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Abstract 

In recent years, spectroscopy techniques such as Near-infrared (NIR) and Fourier Transform 

Infrared (FTIR) have been adopted as analytical tools in different fields. A spectrum of a 

sample usually has hundreds of wavenumbers, fact that can jeopardize the accuracy of 

statistical analysis, being the variable selection an important step in prediction and 

classification tasks based on spectroscopy data. This paper proposes a novel methodology for 

wavenumber selection in classification tasks, applied in two data sets from the petroleum 

sector. The method consists of two main stages: determination of intervals based on the 

distance between the average spectra of the classes and the selection of the most suitable 

intervals through cross-validation. An improvement of 11.52% in the misclassification rate was 

achieved for a NIR spectra data set of diesel, decreasing from 11.71% to 10.36% after the 

application of the proposed method. For a biodiesel FTIR data set the method proved to be 

robust, achieving a zero misclassification rate after the selection process, compared to its 

initial value of 4.71%. 
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1. Introduction 

Spectroscopic techniques have recently gained a great importance in various fields such 

as food, pharmaceutical and petroleum. It is a powerful analytical tool to assess solids and 

liquids due to its ability to provide detailed chemical information and require little or no sample 

pretreatment. Usually a large number of wavenumbers (variables derived from spectroscopic 

techniques) can be rapidly acquired by modern equipment, however the large number of 

variables tends to reduce exploratory and predictive performance of several multivariate 

techniques [1,2]. 

In multivariate data analysis, one of the major issues is the dimensionality of the data, 

i.e., the number of wavenumbers (or variables) related to each observation. In the pre-

processing phase of high-dimensional data, such as spectral chemometrics, the dimension 
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reduction is an important phase of the pre-processing and can improve the quality or speed of 

subsequent analyses [1,3]. Literature brings several methods and approaches tailored to 

wavenumber extraction and selection.  

A  technique widely applied to wavenumber extraction is Principal Components 

Analysis (PCA), which aims to replace the original wavenumbers by a new set of uncorrelated 

wavenumbers (called components) originated as linear combinations of the original ones; each 

component explains the maximum of variance in the original data as possible [4,5]. Usually a 

few components are required to explain most of the variance [6]. 

In wavenumber selection the aim is to find in the original set of d wavenumbers a new 

subset of n wavenumbers, with n<d, where the results do not change dramatically as the 

information in the discarded wavenumbers is redundant [7,8]. Many different methods have 

been proposed in the field of supervised learning, especially in chemical analysis [1,2,9], 

however, there is no standard wavenumber selection procedure for classification purposes. 

In this paper, we propose a novel method for wavenumber selection for classification 

of chemical samples into quality related classes. For that matter, we first apply a technique for 

splitting the data set into spectra intervals and transform such data using PCA. Such intervals 

are then integrated to different classification tools, such as k-nearest neighbors (KNN) and 

linear discriminant analysis (LDA) to categorize the samples into proper classes; the 

classification accuracy provided by each classification technique is finally calculated and 

compared. The method can be summarised as two main stages: the determination of the 

intervals using the average spectra of each class and the selection of the most suitable intervals 

using classification tools along with cross-validation. This method results in measures of 

misclassification rates according the three classification tools and the three selection 

approaches, giving a broad view of the performance of each one. 

The paper is structured as follows: section 2 consists of a brief literature review of 

variable selection applied to spectral data and classification tasks; in section 3 we present the 

method and the two data sets from fuels used in this study. In section 4 results and presented 

and compared; conclusions are depicted in section 5. 
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2. Background 

We now present the fundamentals of the multivariate techniques our method relies on. 

2.1 Principal Component Analysis 

PCA is a well know tool for dimension reduction and graphical visualisation of data. In 

PCA, the original values are projected onto a new orthogonal coordinate system that better 

represents the data, maximising the variance. To get this new basis the PCA finds eigenvalues 

and eigenvectors of the covariance matrix of the data, aiming to maximise the variance and 

minimise the redundancy. Consider X as an n x d mean-centred matrix, where n is the number 

of observations and d the features. The covariance matrix C must be computed as in Eq. (1). 

𝐂𝐗 =
1

n−1
𝐗T 𝐗      (1) 

The goal is to diagonalise the matrix C to obtain uncorrelated features, so the Eigen 

decomposition yields Eq. (2). The P d x d matrix contains, by columns, the eigenvectors of the 

matrix C, and D is a diagonal matrix containing the correspondent eigenvalues.  

𝐏−1𝐂𝐗𝐏 = 𝐃       (2) 

Next, it is necessary to sort the eigenvectors according their eigenvalues magnitudes; 

the greater is the eigenvalue, the greater is the variation along that direction. Consider V as the 

eigenvectors of P sorted in a descent order according the values of the diagonal of D. 

𝐕 = [Pa Pb Pc … ]where Daa > Dbb > Dcc …   (3) 

V is a d x d matrix where the columns are known as loadings (or weights) and allows 

the original data to be projected on the new basis. Typically, a few k components of V are 

required to express the data properly. The projected data Y is expressed by Eq (4), also known 

as PCA scores. Further details on PCA can be found in [3–5,8,10]. 

𝐘 = 𝐗𝐕 where 𝐕 can be truncated to a 𝑑 𝑥 𝑘 matrix  (4) 

2.2 Linear Discriminant Analysis 

 Linear Discriminant Analysis (LDA) is a well known method for data classification, 

being firstly introduced by Fisher in 1936 [11]. The LDA can be seen as a dimension reduction 

tool that projects the data on a new subspace where the classes are better separated, then the 
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projected data can be used to construct a classifier. A threshold 𝑦0 for the projected data is 

chosen, so if 𝑦(𝑥) ≥ 𝑦0 the sample is classified as belonging to class 𝐶1, otherwise it will be 

assigned to class 𝐶2 [4]. 

To apply the LDA for a k classes case it’s necessary to evaluate the within-class 

covariance matrix by: 

𝐒𝐖 = ∑ 𝐒𝐤
𝐾
𝑘=1      (5) 

Where 

𝐒𝐤 = ∑ (𝑋𝑛𝑛 ∈𝐶𝑘
− 𝑚𝑘)(𝑋𝑛 − 𝑚𝑘)𝑇   (6) 

𝑚𝑘 =
1

𝑁𝑘
∑ (𝑋𝑛𝑛 ∈𝐶𝑘

)     (7) 

Also the between-class covariance matrix must also be evaluated through Eq. (8). In 

case the variance of classes are significantly different, a Non Linear Discriminant Analysis is 

to be carried out. 

𝐒𝐁 = ∑ 𝑁𝑘(𝐾
𝑘=1 𝑚𝑘 − 𝑚)(𝑚𝑘 − 𝑚)𝑇   (8) 

𝑚 =
1

𝑁
∑ 𝑋𝑛

𝑁
𝑛=1       (9) 

𝑁𝑘 is the total number of samples in the k-th class, 𝑚𝑘 is the mean of the samples in the class,  

𝑚 is the mean of all samples and 𝑋𝑛 is an individual sample of the training set that contains N 

samples.  

Since the projection of the data is given by 𝐘 = 𝐖𝐓𝐗 , the within-class and between-

class covariance matrices become 𝐖𝐓𝐒𝐖W and 𝐖𝐓𝐒𝐁W. Once LDA aims to project the data 

in a subspace where the classes are better separated, the goal is to find a W where the ratio of 

between-class to the within-class covariance matrixes – known as Fisher criterion – is 

maximised [5,12,13].  

𝐽𝐹(𝐖) =  
|𝐖𝐓𝐒𝐁𝐖|

|𝐖𝐓𝐒𝐖𝐖|
      (10) 

Thus: 

𝐖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(
|𝐖𝐓𝐒𝐁𝐖|

|𝐖𝐓𝐒𝐖𝐖|
)      (11) 
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The maximisation of the criterion is deeply discussed by Fukunaga in reference [14]. 

2.3 K-nearest neighbor 

The k-nearest neighbor (KNN) is a widely applied as a classification tool. The method 

was first proposed by Fix and Hodges [15], leading to several variations [16–19]. To classify 

a new X sample in a 𝐶𝑑 class, KNN computes the distances of the new sample to the samples 

in the training set using a distance metric, e.g., Euclidean or Mahalanobis distances. The matrix 

of distances is sorted and the new observation is inserted into the class that appears the most in 

the first k-closest neighbors. The posterior probability of class membership of the new X sample 

is given by Eq (12). 

𝑝(𝐶𝑑|𝑋) =
𝑘𝑑

𝑘
      (12) 

where 𝑘 is the chosen number of closest neighbors and  𝑘𝑑 is the number of neighbors in the 

training set that belong to the class 𝐶𝑑. Alternatively, the X sample will be assigned to the class 

with greater posterior probability, on other words, to the class that has more samples among 

the k-nearest set [4]. One may choose the 𝑘 number via cross-validation or approximate it by 

the square root of the number of samples [13,14]. 

2.4 Probabilistic Neural Networks: 

Neural networks have their origins as an attempt to replicate mathematically the 

processing of information in biological systems by mimicking the brain activity. A neural 

network usually consists of input, hidden and an output layers. The samples are presented to 

the units in the input layer, which are linearly combined in the hidden layers. Next, each 

combination is transformed according a nonlinear activation function, e.g., logistic or 

hyperbolic tangent functions, giving the output of the hidden layer [4]. The hidden units outputs 

are linearly combined and transformed again in the output layer units. The choice of the 

activation function depends on the nature of the output [4,5] . Training samples are presented 

to the network to determine the weights of the linear combinations. 

An adaptation of neural networks for classification, the probabilistic neural network 

(PNN), was developed by Specht [20]. In PNN the activation function is replaced by a 

statistically derived one, asymptotically approaching the Bayes optimal decision surface. The 

PNN has the advantage of being easy to re-train, however PNN can be computer memory 

consuming [21]. Details about probabilistic neural networks are available in [20–23]. 
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2.5 Spectroscopy and wavenumber selection in chemometrics applications: 

Spectroscopy combined with multivariate techniques has been a recurring topic in 

literature, leading to remarkable results in analytical calibrations and classification. Dyrby et 

al. [24] developed chemometric calibrations based on NIR and Raman spectroscopy using 

partial least squares regression (PLS) applied to the pharmaceutical industry.  A reference 

method was used to measure the active substance content of pharmaceutical tablets, which had 

four different dosages, and then PLS applied to build predictive models. The results presented 

by the authors had relative prediction errors comparable to the estimated error of the reference 

method, what makes spectroscopy combined with multivariate data analysis a cost-effective 

alternative to the standard method. Pimentel et al. [25] also presented a calibration model to 

determine the content of biodiesel in diesel fuel blends based on middle (MID) and NIR 

spectroscopy. PLS models were built and proven to be a practical method to predict biodiesel 

content aimed at monitoring the quality of biodiesel fuel. 

The literature reports several authors [26–29] who applied spectroscopy and 

multivariate analysis to insert petroleum products into categories, such as gasoline and 

diesel/biodiesel blends. Kim et al. [29] constructed a real-time classifier (RTC) based on PCA 

and a Bayesian classifier to classify NIR spectra of six different petroleum products. The 

proposed classifier offered faster and more accurate classification of products on-line than the 

conventional approaches. Li and Dai and Balabin et al. [27,28] applied classification tools to 

Raman and NIR spectroscopy data to classify gasoline by brand and source, comparing several 

classifiers that included LDA, Quadratic discriminant analysis (QDA), least squares support 

vector machine (LSSVM) and KNN. In both works, LDA presented the greatest 

misclassification ratio, while LSSVM and KNN had better results. Pontes et al. [26] used 

partial least squares discriminant analysis (PLS-DA) and LDA to construct classifiers based on 

NIR spectra to identify diesel/biodiesel adulteration. Both methods provided similar results, 

however PLS-DA obtained better classification rates for all cases. 

Most of the aforementioned studies employed some wavenumber selection during the 

building of the models aiming to improve performance. Xiaobo et al. [1] brings a deep review 

on the most applied methods in NIR wavenumber selection, such as successive projection 

algorithms (SPA) and interval selection methods. The authors emphasize that the algorithms 

work in different ways and are suitable to different type of data, requiring the user to select the 

most appropriated one.  



7 
 

More aligned with the propositions of this paper, an interval PLS (iPLS) wavenumber 

selection procedure proposed by Norgaard et al. [30] was used by Dyrby et al. [24] to optimize 

prediction and interpretation of the models. The iPLS is a graphically oriented approach that 

splits the spectrum in several equidistant intervals that are then modelled by local regressions. 

The prediction error measure is evaluated for each interval; the interval yielding the smallest 

error is chosen. In Ferrão et al. [31], the synergy interval PLS (siPLS) and iPLS are compared 

to the full spectra PLS in the prediction of quality parameters of biodiesel/diesel blends. The 

siPLS is a method similar to iPLS, but all the combinations of two, three or four intervals are 

evaluated and the one with smaller error measure is chosen. The results show that the siPLS 

algorithm has a better performance probably due to the combination of intervals that are not 

necessarily adjacent, as reasoned by the authors.  

 

3. Materials and Method 

In this section we present the method and the two data sets assessed in this article. 

3.1 Biodiesel/Diesel blends data set 

A total of 85 samples of  Brazilian Biodiesel/Diesel blends are available in the data set 

used in Ferrao et al. [31]. The samples were prepared with biodiesel constituted of soybean 

methyl esters and two types of diesel: metropolitan and countryside. The concentrations ranged 

from 0.2% of biodiesel (v/v) to 30.0% (v/v). 

Fourier transform infrared spectroscopy (FTIR) spectra of the samples were obtained 

by Ferrao et al. [31] at room temperature, with spectra from 650 to 4000 cm-1 and spectral 

resolution of 4 cm-1. The resulting data set consists of 1738 wavenumbers (λ) and 85 samples. 

Since there are two different types of diesel, the samples can be classified according 

metropolitan (56 samples) or countryside (29 samples) diesel. 

3.2 Diesel fuel data set 

The Southwest Research Institute, sponsored by the U.S. Army, collected the NIR 

spectra of samples of diesel fuel along with five properties. One of the properties is the cetane 

number (analogous to the octane number in gasoline), indicating the ignition quality of the fuel. 

The full data set is available at Eigenvector Research Inc. website 

(http://www.eigenvector.com/). 
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In Brazil, the leading fuel company (Petrobras) uses the cetane number as a measure to 

classify the diesel in standard or premium classes [32]. A standard diesel fuel has a minimum 

cetane number of 42, while the premium diesel has a minimum of 51. Based on that 

information, the samples were classified in standard and premium classes according the cetane 

number. The resulting data set contains 401 wavenumbers and 222 samples divided in two 

classes; standard has 172 samples and premium has 50 samples. 

3.3 Proposed Method 

 The proposed method resembles the iPLS proposed by Norgaard et al. [30], however 

it’s focused in classification and finds the intervals in a different approach. While iPLS splits 

the spectra in several equidistant intervals, the proposed method relies on finding peaks in the 

difference spectrum and relevant neighbourhood regions around such peaks. 

Consider a matrix X consisting of N fuel samples; it can be split in two matrices Xc1 

and Xc2 according to each class sample. The proposed method for wavenumber selection is 

based on finding the regions of the spectra where the difference of the average spectra of each 

class is above a certain threshold. The detailed steps to find the intervals are presented below: 

Step 1 – Split the matrix X in the matrices Xc1 and Xc2 according class 1 and class 2;  

Step 2 – Compute the average spectra (arithmetic mean) of each class as the vectors 𝑥1̅̅̅ and 𝑥2̅̅ ̅;  

Step 3 – Compute the absolute value of the difference of 𝑥1̅̅̅ to 𝑥2̅̅ ̅, as in equation (13): 

𝐷 =  |𝑥1̅̅̅ −  𝑥2̅̅ ̅|      (13) 

Step 4 – Find the p peaks in D that are above a given threshold t (e.g. the mean of D);  

Step 5 – Find an interval Ip for each peak identified in Step 4 through their local minimum. The 

interval starts in the previous local minimum related to the peak and ends in the next local 

minimum, and must not overlap other intervals. This step yields p intervals of wavenumbers. 

Fig 1 illustrates this step. 
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Figure 1: Example of two peaks of D and their correspondent intervals I1 and I2 

Once the p intervals are found, we carry out a process to select the most relevant 

intervals to be included in the classification technique. In this work we used three different 

approaches to select the intervals, all based on the misclassification rate in the 10-fold cross 

validation, namely: Forward Selection (FS), Backward Elimination (BE) and all possible 

combinations of 1, 2, 3 and 4 intervals.  

In the first selection approach, Forward Selection, the misclassification rate (MR) of 

the cross-validation in evaluated for each interval; the interval with the lowest MR is chosen to 

be included in the model. The previous subsets of chosen intervals are used in the following 

iterations. The algorithm stops when there is no improvement in the classification process, or 

when all intervals are selected.  

The Backward Elimination (the second approach tested) is similar to the FS, however 

it starts with all intervals in the model. For each iteration, one interval is omitted at a time and 

the MR is evaluated, the interval that causes the highest MR is eliminated. The algorithm stops 

when no improvement is achieved, or when there is just a single interval remaining in the 

model. The last approach we test is the combination of all possible, which is based on the work 

of Norgaard et al. [30] regarding interval selection in PLS (synergy PLS). The approach is 

adapted to the classification context; all combinations of 1, 2, 3 and 4 intervals are cross-

validated and the combination with the smallest MR is chosen. 

Each of the aforementioned selection approaches are integrated to LDA, kNN and PNN 

classification tools. Given that LDA does not perform well when the number of samples is 

smaller than the number of variables, PCA is applied to the data before each iteration as a pre-

1000150020002500300035004000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Wavenumber (cm-1)

D
I
1 I

2



10 
 

processing step. All the combinations of selection approaches and classification tools are 

assessed; the one yielding the maximum accuracy and minimum number of retained intervals 

is chosen. 

 

4. Results and Discussion 

4.1 Parameters definition 

 To better compare the selection approaches and classification tools, their parameters 

should be optimized independently. Similar to the procedure followed by Balabin and Smirnov 

[2] all combinations of selection approaches and classification tools were optimized based on 

a 10-fold cross validation procedure aiming to minimize the misclassification rate. Optimizing 

each tool independently allow one to compare them without bias, even though the CPU time 

for the optimization can be large [2]. 

 The parameters optimized for the kNN tool were the number of principal components 

and the number of k-neighbors, while for the PNN the spread parameter and the number of PCs 

were optimized. The number of PCs in the LDA was cross-validated between 1 and 7, as with 

more than 7 principal components the algorithm tended to fail due to singularity issues.  

 

4.2 Biodiesel/Diesel blends data set results 

The proposed wavenumber selection method intended to classify biodiesel/diesel 

samples in countryside and metropolitan biodiesel. The method yielded a substantial reduction 

in the misclassification rate, achieving a 0% error in three different combinations of 

classification tools and selection approaches. The complete results are depicted in Table 1. The 

best MR without applying the wavenumber selection was 4.71% with LDA as a classification 

tool, followed by kNN with 5.88% and PNN with 8.24%. 
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Figure 2: Values of D (solid line) for the biodiesel data set alongside the defined threshold (dashed 

line)  

Fig 2 shows the difference D for the biodiesel data set, computed according equation 

13, alongside the threshold defined in step 4 as twice the mean of the values in D. 

The selection approach based on all combinations of 1, 2, 3 and 4 intervals presented 

the best results, achieving the maximum accuracy using kNN and LDA for classification. The 

optimal k was set to 3 and the number of principal components was also optimal at the value 

of 3. For the LDA the best number of components found was 4, also achieving 0% of 

misclassification rate on the forward selection approach. Although PNN didn’t achieve zero 

misclassification, the selection procedure yielded a remarkably improvement in the accuracy, 

with the misclassification falling from 8.24% to 1.18%. 

Table 1: Accuracy (misclassification rate) after wavenumber selection for the biodiesel data set 

Misclassification rate (MR) 

 Forward Selection Backward Elimination All combinations 

kNN 1.18% (+- 0.12) 1.18% (+- 0.12) 0% (+- 0.00) 

LDA 0% (+- 0.00) 3.53% (+- 0.31) 0% (+- 0.00) 

PNN 1.18% (+- 0.12) 1.18% (+- 0.12) 1.18% (+- 0.12) 
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Figure 3: Average spectra of both classes (solid and dashed lines) and the two spectral bands selected 

by kNN and LDA in the biodiesel data set represented by the dashed vertical lines. 

Selected spectral bands by kNN are in the range of 1275 – 1373 cm-1, while the ones 

selected by LDA are around 2933 -2984 cm-1. Such results that are consistent with Ferrão et 

al. [31] findings for sulphur content for the same data. Fig 3 shows the average spectra of the 

two classes alongside the spectral bands. 

In the case of kNN, the total number of variables after the selection was 48 out of 1738, 

meaning that the method was able to classify correctly all samples using 2.71% of the whole 

spectra, proving to be suitable for the purpose of this data set. 

 

4.3 Diesel fuel data set results 

 The procedure proposed in section 3.3 was performed for the data set and the 

misclassification rates for the 10-fold CV are presented in Table 2. The profile of the curve D 

for this data set is shown in Fig 4 with the threshold set as the mean of D.  

The best MR found is 10.36% corresponding to all combinations approach with kNN 

as classification tool, where the optimized number of PCs is 28 and the number of neighbors is 

32, leading to a selection of 3 intervals. The intervals are located in two different spectral bands, 

in the range of 922 – 996 nm and 1240 – 1270 nm, as depicted in Fig 5. 
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Figure 4: Values of D (solid line) for the diesel data set alongside the defined threshold (dashed line) 

Misclassification before selection process was 11.71% for kNN, 13.06% for PNN and 

16.67% for LDA, being the method able to achieve an improvement of 11.52% compared to 

the best result when no selection is applied. 

Table 2: Accuracy (misclassification rate) after wavenumber selection for the diesel data set 

Misclassification rate (MR) 

 Forward Selection Backward Elimination All combinations 

kNN 10.81% (+- 1.31) 10.81% (+- 1.31) 10.36% (+- 1.10) 

LDA 15.77% (+- 1.66) 15.77% (+- 1.66) 15.77% (+- 1.66) 

PNN 12.61% (+- 1.54) 12.61% (+- 1.54) 12.61% (+- 1.54) 

 

The best accuracy was found using 64 out of 401 of the wavenumbers, representing just 

16% of all the variables. Although the misclassification rate did not have a large decrease as in 

the previous data set, the method still were able to improve it at the same time that eliminated 

wavenumbers that did not contribute to the model, being able to better classify the samples in 

standard and premium diesel classes. 
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Figure 5: Average spectra of both classes (solid and dashed line) and the two spectral bands in the 

diesel data set represented by the dashed vertical lines. 

5. Conclusion 

 Facing the dimensionality issue that usually appear in many classification tasks 

involving spectroscopy, this paper presents a novel method of wavenumber selection for 

classification purpose based on interval selection. The method resembles the iPLS [30], 

although it can select intervals of different size, as the limits of the intervals depends on the 

distance between the average spectra of each class. 

The method was applied to two different data sets, combining three classification tools, 

namely kNN, LDA and PNN, and three selection approaches, forward selection, backward 

selection and all possible combinations of 1, 2, 3 and 4 intervals. The results proved the method 

to be robust, leading to improvements in the accuracy of classification for both data sets while 

reducing the percent of wavenumbers retained in the model. 

Further research is needed to adapt the method to tasks with more than two classes, also 

to extend it to prediction tasks, which are the most common problems faced in analytical 

chemistry. 
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