aims to recruit new bees.

Good food sources tend to attract more onlooker bees;

2. Onlooker bees’ stage: onlooker bees await in the hive for the return of the employed

bees. After the Waggle dances, they decide which food sources are more profitable

to be exploited based on the information shared by the employed bees;

3. Scout bees’ stage: when an employed bee realizes that its power supply is depleted,

it abandons the food source and becomes a scout bee. Scout bees search randomly

over the search space for new food sources.

66

Thus, the bees designated to carry out the food foraging can provide sustenance for the

swarm from the interaction between these three stages. Thus, employed and onlooker

bees are responsible for exploring the already known food sources, while scout bees must

randomness search around the environment for new places of exploitation.

Regarding the standard ABC (Algorithm 1), each food source represents a prob-

lem solution, and its quality is expressed by its fitness value. Each food source is exploited

by only one employed bee, i.e., the number of employed bees corresponds to the same

number of food sources (number of population solutions). The number of onlooker bees

is equal to the number of employed bees. Let SN be the number of food sources, eb be the

number of employed bees, and ob be the number of onlooker bees, then SN = eb = ob.

As previously described, ABC simulates three stages of the bees’ foraging process. The

modeling in computational terms is given as follows:

1. Each population solution represents a food source, which is updated in this step

through a mutation search equation. Each employed bee is associated with only

one food source, and there are no solutions without employed bees;

2. ob solutions of the population are generally selected by roulette wheel or ranking-

based selection strategies, simulating the behavior of the onlooker bees, and the

same updating process of the previous step is applied to the selected solutions;

3. The most inactive population solution is discarded, and a new one is generated.

The most inactive solution is the one that does not suffer improvements for a given

number of generations, regarding a “limit” parameter l.

The update operation used in steps 1 and 2 creates a new food source around an

already known one. Thus, the generation of a new solution υi = [υi1, υi2, · · · , υiD] from

the i-th existing solution Xi = [xi1, xi2, · · · , xiD], such that υi replaces Xi (Xi = υi) if it

is better, is given by Equation 4.1.

υij = xij + δij(xij − xkj) (4.1)

Where i = 1, · · · , SN and j = 1, · · · , D. SN denotes the number of solutions in the

population and D represents the problem dimension. xij represents the j-th objective

variable of Xi, υij represents the new value assigned to xij and xkj represents the j-th

variable of the k-th population solution (k = 1, · · · , SN), randomly selected among all

solutions of the population, such that k 6= i. δij is the mutation scaling factor, which is

a random real number in the range [−1, 1]. In each mutation operation for Xi, only a

67

single variable j, randomly selected, is mutated. The update ends with a greedy selection

between the new solution υi and the formerXi regarding their fitness function values. The

Algorithm 1 shows the pseudocode of the standard ABC. It receives as input parameter the

population pop to be optimized, the scout bee threshold l, and executes until the defined

stop criterion is satisfied. The stop criterion can be determined by a given number of

generations to be executed.

Algorithm 1 Pseudocode of the standard ABC algorithm.
Require: pop: population to be optimized; l: threshold of discard; stop criterion
Ensure: pop: population of optimized solutions

1: NS = eb = ob← number of solutions in pop

2: D ← problem dimension
3: while stop criterion is not satisfied do

//Employed bees’ stage

4: for each popi in pop, i← 1 : eb do
5: j ← rand(1, D)

6: generate a new value for υij from popij applying the Equation (4.1)
7: check whether the new value is within the dimension range of variable j

8: replace popi for υi, if υi is better than the original popi
9: end for

10: SortPopulation(pop) from best to worst according to the fitness values
//Onlooker bees’ stage

11: for i← 1 : ob do
12: sol← probabilistic selection of solution from the pop

13: j ← rand(1, D)

14: generate a new value for υ from sol applying the Equation (4.1)
15: check whether the new value is with in the dimension range of variable j

16: replace sol for υ, if υ is better than the original sol
17: end for
18: SortPopulation(pop) from best to worst according to the fitness values

//Scout bees’ stage

19: for each popi, i← 1 : SN do
20: check that the solution popi has not received improvements than l generations
21: discard popi

22: insert a new solution in the population
23: end for
24: SortPopulation(pop) from best to worst according to the fitness values
25: end while
26: return pop

Therefore, the performance of the ABC is based on the search strategies and con-

trol parameters. The control parameter components are the population size SN , scaling

factor δ and the “limit” parameter l.

68

4.5.2 Relevant Artificial Bee Colony Variants

It is remarkable that the Expr/Expt of solutions are extremely important mecha-

nisms in the ABC. However, the algorithm presents some inefficiencies, like other meta-

heuristics, such as being good at search space exploration but not in the refinement of

solutions, which can lead to a slow convergence rate (AKAY; KARABOGA, 2012; LI;

NIU; XIAO, 2012). Thus, some ABC variations have been proposed over the years to find

an ideal balance between these two processes and accelerate the algorithm’s convergence.

These modified versions can be roughly divided into two categories (CAI et al., 2020):

(i) modification made in the solution search equation; and (ii) hybridization with other

search strategies. According to the reported results, these modified versions can perform

better than the original ABC (ZHU; KWONG, 2010; AKAY; KARABOGA, 2012; LI;

NIU; XIAO, 2012).

One of the most known improved variants is the gbest-guided ABC algorithm

(GABC), proposed by Zhu and Kwong (ZHU; KWONG, 2010). According to the authors,

even though the canonical ABC has been proved to be a good option on many engineering

problems, it still converges slowly because of its poor exploitation ability. This version

was proposed as an alternative to enhance the exploitation ability of the ABC. In GABC,

the information of the global best (gbest) solution is used in the solution search equation

to guide the search towards the best individual and hence find more accurate solutions

than the standard ABC. The gbest search equation of GABC is given by Equation 4.2 and

modifies the Equation 4.1.

υij = xij + δij(xij − xkj) + γij(gbestj − xij) (4.2)

Where gbestj is the j-th variable of the global best solution found so far, and γij is

a random real number in the range [0, 1.5]. However, according to Gao et al. (GAO;

LIU; HUANG, 2013), it should be noted that Equation 4.2 may cause an oscillation phe-

nomenon, when the guidance of the last two terms may be on opposite directions regard-

ing Xi, and hence could degrade the convergence (CUI et al., 2016; GAO et al., 2018).

In another ABC version, Akay and Karaboga (AKAY; KARABOGA, 2012) pro-

posed modifications in the components that control the frequency of mutation operation

(rate-MR). They also presented an analysis of the most suitable parameterization to be

used in the ABC, such as the scaling factor that determines the magnitude of change in

69

parameters while generating a new solution and the “limit” parameter that represents the

discard threshold for scout bees. As already mentioned, in the standard ABC, only one

objective variable of a given solution is updated at each mutation operation, implying

slow convergence for the algorithm. Therefore, in the modification rate-MR, each vari-

able j of the solution Xi is updated according to the designed control parameter MR.

Updating more than one variable can enhance the exploitation and hence accelerate con-

vergence. Thus, a variable is updated with a probability of MR%, if rand(0, 1) < MR,

where rand generates a real number in the range [−1, 1]. The lower value for MR may

imply slow improvement of solutions, while higher values for MR can cause an unneces-

sary diversification in the population. By suggestions of the authors, MR = 0.4 or close

to it is a good setting. Also, the authors suggested l ≈ 200 or the commonly proportion

l = SN×D for the “limit” parameter in continuous optimization as good options. Where

SN is the population size and D represents the problem dimension. It is notable that the

authors of both works concluded that ABC could be considered a good deal in terms of

global and local optimization due to the different tasks simulated by the bees.

In the work of Cao et al. (CAO et al., 2019), an improved ABC (IABC) was

proposed to enhance the performance of the already mentioned ABC variant GABC. In

the IABC, the employed bees use the same search equation of the GABC, but the onlooker

bees employ a modified solution search equation based on the gbest solution to improve

further the exploitation. In the GABC, both employed and onlooker bees generate new

solutions by changing only one dimension of their parent solutions according to the same

search equation, as in the standard ABC. So the modified search equation for onlooker

bees considers more dimensions to be mutated with MR = 0.3, as presented in Akay and

Karaboga (AKAY; KARABOGA, 2012), increasing the influence of the best solution on

the equation.

Kiran and Findik (KIRAN; FINDIK, 2015) proposed a directed ABC algorithm

with control parameter (rate-MR) to accelerate the convergence of the method. The solu-

tion search equation in the original ABC is entirely random in terms of direction because

the scaling factor δij is a random real number between [−1, 1] (Equation 4.1). This undi-

rected search can slow the algorithm’s convergence, such as the oscillation phenomenon,

previously mentioned. Thus, the authors incorporated direction information for each vari-

able of solutions in the population. The proposed strategy modifies the original search

70

equation (Equation 4.1) in the generation of υi as follows:

υij =


xij + δij(xij − xkj) if (dij = 0)

xij + r(|xij − xkj|) if (dij = 1)

xij − r(|xij − xkj|) if (dij = −1)

(4.3)

Where dij is the direction for the j-th variable of the i-th solution, δij is a random real

number in range [−1, 1] and r is a random real number in range [0, 1]. The Equation 4.3

identifies the search direction considering the previous value of variable j. In the initial-

ization of the algorithm, the direction for all variables is equal to 0 (dij = 0). Then, if υi

is better than Xi and the previous value of the j-th variable is less than the current value,

the direction of this variable is updated to −1 (dij = −1); otherwise the direction is set to

1 (dij = 1). If υi is worse than Xi, the direction of the variable is set to 0 (dij = 0). Be-

sides, the method also incorporates the modification rate-MR with MR = 0.3, proposed

by Akay and Karaboga (AKAY; KARABOGA, 2012) and described above, to update

more objective variables than one.

The work of Gao et al. (GAO et al., 2015) presented an ABC algorithm based on

information learning of the search space (ILABC). As observed above, the ABC search

equation (Equation 4.1) does well in exploration but not in exploitation. According to

the authors, the coefficient δij , which is a random number, is enough for exploration.

Nevertheless, the equation’s direction vector is also chosen randomly, not considering

the population neighborhood to guide the search. Hence, using this information, such as

in the multi-population technique, can help the algorithm enhance the balance between

Expr/Expt of the neighborhood.

Therefore, at each generation of the ILABC, a clustering partition divides the

entire population into multiple subpopulations with size M , regarding the Euclidean dis-

tance. With this, different subpopulations focus on searching different subregions, and the

ABC is applied to each one. We note that this niching-based strategy is further detailed in

the following section, concerning the multimodal metaheuristics (Section 4.6). The size

of each cluster is dynamically adjusted based on the previous search experience. In the be-

ginning, the algorithm is randomly assigned a M value from set S, e.g., S = {5, 10, 25}.

At each iteration, the size M changes based on the quality of the global best solution. If

the fitness value of the global best solution is not improved after one iteration, it means

that the current M is not suitable for the search. Thus, a new M is randomly generated.

71

However, population clustering can lead to an ineffective approximation of the optimal

solution, whereas different subpopulations work independently without communication

among them. In single global optimization, it is necessary to consider the influence of

the gbest solution to accelerate the convergence, which is different from multimodal op-

timization that aims to locate more than one global optimum. Thus, two search mecha-

nisms were designed to promote the exchange of information in each subpopulation and

between different subpopulations. It incorporates in the solution search equation for em-

ployed and onlooker bees the information of the local best solution of each cluster and the

gbest solution of the entire population, respectively.

Cui et al. (CUI et al., 2016) proposed a depth-first search (DFS) framework to bet-

ter balance the Expr/Expt in ABC. The DFS aims to allocate more computing resources to

the best solutions throughout the optimization and enhance the exploitation mechanism.

In the employed bee phase of the DFS, only some randomly selected solutions are mu-

tated. Thus, if a better solution υi is found in the neighborhood of a randomly selected

solution Xi, Xi is replaced by υi, and then it is updated consecutively until a worse one

is produced. Similarly, in the onlooker bee phase, only the top T elite solutions are ran-

domly selected to exploitation, where T = p×SN , p ∈ (0, 1). Thus, a randomly selected

elite food source is exploited to generate a solution until a better one cannot be produced.

The number of onlooker bees is r × T , where r ∈ 1, · · · , ceil(1/p). The authors also

introduced two solution search equations inspired by DE variants. Such equations lie in

the fact that they present no bias, as the oscillation phenomenon, to any search direction.

The first one incorporates the information of elite solutions applied to the employed bees.

The second equation also exploits the information of the gbest and elite solutions simul-

taneously in the onlooker bee phase. The combination of these mechanisms yields the

DFSABC_elite algorithm.

The work of Li et al. (LI et al., 2017) introduced a gene recombination operator

(GRO) into the algorithm to accelerate its convergence. The method was inspired by the

natural phenomenon that good individuals also present good genes, and the combination

of superior genes could more easily produce better offspring. In GRO, only a part of

good solutions in the population, which may contain satisfactory information in different

dimensions, are selected to generate new solutions by recombination. Hence, the solutions

could converge to the global optimum from different directions, and the recombination

between the better individuals may ease the approach to the global optimal solution. The

best n = ceil(q × SN) solutions in the population are treated as elite solutions, where

72

q ∈ (0, 1] and SN is the population size. The authors adopted q = 0.1 and SN =

50. GRO chooses probabilistically two solutions from the elite group to recombination,

considering their distances. The two selected parents may have a significant difference in

some dimensions. Such procedure is applied at the end of each generation of the ABC.

In Anam (ANAM, 2017), the author proposed a hybridization between the ABC

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (ABC-BFGS) for continu-

ous optimization. BFGS serves as an iterative LS for finding local optima. In the proposed

method, after its execution, the final best solution is then submitted to the BFGS to be fur-

ther exploited.

Cui et al. (CUI et al., 2017) presented an ABC variant with an adaptive method

for the population size (AMPS), called APABC. The algorithm aims to achieve a better

balance between Expr/Expt by adaptively controlling the population size. AMPS has

based on the natural concept that the availability of food resources influences the size of

a population. Then, when the algorithm performs well in exploration, AMPS shrinks the

population to promote exploitation by periodically removing low-quality solutions and

storing them into an external archive. On the contrary, if the algorithm performs well

in exploitation, AMPS enlarges the population to improve exploration by introducing

randomly selected solutions from the archive to keep the population diversity. With this,

the population size adaptively adjusts according to the evolution process status. Besides,

to keep the diversity when the population size becomes small, the authors proposed a

random search equation inspired by the DE mutation operator.

In Gao et al. (GAO et al., 2018), the authors proposed two new updating equations

(ILTD_ABC) for ABC to enhance the algorithm performance. The first one employs an

intelligent learning strategy that uses the gbest solution influence and borrows from the

PSO algorithm its fast convergence characteristic, by including the fitness values of the

entire population in the search equation for employed bees, except for the worst solu-

tion. In this search equation, the fitness values and positions of the entire population and

the current gbest position cooperate to determine the step size of the newly employed

bees. The worst employed bee is updated by a distinct search equation that uses infor-

mation from the best individual in the previous and current iterations to accelerate its

convergence. Different from the other employed bees, the worst updates all the objective

variables during each iteration. The controlling parameters of the mutation equation are

generated by a turbulent distribution to balance Expr/Expt efforts. To select onlooker bees

to mutation, a threshold that selects individuals to form an elite group containing better

73

solutions is proposed. If the bee satisfies this threshold, it is selected as a group member

with better performance. All the solutions from this elite group are updated considering

the influence of some other solution from this elite group.

In Xue et al. (XUE et al., 2018), a self-adaptive ABC algorithm based on the

gbest solution (SABC-GB) for global optimization was proposed. According to Xue et

al., the search algorithms frequently implement only one candidate solution generating

strategy (CSGS), which tends to be either good at exploration or good at exploitation.

Thus, SABC-GB employs distinct CSGSs simultaneously. This modification aims the

balance adjustment between the convergence rate and the algorithm’s exploration. The

method keeps a pool of search equations that are used adaptively to generate new individ-

uals according to their previous performance (window of 10 generations) in generating

promising solutions. Each CSGS is selected probabilistically through the roulette wheel

selection and is updated based on the total success and failure ratio. The adaptive pool

is composed of three solution search equations, which are the gbest equation, presented

earlier in Equation 4.2, the ABC/best/1, and ABC/best/2, proposed by Gao et al. (GAO;

LIU; HUANG, 2012). Besides, SABC-GB adopts chaotic systems (ALATAS, 2010) and

opposition-based learning (RAHNAMAYAN; TIZHOOSH; SALAMA, 2008) in the ini-

tialization phase to avoid local minima.

Cai et al. (CAI et al., 2020) proposed a dynamic best neighbor-guided search strat-

egy (DNABC) for the ABC. In the proposed strategy, a dynamic neighborhood of the

parent individual with variable size is constructed concerning different evolution stages

of the algorithm. The neighborhood size is small at the beginning of the process, but its

size gradually increases as the optimization proceeds. The construction of the neighbor-

hood is based on the individual index, where M solutions are randomly selected from the

entire population as the neighbors of Xi. Then, the best solution from the neighborhood

is selected to guide the search to achieve a better balance between Expr/Expt. This algo-

rithm is an improved version of the best neighbor-guided ABC (NABC) (PENG; DENG;

WU, 2019), which does not use a dynamic construction in the neighborhood strategy. Be-

sides, the work presented an improved global neighborhood search operator, emphasizing

the randomly selected solutions to escape from local optima. Such an operator searches

the neighborhood using small steps as a LS technique. The operator aims to increase

the chance of finding a better solution, considering that local optima usually have a rel-

atively good fitness value and a better solution may exist within or near the individual’s

neighborhood.

74

The work of Jadon et al. (JADON et al., 2017) presented a hybridization of ABC

and DE algorithms to provide a more efficient method than ABC and DE. Although ABC

and DE are two very popular metaheuristics, both algorithms may present unbalanced

Expr/Expt and slow convergence rates. Then, the authors suggested that the hybridization

of ABC and DE should provide a method with a better ratio between Expt/Expt mecha-

nisms and convergence speed than using a single metaheuristic. In the algorithm, named

Hybrid Artificial Bee Colony with Differential Evolution (HABCDE), the employed bee

phase was modified by employing the influence of the gbest solution. The onlooker bee

phase was inspired by DE search equations, while scout bees were also modified for

higher exploration.

In Chen et al. (CHEN; TIANFIELD; LI, 2019), the authors presented the self-

adaptive differential ABC (sdABC) algorithm. The sdABC incorporates three distinct

search strategies from the DE algorithm in both employed and onlooker bee updating

phases. Employing differential search strategies, more variables are modified each time

based on the combination of mutation and crossover, and the crossover rate control can

also adjust the number of variables being updated parameter. Besides, the selection of

search strategies is calculated using a probability-based self-adaptive mechanism, which

can select the most appropriate search strategies for the algorithm depending on the opti-

mization stage.

Table 4.1 summarizes the main components and differences among ABC methods

presented above.

4.5.3 Differential Evolution Algorithm

As mentioned before, several metaheuristics have been applied with success to

solve hard optimization problems (BOUSSAÏD; LEPAGNOT; SIARRY, 2013; SER et

al., 2019). Currently, one of the most remarkable EA is the DE algorithm (STORN;

PRICE, 1997). The DE is a stochastic algorithm for solving numerical continuous opti-

mization problems. Since its advent, the algorithm has become a powerful global opti-

mizer (DAS; SUGANTHAN, 2010; DAS; MULLICK; SUGANTHAN, 2016; ELTAEIB;

MAHMOOD, 2018).

The DE is a population-based algorithm that has a population of NP individuals.

Each individual Xi = [xi1, xi2, · · · , xiD] is a vector of D variables, which is the problem

dimension. A randomly initialized population is evolved, guiding solutions in a search

75

Table 4.1: Summarization of the ABC variants and their main components
ModifiedMethod Equation gbest Adaptive Hybridization

GABC X X
IABC X X
Directed ABC X
ILABC X X X Neighborhood strategy
DFSABC_elite X X DFS; DE search equation
GRO_ABC Genetic recombination operator
ABC-BFGS BFGS
APABC X X X AMPS; DE search equation
ILTD_ABC X X X
SABC-GB X X X Initialization strategy
NABC X X Neighborhood strategy
DNABC X X X Neighborhood strategy
HABCDE X X DE search equation
sdABC X X DE search equation

Source: From the author (2022).

space toward a global optimum. At the end of the process, i.e., after a given number

of generations or fitness evaluations, the algorithm returns the best-fitted individual as

the final solution. Over each generation, DE uses three operations for each individual,

i.e., mutation, crossover, and selection (NERI; TIRRONEN, 2010; DAS; MULLICK;

SUGANTHAN, 2016).

Similar to the update operation in ABC, a new solution υi is created using one

of the mutation search equations from the i-th existing solution Xi. The “DE/rand/1”

strategy is one of the most adopted in DE. This operation randomly selects two individuals

and their difference multiplied by a scale factor F ∈ [0, 1] is added to the third randomly

selected individual. “DE/rand/1” is given as follows:

υi = Xr1 + F (Xr2 −Xr3) (4.4)

Where i = 1, · · · , NP . The indexes r1, r2, and r3 are randomly chosen within a set

[1, NP], such that r1 6= r2 6= r3 6= i. DE applies the mutation to all solutions of the

population.

76

After mutation, an individual νi is generated by a binomial crossover as follows:

νij =

υij if rand(0, 1) ≤ Cr or j = jrand

xij otherwise
(4.5)

Where i = 1, · · · , NP and j = 1, · · · , D. Cr ∈ [0, 1] is the crossover rate and repre-

sents the probability of using the variables for νi from the mutant individual υi. jrand ∈

{1, · · · , NP} is a randomly selected index responsible for ensure that νi contains at least

one variable from υi. After crossover, the selection compares Xi and its corresponding

trial candidate νi according to their fitness function values by a greedy scheme. Thus, the

performance of the algorithm is based on the search components and the control param-

eters. The control parameter components are the population size NP , scaling factor F ,

and the crossover rate Cr.

Despite the potential of DE, such as in ABC, some adjustments to the standard

algorithm are essential to enhance its performance. For instance, stagnation, premature

convergence, and sensitivity to control parameters are the main issues that influence the

performance of DE (ELTAEIB; MAHMOOD, 2018). Hence, as exemplified above, many

improved DE variants and hybrid algorithms have been proposed to solve problems in dif-

ferent domains (DAS; SUGANTHAN, 2010; DAS; MULLICK; SUGANTHAN, 2016).

Therefore, in the work of Brest et al. (BREST; MAUČEC; BOŠKOVIĆ, 2017), a

new variant of the DE algorithm, named as jSO, was presented. The algorithm is based

on the L-SHADE algorithm (TANABE; FUKUNAGA, 2014), which was the winner of

the Congress on Evolutionary Computation (CEC) 2014 competition on single objec-

tive real-parameter optimization1 (LIANG; QU; SUGANTHAN, 2013). The jSO was on

the second place on the CEC 2017 competition on single objective real-parameter op-

timization2 (AWAD et al., 2016). The competitions for single objective real-parameter

optimization are important test benchmarks for high-accuracy computing, where the goal

is to find a global optimum on solving complex optimization functions.

The L-SHADE (TANABE; FUKUNAGA, 2014) is an extension of the Success-

History based Adaptive DE (SHADE) algorithm (TANABE; FUKUNAGA, 2013) with

the Linear Population Size Reduction mechanism (LPSR). L-SHADE uses the success-

history-based adaptation from SHADE, which is a mechanism for parameter adaptation

based on the historical memory of successful parameter values previously found through-

1<https://personal.ntu.edu.sg/EPNSugan/index_files/CEC2014/CEC2014.htm>
2<https://personal.ntu.edu.sg/EPNSugan/index_files/CEC2017/CEC2017.htm>

https://personal.ntu.edu.sg/EPNSugan/index_files/CEC2014/CEC2014.htm
https://personal.ntu.edu.sg/EPNSugan/index_files/CEC2017/CEC2017.htm

77

out the process. Such mechanism employs a historical memory with H entries (MCr ,

MF) that stores a set of Cr and F values that have performed well in past generations and

generate new Cr, F pairs by sampling the parameter space close to one of these stored

values through Gaussian and Cauchy distributions, respectively.

The algorithm employs the “current-to-pBest/1” mutation strategy to generate a

new solution from Xi (i = 1, · · · , NP) by using the previously defined parameter values

Cri and Fi. At the end of each generation, the memory contents (MCr , MF) are updated

based on the sets of successful parameters SCr , SF by the weighted Lehmer mean. The

algorithm also adopts an external archive to preserve diversity.

Besides, L-SHADE uses the LPSR, a simple deterministic population resizing

procedure that reduces the population linearly as a function of the number of fitness eval-

uations. LPSR continuously decreases the population to match a linear function where

the population size at generation 1 is NP init, and the population at the end of the run is

NPmin. After each generation g, the population size in the next generation, NPg+1, is

given as follows:

NPg+1 = round

[(
NPmin −NP init

Max_FEV

)
· FEV +NP init

]
(4.6)

Where NPmin is set to the smallest possible value such that the algorithm can be applied,

FEV is the current number of fitness evaluations, and Max_FEV is the maximum number

of fitness evaluations. Whenever NPg+1 < Ng, the exceeding worst-ranking individu-

als are deleted from the population. Therefore, L-SHADE self-adapts scale factor and

crossover rate parameters and shrinks population size during the optimization.

As jSO is based on L-SHADE, it presents improvements mainly regarding the

parameter values for Cr and F stored in the historical memory (MCr , MF), and the

“current-to-pBest/1” mutation strategy. Thus, the remaining components in jSO, such

as the external archive and linear population size reduction, are the same as in L-SHADE.

In another work, Brest et al. (BREST; MAUČEC; BOŠKOVIĆ, 2019) presented a

new version of DE (jDE100) for global continuous optimization. The algorithm is based

on the self-adaptive jDE algorithm (BREST et al., 2006), which is a popular version

of DE, previously proposed by the same authors. The jDE is among the state-of-the-

art algorithms for global optimization (DAS; SUGANTHAN, 2010; DAS; MULLICK;

SUGANTHAN, 2016). The jDE100 algorithm uses two populations in an attempt to

maintain an efficient exploration throughout the optimization. It employs a self-adapting

78

mechanism in the scaling factor and crossover rate parameters, where each individual

has its own control parameter values Fi and Cri. Besides, it uses a simple one-way

migration of the currently best individual among the populations to promote convergence.

However, the algorithm performs restart mechanisms separately in both populations to

manage population diversity.

It should be noted that jDE100 was the winner of the 100-Digit Challenge on sin-

gle objective real-parameter optimization3 (PRICE et al., 2018), considering the results

from the CEC 2019, the Genetic and Evolutionary Computation Conference (GECCO)

2019 and the Swarm, Evolutionary and Memetic Computing Conference (SEMCCO)

2019 (PRICE et al., 2019). Such results represent the potential of DE algorithms in facing

complex optimization problems. In the next section, some strategies are presented to deal

with multimodal optimization problems, and many of the existing methods are DE-based

algorithms.

4.6 Multimodal Metaheuristics

Multimodal metaheuristics are primarily designed to find all possible optimal

points and not just a single solution to the problem (DAS et al., 2011). If an optimization

problem requires more than one global optimum, it can be considered a multimodal op-

timization problem. The task of locating distinct optima in a single run makes it more

complicated than locating just a single global optimal solution (QU; SUGANTHAN;

LIANG, 2012). Traditional population-based metaheuristics are primarily designed for

single global optimization, then modifications and multimodality-specific mechanisms

are needed to locate multiple optima simultaneously (WANG et al., 2017). However,

multimodal strategies frequently appear in literature also as a reference to single opti-

mization on a multimodal fitness landscape. Also, multimodal or niching algorithms have

first appeared in research on population diversity preservation within metaheuristic algo-

rithms (LI et al., 2016). Considering that a multimodal algorithm searches for multiple

optima in parallel, the probability of getting trapped on a local optimum may be reduced.

Thus, the success of bio-inspired algorithms in real-world applications has also been ac-

companied by their uses of niching methods (LI, 2009).

Multimodal optimization may increase the probability of a metaheuristic finding

global optima since search efforts are not concentrated just in one region of the search

3<https://github.com/P-N-Suganthan/CEC2019>

https://github.com/P-N-Suganthan/CEC2019

79

space but in different areas. The discovery of solutions in distinct regions of the search

space can also maintain a diverse population, preventing a premature convergence to

local optima, and hence improving the metaheuristic performance (GLIBOVETS; GU-

LAYEVA, 2013; LI et al., 2016; SER et al., 2019). However, it can be observed that

evolutionary metaheuristics tend to naturally converge to a single global optimum due to

the genetic drift inherent to the population evolution (BELDA et al., 2007). With this,

the preservation of population diversity by maintaining multiple solutions throughout the

algorithm’s execution configures one of the main challenges concerning metaheuristics

over multimodal optimization.

As mentioned in Section 2.3.1, the most common strategies used in multimodal

optimization are based on the niching concept (MAHFOUD, 1995; GLIBOVETS; GU-

LAYEVA, 2013), which concerns the attempt to find and preserve multiple solutions

around distinct niches of the search space. The concept of niching is inspired by the

way organisms evolve in nature. In the case of single multimodal optimization, they may

prevent premature convergence better populating the fitness landscape (LI et al., 2016).

Thus, multimodal optimization can be achieved using a niching strategy, incorporated into

a global optimization metaheuristic, which can be called the core algorithm, to enable

parallel convergence to distinct optima (AHRARI; DEB; PREUSS, 2017b). However, it

is highlighted that simply preserving a high level of population diversity is not enough

for niching since a high population diversity could encompass only random points. This

means that a niching algorithm must converge locally to global optima, which induces

the formation of distinct subpopulations around promising regions of the search space

(neighborhood of optimal solutions) (QING et al., 2008; GLIBOVETS; GULAYEVA,

2013). Regardless of the niching strategy adopted, it is necessary to find global optima by

efficiently exploring the search space and refinement of discovered regions and preserving

them throughout the optimization process (SER et al., 2019).

Specifically for multimodal optimization with multiple global optima, the effec-

tive identification of optimal points, besides the maintenance of distinct solutions, is not

trivial (WANG et al., 2019). According to Li et al. (LI et al., 2016), the metaheuristic’s

population does not have to totally converge to single solutions, each corresponding to a

global optimum. For instance, one can store the identified global optima into an external

archive, separate from the current optimization population (EPITROPAKIS; LI; BURKE,

2013; LACROIX; MOLINA; HERRERA, 2016). Another approach is employing a large

population of solutions, where the population could find some equilibrium state. Some

80

solutions would keep oscillating around a stable optimum in an equilibrium state, but

without reaching complete convergence (LI, 2009).

Another issue concerning niching algorithms is the need to designate niche pa-

rameters. As their optimal values depend on the problem at hand and may vary during the

evolution, setting them properly is a hard task (WANG et al., 2019). The most representa-

tive parameter for niching is the niche radius, which needs to be specified to indicate how

far apart the optima are from each other (LI et al., 2016).

4.6.1 Classical Niching Algorithms

One of the most known niching strategies is the Crowding algorithm and its vari-

ants (JONG, 1975; THOMSEN, 2004). Firstly, the crowding concept aims to eliminate

the most similar solution when a new one enters a subpopulation. In the former Crowd-

ing method (JONG, 1975) only a fraction of the entire population is selected for search

operations in each generation. An offspring generated from randomly selected parents is

compared to this subpopulation, and the most similar individual is replaced by a greedy

scheme (GLIBOVETS; GULAYEVA, 2013). However, the algorithm commonly needs a

crowding factor (CF) parameter to determine the size of the subpopulation. Thus, in Mah-

foud (MAHFOUD, 1992), the Deterministic Crowding (DC) algorithm was proposed to

eliminate the CF parameter. The DC randomly selects two parents for crossover and mu-

tation from the entire population. The two generated offspring are compared with their

parents, where they replace the nearest parent by a greedy scheme.

The crowding strategy can be combined with many other search algorithms (DAS

et al., 2011). For example, in Thomsen (THOMSEN, 2004), crowding was used in the DE

algorithm. In this algorithm, when the canonical DE generates an offspring, it competes

only with the most similar individual of the entire population, measured by Euclidean

distance. The offspring replaces its parent also by a greedy competition. In this variation,

the CF is equal to the entire population.

Similar to the Crowding algorithm, the Restricted Tournament Selection (RTS)

defines which solutions are replaced in the population to insert new ones (HARIK, 1995).

For each offspring generated by search operators and solutions from the whole population,

the algorithm defines a random sample of “w” (window size) solutions and determines

which one is the nearest to the offspring by Euclidean distance. The nearest individ-

ual within the sample competes with the offspring by greed. Such a strategy avoids too

81

dissimilar solutions from competing with each other but needs the specification of the

window size parameter (DAS et al., 2011).

The Sharing algorithm (GOLDBERG; RICHARDSON et al., 1987) attempts to

deal directly with the locations and preservation of multiple solutions. It aims to divide

the population into different niches according to the similarity of solutions (DAS et al.,

2011). The algorithm modifies the search space by reducing the fitness values in densely

populated regions. It decreases each solution’s fitness in relation to the number of similar

individuals in the population. The algorithm needs a niche radius to determine whether

solutions are in the same group.

Another commonly used niching strategy is the Speciation, based on the species

conservation concept (LI et al., 2002). It intends to separate the population into sev-

eral species according to their similarities (LI et al., 2002; DAS et al., 2011). Different

niches are formed around a dominating solution called the species seed. Solutions are

then assigned to the niche with the closest species seed to them. The search operations

are carried out within each species. However, the definition of a species involves a pa-

rameter of species distance (species radius). The parameter defines the upper bound on

the distance between two solutions for which they are similar.

To mitigate the effects of the niching methods from the sensitivity to parameters,

some less parameter-sensitive niching strategies were proposed (YANG et al., 2016b). For

instance, the Hill-Valley (HV) niching test (URSEM, 2000; MAREE et al., 2018) samples

enough equidistantly located intermediate test points within the line segment connected

by two solutions to detect HVs. If there exists at least one point whose fitness is worse

than those of both individuals, then a valley is detected, indicating these two individuals

belong to different niches. Moreover, the recursive middling strategy (YAO; KHARMA;

GROGONO, 2009) was proposed to reduce the number of sampled points in the HV. Like

a binary search, it continuously samples the middle point of the line segment connected

by two updated endpoints until the demanded point is found or the two endpoints con-

verge to the same one. Although these methods are promising in niching the population,

they usually cost a large number of fitness evaluations to detect all valleys. Besides that,

clustering algorithm integrated into niching strategies (GAO; YEN; LIU, 2013) can be

used to tackle such parameter issues. In this case, cluster-based niching methods transfer

the sensitive parameter (niche radius) to a less sensitive parameter (cluster size).

Nevertheless, according to Li et al. (LI et al., 2016), commonly, the removal of

the niche radius parameter concerning these classical niching algorithms inevitably intro-

82

duces new parameters. Therefore, to reduce such parameter dependency, several niching

variants have been proposed (LI, 2009; QU; SUGANTHAN; DAS, 2013; EPITROPAKIS;

LI; BURKE, 2013; LI; TANG, 2014). Among them, some of the most popular are the

neighborhood-based methods, which attempt to avoid specifying the niche radius (WANG

et al., 2019). Such an idea aims to partition a single population into multiple subpopu-

lations regarding a specific neighborhood metric. Each subpopulation represents a local

subspace of the search space and covers a small number of optimal solutions. The search

process is then performed separately within these subpopulations. However, in this case,

the difficulty is how to define the area for each region and how to generate subpopula-

tions (GAO; YEN; LIU, 2013).

In this sense, the neighborhood representation can be either index-based or distance-

based (SER et al., 2019). The index-based topology forms a neighborhood of an individ-

ual by using adjacent indices in the population and a predefined topology (e.g., tree, ring,

or star) over the search space (LI, 2009). The distance-based niching forms the neighbor-

hood relationship between individuals in the population by using their adjacent Euclidean

distances (QU; SUGANTHAN; LIANG, 2012; WANG et al., 2017).

Also, adaptive parameter control has attracted considerable attention to deal with

the excessive parameterization concerning multimodal methods. If properly designed, an

adaptive strategy can enhance the performance of a metaheuristic by dynamically adapt-

ing the parameters to the characteristics of different fitness landscapes. The convergence

rate can be improved if the control parameters are adapted to suitable values at different

evolution stages of a specific problem (GAO; YEN; LIU, 2013). Figure 4.1 shows the con-

cerns summarized above regarding multimodal optimization by niching metaheuristics. In

the following, we present some remarkable works concerning the aspects discussed in this

section.

4.6.2 Relevant Niching Algorithms

The work of Li (LI, 2009) described a lbest PSO niching algorithm using a ring

neighborhood topology, which does not require any niching parameters. The paper aims

to overcome the need for niching parameter specification, which is typically difficult to

set as they are problem-dependent. In a lbest PSO, the position of each particle is influ-

enced only by the best-fit solution chosen from its neighborhood. In a ring topology, the

particles’ neighborhood encompasses only its immediate neighbors on its left and right

83

Figure 4.1: Summarization of the concerns regarding multimodal optimization by niching
metaheuristics

Source: From the author (2022).

according to the individual indices. A PSO algorithm using the ring topology can assume

niching characteristics by using individual particles’ local memories to form a stable net-

work retaining the best positions found so far, while these particles explore the search

space more broadly. Instead of using a single global best, each particle is attracted toward

a fitter local best (best-fit personal best) only within its immediate vicinity. As the process

evolves, multiple niches are formed around optima in parallel. Based on this idea, niches

are formed naturally without the need to specify any parameter. The ring topology nat-

urally divides the population into multiple subpopulations, each operating as a separate

PSO with its own local neighborhood best. Given a reasonably large population uniformly

distributed in the search space, the ring topology can provide stable niches across different

local neighborhoods, eventually locating multiple global optima.

In Qu et al. (QU; SUGANTHAN; DAS, 2013), a distance-based locally informed

particle swarm (LIPS) algorithm was presented. This method avoids the need to specify

any niching parameter and enhances the searchability of PSO. According to the authors,

most of the existing PSO-based niching algorithms are difficult to use in practice because

of their poor LS ability and requirement of prior knowledge to specify niching parameters.

Thus, instead of using the global best particle, LIPS uses several local bests to guide the

search of each particle. Besides using its personal best, the algorithm adopts the local

information from its nearest neighbor, which is estimated in terms of Euclidean distance.

The position and velocity of each swarm’s particle is updated by a novel equation that

considers its neighborhood. The neighborhood of a given solution is formed by the nsize

nearest particles. The neighborhood size nsize parameter is dynamically increased from

2 to 5 over the fitness evaluations. LIPS can operate as a stable niching algorithm with

84

distinct niches that may converge to different global peaks.

Gao et al. (GAO; YEN; LIU, 2013) presented a cluster-based DE with a self-

adaptive strategy for multimodal problems. The method adopts a multi-population scheme,

where the entire population is divided into subpopulations based on spatial positions of

the individuals by clustering. The clustering procedure is a distance-based neighborhood

algorithm. It aims to partition the population into multiple disjoint subpopulations, each

comprising M solutions with adjacent locations in the search space. A given solution

is selected from the population as a seed to form a niche by including M − 1 individ-

uals closest to the seed. All the niches are formed according to this process. After the

population is completely divided, each niche is then evolved independently based on DE

mechanisms.

The clustering is incorporated in two common niching DE algorithms, known

as crowding DE (CDE) (THOMSEN, 2004) and species-based DE (SDE) (LI, 2005),

which yield self-CCDE and self-CSDE, respectively. Both methods transfer the sensitive

parameter, i.e., the CF or the species radius, to the cluster size, which is a less sensitive

parameter. According to the authors, a multi-population scheme addresses the population

diversity, whereas a self-adaptive parameter control strategy guides the convergence to the

optima contained by different subpopulations. The algorithms employ parameter control

strategies in DE, regarding the scaling factor parameter F of the mutation equation and the

crossover rate parameter Cr of the crossover operator (ZHANG; SANDERSON, 2009).

Due to the control parameters adapted to appropriate values based on different evolution

stages, the methods can improve the convergence rate and accuracy.

The work of Qu et al. (QU; SUGANTHAN; LIANG, 2012) presented a neigh-

borhood mutation strategy integrated with implementations of niching DE algorithms,

namely neighborhood-based CDE (NCDE), SDE (NSDE), and neighborhood-based shar-

ing DE (NShDE). The authors argued that many niching methods are integrated with

DE to make it suitable for multimodal optimization. However, a few works focus on

DE mutation operation, which is critical for efficiently solving multimodal optimization

problems. In the proposed neighborhood-based metaheuristic, the mutation operation is

performed within each Euclidean neighborhood. The method limits the mutation within

some distance-based neighborhood solutions, thereby effectively locating multiple op-

tima. The neighborhood concept allows higher exploitation of the regions piloting the

mutation moves. In neighborhood mutation, difference vector generation is limited to a

number M of similar individuals (neighborhood size) measured by Euclidean distance.

85

Each solution is evolved toward its nearest optimal point. This parameter controls how

many individuals are selected in each subpopulation. According to the authors, M should

be chosen between 1/20 and 1/5 of the population size. It can also be dynamically set,

from a relatively large value to a small value. Different from other niching parameters,

neighborhood size is easy to choose as it can be made proportional to the population size.

The authors have shown that varying the parameter value within this range does not inter-

fere with algorithms’ performance. Also, the authors presented a comparative survey on

niching algorithms and their applications.

In Wang et al. (WANG et al., 2017), the authors pointed out three key issues of

the existing multimodal algorithms: (i) the dilemma to adopt search operators that favor

both Expr/Expt. The dilemma consists that algorithms not only require high diversity

for exploring multiple global optima but also need convergence to refine the solutions

in each globally optimal region; (ii) concerning the selection operator to form the next

generation population, where the existing methods do not consider selecting solutions

regarding different peaks. The selection procedure is commonly performed in terms of

the metaheuristic’s mechanisms, such as the replacement by nearest parent or elitism; and

(iii) most algorithms are not aware of the convergence regarding different search areas,

leading to an unnecessary optimization in these spaces.

Then, to address these drawbacks, a dual-strategy DE (DSDE) with affinity prop-

agation clustering (APC) (FREY; DUECK, 2007) based selection and archive technique

was proposed (WANG et al., 2017). The work adopted the same clustering species-based

DE algorithm described above in Gao et al. (GAO; YEN; LIU, 2013). This clustering

procedure needs the specification of the parameter cluster size M . Thus, the authors also

used the dynamic cluster size niching (YANG et al., 2016a) to vary the parameter M

adaptively. The interval for M is set as [4, 20] because DE must have at least four in-

dividuals. The niche size is chosen randomly in every generation. This adaptation tries

to prevent the premature convergence of niches, increasing the cluster size, or enhance

the exploitation capability, decreasing the cluster size. Inside the cluster-based DE, a

dual-strategy mutation scheme is used, enabling each solution to choose its suitable mu-

tation strategy and balance Expr/Expt search requirements of its own. After the clustering

process, each subpopulation is divided into two equal parts according to the solutions’

fitness. The first part encompasses individuals with better fitness values for exploitation,

whereas the second one has suitable individuals for exploration. For the selection issue,

an adaptive selection mechanism based on APC is proposed to choose proper solutions

86

from different optimal regions for locating different peaks in the landscape. At the end

of each generation, without replacing the generated offspring, the APC divides the entire

population (parents and offspring) into some non-overlapping groups, where each one

should converge to one or a small number of optima. The selection of solutions to form

the next generation population is probabilistically performed based on the fitness of the

species seed regarding each subpopulation. This probabilistic model prioritizes the best

individuals in each cluster, keeping the population diversity with more suitable solutions

close to global optima. Finally, an archive technique is applied to detect converged indi-

viduals. These individuals are stored in the archive to keep promising solutions and are

reinitialized to explore new areas. A solution is treated as stagnant if it has not been im-

proved over a certain number T of generations. For each stagnant solution, the M nearest

neighbors, based on Euclidean distance, are found in the whole population to obtain a

converged subpopulation. Thus, the converged solution itself and those worse than it are

reinitialized and stored in the archive. The individuals better than the converged solution

are still kept in the population to maintain the exploitation ability.

In another paper from the same authors (WANG et al., 2019), an automatic niching

DE (ANDE) based on the APC technique was presented. In this work, APC is used as a

parameter-free automatic niching method that does not need to predefine the number of

clusters or the cluster sizeM . In the ANDE algorithm, after the partition of the population

into clusters automatically by the APC to locate different optimal regions, the basic DE is

performed within each niche. Then, after each generation, a contour prediction approach

(CPA) is employed to estimate the landscape contour of each niche.

The CPA is a predictive search strategy, which considers the distribution infor-

mation of some solutions in the niche to predict the rough position of the potential op-

tima. However, according to the authors, as the potential optimum predicted by CPA is

in a rough position, it may still not be accurate enough. Thus, a two-level local search

(TLLS) strategy is further performed after the CPA to enhance the exploitation around

these regions. Gaussian distribution is adopted due to its promising LS performance by

sampling small areas. The TLLS has a two-level local search, including a niching-level

LS and an individual-level LS for finding promising solutions. On niching-level, the LS

is probabilistically performed on niche seeds (best solution of a niche) based on their

objective values by the ranking-based selection scheme. If a niche is selected for LS on

niching-level, some individuals with better fitness in this niche should also do LS. Then,

an individual-level LS is probabilistically applied to its solutions also by the ranking-

87

based selection. These three main components play different roles in the algorithm and

compensate each other.

To deal with a similar dilemma of the Expr/Expt balance of search operators

pointed out above (WANG et al., 2017), the work of Hong et al. (HONG et al., 2020)

presented a multi-angle hierarchical differential evolution (MaHDE) algorithm designed

from two main aspects. Firstly, a fitness hierarchical mutation (FHM) strategy is used

to consider the individuals’ fitness to match them with distinct mutation equations and

balance the Expr/Expt efforts. The FHM divides the individuals into two (low/high-level)

based on their fitness values in the current niche. The niching process is made similar to

the crowding algorithm, where each individual of the population forms its niche consider-

ing the K nearest neighbors, given by Euclidean distance. The best individual of a niche

guides the low-level individuals to increase the convergence. In contrast, the high-level

solutions are guided by themselves to keep their superiority in terms of fitness. We note

that such a strategy is similar to the work described above but adopting mutation equations

with distinct purposes. Secondly, a directed global search (DGS) and an elite local search

(ELS) are employed in the late evolution stage to increase the population diversity for lo-

cating more peaks and improve the accuracy of the solutions found over the optimization,

respectively. The DGS strategy is applied to the low-level solutions by expanding their

search ranges and thus supporting them to escape from local optima. The ELS strategy

is only performed on the high-level solutions, which works via Gauss perturbation for its

narrow sampling space. It not only can refine the solution accuracy but also can save the

number of fitness evaluations.

Yang et al. (YANG et al., 2016b) presented an adaptive multimodal ACO (AM-

ACO) with a niching algorithm, which can preserve high diversity to deal with multimodal

continuous optimization. In ACO, each ant constructs solutions using a Gaussian kernel

function based on individuals selected probabilistically from an archive. The construc-

tion strategy provides high diversity to ACO. However, ACO cannot be directly applied

to multimodal problems because the selection and construction operations are based on

global information, only suitable for single optimization. According to the authors, there

is no previous work on extending ACO to solve multimodal problems. The AM-ACO

operates on the niche level by incorporating niching instead of operating on the whole

archive as in traditional ACOs. So before ants construct solutions, the already found so-

lutions in the archive are divided into several niches regarding the used niching strategies.

The algorithm uses the cluster-based procedure incorporated in two well-known niching

88

strategies, i.e., crowding and speciation. The clustering adopts a random-based niche

size setting scheme to tackle the dilemma that niche size is problem-dependent. Specif-

ically, the niche size is randomly selected from a predefined niche size set containing

small and large integers during each generation. Hence, the AM-ACO can adapt to the

fitness landscape and each subregion of a given problem. Also, the method employs an

adaptive adjusting strategy for the σ parameter in the solution construction phase, which

takes the differences among niches into consideration. To accelerate convergence, a DE

mutation operator is alternatively used to build (shift) base vectors for ants to construct

new solutions. Then, as promising solutions are generally found around the best ones, a

LS based on Gaussian distribution is adaptively performed around the niche’s seeds with

probabilities based on their fitness to enhance the exploitation.

In Ahrari et al. (AHRARI; DEB; PREUSS, 2017b; AHRARI; DEB; PREUSS,

2017a), a niching method called the Covariance Matrix Self-adaption Evolution Strategy

with Repelling Subpopulations (RS-CMSA) was presented. The algorithm can learn the

relative size and possibly the shape of the basins. No assumption on the distribution of

global minima is required. In the RS-CMSA, many subpopulations explore the search

space in parallel through instances of the core search algorithm CMSA, such that solu-

tions of each subpopulation maintain a distance from a number of taboo points. The taboo

points encompass the centers of better subpopulations and previously identified optima,

stored in an internal archive for each niche. The distance-based rejection defines taboo

regions around the taboo points by the normalized Mahalanobis distance, where a sub-

population may not produce any offspring. The repelling radius of an archived point is

adapted based on the number of subpopulations that converge to that basin. After the ex-

ecution of the CMSA algorithms, the method uses the HV test to verify whether the best

member of a terminated subpopulation refers to a new basin. If the new member shares

the same basin with an archived solution, it replaces the archived solution only if it is

fitter. A strategy to update the taboo regions addresses the challenge of basins of distinct

shape, size, and numbers. When all subpopulations converge, a new set of subpopula-

tions with an increased population size are restarted. Thus, the core search algorithms are

furthermore kept away from previously located global optima. It is noticed that the perfor-

mance of RS-CMSA was evaluated on the test functions of the CEC 2013 for multimodal

function optimization benchmark (LI; ENGELBRECHT; EPITROPAKIS, 2013), where

it was the winner of the GECCO 2017 competition on niching methods for multimodal

89

function optimization4.

In Yang et al. (YANG et al., 2016a), taking advantage of estimation of distribu-

tion algorithms (EDAs) in preserving high diversity, Yang et al. presented a multimodal

EDA (MEDA). According to the authors, current EDAs are primarily designed for single

optimization, and a few attempts have been reported in literature focused on EDAs for

multimodal problems. The algorithm is integrated with clustering strategies for crowd-

ing and speciation. The clustering procedure adopts a randomness-based dynamic niche

sizing strategy to reduce the sensitivity to the cluster size in the niching algorithms and

balance the Expr/Expt efforts. After partitioning the population into niches, MEDA starts

to estimate the probability distribution of each niche. Then, taking advantage of Gaus-

sian and Cauchy distributions, the offspring are generated at the niche level alternatively

using these two distributions instead of only using Gaussian distribution as in traditional

EDAs. The selection of promising individuals is made according to the adopted niching

strategies. Further, solution accuracy is enhanced through a LS scheme based on Gaus-

sian distribution. Gaussian distribution is employed because it owns a narrow sampling

space, especially when the standard deviation is slight, which is beneficial for local re-

finement. The LS is probabilistically performed around seeds of niches with probabilities

determined adaptively according to the fitness values of the seeds.

The work of Maree et al. (MAREE et al., 2018) presented a Hill-Valley (HV)

Clustering, a simple algorithm to adaptively cluster the search space in niches, such that

a single optimum resides in each niche. The core of HV Clustering is the HV nich-

ing test (URSEM, 2000) combined with the concept of the nearest better tree cluster-

ing (PREUSS, 2010; PREUSS, 2012). The HV test can be used to detect whether two

solutions belong to the same niche, as previously described.

In the HV Clustering, the best solution of the entire population forms the first

cluster. Then, the HV test is used to verify if the second-best solution belongs to the same

niche as the first one. If it belongs, the second-best solution is added to the cluster of the

best solution. Otherwise, a new cluster is formed. Next, the third-best solution is tested

against the nearest solution that has better fitness. If it does not belong to the same niche

as its nearest better solution, it is tested against the second nearest better solution. If it

also does not belong to that niche, a new cluster is created. For each solution, the D + 1

nearest better neighbors are tested, where D is the problem dimension. If a solution does

not belong to any of the niches of its nearest neighbors, it forms a new cluster. In each

4<http://www.epitropakis.co.uk/gecco2017/>

http://www.epitropakis.co.uk/gecco2017/

90

of the located niches by the HV Clustering, a core search algorithm and a restart scheme

are combined to optimize that niche, yielding the Hill-Valley EA (HillVallEA). The Hill-

VallEA is equipped with different core search algorithms, including CMSA (BEYER;

SENDHOFF, 2008) and four variants of AMaLGaM (BOSMAN; GRAHL; THIERENS,

2013). These algorithms are based on Gaussian distribution and return a single solution.

After running all core search algorithms, a post-processing step is performed to discard

the local and duplicated global optima. Then, all remaining optima are tested for being

in a different niche by the HV test and added to an elitist archive. Finally, the algorithm

is restarted, and all elite solutions are added to the new population. If no new global op-

tima are found in a run, restarts are performed with increased population size to detect

smaller niches. We observe that HillVallEA was the winner of the GECCO 2018/2019

competitions on niching methods for multimodal function optimization5 6.

In Chen et al. (CHEN et al., 2019), a distributed individuals differential evolu-

tion (DIDE) algorithm is proposed based on a distributed individuals for multiple peaks

(DIMP) framework. The DIMP framework provides sufficient diversity by letting each

individual act as a distributed unit to find a peak, avoiding the issue of population di-

vision, and maintaining sufficient diversity to locate more peaks. As each solution is a

distributed unit in the framework, the DE mutation may be challenging because it often

requires another solution from the same unit. Then, the authors designed a virtual popu-

lation for each individual generated based on the original individual. The construction of

a virtual population is controlled by an adaptive range adjustment (ARA) strategy, where

the range of the virtual individuals is initially large and gradually decreases to explore the

search space sufficiently for locating a peak and then gradually approach it. The authors

also presented two mechanisms integrated with the DIMP, i.e., lifetime and elite learning

mechanisms (ELM). The lifetime mechanism is inspired by the natural phenomenon that

every organism gradually age and has a limited lifespan. When an individual runs out of

its lifetime, it is reinitialized with a new lifetime to increase diversity to locate more op-

timal points. If a reinitialized solution presents good enough fitness regarding an access

criterion, it becomes an elite solution and is stored in an archive. Contrarily, the ELM

aims to refine the accuracy of elite solutions in the archive. However, to avoid unneces-

sary elite learning on elite solutions located at the same optimum, all the elite solutions

are clustered. Only the best fitness solution in each cluster is selected for elite learn-

ing. Similar to the work of Wang et al. (WANG et al., 2019) described above, the ELM

5<http://www.epitropakis.co.uk/gecco2018/>
6<http://www.epitropakis.co.uk/gecco2019/>

http://www.epitropakis.co.uk/gecco2018/
http://www.epitropakis.co.uk/gecco2019/

91

exploits the area around the selected elite solutions based on the Gaussian distribution.

An exponential descent strategy is proposed to adaptively adjust the standard deviation

of the Gaussian distribution to sufficiently exploit the solution and improve the solution

accuracy.

Zhao et al. (ZHAO; ZHAN; ZHANG, 2020) developed an adaptive guidance-

based differential evolution (AGDE) with archive strategy. The AGDE uses the infor-

mation of the nearest individuals regarding the current solution to form an adaptive mu-

tation strategy (AMS), which makes each one moves towards the nearest peak. It is used

to overcome the difficulties of a single mutation operator in guiding the population evo-

lution adaptively. The mutation is divided into two situations according to the problem

dimensions. The first case is when the problem dimension D is less than or equal to 3.

In this case, the current solution is guided by itself using an original DE mutation. The

second scenario is when D is more than 3. This mutation considers the two nearest indi-

viduals of the current solution. Then, the best individual among them is used to guide the

current solution, whereas the others and more two random individuals help accelerate the

population convergence.

The AMS includes a global perturbation based on the solutions’ fitness to improve

the exploration. The method also encompasses an iterative feedback archive (IFA) strat-

egy that uses an archive to store the global optima in every iteration. Moreover, similar

to other described works, a Gaussian disturbance-based elite learning (GDEL) strategy

is performed in the archive to refine the solutions’ accuracy. These new solutions are

used to feedback the population during the optimization to enhance the diversity. The

archive is cleared every T iterations to ensure the stored solutions positively impact the

evolution. After Gaussian disturbance in the archive, all the solutions are added to the

population while the worst individuals are removed. Thus, the AMS strategy helps locate

more peaks, while the IFA and GDEL can maintain the found solutions and refine their

accuracy.

In Liu et al. (LIU et al., 2021), the authors proposed a Self-adaptive Double-Layer-

Clustering Speciation Differential Evolution (SDDLCSDE) algorithm for multimodal op-

timization. Based on the species-based clustering technique, previously explained, the

first layer divides the entire population into independent subpopulations to locate global

optima. Then, each niche evolves independently by using the DE algorithm to maintain

the population diversity. According to the authors, as in a single global DE, the multi-

population strategy also suffers from the diversity loss problem during the later stages

92

of evolution. Thus, unlike other single-layer clustering methods, a global DE search is

integrated as the second layer into the algorithm. The species seeds selected from each

subpopulation of the first layer form a new niche to detect the missed optima in the search

space. It may increase the exploration ability, which helps individuals escape from local

optima and prevents the loss of optimal solutions. Also, the algorithm uses a self-adaptive

parameter control in DE, concerning the scaling factor parameter F of the mutation and

the crossover rate parameter Cr of the crossover operator, similar to those presented in

Zhang and Sanderson (ZHANG; SANDERSON, 2009) and Gao et al. (GAO; YEN; LIU,

2013). For each individual, The parameter updates are based on the Cauchy and normal

distributions, respectively.

Dubois et al. (DUBOIS; DEHOS; TEYTAUD, 2021) proposed a tree-based nich-

ing method that hierarchically divides the search space and estimates the attractive regions

using a reinforcement learning technique. According to the authors, numerous meta-

heuristics are based on restarting evolution strategies, such as the CMA-ES, for multi-

modal optimization. These algorithms generally perform many local searches for finding

all the global optima of the fitness function. However, the strategy used to sample and

select the restarting points for LS is a crucial step.

Thus, the proposed algorithm uses an upper confidence tree (UCT) as a niching al-

gorithm. The UCT is a value-based reinforcement learning method, a variant of the Monte

Carlo Tree Search (MCTS) (KOCSIS; SZEPESVÁRI, 2006). The policy used in the UCT

is based on a multi-armed Bandit algorithm (AUER; CESA-BIANCHI; FISCHER, 2002),

designed to solve the exploitation versus exploration problem. A node in the tree corre-

sponds to a search space region, and its children partition this region according to one

dimension. The evolution strategy is used to traverse the tree by selecting interesting chil-

dren recursively. As an evolution strategy for niche optimization, the random restarts with

decreasing step-size (RDS) algorithm is adopted, which consists of a single-optimum LS

controlled by a restart strategy. The LS used is the (1+1)-ES. The algorithm iteratively

computes local searches until all the optima are found, or the maximum number of func-

tion evaluations has been reached. Thus, it learns the attractive regions to sample the

restarting points for these local searches based on reinforcement learning. The main goal

of the method is to select interesting regions while still exploring the whole search space.

The work of Li et al. (LI; YU; TAKAGI, 2019) presented a two-stage niching

algorithm that separates local optima areas in the first stage and searches the optimum

point of each area using any optimization technique in the second stage. The first stage

93

is based on the Nearest-better Clustering (NBC) algorithm (PREUSS, 2010; PREUSS,

2012) and aims to detect niche areas in which local optima are far from each other in

high-dimensional search spaces.

To elucidate, the NBC (PREUSS, 2010; PREUSS, 2012) creates nearest better

spanning trees and forms niches from these trees. First, it creates a weighted spanning

tree by connecting each solution to the nearest solution with better fitness, measured by

the Euclidean distance. Then, the spanning tree is split into several connected subtrees by

removing its long edges. Each subtree represents a distinct niche over the search space.

The algorithm employs two simple rules to detect and remove long edges: (i) all edges

that lengths are longer than a threshold are removed, which is given by the average length

of all edges; and (ii) considering a node (solution) with more than three incoming edge

connections, an edge is removed if its length is more than β× d, where d is the median of

the incoming edges of this node and β is given in terms of the the population size and the

problem dimension.

Thus, Li et al. (LI; YU; TAKAGI, 2019) proposed a weighted gradient and distance-

based clustering method (WGraD) and two methods for determining its weights to form

niches and overcome NBC. The WGraD creates spanning trees (clusters) by connect-

ing each solution to another suitable one decided by weighted gradient information and

weighted distance information among solutions, which denote the climbing function be-

tween a pair of nodes. Such function is a linear combination of gradient information and

distance information. For weight determination, the first method forms a unique spanning

tree. Then it uses a dynamic pruning method and the HV test to cut long edges and merge

tiny subtrees that belong to the same niche. The second method assigns different weights

to different nodes based on distance information. Both methods, WGraD1 and WGraD2,

employ the DE algorithm as the metaheuristic for niche optimization after clustering local

areas.

In Wang et al. (WANG; ZHAN; ZHANG, 2019), a niching technique based on

minimum spanning tree (MST) with DE algorithm (MSTDE) was presented. Similar

to the above presented work, the solutions in the search space represent nodes of the

tree. In every generation, a complete weighted graph is built based on the distribution

of individuals, where each pair of nodes is connected by a weighted edge measured by

the Euclidean distance. Then, an MST is built on the weighted graph, and the M largest

weighted edges of the MST are pruned to form M + 1 subtrees. The DE is executed

within each subpopulation, where a distinct solution selection was adopted. When an

94

offspring is generated, it is compared with its nearest neighbor and replaces the neighbor

only if it is the better. Besides, a dynamic pruning ratio (DPR) strategy is proposed to

randomly determine the parameter M and reduce its sensitivity in the niching algorithm.

Moreover, a distributed computational model is employed in MSTDE, where different

subpopulations run simultaneously using several virtual machines (VMs).

Wang et al. (WANG et al., 2019) presented a multilevel sampling strategy based

on the memetic differential evolution (MMDE) algorithm. The multilevel sampling strat-

egy dynamically divides the whole population into multiple levels according to the fitness

of solutions at each generation. Then, a subpopulation is sampled adaptively from the

individuals at different levels to undergo a balanced evolution process based on a nich-

ing method. The niching applied to the subpopulation consists of the clustering SDE,

described above in Gao et al. (GAO; YEN; LIU, 2013). Besides, a crossover-based lo-

cal search (XLS) is employed to refine the seed solutions of niches during the evolution.

The MMDE uses a parameter adaptation mechanism to control the DE parameters. Such

scheme maintains a historical memory of H entries for the parameters F and Cr (TAN-

ABE; FUKUNAGA, 2013). The parameter updates are based on the historical memory

and the Cauchy and normal distributions, respectively.

In the work of Lacroix et al. (LACROIX; MOLINA; HERRERA, 2016), the au-

thors described the Region-based Memetic Algorithm with Archive (RMAwA) for multi-

modal problems. It uses a region-based niching strategy, which divides the search space

into predefined and indexable hypercubes with decreasing size. The algorithm stores the

most promising regions in an external archive to maintain the population diversity. Be-

sides, the most promising solutions are improved with a LS algorithm, which is applied

until it has reached a local or global optimum. Thus, regions intensively explored by LS

are excluded from further exploration with the EA and stored in the indexed archive to

reduce the search space. Also, the number of optima that RMAwA can identify is not

limited by the population size since the optima found are stored in the archive and not

only in the population.

The work of Zhang et al. (ZHANG et al., 2019) described a tree-structured ran-

dom walking bee swarm optimizer for multimodal landscapes. The authors designed an

MST-based niching method, characterized by a tree structure and a random walking pro-

cess, embedded into the ABC algorithm (TS-ABC). The strategy constructs a complete

weighted graph based on the solutions’ positions. Then, an MST that encodes the distri-

bution of the solutions is built upon the complete graph to guide the population search,

95

similar to (WANG; ZHAN; ZHANG, 2019). Each candidate solution represents a tree

node and moves along the edges to gather information about the search space. The dance

trajectories of bees are simulated by random walks on the MST in a probabilistic manner

considering distance and fitness information. The solutions are updated by adding dif-

ferences of the position vectors selected from the dance trajectories. By the probabilistic

random walking on the MST, the employed bees and onlooker bees can perform struc-

tural searches. Thus, the bees not only perform exploitation within the niches, which are

formed by the MST clustering, but they also have some possibilities to walk outside to

explore new areas. Moreover, a honeycomb structure used as an archive is introduced to

store information of the solutions that have been fully exploited. An employed bee is redi-

rected to other search regions through reinitialization once its food source is exhausted.

Table 4.2 summarizes the main components and differences among the multi-

modal methods described above.

96Table 4.2: Summarization of the discussed multimodal algorithms and their main search components
Core Niching Adaptive ParameterMethod Algorithm Strategy Niching Archive Control Hybridization

lbest PSO PSO Ring-based neighborhood
LIPS PSO Distance-based neighborhood Niche size
Self-CCDE/CSDE DE Cluster-based CDE/SDE Cluster size In DE
NCDE/NSDE/NShDE DE Distance-based neighborhood Neighborhood size
DSDE DE Cluster-based SDE Cluster size X In DE Dual mutation; APC selection
ANDE DE APC CPA; TLLS
MaHDE DE Crowding FHM; DGS; ELS
AM-ACO ACO Clustering crowding/speciation Cluster size X In ACO DE mutation; Gaussian LS
RS-CMSA CMSA Taboo regions; HV test Taboo region size X
MEDA EDA Clustering crowding/speciation Cluster size In LS application Gaussian LS
HillVallEA CMSA; AMaLGaM HV clustering; NBC Cluster size Restarting
DIDE Distributed DE DIMP framework ARA strategy X In ELM Lifetime mechanism and ELM
AGDE DE Distance-based neighborhood X AMS; IFA; GDEL
SDDLCSDE DE Cluster-based SDE In DE Global DE search
Tree-based niching RDS algorithm UCT Regions location In RDS (1+1)-ES
WGraD DE NBC; HV test Number of niches
MSTDE DE MST-based niching Number of niches Distributed niches
MMDE DE Cluster-based SDE Cluster size In DE XLS
RMAwA MA Region-based niching Region size X LS
TS-ABC ABC MST-based niching Number of niches X Random walking

Source: From the author (2022).

97

4.7 Computational Methods and Metaheuristics Applied to the PSP

Over the last years, knowledge-based protein modeling has consolidated itself as

a mature research field, becoming one of the leading research resources in this context.

However, despite the significant progress made, the PSP represents an extremely challeng-

ing problem, and further research is needed to understand the protein folding mechanisms

fully. Such orientations were delineated from results’ analysis of the CASP experiments7,

whose objectives are to determine the state-of-the-art in the PSP area and to point out the

most remarkable advances already made, as well as to assist the methods’ progress, direct-

ing to critical points that further can be tackled more productively (MOULT et al., 2018;

KRYSHTAFOVYCH et al., 2019; KANDATHIL; GREENER; JONES, 2019). According

to results related to the latest CASP editions (ABRIATA et al., 2018; XU; WANG, 2019;

KRYSHTAFOVYCH et al., 2019), regarding the automatic FM category without manual

intervention (servers), the methods related to the Baker group (OVCHINNIKOV et al.,

2018) can be pointed out as some of the most popular performing methods, highlighting

the method of Rosetta (ROHL et al., 2004).

Nevertheless, a great breakthrough89 concerning the entire protein folding re-

search field was recently announced, when the AI method developed by DeepMind10 from

Google AI has made an enormous advance in terms of the obtained results for the 3-D pro-

tein structure prediction problem only from the protein’s amino acid sequence11 (CALL-

AWAY, 2020). DeepMind’s method, known as AlphaFold (JUMPER et al., 2020), signif-

icantly outperformed around 100 other research teams in the last CASP14 edition. The

results12 were announced on 30 November 2020, during the conference. According to

AlphaFold’s authors, this breakthrough demonstrates the impact AI can have on scientific

discovery and its potential to accelerate progress in some of the most fundamental fields

that explain real-life challenges.

7<www.predictioncenter.org>
8<https://www.nature.com/articles/d41586-020-03348-4>
9<https://www.sciencemag.org/news/2020/11/game-has-changed-ai-triumphs-solving-protein-structures>

10<https://deepmind.com/>
11<https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology>
12<https://predictioncenter.org/casp14/zscores_final.cgi>

www.predictioncenter.org
https://www.nature.com/articles/d41586-020-03348-4
https://www.sciencemag.org/news/2020/11/game-has-changed-ai-triumphs-solving-protein-structures
https://deepmind.com/
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://predictioncenter.org/casp14/zscores_final.cgi

98

4.7.1 Rosetta Method

Robetta13 (KIM; CHIVIAN; BAKER, 2004) represents a major web server that

uses the Rosetta prediction protocols14 (ROHL et al., 2004; BRADLEY; MISURA; BAKER,

2005), both for ab initio predictions and comparative modeling (SONG et al., 2013).

Rosetta is a fragment-based method (fragment assembly) (SIMONS et al., 1997), which

uses small structural segments (3 and 9 amino acids) of known protein structures ex-

tracted from the PDB. Initial configurations of the target protein are created from the

combination of a bunch of fragments. This method is divided into multiple optimiza-

tion stages, where different structural representations and evaluation functions are em-

ployed (ROHL et al., 2004; LEAVER-FAY et al., 2013). The method starts with a low-

resolution (coarse-grained) optimization and gradually increases the precision level until

finalizing the process with a more accurate refinement technique (all-atom resolution),

where the best-found structures are considered. We note that the complexity of energy

functions follows the precision level’s growth of the computational representation during

the process. Through sampling and clustering of thousands of individuals, the method

seeks to locate distinct conformations distributed on the energy landscape. The structural

groups are optimized by several Monte Carlo simulations, known as Replica Exchange

Monte Carlo (REMC), by exchange processes of simulation parameters and structural

fragments.

4.7.2 AlphaFold Method

AlphaFold was first proposed in CASP13 (KRYSHTAFOVYCH et al., 2019; HUT-

SON, 2019), which achieved the highest accuracy among participants. AlphaFold (SE-

NIOR et al., 2019; SENIOR et al., 2020) implements deep learning neural networks to

structural and genetic data to predict the distance between pairs of amino acids in a pro-

tein, which conveys more information about the structure than contact predictions. Using

this information, the authors constructed a potential of mean force based on physical and

geometric constraints that can accurately describe the shape of a protein. A gradient de-

scent algorithm optimizes this resulting potential to generate structures without complex

sampling procedures.

13<www.robetta.bakerlab.org>
14<www.rosettacommons.org>

www.robetta.bakerlab.org
www.rosettacommons.org

99

For the CASP14 edition, the AlphaFold version 215 (JUMPER et al., 2020) was

presented. The authors created an attention-based deep learning neural network system

different than the CASP13 AlphaFold. The novel version produces much more accurate

protein structures and estimates of model accuracy. In this method, the folded protein is

modeled as a “spatial graph”, where residues are the nodes, while the edges connect the

residues in close proximity. Thus, the neural network tries to interpret the structure of this

graph while reasoning over the implicit graph that it is building. It uses evolutionarily

related sequences, multiple sequence alignment (MSA), and a representation of amino

acid pairs to refine the graph. By iterating this process, the system develops strong pre-

dictions of the protein’s underlying physical structure and can determine highly-accurate

structures. It should be noted that the CASP14 proceedings have not yet been published.

Despite the recent advances related to the PSP problem, we observe that this work

is focused on the development and assessment of metaheuristics applied to hard problems,

such as the PSP’s multimodal energy function. Thus, the following section describes some

metaheuristics and search algorithms applied to the PSP.

4.7.3 PSP Metaheuristics

Metaheuristics are techniques practically problem-independent and can be applied

to a wide range of problems with no or minor modifications in their parameters (BOUS-

SAÏD; LEPAGNOT; SIARRY, 2013). Nevertheless, particularly in Structural Bioinfor-

matics problems, the simple application of canonical methods is not always enough to

achieve good performance. This fact is due to the high dimensionality of variables (BELDA

et al., 2007; HANDL; LOVELL; KNOWLES, 2008). Thus, incorporating previous knowl-

edge about the problem and exploring its specific characteristics can be seen as alterna-

tives to increase the methods’ effectiveness by limiting and reducing the solution space

size (DORN et al., 2014).

Numerous problems from the most diverse knowledge areas encompass complex

objective functions (GLIBOVETS; GULAYEVA, 2013). Regarding the PSP problem,

the energy functions used as fitness functions in the 3-D protein structure optimization

fit into the complex category of multimodal objective functions, where the same en-

ergy value may represent distinct conformations for the same target protein (HANDL;

LOVELL; KNOWLES, 2008). Knowing the difficulties that energy functions have to

15<https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology>

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

100

represent global optima as the best solutions, it is interesting to discover the highest pos-

sible number of optimal conformations to provide sufficient resources for future specialist

analysis (BELDA et al., 2007). For example, in the method of Rosetta, the final results of

a prediction process consist not only of a single structural model but a set of energetically

favorable and often topologically distinct solutions resulting from several optimization

clusters used throughout the simulation process (ROHL et al., 2004).

As a consequence of the complexity of the PSP problem, a variety of metaheuris-

tics were being proposed to deal with it (DORN et al., 2014). Such algorithms alter the

3-D structure orientation of the macromolecule under study through mathematical oper-

ations to minimize an energy function and approximate computational models to ideal

solutions (CHOU, 2004; BRADLEY; MISURA; BAKER, 2005). For example, Elofs-

son et al. (ELOFSSON; GRAND; EISENBERG, 1995) proposed a GA combined with

a heuristic responsible for performing small movements in dihedral angles of the protein

structure, aiming the improvement of local minima exploitation.

Cutello et al. (CUTELLO; NARZISI; NICOSIA, 2006) developed a multi-objective

EA to overcome the energy function inefficiencies. The authors have shown that the most

common energy terms used in molecular interactions, bonded and non-bonded terms, are

conflicting. Thus, these two types of terms were treated as distinct objectives in the op-

timization. Fonseca et al. (FONSECA; PALUSZEWSKI; WINTER, 2010) presented a

variation of the bee colony optimization algorithm (KARABOGA; BASTURK, 2007).

The algorithm was applied to the PSP for the first time, considering proteins more promi-

nent than 50 amino acids. In the work of Dorn et al. (DORN; BURIOL; LAMB, 2011),

a GA with a population based on “castes” was developed. It also uses the path relink-

ing procedure as a LS. Saleh et al. (SALEH; OLSON; SHEHU, 2013) proposed a MA

consisting of two evolutionary search strategies, based on structural fragments of amino

acids, to address the multiple local minima problem in the energy function. For this, the

authors worked on the modeling of two distinct energy functions, a modified version of

the Associative Memory Hamiltonian with Water (AMW) function (SHEHU; KAVRAKI;

CLEMENTI, 2009) and the centroid-based energy function of Rosetta (ROHL et al.,

2004).

Regarding the knowledge exploration about aa conformational preferences, Dorn

et al. (DORN et al., 2013) proposed a knowledge-based computational method whose

objective is to reduce the search space size. Such an algorithm considers the aa confor-

mational preferences based on previous occurrences of the target protein amino acids

101

in experimentally determined proteins (LIGABUE-BRAUN et al., 2018). Borguesan

et al. (BORGUESAN et al., 2015) demonstrate the Angle Probability List (APL) use,

where the authors have shown the APL contributions by optimizing a set of 3-D pro-

tein structures using two different metaheuristics, which consisted of a GA and a PSO

algorithm. In addition, through the webserver NIAS16 (BORGUESAN; INOSTROZA-

PONTA; DORN, 2016), the authors make available to the scientific community the cre-

ation of APLs to be used in structural modeling methods or in any other problem that may

require insights about the aa conformational preferences. Also, in a previous work de-

veloped by the same authors (INOSTROZA-PONTA; FARFÁN; DORN, 2015), the first

attempt to develop a MA that incorporates information from a variation of APL was made.

Related to multimodal optimization applied to the PSP, Garza-Fabre et al. (GARZA-

FABRE et al., 2016) proposed a MA that associates the method of Rosetta as a LS

heuristic. The authors developed specialized genetic operators by incorporating intrin-

sic knowledge about the problem, increasing the exploration of distinct conformations.

As an alternative to energy function inaccuracies and search space roughness, they have

used the stochastic ranking-based selection procedure, a multimodal technique, to mini-

mize the evaluation function while maintaining the structural population diversity. Also,

the method incorporates a modified version of the Rosetta-based population initialization

to reach a proper balance between search space exploration and exploitation. The method

uses the same energy functions and model representations used in the Rosetta optimiza-

tion process.

Rocha et al. (ROCHA et al., 2016) proposed a multi-objective GA that uses the

phenotypic crowding similarity metric for individual selection, where two solutions are

selected according to their structural differences. In this work, the authors focused on

reaching more diversified and well-distributed Pareto frontiers at the end of the opti-

mization process by incorporating the crowding distance technique of the Non-dominated

Sorting Genetic Algorithm (NSGA-II) (DEB et al., 2002) as the insertion criterion of

new individuals in the population. Besides, the authors explored three classical force

field potentials, three hydrogen bond potentials and a hydrophobic compaction term were

combined in two configurations with different objectives for the fitness function.

Despite recent remarkable advances in the PSP area by the development of novel

optimization techniques, mainly due to the discovery of experimental knowledge and in-

corporation into the prediction methods, such as the AlphaFold method, this research area

16<sbcb.inf.ufrgs.br/nias/>

sbcb.inf.ufrgs.br/nias/

102

still offers challenges. (KRYSHTAFOVYCH et al., 2019; XU; WANG, 2019; SHRESTHA

et al., 2019; KANDATHIL; GREENER; JONES, 2019). The quality limitation of the

structural fragment libraries and aa conformational preferences, energy function inac-

curacies, and the high dimensionality of the conformational space make the PSP prob-

lem extremely complicated regarding the FM category from the metaheuristic’s perspec-

tive (KIM et al., 2009; GARZA-FABRE et al., 2016).

In this way, search techniques as the main focus of improvements need to incorpo-

rate more robust mechanisms, which can keep energetically acceptable structures whereas

correspond to distinct conformations distributed along with the search space’s most favor-

able areas. The generation and preservation of a mixed solution set facing a multimodal

problem determine factors for achieving competitive results, corroborating the issues pre-

viously discussed regarding global and multimodal continuous optimization for general

purpose (DAS et al., 2011).

Therefore, in this thesis, we intend to develop an adaptive MA combined with an

ABC algorithm used as an exploratory method with a LS strategy to enhance the method’s

performance. The algorithm is applied to single global and multimodal continuous bench-

mark functions and then applied to the PSP problem. It incorporates evolutionary and

swarm intelligence concepts for global exploration and a LS strategy focused on refining

the multimodal conformational space. The MA also uses the experimentally determined

protein structure knowledge from the PDB through the aa conformational preferences and

protein CM information.

4.8 Final Remarks

This chapter presented a review of the most relevant works related to metaheuris-

tics for global and multimodal continuous optimization, such as classical and state-of-the-

art algorithms. The chapter discussed existing literature concerns about search strategies

and optimization, such as population diversity and convergence, Expr/Expt trade-off, pa-

rameter control and hybrid algorithms, and multimodal search strategies.

The chapter described an overview of computational methods and metaheuristics

applied to the PSP problem. It introduced the CASP competition, the popular method of

Rosetta, and the AlphaFold from DeepMind, which is state-of-the-art for protein folding.

Furthermore, we highlight that the general objective of this work is related to the

investigation of distinct metaheuristic’s aspects aiming at providing a metaheuristic for

103

optimization problems regarding the multimodal continuous domain. With this, the meth-

ods in this thesis were designed based on an incremental approach, encompassing case

studies of single global continuous optimization with multimodal functions, multimodal

functions with many global optima, and the 3-D PSP problem. Thus, the methods and

search strategies discussed in this chapter underlined relevant concepts used to develop

this work.

104

5 MATERIAL AND METHODS

5.1 Introduction

As a baseline for the development of this work, we employed concepts of meta-

heuristics already presented in our previous works, which include (CORRÊA; INOSTROZA-

PONTA; DORN, 2017; CORRÊA; DORN, 2018; CORRÊA; DORN, 2019; CORRÊA et

al., 2020; CORRÊA et al., 2016; CORRÊA et al., 2018; CORRÊA; DORN, 2020). It

should be observed that these papers were proposed to deal with the PSP problem. How-

ever, one of the goals of this thesis is to connect such ideas and apply them combined with

novel strategies.

Therefore, our first objective was to present the most relevant works related to

metaheuristics for multimodal continuous optimization and applied to the PSP, such as

classical and state-of-the-art algorithms. Moreover, we intended to discuss the most cru-

cial literature concerns about search strategies and optimization, such as population di-

versity and convergence, Expr/Expt trade-off, parameter control, hybrid algorithms, and

multimodal strategies.

Following the first part of this thesis and the general objective delineated, our focus

is to create a method by an incremental design, which can deal with the inherent multi-

modality and issues of a range of optimization functions while preserving accurate results.

It is known that each optimization function requires distinct abilities from algorithms,

even in the same application domain. Then, we expect to enhance our approach with

such a need without degrading previously incorporated search strategies. For instance,

adopting niching concepts, aiming to improve the search space exploration and reach a

satisfactory trade-off between Expr/Expt of the individuals, while keeping the population

diversity and enforcing the method’s convergence when indicated by the search process’

feedback. All of the proposed search strategies are detailed in the following sections.

5.2 Proposed Method for Single Global Optimization

The method proposed for continuous optimization is an adaptive framework-based

MA, which incorporates concepts of bio-inspired algorithms for global optimization with

separate local improvement. The MA is a hybrid metaheuristic composed of a population-

based evolutionary framework and a LS algorithm used within the generation cycle of the

105

external framework. As mentioned earlier (Section 4.4), MAs enable the combination of

ideas from different search methodologies, which may provide better results than a single

strategy to a given problem.

The method was implemented following the points of interest outlined in this the-

sis. It aims to efficiently explore the search space in an attempt to discover and maintain

the search space solutions, keep a reasonable balance between Expr/Expt by controlling

the population diversity, and control the parameter setting to better deal with global and

multimodal optimization functions. Hence, we designed some MA versions to deal with

global continuous optimization, then modified the resulting version for multimodal opti-

mization, and finally tackled the PSP problem. Moreover, we observe that the intermedi-

ate versions developed to reach the final versions of the methods are also discussed in the

section of computational experiments (Section 6.2).

5.2.1 Algorithmic Structure of the Method

The proposed metaheuristic was structured based on a hierarchical tree data struc-

ture implemented under a MA framework. This method consists of a multi-population

technique, which arranges the population of individuals in subpopulations into the tree’s

nodes. The data structure adopted in this thesis was first proposed by Inostroza-Ponta

et al. (INOSTROZA-PONTA; FARFÁN; DORN, 2015) and also explored in our previ-

ously proposed works (CORRÊA; INOSTROZA-PONTA; DORN, 2017; CORRÊA et al.,

2020; CORRÊA et al., 2016; CORRÊA et al., 2018; CORRÊA; DORN, 2020). In these

papers, the hierarchical tree was parameterized as a ternary tree. However, we empha-

size that the papers mentioned above were focused only on the PSP problem. Moreover,

we aim to connect the previously studied concepts with novel search ideas to create an

optimization method that improves strategies aiming for better results.

The MA population is organized into a ternary tree structure with Nnodes nodes,

which characterize Nnodes subpopulations. The number of nodes is directly related to the

number of layers (Nlayers) in the tree, such that Nnodes is given by:

Nnodes =

Nlayers−1∑
i=0

3i (5.1)

Where 3i represents the number of nodes in each layer of the ternary tree. In this approach,

106

the tree structure is a perfect ternary tree, in which all internal nodes have three children,

and all the leaf nodes are at the same depth or same layer.

Thus, each node receives part of the entire population, optimized internally by an

independent core search metaheuristic. Throughout the optimization process, the nodes

interact with each other, following predefined hierarchical rules, via crossover operations

as a way of knowledge sharing, population diversification, and exploration inter-niches.

This tree structure, which encompasses independent optimizations and interactions be-

tween distinct populations, was conceived as a niching strategy to overcome the multi-

modality issues over the evolutionary process and maintenance of the population diversity.

With this, the algorithm can easily explore the search space, where better solutions located

in different regions of the space can emerge. Figure 5.1 illustrates the proposed approach

flowchart adopting three layers (Nlayers = 3), which can be increased or reduced. Each

MA component is further detailed in the following sections. Also, the different versions,

parameterization, and particularities of the MA created by the constructive design are

discussed in the section of computational experiments (Section 6.2).

Figure 5.1: Hierarchical organization of the framework-based MA

Source: From the author (2022).

107

5.2.2 Initialization of the Tree

The MA receives as input parameter the maximum number of individuals (Max_NS)

allowed in the entire population of the tree structure. Thus, the Max_NS individuals are

randomly initialized within the search space of each optimization function. To maintain

a diverse population and overcome the genetic drift inherent to the population evolution,

preventing a premature convergence to local optima, we adopted a cluster-based niching

strategy to divide the entire population into subpopulations based on spatial positions of

the individuals.

As already discussed in Section 2.3, multimodal strategies may increase the prob-

ability of a metaheuristic finding global optima since search efforts are not concentrated

just in one region of the search space but in different areas. In our method, the nich-

ing strategy is used to increase population diversity by better populating the search space

when dealing with single global optimization on a multimodal fitness landscape. It also

aims to find all possible optimal or acceptable suboptimal solutions when optimizing mul-

timodal functions with more than one global optimum.

The clustering procedure is incorporated in the Speciation niching algorithm (Sec-

tion 4.6.1). As the species-based strategy involves a parameter of species distance (species

radius), the clustering algorithm integrated into the classical niching strategies is used

to mitigate the effects from the sensitivity to parameters. Thus, the clustering niching

transfers the sensitive parameter (niche radius) to a less sensitive one (cluster size). As

previously mentioned in Section 4.6.2 of related works, we observe that similar strategy

was adopted in Qu et al. (QU; SUGANTHAN; LIANG, 2012), Gao et al. (GAO; YEN;

LIU, 2013), Wang et al. (WANG et al., 2017), Wang et al. (WANG et al., 2019) and Liu

et al. (LIU et al., 2021) as cluster-based SDE (Section 4.6.2).

The cluster-based niching strategy is a distance-based neighborhood algorithm

that divides the NS individuals of population P into NCl subpopulations or niches,

where each of which comprisesM individuals with adjacent locations in the search space.

A given solution is selected from the population as a seed to form a niche by including

M − 1 individuals, which are closest to the seed given by Euclidean distance. These M

individuals are then eliminated from the population. All the niches are formed according

to this process. This is shown in Algorithm 2, which receives as input parameter the pop-

ulation P , the number of solutions NS to be clustered, and the number of clusters NCl.

Regarding the MA framework, the number of clusters represents the number of nodes in

108

the tree (NCl = Nnodes), and the population size is the maximum number of individuals

allowed in the tree (NS = Max_NS).

Algorithm 2 Pseudocode of the clustering-based Speciation algorithm.
Require: P : population of individuals; NS: population size; NCl: number of clusters
Ensure: Clset: set of the clusters generated

1: SortPopulation(P) from best to worst according to the fitness values
2: M ← NS/NCl

3: for i← 1 : NCl do
4: the best individual X is set as the species seed
5: Clseti ← X and its nearest M − 1 individuals form a new cluster
6: remove the M individuals from P

7: end for
8: return Clset

After the niching procedure, the generated subpopulations are then incorporated

into the tree’s nodes. Thus, the number of niches is directly related to the number of

nodes in the tree structure, where each subpopulation corresponds to a node of the MA

with M solutions. Each niche is then optimized based on the MA search mechanisms.

The optimization steps of the MA are described in the next section.

5.2.3 Optimization Steps of the MA

After the MA initialization, the steps below are executed in every algorithm gen-

eration. The stop criterion is determined by the maximum number of fitness evaluations

(Max_Evls) performed during the optimization:

1. Each node runs independently the core search metaheuristic to optimize its solution

set (subpopulation) (Figure 5.1-ii). The core search algorithm is executed by gcore

generations in each node (Section 5.2.12);

2. Each node performs gcore inner recombination operations with the solutions in its

respective subpopulation (Figure 5.1-iii). The offspring are inserted in the next

population by the DC replacement strategy (Section 5.2.4). We note that the inner

recombination is performed interspersed with the core search algorithm. At the end

of each generation of the core search, the recombination is applied once;

3. The procedure of interactions between nodes is performed following the hierarchi-

cal structure of the tree, where each node only interacts with its neighbors from the

same parent and with its parent (Figure 5.1-iv). Recombination operations do the

109

interactions between nodes, and the RTS strategy is used to insert the offspring in

the population (Section 5.2.5);

4. The LS algorithm is applied via the procedure of local improvement on a given

solution of each subpopulation to exploit further the search regions inside the niches

(Figure 5.1-v) (Section 5.2.6);

5. The procedure of resizing the tree structure is applied to reduce the number of nodes

linearly as a function of the number of fitness evaluations. The tree resizing is used

to enforce the framework’s ability for exploration at the early stages of the search

process and enhance the exploitation at the final stages (Section 5.2.7);

6. The control mechanism concerning the convergence and performance of the algo-

rithm is applied. It regulates them via indicators of population diversity, Expr/Expt

efforts, and improvements of the solutions throughout the generations (Section 5.2.8);

7. The procedure to dynamically adjust the niche size and reorganize the solutions into

the nodes according to their similarities through the clustering-based Speciation

algorithm is performed (Section 5.2.9).

It should be noted that each step described above was sequentially implemented.

However, the framework was designed to ease the implementation in distributed environ-

ments. Each node could run in a single core of a cluster and interact with other nodes

through explicit messages, i.e., classical commands of send and receive, or shared mem-

ory approach. A similar tree structure was already presented in distributed systems as

shown in our previous works (CORRÊA; INOSTROZA-PONTA; DORN, 2017; COR-

RÊA et al., 2020; INOSTROZA-PONTA et al., 2020). The MA procedures mentioned

above are further detailed in the following sections.

5.2.4 Inner Node Recombination and Selection

The inner recombination strategy is performed at the end of every generation of the

core metaheuristic inside each node. Regardless of the adopted core search algorithm, this

operation aims to enhance the exploration around the delimited search space of a given

subpopulation. As the proposed MA intends to provide a general optimization method

that enables any core metaheuristic, the inner recombination is used to complement the

search mechanisms of the framework, favoring the exploration of intra-niche regions. The

recombination operation is performed by the Uniform crossover (SYSWERDA, 1989),

110

one of the most used operators in GAs (MOSCATO; COTTA, 2019). The selection of

individuals for crossover is made by a 3-way tournament selection strategy, where three

individuals of the subpopulation are randomly selected, and tournament rounds are run

among them. The fittest candidate amongst those selected individuals is chosen as a

parent for the crossover. The 3-tournament selection was chosen due to its lower selec-

tion pressure characteristic when compared with other selection schemes, such as roulette

wheel and ranking-based selection.

Thus, tournament selections select two solutions from the subpopulation as par-

ents for the crossover. In the Uniform crossover, the offspring are created by randomly

selecting one of the variables in any of the parents at each position. The selection of

variables is uniform, where the variables are chosen from both parents with the same

probability of 50%. After that, the offspring are inserted into the subpopulation via the

DC replacement strategy (Section 4.6.1), where the two offspring generated are compared

with their parents, and each offspring replaces the nearest parent by a greedy scheme (Sec-

tion 4.6.1). DC replacement was adopted to maintain diversity and niche cohesion.

5.2.5 Interactions Between Nodes

The interactions between nodes are performed following the hierarchical structure

of the tree, where each node only interacts with the ones in the same hierarchical sub-

structure (Figure 5.1), i.e., with their neighbors from the same parent and with its parent.

This hierarchical sub-structure can be divided into two levels: (i) upper level, which com-

prises a parent node with child nodes; and (ii) lower level, which includes the three child

nodes of the parent node in the upper level. This division scheme is used to determine

how the interactions between nodes occur in each sub-structure.

The interactions are done by recombination operations. These operations are also

performed by the Uniform crossover, but the individuals for crossover are selected by

the ranking-based selection, which consists of ranking solutions according to their fitness

values, assigning to them ascending probabilities to be chosen based on the position of

solutions. Thus, the best solution has the highest-ranking position, and the worst has

the first position since individuals with better fitness values should be more likely to be

selected. This strategy is used to favor the promising individuals of each subpopulation.

The solutions are randomly selected based on the defined probabilities.

Then, the RTS strategy (Section 4.6.1) is used to insert the offspring in the sub-

111

population, where each offspring replaces its nearest solution by a greedy scheme. RTS

was adopted to prevent different solutions from competing with each other in an attempt

to maintain the cohesion intra-niche and the diversity inter-niches. The primary issue in

RTS is the definition of the window size parameter (DAS et al., 2011). In our case, the

window size parameter is the subpopulation size (M), as it means a portion of the entire

population.

The MA performs two types of interaction inside a hierarchical sub-structure: (i)

bottom-up crossover operation; and (ii) top-down crossover operation. These interactions

are demonstrated in the Algorithm 3, which receives as input parameter the index of the

parent node pindex of the hierarchical sub-structure submitted to the operations.

Algorithm 3 Pseudocode of the bottom-up and top-down interactions between nodes.
Require: pindex: index of the parent node of the hierarchical sub-structure
Require: niche: set of the niches
Ensure: niche: set of the niches after the recombination operations regarding the pindex

//Selection and bottom-up crossover

1: setoffspring[3]← ∅
//Crossover between child nodes

2: parent1 ← ranking-based selection of solution from nichepindex∗3+1

3: parent2 ← ranking-based selection of solution from nichepindex∗3+2

4: setoffspring[0]← UniformCrossover(parent1, parent2)

5: parent1 ← ranking-based selection of solution from nichepindex∗3+1

6: parent3 ← ranking-based selection of solution from nichepindex∗3+3

7: setoffspring[1]← UniformCrossover(parent1, parent3)

8: parent2 ← ranking-based selection of solution from nichepindex∗3+2

9: parent3 ← ranking-based selection of solution from nichepindex∗3+3

10: setoffspring[2]← UniformCrossover(parent2, parent3)

11: nichepindex ← RTS(nichepindex , setoffspring)

//Selection and top-down crossover

//Crossover between parent node and children

12: parentnode ← ranking-based selection of solution from nichepindex

13: parent1 ← ranking-based selection of solution from nichepindex∗3+1

14: offspring ← UniformCrossover(parentnode, parent1)

15: nichepindex∗3+1 ← RTS(nichepindex∗3+1, offspring)

16: parentnode ← ranking-based selection of solution from nicheindex

17: parent2 ← ranking-based selection of solution from nichepindex∗3+2

18: offspring ← UniformCrossover(parentnode, parent2)

19: nichepindex∗3+2 ← RTS(nichepindex∗3+2, offspring)

20: parentnode ← ranking-based selection of solution from nicheindex

21: parent3 ← ranking-based selection of solution from nichepindex∗3+3

22: offspring ← UniformCrossover(parentnode, parent3)

23: nichepindex∗3+3 ← RTS(nichepindex∗3+3, offspring)

24: return niche

112

Bottom-up crossover operation: The child nodes (lower level) of the same hi-

erarchical sub-structure do crossover operations with their neighbors, linked to the same

parent (upper level), to generate three offspring for each group of neighbors (Algorithm 3,

lines 2-10). For instance, the hierarchical sub-structure of node 0 as the parent includes

nodes 1, 2, and 3 as children, where the recombination process occurs between nodes 1-2,

1-3, and 2-3, as illustrated by the dashed arrows connecting the child nodes in Figure 5.1.

One solution from each subpopulation is selected by ranking-based selection strategy as

parents in each crossover operation. Thus, the resulting offspring from the crossovers

between the child nodes are integrated into the population of the respective parent by the

RTS strategy (Algorithm 3, line 11). For instance, in the hierarchical sub-structure of

node 0, the three generated offspring are inserted into its subpopulation.

Top-down crossover operation: In a similar process as described above, the par-

ent nodes (upper level) perform top-down crossover operations with their children (lower

level) to generate three offspring. A total of three operations are performed inside a hi-

erarchical sub-structure since each operation results in an offspring, where each one is

generated by the crossover between the parent and each one of its children (Algorithm 3,

lines 12-23). The resulting offspring from the crossover operation between each parent

and its children are integrated into the respective child subpopulation by the RTS strategy.

For instance, in the hierarchical sub-structure of node 0 as the parent, the recombina-

tion process occurs between nodes 0-1, 0-2, and 0-3, as illustrated by the black arrows

connecting the parent and child nodes in Figure 5.1. Each offspring is inserted in the

respective subpopulation of the child nodes.

This interaction mechanism among nodes can increase the MA’s exploratory po-

tential, as solutions in different regions can search for better points located between them

but out of the niches. The two types of recombination were designed to integrate all the

nodes as a way of knowledge sharing inter-niches and population diversification, so that

the information of each one can eventually be passed to all the nodes throughout the evo-

lutionary process. This mechanism is especially important in single global optimization,

where the niches should approach the same optimum during the optimization process.

5.2.6 Local Improvement Procedure

The LS algorithm is applied periodically on the best solutions of each subpopula-

tion regarding the local improvement procedure (LIP). We created the LIP to regulate the

113

MA’s exploration through the search space and the refinement of the promising individ-

uals according to the fitness function evaluations utilized by each of these mechanisms.

The LIP uses the continuous LS strategy, which consists of a chained LS to adjust the ex-

ploitation intensity (number of fitness evaluations) applied to the MA throughout the evo-

lutionary process. Such strategy aims to refine the most promising solutions maintaining

the historical memory of the LS procedures already performed on each individual. This

strategy of LS chain was presented in the work of Molina et al. (MOLINA; LOZANO;

HERRERA, 2010) and also used in our previous work (CORRÊA et al., 2018).

In this work, we designed the MA framework combined with the SW algorithm (SO-

LIS; WETS, 1981) as its LS strategy. The LS chain is used to control the SW parameters

for each solution and the execution period of the LS. It should be observed that the SW

algorithm can be replaced by any LS algorithm, preserving the LIP’s mechanism.

Solis and Wets algorithm: The SW metaheuristic is a randomized hill-climber

heuristic with an adaptive step size which starts at a given point x (objective variable of

an individual) of the search space. A constant of deviation d is randomly created under a

normal distribution with standard deviation p. If (x + d) or (x − d) improve the current

step x, a move is performed to the better x, and success is recorded. Otherwise, failure

is recorded. The adaptive step of the algorithm is defined by adjusting the parameter

p according to the number of successes and failures obtained over the search. After a

given number of successes (maxSuccesses), p is increased to raise the step size of the

search, and after a given number of failures (maxFailures), p is decreased to constraint

the search. Also, a bias term b is used to guide the method towards the successes.

LS chain strategy: The chained LS enables that the same individual becomes

the starting point of subsequent applications of the LS, as the best solutions may exist

for several generations in the population. The LS chain strategy keeps the history of

the LS parameterization of each individual to be used as the initial parameter values in

the next LS application, providing an uninterrupted connection between successive LS

invocations of the same individual. Thus, it uses a self-adapting scheme to control the

parameters of the SW algorithm. Each individuali in the population of the MA has its

own parameter values of maxSuccessesi, maxFailuresi, pi and bi, initialized equally.

After the refinement of an individual, the parameters that define the current state of the

LS process are stored along with it. When this individual is selected again to the LS, the

previous control parameters of the SW algorithm are used.

LS application: The LS procedure uses a constant to regulate the LS intensity

114

(Istr) every time that the SW algorithm is applied. The LS intensity is defined according

to the total number of fitness function evaluations performed in one execution of the SW.

Based on this, Molina et al. (MOLINA; LOZANO; HERRERA, 2010) created the ratio

parameter (rL/G) responsible for balancing the exploration efforts on global search and

the refinement of the most promising regions by LS, preventing unnecessary exploitation.

Hence, for every nfrec × Nnodes (Equation 5.2) number of fitness evaluations of the MA

(global search), the LIP is applied to one of the pbest% best solutions of each subpopulation

in an attempt to enhance the exploitation around the niches or escape from local minima

(local search). With this, the SW algorithm is executed on each individual for Istr number

of fitness evaluations after nfrec ×Nnodes fitness evaluations are executed in the MA.

nfrec = Istr
1− rL/G
rL/G

(5.2)

For each nodei(i = 1, · · · , Nnodes) in the tree structure, the pbest% best solutions

of the nodei are stored into its set of best solutions Sbesti . Starting the selection from

the best to the worst individual in Sbesti , it is submitted to the SW algorithm if: (i) it

has never been optimized; or (ii) it was previously refined with success, i.e., its fitness

value was improved by the SW in the last application. The LS is applied to one of the

best individuals that satisfy these conditions. For instance, if the best solution is not

selected for LS, the second best is tested for submission, and so on. We note that only one

individual of each niche is refined in each period that the LIP is executed.

LS restarting procedure: Suppose any of the pbest% best solutions of nodei in

Sbesti is submitted to the SW algorithm. In that case, the LS restarting procedure restarts

its subpopulation, only keeping the best solution, and generates a new one. The LS restart-

ing is used to diversify the population since if none of the pbest% best solutions of the

niche has not been improved by the LS, this indicates that the subpopulation is possi-

bly in a degree of convergence to a local optimum. Whenever a node is restarted, the

clustering-based Speciation algorithm is executed through the dynamic niche size pro-

cedure (DNSP) to reorganize the solutions into the nodes according to their similarities

and adjust the niche size. The niche size is changed whether no solution of any node is

submitted to the LS (Section 5.2.9).

Parameterization of the local improvement procedure: We usedmaxSuccesses =

5, maxFailures = 3, p = 1.0 and b = 0 for initial control parameter values of the

SW as indicated in Molina et al. (MOLINA; LOZANO; HERRERA, 2010) and Corrêa

115

et al. (CORRÊA et al., 2018). The control parameters for Expr/Expt were defined as

Istr = 1000 fitness function evaluations and rL/G = 0.5, consequently nfrec = 1000

fitness evaluations (Equation 5.2). This means that the MA and the LS are alternatively

applied every Nnodes × 1000 fitness function evaluations and that each phase is assigned

50% of the total number of evaluations. For the pbest% control parameter, we adopted

pbest% = 25, which refers to the 25% best solutions of each subpopulation.

5.2.7 Tree Resizing Procedure

As a strategy to enforce the algorithm’s exploration at the beginning of the search

process and reach a reasonable convergence at the last generations of the optimization,

we designed a linear reduction of the number of nodes in the tree structure in the function

of the number of fitness evaluations. This scheme was inspired by the LPSR of the L-

SHADE, previously explained in Section 4.5.3. The tree resizing procedure (TRP) is a

deterministic algorithm that shrinks the number of layers in the tree linearly according to

the number of fitness function evaluations.

TRP reduces the tree structure removing layer by layer to preserve the perfect

ternary tree throughout the process. Thus, given the maximum number of fitness evalu-

ations (Max_Evls) and the initial number of layers (N_initiallayers), the TRP removes

one layer of the tree at every rmlayer number of fitness function evaluations of the frame-

work. rmlayer is defined as follows:

rmlayer =

(
Max_Evls

N_initiallayers

)
(5.3)

In this scheme, the outermost layer of the tree (the leaf nodes) is permanently removed.

At the end of the optimization process, the MA will have precisely one layer with a single

node, i.e., the root node 0 in Figure 5.1. Thus, the dynamic tree structure scheme com-

bined with the clustering-based niching strategy aims to promote population diversity at

the early optimization stages. However, throughout the evolutionary process, it modi-

fies the tree structure, reducing the number of nodes, to increasingly focus on the most

promising regions found. Figure 5.2 illustrates the TRP adoptingMax_Evls = 1000 and

N_initiallayers = 3.

After the resizing of the tree, the clustering-based Speciation algorithm is ap-

plied through the DNSP to reorganize the subpopulations and adjust the niche size (Sec-

116

Figure 5.2: Exemplification of the tree resizing procedure

Source: From the author (2022).

tion 5.2.9). As already mentioned, the MA receives as input parameter the maximum

number of individuals (Max_NS) in the entire population, where the Max_NS re-

mains unchanged during the method’s execution. According to Algorithm 2, the num-

ber of clusters NCl is the current number of nodes in the tree after the TRP, and the

population size remains the initial maximum number of individuals allowed in the tree

(NS = Max_NS). With this, the number of solutions in each subpopulation increases

each time the TRP is performed. This strategy aims to favor the exploration around these

regions by increasing the subpopulation size.

However, the reduction of the niches by the TRP and the increase of the subpop-

ulation size can lead the optimization to some counter issues, such as loss of population

diversity or slow convergence rate, depending on the state of the search process (i.e., the

exploration effort measured by the population diversity degree and the performance of

the algorithm at improving the best solutions). To regulate such issues, we implemented

a control mechanism concerned with the convergence and performance of the algorithm.

This strategy is described in the next section (Section 5.2.8).

117

5.2.8 Control Procedure for Convergence and Performance

According to Sections 2.4 and 2.5, the diversification of population is required

to ensure a suitable algorithm’s exploration of the search space and the ability to over-

come local optima (BOUSSAÏD; LEPAGNOT; SIARRY, 2013; SER et al., 2019). Con-

trarily, the loss of population diversity in a given optimization period is necessary for

the exploitation and convergence of the algorithm (ČREPINŠEK; LIU; MERNIK, 2013).

Consequently, the metaheuristic can reach better performance in terms of optimization

results when an appropriate balance between Expr/Expt is achieved. This means that

a good balance may indicate reasonable exploration, exploitation, and convergence of

the metaheuristic. On the other hand, a non-satisfactory ratio, at the wrong time, may

increase the probability of premature convergence or deteriorate the algorithm’s conver-

gence speed (GUPTA; GHAFIR, 2012; MORALES-CASTAÑEDA et al., 2020).

However, it is known that the Expr/Expt ratio is problem-dependent (XU; ZHANG,

2014). Thus, considering that metaheuristics present a wide range of distinct search com-

ponents and strategies, it is hard to find a general balance for all methods since their

components and parameters are responsible for determining this ratio throughout the pro-

cess (MORALES-CASTAÑEDA et al., 2020).

Regarding the search mechanisms adopted in the proposed framework (Section 5.2.3),

we employed the MA with the tree structure and its procedures to encompass some adap-

tive and hybrid approaches to force the trade-off with specialized search operators in both

discovery and refinement of solutions. For instance, to better populate the search space,

increase population diversity at the early stages of the process, and favor exploration, we

adopted the clustering-based niching initialization. The core search metaheuristic and in-

ner recombination are used to explore the intra-niche regions. The inner recombination

employs tournament selection and DC replacement strategies to maintain the diversity

intra-niche regardless of the chosen core algorithm. Nevertheless, the interactions be-

tween nodes were designed to explore the inter-niche areas and improve the quality of

subpopulations by sharing promising information from the entire tree. The RTS was em-

ployed to keep the feature and cohesion of each niche. Besides, a local improvement pro-

cedure was implemented to force the trade-off between exploration, through the strategies

aforementioned, and exploitation of the best individuals by the SW algorithm as the LIP

alternates between rounds of global and local searches. Hence, as the population-based

algorithms tend to converge towards an optimal point, we designed the TRP to change

118

the tree structure dynamically during the optimization process through a deterministic

scheme. TRP reduces the number of nodes to focus on promising regions while increas-

ing the number of solutions in each subpopulation to avoid losing diversification entirely

and no longer searching around them.

Despite the strategies adopted in our method to enforce both Expr/Expt, we de-

signed a procedure to quantify the balance between these two complementary goals through-

out the optimization by controlling the population diversity degree with diversity mea-

sures and the algorithm’s performance at improving the best solutions. The control mech-

anism aims to avoid possible issues from the synergy among the search components over

distinct objective landscapes, such as slow convergence rate concerning the MA data

structure and the niching strategies adopted or premature convergence caused by the cho-

sen core metaheuristic, the LS algorithm, and the interactions between nodes.

As mentioned in Section 2.5, diversity measures are problem-dependent, and most

of the existing search algorithms that focus on explicit diversity control tend to use them

concerning the objective or decision space. Thus, we employed a strategy that com-

bines the diversities measured in both the objective and decision spaces to quantify the

search space and the distribution of individuals. The diversity measure used in this work

represents the average of four distinct diversity measures, previously presented in Sec-

tion 2.5, of which two distance-based measures: (i) the dimension-wise diversity measure

(Divdimension) given by Equation 2.1; and (ii) the population center measure (Div2center)

described in Equation 2.3. And two other measures focused on the objective space: (iii)

the entropy-based measure (Diventropy) given by Equation 2.4; and (iv) the fitness-based

distance (Divfitness) showed in Equation 2.5. Such a combination of measures was

adopted in an attempt to favor their strengths and overcome their shortcomings to dis-

tinguish distinct populations over the search space and provide better guidance for the

process. With this, the diversity measure incorporated in the MA is given by Equation 5.4

and denotes the average of the normalized values of the four diversity measures consid-

ered.

Divcombined =

(
norm(Divdimension +Div2center +Diventropy +Divfitness)

4

)
(5.4)

Where norm is the normalization scaling method used to rescale the measures to a stan-

dard range through the initial diversity value of each measure calculated from the first

initialized population.

Therefore, to quantify the Expr/Expt ratio through the population diversity, we

119

adopted one of the definitions already presented in Section 2.6, which represents the bal-

ance as the percentage of Expr/Expt performed by a given metaheuristic (MORALES-

CASTAÑEDA et al., 2020). Considering the combined diversity measure in Equation 5.4,

the Expr/Expt ratio is defined by the relative diversity of the population, as follows:

Expr% =

(
Divcombined

Div_initialcombined

)
(5.5)

Expt% =

(
| Divcombined −Div_initialcombined |

Div_initialcombined

)
(5.6)

Where Divcombined is the diversity rate of the current iteration and Div_initialcombined

is the initial diversity value of Divcombined calculated from the first initialized popula-

tion. We note that Div_initialcombined tends to be one of the highest diversity values

found throughout the process. The percentage of exploration (Expr%) describes the ex-

ploration effort as the relationship between the diversity in each iteration and the initial

diversity degree. The percentage of exploitation (Expt%) is calculated as the comple-

mentary percentage to Expr% and describes the exploitation effort. It should be noted

that both Expr% and Expt% are mutually complementary, then addressing one of them

is enough to deal with both of the efforts.

In this work, theExpr% measure is employed to evaluate the relationship between

the population diversity, the Expr/Expt balance, and the metaheuristic’s performance at

improving the best solutions. The control mechanism for convergence and performance

of the algorithm can be divided into two different procedures: (i) the restarting procedure;

and (ii) the performance verification.

Restarting procedure: The restarting is considered one of the essential compo-

nents of a MA, mainly used to avoid premature population convergence and support the

method to escape from local minima (MOSCATO; COTTA, 2010). In the proposed MA,

the niche restarting procedure is responsible for monitoring and independently restart-

ing each subpopulation of the tree if it reaches a premature convergence according to the

Expr% values (Equation 5.5).

With this, the population of a given node is reinitialized if it has reached Expr%

less than pexpr% and if the simple moving average (SMA) of the Expr% values shows a

decreasing tendency when compared with the SMA calculated in the previous period of

generations. Expr% values are expressed as a percentage in the continuous range [0, 1],

120

and the parameter pexpr% is the threshold used to indicate whether the subpopulation

has signs of convergence or not, as lower values of Expr% indicate low algorithm’s

exploration.

The SMA represents an arithmetic moving average calculated by adding current

values of interest and then dividing that sum period by the number of generations in

the calculation average. In our case, the SMA is used to analyze the Expr% values by

creating two comparison periods of averages. These periods encompass a certain number

of overlapped generations, where the latest period may drop the earliest Expr% value

(oldest generation) and includes the latest Expr% (current generation), similar to a FIFO

(First in, First out) schema. For instance, a x-generation moving average would average

the closing Expr% values for the first x generations as the first data point. The next data

point would drop the earliest Expr%, add the Expr% on generation x+ 1, and then take

the average, and so on. The SMA of the current and the past periods are compared to

follow the exploration behavior over these generations.

The latest period is the current SMA_Exprcurr, which considers the current value

of Expr% in the current generation and the last n_gen − 1 values measured in the last

n_gen − 1 generations. The second period is the SMA_Exprprevious, which means the

last SMA calculated before the current SMA. The SMA_Exprprevious considers the last

n_gen values ofExpr% calculated before the last (current) generation included in the cur-

rent SMA_Exprcurr. The SMA_Exprcurr and SMA_Exprprevious are given by Equa-

tions 5.7 and 5.8, respectively.

SMA_Exprcurr =
1

n_gen

gencurr∑
i=gencurr−(n_gen−1)

Expr%i (5.7)

SMA_Exprprevious =
1

n_gen

gencurr−1∑
i=(gencurr−1)−(n_gen−1)

Expr%i (5.8)

Where n_gen is the period in terms of generations used to calculate the SMA and gencurr

represents the current generation of the algorithm’s execution. The SMA was used with

the Expr% values to identify the exploration variation through the optimization process.

The moving average can smooth out short-term fluctuations of the measure and highlight

trends of variations instead of using only the Expr% of the current generation compared

to the previous one. For instance, the framework can be used with any core metaheuris-

tic with distinct diversification strategies and selection pressure. The SMA can better

121

describe the increasing/decreasing exploration trend instead of the single comparison be-

tween the current status of exploration and the previous one.

Thus, for each nodei(i = 1, · · · , Nnodes) in the tree structure, its subpopulation is

reinitialized if:

1. Exprcurri < pexpr%, which indicates that the current Expr% is less than pexpr%;

2. SMA_Exprcurri < SMA_Exprpreviousi , which indicates that the current SMA of

Expri% values is less than the SMA of n_gen generations ago (i.e., the exploration

is decreasing according to a period of generations).

If restarting, the procedure discards the entire subpopulation and generates a new

one, only keeping the best solution. The restarting procedure is shown in Algorithm 4,

which receives as input parameters the subpopulations of nodes nodes, the initial diversity

of each one Div_initialcombined and the period in terms of generations n_gen used to

calculate the SMA.

Algorithm 4 Pseudocode of the restarting procedure.
Require: nodes: node subpopulations; Div_initialcombined: initial diversities of nodes; n_gen:

number of generations used to calculate the SMA
Ensure: nodes: node subpopulations after the restarting procedure

1: pexpr% = 0.01

2: for each nodei in nodes, i← 1 : Nnodes do
//Population diversity and exploration inference

3: calculate the current Divcombinedi for nodei (Equation 5.4)
4: calculate Exprcurri from Div_initialcombinedi and Divcombinedi for nodei (Equation 5.5)
5: store Exprcurri to be considered in the SMA of Expr% values
6: SMA_Exprpreviousi ← SMA_Exprcurri
7: SMA_Exprcurri ← calculate SMA of Expr% values through n_gen generations for nodei

(Equation 5.7)
8: if (Exprcurri < pexpr%) and (SMA_Exprcurri < SMA_Exprpreviousi) then

//Exploration is decreasing

9: restart the subpopulation of nodei
10: end if
11: restart the Expr% values stored
12: end for
13: return nodes

The restarting is used to diversify the population since a low Expr% rate means

a low population diversity. Depending on the value adopted for the threshold pexpr%, the

Expr% may represent the convergence of the population to a local optimum. Thus, rec-

ommended values for pexpr% are in the continuous range [0, 0.1] (MORALES-CASTAÑEDA

et al., 2020). In this work, we adopted pexpr% = 0.01, which means that the restarting

122

is performed in a given niche if the exploration rate is less than 1%. This low value was

adopted to guarantee a probable population convergence since the framework has other

mechanisms to slow down the convergence and not only the restarting. The comparison

between the current SMA and the previous one was included to verify the loss of diver-

sity in a given niche, which combined with the low exploration rate corroborates with

the convergence of the subpopulation. Moreover, it should be noted that the increase of

diversity given by the comparison of the two periods of SMAs, even with Expr% being

less than pexpr%, could indicate that diversity was recently inserted into the niche. Then,

the MA can still find a promising path of improvement from this diversity, and restarting

is avoided.

Finally, whenever a node is restarted, the clustering-based Speciation algorithm is

executed through the DNSP to reorganize the solutions into the nodes according to their

similarities (Section 5.2.9). However, we observe that the niche size is not changed when

the niche restarting is performed.

Performance verification procedure: The procedure aims to control the perfor-

mance of the MA by analyzing the number of improvements of solutions throughout a

certain period of generations. Similar to the restarting, but less aggressively, it intends

to avoid the method’s stagnation and support the algorithm to escape from local min-

ima by dynamically changing the size of each niche depending on the exploration status

at a given moment of the algorithm’s execution. The procedure works using a dynamic

threshold (evoltime) related to the period with no improvement (not_imp) of the gbest

solution.

Firstly, the variable not_imp is initialized with 0 and is incremented by 1 with

each consecutive generation that the gbest solution is not improved, i.e., the fitness value

of the gbest remains the same as the previous generation. Then, if the gbest solution has

not been improved during evoltime number of generations (i.e., not_imp > evoltime), this

procedure applies the DNSP in the entire population of the MA. DNSP is responsible for

changing the size of subpopulations considering the increasing/decreasing of the explo-

ration given by the SMA of two periods ofExpr% values and reorganizing the individuals

through the clustering-based niching algorithm. Such procedure is explained in the next

section (Section 5.2.9).

Secondly, to update the dynamic threshold evoltime, the difference between the

number of current generation (gencurr) and the previous threshold used in the last update

of the procedure (evolprevious) is stored as the new value for the threshold (i.e., evoltime =

123

gencurr − evolprevious). With this, whenever the condition (not_imp > evoltime) is satis-

fied, the threshold is updated as the number of generations that the MA took to reach the

no improvement threshold since the last time that this condition was satisfied. The vari-

able evolprevious gets the previous evoltime value. The variables evoltime and evolprevious

are initialized with the low value of 1 in an attempt to quickly adjust the size of sub-

populations to suitable search indicators at the beginning of the process, in case of no

improvement of the best solution. Besides, it should be noted that the threshold evoltime

increases according to the number of improvements performed by the algorithm. The

more improvements without satisfying the condition for the application of the DNSP, the

higher the threshold evoltime when updated.

The Algorithm 5 shows the pseudocode of the performance verification procedure.

It receives as input parameter the MA population, current value of the not_imp variable,

the current dynamic threshold evoltime, the previous dynamic threshold evolprevious, and

the current generation gencurr.

Algorithm 5 Pseudocode of the performance verification procedure.
Require: P : MA population; not_imp: number of generations that gbest solution has not

been improved so far; evoltime: current dynamic threshold; evolprevious: previous dy-
namic threshold; gencurr: current generation

Ensure: P : MA population after the performance verification procedure
1: if not_imp > evoltime then
2: P ← apply the dynamic niche size procedure in the MA population (Algorithm 6)
3: evoltime = gencurr − evolprevious
4: evolprevious = gencurr

5: not_imp = 0

6: end if
7: return P

5.2.9 Dynamic Niche Size Procedure

One of the most critical parameters to adapt is the population size since such

parameter strongly influences the balance between Expr/Expt (SER et al., 2019). It is

known that the optimal population size is problem-dependent. Nevertheless, combining

strategies to adapt this parameter over the search process with other sensitive issues to

guide better the method, such as the Expr/Expt trade-off and the algorithm’s performance

at improving the best solutions, can enhance the final results (ALETI; MOSER, 2016;

POLÁKOVÁ; BUJOK, 2018; SER et al., 2019). Thus, the proposed MA already adopts

124

the TRP to dynamically reduce the number of nodes in the tree structure to favor the

exploration at the early stages of the optimization process and ease the exploitation around

the promising regions at the last stages. Moreover, the Expr/Expt balance inferred in terms

of the population diversity and the algorithm’s performance is also addressed by the LS

restarting, niche restarting, and performance verification procedures.

Therefore, as a complement to these search procedures, we designed the dynamic

niche size procedure (DNSP) to dynamically adapt the size of the tree structure’s subpop-

ulations and reorganize the individuals through the clustering-based niching algorithm.

This procedure changes the size of subpopulations regarding the minimum and

maximum (Min_NSnode, Max_NSnode) number of individuals allowed in each node.

The Min_NSnode is defined according to the minimum number of solutions required

in the core metaheuristic. In this work, we adopted Min_NSnode = 5 which is suitable

for most population-based metaheuristics. TheMax_NSnode is defined based on the ratio

between the input parameter that defines the maximum number of individuals (Max_NS)

in the entire population of the framework and the number of nodes (Nnodes) in the tree

structure given by Equation 5.9. The Nnodes is given by the number of layers (Nlayers)

in the tree (Equation 5.1). We observe that the number of nodes in the tree decreases

whenever the TRP is applied, and hence the Max_NSnode is increased, as previously

discussed.

Max_NSnode =
Max_NS
Nnodes

(5.9)

The DNSP is applied whenever: (i) the TRP (Section 5.2.7); (ii) the LS restarting

(Section 5.2.6); (iii) the niche restarting (Section 5.2.8); and (iv) the performance veri-

fication procedure (Section 5.2.8) are executed. However, the conditions to change the

subpopulation size in DNSP are different in each case. Such conditions are described as

follows. Also, these procedures are executed following priority orders, discussed below

(Section 5.2.10).

First scenario: Whenever the TRP procedure is executed, the DNSP is performed.

When this procedure is performed, the new size of subpopulations is defined randomly

based on the minimum (Min_NSnode) and maximum (Max_NSnode) number of individ-

uals allowed in each node. Thus, the new subpopulation size M after the TRP application

is given by Mnew = rand(Min_NSnode,Max_NSnode), where rand generates an inte-

ger number in the range [Min_NSnode,Max_NSnode].

The size of subpopulations is randomly defined in this scenario because the TRP

changes the tree structure and modifies the maximum number of individuals (Max_NSnode)

125

allowed in each node. Then, any condition based on the exploration degree would be af-

fected.

Second scenario: Whenever the LS restarting and the performance verification

procedures are performed, the DNSP dynamically changes the size of subpopulations of

the tree structure, considering the variation in the increase and decrease of the exploration

given by the SMA of two distinct periods of Expr% values. With this, the procedure

adapts the subpopulation size regarding two significant issues of the optimization process,

i.e., the exploration through the population diversity degree and the performance via the

improvement of best solutions. However, we note that the niche size is only changed in

the LS restarting whether no solution of any node is submitted to the LS.

Therefore, the DNSP considers the average Expr% of the entire MA population,

i.e., all subpopulations of the tree. It calculates the average Expr% regarding all nodes of

the tree in each generation (Expravg%), as follows:

Expravg% =
1

Nnodes

Nnodes∑
i=1

Expri% (5.10)

Where Expri% represents the exploration given by Equation 5.5 of each nodei(i =

1, · · · , Nnodes) in the tree structure.

Then, the SMA is used to analyze the Expravg% values by creating two compar-

ison periods of averages. We highlight that the two periods of generations are calculated

in the same way as for the restarting procedure, but using the Expravg% values of each

generation instead of considering each node individually. The latest period is the current

SMA_Avg_Exprcurr (Equation 5.7), which considers the current value of Expravg% in

the current generation and the last n_gen− 1 values measured in the last n_gen− 1 gen-

erations. And the second period is the SMA_Avg_Exprprevious (Equation 5.8), which

means the last SMA calculated before the current SMA. The SMA_Avg_Exprprevious

considers the last n_gen values of Expravg% calculated before the last (current) genera-

tion included in the current SMA_Avg_Exprcurr.

Thus, the DNSP changes the size of subpopulations based on the exploration sta-

tus, as follows:

1. If (SMA_Avg_Exprcurr < SMA_Avg_Exprprevious), the size of each subpopu-

lation is randomly increased considering the integer interval [M+1,Max_NSnode].

Let M be the current number of individuals in the subpopulation, the new popula-

tion size is given byMnew = rand(M+1,Max_NSnode), where rand generates an

126

integer number in the range [M + 1,Max_NSnode]. This condition points out that

the current SMA of Expravg% is less than the previous SMA, i.e., the exploration

is decreasing according to the compared periods. Then, increasing the number of

solutions may increase the exploration in terms of population diversity. When this

condition is satisfied, the procedure randomly initializes Mnew −M individuals for

each niche in order to meet the new subpopulation size;

2. Contrarily, if (SMA_Avg_Exprcurr > SMA_Avg_Exprprevious), the size of each

subpopulation is randomly decreased considering the integer interval [Min_NSnode,M−

1]. The new population size is given byMnew = rand(Min_NSnode,M−1). Such

a condition indicates that the current SMA of Expravg% is higher than the pre-

vious SMA, i.e., the exploration is increasing. Reducing the subpopulation size

may decrease the exploration and increase the exploitation in terms of popula-

tion diversity. When this condition is satisfied, the procedure discards the worst

(M −Mnew)×Nnodes individuals of the entire population to meet the new subpop-

ulation size.

We note that the new subpopulation size is applied to all nodes of the tree as the procedure

considers the SMA of the Expravg% values of the entire MA population.

As already mentioned, the conditions above to change the subpopulation size are

only applied when the LS restarting and the performance verification procedures are ex-

ecuted, which indicates that the algorithm cannot improve the best solutions for a given

number of generations. Thus, we tried to relate this stagnation with the SMA of Expr/Expt

efforts of the algorithm. If the exploration decreases in a given period, the subpopulation

size is increased to overcome local minima. Alternatively, if the exploration is increasing,

the subpopulation size is reduced, increasing exploitation, to enforce the convergence and

focus the search on the best solutions of each node.

Moreover, most of the works presented in Section 4 that adopt a dynamic multi-

population size strategy randomly determine the new subpopulation size based on the

quality of the best solution. The random definition of the niche size does not consider

the current status of the search process, that is, the population diversity degree, Expr/Expt

efforts, and the algorithm’s performance to point out the appropriate direction on the

change in the population. With this, the DNSP aims to define which direction the search

process should follow before defining the new size of subpopulations.

Third scenario: Whenever the niche restarting procedure is executed, the DNSP

is performed. However, the niche size is not changed as in the above scenarios. In this

127

case, the DNSP only executes the clustering-based Speciation algorithm to reorganize the

solutions into the nodes according to their similarities.

Reorganization of the subpopulations: After performing any of the above sce-

narios, the clustering-based Speciation (Algorithm 2) is applied to reorganize the individ-

uals into the nodes according to their similarities. Thus, the niching algorithm receives

as input parameter the current number of nodes in the tree (NCl = Nnodes) and the

number of individuals in the entire population considering the new subpopulation size

(NS = Mnew × Nnodes), when changed. The DNSP is described in Algorithm 6, which

receives as input parameters the subpopulations of nodes nodes, the exploration value

Expr% of each one and the period in terms of generations n_gen used to calculate the

SMA.

5.2.10 Priority Order of the Components

To avoid search strategy overlap regarding the procedures for control of diver-

sity/convergence and performance, we defined priority order of execution per generation

for each one. Thus, the TRP, the LS restarting, the niche restarting, the performance veri-

fication, and the DNSP procedures are performed based on the following priority orders:

1. The TRP is performed whenever its application condition is satisfied (Section 5.2.7);

2. The LS restarting is performed whether its application condition is satisfied and the

TRP is not performed (Section 5.2.6);

3. The niche restarting is applied whether its application condition is met and the LS

restarting is not executed (Section 5.2.8);

4. The performance verification procedure is executed whether its application condi-

tion is satisfied and none of the above components are performed (Section 5.2.8);

5. The DNSP is performed whenever any of the above components is applied (Sec-

tion 5.2.9).

Such order of execution was adopted to prevent the overlapping of search strate-

gies and especially not to bias the search process by applying different procedures with a

similar purpose at the same generation. Figure 5.3 illustrates the priority orders described

above.

128

Algorithm 6 Pseudocode of the dynamic niche size procedure.
Require: nodes: node subpopulations; Expr%: exploration values of nodes; n_gen: number of

generations used to calculate the SMA
Ensure: nodes: node subpopulations after the DNSP

1: Min_NSnode = 5

2: Max_NSnode =Max_NS/Nnodes
//Exploration inference of the entire population

3: calculate Expravg from average of Expri% values of each nodei in nodes (Equation 5.10)
4: store Expravg to be considered in the SMA of Expravg% values
5: SMA_Avg_Exprprevious ← SMA_Avg_Exprcurr
6: SMA_Avg_Exprcurr ← calculate SMA of Expravg% values through n_gen generations
7: if (TRP) was performed then //First scenario

8: Mnew ← rand(Min_NSnode,Max_NSnode) //Increase/decrease the subpopulation size

9: initialize or discard solutions for each nodei in nodes depending on the Mnew

10: end if
11: if (LS_restarting) or (PerformancV erification) were performed then //Second scenario

12: if SMA_Avg_Exprcurr < SMA_Avg_Exprprevious then
//Exploration is decreasing

13: Mnew ← rand(M + 1,Max_NSnode) //Increase the subpopulation size

14: randomly initialize the Mnew −M solutions for each nodei in nodes

15: else
//Exploration is increasing

16: Mnew ← rand(Min_NSnode,M − 1) //Decrease the subpopulation size

17: discard the worst M −Mnew solutions of each nodei in nodes

18: end if
19: restart the Expravg% values stored
20: end if
21: if (TRP) or (LS_restarting) or (niche_restarting) or (PerformancV erification) were per-

formed then //All scenarios

//Apply the niching strategy using the updated niche size M

22: nodes← ClusteringSpeciation(nodes,Mnew ×Nnodes, Nnodes)
23: end if
24: return nodes

5.2.11 Summarization of the Framework-based MA

The framework-based MA was proposed for continuous optimization but focused

on global optimization with multimodal objective functions. It aims to be a general op-

timization method that can be easily adapted to other search strategies and components.

Table 5.1 summarizes the main components incorporated in the framework, the search

strategies, and concepts related to them. The Algorithm 7 shows the pseudocode of the

MA, which receives as input parameters the initial number of layersNlayers in the tree, the

maximum number of individuals Max_NS in the entire population of the MA, the maxi-

mum number of fitness function evaluations Max_Evls, the number of generations gcore

129

Figure 5.3: Exemplification of the priority order of execution for each procedure

Source: From the author (2022).

executed by the core metaheuristic and the period in terms of generations n_gen used to

calculate the SMAs. It is noted that the solutions of subpopulations are kept sorted from

best to worst according to the fitness values throughout the algorithm’s execution. The

following section describes the adopted core metaheuristic and the modified versions to

deal with multimodal optimization. We observe that the parameter setting and the in-

termediate variants used to design this version of the method are further detailed in the

section of computational experiments (Section 6.2).

Table 5.1: Summarization of the MA components, search strategies and main concepts
related to them

Component Search strategy Search concept
Tree initialization Clustering-based Speciation Niching
Core search algorithm Any metaheuristic Niche optimization
Inner recombination Uniform crossover with DC Intra-niche exploration and diversity preservation
Node interactions Uniform crossover with RTS Inter-niche exploration and diversity preservation
LIP LS chain with SW algorithm Global/local balance; LS with self-adapting param.
LS restarting Restarting of subpopulation Population diversification
TRP Linear reduction of tree nodes Balance between Expr/Expt;
Control mechanism Restarting and performance control Population diversification; Expr/Expt balance
DNSP Adaptive niche size; Re-clustering Expr/Expt balance; overcome search issues

Source: From the author (2022).

130

5.2.12 Core Metaheuristic

The proposed framework-based MA was combined with a modified version of the

ABC algorithm (KARABOGA; BASTURK, 2007) employed as the core metaheuristic

responsible for the MA subpopulations’ inner exploration. Each node of the tree in-

corporates an independent execution of the algorithm. This metaheuristic is based on

the foraging behavior of a bee colony, which is focused on multivariate numerical func-

tion optimization (KARABOGA; BASTURK, 2007; AKAY; KARABOGA, 2012). ABC

becomes a popular optimizer because it presents few control parameters, simple struc-

ture, ease of implementation, and robust optimization performance when compared with

other population-based metaheuristics (KARABOGA; BASTURK, 2008; KARABOGA;

AKAY, 2009; GAO; LIU; HUANG, 2012; KARABOGA et al., 2014; DOKEROGLU

et al., 2019). The standard ABC and some relevant variants were previously discussed

in Sections 4.5.1 and 4.5.2. Also, it should be noted that other ABC variants were al-

ready explored in our previously published works, as shown in (CORRÊA; DORN, 2018;

CORRÊA; DORN, 2019; CORRÊA; DORN, 2020).

Thus, according to the literature, we believe that the synergy of concepts between

the MA and ABC algorithms seems suitable to the optimization domain understudy in the

sense of efficient search space exploration and refinement of solutions. The core search

algorithm was designed as a hybrid algorithm that uses a self-adaptive strategy for its

control parameters, population division based on the solutions’ quality, and DE-based

mutation to further enhance the search abilities of the ABC.

Hybrid Self-adaptive ABC

As mentioned in Sections 4.5.1 and 4.5.2, the ABC (Algorithm 1) has the ability of

search space exploration but presents some inefficiencies of exploitation, which can imply

in slow convergence rate and stagnation (ZHU; KWONG, 2010; AKAY; KARABOGA,

2012; LI; NIU; XIAO, 2012). One of the possible reasons for such an issue may be that

the mutation search strategy used in the standard ABC (Equation 4.1), when a candidate

solution is generated, randomly updates only one objective variable of the corresponding

parent solution at a time, which makes the disturbance in variables small. Moreover,

the standard Equation 4.1 is entirely random in terms of direction, and it may also not

consider the information of the fittest solutions of the population. Hence, the promising

evolution direction is not fully exploited at all. The mutation focuses more on exploration

131

and relatively neglects exploitation (KIRAN; FINDIK, 2015; CUI et al., 2016; GAO et

al., 2018).

According to the literature, several ABC variants have been proposed over the

years by mainly modifying the solution search equation and combining the ABC with

other search strategies (CAI et al., 2020). With this, we designed a modified version of the

ABC in an attempt to overcome such issues and accelerate the algorithm’s convergence

inside each node of the tree.

Population division strategy: Therefore, each ABC subpopulation is internally

subdivided into two groups according to the solutions’ fitness quality. Each group em-

ploys a distinct mutation search equation to enforce the exploration from part of the

population and enable the convergence to promising regions from the other part. The

population division strategy is adopted to balance the Expr/Expt mechanisms of the ABC

by avoiding the use of a single mutation for solutions in different stages of convergence.

So it tries to employ the most reasonable search equation for each group regarding the

optimization stage of the individuals.

This strategy splits the individuals of a given node into two levels concerning their

fitness values: (i) the superior individuals, which have better fitness values and are suitable

for exploitation; and (ii) the inferior individuals, which represent the poorer solutions and

are suitable for exploration. As fitness division threshold used to classify the solutions,

we adopted the midpoint of the set of fitness values (md), given as follows:

md =
f(Xworst) + f(Xbest)

2
(5.11)

Where f(Xworst) and f(Xbest) are the objective values of the worst and best solutions of

the current subpopulation. Each subpopulation has its md based on its set of solutions.

The midpoint of the set of fitness values does not consider the number of solutions allo-

cated in each group and can be easily calculated. Then, individuals of a given niche with

similar fitness may focus on exploration or exploitation and not on both based on the split

of the population. The size of the groups varies according to the optimization status of

the subpopulation.

When the core algorithm is applied to a given node, at the beginning of each

generation, each individual of the subpopulation is compared with the division threshold

md, where the solutions with fitness values better than the threshold are categorized as

superiors. In contrast, individuals with fitness worse than the midpoint are classified as

inferior individuals.

132

The superior individuals are guided by the best individual of the subpopulation

to move toward the global of this niche and hence accelerate the population conver-

gence. These individuals are mutated by the gbest search equation of the GABC (ZHU;

KWONG, 2010). On the contrary, inferior solutions should explore other regions of the

search space and preserve population diversity. The inferiors are updated via the solution

search equation “DE/rand/1” from the DE algorithm, described by Equation 4.4 in Sec-

tion 4.5.3. “DE/rand/1” is a random mutation with no bias to any search direction, which

favors the search space exploration.Thus, the population division strategy is used to not

only accelerate the convergence of the best solutions but also to maintain some degree of

diversity in order to overcome local optima and premature convergence.

The proposed ABC follows the same stages of optimization of the standard ABC

described in Algorithm 1 (Section 4.5.1). It consists of three steps that simulate the for-

aging task performed by specialized bees of a honeybee. The employed bees’ stage is

responsible for updating all solutions of the subpopulation through a mutation search

equation. The onlooker bees’ stage selects to update the fittest solutions based on their fit-

ness values via the ranking-based selection. The same updating process of the employed

bees’ step is applied to the selected solutions. Moreover, the scout bees’ stage is used

to diversify the population, discarding the most inactive individual and generating a new

one. The most inactive solution is the one that does not suffer improvements for a given

number of generations. In this sense, we observe that the division of population and clas-

sification of individuals as superiors/inferiors are done at the beginning of each algorithm

generation. Such split determines which solution search equation is employed to mutate

a given individual over the ABC stages.

Superior individuals: In employed and onlooker bees’ stages, the superior indi-

viduals are updated by the gbest search equation presented in the GABC (ZHU; KWONG,

2010), which was proposed to enhance the exploitation ability of the ABC. The update

operation in both stages of optimization generates a new solution υi from the i-th existing

solution Xi of the subpopulation, such that Xi is a superior individual. This operation

is done by the gbest equation (Equation 4.2), previously described in Section 4.5.2, but

shown again as following:

υij = xij + δij(xij − xkj) + γij(gbestj − xij) (4.2)

Where i = 1, · · · , SN , and j = 1, · · · , D. SN denotes the number of solutions in the

subpopulation and D is the problem dimension. xij is the j-th variable of Xi, υij is

133

the value assigned to xij , and xkj represents the j-th variable of the k-th solution (k =

1, · · · , SN), randomly selected among all solutions of the subpopulation, such that k 6= i.

δij is the scaling factor, which is a random real number in the range [−1, 1], gbestj is the

j-th position of the current best individual of the niche, and γij is a random real number in

the range [0, 1.5]. The number of mutated variables in each update operation is controlled

by the rate-MR parameter, further explained. υi replaces Xi if it is better regarding their

fitness function values.

The gbest search equation considers the influence of the fittest solution of the niche

and its neighborhood to guide the mutation operation towards promising directions and

then increase the convergence rate, refining the accuracy of individuals. As the superior

individuals have better fitness than the inferiors, gbest mutation is used to preserve their

quality and improve the local search mechanism of the algorithm. From Equation 4.2, it

is observable that the candidate solution Xi, the randomly selected solution Xk, and the

current gbest solution gbest collaborate to determine the step size and direction of the

variables of the newly generated solution υi. Thus, the solutions generated from gbest

mutation tend to search toward a potential global optimum.

Inferior individuals:

Inferior individuals are solutions with fitness values worse than or equal to the sub-

population division threshold md, which indicates that these points have not yet reached

a considerable degree of convergence and could be suitable for exploration. As gbest

search equation (Equation 4.2) for superior individuals can enforce the ABC exploitation,

it also tends to get trapped at local points more often than random mutations due to the

homogeneous orientation direction. So this low level is used in attempt to maintain some

diversity degree intra-niche as a counter-balance regarding the superior level.

To do so, we adopted the “DE/rand/1” search equation from the DE algorithm,

previously described by Equation 4.4 in Section 4.5.3. Similar to the update operation in

ABC, in the employed and onlooker bee updating steps, a new solution υi is generated

through the “DE/rand/1” from the i-th existing solution Xi of the subpopulation, such

that Xi is an inferior individual. The equation randomly selects two individuals of the

subpopulation, and their difference multiplied by a scale factor F ∈ [0, 1] is added to the

third randomly selected individual. This operation is illustrated again as follows:

υi = Xr1 + F (Xr2 −Xr3) (4.4)

Where the indexes r1, r2, and r3 are randomly chosen within a set [1, SN], such that SN

134

is the number of solutions in the subpopulation and r1 6= r2 6= r3 6= i. We note that the

number of mutated variables in each update operation is also controlled by the rate-MR

parameter, further described. The update ends with a greedy selection between the new

solution and the former regarding their fitness function values.

The “DE/rand/1” is a random search equation that lies in the fact that it has no

bias to any search direction, such as the oscillation phenomenon (CUI et al., 2016; CUI

et al., 2017). Besides, “DE/rand/1” tends to present a more random behavior focused on

diversification than the standard ABC equation (Equation 4.1), due to the number of ran-

domly selected solutions and organization of the mutation terms. With this, through this

level, the inferior individuals are guided by differential operations between randomly se-

lected solutions in order to preserve their exploratory profile and enhance the search space

exploration, thus supporting the niche to avoid local optima and premature convergence.

Finally, this hybridization of the ABC and DE algorithm should provide a more efficient

method than using a single metaheuristic (JADON et al., 2017).

Mutation rate-MR strategy: In the standard ABC and GABC variant, the em-

ployed and onlooker bees generate new solutions by changing only one dimension of

their parent solutions, which can be one of the reasons for the algorithm’s slow conver-

gence. With this, as mentioned in Section 4.5.2, the mutation rate-MR strategy (AKAY;

KARABOGA, 2012) was proposed to mutate more than one variable at a time in the ABC

update operation. This strategy is very similar to the binomial crossover in the DE algo-

rithm, earlier described by Equation 4.5. In the rate-MR, each variable j of the solution

Xi is probabilistically updated according to the control parameter MR. Thus, a variable

is updated with a probability of MR% whether rand(0, 1) < MR, where rand generates

a real number in the range [−1, 1].

Therefore, we incorporated the rate-MR in the ABC update of solutions for both

superior and inferior levels to regulate the number of mutated variables in each operation.

This strategy is used to increase the disturbance in the candidate solutions’ variables and

promote exploitation through the gbest search equation for superior solutions and keep

population diversity by the “DE/rand/1” equation for inferiors. Then, the employed and

onlooker bees’ phases consider more dimensions to be mutated at each operation based on

the defined threshold MR. In this work, we used rate-MR with MR = 0.4 by the sugges-

tion of Akay and Karaboga (AKAY; KARABOGA, 2012) for continuous optimization.

The lower value for MR may imply the slow improvement of solutions, while the higher

value for MR can cause an unnecessary diversification in the population. Therefore, an

135

objective variable is updated with a probability of 40%, if rand(0, 1) < 0.4.

ABC control parameters: It is known that the performance of any metaheuristic

is based on its search components and control parameters. The mechanisms adopted

in our ABC version aims to balance the Expr/Expt efforts inside each node of the tree

with the support of the MA framework. The control parameters in the proposed ABC

encompass the population size SN , the scaling factors δ and γ for gbest search equation

and the scaling F for “DE/rand/1”, the mutation rate MR, and the “limit” parameter l

for scout bees. The MA controls the size of subpopulations submitted to the ABC, and

the MR parameter was defined above. Also, we adopted the common proportion l =

SN ×D for the threshold of discarding the scout bees, following the suggestion of Akay

and Karaboga (AKAY; KARABOGA, 2012) as a good setting. SN is the population size,

and D represents the problem dimension. Notably, this proportion l = SN × D seems

to be especially reasonable in our case due to the dynamic size of the subpopulations

throughout the search, regulated by the control search strategies incorporated in the MA

for convergence and performance.

Finally, the search equations’ scaling factors δ, γ and F are self-adapting con-

trol parameters throughout the optimization process. This self-adaptive mechanism was

inspired in the jDE algorithm (BREST et al., 2006; BREST; MAUČEC; BOŠKOVIĆ,

2019), previously explained in Section 4.5.3. Each individual Xi of the subpopulation

has its control parameter values δi, γi and Fi, which are evolved together with the individ-

ual throughout the process. The concept of self-adaptation is that better solutions tend to

survive to the next generation and propagate their variables along with the parameter set

responsible for high quality (ALETI; MOSER, 2016). With this, different from the stan-

dard ABC and GABC, the control parameters δ and γ in our method are kept the same

for a given candidate solution Xi during the update operation, which yields δi and γi for

Xi. For instance, in the standard ABC, a random value of δ ∈ [0, 1] is assigned to each

mutant variable of Xi, i.e., δij for the j-th position of Xi. This modification was done due

to the self-adaptive strategy adopted for the scaling parameters. New parameter values for

δi,gen+1, γi,gen+1 and Fi,gen+1 are defined before the update operation of Xi, as shown in

the following equations:

δi,gen+1 =

δl + rand1 · δu if (rand2 < τ)

δi otherwise
(5.12)

136

γi,gen+1 =

γl + rand3 · γu if (rand4 < τ)

γi otherwise
(5.13)

Fi,gen+1 =

Fl + rand5 · Fu if (rand6 < τ)

Fi otherwise
(5.14)

Where i, gen+1 represent the definition of the control parameter of the candidate solution

Xi that will be used in the next update operation. randj (j ∈ 1, 2, 3, 4, 5, 6) are random

values in the range [0, 1], whereas the τ value is the probability to modify the scaling

factors δ, γ and F . The control parameters are initialized at the beginning of the MA

execution in the initialization step of the framework.

According to the jDE algorithm (BREST et al., 2006), we adopted for τ , Fl and

Fu, the fixed values 0.1, 0.1, 1.1, respectively (BREST; MAUČEC; BOŠKOVIĆ, 2019).

Also, according to the GABC equation (Equation 4.2), δl, δu, γl and γu are set to −1,

2, 0 and 1.5, respectively. With this, the δ parameter can get values from [−1, 1], γ can

assume values from [0, 1.5] and F can take values from [0.1, 1.2]. Lastly, it is observed

that δi,gen+1, γi,gen+1 and Fi,gen+1 are calculated before the mutation is performed. So they

influence the update and selection operations of the newly generated solution υi.

The complete ABC algorithm: The hybrid ABC algorithm designed in this work

is used as the core metaheuristic for niche exploration in the MA framework. As already

described in Section 5.2.3, each node of the tree runs the core algorithm independently

to optimize its subpopulation. The Algorithm 8 describes the pseudocode of the hybrid

ABC. The method is executed by gcore generations in each node and receives as input pa-

rameter the subpopulation of a given node to be optimized, and the number of generations

(gcore) to be executed as stop criterion.

Briefly, the main loop of the algorithm represents the evolutionary process, which

is iterated for gcore generations. In the employed bees’ stage (Algorithm 8, line 4),

all solutions are updated according to the population division strategy (Algorithm 8,

line 3), where the superior individuals are mutated by the gbest search equation (Equa-

tion 4.2) (Algorithm 8, line 9) and the inferior ones are updated by the mutation operation

“DE/rand/1” (Equation 4.4) (Algorithm 8, line 19). The scaling factor parameters δ, γ and

F for these equations are initialized at the beginning of the MA execution in the initial-

ization step of the framework and self-adapted during the ABC execution in the employed

137

and onlooker bees’ stages (Algorithm 8, lines 13 and 23, respectively). So the ABC en-

codes the scaling factors alongside the objective variables in a single vector, which are

evolved together during the optimization process. After the definition of δi and γi for

popi, the gbest search equation (Equation 4.2) is applied to υij (Algorithm 8, line 9).

In the onlooker bees’ stage (Algorithm 8, line 28), solutions are selected based on

their fitness values via the ranking-based selection (Algorithm 8, line 29). The selected

solutions are mutated following the same update procedure as the previous step.

We observe that the difference between the first two steps is that in the first stage

(employed bees), all population solutions are updated. In the second stage (onlooker

bees), only the probabilistically selected solutions are updated, giving to the fittest ones

more chances to be mutated.

In the scout bees’ stage (Algorithm 8, line 36), a solution that has not been im-

proved for a number l of generations is discarded (Algorithm 1, line 38), and a new one

is inserted into the population (Algorithm 8, line 39). We observe that each node also

performs gcore inner recombination operations in an interspersed way with the core algo-

rithm, as previously explained in Section 5.2.3. Thus, at the end of each generation of

the ABC, the recombination is applied once (Algorithm 8, line 41). Finally, the algorithm

returns the optimized population after the stop criterion is satisfied.

5.3 Proposed Method for Multimodal Optimization

Focusing on multimodal optimization, we incremented the previously described

MA framework based on the issues concerned with discovering and maintaining the ex-

isting global optima of a given objective function. As presented above, the tree data

structure of the method was adopted as a niching strategy, splitting the population into

distinct subpopulations. This strategy was designed to overcome the multimodality issues

over the search space and support the population diversity/convergence concerning dis-

tinct optimization stages. The proposed MA already encompasses independent intra-niche

optimizations and interactions between niches, as well as procedures for local improve-

ments and control of convergence and performance. Besides, some hyper-parameters are

dynamically adjusted throughout the optimization process to ease the search space opti-

mization according to the degree of Expr/Expt efforts. Such strategies for performance

control are widely used to prevent premature convergence to local optima and slow the

convergence rate when necessary (GLIBOVETS; GULAYEVA, 2013; LI et al., 2016;

138

SER et al., 2019).

Nonetheless, as mentioned earlier in Sections 2.3 and 4.6, stochastic metaheuris-

tics tend to naturally converge to a single global optimum due to the genetic drift inher-

ent to the evolutionary process (BELDA et al., 2007). With this, the effective discov-

ery and preservation of multiple distinct solutions throughout the algorithm’s execution

become essential when dealing with multimodal optimization with multiple global op-

tima (WANG et al., 2019). As stated by Li et al. (LI et al., 2016), the evolutionary

population does not have to totally converge to single solutions, each corresponding to

a global optimum. In this sense, the strategies for controlling the method convergence

and performance, previously presented, attempt to reach some equilibrium state, where

solutions would keep oscillating around a stable optimum but without reaching complete

convergence.

Therefore, due to the designed MA search structures, the algorithm has not been

so changed for multimodal optimization. The main concern consists of keeping the found

optimal points stably and not losing them while locating new ones throughout the search

process. So a simple external archive was incorporated to store the identified global op-

tima when converged regions of the search space are detected. By using the MA restarting

strategies to control such converged niches, whenever a discard of solutions occurs, the in-

dividuals are stored into the archive to keep the found promising solutions separate from

the current population. In contrast, the framework generates new solutions to continue

exploring new areas. In our approach, the discard of solutions is done when the proce-

dures of LS restarting (Section 5.2.6), niche restarting (Section 5.2.8) or scout bees in the

ABC core metaheuristic (Section 5.2.12) are applied. The archived individuals are kept

in the archive until the end of the search and considered to compute the final optimization

results.

Moreover, some of the control parameters concerning the implemented framework

components were adjusted to better fit the benchmark test functions for multimodal opti-

mization and its limited budget. We note that the parameter setting used for this variant of

the method is further detailed in the section of computational experiments (Section 6.3).

Finally, the proposed method for the PSP problem is described in the following

section. As already explained, it was designed via an incremental approach encompassing

almost all the search strategies incorporated in the MA framework and detailed so far.

139

5.4 Proposed Method for the 3-D PSP Problem

To deal with the PSP problem as a multimodal problem, we incremented the

framework-based MA, presented in the sections above (Sections 5.2 and 5.3), taking into

account the problem-specificities and its optimization challenges. In addition, we used

as the baseline for the development of the method detailed in this section, our previously

published method for the PSP in Corrêa and Dorn (CORRÊA; DORN, 2020).

With this, the method presented in this work can be divided into two main stages:

(i) sampling of structural models and initialization (Section 5.4.2); and (ii) optimization

of the structures from the previous step via the MA framework (Section 5.4.3). We tried

to incorporate in the framework for the PSP the problem-dependencies and data knowl-

edge from experimentally determined 3-D protein structures to turn it more robust to the

problem under study.

5.4.1 Conformational Preferences of Amino Acids

The Angle Probability List (APL) aims to determine the amino acid (aa) confor-

mational preferences of a given target protein (CORRÊA et al., 2016; BORGUESAN;

INOSTROZA-PONTA; DORN, 2016; CORRÊA; DORN, 2020). It determines the aa

preferences by analyzing previous occurrences in proteins whose structures were experi-

mentally determined. In the works of Corrêa et al. (CORRÊA et al., 2016; CORRÊA;

DORN, 2020), we demonstrated the use of APL incorporated in a MA for the PSP

problem. It was employed to define the aa angular preferences considering the influ-

ence of its neighbors in the protein sequence. Besides, Borguesan et al. (BORGUESAN;

INOSTROZA-PONTA; DORN, 2016) developed a web server, called NIAS1 (Neighbors

Influence of Amino acids and Secondary structures). NIAS aims to provide the commu-

nity with a tool that allows the information extraction about conformational preferences

of amino acids over the generation of different APL types.

The APL strategy used in this work was presented by Corrêa and Dorn (CORRÊA;

DORN, 2020) from protein structures of the PDB. According to the authors, a set of filters

were applied to guarantee the experimental data quality. A set of 11,130 protein structures

were selected, and all of them were determined experimentally by X-ray crystallography.

Only mature structures with a resolution less than or equal to 2.5 and deposited in the
1<sbcb.inf.ufrgs.br/nias/>

sbcb.inf.ufrgs.br/nias/

140

PDB until December 2014 were used for the APL construction. The resolution index

evaluates the detail level of X-ray diffraction data, which is considered a good indicator of

the experimental structure quality (HOVMÖLLER; ZHOU; OHLSON, 2002). Another

structural quality index used in the protein structures filtering was the R-observed. It

was used to evaluate the similarity between the crystallographic model and the X-ray

diffraction data. All structures with R-observed above 0.20 were removed from the set.

Only one of the homologous protein structures found with sequences identity at most 30%

was retained to avoid redundancies. From this set, the authors considered amino acids

well-defined position with B-factor threshold less than or equal to 302, and Occupancy

equal to 1. At the end of the filtering process, a total of 2,399,401 amino acids were

generated for further analysis. The software STRIDE2 (HEINIG; FRISHMAN, 2004)

was used to assign the aa secondary structures in experimental structures.

The authors designed different APL types to incorporate structural information

from the experimental protein set into the method (CORRÊA et al., 2016; BORGUESAN;

INOSTROZA-PONTA; DORN, 2016). They have constructed a database to represent

the aa conformational preferences, based on experimental information filtered from the

PDB, as described above. For each aa type, occurrences of the dihedral angles φ and

ψ were computed according to the experimental structures in the filtered set. Also, the

aa conformational preferences were computed regarding their respective SS. Corrêa and

Dorn (CORRÊA; DORN, 2020) expanded the proposed APL versions of Borguesan et

al. (BORGUESAN et al., 2015; BORGUESAN; INOSTROZA-PONTA; DORN, 2016)

and Corrêa et al. (CORRÊA et al., 2016) to further exploit the conformational preferences

with more specialized structural information.

Therefore, the APL considers the angular occurrences of a given aa and its SS,

known as reference amino acid (aaref), and the influence of the neighboring amino acids

to define its conformational preferences. Thus, such a technique assigns the dihedral

angles to the target amino acids by analyzing the conformational preferences of such

amino acids in experimental structures regarding the SS and the neighborhood of amino

acids. The APL encompasses four distinct types of combination concerning the aaref :

1. APL-1 which considers only the aaref and its SS;

2. APL-2l that considers the influence of the aa at the left and its respective SS;

3. APL-2r that considers the influence of the aa at the right and its SS;

4. APL-3 which considers the influence of the amino acids at the left and right and

2<webclu.bio.wzw.tum.de/stride/>

webclu.bio.wzw.tum.de/stride /

141

their SS.

This set of APL combinations is referenced as APL-neighborhood.

Also, another APL variation, known as APL-centroid, was proposed in Borguesan

et al. (BORGUESAN; INOSTROZA-PONTA; DORN, 2016), and Corrêa and Dorn (COR-

RÊA; DORN, 2020). It considers only the aaref and its SS, ignoring the neighborhood

of amino acids, but still considering the SS of them. Thus, to determine the aaref confor-

mational preferences from the APL-centroid, only its SS and the SS of the neighboring

amino acids are used without considering their types, thus accepting any aa type with the

matching SS. The APL-centroid can be divided into three types depending on the number

of amino acids considered in the generation of conformational preferences:

1. APL-5 which considers the SS influence of the two amino acids at the left and the

two amino acids at the right of the aaref ;

2. APL-7 which considers the SS influence of the three amino acids at the left and the

three amino acids at the right;

3. APL-9 that considers the SS influence of the four amino acids at the left and the

four amino acids at the right over the aaref .

According to the authors, this APL variation set, APL-centroid, was required due to the

small amount of experimental data present in some aa and SS combinations of APL-3,

thus providing a greater variety of conformational data to users.

Figure 5.4 illustrates the different APL types through the aa sequence “CSTQKAQAK”

with SS “HHHTTTEEE” taken from a segment of the 1ACW protein (PDB ID). In this ex-

emplification, the aa chosen as reference (aaref) was K (lysine) with SS of loop (T), both

shown in blue. Neighboring amino acids that influence the conformational preferences of

aaref are highlighted in green according to the APL type. We note that unlike the frag-

ment assembly approaches, as previously seen in the method of Rosetta (Section 4.7.1),

in the APL, each aa combination is used to assign the angles only to the aaref , whereas

in fragment assembly, the angles of all the amino acids that encompass the fragment are

assigned.

To deal with the PDB information, the authors have built discretized histograms

(Haa,z) of [−180◦, 180◦] × [−180◦, 180◦] cells, where {Haa,z(i, j) = x|x ∈ N} and x

denotes the number of times (occurrences) that an aa (or combination of amino acids)

with SS z has presented a pair of dihedral angles (φ and ψ) of values i and j, respectively,

in the experimentally determined structural set. We note that the database’s dihedral an-

142

Figure 5.4: Schematic representation of the different APL types for the aa sequence
“CSTQKAQAK” with SS “HHHTTTEEE”, removed from a segment of the 1ACW pro-
tein (PDB ID). The blue cells denote the aaref and its respective SS, and the green ones,
depending on the APL type, highlight the neighboring amino acids considered in the def-
inition of the aaref conformational preferences

PS ... C S T Q K A Q A K ...
SS ... H H H T T T E E E ...

APL-1
... C S T Q K A Q A K ...
... H H H T T T E E E ...

APL-2l
... C S T Q K A Q A K ...
... H H H T T T E E E ...

APL-2r
... C S T Q K A Q A K ...
... H H H T T T E E E ...

APL-3
... C S T Q K A Q A K ...
... H H H T T T E E E ...

APL-5
... - - - - K - - - - ...
... H H H T T T E E E ...

APL-7
... - - - - K - - - - ...
... H H H T T T E E E ...

APL-9
... - - - - K - - - - ...
... H H H T T T E E E ...

Source: From Corrêa and Dorn (CORRÊA; DORN, 2020).

gles, which gave rise to the APLs, had their values rounded to fit into the histograms’

discrete space. Each Haa,z represents a different combination between amino acids and

secondary structures that count for the definition of the aaref conformational preferences.

The number of amino acids considered in each combination varies according to the APL

type.

Regarding the APL-neighborhood set, different combinations of amino acids and

secondary structures of up to three amino acids (1-3 aa) were generated, considering the

aaref neighborhood for combinations of length greater than 1 aa. For the APL-centroid

set, different combinations involving the secondary structures of the aaref neighborhood

were established to define the aaref conformational preferences, forming combinations

with SS lengths of 5 (APL-5), 7 (APL-7) and 9 (APL-9) amino acids.

Therefore, each cell (i, j) of the histogram Haa,z counts the number of times an

aa (or combination of amino acids) has a dihedral angle pair (i≤ φ <i+1, j≤ ψ <j+1)

corresponding to the SS z in the experimental database. For each cell (i, j) of a given

143

histogram, the sum value of the eight neighboring cells was also added to highlight the

most abundant conformational regions, according to the smoothing Equation 5.16.

APLaa,z(i, j) =
H
′
aa,z(i, j)∑

x,y

H ′aa,z(x, y)
(5.15)

H
′

aa,z(i, j) =
i+1∑
r=i−1

j+1∑
s=j−1

Haa,z(r, s) (5.16)

Where r and s represent the positions (i, j) of the eight neighbors of a given cell in the

histogram matrix Haa,z(r, s). Then, for each histogram H
′
aa,z, the Angle Probability List

(APLaa,z) is calculated (Equation 5.15), denoting the frequency of each cell.

In this work, all APL types (neighborhood and centroid) were used in the solution

initialization step of the optimization method by generating different amino acid combi-

nations (length of 1-3 aa and 5-9 aa) in an attempt to feed the algorithm with high-quality

solutions when compared with those randomly initialized. Besides, APL-1 was used to

constraint the search space when applying mutation operators, such as in the ABC algo-

rithm, to avoid non-existent angular positions in APLs.

5.4.2 Sampling of Protein Structures and Solution Initialization

The first step of the framework for the PSP is responsible for performing the sam-

pling of protein models. They are generated from the APL (Section 5.4.1), consider-

ing the aa probability of occurrence based on conformational preferences of previously

known protein structures. In this step, generated individuals are submitted to filtering and

clustering processes to overcome the search space roughness and provide feasible initial

solutions to the optimization step. The sampling process of individuals refers to the solu-

tion generation according to the primary sequence of the target protein. An individual is

a vector of real values (objective variables) representing dihedral angles, which describes

the target protein’s chains, characterizing the structural model’s computational represen-

tation through the dihedral angles set formed from the target primary sequence, described

in Chapter 3.

Regarding the PSP multimodal optimization, it is known that methods with ran-

dom or poor models’ initialization generally tend to provide equally poor final results (JAIN;

MURTY; FLYNN, 1999; GLIBOVETS; GULAYEVA, 2013). That is due to the inef-

144

ficiency of the method in exploring the problem search space since random solutions

present a higher tendency to get stuck in unfavorable regions throughout the process.

Thus, methods with properly search space exploration, with the ability to generate and

maintain distinct solutions during the process, are fundamental to overcome such scenar-

ios. Moreover, the optimization process’s initialization strategies capable of generating

reasonable solutions are fundamental to support the search methods.

With this, the sampling initialization stage was idealized to initially explore the

conformational search space considering some insights about previously known protein

structures, aiming to locate different structural groups for the target protein. Besides, the

solution initialization through the APL can be seen as a strategy to ease the optimization

by restricting conformational possibilities. The sampling and classification of several

individuals in clusters aim to increase the population diversity and exploration since the

beginning of the method’s execution.

In this step, 10,000 initial solutions are generated based on the input data of the

target protein, using aa conformational preferences from the combination of the different

APL types. We note that this number of sampling was defined according to our limitations

of available memory hardware and computational power. The structures resulting from

the sampling process are filtered according to the structural threshold known as the radius

of gyration (RG) (LOBANOV; BOGATYREVA; GALZITSKAYA, 2008). The RG is

used to infer the packaging structural state of the models. The RG threshold is established

conforming specific characteristics of the target protein, which consider the aa sequence

size and its structural class, established according to the SS arrangements. The maximum

threshold is defined from the target protein size and class by analyzing experimentally

determined protein structures that follow these same patterns (size and class). The RG

of a protein structure is defined as the quadratic mean distance between all the protein

atoms and its center of mass. It can be used as a packaging indicator since the lower

the RG, the greater the proximity of atoms with the protein center of mass (LOBANOV;

BOGATYREVA; GALZITSKAYA, 2008). From a biological point of view, if a protein

structure is stable in its native state, the RG tends to remain stable. However, when the

protein is out of its native state (less stable conformation), RG values tend to vary much

more frequently. In this work, the RG calculation was performed through the PyRosetta

libraries (CHAUDHURY; LYSKOV; GRAY, 2010).

The protein structures resulting from the filtering procedure are clustered accord-

ing to their structural similarities through the Root-Mean-Square-Deviation (RMSD) mea-

145

sure (ZHANG; SKOLNICK, 2004). RMSD is used to assess the similarity degree be-

tween two protein structures. The formed groups are ranked considering the average

group RG. The ones with the lowest values are used as initial individuals of the meta-

heuristic.

Initialization of Solutions

The sampling of solutions consists of initializing individuals for the metaheuristic,

considering the conformational preferences of the amino acids of the target protein via

the APL strategy. As previously described, the APL was divided into APL-neighborhood

and APL-centroid, wherein in each of these divisions, there are subtypes of APLs that

consider different combinations of amino acids to define the conformational preferences

of the aaref . The APL-neighborhood takes into account the neighborhood of the aaref

and their respective SS, forming combinations of 1, 2, or 3 amino acids. Contrarily, the

APL-centroid only considers the SS of the amino acids present in the neighborhood of the

aaref , without considering them, generating combinations of 5, 7, or 9 amino acids.

Therefore, each aa of the target protein is initialized through one of the two APLs

(APL-neighborhood or APL-centroid), giving both the same chance of being chosen, i.e.,

probability of 50% for each one. It is noted that the larger the size of the APL combina-

tion, the more specific and restricted is the list of angular probabilities for a given aaref .

For this reason, the APL subtypes are chosen according to the specificity order, that is,

from more specific (larger combinations), with higher chances to be chosen, to less spe-

cific data (smaller combinations). Based on this, if the APL-neighborhood is chosen, the

probability of 70% is given to APL-3, 20% to APL-2l and APL-2r, both of which with

the same chance to be selected (50% for each), and 10% to APL-1. The same probability

scheme is applied when APL-centroid is chosen, which means that the chance of 70%

is given to APL-9, 20% to APL-7, and 10% to APL-5. We note that APL-1 and APL-5

encompass all data contained in the other more specific APLs. It is also observable that

depending on the position of the aaref , not all types of APLs can be applied, which means

that amino acids located at the extremes of the aa sequence can only be initialized through

APL-1 or APL-2r, concerning the beginning of the sequence, or APL-1 or APL-2l, con-

cerning the end of the sequence, since the other types of combinations do not fit into these

positions.

The Algorithm 9 describes the procedure responsible for selecting which APLs

will be employed to assign the torsion angles to a given aa, as described above. The

146

function QueryAPL (Algorithm 9, lines 4-24) represents the selected APL combination

for the aaref based on the defined probabilities, target protein primary and secondary

sequences (PS and SS), and the aaref position in the protein sequence. The function

rand(0, 1) generates a random value in the range [0, 1]. The algorithm outcomes a list of

dihedral angles for the aaref .

This APL selection scheme was defined in the work of Corrêa and Dorn (COR-

RÊA; DORN, 2020) from a sample analysis of 100,000 individuals for a set of 8 target

proteins. The authors generated the models by using: (i) only the APL-1; (ii) only the

APL-neighborhood, considering the probabilities described above for its subtypes; (iii)

only the APL-centroid, also considering the probabilities described above for its subtypes;

and (iv) the APL-neighborhood and APL-centroid combined. The generated individuals

were compared by the RMSD regarding the experimental structures and the RG measure.

By the conducted analyses, the authors stated that no superiority was observed between

the different APLs regarding the quality of the individuals created. However, the fact that

the combination of APLs can provide a broader range of experimental data has motivated

its use over others. Thus, by the sampling process of 10,000 solutions, this larger data set

becomes more interesting since it provides a greater exploration of the experimental data

characteristics, resulting in more diversified solutions. We note that the combination of

APLs is referred to as APL-combined.

Filtering Process

The filtering of solutions was included after the initialization of solutions aiming

to remove low-quality structures. This process intends to exclude such structures from

the clustering process and also from the definition of structural groups used in the ini-

tialization of the metaheuristic. More generally, poor structures are characterized by the

lack of packing, which tends to represent that they are distant from their native states.

Thus, the resulting structures from the sampling process are filtered based on the RG

threshold, a structural evaluation measure already mentioned. The RG is used, in this

case, as an indicator of the packing level of structural models. The threshold value was

defined in the work of Corrêa and Dorn (CORRÊA; DORN, 2020) by the analysis of

25,135 proteins extracted from the PDB. This set of proteins has been devised following

the same filtering elements used in the assembly of the APL database (BORGUESAN;

INOSTROZA-PONTA; DORN, 2016; CORRÊA; DORN, 2020). These filters are sum-

marized in Table 5.2.

147

Table 5.2: Set of filters applied in the generation of the database used to define the RG
threshold

Filter Thresholds
Protein set length 25,135 structures
Resolution ≤ 2.5
R-observed ≤ 0.20
Similarity of sequences ≤ 30%
B-factor ≤ 302

Occupancy 1

Source: Adapted from Corrêa and Dorn (CORRÊA; DORN, 2020).

Specifically, regarding the creation of the database mentioned above, all the polypep-

tide chains or subunits (quaternary structure) included in the PDB files were considered.

On the contrary, in the structuring of the APL database, only the first polypeptide chain of

each structure in the PDB file was maintained (BORGUESAN; INOSTROZA-PONTA;

DORN, 2016; CORRÊA; DORN, 2020). For the database used in this step, the main-

tenance of equal chains does not influence the definition of the RG thresholds, and for

this reason, all chains were considered. For each protein in the database, its SS was as-

signed by the STRIDE software, and the values of RG were computed. The database

relies on 25,135 protein structures of several sizes, ranging from 5 to 3,680 amino acids.

The variation of RG values comprises the range of 5.58 to 72.03.

As described in Chapter 3, proteins can be classified according to their SS arrays.

To obtain more specific information about the proteins considered in the idealized protein

database, the authors classified the proteins according to their SS, resulting in the scenario

described in Table 5.3. Proteins were classified into four distinct classes, which comprise:

1. Class of less stable regions, which encompass structures with more than 80% turns

or coils in their SS arrays;

2. Class of β-sheets, comprising proteins which have a predominance of more than

60% of β-sheets in their SS;

3. Class of helices, encompassing protein structures with more than 60% of helices in

their SS;

4. Hybrid class, which comprises structures that do not fit into any of the above

classes, i.e., structures that present a combination of the three SS types in their

arrays.

According to Table 5.3, we note that the hybrid class holds the most significant number

148

of protein structures.

Table 5.3: Summary of the different classes of proteins generated from the PDB database
Information data

Class of less stable regions
Definition Predominance of 80% of turns or coils
Set Size 1,375 structures
Size variation [5 aa, 1,656 aa]
RG variation [5.58, 72.03]

Class of β-sheets
Definition Predominance of 60% of β-sheets
Set Size 324 structures
Size variation [12 aa, 598 aa]
RG variation [7.6, 39.8]

Class of helices
Definition Predominance of 60% of helices
Set Size 3,797 structures
Size variation [6 aa, 1,184 aa]
RG variation [6.15, 65.51]

Hybrid class
Definition Hybrid structures
Set Size 19,639 structures
Size variation [5 aa, 3,680 aa]
RG variation [5.89, 62.59]

Source: Adapted from Corrêa and Dorn (CORRÊA; DORN, 2020).

Regarding the correlation between the size of experimentally determined proteins

and their RG values, theoretically, the higher the number of amino acids, the higher the

RG values since the 3-D protein structure is bigger. However, according to the work of

Corrêa and Dorn (CORRÊA; DORN, 2020), some proteins do not follow this pattern. It

can be attributed to the different arrangements of SS and conformations in the database

and the specific physicochemical properties of the amino acids that constitute the pro-

teins. With this, it is important to consider such components in filtering solutions. The

classification of proteins into classes and the correlation between the size of amino acid

sequences and their RG values can improve the discovery process of specific characteris-

tics of the target protein based on previously known protein structures.

Thus, for a given target protein, the maximum RG threshold is defined by querying

the database, correlating the size of the amino acid sequence and its class. From the set of

experimental proteins returned by this query, the threshold is defined from the highest RG

value linked to the returned structures. We note that the proteins returned by the database

query have the same size and class as the target protein. Finally, after defining the RG

threshold, the structures resulting from the sampling process described in the previous

149

section are filtered based on this packing indicator. Structures that exceed the defined

threshold are removed from the process.

To analyze the behavior of the filtering procedure, Corrêa and Dorn (CORRÊA;

DORN, 2020) sampled 10,000 individuals considering a small set of 8 target proteins.

The sampling processes were conducted by applying and not applying the filtering proce-

dure. Generated individuals were compared through RMSD regarding the experimentally

determined structures. From this analysis, the authors stated that there is a significant

reduction in the number of solutions for some targets due to the filtering and discard of

solutions. In contrast, the majority are poor solutions with high RMSD. So, the proce-

dure provided a smaller and better set of solutions than the sampling process that does

not use the exclusion thresholds. The sets of solutions from the filtering process that used

the RG threshold tend to encompass structures with relatively lower RMSD values when

compared with the excluded solutions. But we note that these structures are also in the

sets of solutions that were generated without considering the threshold. However, these

sets still encompass the highest RMSD solutions that have been discarded from the sets

with RG constraints. For this reason, the filtering process can be considered a simple but

efficient way to remove low-quality structures before the optimization process through

the metaheuristic.

Clustering of Solutions

As the last step of the sampling and initialization stage, the clustering process of

structural models aims to identify the different conformational clusters generated from

the sampling process. Data clustering is an important technique based on unsupervised

learning, which is defined as the process of clustering objects taking into account their pat-

terns of similarity and dissimilarity. It aims to cluster, in the same group, elements with

a high degree of similarity and, in different groups, elements with a low degree of simi-

larity (JAIN; MURTY; FLYNN, 1999). This procedure supports the discovery of specific

characteristics related to the target protein, e.g., the clustering of individuals throughout

the optimization process can reveal conformational patterns, local minimum basins and

indicate the algorithm’s convergence. This strategy is commonly adopted among refer-

ence methods in the field, as shown in Rosetta (ROHL et al., 2004).

Thus, the resulting structures from the filtering process are clustered according to

their structural similarities using the RMSD, aiming to identify distinct conformational

patterns for the target protein. The clusters formed are ranked considering the average

150

group RG, and those that present the lowest values are used as initial individuals of the

metaheuristic, highlighting the structural packing. We observe that the clusters could also

be ranked according to the number of individuals in each group or the average energy

values. However, according to a clustering analysis performed using these metrics in

Corrêa and Dorn (CORRÊA; DORN, 2020), the average RG was able to order the formed

clusters so that the best solutions tended to be in the first groups, which give rise to the

initial population of the metaheuristic. So, in this work, we adopted the average RG of

the clusters to rank the most promising structural groups.

The clustering was performed through the agglomerative hierarchical clustering

technique (JAIN; MURTY; FLYNN, 1999). Hierarchical data clustering generates a se-

quence of nested groups, forming a hierarchy structure between them. The highest level of

the hierarchy consists of a single group that comprises all other partitions formed, and the

lowest level includes each object individually allocated in a single group (JAIN; MURTY;

FLYNN, 1999). Agglomerative clustering is a bottom-up process where each object in the

data set initially represents a single group. The most similar groups are clustered by some

similarity measure at each clustering step. At the end of the process, all formed clusters

represent a single group. The distance measure used to evaluate the degree of similarity

between protein models was the RMSD. The criterion for evaluating the distance between

clusters (inter-cluster distance) was calculated by the complete linkage clustering, which

considers the largest distance between two objects of different groups. The cut-off thresh-

old adopted in the clustering imposes the formation of at least Nnodes clusters since each

one must have Max_NS/Nnodes or more structures (individuals). Max_NS and Nnodes

represent the maximum number of individuals allowed in the entire population of the MA

and the number of nodes in the tree structure, respectively. These thresholds are related

to the parameters of the MA framework, i.e., the population size and the tree structure.

We note that the clustering was performed through the libraries provided by the SciPy3

software.

Finally, the sampling and classification stage, which culminates in the clustering

of the generated models in different structural clusters, is used to feed the MA subpop-

ulations with better and diversified solutions to support the search algorithm in the next

stage. Thus, the first stage intends to overcome the multimodality issues of the objective

function by enhancing the quality of the initial individuals.

3<www.scipy.org>

www.scipy.org

151

5.4.3 Optimization of the Protein Structures

In this step, the previously described MA framework (Section 5.2) was incre-

mented to deal with the PSP problem. This MA version was designed based on the al-

gorithm presented in the work of Corrêa and Dorn (CORRÊA; DORN, 2020), which in-

corporated specific-problem operators such as recombination operations considering the

target protein SS and constraints in the mutation of individuals based on conformational

preferences of amino acids. Each node of the tree structure is initialized with a structural

cluster from the previous step.

Regarding the PSP, the designed MA encompasses niching strategies, interactions

between distinct populations, intra-node optimization, and control procedures for local

improvements, convergence, and performance. The algorithm aims to overcome the PSP

multimodal energy function issues by regulating the Expr/Expt mechanisms and the solu-

tion improvements throughout the process. The subpopulations of the MA are optimized

independently by the hybrid-ABC (Section 5.2.12) and the framework as a whole by the

interactions defined between the nodes of the tree. Our goal is to find and maintain distinct

and reasonable solutions located in different regions of the search space.

As already mentioned, the MA was implemented to favor both exploration and

search space refinement according to the stage of the evolutionary process, such as pop-

ulation diversity degree and solution improvements. However, some components of the

algorithm were adapted to tackle the problem, such as the crossover operator to enhance

its accuracy by using the knowledge from known protein structures and the constraints in-

corporated in the mutation operations to avoid unfavorable regions of the conformational

search space, indicated by the conformational preferences of amino acids from APL-1.

These modifications in the algorithm are detailed in the following sections.

Algorithmic Structure of the Method for the PSP Problem

The general structure of the MA framework applied to the PSP problem was pre-

viously described in Section 5.2. The MA was structured as a ternary tree data structure

with Nnodes nodes. It consists of a multi-population technique, which arranges the popu-

lation of individuals in independent subpopulations into the tree’s nodes. The algorithmic

structure of the framework was detailed in Section 5.2.1, and its optimization steps are

shown in Section 5.2.3. Figure 5.1 shows the MA general flowchart.

Nonetheless, some modifications in its components were done to deal with the

152

problem. The subpopulations of the tree are initialized by the structural groups generated

in the first stage of sampling and initialization of solutions. After the initialization of the

method, the steps described in Section 5.2.3 are executed in each generation. The stop

criterion is determined by the maximum number of energy calculations (i.e., fitness func-

tion evaluations) performed throughout the optimization. The MA version for the PSP

receives the target protein primary and secondary structures and the maximum number of

energy calculations to be performed as input parameters. It returns the best solution for

each subpopulation. It is noted that the parameter setting of this algorithm is described in

the section of computational experiments (Section 6.4).

Representation of Individuals

As described in Section 3.6.2 concerning the computational modeling of the PSP,

each aa of the target protein can be represented by a vector of seven real values. Three

of them represent the dihedral angles φ, ψ, and ω of the main chain, and the remaining

values represent the dihedral angles χ of the side chain.

Nonetheless, as we are interested in the overall folding of protein models, in this

work, we adopted the centroid-based representation model for energy evaluations (ROHL

et al., 2004), described in Section 3.5. In this representation, the main chain remains

fully atomic. However, the representation of each aa side chain is simplified to a single

pseudo-atom arranged in the side chain center of mass. The centroid representation sim-

plifies the side chain complexity while keeping the overall protein folding by preserving

the backbone integrity. Thus, the centroid-based objective function of Rosetta was em-

ployed, and the model conversion between the dihedral angle representation to the atomic

coordinate is done by the own Rosetta’s energy function implementation (ROHL et al.,

2004; CHAUDHURY; LYSKOV; GRAY, 2010). With this, the computational representa-

tion of a given solution X with n amino acids is defined by a vector of real values of size

n×3, according to the Equation 5.17.

X = [x1φ , x1ψ , x1ω , · · · , xnφ , xnψ , xnω] (5.17)

Recombination Operator

Recombination operations are performed globally between distinct subpopula-

tions of the MA (Section 5.2.5) and internally in each node of the tree (Section 5.2.4),

153

as previously described. To be more effective in exploring intrinsic problem-properties,

the crossover operator proposed by Corrêa et al. (CORRÊA et al., 2016) was adopted

instead of the Uniform crossover.

The Uniform SS crossover aims to maintain the similarity found during the opti-

mization process between the SS of the solutions being optimized and the SS previously

informed as an input parameter of the algorithm. This strategy aims to replicate the correct

SS arrangements of parents in children.

Firstly, two solutions are selected as parents for the recombination. We observe

that the selection and replacement strategies are the same as the general MA. Similar to

the Uniform crossover, for every aa of the target protein (set of angles xi in the vector

X of Equation 5.17), the angles are chosen from both parent 1 or parent 2 (with 50%

probability). This procedure occurs if both SS regarding the parents are the same or

different from the SS informed as input parameter for the respective aa. If only one of the

parents has SS equal to the input SS for a specific aa, then the set of angles corresponding

to the concerned aa belonging to this parent is chosen. All target protein amino acids are

compared during the operation.

Mutation Restriction

To better adapt the method to the problem characteristics, we adapted the ABC

mutation operator to generate feasible candidate solutions and guide the search towards

promising regions of the search space. It consists of verifying the new values generated

by the update operation of the algorithm. At each mutation of the objective variable

υij , it is checked whether the newly generated value is in APL-1, which indicates the

conformational preferences of the related aa. This procedure aims to restrict unfavorable

angle values or even out of the continuous range [−180, 180]. Thus, if the new assumed

value is not in APL-1, it is not considered, and the old value remains.

5.5 Final Remarks

This chapter described the algorithms and search strategies used in this thesis to

deal with optimization problems regarding the multimodal continuous domain, as well as

the methodology of the proposed methods. With the development of the methods via an

incremental approach, our focus was to create a robust method and evaluate its behavior

154

facing different multimodal optimization functions and scenarios.

Therefore, the first designed method was proposed for continuous optimization but

focused on global optimization with multimodal objective functions. It was implemented

as a general optimization framework that is easily adapted to other search strategies and

components. The method was structured based on a hierarchical tree data structure imple-

mented under an adaptive framework-based MA. It consists of a multi-population tech-

nique, which arranges the population of individuals in subpopulations into the tree’s nodes

through a clustering-based niching strategy. The proposed MA encompasses independent

intra-node optimization through a core search metaheuristic and interactions between dis-

tinct populations as a way of knowledge sharing, population diversification, and explo-

ration inter and intra-niches. As the core metaheuristic, a hybrid-ABC algorithm was

presented, where each node of the tree incorporates an independent execution.

The framework also includes control procedures of adaptive and hybrid approaches

for local improvements, population convergence and performance, and dynamic param-

eter adaptation. It aims to overcome the multimodality issues of the search space by

considering the status of the optimization process during the algorithm’s execution and

adjusting the search mechanisms to it, that is, the population diversity and convergence

degree, Expr/Expt efforts, and the performance of the algorithm by improving solutions.

Then, this MA framework was used as a basis for developing other designed versions to

deal with multimodal optimization and tackle the PSP problem.

The second variant of the MA is focused on multimodal optimization when deal-

ing with objective functions with more than one global optimum. The main issues of

multimodal optimization are related to discovering and maintaining the existing global

optima of a given problem while locating new ones throughout the search process. Thus,

the first version of the method was modified based on such concerns. This version in-

corporates a simple external archive to store the identified global optima when converged

regions of the search space are detected. Utilizing the MA strategies for control con-

verged individuals, whenever a discard of solutions occurs, the individuals are stored into

the archive to keep the found promising solutions separate from the current population.

In contrast, the framework generates new solutions to continue exploring new areas.

Finally, the last version of the method was developed to deal with the PSP prob-

lem. The framework for the PSP has enhanced with the problem-dependencies and data

knowledge from experimentally determined 3-D protein structures to turn it more robust

for the problem. The method can be divided into two main optimization stages. The

155

first step of sampling and initializing structural models is responsible for generating and

classifying several models from the aa primary sequence of a target protein. The models

are created from the APL strategy, considering the aa probability of occurrence based on

conformational preferences of previously known protein structures. Also, the sample of

individuals is submitted to filtering and clustering processes, aiming to highlight distinct

structural patterns and create a better and diversified sample of protein models. It in-

tends to reduce the search space size, overcome its roughness and provide feasible initial

solutions to the second optimization step.

The second step represents the optimization of solutions sampled from the first

stage. The MA framework performs the search process, which was incremented to deal

with the problem. The method includes modified specific-problem operators, such as

the Uniform SS crossover and the constraints in the mutation operations based on con-

formational preferences of amino acids. Such strategies aim to increase the method’s

performance and the accuracy of the solutions, focusing on the characteristics of the PSP.

Lastly, all of the proposed methods were implemented following the points of

interest outlined for this thesis, which include search space exploration to discover and

maintain the existing optimal solutions, a reasonable balance between Expr/Expt by con-

trolling the population diversity, and parameter setting control to deal with global and

multimodal optimization functions. It is known that each optimization function requires

distinct abilities from algorithms, even in the same application domain. Then, we ex-

pected to enhance our approach with such a need without degrading previously incorpo-

rated search strategies. The next chapter presents the obtained results and analyses from

the optimization problems through the developed algorithms presented in this chapter.

Moreover, the incremental design, the MA versions, and parameterization designed to

reach the constructive versions presented in this chapter are also discussed.

156

Algorithm 7 Pseudocode of the framework-based MA.
Require: Nlayers: number of layers; Max_NS: maximum population size; Max_Evls: maxi-

mum number of fitness evaluations; gcore: number of core search generations; n_gen:
period of generations to calculate the SMAs

Ensure: nodes: optimized node subpopulations
1: Nnodes ←

∑Nlayers−1

i=0 3i; pbest% = 25; nfrec ← 1000; rmlayer = Max_Evls/Nlayers; evoltime = 1;
gencurr ← 0; f_evls← 0; notimp← 0

2: pop← randomly initialize the Max_NS solutions
3: nodes← ClusteringSpeciation(pop,Max_NS,Nnodes) //Niching strategy

4: calculate Div_initialcombined for each nodei in nodes (Equation 5.4)
5: while f_evls < Max_Evls do
6: for each nodei in nodes, i← 1 : Nnodes do
7: for 1 : gcore do
8: apply CoreMetaheuristic in nodei

9: apply InnerRecombination in nodei

10: end for
11: if nodesi is a parent then //Interactions between nodes

12: apply bottom-up crossover using nodei as parent (Algorithm 3)
13: apply top-down crossover using nodei as parent (Algorithm 3)
14: end if
15: if nfrec ×Nnodes fitness function evaluations were performed then //LIP

16: apply LSchain in one of the pbest% best solutions of nodei
17: if any pbest% best solutions of nodei was improved then
18: apply LS_restarting in nodei //LS restarting considering the priority order

19: end if
20: restart the count for fitness function evaluations
21: end if
22: if n_gen generations were performed then //Restarting considering the priority order

23: V erifyRestarting(nodes,Div_initialcombined, n_gen) (Algorithm 4)
24: end if
25: end for
26: if rmlayer fitness function evaluations were performed then //TRP

27: Nlayers ← Nlayers − 1; Nnodes ←
∑Nlayers−1

i=0 3i //TRP considering the priority order

28: restart the count for rmlayer

29: end if
//Control mechanism for convergence and performance considering the priority order

30: determine the gbest solution
31: if gbest was improved then
32: not_imp = 0

33: else
34: not_imp = not_imp+ 1

35: end if
36: apply PerformanceV erification(not_imp, evoltime, evolprevious, gencurr) (Algorithm 5)
37: if n_gen generations were performed then //DNSP

38: apply DynamicNicheSize(nodes,Expr%, n_gen)

39: restart the count for n_gen

40: end if
41: Update gencurr and f_evls

42: end while
43: return nodes

157

Algorithm 8 Pseudocode of the proposed hybrid ABC algorithm.
Require: pop: subpopulation to be optimized; gcore: stop criterion
Ensure: pop: optimized subpopulation

1: MR← 0.4; l← SN ×D
2: for gen← 1 : gcore do
3: md = (f(popworst) + f(popbest))/2 //Population division threshold

//Employed bees’ stage

4: for each popi in pop, i← 1 : SN do
5: if f(popi) > md then //Superior level

6: define the values for δi,gen+1 and γi,gen+1 by using Equations 5.12 and 5.13
7: for each popij, j ← 1 : D do
8: if (rand(0, 1) < MR) then
9: generate a new value for υij from popij by δi,gen+1, γi,gen+1, Equation 4.2

10: end if
11: end for
12: if υi is better than the original popi then
13: replace popi for υi; update δi,gen, γi,gen ← δi,gen+1, γi,gen+1

14: end if
15: else //Inferior level

16: define the value for Fi,gen+1 by using Equation 5.14
17: for each popij, j ← 1 : D do
18: if (rand(0, 1) < MR) then
19: generate a new value for υij from popij by Fi,gen+1 and Equation 4.4
20: end if
21: end for
22: if υi is better than the original popi then
23: replace popi for υi; update Fi,gen ← Fi,gen+1

24: end if
25: end if
26: end for
27: md = (f(popworst) + f(popbest))/2 //Population division threshold

//Onlooker bees’ stage

28: for i← 1 : SN do
29: indv ← ranking-based selection of solution from pop

30: if f(indv) > md then //Superior level

31: apply to indv the same update operation for superiors of the previous stage
32: else //Inferior level

33: apply to indv the same update operation for inferiors of the previous stage
34: end if
35: end for

//Scout bees’ stage

36: for each popi, i← 1 : SN do
37: check if solution popi has not been improved over l generations
38: discard popi

39: insert a new solution in the population
40: end for
41: apply InnerRecombination in pop from the MA framework
42: end for
43: return pop

158

Algorithm 9 Definition of APL to be used in the assignment of torsion angles to a given
amino acid.
Require: PS, SS: primary and secondary amino acid sequences; posaaref : position of aaref
Ensure: angles: set of torsion angles for the aaref

//Selection between APL-neighborhood and APL-centroid

1: if 0.5 ≤ rand(0, 1) then
//APL-neighborhood

2: prob← rand(0, 1)

3: if prob ≤ 0.7 then
4: angles← QueryAPL3(PS, SS, posaaref)

5: else
6: if prob ≤ 0.9 then
7: if 0.5 ≤ rand(0, 1) then
8: angles← QueryAPL2l(PS, SS, posaaref)

9: else
10: angles← QueryAPL2r(PS, SS, posaaref)

11: end if
12: else
13: angles← QueryAPL1(PS, SS, posaaref)

14: end if
15: end if
16: else

//APL-centroid

17: prob← rand(0, 1)

18: if prob ≤ 0.7 then
19: angles← QueryAPL9(PS, SS, posaaref)

20: else
21: if prob ≤ 0.9 then
22: angles← QueryAPL7(PS, SS, posaaref)

23: else
24: angles← QueryAPL5(PS, SS, posaaref)

25: end if
26: end if
27: end if
28: return angles

159

6 COMPUTATIONAL EXPERIMENTS

6.1 Introduction

We designed three versions of the MA framework via a constructive approach

for three different scenarios of multimodal optimization: (i) the general MA framework

for single global continuous optimization with multimodal fitness function; (ii) the MA

framework with archive strategy for multimodal optimization with more than one global

optimum; and (iii) the MA framework with specific-problem components for the multi-

modal problem of predicting the 3-D protein structures. All the algorithms described in

this thesis were coded in Python. We observe that the stop criterion (maximum number

of fitness function evaluations) for each problem depends on its respective optimization

scenario, which is detailed in the following sections. Tests were performed in an Intel

Xeon E5-2650V4 30 MB, 4 CPUs, 2.2Ghz, 96 cores/threads, 128G, 4TB.

The chapter describes the benchmark test functions employed in each scenario, the

algorithms used for comparison, the parameter setting, and the metrics applied for eval-

uation. Lastly, we present the obtained results regarding the proposed MA framework’s

performance facing each optimization case study.

6.2 Scenario of Single Global Optimization

As discussed in Section 4.5, global continuous optimization algorithms represent

the foundation for more complex scenarios, such as niching algorithms in multimodal

optimization (SER et al., 2019). According to Price et al. (PRICE et al., 2018), single

objective benchmark problems are the first tests for novel metaheuristics since such prob-

lems can be transformed into dynamic, niching composition, computationally expensive,

and other classes of problems.

The general MA framework was tested on the 100-Digit Challenge on single ob-

jective real-parameter optimization to test the behavior of it as a single objective opti-

mizer1 (PRICE et al., 2018) adopted in the CEC 2019, GECCO 2019 and SEMCCO

2019 (PRICE et al., 2019). This benchmark encompasses ten minimization problems,

which consist in ten functions to minimize, such that min f(x), x ∈ RD, where x is a

D-dimensional vector [x1, · · · , xD]. The benchmark suite is detailed in Table 6.1. It

1<https://github.com/P-N-Suganthan/CEC2019>

https://github.com/P-N-Suganthan/CEC2019

160

is noted that we used the Python implementation of the test suite available on <https:

//github.com/dmolina/cec2019comp100digit>.

Table 6.1: Summarization of the 100-Digit Challenge benchmark test functions
Function ID Function Fi∗ = Fi(x∗) D Search range

F1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [-8192, 8192]
F2 Inverse Hilbert Matrix Problem 1 16 [-16384, 16384]
F3 Lennard-Jones Minimum Energy Cluster 1 18 [-4,4]
F4 Rastrigin’s Function 1 10 [-100,100]
F5 Griewank’s Function 1 10 [-100,100]
F6 Weierstrass Function 1 10 [-100,100]
F7 Modified Schwefel’s Function 1 10 [-100,100]
F8 Expanded Schaffer’s F6 Function 1 10 [-100,100]
F9 Happy Cat Function 1 10 [-100,100]
F10 Ackley Function 1 10 [-100,100]

Source: From Price et al. (PRICE et al., 2018).

According to Table 6.1, all functions are multimodal with dimensions (objective

variables) varying from 9-D to 18-D. The challenge’s goal is to compute each function’s

minimum value to 10 digits of accuracy without being limited by time or maximum num-

ber of function evaluations. The optimal objective variables are known for all bench-

mark functions, and the global optimum for all functions to 10 digits of accuracy is

1.000000000. The last column shows each function’s upper and lower bounds, where

the same search range is defined for all function dimensions. The main characteristics of

the benchmark problems are given as follows (PRICE et al., 2018):

F1: Storn’s Chebyshev Polynomial Fitting Problem (Equation 6.1):

F1(x) = p1 + p2 + p3;

p1 =

 (u− d)2 if (u < d),

0 otherwise;
u =

D∑
j=1

xj(1.2)D−j

p2 =

 (v − d)2 if (v < d),

0 otherwise;
v =

D∑
j=1

xj(−1.2)D−j

pk =


(wk − 1)2 if (wk > 1),

(wk + 1)2 if (wk < 1),

0 otherwise;

wk =
D∑
j=1

xj

(
2k

m
− 1

)D−j

p3 =
m∑
k=0

pk, k = 0, · · · ,m; m = 32D;

d = 72.661 for D = 9

(6.1)

https://github.com/dmolina/cec2019comp100digit
https://github.com/dmolina/cec2019comp100digit

161

Function properties:

• Multimodal with one global minimum;

• Very highly conditioned;

• Non-separable and fully parameter-dependent.

F2: Inverse Hilbert Matrix Problem (Equation 6.2):

F2(x) =
n∑
i=1

n∑
k=1

| wi,k |

(wi,k) = W = HZ− I;

H(hi,k), hi,k =
1

i+ k − 1
, i, k = 1, 2, · · · , n; n =

√
D;

Z(zi,k), zi,k = xi+n(k−1)

(6.2)

Function properties:

• Multimodal with one global minimum;

• Highly conditioned;

• Non-separable and fully parameter-dependent.

F3: Lennard-Jones Minimum Energy Cluster (Equation 6.3):

F3(x) = 12.7120622568 +
n−1∑
i=1

n∑
j=i+1

(
1

d2i,j
− 2

di,j

)
;

di,j =

(
2∑

k=0

(x3i+k−2 − x3j+k−2)2
)3

, n = D/3

(6.3)

Function properties:

• Multimodal with one global minimum;

• Non-separable and fully parameter-dependent.

F4: Shifted and Rotated Rastrigin’s Function (Equation 6.4):

F4(x) =
D∑
i=1

(x2i − 10 cos(2πxi) + 10) (6.4)

Function properties:

• Multimodal;

162

• Non-separable;

• Huge number of local optima;

Figure 6.1: 3-D landscape representation for 2-D F4

Source: From Price et al. (PRICE et al., 2018).

F5: Shifted and Rotated Griewank’s Function (Equation 6.5):

F5(x) =
D∑
i=1

x2i
4000

−
D∏
i=1

cos

(
xi√
i

)
+ 1 (6.5)

Function properties:

• Multimodal;

• Non-separable;

Figure 6.2: 3-D landscape representation for 2-D F5

Source: From Price et al. (PRICE et al., 2018).

163

F6: Shifted and Rotated Weierstrass Function (Equation 6.6):

F6(x) =
D∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk(xi + 0.5)

)])
−D

kmax∑
k=0

ak cos(πbk);

a = 0.5; b = 3; kmax = 20;

(6.6)

Function properties:

• Multimodal;

• Non-separable;

• Huge number of local optima;

Figure 6.3: 3-D landscape representation for 2-D F6

Source: From Price et al. (PRICE et al., 2018).

F7: Shifted and Rotated Schwefel’s Function (Equation 6.7):

F7(x) = 418.9829D −
D∑
i=1

g(zi), zi = xi + 420.9687462275036;

g(zi) =


zi sin(|zi|1/2) if (|zi| ≤ 500),

(500− zi%500) sin
(√
|500− zi%500|

)
− (zi−500)2

10000D
if (zi > 500),

(|zi|%500− 500) sin
(√
|zi%500− 500|

)
− (zi+500)2

10000D
if (zi < −500);

(6.7)

Function properties:

• Multimodal;

• Non-separable;

• Huge number of local optima;

164

Figure 6.4: 3-D landscape representation for 2-D F7

Source: From Price et al. (PRICE et al., 2018).

F8: Shifted and Rotated Expanded Schaffer’s F6 Function (Equation 6.8):

F8(x) = g(x1, x2) + g(x2, x3) + · · ·+ g(xD−1, xD) + g(xD, x1);

g(x, y) = 0.5 +
sin2

(√
x2 + y2

)
− 0.5

(1 + 0.001(x2 + y2))2

(6.8)

Function properties:

• Multimodal;

• Non-separable;

• Huge number of local optima;

Figure 6.5: 3-D landscape representation for 2-D F8

Source: From Price et al. (PRICE et al., 2018).

165

F9: Shifted and Rotated Happy Cat Function (Equation 6.9):

F9(x) =

∣∣∣∣∣
D∑
i=1

x2i −D

∣∣∣∣∣
1/4

+

(
0.5

D∑
i=1

x2i +
D∑
i=1

xi

)/
D + 0.5 (6.9)

Function properties:

• Multimodal;

• Non-separable;

Figure 6.6: 3-D landscape representation for 2-D F9

Source: From Price et al. (PRICE et al., 2018).

F10: Shifted and Rotated Ackley Function (Equation 6.10):

F10(x) = −20 exp

0.2

√√√√ 1

D

D∑
i=1

x2i

−exp

(
1

D

D∑
i=1

cos(2πxi)

)
+20+e (6.10)

Function properties:

• Multimodal;

• Non-separable;

166

Figure 6.7: 3-D landscape representation for 2-D F10

Source: From Price et al. (PRICE et al., 2018).

6.2.1 Evaluation Criteria

The benchmark functions shown in Table 6.1 represent ten minimization prob-

lems, where the goal is to compute each function’s minimum value to 10 digits of accu-

racy using only one algorithm. As mentioned, the optimal objective variables are known

for all functions, and the global minimum for all functions to 10 digits of accuracy is

1.000000000. All problems have the global optimum within the given bounds. According

to the challenge’s evaluation criteria (PRICE et al., 2018), there is no limit on either time

or maximum number of fitness function evaluations. Thus, the stop criterion is deter-

mined when the algorithm reaches the 10-digit level of accuracy or the maximum number

of function evaluations defined by the user.

Therefore, 50 consecutive runs of an algorithm are required for each function,

each with a different initial population. The population is randomly initialized within the

search space (search range column in Table 6.1). The total number of correct digits in the

25 runs with the lowest function values (the 25 runs with the best fitness values out of

the 50 runs) is counted in the function’s score. The score for that function is the average

number of correct digits in the best 25 runs, i.e., if 50% or more of the runs find all 10

digits, then the score for that function is a perfect 10. The total score of an algorithm for

the ten functions is the sum of scores of each function. Then, the maximum total score

for the ten functions is 100, i.e., when the best 25 out of 50 runs for the ten functions give

the minimum to 10-digit accuracy. The score for each function is given by Equation 6.11

and represents the average number of correct digits obtained in the best 25 runs of the

167

function.

Fscore(NDcorr) =

(∑25
i=1NDcorri

25

)
(6.11)

Where NDcorr is a vector with the number of correct digits obtained in each of the best 25

runs of a given function.

The total score of the method for all functions is given by Equation 6.12, which

represents the sum of scores of the ten functions calculated individually by Equation 6.11.

Ftotal_score =
10∑
i=1

Fscorei (6.12)

Moreover, according to the benchmark specifications, the user may independently

tune up to two parameters for each problem. Adaptive parameters do not count as tuned

parameters, provided that they are both initialized and adapted identically for all ten prob-

lems. However, it is noted that we kept the parameter setting of our method the same for

all functions since the method is used as the basis for the subsequent optimization scenar-

ios. Hence, all framework parameters were adjusted identically for all ten problems.

6.2.2 MA Versions and Parameterization of the Method

This section presents the parameter setting and the intermediate algorithms devel-

oped to reach the final version of the framework-based MA for single global optimization,

previously described in Section 5.2. These versions were designed based on a constructive

approach, starting from a more straightforward MA to the final method. They were cre-

ated to aggregate and analyze different search components and to delineate the methods

for the other optimization scenarios.

As presented in Section 5.2, the general MA framework (Algorithm 7), combined

with the ABC algorithm (Algorithm 8), has a parameter set necessary for its execution.

Some of these parameters have already had their values defined with the search compo-

nents and do not change regarding the algorithm versions presented in this section. Thus,

the proposed MA receives as input parameters the initial number of layers Nlayers in the

tree, the maximum number of individuals Max_NS in the entire population of the MA,

the number of generations gcore executed by the core metaheuristic, and the maximum

number of fitness function evaluations Max_Evls. It also receives as an input parameter,

when necessary depending on the version, the period in terms of generations n_gen used

168

to calculate the simple moving average (SMA). Thus, the input parameters of the method

and their initial values are described as follows:

• Number of layers in the tree structure: the number of layers in the ternary tree struc-

ture also defines the number of nodes in the structure (Equation 5.1). We adopted an

initial tree structure with 3 layers (Nlayers = 3) as used in our previous works (COR-

RÊA; INOSTROZA-PONTA; DORN, 2017; CORRÊA et al., 2020; CORRÊA et

al., 2016; CORRÊA et al., 2018; CORRÊA; DORN, 2020), and consequently the

maximum of 13 nodes (Nnodes = 13). However, we observe that the number of

layers is dynamically adapted over the process depending on the version;

• Maximum number of individuals in the entire population of the MA: this param-

eter also defines the maximum number of individuals in each node depending on

the number of nodes (Nnodes) in the tree. We adopted Max_NS = 312, and con-

sequently the maximum of 24 individuals per node (Max_NSnode = 24) due the

number of nodes (Max_NSnode = Max_NS/Nnodes), following the parameteri-

zation of Corrêa and Dorn (CORRÊA; DORN, 2020);

• Number of generations executed by the core metaheuristic: this parameter repre-

sents the number of generations that the hybrid-ABC runs at each generation of the

framework. gcore was defined as 10 to promote exploration intra-niche before the

interactions between niches;

• Number of generations used to calculate the SMA: this parameter defines the period

in terms of generations used to calculate the SMA in the control procedure for

convergence and performance (Section 5.2.8). We adopted n_gen = 3 to consider

the exploration degree through a reasonable number of generations since n_gen =

3 implies 30 generations of the core metaheuristic. This parameter is not used in all

MA versions;

• Stop condition: the stop condition is defined by the number of fitness function

evaluations performed throughout an execution. For all benchmark functions, we

adopted a threshold of Max_Evls = 107 fitness evaluations or when the algorithm

reaches the 10-digit level of accuracy.

The set of input parameters of the MA framework and their initial values are sum-

marized in Table 6.2.

To analyze the proposed MA framework for global optimization, this section de-

tails designed variants to discuss the modifications that occurred in the algorithm through-

169

Table 6.2: Summarization of the input parameters of the MA and their initial values
Parameter Initial value
Number of tree’s layers Nlayers = 3
Number of tree’s nodes Nnodes = 13
Maximum population size Max_NS = 312
Maximum node size Max_NSnode = 24
Inner generations of the core metaheuristic gcore = 10
Complete generations used to calculate the SMA n_gen = 3
Stop condition Max_Evls = 107

Source: From the author (2022).

out the work’s development. Thus, the main components and search strategies to be ana-

lyzed in the algorithm variants are described below:

• Hierarchical tree data structure (Section 5.2.1);

• Inner node recombination, selection and replacement strategies (Section 5.2.4);

• Interactions between nodes (Section 5.2.5);

• Local search strategy (LIP procedure, Section 5.2.6);

• Control procedure for convergence and performance (restarting and performance

verification, Section 5.2.8);

• Dynamic Niche Size Procedure (DNSP, Section 5.2.9);

• Core metaheuristic (ABC algorithm, Section 5.2.12).

Therefore, six different variants were implemented considering the components

above. We highlight that the discussion of these algorithms was done through an incre-

mental process, i.e., the first version configures the baseline. The subsequent versions in-

corporate all the components added in the previous one. We note that the solutions for all

methods are randomly initialized within the search space of each optimization function.

The parameter values defined above (Table 6.2) remain the same whether the parameters

are included in a given algorithm version. The last variant is the final MA framework for

global optimization fully described in Section 5.2.

6.2.2.1 Version 1: Baseline algorithm

The first version was designed as the baseline algorithm for the MA framework

and used as the basis for the following variants. The baseline follows the same structure

of the MA for the PSP problem presented in the work of Corrêa and Dorn (CORRÊA;

170

DORN, 2020).

The baseline was implemented using the same hierarchical tree data structure de-

scribed in Section 5.2.1. As mentioned, the tree structure provides a multi-population

search strategy, which arranges the population in subpopulations into the tree’s nodes.

We note that for all versions of the method, the hierarchical tree was parameterized as a

ternary tree according to our previous papers focused on the PSP problem (INOSTROZA-

PONTA; FARFÁN; DORN, 2015; CORRÊA; INOSTROZA-PONTA; DORN, 2017; COR-

RÊA et al., 2020; CORRÊA et al., 2016; CORRÊA et al., 2018; CORRÊA; DORN, 2020).

In this version, the population is organized into a static tree structure with 3 layers

(Nlayers = 3) and 13 nodes (Nnodes = 13), according to the Equation 5.1. Each node

has a static number of individuals of 24 solutions per node (Max_NSnode = 24), which

gives 312 solutions in total (Max_NS = 312). The solutions are randomly initialized

and divided into the tree’s nodes without any niching strategy. Regarding the framework,

the population size (NS) is also the maximum number of individuals allowed in the tree

(NS = Max_NS) and does not change over the process. Thus, each node represents a

subpopulation of the MA with M = 24 solutions, which are then optimized based on the

MA search mechanisms.

The nodes are optimized internally by the ABC core search metaheuristic, which

is simpler than the final one (Section 5.2.12) and is further described. The interactions

between nodes follow predefined hierarchical rules and are performed via recombination

operations. Figure 5.1 shows the tree structure of the baseline algorithm with 3 layers,

which cannot be dynamically adapted over the optimization process as the final version.

After the subpopulations’ initialization, the steps below are executed in every generation

as described in Section 5.2.3, but with some differences.

• First step:

Each node runs the core metaheuristic independently (ABC algorithm, Section 4.5.1),

where the search algorithm is executed by gcore generations in each node. Besides, each

node performs gcore inner recombination operations with the solutions in its respective

subpopulation. However, the offspring is inserted into the next population only if it is

better than the worst solution and not by the Deterministic Crowding (DC) replacement

strategy as in the final version (Section 5.2.4). We note that the replacement of the worst

solutions increases selection pressure and speeds up the convergence, which may lead to

premature convergence.

In this sense, the inner recombination aims to enhance the exploration of the search

171

space of a given subpopulation. As in the final version, the operation is performed by

the Uniform crossover, and the selection of individuals is made via a 3-way tournament

selection strategy. As the proposed MA intends to provide a general optimization method,

the inner recombination is used to complement the search mechanisms of the framework,

favoring the exploration of intra-niche regions.

• Second step:

The interactions between nodes are performed following the hierarchical structure of the

tree, with its neighbors from the same parent and with its parent (Figure 5.1). As in the

final version, the interactions are performed by recombination operations using the Uni-

form crossover. However, this version only performs the bottom-up crossover operation

(Algorithm 3, Section 5.2.5) and does not include the top-down operation. We note that

the final version of the interactions between nodes is described in Section 5.2.5).

According to the Figure 5.1, the hierarchical sub-structure is divided into two

levels: (i) upper level, which comprises a parent node with child nodes; and (ii) lower

level, which includes the three child nodes of the parent node in the upper level. In

the bottom-up crossover, the child nodes (lower level) do crossover operations with their

neighbors, linked to the same parent (upper level), to generate three offspring for each

group of neighbors (Algorithm 3, lines 2-10). One solution from each subpopulation is

selected by ranking-based selection strategy as parents in each recombination operation.

However, the offspring from the crossovers between the child nodes are integrated into

the population of the respective parent only if they are better than the worst solutions, and

not via the Restricted Tournament Selection (RTS) strategy as shown in Section 5.2.5.

• Third step:

In the baseline, the LS algorithm is also applied on the best solutions of each subpopu-

lation via the LIP, described in Section 5.2.6. The algorithm incorporates the same LIP

procedure of the final version as a fundamental part of the MAs. It has the continu-

ous LS strategy, where the MA framework was combined with the Solis and Wets (SW)

algorithm (SOLIS; WETS, 1981) as its LS strategy. The LS chain is used to control

the SW parameters for each solution by keeping the historical memory of the LS pro-

cedures already performed on each individual. As previously discussed, such a strategy

aims to adjust the exploitation intensity (number of fitness evaluations) applied to the MA

throughout the evolutionary process.

Nonetheless, the only difference in this version is that the LIP is applied to one of

172

all solutions of each subpopulation and not to only one of the pbest% best solutions. Such

constraint was implemented in the following versions to focus the refinements only on the

promising regions of the search space, giving to the exploration the role of improving the

non-promising solutions. The LS restarting is also employed but considering the entire

population to decide whether it will be executed. We note that we adopted the same

parameterization of the LIP’s final version (Section 5.2.6) for all intermediate variants.

• Fourth step:

As a central concern of the MA, population diversification is required to ensure a suit-

able algorithm’s exploration and the ability to overcome local optima. Contrarily, the

loss of population diversity may be necessary for the exploitation and convergence of the

algorithm (SER et al., 2019; ČREPINŠEK; LIU; MERNIK, 2013). Thus, this version

also implements a control mechanism for convergence but is simpler than the final one,

detailed in Section 5.2.8. The baseline does not present any niching strategy at the initial-

ization step, except for the hierarchical tree structure that segments the solutions in dis-

tinct subpopulations. As mentioned, it does not include the tree resizing procedure (TRP)

to change the tree structure dynamically during the optimization process (Section 5.2.7).

However, the control mechanism for convergence aims to ensure a certain degree of di-

versity whereas improving the best solutions in a simplest manner. With this, the baseline

only uses the restarting procedure described in Section 5.2.8.

Therefore, it uses the coefficient of variation (CV) measure (Equation 2.6), dis-

cussed in Section 2.5, as the indicator of population diversity instead of the diversity

measures used in the final version. So we note that this version does not employ the

combination of diversity measures used to quantify the similarity and distribution of indi-

viduals, described in Section 5.2.8. The CV was employed as a first trial to evaluate the

relationship between the population diversity and the Expr/Expt balance.

Like the final method, the restarting procedure is responsible for monitoring and

independently restarting each subpopulation of the tree if it reaches a premature conver-

gence according to the CV values. In the baseline, the subpopulation of a given node is

reinitialized if it has reached a CV value less than p_expr%. CV values are expressed as

a percentage in the continuous range [0, 100], and the parameter p_expr% is the thresh-

old used to indicate whether the subpopulation has signs of convergence or not, as lower

values of CV indicate loss of diversity and low algorithm’s exploration. This version does

not include the SMA as a second threshold for restarting.

Thus, for each nodei(i = 1, · · · , Nnodes) in the tree structure, its subpopulation is

173

reinitialized if:

CVcurri < pexpr%, which indicates that the current CV value is less than pexpr%.

If restarting, the procedure discards the entire subpopulation and generates a new

one, only keeping the best solution. We observe that this version does not employ the

performance verification procedure to control the performance of the MA by analyzing

the number of improvements of solutions throughout a certain period of generations (Sec-

tion 5.2.8). We adopted p_expr% = 15% as used in our previous work (CORRÊA;

DORN, 2020).

• Fifth step:

Finally, we highlight that the method does not dynamically change the niche size nor

reorganize the solutions into the nodes through the clustering-based Speciation algorithm

(Section 5.2.9). So the DNSP was not considered in this version. The components not

included in the baseline are described in the subsequent versions to form the final method.

• Core metaheuristic:

The core metaheuristic is responsible for the MA subpopulations’ inner exploration (Sec-

tion 5.2.12). Thus, the MA was combined with a modified version of the ABC algo-

rithm (KARABOGA; BASTURK, 2007) since the first version. The baseline ABC was

inspired by the one applied to the PSP problem, presented by Corrêa and Dorn (COR-

RÊA; DORN, 2020). It is a simpler version of the hybrid ABC algorithm detailed in

Section 5.2.12. According to the literature (KARABOGA; BASTURK, 2007; AKAY;

KARABOGA, 2012), the synergy of concepts between the MA and ABC algorithms

seems suitable for the optimization domain understudy in the sense of efficient search

space Expr/Expt. For that reason, we decided to adopt the ABC since the baseline vari-

ant.

This baseline version does not include all components of the final method shown in

Algorithm 8 of Section 5.2.12. It follows the same optimization steps of the standard ABC

(Algorithm 1, Section 4.5.1), which encompass the employed bees’ stage, onlooker bees’

stage, and the scout bees’ stage. Such steps aim to simulate the foraging task performed

by specialized bees of a honeybee.

Moreover, the algorithm does not implement the population division strategy,

which splits each subpopulation into two groups according to the solutions’ fitness quality

to promote Expr/Expt. However, the individuals are mutated by the gbest search equation

174

(Equation 4.2) of the GABC (ZHU; KWONG, 2010) instead of the standard ABC muta-

tion equation (Equation 4.1), previously explained in Sections 4.5.2 and 5.2.12. So the

entire population is guided by the best individual of the subpopulation to move toward

the global of this niche and at least increase the convergence rate, refining the accuracy of

individuals.

As previously discussed in Sections 4.5.1, 4.5.2 and 5.2.12, the ABC (Algo-

rithm 1) has the ability of search space exploration but presents some inefficiencies of

exploitation, which can imply in slow convergence rate and stagnation (ZHU; KWONG,

2010; AKAY; KARABOGA, 2012; LI; NIU; XIAO, 2012). Thus, we adopted the muta-

tion rate-MR strategy (AKAY; KARABOGA, 2012) to overcome the slow convergence of

the standard algorithm due to the mutation of only one dimension of the individual at each

operation. The employed and onlooker bees’ phases consider more dimensions to be mu-

tated at each operation based on the defined threshold MR. We employed rate-MR with

MR = 0.4 by the suggestion of Akay and Karaboga (AKAY; KARABOGA, 2012) for

continuous optimization, and we kept this strategy until the final version (Section 5.2.12).

Regarding the control parameters, the population size SN is defined by the sub-

population size submitted to it, and the MR parameter was defined above. The ‘limit”

parameter l for scout bees was initially set as the standard ABC l = 200 instead of the fi-

nal version’s l = SN×D. The parameter l is the threshold that defines when an employed

bee abandons the food source and becomes a scout bee, which means that if in over 200

generations a solution has not been improved, it is discarded. The scaling factors of the

gbest equation δ and γ were defined as follows: (i) δ can assume a random real number

in the range [−1, 1]; and (ii) γ is a random real number in the range [0, 1.5]. We highlight

that this ABC version does not adopt any self-adaptive control parameter. Thus, random

values of δ and γ are assigned to each variable of the solution being mutated.

6.2.2.2 Version 2

The second version was created from the baseline to test the frequency of the

restarting procedure (Section 5.2.8). Thus, we slightly reduced the parameter p_expr%

in order to reduce the number of restarts performed throughout the optimization process.

With this, we adopted p_expr% = 5% due to the high number of restarts performed by

the first version. A high number of restarts over an optimization process may imply a

slow convergence rate at the last generations of the process. On the contrary, the loss

of population diversity in a given optimization period is necessary for the exploitation

175

and convergence of the algorithm (ČREPINŠEK; LIU; MERNIK, 2013). So we used a

lower p_expr% value in an attempt to reach a reasonable convergence at the end of the

process since the MA has other mechanisms to maintain the diversity at the beginning of

the search.

Nonetheless, we also modified the inner recombination strategy (Section 5.2.4),

where the offspring from the recombination is now inserted in the next subpopulation via

a greedy selection between the new solution and its parents. The competition among the

offspring and its parents decreases selection pressure and mainly supports diversity in the

initial steps.

Therefore, we decreased the p_expr% threshold to avoid high diversity levels at

the last generations of the process but also changed the inner recombination procedure to

not accelerate the convergence at the first generations with the replacement of the worst

solutions.

6.2.2.3 Version 3

The third version received one of the main strategies focused on multimodal land-

scapes implemented in the framework. We adopted a cluster-based niching strategy (Sec-

tion 5.2.2) to divide the entire population into subpopulations based on the spatial posi-

tions of the individuals. The clustering-based Speciation algorithm strategy was used to

enhance the tree structure’s potential to segment the population into distinct nodes.

Thus, the niching strategy is a distance-based neighborhood algorithm that divides

the NS individuals of population P into NCl subpopulations, each of which comprises

M individuals with adjacent locations in the search space. Such a strategy aims to main-

tain a diverse population longer over the process, preventing a premature convergence to

local optima. We note that it was detailed in Algorithm 2 of Section 5.2.2.

From the inner recombination replacement strategy of the previous versions, in

this variant, we adopted the DC replacement instead of the replacement by parents strat-

egy (Section 5.2.4). The DC has the potential to maintain diversity by exploring the

similarities between solutions. Thus, the DC has the same purpose as the other replace-

ment component but may keep the diversity intra-niche more efficiently considering the

distance between solutions. It was used to support the cluster-based niching strategy and

enhance the balance between Expr/Expt.

Lastly, regarding the restarting procedure (Section 5.2.8), we adopted a different

criterion in place of the CV measure of the first versions. The new criterion was em-

176

ployed as a first attempt to evaluate the balance between Expr/Expt by considering the

distinct diversity measures detailed in Sections 2.5 and 5.2.8. Thus, as diversity mea-

sures are problem-dependent, we employed a strategy that combines the diversities mea-

sured in both the objective and decision spaces to quantify the search space, individuals’

distribution, and fitness. The four distinct diversity measures, previously presented in

Section 2.5, consist of two distance-based measures: (i) the dimension-wise diversity

measure (Divdimension, Equation 2.1); and (ii) the population center measure (Div2center,

Equation 2.3). And two other measures focused on the objective space: (iii) the entropy-

based measure (Diventropy, Equation 2.4); and (iv) the fitness-based distance (Divfitness,

Equation 2.5). The usage of different measures was done to better evaluate the diversity

oscillation throughout the search process. Besides, this threshold was included to sup-

port the DC replacement strategy during the execution of the core metaheuristic and inner

recombination operations.

The restarting criterion uses as threshold (pexpr%) the half of the maximum diver-

sity values obtained during the process (Equation 6.13). Thus, the procedure evaluates

separately whether the current value of each measure is less than its threshold. Hence, the

subpopulation of a node is reinitialized if all current diversity values satisfy the thresh-

old. This criterion may indicate whether the subpopulation has lost diversity and presents

consistent signs of convergence when compared with different measures.

Therefore, for each nodei(i = 1, · · · , Nnodes) in the tree structure, its subpopu-

lation is reinitialized wether the condition below is satisfied for each diversity measure

Divj (j ∈ 1, 2, 3, 4):

Divcurrij < pexprij%, which indicates that the current value of the j-th measure is

less than the half of its maximum value, given by Equation 6.13.

pexprij% =

(
Divmaxij

2

)
(6.13)

Where pexprij% is the threshold for the j-th measure related to the i-th node.

6.2.2.4 Version 4

In this version, we enhanced the restarting procedure (Section 5.2.8), changing

its criterion again. The same diversity measures used in the previous version were com-

bined to form a single measure in an attempt to better address the Expr/Expt ratio over the

optimization. The ensemble of measures replaced the values of each measure evaluated

individually by the average of the consolidated values of the four measures. This combi-

177

nation of measures was adopted to favor their strengths and overcome their shortcomings

to distinguish distinct populations over the search space and provide better guidance for

the process. With this, the single measure incorporated in the MA denotes the average

of the normalized values of the four diversity measures considered (Divcombined, Equa-

tion 5.4). We note that this measure was explained in Section 5.2.8.

Moreover, to quantify the Expr/Expt balance using the combined diversity mea-

sure (Divcombined), we introduced a definition to represent it as the percentage of Expr/Expt

performed by a given algorithm (Section 2.6). Considering the combined diversity mea-

sure (Divcombined, Equation 5.4 of Section 5.2.8), the exploration (Expr%, Equation 5.5)

and exploitation (Expt%, Equation 5.6) ratio is defined by the relative diversity of the

population. The relative diversity was detailed in Section 5.2.8 and represents the ration

between the diversity rate of the current iteration and the initial diversity value calculated

from the first initialized population. Thus, the percentage of exploration (Expr%) de-

scribes the exploration effort as the relationship between the diversity in each iteration

and the initial diversity rate. The percentage of exploitation (Expt%) is calculated as the

complementary percentage of Expr% and describes the exploitation effort. As Expr%

and Expt% are mutually complementary, we focused on the Expr% values to address

both efforts.

Therefore, the niche restarting procedure evaluates each tree’s subpopulation in

terms of theExpr% values (Equation 5.5) to monitor an eventual premature convergence.

With this, a node’s population is reinitialized if it has reached Expr% less than pexpr%.

Expr% is expressed as a percentage in the continuous range [0, 1], and the parameter

pexpr% is the threshold used to indicate whether the subpopulation shows a tendency of

convergence or not. Thus, for each nodei(i = 1, · · · , Nnodes) in the tree structure, its

subpopulation is reinitialized if:

Exprcurri < pexpr%, which indicates that the current Expr% is less than pexpr%;

If restarting, the procedure discards the entire subpopulation and generates a new

one, only keeping the best solution. So, restarting is used to diversify the population.

However, depending on the value adopted for the threshold pexpr%, the Expr% may

indicate the convergence of the population to a local optimum. Thus, recommended values

for pexpr% are in the continuous range [0, 0.1] (MORALES-CASTAÑEDA et al., 2020).

Hence, we used pexpr% = 0.01, which means that the restarting is performed in a given

niche if the exploration rate is less than 1%. We note that it was kept until the final version

(Section 5.2.8).

178

Moreover, suppose the restarting procedure is applied to any subpopulation. In

that case, the clustering-based Speciation algorithm is performed again to reorganize the

most similar solutions in a single node according to their similarities (Section 5.2.9).

We introduced this strategy to focus the search on distinct regions and avoid losing the

achieved regionalization.

Regarding the ABC metaheuristic from the previous versions, we incorporated

the population division strategy, which splits each ABC subpopulation into two groups

according to the individuals’ fitness quality. This schema is detailed in Section 5.2.12.

At the beginning of each generation, the individuals of a node are classified as superior

(better fitness) or inferior individuals (poorer fitness). To divide the solutions, we adopted

the midpoint of the set of fitness values (md) as fitness division threshold (Equation 5.11

of Section 5.2.12). Then, solutions of a given niche with similar fitness may focus on

exploration or exploitation and not on both based on the split of the population. The

size of the groups varies according to the optimization status of the subpopulation. Such

a strategy aims to balance the Expr/Expt mechanisms of the ABC by avoiding using a

single mutation for solutions in different stages of convergence.

The superior individuals are mutated by the gbest search equation (Equation 4.2)

of the GABC to accelerate the population convergence. The inferior ones should explore

other regions of the search space and preserve population diversity. Contrarily, the inferior

ones are updated by the mutation search equation “DE/rand/1” from the DE algorithm

(Equation 4.4 of Section 4.5.3). “DE/rand/1” is a random mutation with no bias to any

search direction, which may favor the exploration and preserve population diversity.

Moreover, in this version, we introduced a self-adapting control parameter mecha-

nism for the search equations’ scaling factors δ and γ of the gbest andF of the “DE/rand/1”

equation. It was inspired in the jDE algorithm (BREST et al., 2006; BREST; MAUČEC;

BOŠKOVIĆ, 2019), previously explained in Section 4.5.3. With this, each solution of the

subpopulation has its control parameters δ, γ, and F , which are evolved together with the

objective variables throughout the optimization. Hence, the scaling factors are kept the

same for a given candidate solution during the update operation and do not change regard-

ing each mutant variable, as in the previous versions. This modification was done due to

the self-adaptive strategy adopted for the scaling parameters. We note that the adaptive

schema is detailed in Section 5.2.12, where new parameter values for δ, γ and F are calcu-

lated before the update operation of a given solution, as shown in the the Equations 5.12,

5.13 and 5.14, respectively. Also, the parameters are initialized at the beginning of the

179

MA execution in the initialization step of the framework.

Lastly, regarding the “limit” parameter l for the threshold of discarding the scout

bees in the ABC, we adopted the proportion l = SN ×D instead of the constant l = 200

of the previous versions. SN is the population size, and D represents the problem dimen-

sion. According to Akay and Karaboga (AKAY; KARABOGA, 2012), this proportion fits

well with dynamic population sizes and varied problem dimensions.

6.2.2.5 Version 5

This version mainly incorporated the dynamic procedures regarding the hierarchi-

cal tree structure of the framework. The first component is the TRP, previously explained

in Section 5.2.7. It consists of a deterministic algorithm that shrinks the number of lay-

ers in the tree linearly according to the number of fitness function evaluations. The TRP

aims to enforce the algorithm’s exploration at the beginning of the process and reach an

acceptable convergence at the last generations. The strategy removes one layer of the tree

at every rmlayer number of fitness function evaluations of the framework. So given the

input parameters, rmlayer is the ratio between Max_Evls = 107 and N_initiallayers = 3

(Equation 5.3). In this scheme, the outermost layer of the tree is removed. The MA will

have precisely one layer with a single node at the end of the optimization process.

Thus, we highlight that the TRP combined with the clustering-based niching strat-

egy promotes population diversity at the early optimization stages. On the other hand, it

reduces the tree structure over the optimization to increasingly focus on the most promis-

ing regions found.

We also enhanced the niche restarting procedure from the previous one in this

version. Besides the exploration effort (Expr%) criterion calculated from the combined

diversity measure (Divcombined), we introduced a second criterion to follow the trend of

variation of the Expr% and support the decision making.

Therefore, the population of a given node is reinitialized if it has reached Expr%

less than pexpr% and if the SMA of the Expr% values shows a decreasing tendency when

compared with the SMA calculated in the previous period of generations. As already

detailed in Section 5.2.8, the SMA is used to analyze the Expr% values by creating two

comparison periods of averages. These periods encompass a given number of overlapped

generations, where the latest period may drop the earliest Expr% value (oldest genera-

tion) and includes the latest Expr% (current generation). Hence, the SMA of the current

and the past periods are compared to verify the loss of diversity in a given niche, which,

180

combined with the low exploration rate, corroborates with the convergence of the subpop-

ulation.

Thus, for each nodei(i = 1, · · · , Nnodes) in the tree structure, its subpopulation is

reinitialized if:

1. Exprcurri < pexpr%, which indicates that the current Expr% is less than pexpr%;

2. SMA_Exprcurri < SMA_Exprpreviousi , which indicates that the current SMA of

Expri% (SMA_Exprcurri) values is less than the SMA of n_gen generations ago

(SMA_Exprpreviousi).

Following the previous versions, if restarting, the procedure discards the entire

subpopulation and generates a new one, only keeping the best solution. We observe that

this is the final version of the restarting strategy. The complete procedure is shown in

Algorithm 4 of Section 5.2.8.

As mentioned in the baseline version, we first adopted a simplest version of the

control procedure for convergence and performance and then enhanced it. Thus, in this

version, we incorporated the second procedure of this strategy, the performance verifica-

tion, described in Section 5.2.8. The procedure aims to control the algorithm’s perfor-

mance by analyzing the number of improvements of solutions throughout a given period

of generations. Similar to the restarting procedure, but less aggressively, it prevents the

method’s stagnation by dynamically changing the size of each niche depending on the

exploration status. The procedure works using a dynamic threshold (evoltime) related to

the period with no improvement (not_imp) of the gbest solution.

The parameter not_imp is initialized with 0 and incremented by 1 at each consec-

utive generation that the gbest solution is not improved. Then, if the gbest solution has

not been improved during evoltime number of generations (not_imp > evoltime), this pro-

cedure applies the DNSP to the entire population of the MA. We observe that the DNSP

was also implemented in this version and is responsible for changing the size of subpopu-

lations considering the increasing/decreasing of the exploration given by the SMA of two

periods of Expr% values. It also reorganizes the individuals through the clustering-based

niching algorithm. DNSP is fully explained in Section 5.2.9.

To update the dynamic threshold evoltime, the difference between the number

of current generation (gencurr) and the previous threshold used in the last update of

the procedure (evolprevious) is stored as the new value for the threshold (evoltime =

gencurr − evolprevious). With this, whenever the condition (not_imp > evoltime) is satis-

181

fied, the threshold is updated as the number of generations that the MA took to reach the

no improvement threshold since the last time that this condition was satisfied. Thus, the

more improvements without satisfying the condition for the DNSP execution, the higher

the threshold evoltime when updated. The variables evoltime and evolprevious are initial-

ized with the low value of 1 in an attempt to quickly adjust the size of subpopulations to

suitable search indicators at the beginning of the process in case of no improvement of the

best solution. The Algorithm 5 of Section 5.2.8 shows the pseudocode of the performance

verification procedure.

We note that the complete procedure for convergence and performance is de-

scribed in Section 5.2.8, encompassing the niche restarting and the performance verifi-

cation procedures.

As a complement to the components already included in the method, we imple-

mented the DNSP to dynamically adapt the size of the niches and then reorganize the

individuals by the clustering-based niching algorithm. Besides, DNSP aims to better

follow the optimization process in terms of the Expr/Expt efforts and the algorithm’s per-

formance by improving solutions. The complete procedure is described in Section 5.2.9.

The population size is one of the most critical parameters of a metaheuristic since

it strongly influences the balance between Expr/Expt (SER et al., 2019). As mentioned,

the population size parameter is problem-dependent; hence combining strategies to adapt

it throughout the search process with other optimization issues, such as the Expr/Expt

balance and the algorithm’s ability to improve the best solutions, can enhance the final

results (ALETI; MOSER, 2016; POLÁKOVÁ; BUJOK, 2018; SER et al., 2019).

Therefore, the DNSP changes the size of subpopulations according to the min-

imum (Min_NSnode) and maximum (Max_NSnode) number of individuals allowed in

each node. The Min_NSnode is defined regarding the minimum number of solutions

required in the core metaheuristic. In our case, we adopted Min_NSnode = 5, which is

suitable for most population-based metaheuristics, including the ABC and DE algorithms.

The Max_NSnode (Equation 5.9 of Section 5.2.9) is defined based on the ratio between

the parameters that represent the maximum number of individuals (Max_NS) allowed in

the entire method’s population and the number of nodes (Nnodes) in the tree structure. As

previously described in Table 6.2, we adopted as initial values for the input parameters

Max_NS = 312 and Nlayers = 3, which, consequently, gives 13 nodes (Nnodes = 13)

at the beginning of the process. With this, the maximum number of individuals allowed

in each node is 24 (Max_NSnode = 24). However, we observe that the number of lay-

182

ers is dynamically adapted whenever the TRP is applied. Hence, the Nnodes in the tree

decreases, and the Max_NSnode increases over the process.

The DNSP is applied whenever: (i) the TRP (Section 5.2.7); (ii) the LS restarting

(Section 5.2.6); (iii) the niche restarting (Section 5.2.8); and (iv) the performance verifica-

tion procedure (Section 5.2.8) are executed. All of these components are already included

in this version. However, the conditions to change the subpopulation size in DNSP are

different depending on the procedure executed.

The first scenario is related to the TRP. At the end of this procedure, we introduced

the execution of the DNSP. Thus, the DNSP defines a new size of subpopulations (M)

randomly based on the range of minimum (Min_NSnode) and maximum (Max_NSnode)

number of individuals allowed in each node. The size of subpopulations is randomly

defined in this scenario because whenever the TRP is executed, it changes the tree struc-

ture and modifies the maximum number of individuals allowed in each node. Then, any

condition based on the exploration degree would be affected.

The second scenario is related to the execution of the LS restarting and the per-

formance verification procedures. At the end of them, the DNSP dynamically changes

the size of subpopulations of the tree, considering the variation in the increase and de-

crease of the exploration given by the SMA of two distinct periods of Expr% values.

Thus, the DNSP adapts the niche size regarding two significant concerns of the optimiza-

tion process, i.e., the exploration effort through the population diversity degree and the

performance via the improvement of best solutions.

It changes the size of subpopulations based on the exploration status of the method

in a given generation. The exploration status is given by the average Expr% of the entire

MA population (Expravg%, Equation 5.10 of Section 5.2.9). Then, we used the SMA to

analyze the Expravg% values by creating two comparison periods of averages. Thus, if

the current SMA ofExpravg% is less than the previous period (exploration is decreasing),

the size of each subpopulation is randomly increased considering the range between the

current subpopulation size and the Max_NSnode. We note that increasing the number of

solutions may increase the exploration in terms of population diversity. On the other hand,

if the current SMA ofExpravg% is higher than the previous period (exploration is increas-

ing), the size of each subpopulation is randomly decreased by a random number generated

in the range of the current subpopulation size and the Min_NSnode. Analogously to the

first condition, reducing the subpopulation size may increase the exploitation in terms of

population diversity.

183

The third scenario concerns the niche restarting procedure. Whenever the restart-

ing procedure is executed, the DNSP is performed. However, in this case, the niche size

is not changed as in the above scenarios, but only the clustering-based niching procedure

is executed.

Therefore, after any of the above scenarios, the DNSP performs the clustering-

based Speciation (Algorithm 2 of Section 5.2.2) to reorganize the individuals into the

nodes according to their similarities.

6.2.2.6 Version 6: Final version

Version 6 encompasses all the other components previously presented and rep-

resents the MA’s final version for global optimization, which is fully described in Sec-

tion 5.2. This version received enhancements related to the synergy of the MA compo-

nents over the algorithm’s optimization. Thus, we implemented the execution and priority

order needed to run the procedures, focusing on orchestrating the search mechanisms. The

priority order of execution for the framework components is explained in Section 5.2.10.

Another modification in this version concerns the interactions between nodes (Sec-

tion 5.2.5). As mentioned in the baseline, the MA was using only the bottom-up crossover

operation (Algorithm 3, Section 5.2.5). So we included the top-down operations to pro-

mote the knowledge sharing inter-niches and population diversification throughout the

evolutionary process.

Considering the division of the hierarchical sub-structure between upper and lower

levels illustrated in Figure 5.1. In the top-down crossover, the parent nodes (upper level)

perform crossover operations with their children (lower level) to generate three offspring

(Algorithm 3, lines 12-23). Then, the resulting offspring from the crossover operation

between each parent and its children are integrated into the respective child subpopulation.

We observe that different from the previous versions, in the final one, the offspring

from both bottom-up and top-down crossover operations are integrated into the respective

subpopulations by the RTS strategy (Section 4.6.1) and not via a greedy competition with

the worst solutions. The RTS was used to prevent different solutions from competing with

each other to maintain the intra-niche cohesion and the inter-niche diversity.

Moreover, such a combination of the top-down and bottom-up interactions may

increase the MA’s exploratory potential and the synergy between the other search com-

ponents. The two types of recombination were designed to integrate all the nodes as a

way of knowledge sharing inter-niches and population diversification. The information of

184

each one can eventually be passed to all the nodes throughout the evolutionary process.

Finally, we modified the LIP (Section 5.2.6) to be applied only to one of the pbest%

best solutions of each subpopulation and not to one of all solutions. It was implemented

to enhance the exploitation of the promising regions of the search space or escape from

local minima. We adopted pbest% = 25, which refers to the 25% best solutions of each

subpopulation.

6.2.2.7 Summarization of the MA Versions

The framework-based MA for continuous optimization was designed based on an

incremental strategy, starting from a baseline version to the final method. We presented

six variants that are detailed in the sections above. The complete MA is described in

Section 5.2 and the Algorithm 7 shows its pseudocode.

Therefore, the intermediate versions were created to combine search components

with distinct purposes focused on global optimization with multimodal objective func-

tions. We highlight that the framework aims to be a general optimization method that

can be easily adapted to other search strategies and components. This incremental design

of the method was done to illustrate some of these possibilities. Table 6.3 summarizes

the main components incorporated in each variant, the search strategy differences, and

concepts related to them. As the development of the algorithms was done through a

constructive process, we note that the following versions incorporate all the components

added in the previous one.

6.2.3 Results and Discussion

6.2.4 MA Versions

To test the performance of the presented MA versions, we applied them to the 100-

Digit Challenge on single objective real-parameter optimization, as previously mentioned.

The benchmark functions represent ten minimization problems (Table 6.1), where the

goal is to compute each function’s minimum value to 10 digits of accuracy using only one

algorithm. The evaluation criteria are detailed in Section 6.2.1.

Thus, the score for a given function is the average number of correct digits in the

best 25 of 50 trials. The results of the 50 runs are sorted according to the final number of

185

Table 6.3: Summarization of the MA variants, search strategy differences and main con-
cepts related to them

Version Component Search strategy differences Search concept

V1

Tree data structure Static Divide population in nodes
Tree initialization Random Normal initialization
Inner recombination Replacement of worst solutions May cause premature convergence
Node interactions Only bottom-up operation Limit the knowledge sharing
Node interactions Replacement of worst solutions May cause premature convergence
LIP Consider all subpopulation to LS Does not focus on promising regions
TRP - -
Control mechanism Restarting with CV criterion Diversification with p_expr% = 15%
DNSP - -
Priority order - -
ABC mutation Only gbest equation Increase niche convergence
ABC pop. division - -
ABC adaptive factors - -
ABC limit parameter l = 200 Recommended but static

V2
Control mechanism Restarting with CV criterion p_expr% = 5%; Regulate diversity
Inner recombination Replacement with parents Decrease selection pressure

V3
Tree initialization Clustering-based Speciation Niching
Inner recombination DC replacement Diversity preservation
Control mechanism Restarting with 4 measures Follow diversity measures

V4

Control mechanism Restarting with combined measure Population diversification
DNSP Only re-clustering Niching
ABC mutation gbest and “DE/rand/1” Expr/Expt balance
ABC pop. division Based on fitness Expr/Expt balance
ABC adaptive factors self-adapting strategy Adaptation to the problem
ABC limit parameter l = SN ×D Fit pop. size and problem dimension

V5

TRP Linear reduction of tree nodes Expr/Expt balance
Control mechanism Restarting with combined measure Diversification (SMA of Expr)
Control mechanism Performance verification Expr/Expt balance
DNSP Adaptive niche size; Re-clustering Expr/Expt balance; Overcome issues

V6
Node interactions Bottom-up and top-down operations Increase MA’s exploratory potential
LIP Consider the 25% best solutions to LS Focus on promising regions
Priority order Regulate components’ execution Promote the components’ synergy

Source: From the author (2022).

correct digits that each trial found (best fitness values). Each run can score up to 10 points

(correct digits) for a function. Moreover, the best 25 runs can score up to 250 points.

Then, the score for this function is the average number of correct digits found in the best

25 runs. The total score of the algorithm is calculated as the sum of the scores for all 10

functions.

This section presents only the total score of each version obtained from all 10

functions’ scores for the best 25 of 50 runs. In the next section, we discussed the per-

formance of the final version regarding each benchmark function and compared with the

most relevant methods in the field, according to the analysis of challenge results of CEC

2019, GECCO 2019, and SEMCCO 2019 (PRICE et al., 2019). So the obtained total

score of each version is described in Table 6.4. Besides, Figure 6.8 shows the bar plot of

these results.

According to the results of Table 6.4, we observe that the incremental design of the

186

Table 6.4: Total score obtained from all 10 functions for the best 25 of 50 runs of each
MA version

MA version Total score
Version 1 61.48
Version 2 72.16
Version 3 76.12
Version 4 78.4
Version 5 79.0
Version 6 80.12

Source: From the author (2022).

Figure 6.8: Representation of the total score obtained from all 10 functions for the best
25 of 50 runs of each MA version

Source: From the author (2022).

MA was able to improve the final result of the last version. These results could indicate

that the final version of the method, including all of the described components, has the

potential to improve the results when dealing with global optimization problems with

multimodal objective functions.

The proposed versions were implemented following the points of interest outlined

for this thesis to reach a final framework-based MA for multimodal optimization. Thus,

from the results illustrated in Table 6.4, we note that the modifications made throughout

the method’s development regarding Expr/Expt balance, improvement of solutions, and

parameter control were able to support the MA in the optimization process. Nonethe-

187

less, it is observed that the MA still needs improvements to enhance the obtained results,

mainly concerning the orchestration of all the components implemented over the algo-

rithm’s optimization.

In the following section, we detail the obtained results of the final version of the

method regarding each of the benchmark functions. In addition, we conducted a con-

vergence analysis regarding the best fitness values obtained throughout the experiments.

Also, we illustrate the variability of the method in terms of Expr/Expt, its potential to

handle the trade-off and improve the subpopulation solutions.

6.2.5 Final Method for Global Optimization

The obtained results of the MA’s final version are described in Table 6.5. The

score for a given function is the average number of correct digits in the best 25 of 50 trials,

which is indicated in the last column. The results of the 50 runs are sorted according to

the final number of correct digits that each trial found (best fitness values). Each run can

score up to 10 points (correct digits) for a function. Furthermore, the best 25 runs can

score up to 250 points. Then, the score for this function is the average number of correct

digits found in the best 25 runs. The table shows the final number of correct digits for

each trial, making the sum for a row equal to 50. For instance, regarding the obtained

results for function F9, the method has reached 9 digits of accuracy (9 points) in 4 runs,

8 digits in 19 runs and 7 digits of accuracy in 24 runs, which encompass the best 25 runs.

Thus, the method obtained 202 points considering the best 25 runs, which resulted in an

average score of 8.08 (202/25). The total score is calculated as the sum of the scores for

all 10 functions, and it is presented in the last column.

According to the results of Table 6.5, the proposed MA has reached a perfect

score for 7 out of 10 functions. The total score achieved was 80.12 for 50 runs of all

benchmark functions. Thus, to situate our results according to the most relevant methods

in the field, we refer to the report of Price et al. (PRICE et al., 2019) concerning the

analysis of competition results. The report combines the challenge results of CEC 2019,

GECCO 2019, and SEMCCO 2019. It has classified the methods into two groups: (i)

the primary algorithms, which are the tuned methods for specific functions; and (ii) the

secondary algorithms, with most being among the better-performing algorithms at prior,

time-limited competitions. In general, the secondary algorithms were not tuned, but run

with previously published control parameter defaults. So 18 primary and 20 secondary

188

Table 6.5: Fifty runs for each function sorted by the number of correct digits

Function ID Number of correct digits Score0 1 2 3 4 5 6 7 8 9 10
F1 0 0 0 1 0 4 1 0 0 0 44 10
F2 49 1 0 0 0 0 0 0 0 0 0 0.04
F3 0 0 0 0 0 0 0 0 0 0 50 10
F4 0 0 0 0 0 0 0 0 0 0 50 10
F5 0 0 0 2 0 0 0 0 0 0 48 10
F6 0 0 0 0 0 0 0 0 0 0 50 10
F7 0 0 5 0 0 0 0 0 0 0 45 10
F8 0 0 50 0 0 0 0 0 0 0 0 2.0
F9 0 0 0 0 0 0 3 24 19 4 0 8.08
F10 0 0 0 0 0 0 0 0 0 0 50 10

Total score: 80.12

Source: From the author (2022).

algorithms were reported, totaling 38 methods in the competition.

According to the report results, only the jDE100 algorithm (BREST; MAUČEC;

BOŠKOVIĆ, 2019) was able to reach the perfect score of 100, and hence was the winner

of the competition (PRICE et al., 2019). We note that jDE100 was previously described in

Section 4.5.3. The average score of the challenge among primary algorithms was 80.11,

whereas the average score among secondary methods was 52.47. However, as expected,

the algorithms that were not tuned tended to perform worst, with a lower score than the

primary algorithms. For instance, the best score among secondary algorithms was 75.72,

while the canonical ABC algorithm obtained the worst score of 9.64 and could not find

10 digits for any function. As mentioned earlier, our method was not tuned to any specific

function to evaluate its robustness given a set of distinct benchmark functions. With this,

the total score of our method would be 11th place among the 38 methods. However, we

highlight the efforts to design the intermediate versions of the MA used to delineate the

final version.

Furthermore, we observe that the proposed MA could find only one correct digit in

function F2 and has scored 0.04, which may indicate some problem in our implementation

since F2 was classified as an intermediate function in terms of difficulty. Regarding the

report, the difficulty degree of functions was defined based on the average number of

correct digits found by the 38 algorithms. The rank for functions from easy (1) to hard

(10) is shown in Table 6.6.

Therefore, the results of the MA framework described in Table 6.5 indicate that

189

Table 6.6: Rank for the difficulty degree of functions from easy (1) to hard (10) based on
the average number of correct digits found by the 38 algorithms

Difficulty degree Function ID
1 (easiest) F6 (9.2136 digits)

2 F5 (9.1726 digits)
3 F10 (8.6231 digits)
4 F1 (8.6126 digits)
5 F2 (7.6368 digits)
6 F3 (7.4389 digits)
7 F4 (6.7578 digits)
8 F7 (3.4421 digits)
9 F9 (2.7389 digits)

10 (hardest) F8 (1.9268 digits)

Source: From the author (2022).

our method was able to reach reasonable results for almost all functions, including the

hardest ones, except for F2 and F8. Nevertheless, these results demonstrate the impor-

tance of adapting the method to the optimization function through efficient exploration of

the search space, the proper ratio between Expr/Expt mechanisms, and control parameter

strategies to adjust the search components based on the optimization process.

Figure 6.9 shows the convergence plots for each benchmark function (F1-F10)

(Table 6.1). It illustrates the convergence of the method considering the best fitness val-

ues throughout each of the 50 runs. Moreover, to illustrate the convergence of the MA

considering each node of the tree, similar to the aforementioned plots, Figure 6.10 shows

the algorithm’s convergence regarding the best fitness values of each node of the tree

throughout each of the 50 runs. We note that each color in the plots represents the nodes

of each layer of the tree. For both figures, it is observed that the range of x-axis in plots,

i.e., the number of fitness function evaluations performed in each run, may vary due to

the stop criterion adopted, where the method’s execution terminates whether the algorithm

reaches the 10-digit level of accuracy or regarding the maximum number of function eval-

uations allowed per execution (Max_Evls = 107). Also, the y-axis values are expressed

in the logarithm scale but preserve the minimum value of 1 as the global minimum.

Analyzing the convergence plots in Figure 6.9, it is possible to note that the MA

demonstrated a consistent convergence degree among the final values of each execution

for almost all functions, except for F2. It corroborates the tendency of the method to

reach similar numbers of correct digits in all executions of a given function, as shown

in Table 6.5. Besides that, Figure 6.10 shows the convergence behavior of each node

190

Figure 6.9: Convergence of the MA regarding the best fitness values (y-axis) throughout
each of 50 runs (x-axis) for the global benchmark functions (F1-F10)

F1 F2

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−→

B
es

tfi
tn

es
s

va
lu

es
fo

ra
ll

ru
ns

(l
og

)

F3 F4

F5 F6

F7 F8

F9 F10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fitness function evaluations (105)

Source: From the author (2022).

191

Figure 6.10: Convergence of the MA regarding the best fitness values of each node of the
tree (y-axis) throughout each of the 50 runs (x-axis) for the global benchmark functions
(F1-F10)

F1 F2

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−→

B
es

tfi
tn

es
s

va
lu

es
of

ea
ch

no
de

fo
ra

ll
ru

ns
(l

og
)

F3 F4

F5 F6

F7 F8

F9 F10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fitness function evaluations (105)

Source: From the author (2022).

192

of the tree throughout the optimization processes. Thus, comparing these plots with the

previously presented in Figure 6.9, we observe that even though the MA has converged in

all executions, it was also able to preserve a certain population diversity by noticing that

the nodes have presented distinct best fitness values in different stages of the optimization.

For instance, such scenarios are most evident in functions F3, F8, F9, and F10.

With this, to demonstrate the variability of the method in terms of Expr/Expt,

Figure 6.11 shows the variation in the average exploration of all nodes of the tree, mea-

sured via the population diversity, throughout a single execution of the method for all

benchmark functions (F1-F10). The exploration measure (Expr%) was explained in Sec-

tion 5.2.8 of the control procedure for convergence and performance. Thus, the explo-

ration effort is calculated by Equation 5.5 and serves as the basis for the control of di-

versity and convergence. Expr% values are expressed as a percentage in the continuous

range [0, 1], where lower values of Expr% indicate low algorithm’s exploration. We note

that the exploitation effort is calculated as the complementary percentage to exploration,

then addressing one of them is enough to deal with both efforts. Also, the figure illustrates

the improvement process of the best solution over the evolutionary process. The dashed

blue line in plots represents the growth of improvements made in the current best solution

by global searches. On the contrary, the dashed red line in plots means the growth of im-

provements made in the best solution by local searches. The local searches are performed

by the LIP of the MA (Section 5.2.6). In addition, Figure 6.12 illustrates the variation

in the exploration values of each node of the tree throughout a single execution of the

method for all benchmark functions (F1-F10). We observe that the y-axis in both figures

is expressed in the logarithm scale.

From the plots illustrated in Figures 6.11 and 6.12, it can be seen that the frame-

work was able to regulate the Expr/Expt mechanisms throughout the optimization process.

It has reached periods of higher exploration or exploitation at different stages of the ex-

ecution, depending on a set of factors at each moment of the optimization, such as the

population diversity degree, the increase/decrease in exploration, and its behavior over

the generations given by the SMA, the number of improvements in solutions by global

and local searches, and the number of nodes in the tree and their size. It is also possible

to observe in Figure 6.12 the decrease in the number of tree nodes and the increase of

the subpopulation size over time due to the TRP. We highlight that this mechanism in-

creases the exploration of the remaining nodes but with more focused searches. Besides

that, analyzing the plots in Figure 6.11, one can notice that the algorithm was capable of

193

Figure 6.11: Variation in the average exploration of all nodes of the tree (y-axis) through-
out a single execution of the method (x-axis) for all global benchmark functions

F1 F2

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
→

A
ve

ra
ge

ex
pl

or
at

io
n

fo
ra

si
ng

le
ru

n
(l

og
)

F3 F4

F5 F6

F7 F8

F9 F10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fitness function evaluations (105)

Source: From the author (2022).

194

Figure 6.12: Variation in the exploration values of each node of the tree (y-axis) through-
out a single execution of the method (x-axis) for all global benchmark functions

F1 F2

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−→

E
xp

lo
ra

tio
n

of
ea

ch
no

de
fo

ra
si

ng
le

ru
n

(l
og

)

F3 F4

F5 F6

F7 F8

F9 F10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fitness function evaluations (105)

Source: From the author (2022).

continuously improving the best solution for both global and local searches.

Thereby, under the points of interest outlined for this thesis, it is possible to note

195

that the algorithm was able to balance the Expr/Expt efforts while consistently improving

the solutions. In general, through the search components implemented in the framework

(Table 5.1) over a constructive design from intermediate variants (Table 6.3), such as

the tree structure and niching strategies, inter and intra-niche optimization, TRP, LIP,

control procedure for convergence and performance, DNSP, and hybrid-ABC, it managed

to optimize the benchmark functions by exploring and refining the search space, as well

as overcoming premature convergence to local optima in many scenarios.

Nonetheless, according to the results of Table 6.5, it is noticed that to enhance

such results, the MA still needs improvements, mainly concerning the parameter control,

i.e., an additional effort should be made to appropriately adapt the parameter setting to

any function without the need to tune it for special cases. For instance, it is possible to

include additional parameter control strategies not to have to tune the method for a specific

benchmark function and better orchestrate all components of the framework, such as the

number of layers, nodes, and individuals in the tree structure or the threshold used to

regulate the Expr/Expt mechanisms.

Finally, in the next section, we describe the computational experiments concern-

ing the benchmark functions of multimodal optimization. The MA framework was incre-

mented with an external archive to preserve the optimal solutions found throughout the

algorithm’s execution.

6.3 Scenario of Multimodal Optimization

In this section, the MA framework with archive strategy, described in Section 5.3,

was tested on benchmarks functions for multimodal optimization with more than one

global optimum. This version was designed from the MA for global optimization dis-

cussed above. According to Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013), evo-

lutionary metaheuristics in their original forms usually tend to converge to a single solu-

tion due to the adopted global components. However, most real problems are naturally

multimodal with multiple satisfactory solutions. In such scenarios, the goal is to find as

many global optimal or suboptimal solutions as possible so that a decision-maker can

choose the most proper in his problem domain.

Thereby, to test our approach on this optimization case study, we used the test

196

functions of the CEC 2013 for multimodal function optimization benchmark2 3 (LI; EN-

GELBRECHT; EPITROPAKIS, 2013). So the technical report of Li et al. (LI; ENGEL-

BRECHT; EPITROPAKIS, 2013) presents a benchmark suite composed of 20 multimodal

functions with different characteristics for evaluating niching methods. It includes many

identical functions with different dimension sizes.

The first ten functions are simple, well-known, and widely used functions. The

remaining benchmark functions are more complex and follow the paradigm of compo-

sition functions defined in the CEC 2005 competition on single objective real-parameter

optimization (SUGANTHAN et al., 2005). Composition functions are harder functions

with several global optima. They are constructed as a weighted aggregation of n basic

functions with different properties. Each one is shifted to a new position inside the opti-

mization search space and can be either rotated through a linear transformation matrix or

used as it is. The benchmark suite is detailed in Table 6.7.

Table 6.7: Summarization of the multimodal test functions
Function ID Function Peak height Nº global/local optima D Search range r

1 F1 200.0 2/3 1-D [0, 30] 0.01
2 F2 1.0 5/0 1-D [0, 1] 0.01
3 F3 1.0 1/4 1-D [0, 1] 0.01
4 F4 200.0 4/0 2-D [-6, 6] 0.01
5 F5 1.03163 2/2 2-D [-1.9, 1.9] 0.5
6 F6 186.731 18/many 2-D [-10, 10] 0.5
7 F7 1.0 36/0 2-D [0.25, 10] 0.2
8 F6 2709.0935 81/many 3-D [-10, 10] 0.5
9 F7 1.0 216/0 3-D [0.25, 10] 0.2
10 F8 -2.0 12/0 2-D [0, 1] 0.01
11 F9 0 6/many 2-D [-5, 5] 0.01
12 F10 0 8/many 2-D [-5, 5] 0.01
13 F11 0 6/many 2-D [-5, 5] 0.01
14 F11 0 6/many 3-D [-5, 5] 0.01
15 F12 0 8/many 3-D [-5, 5] 0.01
16 F11 0 6/many 5-D [-5, 5] 0.01
17 F12 0 8/many 5-D [-5, 5] 0.01
18 F11 0 6/many 10-D [-5, 5] 0.01
19 F12 0 8/many 10-D [-5, 5] 0.01
20 F12 0 8/many 20-D [-5, 5] 0.01

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

According to Table 6.7, all test functions are formulated as twenty maximization

problems. All functions are multimodal with dimensions (objective variables) varying

from 1-D to 20-D, where the optimal objective variables are known for all benchmark
2<http://epitropakis.co.uk/cec20-niching/competition/>
3<http://epitropakis.co.uk/gecco2020/>

http://epitropakis.co.uk/cec20-niching/competition/
http://epitropakis.co.uk/gecco2020/

197

functions. The number of global optima in each function is shown in the fourth column,

and their optimal values are indicated in the peak height column. The search range column

defines the variable ranges for each function, where the same upper and lower bounds are

adopted for all function dimensions. The last column represents the niche radius value

that sufficiently distinguishes the two closest global optima for each function. The main

characteristics of the benchmark problems are given by functions F1-F12, as follows (LI;

ENGELBRECHT; EPITROPAKIS, 2013):

F1: Five-Uneven-Peak Trap Function (Equation 6.14):

F1(x) =



80(2.5− x) for (0 ≤ x < 2.5),

64(x− 2.5) for (2.5 ≤ x < 5.0),

64(7.5− x) for (5.0 ≤ x < 7.5),

28(x− 7.5) for (7.5 ≤ x < 12.5),

28(17.5− x) for (12.5 ≤ x < 17.5),

32(x− 17.5) for (17.5 ≤ x < 22.5),

32(27.5− x) for (22.5 ≤ x < 27.5),

80(x− 27.5) for (27.5 ≤ x ≤ 30)

(6.14)

Function properties:

• 1-D multimodal;

• Simple function;

Figure 6.13: 3-D landscape representation for 1-D multimodal F1

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

198

F2: Equal Maxima Function (Equation 6.15):

F2(x) = sin6(5πx) (6.15)

Function properties:

• 1-D multimodal;

• Simple function;

Figure 6.14: 3-D landscape representation for 1-D multimodal F2

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

F3: Uneven Decreasing Maxima Function (Equation 6.16):

F3(x) = exp

(
−2 log(2)

(
x− 0.08

0.854

)2
)

sin6
(
5π(x3/4 − 0.05)

)
(6.16)

Function properties:

• 1-D multimodal;

• Simple function;

199

Figure 6.15: 3-D landscape representation for 1-D multimodal F3

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

F4: Himmelblau Function (Equation 6.17):

F4(x, y) = 200− (x2 + y − 11)2 − (x+ y2 − 7)2 (6.17)

Function properties:

• 2-D multimodal;

• Not scalable;

Figure 6.16: 3-D landscape representation for 2-D multimodal F4

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

200

F5: Six-Hump Camel Back Function (Equation 6.18):

F5(x, y) = −4

[(
4− 2.1x2 +

x4

3

)
x2 + xy + (4y2 − 4)y2

]
(6.18)

Function properties:

• 2-D multimodal;

• Not scalable;

Figure 6.17: 3-D landscape representation for 2-D multimodal F5

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

F6: Shubert Function (Equation 6.19):

F6(x) = −
D∏
i=1

5∑
j=1

j cos ((j + 1)xi + j) (6.19)

Function properties:

• Multimodal;

• Scalable;

• Nº of global optima is given by the dimension D, such that D × 3D;

201

Figure 6.18: 3-D landscape representation for 2-D multimodal F6

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

F7: Vincent Function (Equation 6.20):

F7(x) =
1

D

D∑
i=1

sin (10 log(xi)) (6.20)

Function properties:

• Multimodal;

• Scalable;

• Nº of global optima is given by the dimension D, such that 6D;

Figure 6.19: 3-D landscape representation for 2-D multimodal F7

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

202

F8: Modified Rastrigin Function - All Global Optima (Equation 6.21):

F8(x) = −
D∑
i=1

(10 + 9 cos(2πkixi)) (6.21)

Function properties:

• Multimodal;

• Scalable;

• Nº of global optima is defined by the benchmark, independent from D;

Figure 6.20: 3-D landscape representation for 2-D multimodal F8

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

Composition Functions: The following functions (F9-F12) are composition func-

tions constructed as a weighted aggregation of basic functions. Thus, the pool of functions

used to construct them includes five basic functions: Sphere, Griewank, Rastrigin, Weier-

strass, and EF8F2 functions. These functions are described as follows.

S: Sphere function (Equation 6.22):

fS(x) =
D∑
i=1

x2i (6.22)

G: Griewank’s function (Equation 6.23):

fG(x) =
D∑
i=1

x2i
4000

−
D∏
i=1

cos

(
xi√
i

)
+ 1 (6.23)

This function was also used in the previous scenario of single global optimization

203

(Section 6.2), described in function F5 by Equation 6.5.

R: Rastrigin’s function (Equation 6.24):

fR(x) =
D∑
i=1

(x2i − 10 cos(2πxi) + 10) (6.24)

This function was also used in the previous scenario of optimization (Section 6.2),

described in function F4 by Equation 6.4.

W: Weierstrass function (Equation 6.25):

fW (x) =
D∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk(xi + 0.5)

)])
−D

kmax∑
k=0

ak cos(πbk);

a = 0.5; b = 3; kmax = 20;

(6.25)

This function was also used in the previous scenario of optimization (Section 6.2),

described in function F6 by Equation 6.6.

EF8F2: Expanded Griewank’s plus Rosenbrock’s function (Equation 6.26):

fEF8F2(x) = fGfRb(x1, x2, · · · , xD);

fG(x) =
D∑
i=1

x2i
4000

−
D∏
i=1

cos

(
xi√
i

)
+ 1;

fRb(x) =
D−1∑
i=1

(100(x2 − xi+1)
2 + (xi − 1)2)

(6.26)

F9: Composition Function 1 (CF1):

• Multimodal;

• Composed by Griewank, Weierstrass and Sphere basic functions;

• Shifted, non-rotated, non-symmetric, separable and scalable;

• Nº of global optima is defined by the benchmark, independent from D;

204

Figure 6.21: 3-D landscape representation for 2-D multimodal F9

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

F10: Composition Function 2 (CF2):

• Multimodal;

• Composed by Rastrigin, Griewank, Weierstrass and Sphere basic functions;

• Shifted, non-rotated, non-symmetric, separable and scalable;

• Nº of global optima is defined by the benchmark, independent from D;

Figure 6.22: 3-D landscape representation for 2-D multimodal F10

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

F11: Composition Function 3 (CF3):

• Multimodal;

• Composed by EF8F2, Griewank and Weierstrass basic functions;

• Shifted, rotated, non-symmetric, non-separable and scalable;

• Nº of global optima is defined by the benchmark, independent from D;

205

Figure 6.23: 3-D landscape representation for 2-D F11

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

F12: Composition Function 4 (CF4):

• Multimodal;

• Composed by Rastrigin, EF8F2, Griewank and Weierstrass basic functions;

• Shifted, rotated, non-symmetric, non-separable and scalable;

• Nº of global optima is defined by the benchmark, independent from D;

Figure 6.24: 3-D landscape representation for 2-D multimodal F12

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

6.3.1 Evaluation Criteria

The multimodal benchmark suite is used to evaluate the ability of niching algo-

rithms to locate global optima by using the functions shown in Table 6.7. It defines perfor-

206

mance measures and procedures for comparing different methods (LI; ENGELBRECHT;

EPITROPAKIS, 2013).

Thus, the report of Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013) pro-

vides a performance procedure to detect how many global optima have been found in a

run for a given function. Firstly, the level of accuracy (0 < ε ≤ 1) is specified, where

ε is a threshold value determining whether a global optimum has been found. Then, the

information in Table 6.7 is used for each test function: the number of global optima, the

fitness of the global optima (i.e., peak height), and the niche radius value that can suffi-

ciently distinguish the two closest global optima. At the end of an optimization process,

this procedure determines if a niching method has located all the global optima. Further-

more, since the exact number of global optima is known a priori, it is possible to measure

a niching algorithm’s performance in terms of the peak ratio and success rate for locating

all global optima over multiple runs.

The peak ratio (PR) measure (THOMSEN, 2004) is used to evaluate the perfor-

mance of a niching algorithm over multiple runs. Given a fixed maximum number of fit-

ness function evaluations (Max_Evls) and a required accuracy level (ε), PR measures the

average percentage of all known global optima found over multiple runs, as follows (LI;

ENGELBRECHT; EPITROPAKIS, 2013):

PR =

∑Nruns
i=1 NPFi

Nglobal ·Nruns

(6.27)

Where NPFi denotes the number of global optima found at the end of the i-th execution,

Nglobal is the number of known global optima, and Nruns is the number of runs. PR value

equals one (1) means that all global optima have been found in all executions regarding

the level of accuracy adopted.

In addition, the success rate (SR) measure is used to calculate the percentage of

successful runs out of all runs. We note that a successful run is defined as a run where all

known global optima are found.

SR =
NSR

Nruns

(6.28)

Where NSR is the number of successful runs, SR value equals one (1) means that all

executions were successful regarding the level of accuracy adopted.

The functions shown in Table 6.7 represent twenty maximization problems, where

the goal is to find all existing global optima. In experimental settings, the report defines a

207

fixed amount of Max_Evls as the stop criterion to evaluate the methods. The amount of

Max_Evls used for each function is shown in Table 6.8. For each function, 50 consec-

utive runs of an algorithm are required, by adopting uniform random initialization within

the given bounds. For PR (Equation 6.27) and SR (Equation 6.28) measures, it is defined

five levels of accuracy (ε): 1.0E − 01, 1.0E − 02, 1.0E − 03, 1.0E − 04, 1.0E − 05. Also,

the adopted niche radius are summarized in Table 6.7. Thus, in this work, the performance

of the MA framework for each function is determined through the number of global op-

tima found over the 50 runs and the PR and SR measures.

Table 6.8: Summarization of the maximum number of fitness function evaluations
(Max_Evls) adopted for three ranges of multimodal benchmark functions

Range of functions Max_Evls
F1 to F5 (1-D or 2-D) 5.0E + 04
F6 to F11 (2-D) 2.0E + 05
F6 to F12 (3-D or higher) 4.0E + 05

Source: From Li et al. (LI; ENGELBRECHT; EPITROPAKIS, 2013).

6.3.2 Parameterization of the Method

Since its first version, the MA framework was designed for multimodal optimiza-

tion, incorporating niching strategies and procedures for efficient Expr/Expt over the

search space. Besides that, the MA, designed incrementally and tested in the previous

section for global optimization, was complemented based on the issues concerned with

discovering and maintaining the existing global optima of a given multimodal objective

function. The method incorporated an external archive to store the identified global op-

tima when converged regions of the search space are detected. The concept consists of

storing the found optimal points and not losing them while locating new ones throughout

the algorithm’s execution. This version was detailed in Section 5.3.

This variant of the MA uses basically the same parameterization of the gen-

eral framework for global optimization, which was detailed in Sections 5.2 and 6.2.1.

Nonetheless, some of these parameters have been adjusted to better fit the method to the

benchmark test functions for multimodal optimization and mainly to its limited compu-

tational budget (stop criterion) (Table 6.8). With this, the control parameters that were

modified in comparison to the previously discussed parameterization for global optimiza-

208

tion (Section 6.2.1) are described below:

• Number of layers in the tree structure: in this version, we adopted a tree structure

with 5 layers (Nlayers = 5), totaling the maximum of 121 nodes (Nnodes = 121).

The number of layers and nodes were increased due to the complexity of the bench-

mark functions and the several existing global optima. It is noted that the goal of

this optimization scenario is to find all global optima, then, a greater number of

niches may increase the chance of locating them;

• Maximum number of individuals in the entire population of the MA: since this pa-

rameter also defines the maximum number of individuals in each node depending

on the number of nodes in the tree, we adopted Max_NS = 1210, and conse-

quently the maximum of 10 individuals per node (Max_NSnode = 10). As the

number of nodes has been increased in an attempt to find more optimal solutions,

the Max_NSnode was decreased to keep the algorithm’s convergence and perfor-

mance due to the limited budget for functions. This value was used to provide the

method some flexibility when dynamic changing the niche size via the DNSP (Sec-

tion 5.2.9), as the minimum number of individuals allowed in each node was kept

in 5 (Min_NSnode = 5);

• Number of generations executed by the core metaheuristic: this parameter repre-

sents the number of generations that the hybrid-ABC runs each generation of the

framework. gcore was defined as 1 due to the limited computational budget defined

in the benchmark suite and the higher number of nodes adopted. This value is used

to allow inter and intra niche exploration without compromising any of them;

• Number of generations used to calculate the SMA: this parameter defines the period

in terms of generations used to calculate the SMA in the control procedure for

convergence and performance (Section 5.2.8). We adopted n_gen = 14 to consider

the exploration degree over a certain number of generations, since n_gen = 14 also

implies in 14 generations of the core metaheuristic;

• In this version, the linear reduction strategy of the number of tree nodes via the TRP

(Section 5.2.7) was disabled in an attempt to locate and maintain as many global

optima as possible throughout the run;

• In the LIP (Section 5.2.6), the constant used to regulate the LS intensity (Istr) every

time that the SW algorithm is performed was set as Istr = 300 fitness function

evaluations instead of Istr = 1000 as in the previous version. The parameter was

209

changed to better balance the Expr/Expt efforts on global and local searches due to

the limited budget for each run;

• In the niche restarting (Section 5.2.8) and LS restarting (Section 5.2.6) procedures,

the algorithm stores the entire subpopulation of a node into the external archive if

it has stagnated, but now including the gbest solutions, and generates a new one;

• Stop condition: the stop condition is defined by the number of fitness function

evaluations performed throughout an execution. Table 6.8 defines the Max_Evls

for each test function.

6.3.3 Results and Discussion

As mentioned above, all tests in this section were executed 50 times for each

benchmark function. The obtained results of the MA framework are detailed in Table 6.9

for the five levels of accuracy adopted. The table shows the PR and SR values obtained

for the corresponding accuracy.

Analyzing the results of Table 6.9, we observe that the MA was able to find all

global optima for 14 out of 20 functions with ε = 1.0E − 01, which is indicated by the

PR and SR values equal to 1. Also, the method has reached PR values higher than 90%

for 18 functions with ε = 1.0E − 01, which may indicate reasonable exploration ability

to locate and preserve optimal solutions. One reason is probably the niching components

included in the framework, the modifications in control parameters to fit the method to

the benchmark test functions for multimodal optimization, and the external archive used

to store the converged solutions during the execution.

Considering the obtained results for the highest level of accuracy (ε = 1.0E− 05)

in Table 6.9, the algorithm has found all global optima for 7 out of 20 problems regarding

the PR and SR values. It was able to reach PR values higher than 90% for 9 functions

with ε = 1.0E − 05. It is noted that the higher the level of accuracy, the more refined

the solution must be over the optimization process. Thus, such results may indicate that

for the hardest cases, the algorithm was able to find the global optima’s neighborhood but

could not properly exploit these found optima to achieve more accurate solutions. For

instance, the algorithm has reached PR values equal to 1 with ε = 1.0E − 01 for some

problems. However, with the increase in accuracy, the PR has decreased. Besides that, we

highlight test case 20 of F12 (20-D), where the method has achieved the lowest PR values

210

Table 6.9: Summarization of the results regarding peak ratios and success rates consider-
ing 50 runs of the MA framework for all test functions

Acc. level ε 1 - F1 (1-D) 2 - F2 (1-D) 3 - F3 (1-D) 4 - F4 (2-D) 5 - F5 (2-D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Acc. level ε 6 - F6 (2-D) 7 - F7 (2-D) 8 - F6 (3-D) 9 - F7 (3-D) 10 - F8 (2-D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 1.000 1.000 0.992 0.660 0.624 0.000 1.000 1.000
1.0E-02 1.000 1.000 0.462 0.000 0.991 0.660 0.219 0.000 1.000 1.000
1.0E-03 1.000 1.000 0.245 0.000 0.991 0.640 0.120 0.000 1.000 1.000
1.0E-04 1.000 1.000 0.245 0.000 0.990 0.640 0.119 0.000 1.000 1.000
1.0E-05 1.000 1.000 0.245 0.000 0.989 0.600 0.119 0.000 1.000 1.000

Acc. level ε 11 - F9 (2-D) 12 - F10 (2-D) 13 - F11 (2-D) 14 - F11 (3-D) 15 - F12 (3-D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 0.990 0.920 0.990 0.940 1.000 1.000 1.000 1.000
1.0E-02 0.873 0.320 0.988 0.900 0.673 0.000 0.667 0.000 0.728 0.000
1.0E-03 0.790 0.120 0.988 0.900 0.667 0.000 0.667 0.000 0.728 0.000
1.0E-04 0.780 0.120 0.988 0.900 0.667 0.000 0.667 0.000 0.728 0.000
1.0E-05 0.773 0.100 0.985 0.880 0.667 0.000 0.667 0.000 0.728 0.000

Acc. level ε 16 - F11 (5-D) 17 - F12 (5-D) 18 - F11 (10-D) 19 - F12 (10-D) 20 - F12 (20-D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 0.828 0.440 0.102 0.000
1.0E-02 0.667 0.000 0.700 0.000 0.667 0.000 0.480 0.000 0.058 0.000
1.0E-03 0.667 0.000 0.700 0.000 0.667 0.000 0.362 0.000 0.035 0.000
1.0E-04 0.667 0.000 0.688 0.000 0.667 0.000 0.345 0.000 0.007 0.000
1.0E-05 0.667 0.000 0.675 0.000 0.667 0.000 0.310 0.000 0.003 0.000

Source: From the author (2022).

among all other functions. Problem 20 presents the highest dimensionality and could

indicate a method’s drawback in dealing with high-dimensional functions. Moreover, in

cases 15, 17, and 19, which also consist of the F12 with lower dimensions, the method

has obtained better results, locating all global optima with ε = 1.0E − 01.

Therefore, to situate our methods according to relevant methods in this scenario,

we compared the MA framework with three other niching methods using the multi-

modal benchmark functions. We adopted the PR values with a level of accuracy equal

to 1.0E − 05 as a key criterion to rank algorithms, as shown in the benchmark’s re-

port (LI; ENGELBRECHT; EPITROPAKIS, 2013). The first method is the well-known

Crowding DE (CDE) (THOMSEN, 2004), which was presented as a baseline model in

the technical report (LI; ENGELBRECHT; EPITROPAKIS, 2013). CDE is a niching

algorithm that uses a crowding strategy to enforce the population diversity and, there-

fore, to prevent premature convergence to an optimum. The second method is the RS-

211

CMSA (AHRARI; DEB; PREUSS, 2017b; AHRARI; DEB; PREUSS, 2017a), which is

a niching algorithm that runs many subpopulations in parallel through instances of the

core search algorithm CMSA, such that solutions maintain a distance from a number of

taboo points which are stored in an internal archive and regulated by the HV test. The

RS-CMSA was evaluated on these benchmark functions for multimodal optimization (LI;

ENGELBRECHT; EPITROPAKIS, 2013), where it was the winner of the GECCO 2017

competition on niching methods for multimodal function optimization4. The third method

is the HillVallEA-AMu, which uses the HV Clustering algorithm to adaptively cluster the

search space in niches such that a single optimum resides in each niche. It runs the core

search algorithm AMaLGaM-Univariate (BOSMAN; GRAHL; THIERENS, 2013) with a

restart scheme. HillVallEA-AMu was the winner of the GECCO 2018/2019 competitions

on niching methods for multimodal function optimization5 6. We observe that the three

algorithms were previously detailed in Section 4.6.2 of relevant niching algorithms.

Thus, Table 6.10 shows the PR values with ε = 1.0E − 05 of each method for all

test functions. The results of Table 6.10 were extracted from the corresponding published

works. Figure 6.25 illustrates the bar charts related to the PR values of Table 6.10 for the

four compared methods, where M1 (gray) represents the proposed MA framework, M2

(green) is the CDE, M3 (red) is the RS-CMSA, and M4 (blue) represents the HillVallEA-

AMu.

Regarding the results of Table 6.10, it can be seen that RS-CMSA was the best

performing algorithm with an average peak ratio of 0.856, followed by HillVallEA-AMu

with an average PR of 0.847 over all test functions. Our proposed method obtained an

average PR of 0.725. The worst performing algorithm was the CDE, with an average PR

of 0.435. The MA outperformed CDE in almost all cases, but it still needs improvements

in certain aspects, such as exploitation of solutions and dimensionality of variables, to

approach the top algorithms.

Thereby, Figure 6.26 shows the method’s convergence in the function of the best

fitness values of each node of the tree for all benchmark functions (1-20) throughout the

50 runs. We note that each color in the plots represents the nodes of each layer of the tree,

and each execution of the method could use the maximum of 121 nodes (Nnodes = 121)

without the TRP procedure.

From the convergence plots in Figure 6.26, it is observed that the MA was able to

4<http://www.epitropakis.co.uk/gecco2017/>
5<http://www.epitropakis.co.uk/gecco2018/>
6<http://www.epitropakis.co.uk/gecco2019/>

http://www.epitropakis.co.uk/gecco2017/
http://www.epitropakis.co.uk/gecco2018/
http://www.epitropakis.co.uk/gecco2019/

212

Table 6.10: Summarization of the peak ratio values with ε = 1.0E−05 for the MA frame-
work, CDE, RS-CMSA, and HillVallEA-AMu considering 50 runs for all test functions.
The average peak ratio is computed for all benchmark function

Function ID Method
MA CDE RS-CMSA HillVallEA-AMu

1 1.000 0.000 1.000 1.000
2 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000
4 1.000 0.420 1.000 1.000
5 1.000 1.000 1.000 1.000
6 1.000 0.000 0.999 0.997
7 0.245 0.716 0.997 1.000
8 0.989 0.038 0.871 0.656
9 0.119 0.270 0.730 0.875
10 1.000 1.000 1.000 1.000
11 0.773 0.667 0.997 1.000
12 0.985 0.002 0.948 1.000
13 0.667 0.667 0.997 0.973
14 0.667 0.667 0.810 0.783
15 0.728 0.375 0.748 0.750
16 0.667 0.667 0.667 0.673
17 0.675 0.047 0.703 0.745
18 0.667 0.170 0.667 0.657
19 0.310 0.000 0.503 0.512
20 0.003 0.000 0.483 0.318

Average 0.725 0.435 0.856 0.847

Source: From the author (2022).

manage the Expr/Expt efforts according to the optimization processes and has converged

to optimal regions while keeping the population diversity in an attempt to find more dis-

tinct global optima. The plots show the high variability of the tree nodes in terms of best

fitness values, which demonstrates that the subpopulations have reached periods of higher

diversity or convergence at different stages of the method’s execution. It is known that

such balance between Expr/Expt is required and expected for multimodal optimization as

its goal is to find all existing global optima. Nonetheless, we note that the plots only show

the partial convergence of the algorithm since all global optima of the same function have

the same peak height, as shown in Table 6.7. With this, the number of global optima found

by the method for each function and its performance were previously discussed from the

PR values shown in Table 6.9.

Therefore, corroborating with the previous analysis from the obtained PR values

213

Figure 6.25: Peak ratio values with ε = 1.0E − 05 for the four compared methods over
50 runs for all test functions, where M1 (gray) is the MA framework, M2 (green) is the
CDE, M3 (red) represents the RS-CMSA and M4 (blue) is the HillVallEA-AMu

1 2 3 4

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
→

PR
va

lu
es

w
ith

ε
=
1.
0E
−
05

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20
−−−−−−−→
Method

Source: From the author (2022).

(Tables 6.9 and 6.10), the convergence plots indicate the algorithm’s exploratory ability to

discover and maintain optimal solutions while locating new ones throughout the execution

process, which is one of the main issues of multimodal optimization (LI et al., 2016;

WANG et al., 2019). However, from the same results, one can notice that our method

could not properly refine the found global optima in some cases when compared with the

top algorithms. For instance, it can be seen from the plots of the hardest functions that

the method has kept a higher population diversity degree over the entire optimization. We

observe the variation among the best fitness values of the nodes, which may demonstrate

that optimal solutions have not been fully refined. Based on this, to overcome such an

214

Figure 6.26: Convergence of the MA regarding the best fitness values of each node of
the tree (y-axis) throughout each of the 50 runs (x-axis) for the multimodal benchmark
functions (1-20)

1 2 3 4

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−→

B
es

tfi
tn

es
s

va
lu

es
of

ea
ch

no
de

fo
ra

ll
ru

ns
(l

og
)

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fitness function evaluations (103)

Source: From the author (2022).

issue in future works, one could enhance the exploitation ability of the MA by focusing

more on LS by regulating the LIP procedure (Section 5.2.6) for this purpose, such as

increasing the LS intensity control parameter (Istr) or better selecting the individuals for

LS.

Another drawback is that the method could not perform well in problem 20, with

the highest dimensionality in the benchmark. This result suggests that components for

high-dimensional optimization could be considered to overcome the multimodality issues

of larger search spaces. In addition, another improvement to MA for overall performance

215

could consist of using a more robust archive strategy to deal with the found optimal so-

lutions. For instance, we could consider some archived solutions in the search operations

as positive feedback to the evolutionary process, as shown in AM-ACO (YANG et al.,

2016b) and AGDE (ZHAO; ZHAN; ZHANG, 2020). Besides, it is possible to perform a

refinement process in the archive to increase the solutions’ accuracy as in DIDE (CHEN

et al., 2019) or adopt archived taboo points combined with the HV test to detect solutions

in the same optimal region as in RS-CMSA and HillVallEA. One could also test a dif-

ferent number of layers in the tree since a more robust archive strategy may enhance the

method’s abilities of Expr/Expt.

Finally, the MA framework performed well on the CEC 2013 benchmark for mul-

timodal function optimization in general, except for the aforementioned problems. Thus,

in the next section, we detail the computational experiments for the final optimization

scenario, which is the 3-D PSP problem.

6.4 Prediction of 3-D Protein Structures

This section presents the obtained results concerning the performance of the pro-

posed MA framework for the 3-D PSP problem, which was defined as our real case study

for multimodal continuous optimization. As discussed earlier, the prediction of 3-D pro-

tein structures represents one of the key problems in Structural Bioinformatics, since the

protein’s function is directly related to its assumed conformation (DILL; MACCALLUM,

2012). Protein folding can provide to researchers valuable understanding of the protein

roles in the cell (BRANDEN; TOOZE, 1999; LASKOWSKI; WATSON; THORNTON,

2005). Nonetheless, the PSP is classified as NP-hard problem (UNGER; MOULT, 1993;

CRESCENZI et al., 1998) due to the high dimensionality of variables and its multimodal

search space. Hence, structure modeling as computational optimization can be seen as

a way to overcome some of the PSP complexities and ease the protein structure-based

studies.

Thereby, the MA framework was incremented based on a constructive perspective

from the versions presented in Sections 5.2 and 5.3 for global and multimodal optimiza-

tion, respectively. This version included the stage of sampling models and initialization

of solutions, previously described in Section 5.4.2, integrated into the MA framework,

which yields the optimization stage of the structures coming from the sampling step, dis-

cussed in Section 5.4.3. The first stage was created to initially explore the conformational

216

search space considering some insights about previously known protein structures, aiming

to locate different structural groups for target proteins. In the second stage, the algorithm

uses as initial individuals the solutions from the first step, aiming to deal with diversi-

fied and reasonable solutions since the beginning of the method’s evolutionary process.

Besides the components implemented to deal with the multimodal objective function,

the framework was designed to consider the problem-specificities and their optimization

challenges. It incorporated problem-dependencies and data knowledge from experimen-

tally determined 3-D protein structures to turn it more robust to the problem under study

(Section 5.4).

With this, for the prediction process of 3-D protein structures, the MA was tested

on the set of target proteins described in Table 6.11, which comprises 15 distinct se-

quences ranging from 29 to 91 amino acids. These targets were selected to ensure that

the test set encompasses amino acid sequences of different sizes and distinct topologies.

The protein sequences were obtained from the PDB and used as case studies to test the

proposed algorithm. Table 6.11 shows information about each target protein, such as size

and SS content. We note that the target protein T0820 was extracted from the test set pre-

sented in the CASP117 experiments, which was referenced as T0820-D1 and categorized

in the FM category (KINCH et al., 2016).

6.4.1 Evaluation Criteria and Parameterization of the Method

This optimization scenario aims to evaluate the method’s potential in facing a

complex real-world multimodal problem and consolidate the results obtained in the pre-

vious scenarios. The experiments were also conducted to analyze the method’s behavior

regarding the biological significance (quality) of the best solutions found, as well as to

situate it in comparison to one of the state-of-the-art algorithms for PSP, the method of

Rosetta (ROHL et al., 2004; SONG et al., 2013), described in Section 4.7.1. The Rosetta

was chosen according to the latest CASP reports (MOULT et al., 2018; ABRIATA et al.,

2018), which have pointed it out as one of the most relevant methods in the field, regard-

ing automatic techniques of FM prediction without manual intervention (servers), due to

the achieved results in the CASP competitions over the years. Nevertheless, it is observed

that currently, the state-of-the-art method for PSP is the AlphaFold from DeepMind (SE-

NIOR et al., 2019; SENIOR et al., 2020; JUMPER et al., 2020) (Section 4.7.2). However,

7<predictioncenter.org/casp11/targetlist.cgi>

predictioncenter.org/casp11/targetlist.cgi

217

Table 6.11: Set of target proteins used in the computational experiments to predict the
3-D structure of proteins. The second column shows the number of amino acid residues,
and the third shows the secondary structure components

PDB ID Target Length SS content
1AB1 46 1 β-sheet/2 helices
1ACW 29 1 β-sheet/1 helix
1AIL 70 3 helices
1DFN 30 1 triple β-sheet
1ENH 54 3 helices
1FNA 91 2 β-sheets (1 quadruple)
1OPD 85 1 quadruple β-sheet/3 helices
1Q2K 31 1 β-sheet/1 helix
1ROP 56 2 helices
1UTG 70 5 helices
2MR9 44 3 helices
2P5K 64 1 β-sheet/3 helices
2PMR 76 3 helices
3V1A 48 2 helices
T0820 (CASP11) 90 3 helices

Source: From the author (2022).

the algorithm is not yet widely available to the scientific community.

In experimental settings, both the MA framework and Rosetta algorithms were

run 8 times for each target of the benchmark proteins (Table 6.11). We adopted as stop

criterion for our method the maximum of 106 fitness function evaluations (Max_Evls =

1.0E + 06) per run on each target. The Rosetta8 was run from the available software

version (Rosetta commons, Academic License, Version 3.4), and the recommended de-

fault settings have been used (ROHL et al., 2004). We present a structural analysis of the

solutions for each case study among the 8 runs performed. The structural quality of the

predicted structures was carried out by similarity comparisons with experimentally de-

termined protein structures regarding the RMSD (ZHANG; SKOLNICK, 2004) and the

Global Distance Total Score (GDT_TS) test (ZEMLA, 2003). Such structural measures

were used to evaluate the performance of the methods to predict 3-D protein structures.

The RMSD is widely used to assess the similarity degree between two 3-D protein

structures and characterizes a minimization function (i.e., RMSD value equal to 0 indi-

cates identical structures). This measure can be expressed according to Equation 6.29.

The RMSD computation only considers the protein backbone Cα atoms of the 3-D struc-

8<www.rosettacommons.org>

www.rosettacommons.org

218

tures under comparison.

RMSD(a, b) =

√∑n
i=1 ‖rai − rbi‖2

n
(6.29)

Where a and b represent the two structures under comparison, n represents the amino acid

sequence size, rai and rbi are vectors describing the Cartesian positions of the atom i in

the structures a and b, respectively. It is considered in the RMSD calculation that a and b

were previously superimposed optimally.

In addition, the GDT_TS evaluates the structural similarity between two 3-D pro-

tein structures, such as the RMSD. We note that, unlike the RMSD, the GDT_TS is a

maximization measure (i.e., GDT_TS value equal to 100 indicates identical structures).

The GDT_TS can be expressed by Equation 6.30.

GDTTS =
(GDTP1 +GDTP2 +GDTP4 +GDTP8)

4
(6.30)

Where GDTPn represents the percentage of amino acids under the distance threshold

≤ n.

Parameter setting: In this work, the PSP was computationally modeled as a

global optimization problem with a multimodal objective function. Thus, the best solution

for each algorithm run is the one with the lowest fitness value at the end of the optimization

process among all subpopulations. We adopted the same scheme to determine the best

solution for the Rosetta. Results were compared by the RMSD and GDT_TS measures

regarding the experimentally determined protein structures.

To estimate the folding condition of a solution throughout the optimization pro-

cess, we adopted as fitness function the composite energy function (Efinal) described by

Equation 3.12 in Section 3.7. This function represents a minimization problem and aims

to differentiate between more or less stable protein models. Theoretically, conforma-

tions around a native state must reflect global minimal regions of their free energy (AN-

FINSEN, 1973). The multimodal function Efinal is characterized by the highly rough

search space with several valleys seen as local and global optima (HANDL; LOVELL;

KNOWLES, 2008). It comprises the summation of three distinct functions: the Rosetta

energy function (ROHL et al., 2004) (Section 3.7.1), the CM (Section 3.7.2) and SS (Sec-

tion 3.7.3) functions.

Therefore, to test the proposed framework for the prediction of 3-D protein struc-

tures, we used the same parameter setting presented in the scenario of global optimiza-

219

tion (Section 6.2) since our primary goal is to find the model with the lowest fitness

value, which tends to represent the best solution. However, the second scenario of mul-

timodal optimization (Section 6.3) was used to highlight the strengths and weak points

of the method to be addressed in future works, such as the lack of exploitation and

the dimensionality problem concerning harder multimodal functions with more than one

global optimum. Thus, as the obtained results from the previously optimization scenarios

have demonstrated, with exceptions, satisfactory results when compared with the state-of-

the-art algorithms, the framework preserved the exact mechanisms previously described

for global optimization combined with the specific-problem strategies discussed in Sec-

tion 5.4.3. Such knowledge-based strategies are fundamental to support the method over

the search process and overcome, to a certain degree, the previously pointed out short-

comings concerning global and multimodal optimization. This MA version receives as

additional input parameters the primary and secondary structures of the target protein.

The only modified parameter was the stop criterion of the algorithm, which was set as

Max_Evls = 1.0E + 06 per run on each target.

6.4.2 Results and Discussion

This section presents and discusses the obtained results of the proposed MA frame-

work applied to the PSP problem. The results were evaluated via the RMSD and GDT_TS

measures regarding the experimentally determined protein structures and also compared

with the models predicted by the method of Rosetta. Table 6.12 summarizes the RMSD

and GDT_TS results obtained for the 8 runs of the MA and Rosetta for the set of 15 target

proteins described in Table 6.11. The best results for each target protein reached by MA

and Rosetta methods were compared using the non-parametric Mann-Whitney similarity

test (U -test) for independent samples. We adopted the significance level of 5%. The p-

value resulting from the test determines the similarity between two samples. Values above

5% reject the similarity hypothesis, and the samples are considered statistically different.

The significantly different samples are highlighted with “+” in the table. The boldface

numbers represent the best results regarding RMSD and GDT_TS for each target.

Regarding the obtained results from Table 6.12, it can be observed by the high-

lighted numbers that our method has reached better results than Rosetta for many target

proteins. It was also able to predict protein structures with similar folding to the exper-

imentally determined ones. It is highlighted that predicted structures can be considered

220

Table 6.12: Summary of the results obtained regarding the RMSD and GDT_TS for
the 8 runs of the MA and Rosetta. The boldface numbers are the best results regard-
ing RMSD and GDT_TS. The p-value column represents the result of p from the non-
parametric Mann-Whitney test performed between MA and Rosetta concerning the RMSD
and GDT_TS values. The symbol “+” denotes samples that differ significantly, if p is sig-
nificant at 5% (p < 0.05)

PDB ID RMSD (Å) GDT (%)
Low. Avg. p-value High. Avg. p-value

1AB1-MA 2.75 4.3 ± (1.59)
6.39e-02

74.46 66.17 ± (6.85)
6.79e-03 +

1AB1-Rosetta 3.45 5.55 ± (1.02) 62.5 56.45 ± (4.27)
1ACW-MA 1.75 2.41 ± (0.57)

1.59e-01
75.86 71.44 ± (3.35)

1.02e-01
1ACW-Rosetta 1.66 2.11 ± (0.38) 77.59 73.49 ± (3.33)
1AIL-MA 3.26 3.89 ± (0.45)

4.70e-04 +
62.14 57.72 ± (3.13)

4.65e-04 +
1AIL-Rosetta 6.85 9.45 ± (1.05) 48.93 39.33 ± (5.36)
1DFN-MA 2.88 3.67 ± (0.62)

2.69e-03 +
55.0 50.42 ± (2.89)

2.21e-03 +
1DFN-Rosetta 3.63 5.29 ± (0.86) 49.17 44.69 ± (2.6)
1ENH-MA 1.57 2.08 ± (0.43)

2.03e-02 +
44.44 43.34 ± (0.83)

5.00e-01
1ENH-Rosetta 1.7 3.08 ± (0.95) 46.3 43.52 ± (1.27)
1FNA-MA 7.49 10.04 ± (1.97)

3.18e-01
18.13 15.28 ± (1.77)

2.81e-01
1FNA-Rosetta 7.06 10.45 ± (1.71) 17.86 14.7 ± (1.87)
1OPD-MA 3.92 6.79 ± (1.76)

1.57e-02 +
53.53 43.09 ± (6.38)

2.81e-01
1OPD-Rosetta 2.74 9.88 ± (3.25) 72.06 43.05 ± (12.82)
1Q2K-MA 2.14 3.23 ± (0.76)

2.03e-02 +
75.81 65.32 ± (6.4)

1.37e-02 +
1Q2K-Rosetta 0.57 2.03 ± (1.06) 94.35 78.43 ± (11.39)
1ROP-MA 1.26 1.75 ± (0.36)

6.80e-04 +
86.16 79.07 ± (4.31)

7.78e-03 +
1ROP-Rosetta 1.98 5.27 ± (2.83) 79.91 62.83 ± (12.28)
1UTG-MA 2.84 3.46 ± (0.53)

1.38e-03 +
65.71 61.96 ± (4.52)

2.66e-03 +
1UTG-Rosetta 4.04 6.96 ± (2.94) 58.93 49.42 ± (9.43)
2MR9-MA 1.48 1.76 ± (0.2)

1.14e-01
82.95 78.55 ± (3.58)

9.41e-02
2MR9-Rosetta 1.43 2.22 ± (0.69) 83.52 73.79 ± (6.59)
2P5K-MA 3.63 4.17 ± (0.52)

3.70e-03 +
48.41 46.03 ± (1.43)

9.08e-04 +
2P5K-Rosetta 1.57 2.29 ± (1.0) 53.97 51.54 ± (1.85)
2PMR-MA 1.62 2.08 ± (0.42)

6.80e-04 +
50.33 46.79 ± (1.7)

9.74e-04 +
2PMR-Rosetta 2.46 3.77 ± (0.79) 45.39 41.28 ± (2.16)
3V1A-MA 1.25 1.5 ± (0.24)

3.96e-01
54.69 53.19 ± (1.15)

3.96e-01
3V1A-Rosetta 0.7 2.51 ± (1.9) 55.21 51.44 ± (4.63)
T0820-MA 5.63 7.57 ± (2.17)

6.39e-02
46.94 42.08 ± (3.71)

1.47e-01
T0820-Rosetta 7.34 9.19 ± (1.7) 45.28 39.62 ± (3.71)
Resume 53.34%(8/15) 80.0%(12/15) - 53.34%(8/15) 73.34%(11/15) -

Source: From the author (2022).

similar to experimental structures if they present RMSD values ≤ 4 since the crystal-

lographic structures in PDB show a momentary state of the protein, which is always in

motion, according to Carugo (CARUGO, 2003). Thus, it can be seen that the MA frame-

work obtained an average RMSD lower than 4 for 10 out of 15 targets, whereas Rosetta

has reached an average RMSD lower than 4 for 7 proteins. Regarding the lowest RMSD

values, the MA obtained values lower than 4 for 13 targets, and Rosetta has achieved

RMSD values lower than 4 for 11 cases. In addition, results from Table 6.12 are illus-

trated in the box diagrams of Figure 6.27, with respect to the RMSD measure, for the 8

runs of each method for all targets. The red lines on the plots represent the average RMSD

221

of these runs.

Figure 6.27: Box diagrams obtained from the 8 runs of our proposed MA and the Rosetta,
regarding the lowest RMSD value (y-axis) reached in each run. The red lines on the plots
represent the average RMSD of these runs

1AB1 1ACW 1AIL

−−
−−
−−
→

R
M

SD

1DFN 1ENH 1FNA

1OPD 1Q2K 1ROP

1UTG 2MR9 2P5K

2PMR 3V1A T0820
−−−−−−−→
Method

Source: From the author (2022).

In comparison with Rosetta, the proposed MA achieved better results concerning

222

the average RMSD values for 12 (80.0%) out of 15 targets, of which for 7 cases, the

results differed significantly (p < 0.05) according to the Mann-Whitney similarity test.

We note that the MA obtained average RMSD values with a difference greater than 1 in

relation to Rosetta for 10 targets. Moreover, concerning the lowest RMSD values, the MA

obtained better results than Rosetta for 8 (53.34%) target proteins.

Analyzing the GDT_TS values shown in Table 6.12, we highlight that the ob-

tained results are similar to the ones mentioned above concerning the RMSD measure.

It is observed that our method achieved better results than Rosetta regarding the average

GDT_TS for 11 (73.34%) cases, of which for 6 targets, the results differed significantly.

Besides, regarding the highest GDT_TS values, the MA also reached better results than

Rosetta for 8 (53.34%) proteins.

By analyzing the prediction results for the largest target proteins, it can be noticed

that the MA outperformed Rosetta in almost all cases. It is noteworthy that the larger

the protein, the greater the difficulty of prediction and packing. For instance, the tar-

gets T0820, 1OPD, and 2PMR fold into globular well-packed conformations. Such cases

represent larger proteins with compact conformations, where the MA surpassed Rosetta

regarding all average values of RMSD and GDT_TS. These outcomes demonstrate the

method’s ability to pack more compact protein conformations properly.

Furthermore, drawing a parallel with the obtained results from the scenario of

multimodal optimization, it is possible to note that the issue regarding the dimensional-

ity of variables, previously observed in that case study, has been reduced in the current

scenario. The probable reason for that is due to the knowledge-based strategies incorpo-

rated in the algorithm, via the first stage of sampling solutions and the specific-problem

evolutionary components, combined with the optimization step focused on multimodal

objective functions. As mentioned earlier, these strategies can support the method over

the search process by constraining the search space, and it may have better guided the

optimization towards promising regions. Hence, such hybridization of components may

reduce, to a certain degree, the shortcomings pointed out in the previous scenarios. This

combination of strategies has improved the method’s performance as the exploration was

enhanced and more refined solutions were found. Such results also reinforce the need to

include previous knowledge about the problem in the search strategies.

Contrarily, despite the reasonable results for the PSP, the MA could not reach av-

erage RMSD values lower than 4 for 4 targets, emphasizing 1FNA, 1OPD, and T0820.

These proteins are the largest amino acid sequences in the benchmark set. The main

223

issue regarding these targets is the difficulty in modeling irregular regions of the struc-

ture, which are responsible for correctly positioning the protein chains and secondary

structures. It indicates that only reaching reasonable structure packing is not enough de-

pending on the intermolecular relationship complexity. In this sense, we understand that

our algorithm must evolve with respect to the modeling of irregular structures of larger

proteins.

Thereby, to demonstrate the convergence of the MA regarding the obtained en-

ergy (fitness) values throughout the runs, Figure 6.28 shows the convergence plots for all

targets. It illustrates the convergence of the method concerning the best energy values

reached throughout the 8 runs. Besides that, Figure 6.29 demonstrates the algorithm’s

convergence regarding the best energy values of each node of the tree throughout the

8 runs. Similar to the plots mentioned above, it shows the convergence of the MA but

considers each node of the tree. Each color in the plots represents the nodes of each

layer of the tree, and each execution of the method could use the maximum of 13 nodes

(Nnodes = 13) as the general MA framework (Section 6.2). For both figures, the y-axis

values are expressed in the logarithm scale.

Analyzing the energy convergence plots shown in Figure 6.28, it can be seen that

the algorithm was able to achieve a consistent convergence degree among the final best

energy values of each execution for almost all targets. It is also highlighted the fast con-

vergence speed for some targets, such as 2MR9 and 3V1A. We believe that this is re-

lated to the target length and folding complexity. Besides that, it can be attributed to the

sampling and initialization stage, where the best generated solutions are selected as the

MA’s initial population. Furthermore, from the convergence behavior of each node of the

tree shown in Figure 6.29, we notice that despite the algorithm’s convergence behavior

concerning the lowest energy values, it could preserve the population diversity as repre-

sented by the variability of the energy values of the nodes regarding different stages of

the optimization. Thus, we believe that this diversification of the subpopulations and the

use of niching strategies have contributed to the obtained results for the PSP due to the

interactions between distinct regions of the search space with individuals in different de-

grees of optimization. Such results demonstrate the importance of adapting the method to

deal with the multimodality issues of the problem by regulating the population diversity

throughout the optimization process.

Finally, the best models were superimposed on their corresponding experimental

structures to visualize the protein conformations for each target concerning the lowest

224

Figure 6.28: Convergence of the MA regarding the best energy values (y-axis) throughout
each of 8 runs (x-axis) for the benchmark target proteins

1AB1 1ACW 1AIL

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
→

B
es

te
ne

rg
y

va
lu

es
fo

ra
ll

ru
ns

(l
og

)

1DFN 1ENH 1FNA

1OPD 1Q2K 1ROP

1UTG 2MR9 2P5K

2PMR 3V1A T0820
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Energy function evaluations (103)

Source: From the author (2022).

225

Figure 6.29: Convergence of the MA regarding the best energy values of each node of the
tree (y-axis) throughout each of 8 runs (x-axis) for the benchmark target proteins

1AB1 1ACW 1AIL

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
→

B
es

te
ne

rg
y

va
lu

es
of

ea
ch

no
de

fo
ra

ll
ru

ns
(l

og
)

1DFN 1ENH 1FNA

1OPD 1Q2K 1ROP

1UTG 2MR9 2P5K

2PMR 3V1A T0820
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Energy function evaluations (103)

Source: From the author (2022).

226

RMSD values among all runs reached by MA and Rosetta. Thus, Figure 6.30 shows

the cartoon superimposed representation of the predicted protein models (lowest RMSD)

and the experimentally determined protein structures (red), regarding the MA (blue) and

Rosetta (orange).

227

Figure 6.30: Cartoon superposition representation of experimentally determined protein structures (red) and the models with lowest RMSD values
reached by the MA framework (blue) and Rosetta (orange) algorithms. The 3-D models were superimposed regarding the Cα atoms

1AB1 (46 aa) 1ACW (29 aa) 1AIL (70 aa) 1DFN (30 aa) 1ENH (54 aa)

1FNA (91 aa) 1OPD (85 aa) 1Q2K (31 aa) 1ROP (56 aa) 1UTG (70 aa)

2MR9 (44 aa) 2P5K (64 aa) 2PMR (76 aa) 3V1A (48 aa) T0820 (90 aa)

Source: From the author (2022).

228

Analyzing the protein structure representations in Figure 6.30, it is possible to

visually verify that the MA has been able to achieve topologies (overall fold in blue) sim-

ilar to the experimentally determined ones, illustrated in red. We highlight the method’s

ability to predict packaged conformations according to the experimental structures. The

MA also predicted conformations very similar to the ones predicted by Rosetta, and in

many cases, our approach has surpassed it, following the results shown in Table 6.12.

Nonetheless, despite the package conformations shown in the cartoons, the method could

not reach good enough average RMSD and GDT_TS values for the targets 1FNA, 1OPD,

and T0820.

Therefore, the obtained results presented in this section demonstrate the prediction

potential of the MA framework when compared with the experimental protein structures

and the method of Rosetta. However, it is known that the method still needs enhance-

ments, such as the difficulty in modeling irregular structures of larger proteins. With this,

it is noted that despite the evolutionary components used in the metaheuristics for the PSP,

the need to adapt them to the problem under study is reinforced, aiming to overcome the

method weaknesses by the knowledge discovery of specific characteristics concerning the

target proteins.

Finally, we believe that the MA framework presented in this work can be seen

as an effective initial contribution to the PSP field, but understanding its limitations and

required improvements. As further research concerning the ideas presented in this thesis

not only for the PSP, it is possible to test the optimization approach on larger and more

complex target proteins. Regarding the algorithmic structure of the MA, as delineated

in the previous scenarios, it is possible to test the method with distinct parameterization

in an attempt to fit the problem better; expand the tree-based structure by regulating the

number of nodes and individuals in each subpopulation (node dynamic independence),

and reorganizing the interactions between the nodes; investigate new structural metrics

and other experimental knowledge sources to be incorporated in the method; improve

the knowledge-based components by using refined strategies based on knowledge dis-

covery and pattern recognition from experimentally determined structures to enhance the

method’s results as a whole.

229

6.5 Final Remarks

In this chapter, we presented the computational experiments conducted to analyze

three delineated scenarios of multimodal continuous optimization and the correspond-

ing implemented algorithms. The scenarios were divided into single global optimization,

multimodal optimization with more than one global optimum, and the real problem of

predicting the 3-D protein structures. The chapter described the benchmark test functions

for each scenario, the algorithms used for comparison, the parameter setting and metrics

applied for evaluation, the convergence analyses of the method, and the obtained results

regarding the performance of the proposed MA framework for each one of the case stud-

ies. It also described the intermediate MA versions and results used to reach the final

versions of the framework-based MA applied to each optimization scenario.

Thereby, in general, the MA framework was able to perform well on the above-

mentioned scenarios of multimodal optimization by reaching promising results when

compared with relevant methods related to the corresponding research fields. Nonethe-

less, despite the obtained results, we highlight that each designed version of the method

still needs improvements in each of these case studies to enhance the obtained results

further.

Finally, the next chapter presents the conclusions and final considerations of this

work, as well as the future works delineated from the development of this thesis and the

presented results.

230

7 CONCLUSIONS

In spite of the advances in the computational methods and the wide range of meta-

heuristics proposed for multimodal continuous optimization, there is still the need for

developing new strategies focused on issues related to the performance of the algorithms

when applied to challenging problems with very complex fitness landscapes (DAS et al.,

2011; LI et al., 2016).

In this sense, the general idea of this thesis was centered around the investiga-

tion of distinct metaheuristic aspects to deal with problems in the multimodal continuous

domain. Within this context, we highlight the points of interest outlined for this work

in the conception of the metaheuristics: (i) discovery and maintenance of the search

space optimal or suboptimal points through multimodal strategies; (ii) the balance be-

tween Expr/Expt search operations; and (iii) the parameter control problem.

To accomplish that, we defined the multimodal PSP problem as our real case study,

which is one of the most important problems in Structural Bioinformatics. Thus, we de-

signed the proposed methods from a constructive perspective, starting from a more gen-

eral optimization approach and benchmark functions for global optimization. We gradu-

ally improved the proposed algorithms, changing the functions toward the real problem.

With the development of the work, we intended to create, via an incremental approach,

a method capable of dealing with the inherent multimodality and issues of a range of

optimization functions while trying to preserve accurate results. Our focus was also to

evaluate the behavior of the methods facing different multimodal optimization scenarios.

Therefore, we implemented an adaptive MA as a framework-based method with

multiple populations, which incorporated concepts of bio-inspired algorithms for global

optimization with separate local improvement. It is known that MAs enable the combina-

tion of ideas from different search methodologies, which may provide better results than

a single strategy for a given problem. Following the points of interest outlined for this

thesis, it aimed to explore and refine the search space in an attempt to find and maintain

the existing optimal solutions; keep a reasonable balance between Expr/Expt mechanisms

through population diversity measures; and control the parameter setting of the method

via dynamic strategies to enhance its performance.

Thus, we designed three versions of the MA framework for three different scenar-

ios of multimodal optimization: (i) the general MA framework for single global contin-

uous optimization with multimodal fitness function; (ii) the MA framework with archive

231

strategy for multimodal optimization with more than one global optimum; and (iii) the

MA framework with specific-problem components for the multimodal problem of pre-

dicting the 3-D protein structures.

The general MA framework presented in the first scenario was used as the basis

for developing the other designed versions employed to deal with the subsequent prob-

lems. The algorithm was implemented as a general optimization framework that is easily

adapted to other search strategies and components. It has been shown by the intermediate

versions implemented to reach the final version for global optimization. The method was

structured based on a hierarchical tree data structure implemented under an adaptive MA

framework. It consists of a multi-population technique, which arranges the population

of individuals in subpopulations into the tree’s nodes through a clustering-based niching

strategy. The method included independent intra-node optimization through a core meta-

heuristic and interactions between distinct subpopulations as a way of knowledge sharing,

population diversification, and exploration inter and intra niches. Besides that, a modi-

fied hybrid-ABC algorithm was proposed as a core search method, where each node of

the tree performs an independent execution. The framework also incorporated adaptive

and hybrid approaches for local improvements, population convergence and performance,

and dynamic parameter adaptation. Thus, this first version was tested on the 100-Digit

Challenge on single objective real-parameter optimization1 (PRICE et al., 2018) adopted

in the CEC 2019, GECCO 2019 and SEMCCO 2019 (PRICE et al., 2019).

The second designed version of the MA was modified to focus on multimodal opti-

mization when dealing with objective functions with more than one global optimum. The

main issues considered in such a variant are related to discovering and maintaining the

existing global optima of a given problem while locating new ones throughout the search

process. This version incorporated an external archive to store the identified global optima

when converged regions of the search space are detected through the MA control proce-

dure for convergence and performance. This version was tested on the benchmark func-

tions of the CEC 2013 for multimodal function optimization2 3 (LI; ENGELBRECHT;

EPITROPAKIS, 2013).

Lastly, the MA for the PSP was enhanced with the problem-dependencies and

data knowledge from experimentally determined 3-D protein structures to turn it more

robust to the problem. The method was divided into two main optimization stages. The

1<https://github.com/P-N-Suganthan/CEC2019>
2<http://epitropakis.co.uk/cec20-niching/competition/>
3<http://epitropakis.co.uk/gecco2020/>

https://github.com/P-N-Suganthan/CEC2019
http://epitropakis.co.uk/cec20-niching/competition/
http://epitropakis.co.uk/gecco2020/

232

first step of sampling and initializing structural models is responsible for generating and

classifying several models from the amino acid primary sequence of a target protein. It

aimed to reduce the search space size, overcome its roughness and provide feasible initial

solutions to the second optimization step. The second step represents the optimization of

solutions sampled from the first stage. The MA framework performs the search process,

which was incremented to deal with the problem. The method included modified specific-

problem operators, such as the Uniform SS crossover and the constraints in the mutation

operations based on conformational preferences of amino acids. Such strategies aimed

to increase the method’s performance and the accuracy of the solutions, focusing on the

characteristics of the PSP. This method variant was applied to the PSP problem through a

test set of 15 target proteins with distinct sequences, sizes, and topologies.

Thereby, it is possible to summarize the obtained results regarding the MA frame-

work’s performance facing each of the optimization scenarios as follows.

Results of the global optimization scenario: The obtained results of the general

MA for global optimization demonstrated that our method could reach reasonable results

for almost all functions, including the hardest ones. Moreover, the MA has reached a

consistent convergence degree concerning the fitness values over the search process for

all benchmark functions. Following the points of interest outlined for this thesis, it is ob-

served that the algorithm could balance the Expr/Expt efforts and preserve the population

diversity while consistently improving the solutions.

In general, through the search components implemented in this version of the

MA, it was able to optimize the benchmark functions by exploring and refining the search

space, as well as overcoming premature convergence to local optima in many scenarios.

Nonetheless, the results have also indicated that the algorithm still needs improve-

ments, mainly concerning the parameter control, i.e., an additional effort should be made

to adapt the parameter setting to any function properly. For instance, it is possible to

include additional parameter control strategies not to have to tune the method for a spe-

cific benchmark function and better orchestrate all framework components throughout the

search process.

Results concerning the case study of multimodal optimization: By analyzing

results obtained from benchmark functions for multimodal optimization with more than

one global optimum, we highlight that the MA was able to perform well on test functions

considering ε = 1.0E − 01, which was measured via peak ratio and success rate. The

method has reached PR values higher than 90% for 18 out of 20 functions, which may

233

indicate reasonable exploration ability to locate and preserve optimal solutions. Besides

that, the MA was able to control the Expr/Expt efforts over the optimization process and

has converged to optimal regions while maintaining population diversity to find more

distinct global optima, which is one of the main issues of multimodal optimization.

Nonetheless, the algorithm obtained PR values higher than 90% for only 9 out

of 20 functions considering ε = 1.0E − 05, which means the highest level of accuracy.

Moreover, the MA could not perform well on the problem with the highest dimensionality

among all other functions. Such results may indicate that the algorithm was able to find

the global optima’s neighborhood for the hardest cases. However, it could not correctly

exploit these found optima to achieve more accurate solutions.

In general, the MA framework performed well on the tested benchmark suite, ex-

cept for the pointed out issues. Thus, the MA still needs improvements in certain aspects,

such as exploitation of solutions and dimensionality of variables. To overcome these is-

sues in future works, one could enhance the exploitation ability of the MA by focusing

more on LS by regulating the LIP procedure for this purpose. Another improvement to the

MA for overall performance could consist of including components for high-dimensional

optimization to overcome the multimodality issues of larger search spaces; using a more

robust archive strategy to deal with the found optimal solutions; and testing a distinct num-

ber of layers in the tree since a more robust archive strategy may enhance the method’s

abilities of Expr/Expt.

Results concerning the prediction of 3-D protein structures: The experiments

in the last scenario aimed to evaluate the method’s potential when tackling a complex

real-world multimodal problem and compare it to the method of Rosetta (ROHL et al.,

2004; SONG et al., 2013), which is one of the state-of-the-art algorithms for PSP. The

structural quality of the predicted structures was evaluated by similarity comparisons with

experimentally determined ones regarding the RMSD and GDT_TS structural measures.

According to the obtained prediction results, the proposed MA framework was

able to outperform the method of Rosetta in many target proteins. The algorithm has also

predicted 3-D protein structures with similar topologies (overall fold) to the experimen-

tally determined ones. Briefly, our method achieved better results than Rosetta, concern-

ing the average RMSD and GDT_TS values, for 12 (80.0%) and 11 (73.34%) out of 15

targets, of which for 7 and 6 cases, the results differed significantly (p < 0.05) accord-

ing to the Mann-Whitney similarity test, respectively. The results also demonstrated the

method’s ability to predict packaged conformations according to the experimental struc-

234

tures properly. For instance, it was noticed that the MA outperformed Rosetta in all cases

concerning the largest target proteins.

Hence, the method was able to reduce the effects of the issue regarding the dimen-

sionality of variables previously observed in the scenario of multimodal optimization.

The probable reason for that is due to the knowledge-based strategies incorporated in the

algorithm combined with the search framework focused on multimodal objective func-

tions. In addition, the algorithm presented a consistent convergence degree for almost all

target proteins. Despite this observed convergence behavior for the lowest energy values

found, the method could also preserve the population diversity among the tree’s nodes

regarding different stages of the optimization. Such results reinforce the importance of

adapting the method to deal with the multimodality issues of the functions by including

previous knowledge about the problem understudy in the search strategies and regulating

the Expr/Expt mechanisms throughout the optimization process.

Finally, we can state that the proposed MA framework designed as an incremental

algorithm via the combination of distinct search strategies to address multimodal objective

functions can be seen as an effective initial contribution not only to the PSP problem but

also to the multimodal continuous optimization field. We highlight that the concepts

and search algorithms proposed in this work can be extended to any other optimization

problem that follows the same principles of optimization already described. However,

we emphasize that the method still needs improvements so that the obtained results can

be enhanced as a whole for the different scenarios of optimization. For instance, we

observed that the MA could not reach good enough results for some larger targets due

to the difficulty of modeling irregular protein structure regions. Thus, one can try to

overcome such an issue and improve the method through knowledge discovery of specific

characteristics of the target proteins.

7.1 Research Perspectives and Future Works

This thesis work points out interesting research guidelines concerning metaheuris-

tics and multimodal optimization when dealing with each one of the idealized scenarios

of multimodal optimization. As already discussed from the obtained results, the differ-

ent versions of the MA framework still need some improvements in each case study to

enhance the method’s performance and results as a whole.

Therefore, the work also raises interesting research topics to be explored in this

235

field, with relevant multidisciplinary applications in Computer Science and Structural

Bioinformatics. With this, as further research concerning the ideas presented in this work,

it is possible to delineate some perspectives of work as a continuation of this work:

• To incorporate in the framework additional parameter control strategies to not have

to tune the method for a specific benchmark function and better orchestrate the

all components of the framework throughout the optimization process, such as the

number of layers, nodes, and individuals in the tree structure or the threshold used

to regulate the Expr/Expt mechanisms;

• To enhance the exploitation ability of the MA by focusing more on LS by regu-

lating the LIP procedure for this purpose in order to properly exploit the hardest

multimodal landscapes and achieve more accurate solutions;

• To incorporate in the framework components for high-dimensional optimization to

overcome the multimodality issues of larger search spaces;

• To implement a more robust archive strategy to deal with the found optimal solu-

tions over the search process;

• To test different configurations of tree data structure, such as the number of layers

in the tree and the number of individuals in each node, since a more robust archive

strategy may enhance the method’s abilities of Expr/Expt;

• Following the previous topic, to test the method with distinct parameterization in

an attempt to better fit the problems;

• To test other search strategies and hybridizations in an attempt to improve the ob-

tained results for all scenarios;

• Specifically for the PSP problem, to investigate other experimental knowledge sources

to be incorporated in the method as a way to guide the prediction process better;

• To improve the knowledge-based components through the use of strategies based

on knowledge discovery and pattern recognition from experimentally determined

structures to enhance the method’s results;

• To explore novel characteristics of the target proteins through knowledge discovery

to overcome the difficulty of the method in modeling irregular regions of the protein

structures;

• To test the proposed method on distinct benchmark functions for multimodal opti-

mization and larger and more complex target proteins for the PSP.

236

7.2 Publications

This section presents the works developed during the Ph.D. course and previous

relevant ones, covering the research fields of artificial intelligence and optimization, meta-

heuristics, and 3-D protein structure prediction.

Articles

• CORRÊA, L. L.; DORN, M. A multi-population memetic algorithm for the 3-D

protein structure prediction problem. Swarm and Evolutionary Computation, v. 55,

n. 100677, p. 1–36, 2020.

• INOSTROZA-PONTA, M.; DORN, M.; ESCOBAR, I.; CORRÊA, L. L.; ROSAS,

E.; HIDALGO, N.; MARIN, M. Exploring the high selectivity of 3-D protein struc-

tures using distributed memetic algorithms. Journal of Computational Science, v.

41, n. 101087, p. 1–17, 2020.

• CORRÊA, L. L.; BORGUESAN, B.; KRAUSE, M. J.; DORN, M. Three-Dimensional

Protein Structure Prediction Based on Memetic Algorithms. Computers & Opera-

tions Research, v. 91, p. 160-177, 2018.

Conference Proceedings

• CORRÊA, L. L.; ARANTES, L.; SENS, P.; INOSTROZA-PONTA, M.; DORN,

M. A dynamic evolutionary multi-agent system to predict the 3D structure of

proteins. In: IEEE Congress on Evolutionary Computation, 2020, Glasgow, UK.

Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC

2020), 2020. p. 1-8.

• CORRÊA, L. L.; DORN, M. A Multi-objective Swarm-Based Algorithm for the

Prediction of Protein Structures. In: International Conference on Computational

Science - ICCS 2019, Faro, Portugal. Lecture Notes in Computer Science. 1ed.:

237

Springer, Cham, 2019, v. 11538, p. 101-115.

• CORRÊA, L. L.; DORN, M. A knowledge-based artificial bee colony algorithm

for the 3-D protein structure prediction problem. In: IEEE Congress on Evolution-

ary Computation, 2018, Rio de Janeiro, Brazil. Proceedings of the IEEE Congress

on Evolutionary Computation (IEEE CEC 2018), 2018. p. 1-8.

• CORRÊA, L. L.; INOSTROZA-PONTA, M.; DORN, M. An evolutionary

multi-agent algorithm to explore the high degree of selectivity in three-dimensional

protein structures. In: IEEE Congress on Evolutionary Computation, 2017,

Donostia, Spain. Proceedings of the IEEE Congress on Evolutionary Computation

(IEEE CEC 2017), 2017. p. 1111-1118.

238

REFERENCES

ABRIATA, L. A. et al. Assessment of hard target modeling in casp12 reveals an emerging
role of alignment-based contact prediction methods. Proteins: Struct. Funct. Bioinf.,
Wiley Online Library, v. 86, p. 97–112, 2018.

ADHIKARI, B.; HOU, J.; CHENG, J. Protein contact prediction by integrating deep
multiple sequence alignments, coevolution and machine learning. Proteins: Struct.
Funct. Bioinf., Wiley Online Library, v. 86, p. 84–96, 2018.

AHRARI, A.; DEB, K.; PREUSS, M. Benchmarking covariance matrix self adaption
evolution strategy with repelling subpopulations for GECCO 2017 competition on
multimodal optimization. USA, Germany, 2017. 5 p.

AHRARI, A.; DEB, K.; PREUSS, M. Multimodal optimization by covariance matrix
self-adaptation evolution strategy with repelling subpopulations. Evol. Comput., MIT
Press, v. 25, n. 3, p. 439–471, 2017.

AKAY, B.; KARABOGA, D. A modified artificial bee colony algorithm for
real-parameter optimization. Inf. Sci., Elsevier, v. 192, p. 120–142, 2012.

ALATAS, B. Chaotic bee colony algorithms for global numerical optimization. Expert
Syst. Appl., Elsevier, v. 37, n. 8, p. 5682–5687, 2010.

ALETI, A.; MOSER, I. A systematic literature review of adaptive parameter control
methods for evolutionary algorithms. ACM Comput. Surv., ACM New York, v. 49, n. 3,
p. 1–35, 2016.

ALETI, A. et al. Choosing the appropriate forecasting model for predictive parameter
control. Evol. Comput., MIT Press, v. 22, n. 2, p. 319–349, 2014.

ANAM, S. Multimodal optimization by using hybrid of artificial bee colony algorithm
and bfgs algorithm. J. Phys.: Conf. Ser., IOP Publishing, v. 893, n. 012068, p. 1–8,
2017.

ANFINSEN, C. B. Principles that govern the folding of protein chains. Science,
American Association for the Advancement of Science, v. 181, n. 4096, p. 223–230,
1973.

ANFINSEN, C. B. et al. The kinetics of formation of native ribonuclease during
oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA, National
Academy of Sciences, v. 47, n. 9, p. 1309–1314, 1961.

AUER, P.; CESA-BIANCHI, N.; FISCHER, P. Finite-time analysis of the multiarmed
bandit problem. Mach. Learn., Springer, v. 47, n. 2-3, p. 235–256, 2002.

AWAD, N. H. et al. Problem Definitions and Evaluation Criteria for the CEC
2017 Special Session and Competition on Single Objective Bound Constrained
Real-Parameter Numerical Optimization. Singapore, Jordan, China, 2016. 34 p.

BACK, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. 1. ed. Oxford, UK: Oxford
University Press, 1996. 328 p.

239

BAXEVANIS, A. D.; OUELLETTE, B. F. Bioinformatics: a practical guide to the
analysis of genes and proteins. 2. ed. New York, USA: John Wiley & Sons, Inc., 2004.
495 p.

BEDEIAN, A. G.; MOSSHOLDER, K. W. On the use of the coefficient of variation as a
measure of diversity. Organ. Res. Methods, Sage Publications, v. 3, n. 3, p. 285–297,
2000.

BEHESHTI, Z.; SHAMSUDDIN, S. M. H. A review of population-based meta-heuristic
algorithms. Int. J. Adv. Soft Comput. Appl, v. 5, n. 1, p. 1–35, 2013.

BELDA, I. et al. Evolutionary computation and multimodal search: A good combination
to tackle molecular diversity in the field of peptide design. Mol. Diversity, Springer,
v. 11, n. 1, p. 7–21, 2007.

BERMAN, H. M. et al. The protein data bank. Nucleic Acids Res., Oxford University
Press, v. 28, n. 1, p. 235–242, 2000.

BEYER, H.-G.; SENDHOFF, B. Covariance matrix adaptation revisited – the cmsa
evolution strategy –. In: INTERNATIONAL CONFERENCE ON PARALLEL
PROBLEM SOLVING FROM NATURE. Proceedings... Dortmund, Germany: Springer,
2008. p. 123–132.

BORGUESAN, B.; INOSTROZA-PONTA, M.; DORN, M. Nias-server: Neighbors
influence of amino acids and secondary structures in proteins. J. Comput. Biol., Mary
Ann Liebert, Inc., v. 24, n. 3, p. 255–265, 2016.

BORGUESAN, B. et al. Apl: An angle probability list to improve knowledge-based
metaheuristics for the three-dimensional protein structure prediction. Comput. Biol.
Chem., Elsevier, v. 59, p. 142–157, 2015.

BOSMAN, P. A.; GRAHL, J.; THIERENS, D. Benchmarking parameter-free amalgam
on functions with and without noise. Evol. Comput., MIT Press, v. 21, n. 3, p. 445–469,
2013.

BOUSSAÏD, I.; LEPAGNOT, J.; SIARRY, P. A survey on optimization metaheuristics.
Inf. Sci., Elsevier, v. 237, p. 82–117, 2013.

BOWIE, J. U.; LUTHY, R.; EISENBERG, D. A method to identify protein sequences
that fold into a known three-dimensional structure. Science, American Association for
the Advancement of Science, v. 253, n. 5016, p. 164–170, 1991.

BRADLEY, P.; MISURA, K. M.; BAKER, D. Toward high-resolution de novo structure
prediction for small proteins. Science, American Association for the Advancement of
Science, v. 309, n. 5742, p. 1868–1871, 2005.

BRANDEN, C.; TOOZE, J. Introduction to protein structure. 2. ed. New York, USA:
Garland Science, 1999. 410 p.

BREST, J. et al. Self-adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems. IEEE Trans. Evol. Comput, IEEE, v. 10, n. 6,
p. 646–657, 2006.

240

BREST, J.; MAUČEC, M. S.; BOŠKOVIĆ, B. Single objective real-parameter
optimization: Algorithm jso. In: IEEE CONGRESS ON EVOLUTIONARY
COMPUTATION. Proceedings... Donostia, Spain: IEEE, 2017. p. 1311–1318.

BREST, J.; MAUČEC, M. S.; BOŠKOVIĆ, B. The 100-digit challenge: Algorithm
jde100. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION. Proceedings...
Wellington, New Zealand: IEEE, 2019. p. 19–26.

CAI, Q. et al. Enhancing artificial bee colony algorithm with dynamic best neighbor-
guided search strategy. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION.
Proceedings... Glasgow, UK: IEEE, 2020. p. 1–8.

CALLAWAY, E. ’it will change everything’: Deepmind’s ai makes gigantic leap in
solving protein structures. Nature, Nature Research, v. 588, p. 203–204, 2020.

CAO, Y. et al. An improved global best guided artificial bee colony algorithm for
continuous optimization problems. Clust. Comput., Springer, v. 22, n. 2, p. 3011–3019,
2019.

CARUGO, O. How root-mean-square distance (r.m.s.d.) values depend on the resolution
of protein structures that are compared. J. Appl. Crystallogr., International Union of
Crystallography, v. 36, p. 125–128, 2003.

CAVANAGH, J. et al. Protein NMR spectroscopy: principles and practice. 2. ed. New
York, USA: Academic Press, 2006. 912 p.

CHAUDHURY, S.; LYSKOV, S.; GRAY, J. Pyrosetta: a script-based interface for
implementing molecular modeling algorithms using rosetta. Bioinformatics, Oxford
University Press, v. 26, n. 5, p. 689–691, 2010.

CHEN, X.; TIANFIELD, H.; LI, K. Self-adaptive differential artificial bee colony
algorithm for global optimization problems. Swarm Evol. Comput., Elsevier, v. 45, p.
70–91, 2019.

CHEN, Z.-G. et al. Distributed individuals for multiple peaks: A novel differential
evolution for multimodal optimization problems. IEEE Trans. Evol. Comput., IEEE,
v. 24, n. 4, p. 708–719, 2019.

CHENG, S. et al. Population diversity maintenance in brain storm optimization
algorithm. J. Artif. Intell. Soft Comput. Res., Sciendo, v. 4, n. 2, p. 83–97, 2014.

CHIVIAN, D. et al. Ab initio methods. In: Structural Bioinformatics. New Jersey,
USA: John Wiley & Sons, Inc, 2003. v. 44, chp. 27, p. 547–557.

CHOU, K.-C. Structural bioinformatics and its impact to biomedical science. Curr.
Med. Chem., Bentham Science Publishers, v. 11, n. 16, p. 2105–2134, 2004.

CHOU, K.-C.; ZHANG, C.-T. Prediction of protein structural classes. Crit. Rev.
Biochem. Mol. Biol., Taylor & Francis, v. 30, n. 4, p. 275–349, 1995.

COMBS, S. et al. Small-molecule ligand docking into comparative models with rosetta.
Nat. Protoc., Nature Research, v. 8, n. 7, p. 1277–1298, 2013.

241

CONTE, L. L. et al. Scop: a structural classification of proteins database. Nucleic Acids
Res., Oxford University Press, v. 28, n. 1, p. 257–259, 2000.

COOK, S. A. An overview of computational complexity. Commun. ACM, ACM, v. 26,
n. 6, p. 400–408, 1983.

CORRÊA, L. et al. A dynamic evolutionary multi-agent system to predict the 3d
structure of proteins. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION.
Proceedings... Glasgow, UK: IEEE, 2020. p. 1–8.

CORRÊA, L. et al. A memetic algorithm for 3-D protein structure prediction problem.
IEEE/ACM Trans. Comput. Biol. Bioinf., IEEE, v. 15, n. 3, p. 690–704, 2016.

CORRÊA, L. D. L.; DORN, M. A knowledge-based artificial bee colony algorithm for the
3-d protein structure prediction problem. In: IEEE CONGRESS ON EVOLUTIONARY
COMPUTATION. Proceedings... Rio de Janeiro, Brazil: IEEE, 2018. p. 1–8.

CORRÊA, L. de L. et al. Three-dimensional protein structure prediction based on
memetic algorithms. Computers & Operations Research, Elsevier, v. 91, p. 160–177,
2018.

CORRÊA, L. de L.; DORN, M. Multi-agent systems in three-dimensional protein
structure prediction. In: Multi-Agent-Based Simulations Applied to Biological and
Environmental Systems. 1. ed. Hershey PA, USA: IGI Global, 2017. chp. 11, p.
241–278.

CORRÊA, L. de L.; DORN, M. A multi-objective swarm-based algorithm for
the prediction of protein structures. In: INTERNATIONAL CONFERENCE ON
COMPUTATIONAL SCIENCE. Computational Science - ICCS 2019. Faro, Portugal:
Springer, Cham, 2019, (Lecture Notes in Computer Science, v. 11538). p. 101–115.

CORRÊA, L. de L.; DORN, M. A multi-population memetic algorithm for the 3-d
protein structure prediction problem. Swarm Evol. Comput., Elsevier, v. 55, n. 100677,
p. 1–36, 2020.

CORRÊA, L. de L.; INOSTROZA-PONTA, M.; DORN, M. An evolutionary
multi-agent algorithm to explore the high degree of selectivity in three-dimensional
protein structures. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION.
Proceedings... Donostia, Spain: IEEE, 2017. p. 1111–1118.

CREIGHTON, T. E. Protein folding. Biochem. J., Portland Press Ltd, v. 270, n.
PMC1131670, p. 1–16, 1990.

ČREPINŠEK, M.; LIU, S.-H.; MERNIK, M. Exploration and exploitation in evolutionary
algorithms: A survey. ACM Comput. Surv., ACM, v. 45, n. 3, p. 1–33, 2013.

CRESCENZI, P. et al. On the complexity of protein folding. J. Comput. Biol., Mary
Ann Liebert, Inc., v. 5, n. 3, p. 423–465, 1998.

CUI, L. et al. A novel artificial bee colony algorithm with depth-first search framework
and elite-guided search equation. Inf. Sci., Elsevier, v. 367, p. 1012–1044, 2016.

242

CUI, L. et al. A novel artificial bee colony algorithm with an adaptive population size for
numerical function optimization. Inf. Sci., Elsevier, v. 414, p. 53–67, 2017.

CUTELLO, V.; NARZISI, G.; NICOSIA, G. A multi-objective evolutionary approach to
the protein structure prediction problem. J. R. Soc. Interface, The Royal Society, v. 3,
n. 6, p. 139–151, 2006.

DAS, S. et al. Real-parameter evolutionary multimodal optimization-a survey of the
state-of-the-art. Swarm Evol. Comput., Elsevier, v. 1, n. 2, p. 71–88, 2011.

DAS, S.; MULLICK, S. S.; SUGANTHAN, P. N. Recent advances in differential
evolution–an updated survey. Swarm Evol. Comput., Elsevier, v. 27, p. 1–30, 2016.

DAS, S.; SUGANTHAN, P. N. Differential evolution: A survey of the state-of-the-art.
IEEE Trans. Evol. Comput, IEEE, v. 15, n. 1, p. 4–31, 2010.

DAWKINS, R. The selfish gene. 1. ed. Oxford, UK: Oxford university press, 1976.
224 p.

DEB, K. et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Trans. Evol. Comput., IEEE, v. 6, n. 2, p. 182–197, 2002.

DILL, K. A.; MACCALLUM, J. L. The protein-folding problem, 50 years on. Science,
American Association for the Advancement of Science, v. 338, n. 6110, p. 1042–1046,
2012.

DOKEROGLU, T. et al. A survey on new generation metaheuristic algorithms. Comput.
Ind. Eng., Elsevier, v. 137, p. 106040, 2019.

DORN, M.; BURIOL, L. S.; LAMB, L. C. A hybrid genetic algorithm for the 3-d protein
structure prediction problem using a path-relinking strategy. In: IEEE CONGRESS ON
EVOLUTIONARY COMPUTATION. Proceedings... New Orleans, LA, USA: IEEE,
2011. p. 2709–2716.

DORN, M. et al. A knowledge-based genetic algorithm to predict three-dimensional
structures of polypeptides. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTA-
TION. Proceedings... Cancun, Mexico: IEEE, 2013. p. 1233–1240.

DORN, M. et al. Three-dimensional protein structure prediction: methods and
computational strategies. Comput. Biol. Chem., Elsevier, v. 53, p. 251–276, 2014.

DRÉO, J. et al. Metaheuristics for hard optimization: methods and case studies. 1.
ed. USA: Springer Science & Business Media, 2006. 326 p.

DUBOIS, A.; DEHOS, J.; TEYTAUD, F. Upper confidence tree for planning restart
strategies in multi-modal optimization. Soft Comput., Springer, v. 25, n. 2, p.
1007–1015, 2021.

DUNBRACK, R. L.; COHEN, F. E. Bayesian statistical analysis of protein side-chain
rotamer preferences. Protein Sci., Wiley Online Library, v. 6, n. 8, p. 1661–1681, 1997.

DUNKER, A. K. et al. Intrinsically disordered protein. J. Mol. Graphics Modell.,
Elsevier, v. 19, n. 1, p. 26–59, 2001.

243

DUNKER, A. K. et al. The unfoldomics decade: an update on intrinsically disordered
proteins. BMC Genom., BioMed Central Ltd, v. 9, n. 2, p. 1–26, 2008.

DUNKER, A. K. et al. Function and structure of inherently disordered proteins. Curr.
Opin. Struct. Biol., Elsevier, v. 18, n. 6, p. 756–764, 2008.

EIBEN, A. E.; MARCHIORI, E.; VALKO, V. Evolutionary algorithms with on-the-fly
population size adjustment. In: INTERNATIONAL CONFERENCE ON PARALLEL
PROBLEM SOLVING FROM NATURE. Proceedings... Birmingham, UK: Springer,
2004. p. 41–50.

ELOFSSON, A.; GRAND, S. M. L.; EISENBERG, D. Local moves: An efficient
algorithm for simulation of protein folding. Proteins: Struct. Funct. Bioinf., Wiley
Online Library, v. 23, n. 1, p. 73–82, 1995.

ELTAEIB, T.; MAHMOOD, A. Differential evolution: A survey and analysis. Appl.
Sci., Multidisciplinary Digital Publishing Institute, v. 8, n. 10, p. 1945, 2018.

EPITROPAKIS, M. G.; LI, X.; BURKE, E. K. A dynamic archive niching differential
evolution algorithm for multimodal optimization. In: IEEE CONGRESS ON
EVOLUTIONARY COMPUTATION. Proceedings... Cancun, Mexico: IEEE, 2013. p.
79–86.

FARAGGI, E.; KLOCZKOWSKI, A. A global machine learning based scoring function
for protein structure prediction. Proteins: Struct. Funct. Bioinf., Wiley Online Library,
v. 82, n. 5, p. 752–759, 2014.

FONSECA, R.; PALUSZEWSKI, M.; WINTER, P. Protein structure prediction using
bee colony optimization metaheuristic. J. Math. Model. Algo., Springer, v. 9, n. 2, p.
181–194, 2010.

FOX, N. K.; BRENNER, S. E.; CHANDONIA, J.-M. The value of protein structure
classification information—surveying the scientific literature. Proteins: Struct. Funct.
Bioinf., Wiley Online Library, v. 83, n. 11, p. 2025–2038, 2015.

FREY, B. J.; DUECK, D. Clustering by passing messages between data points. Science,
American Association for the Advancement of Science, v. 315, n. 5814, p. 972–976,
2007.

GAO, H. et al. An improved artificial bee colony algorithm with its application. IEEE
Trans. Industr. Inform., IEEE, v. 15, n. 4, p. 1853–1865, 2018.

GAO, W.; LIU, S.; HUANG, L. A global best artificial bee colony algorithm for global
optimization. J. Comput. Appl. Math., Elsevier, v. 236, n. 11, p. 2741–2753, 2012.

GAO, W.; YEN, G. G.; LIU, S. A cluster-based differential evolution with self-adaptive
strategy for multimodal optimization. IEEE Trans. Cybern., IEEE, v. 44, n. 8, p.
1314–1327, 2013.

GAO, W.-F. et al. Artificial bee colony algorithm based on information learning. IEEE
Trans. Cybern., IEEE, v. 45, n. 12, p. 2827–2839, 2015.

244

GAO, W.-f.; LIU, S.-y.; HUANG, L.-l. A novel artificial bee colony algorithm based on
modified search equation and orthogonal learning. IEEE Trans. Cybern., IEEE, v. 43,
n. 3, p. 1011–1024, 2013.

GARZA-FABRE, M. et al. Generating, maintaining and exploiting diversity in a memetic
algorithm for protein structure prediction. Evol. Comput., MIT Press, v. 24, n. 4, p.
577–607, 2016.

GINLEY, B. M. et al. Maintaining healthy population diversity using adaptive crossover,
mutation, and selection. IEEE Trans. Evol. Comput., IEEE, v. 15, n. 5, p. 692–714,
2011.

GLIBOVETS, N.; GULAYEVA, N. A review of niching genetic algorithms for
multimodal function optimization. Cybern. Syst. Anal., Springer US, v. 49, n. 6, p.
815–820, 2013.

GOLDBERG, D. E.; RICHARDSON, J. et al. Genetic algorithms with sharing for
multimodal function optimization. In: INTERNATIONAL CONFERENCE ON
GENETIC ALGORITHMS AND THEIR APPLICATION. Proceedings... New York,
USA: L. Erlbaum Associates Inc., 1987. p. 41–49.

GUNASEKARAN, K. et al. Extended disordered proteins: targeting function with less
scaffold. Trends Biochem. Sci., Elsevier, v. 28, n. 2, p. 81–85, 2003.

GUPTA, D.; GHAFIR, S. An overview of methods maintaining diversity in genetic
algorithms. Int. J. Emerging Technol. Adv. Eng., International Journal of Emerging
Technology and Advanced Engineering, v. 2, n. 5, p. 56–60, 2012.

GUYEUX, C. et al. Is protein folding problem really a np-complete one? first
investigations. J. Bioinf. Comput. Biol., World Scientific, v. 12, n. 01, p. 1350017, 2014.

HALIM, A. H.; ISMAIL, I.; DAS, S. Performance assessment of the metaheuristic
optimization algorithms: an exhaustive review. Artif. Intell. Rev., Springer, p. 1–87,
2020.

HANDL, J.; LOVELL, S. C.; KNOWLES, J. Investigations into the effect
of multiobjectivization in protein structure prediction. In: INTERNATIONAL
CONFERENCE ON PARALLEL PROBLEM SOLVING FROM NATURE.
Proceedings... Dortmund, Germany: Springer, 2008. p. 702–711.

HAO, M.-H.; SCHERAGAT, H. A. Designing potential energy functions for protein
folding. Curr. Opin. Struct. Biol., Elsevier, v. 9, n. 2, p. 184–188, 1999.

HARIK, G. R. Finding multimodal solutions using restricted tournament selection. In:
INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS. Proceedings...
San Francisco, USA: Morgan Kaufmann Publishers Inc., 1995. p. 24–31.

HEINIG, M.; FRISHMAN, D. Stride: a web server for secondary structure assignment
from known atomic coordinates of proteins. Nucleic Acids Res., Oxford University
Press, v. 32, n. suppl 2, p. W500–W502, 2004.

HONG, Z. et al. A multi-angle hierarchical differential evolution approach for
multimodal optimization problems. IEEE Access, IEEE, v. 8, p. 178322–178335, 2020.

245

HOVMÖLLER, S.; ZHOU, T.; OHLSON, T. Conformations of amino acids in proteins.
Acta Crystallogr. Sect. D-Biol. Crystallogr., International Union of Crystallography,
v. 58, n. 5, p. 768–776, 2002.

HUANG, C.; LI, Y.; YAO, X. A survey of automatic parameter tuning methods for
metaheuristics. IEEE Trans. Evol. Comput., IEEE, v. 24, n. 2, p. 201–216, 2019.

HUSSAIN, K. et al. Metaheuristic research: a comprehensive survey. Artif. Intell. Rev.,
Springer, v. 52, n. 4, p. 2191–2233, 2019.

HUTSON, M. AI protein-folding algorithms solve structures faster than ever. Nature,
Nature Research, v. 22, p. 1–1, 2019.

INOSTROZA-PONTA, M. et al. Exploring the high selectivity of 3-D protein structures
using distributed memetic algorithms. J. Comput. Sci., Elsevier, v. 41, n. 101087, p.
1–17, 2020.

INOSTROZA-PONTA, M.; FARFÁN, C.; DORN, M. A memetic algorithm for protein
structure prediction based on conformational preferences of aminoacid residues. In:
GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE. Proceedings...
Madrid, Spain: ACM, 2015. p. 1403–1404.

ISLAM, M. K.; CHETTY, M. Novel memetic algorithm for protein structure prediction.
In: AUSTRALASIAN JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE.
AI 2009: Advances in Artificial Intelligence. Melbourne, Australia: Springer, 2009,
(Lecture Notes in Computer Science, v. 5866). p. 412–421.

JADON, S. S. et al. Hybrid artificial bee colony algorithm with differential evolution.
Appl. Soft Comput., Elsevier, v. 58, p. 11–24, 2017.

JAIN, A. K.; MURTY, M. N.; FLYNN, P. J. Data clustering: a review. ACM Comput.
Surv., ACM, v. 31, n. 3, p. 264–323, 1999.

JONG, K. A. D. An analysis of the behavior of a class of genetic adaptive systems.
Ann Arbor, MI, USA, 1975. AAI7609381, 266 p.

JORGENSEN, W. L.; TIRADO-RIVES, J. Potential energy functions for atomic-level
simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. USA,
National Academy of Sciences, v. 102, n. 19, p. 6665–6670, 2005.

JUMPER, J. et al. High accuracy protein structure prediction using deep learning.
Critical Assessment of Techniques for Protein Structure Prediction (Abstract
Book), Fourteenth round, p. 22–24, 2020.

KABSCH, W.; SANDER, C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers, Wiley Online
Library, v. 22, n. 12, p. 2577–2637, 1983.

KANDATHIL, S. M.; GREENER, J. G.; JONES, D. T. Recent developments in deep
learning applied to protein structure prediction. Proteins: Struct. Funct. Bioinf., Wiley
Online Library, v. 87, n. 12, p. 1179–1189, 2019.

246

KARABOGA, D.; AKAY, B. A comparative study of artificial bee colony algorithm.
Appl. Math. Comput., Elsevier, v. 214, n. 1, p. 108–132, 2009.

KARABOGA, D.; BASTURK, B. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. J. Global Optim., Springer,
v. 39, n. 3, p. 459–471, 2007.

KARABOGA, D.; BASTURK, B. On the performance of artificial bee colony (abc)
algorithm. Appl. Soft Comput., Elsevier, v. 8, n. 1, p. 687–697, 2008.

KARABOGA, D. et al. A comprehensive survey: artificial bee colony (abc) algorithm
and applications. Artif. Intell. Rev., Springer, v. 42, n. 1, p. 21–57, 2014.

KARAFOTIAS, G.; HOOGENDOORN, M.; EIBEN, Á. E. Parameter control in
evolutionary algorithms: Trends and challenges. IEEE Trans. Evol. Comput., IEEE,
v. 19, n. 2, p. 167–187, 2014.

KAUFMANN, K. W. et al. Practically useful: what the rosetta protein modeling suite
can do for you. Biochemistry, ACS Publications, v. 49, n. 14, p. 2987–2998, 2010.

KENNEDY, J. et al. Swarm intelligence. 1. ed. San Francisco, USA: Morgan Kaufmann,
2001. 512 p.

KIM, D. E. et al. Sampling bottlenecks in de novo protein structure prediction. J. Mol.
Biol., Elsevier, v. 393, n. 1, p. 249–260, 2009.

KIM, D. E.; CHIVIAN, D.; BAKER, D. Protein structure prediction and analysis using
the Robetta server. Nucleic Acids Res., Oxford University Press, v. 32, n. suppl_2, p.
W526–W531, 2004.

KIM, D. E. et al. One contact for every twelve residues allows robust and accurate
topology-level protein structure modeling. Proteins: Struct. Funct. Bioinf., Wiley
Online Library, v. 82, p. 208–218, 2014.

KINCH, L. N. et al. Casp11 target classification. Proteins: Struct. Funct. Bioinf., Wiley
Online Library, v. 84, n. S1, p. 20–33, 2016.

KIRAN, M. S.; FINDIK, O. A directed artificial bee colony algorithm. Appl. Soft
Comput., Elsevier, v. 26, p. 454–462, 2015.

KOCSIS, L.; SZEPESVÁRI, C. Bandit based monte-carlo planning. In: EUROPEAN
CONFERENCE ON MACHINE LEARNING. Proceedings... Berlin, Germany:
Springer, 2006. p. 282–293.

KOLINSKI, A.; SKOLNICK, J. Reduced models of proteins and their applications.
Polymer, Elsevier, v. 45, n. 2, p. 511–524, 2004.

KORTEMME, T.; MOROZOV, A.; BAKER, D. An orientation-dependent hydrogen
bonding potential improves prediction of specificity and structure for proteins and
protein–protein complexes. J. Mol. Biol., Elsevier, v. 326, n. 4, p. 1239–1259, 2003.

KRAMER, O. A brief introduction to continuous evolutionary optimization. 1. ed.
New York, USA: Springer, 2014. 94 p. (SpringerBriefs in Computational Intelligence).

247

KRINK, T.; VESTERSTROM, J. S.; RIGET, J. Particle swarm optimisation with
spatial particle extension. In: CONGRESS ON EVOLUTIONARY COMPUTATION.
Proceedings... Honolulu, HI, USA: IEEE, 2002. v. 2, p. 1474–1479.

KRYSHTAFOVYCH, A. et al. Critical assessment of methods of protein structure
prediction (casp)—round xiii. Proteins: Struct. Funct. Bioinf., Wiley Online Library,
v. 87, n. 12, p. 1011–1020, 2019.

KUHLMAN, B.; BAKER, D. Native protein sequences are close to optimal for their
structures. Proc. Natl. Acad. Sci. USA, National Academy of Sciences, v. 97, n. 19, p.
10383–10388, 2000.

KUHLMAN, B.; BRADLEY, P. Advances in protein structure prediction and design.
Nat. Rev. Mol. Cell Biol., Nature Research, v. 20, p. 681–697, 2019.

KVASOV, D. E.; MUKHAMETZHANOV, M. S. Metaheuristic vs. deterministic global
optimization algorithms: The univariate case. Appl. Math. Comput., Elsevier, v. 318, p.
245–259, 2018.

LACERDA, M. G. P. de et al. A systematic literature review on general parameter control
for evolutionary and swarm-based algorithms. Swarm Evol. Comput., Elsevier, v. 60, n.
100777, p. 1–10, 2021.

LACROIX, B.; MOLINA, D.; HERRERA, F. Region-based memetic algorithm with
archive for multimodal optimisation. Inf. Sci., Elsevier, v. 367, p. 719–746, 2016.

LASKOWSKI, R. A.; WATSON, J. D.; THORNTON, J. M. Profunc: a server for
predicting protein function from 3d structure. Nucleic Acids Res., Oxford University
Press, v. 33, p. 89–93, 2005.

LAZARIDIS, T.; KARPLUS, M. Effective energy functions for protein structure
prediction. Curr. Opin. Struct. Biol., Elsevier, v. 10, n. 2, p. 139–145, 2000.

LEAVER-FAY, A. et al. Scientific benchmarks for guiding macromolecular energy
function improvement. Methods Enzymol., NIH Public Access, v. 523, p. 109, 2013.

LEAVER-FAY, A. et al. ROSETTA3: an object-oriented software suite for the simulation
and design of macromolecules. Methods Enzymol., v. 487, p. 545–574, 2011.

LESK, A. Introduction to protein science: architecture, function, and genomics. 2.
ed. New York, USA: Oxford university press, 2010. 455 p.

LEUNG, Y.-W.; WANG, Y. An orthogonal genetic algorithm with quantization for global
numerical optimization. IEEE Trans. Evol. Comput., IEEE, v. 5, n. 1, p. 41–53, 2001.

LEVITT, M. et al. Protein folding: the endgame. Annu. Rev. Biochem., Annual
Reviews, v. 66, n. 1, p. 549–579, 1997.

LI, G. et al. Artificial bee colony algorithm with gene recombination for numerical
function optimization. Appl. Soft Comput., Elsevier, v. 52, p. 146–159, 2017.

LI, G.; NIU, P.; XIAO, X. Development and investigation of efficient artificial bee colony
algorithm for numerical function optimization. Appl. Soft Comput., Elsevier, v. 12, n. 1,
p. 320–332, 2012.

248

LI, J.-P. et al. A species conserving genetic algorithm for multimodal function
optimization. Evol. Comput., MIT Press, v. 10, n. 3, p. 207–234, 2002.

LI, L.; TANG, K. History-based topological speciation for multimodal optimization.
IEEE Trans. Evol. Comput., IEEE, v. 19, n. 1, p. 136–150, 2014.

LI, X. Efficient differential evolution using speciation for multimodal function
optimization. In: CONFERENCE ON GENETIC AND EVOLUTIONARY
COMPUTATION. Proceedings... Washington DC, USA: ACM, 2005. p. 873–880.

LI, X. Niching without niching parameters: particle swarm optimization using a ring
topology. IEEE Trans. Evol. Comput., IEEE, v. 14, n. 1, p. 150–169, 2009.

LI, X.; ENGELBRECHT, A.; EPITROPAKIS, M. G. Benchmark functions for
CEC’2013 special session and competition on niching methods for multimodal
function optimization. Melbourne, Australia, 2013. 10 p.

LI, X. et al. Seeking multiple solutions: an updated survey on niching methods and their
applications. IEEE Trans. Evol. Comput., IEEE, v. 21, n. 4, p. 518–538, 2016.

LI, Y.; YU, J.; TAKAGI, H. Niche method complementing the nearest-better clustering.
In: IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE.
Proceedings... Xiamen, China: IEEE, 2019. p. 3065–3071.

LI, Y. et al. Deducing high-accuracy protein contact-maps from a triplet of coevolutionary
matrices through deep residual convolutional networks. bioRxiv, Cold Spring Harbor
Laboratory, PP, n. PPR223248, p. 1–20, 2020.

LIANG, J. J.; QU, B. Y.; SUGANTHAN, P. N. Problem definitions and evaluation
criteria for the CEC 2014 special session and competition on single objective
real-parameter numerical optimization. Singapore, 2013. 32 p.

LIGABUE-BRAUN, R. et al. Everyone is a protagonist: Residue conformational
preferences in high-resolution protein structures. J. Comput. Biol., Mary Ann Liebert,
Inc., v. 25, n. 4, p. 451–465, 2018.

LIU, Q. et al. Double-layer-clustering differential evolution multimodal optimization by
speciation and self-adaptive strategies. Inf. Sci., Elsevier, v. 545, p. 465–486, 2021.

LIU, S.-H. et al. A parameter control method of evolutionary algorithms using
exploration and exploitation measures with a practical application for fitting sovova’s
mass transfer model. Appl. Soft Comput., Elsevier, v. 13, n. 9, p. 3792–3805, 2013.

LOBANOV, M. Y.; BOGATYREVA, N.; GALZITSKAYA, O. Radius of gyration as
an indicator of protein structure compactness. J. Mol. Biol., Springer, v. 42, n. 4, p.
623–628, 2008.

LODISH, H. et al. Molecular cell biology. 6. ed. New York, USA: W.H. Freeman, 2007.
973 p.

LUKE, S. Essentials of Metaheuristics. 2. ed. Morrisville, North
Carolina, USA: Lulu Press, Inc., 2013. 263 p. Available for free at
https://cs.gmu.edu/ sean/book/metaheuristics.

249

MACKERREL, A. Empirical force fields. In: Computational methods for protein
structure prediction and modeling. 1. ed. New York, USA: Springer, 2010. chp. 2, p.
45–69.

MAHFOUD, S. W. Crowding and preselection revisited. In: PARALLEL PROBLEM
SOLVING FROM NATURE. Proceedings... Amsterdam, Netherlands: Elsevier, 1992.
v. 2, p. 27–36.

MAHFOUD, S. W. Niching methods for genetic algorithms. Urbana, Illinois, USA,
1995. v. 51, n. 95001, 62–94 p.

MAREE, S. et al. Real-valued evolutionary multi-modal optimization driven by
hill-valley clustering. In: GENETIC AND EVOLUTIONARY COMPUTATION
CONFERENCE. Proceedings... Kyoto, Japan: ACM, 2018. p. 857–864.

MARTÍ-RENOM, M. A. et al. Comparative protein structure modeling of genes and
genomes. Annu. Rev. Biophys. Biomol. Struct., Annual Reviews, v. 29, n. 1, p.
291–325, 2000.

MCREE, D. E. Practical protein crystallography. 2. ed. London, UK: Academic press,
1999. 477 p.

MIRNY, L.; SHAKHNOVICH, E. Protein folding theory: from lattice to all-atom
models. Annu. Rev. Biophys. Biomol. Struct., Annual Reviews, v. 30, n. 1, p. 361–396,
2001.

MOLINA, D.; LOZANO, M.; HERRERA, F. Ma-sw-chains: Memetic algorithm
based on local search chains for large scale continuous global optimization. In: IEEE
CONGRESS ON EVOLUTIONARY COMPUTATION. Proceedings... Barcelona,
Spain: IEEE, 2010. p. 1–8.

MORALES-CASTAÑEDA, B. et al. A better balance in metaheuristic algorithms: Does
it exist? Swarm Evol. Comput., Elsevier, v. 54, n. 100671, p. 1–23, 2020.

MOSCATO, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Pasadena, California, USA, 1989. C3P, n. 826,
68 p.

MOSCATO, P.; COTTA, C. A modern introduction to memetic algorithms. In:
Handbook of Metaheuristics. 1. ed. Boston, MA: Springer, 2010. v. 146, p. 141–183.

MOSCATO, P.; COTTA, C. An accelerated introduction to memetic algorithms. In:
Handbook of Metaheuristics. 1. ed. Cham, Switzerland: Springer, Cham, 2019. v. 272,
p. 275–309.

MOULT, J. et al. Critical assessment of methods of protein structure prediction
(casp)-round xii. Proteins: Struct. Funct. Bioinf., Wiley Online Library, v. 86, p. 7–15,
2018.

NERI, F.; COTTA, C.; MOSCATO, P. Handbook of memetic algorithms. 1. ed.
Heidelberg, Germany: Springer, 2012. 368 p.

250

NERI, F.; TIRRONEN, V. Recent advances in differential evolution: a survey and
experimental analysis. Artif. Intell. Rev., Springer, v. 33, n. 1-2, p. 61–106, 2010.

NEUMAIER, A. Molecular modeling of proteins and mathematical prediction of protein
structure. SIAM review, SIAM, v. 39, n. 3, p. 407–460, 1997.

OSGUTHORPE, D. J. Ab initio protein folding. Curr. Opin. Struct. Biol., Elsevier,
v. 10, n. 2, p. 146–152, 2000.

OVCHINNIKOV, S. et al. Protein structure prediction using rosetta in casp12. Proteins:
Struct. Funct. Bioinf., Wiley Online Library, v. 86, p. 113–121, 2018.

O’MEARA, M. J. et al. Combined covalent-electrostatic model of hydrogen bonding
improves structure prediction with rosetta. J. Chem. Theory Comput., ACS
Publications, v. 11, n. 2, p. 609–622, 2015.

PARPINELLI, R. S. et al. A review of techniques for online control of parameters in
swarm intelligence and evolutionary computation algorithms. Int. J. Bio-Inspir. Com.,
Inderscience Publishers, v. 13, n. 1, p. 1–20, 2019.

PAULING, L.; COREY, R. B. The pleated sheet, a new layer configuration of polypeptide
chains. Proc. Natl. Acad. Sci. USA, National Academy of Sciences, v. 37, n. 5, p.
251–256, 1951.

PAULING, L.; COREY, R. B.; BRANSON, H. R. The structure of proteins: two
hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci.
USA, National Academy of Sciences, v. 37, n. 4, p. 205–211, 1951.

PENG, H.; DENG, C.; WU, Z. Best neighbor-guided artificial bee colony algorithm for
continuous optimization problems. Soft Comput., Springer, v. 23, n. 18, p. 8723–8740,
2019.

PHAN, H. D. et al. A survey of dynamic parameter setting methods for nature-inspired
swarm intelligence algorithms. Neural. Comput. Appl., Springer, v. 32, n. 2, p.
567–588, 2020.

POLÁKOVÁ, R.; BUJOK, P. Adaptation of population size in differential evolution
algorithm: An experimental comparison. In: INTERNATIONAL CONFERENCE ON
SYSTEMS, SIGNALS AND IMAGE PROCESSING. Proceedings... Maribor, Slovenia:
IEEE, 2018. p. 1–5.

PREUSS, M. Niching the CMA-ES via nearest-better clustering. In: CONFERENCE
COMPANION ON GENETIC AND EVOLUTIONARY COMPUTATION.
Proceedings... Portland, Oregon, USA: ACM, 2010. p. 1711–1718.

PREUSS, M. Improved topological niching for real-valued global optimization. In:
EUROPEAN CONFERENCE ON THE APPLICATIONS OF EVOLUTIONARY
COMPUTATION. Proceedings... Málaga, Spain: Springer, 2012. p. 386–395.

PRICE, K. et al. Problem definitions and evaluation criteria for the 100-
digit challenge special session and competition on single objective numerical
optimization. Singapore, 2018. 21 p.

251

PRICE, K. et al. The 2019 100-Digit Challenge on Real-Parameter, Single Objective
Optimization: Analysis of Results. Singapore, 2019. 22 p.

PRUITT, K. D.; TATUSOVA, T.; MAGLOTT, D. R. Ncbi reference sequence (refseq): a
curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic
Acids Res., Oxford University Press, v. 33, n. suppl 1, p. D501–D504, 2005.

QING, L. et al. Crowding clustering genetic algorithm for multimodal function
optimization. Appl. Soft Comput., Elsevier, v. 8, n. 1, p. 88–95, 2008.

QU, B.-Y.; SUGANTHAN, P. N.; DAS, S. A distance-based locally informed particle
swarm model for multimodal optimization. IEEE Trans. Evol. Comput., IEEE, v. 17,
n. 3, p. 387–402, 2013.

QU, B.-Y.; SUGANTHAN, P. N.; LIANG, J.-J. Differential evolution with neighborhood
mutation for multimodal optimization. IEEE Trans. Evol. Comput, IEEE, v. 16, n. 5, p.
601–614, 2012.

RAHNAMAYAN, S.; TIZHOOSH, H. R.; SALAMA, M. M. Opposition-based
differential evolution. IEEE Trans. Evol. Comput., IEEE, v. 12, n. 1, p. 64–79, 2008.

RAMACHANDRAN, G.; RAMAKRISHNAN, C.; SASISEKHARAN, V. Stereo-
chemistry of polypeptide chain configurations. J. Mol. Biol., Elsevier, v. 7, p. 95–99,
1963.

ROCHA, G. K. et al. Using crowding-distance in a multiobjective genetic algorithm for
protein structure prediction. In: GENETIC AND EVOLUTIONARY COMPUTATION
CONFERENCE. Proceedings... New York, USA: ACM, 2016. p. 1285–1292.

ROHL, C. A. et al. Protein structure prediction using rosetta. Methods Enzymol.,
Elsevier, v. 383, p. 66–93, 2004.

SABAR, N. R.; ALETI, A. An adaptive memetic algorithm for the architecture
optimisation problem. In: AUSTRALASIAN CONFERENCE ON ARTIFICIAL LIFE
AND COMPUTATIONAL INTELLIGENCE. Proceedings... Geelong, VIC, Australia:
Springer, 2017. p. 254–265.

SALEH, S.; OLSON, B.; SHEHU, A. A population-based evolutionary search approach
to the multiple minima problem in de novo protein structure prediction. BMC Struct.
Biol., BioMed Central Ltd, v. 13, n. Suppl 1, p. S4, 2013.

SCHAARSCHMIDT, J. et al. Assessment of contact predictions in casp12: Co-evolution
and deep learning coming of age. Proteins: Struct. Funct. Bioinf., Wiley Online
Library, v. 86, p. 51–66, 2018.

SCHEEF, E. D.; FINK, J. L. Fundamentals of protein structure. In: Structural
Bioinformatics. 2. ed. New Jersey, USA: John Wiley & Sons, Inc., 2009. chp. 2, p.
15–40.

SENIOR, A. W. et al. Protein structure prediction using multiple deep neural networks in
the 13th critical assessment of protein structure prediction (casp13). Proteins: Struct.
Funct. Bioinf., Wiley Online Library, v. 87, n. 12, p. 1141–1148, 2019.

252

SENIOR, A. W. et al. Improved protein structure prediction using potentials from deep
learning. Nature, Nature Research, v. 577, n. 7792, p. 706–710, 2020.

SER, J. D. et al. Bio-inspired computation: Where we stand and what’s next. Swarm
Evol. Comput., Elsevier, v. 48, p. 220–250, 2019.

SERGEYEV, Y. D.; KVASOV, D.; MUKHAMETZHANOV, M. On the efficiency of
nature-inspired metaheuristics in expensive global optimization with limited budget. Sci.
Rep., Nature Research, v. 8, n. 1, p. 1–9, 2018.

SHEHU, A.; KAVRAKI, L. E.; CLEMENTI, C. Multiscale characterization of protein
conformational ensembles. Proteins: Struct. Funct. Bioinf., Wiley Online Library,
v. 76, n. 4, p. 837–851, 2009.

SHRESTHA, R. et al. Assessing the accuracy of contact predictions in casp13. Proteins:
Struct. Funct. Bioinf., Wiley Online Library, v. 87, n. 12, p. 1058–1068, 2019.

SIMONS, K. T. et al. Assembly of protein tertiary structures from fragments with similar
local sequences using simulated annealing and bayesian scoring functions. J. Mol. Biol.,
Elsevier, v. 268, n. 1, p. 209–225, 1997.

SOLIS, F.; WETS, R.-B. Minimization by random search techniques. Math. Oper. Res.,
Informs, v. 6, n. 1, p. 19–30, 1981.

SONG, Y. et al. High-resolution comparative modeling with rosettacm. Structure,
Elsevier, v. 21, n. 10, p. 1735–1742, 2013.

SRINIVAS, M.; PATNAIK, L. M. Adaptive probabilities of crossover and mutation
in genetic algorithms. IEEE Trans. Syst. Man Cybern. Syst., IEEE, v. 24, n. 4, p.
656–667, 1994.

STILLINGER, F. H.; HEAD-GORDON, T.; HIRSHFELD, C. L. Toy model for protein
folding. Phys. Rev. E, APS, v. 48, n. 2, p. 1469–1477, 1993.

STORN, R.; PRICE, K. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim., Springer, v. 11, n. 4, p. 341–359,
1997.

SUGANTHAN, P. N. et al. Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization. Singapore, 2005. 50 p.

SYSWERDA, G. Uniform Crossover in Genetic Algorithms. In: INTERNATIONAL
CONFERENCE ON GENETIC ALGORITHMS. Proceedings... San Mateo, California:
Morgan Kaufmann Publishers, Inc., 1989. p. 2–9.

TALBI, E.-G. Common concepts for metaheuristics. In: Metaheuristics: from design
to implementation. Weinheim, Germany: John Wiley & Sons, Inc., 2009. v. 74, chp. 1,
p. 1–86.

TANABE, R.; FUKUNAGA, A. Success-history based parameter adaptation for
differential evolution. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION.
Proceedings... Cancun, Mexico: IEEE, 2013. p. 71–78.

253

TANABE, R.; FUKUNAGA, A. S. Improving the search performance of shade using
linear population size reduction. In: IEEE CONGRESS ON EVOLUTIONARY
COMPUTATION. Proceedings... Beijing, China: IEEE, 2014. p. 1658–1665.

TANG, K. et al. Multi-strategy adaptive particle swarm optimization for numerical
optimization. Eng. Appl. Artif. Intell., Elsevier, v. 37, p. 9–19, 2015.

TEZEL, B. T.; MERT, A. A cooperative system for metaheuristic algorithms. Expert
Syst. Appl., Elsevier, v. 65, n. 113976, p. 1–15, 2020.

THOMSEN, R. Multimodal optimization using crowding-based differential evolution. In:
IEEE CONGRESS ON EVOLUTIONARY COMPUTATION. Proceedings... Portland,
OR, USA: IEEE, 2004. v. 2, p. 1382–1389.

TOFFOLO, A.; BENINI, E. Genetic diversity as an objective in multi-objective
evolutionary algorithms. Evol. Comput., MIT Press, v. 11, n. 2, p. 151–167, 2003.

TOMPA, P. Intrinsically unstructured proteins. Trends Biochem. Sci., Elsevier, v. 27,
n. 10, p. 527–533, 2002.

TORRES-JIMÉNEZ, J.; PAVÓN, J. Applications of metaheuristics in real-life problems.
Prog. Artif. Intell., Springer, v. 2, p. 175–176, 2014.

TZANETOS, A.; DOUNIAS, G. Nature inspired optimization algorithms or simply
variations of metaheuristics? Artif. Intell. Rev., Springer, v. 54, p. 1841–1862, 2020.

UNGER, R.; MOULT, J. Finding the lowest free energy conformation of a protein is
an np-hard problem: proof and implications. Bull. Math. Biol., Springer, v. 55, n. 6, p.
1183–1198, 1993.

UNWIN, P. N. T.; HENDERSON, R. Molecular structure determination by electron
microscopy of unstained crystalline specimens. J. Mol. Biol., Elsevier, v. 94, n. 3, p.
425IN13433–432IN18440, 1975.

URSEM, R. K. Multinational gas: Multimodal optimization techniques in dynamic
environments. In: CONFERENCE ON GENETIC AND EVOLUTIONARY
COMPUTATION. Proceedings... San Francisco, CA, USA: Morgan Kaufmann
Publishers, Inc., 2000. p. 19–26.

WANG, X. et al. A multilevel sampling strategy based memetic differential evolution for
multimodal optimization. Neurocomputing, Elsevier, v. 334, p. 79–88, 2019.

WANG, Z.-J. et al. Dual-strategy differential evolution with affinity propagation
clustering for multimodal optimization problems. IEEE Trans. Evol. Comput., IEEE,
v. 22, n. 6, p. 894–908, 2017.

WANG, Z.-J. et al. Automatic niching differential evolution with contour prediction
approach for multimodal optimization problems. IEEE Trans. Evol. Comput., IEEE,
v. 24, n. 1, p. 114–128, 2019.

WANG, Z.-J.; ZHAN, Z.-H.; ZHANG, J. Distributed minimum spanning tree differential
evolution for multimodal optimization problems. Soft Comput., Springer, v. 23, n. 24, p.
13339–13349, 2019.

254

WHISSTOCK, J. C.; LESK, A. M. Prediction of protein function from protein sequence
and structure. Q. Rev. Biophys., Cambridge University Press, v. 36, n. 3, p. 307–340,
2003.

WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for optimization. IEEE
Trans. Evol. Comput, IEEE, v. 1, n. 1, p. 67–82, 1997.

WONG, W.; MING, C. I. A review on metaheuristic algorithms: Recent trends,
benchmarking and applications. In: INTERNATIONAL CONFERENCE ON SMART
COMPUTING & COMMUNICATIONS. Proceedings... Sarawak, Malaysia: IEEE,
2019. p. 1–5.

XU, J.; WANG, S. Analysis of distance-based protein structure prediction by deep
learning in casp13. Proteins: Struct. Funct. Bioinf., Wiley Online Library, v. 87, n. 12,
p. 1069–1081, 2019.

XU, J.; ZHANG, J. Exploration-exploitation tradeoffs in metaheuristics: Survey and
analysis. In: CHINESE CONTROL CONFERENCE. Proceedings... Nanjing, China:
IEEE, 2014. p. 8633–8638.

XUE, Y. et al. A self-adaptive artificial bee colony algorithm based on global best for
global optimization. Soft Comput., Springer, v. 22, n. 9, p. 2935–2952, 2018.

YANG, Q. et al. Multimodal estimation of distribution algorithms. IEEE Trans.
Cybern., IEEE, v. 47, n. 3, p. 636–650, 2016.

YANG, Q. et al. Adaptive multimodal continuous ant colony optimization. IEEE Trans.
Evol. Comput., IEEE, v. 21, n. 2, p. 191–205, 2016.

YAO, J.; KHARMA, N.; GROGONO, P. Bi-objective multipopulation genetic algorithm
for multimodal function optimization. IEEE Trans. Evol. Comput., IEEE, v. 14, n. 1, p.
80–102, 2009.

YURIEV, E.; HOLIEN, J.; RAMSLAND, P. A. Improvements, trends, and new ideas
in molecular docking: 2012–2013 in review. J. Mol. Recognit., Wiley Online Library,
v. 28, n. 10, p. 581–604, 2015.

ZEMLA, A. Lga: a method for finding 3d similarities in protein structures. Nucleic
Acids Res., Oxford University Press, v. 31, n. 13, p. 3370–3374, 2003.

ZHANG, J.; SANDERSON, A. C. Jade: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput., IEEE, v. 13, n. 5, p. 945–958, 2009.

ZHANG, Y.; SKOLNICK, J. Scoring function for automated assessment of protein
structure template quality. Proteins: Struct. Funct. Bioinf., Wiley Online Library, v. 57,
n. 4, p. 702–710, 2004.

ZHANG, Y.-H. et al. A tree-structured random walking swarm optimizer for multimodal
optimization. Appl. Soft Comput., v. 78, p. 94–108, 2019.

ZHAO, H.; ZHAN, Z.-H.; ZHANG, J. Adaptive guidance-based differential evolution
with iterative feedback archive strategy for multimodal optimization problems. In: IEEE
CONGRESS ON EVOLUTIONARY COMPUTATION. Proceedings... Glasgow, UK:
IEEE, 2020. p. 1–8.

255

ZHU, G.; KWONG, S. Gbest-guided artificial bee colony algorithm for numerical
function optimization. Appl. Math. Comput., Elsevier, v. 217, n. 7, p. 3166–3173, 2010.

	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Research Problem
	1.2 Research Motivation
	1.3 Research Scope
	1.4 Research Proposal
	1.5 Research Objectives
	1.6 Thesis Overview

	2 Computational Optimization Background
	2.1 Introduction
	2.2 Single Global Continuous Optimization
	2.3 Multimodal Continuous Optimization
	2.3.1 Niching Strategies

	2.4 Exploration and Exploitation
	2.5 Population Diversity
	2.6 Exploration and Exploitation Trade-off Definition
	2.7 Connecting the Points of Interest
	2.8 Strategies for Achieving Diversity, Exploration and Exploitation
	2.9 Final Remarks

	3 Biological Background
	3.1 Introduction
	3.2 Physicochemical Protein Composition
	3.3 Levels of Structural Protein Abstraction
	3.4 Structural Protein Classes
	3.5 Computational Representation of Protein Structures
	3.6 PSP Problem Definition
	3.6.1 Stereochemistry
	3.6.2 Computational Modeling of the PSP Problem

	3.7 Objective Function for the PSP Problem
	3.7.1 Rosetta Energy Function
	3.7.2 Protein Contact Maps
	3.7.3 Final Objective Function

	3.8 Final Remarks

	4 Related Works
	4.1 Introduction
	4.2 Bio-inspired Metaheuristics
	4.3 Parameter Control Strategies
	4.4 Hybrid and Memetic Algorithms
	4.5 Single Global Metaheuristics
	4.5.1 Artificial Bee Colony Algorithm
	4.5.2 Relevant Artificial Bee Colony Variants
	4.5.3 Differential Evolution Algorithm

	4.6 Multimodal Metaheuristics
	4.6.1 Classical Niching Algorithms
	4.6.2 Relevant Niching Algorithms

	4.7 Computational Methods and Metaheuristics Applied to the PSP
	4.7.1 Rosetta Method
	4.7.2 AlphaFold Method
	4.7.3 PSP Metaheuristics

	4.8 Final Remarks

	5 Material and Methods
	5.1 Introduction
	5.2 Proposed Method for Single Global Optimization
	5.2.1 Algorithmic Structure of the Method
	5.2.2 Initialization of the Tree
	5.2.3 Optimization Steps of the MA
	5.2.4 Inner Node Recombination and Selection
	5.2.5 Interactions Between Nodes
	5.2.6 Local Improvement Procedure
	5.2.7 Tree Resizing Procedure
	5.2.8 Control Procedure for Convergence and Performance
	5.2.9 Dynamic Niche Size Procedure
	5.2.10 Priority Order of the Components
	5.2.11 Summarization of the Framework-based MA
	5.2.12 Core Metaheuristic

	5.3 Proposed Method for Multimodal Optimization
	5.4 Proposed Method for the 3-D PSP Problem
	5.4.1 Conformational Preferences of Amino Acids
	5.4.2 Sampling of Protein Structures and Solution Initialization
	5.4.3 Optimization of the Protein Structures

	5.5 Final Remarks

	6 Computational Experiments
	6.1 Introduction
	6.2 Scenario of Single Global Optimization
	6.2.1 Evaluation Criteria
	6.2.2 MA Versions and Parameterization of the Method
	6.2.2.1 Version 1: Baseline algorithm
	6.2.2.2 Version 2
	6.2.2.3 Version 3
	6.2.2.4 Version 4
	6.2.2.5 Version 5
	6.2.2.6 Version 6: Final version
	6.2.2.7 Summarization of the MA Versions

	6.2.3 Results and Discussion
	6.2.4 MA Versions
	6.2.5 Final Method for Global Optimization

	6.3 Scenario of Multimodal Optimization
	6.3.1 Evaluation Criteria
	6.3.2 Parameterization of the Method
	6.3.3 Results and Discussion

	6.4 Prediction of 3-D Protein Structures
	6.4.1 Evaluation Criteria and Parameterization of the Method
	6.4.2 Results and Discussion

	6.5 Final Remarks

	7 Conclusions
	7.1 Research Perspectives and Future Works
	7.2 Publications

	References

