
Universidade Federal do Rio Grande do Sul
Instituto de Matemática e Estat́ıstica
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requisito parcial para a obtenção do t́ıtulo de Mestre em Estat́ıstica
pelo Programa de Pós-Graduação em Estat́ıstica da Universidade
Federal do Rio Grande do Sul.

Orientador:

Prof. Dr. Flávio A. Ziegelmann (UFRGS)

Comissão Examinadora:
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Abstract

In this work, we propose a novel hybrid method for the estimation of regression
models, which is based on a combination of LASSO-type methods and smooth tran-
sition (STR) random forests. Tree-based regressions are known for their flexibility
and skills to learn even very nonlinear patterns. The STR-Tree model introduces
smoothness into traditional splitting nodes, leading to a non-binary labeling, which
can be interpreted as a group membership degree for each observation. Our proposed
approach has two steps, as follows: in the first step we fit a penalized linear regres-
sion, via LASSO-type methods, then, in the second step, we take the residuals from
the first step fit and estimate a STR random forest for these residuals once more
against the original covariates. Therefore, by doing so, we can capture the possibly
important linear relationship in the data generating process, if any, via a parametric
approach in the first step, and let a highly flexible model “attack” the non-linearities
in the second step. We present numerical studies, both with simulated and real data,
to illustrate the performance of our method. Our proposal has shown advantages in
terms of predictive power in comparisson with other benchmarks, especially if the
data possesses both linear and nonlinear features.



Resumo

Neste trabalho, propomos um novo método h́ıbrido para a estimação de modelos
de regressão, baseado em uma combinação de métodos do tipo LASSO e de ran-
dom forest com transição suave (STR). Modelos de regressão baseados em árvores
são conhecidos por sua flexibilidade e capacidade em reconhecer padrões até mesmo
altamente não-lineares nos dados. O modelo STR-Tree introduz suavidade nos nós
da árvore, levando à uma atribuição não-binária das observações em cada grupo, o
que pode ser interpretado como diferentes graus de pertencimento a eles. Nossa pro-
posta consiste em um método em dois passos, da seguinte forma: primeiro ajustamos
uma regressão penalizada através do LASSO, então, no segundo passo, utilizamos os
reśıduos obtidos no primeiro ajuste e estimamos uma random forest com transição
suave (STR) dos reśıduos novamente contra as covariáveis originais. Procedendo
dessa forma, podemos capturar as posśıveis importantes relações lineares nos dados,
caso presentes, de forma paramétrica no primeiro passo e deixar um modelo muito
mais flex́ıvel “atacar” as não-linearidades em um segundo momento. Apresentamos
estudos numéricos, tanto com dados simulados quanto com dados reais, para ilustrar
o desempenho do nosso método. Nossa proposta se mostrou vantajosa em termos
de poder preditivo em comparação com outras referências, especialmente se os dados
contêm atributos tanto lineares quanto não-lineares.
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Chapter 1

INTRODUCTION

In this dissertation, we propose a novel hybrid method for the estimation of regression
models, which is based on a combination of LASSO and STR random forests. The
main contribution is presented in Chapter 2 in an article structure (Gandini and
Ziegelmann, 2022). The current chapter introduces the main concepts employed in
this study.

1.1 Tree-based methods

Tree-based methods have been widely applied in regression since the publication of
the seminal CART (Classification and Regression Trees) paper from Breiman et al.
(1984), which consolidated several approaches that were developed after the first
appearence of a tree algorithm in the literature, with Morgan and Sonquist (1963).
By the occasion of the 50 years anniversary of this innovative publication, Loh (2014)
compiled some of the most important contributions to modeling using trees that
happened in that time period.

Some of the development ever since have focused in solving classification problems,
the ones where the response has a finite number of classes, which do not present a
numerical order meaning. Well known tree algorithms for classification include ID3
(Quinlan, 1986), its successor C4.5 (Quinlan, 1993) and CHAID (Kass, 1980). In
this work we center our attention on regression problems, i.e. we have a continuous
ordered response.

The CART approach is a greedy, top-down algorithm that searches for the feature
and value that split the observations from the root node on, recursivelly, until some
stop criteria is met. This spliting proccess is guided by the response, because the
estimated parameters for each node (variable and value) are the ones that produce
the lowest combined mean squared error (MSE) in the two resulting groups after the
split (Breiman et al., 1984). More on this can be found in the attached research paper
(Gandini and Ziegelmann, 2022) in Chapter 2.

Besides this classical approach of univariate trees, the ones where a single variable
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4 CHAPTER 1. INTRODUCTION

value is compared against a threshold in each node, there are some works that use
the full vector of the variables space, defining a linear discriminant in every split.
Those are called multivariate linear trees, see for example Murthy et al. (1994) and
Yildiz and Alpaydın (2000). The sppliting can also be nonlinear, those are called
multivariate nonlinear trees, as in the work of Guo and Gelfand (1992), whom use a
simple neural network as the splitting function.

Other relevant variant to growing trees is to allow for oblique splits, instead of the
typical axis-aligned, where the later fail to adequately capture linear relationships,
using canonical correlation of the features as in the Canonical Correlation Trees pa-
per (Rainforth and Wood, 2017). Another work worth mentioning is the Extremely
Randomized Trees from Geurts et al. (2006), where both the set of variables and the
splitting values are choosen at random in every node.

In all these works, the approach of hard splits in the observations space (a partic-
ular observation either meet or do not meet the criteria estimated by the parameters
of a particular node of the tree) can cause problems in the estimation in the context
of noisy data, especially on the boundaries of the training set, as demonstrated by
Irsoy et al. (2012) and Linero and Yang (2017).

1.2 Introducing smoothness

More recently there has been an effort to develop trees that do not do hard assign-
ments of data points to regions, with the introduction of some kind of smoothness
in the spliting function. In contrast to the hard split trees, where an observation
traverses a single path from the root to one of the terminal nodes, in smoothed trees
an observation is linked to all regions, but with different associated degrees of group
membership. An observation follows all the paths to all the regions, but with differ-
ent weights. The final prediction is a combination of the predictions of each node.
In essence, while in hard split regression trees there is only one possible final region
for a particular observation, in smoothed trees we consider all K regions, but with
different degrees of group membership.

Soft trees (Irsoy et al., 2012), Fuzzy trees (Suarez and Lutsko, 2000) and STR-
trees (da Rosa et al., 2008) all use a sigmoid-like function in each node, assigning a
group membership degree to the observations to be on the left or on the right child
node. Soft trees and Fuzzy trees are very similar to each other, with only minor
differences. They both are multivariate trees, accessing the whole vector of variables
to establish the membership of observations down the structure of the tree. STR-
trees follow the same guidelines but, in contrast, use a single variable in the sigmoid
function.

Probabilistic Regression trees (Alkhoury et al., 2020) are another multivariate
tree method with a smoothness effort, but it takes a different approach and rely
on a parametric probability distribution chosen beforehand via expert knowledge or
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selected through cross-validation.

In general, trees with soft assignments have the main advantage of providing a
smooth response near the boundaries of the training data, where traditional hard
split trees present discontinuity. This allows smooth trees to have lower bias in the
predictions around the split boundaries (Irsoy et al., 2012). They also lead to fits
that are smoother, therefore generalizing better, in the sense that they are less prone
to overfit (Yildiz et al., 2016). Smoothness also brings in the possibility of estimating
derivatives, such as elasticities, as well as a way of accessing variable importance.

Despite this advantage, smoothed trees are computationaly more intensive than
traditional trees, and suffer from the same high variance problem that the latter
ones. That is, the estimated parameters and predictions of a single tree present high
variability and are for the most part dependent on the random subset of data they
were fitted for (Wehenkel, 1997; Geurts et al., 2006; Geurts and Wehenkel, 2007).

1.3 Ensembling trees

One of the drawbacks of regression trees is that they are prone to overfitting, which
can be thought as the situation where an estimated model fits the characteristics of
a particular sample, instead of generalizing to the population structure (Miller et al.,
2015). It usually is the result of an overly complex model, which leads to high error in
the predictions of new data on which the model was not trained on (Breiman, 1996;
Friedman, 1997; Dietterich, 2000).

This balance between fitting a model that has low prediction errors and also have
the ability to generalize to new data is known as the bias-variance tradeoff. If we fully
grow a tree until there is only one observation in each terminal node, for example,
the model will have low bias for the predictions on that particular training set, but
it will have high variance because even a small change in the data will lead to a very
different structure of the tree. Usually, highly complex models have low bias and high
variance, and for low complexity models it is the opposite (Berk, 2016).

One way of reducing the complexity of a regression tree is to prune it (remove
some of the splits near the leafs) after it is fully grown (Hastie et al., 2009). Another
way of overcoming overfitting is to create an ensemble of trees, in the sense that
the final forecast is a combination of several individual predictions. The classical
approachs are the Random Forest (Breiman, 2001) and Boosting (Friedman, 2001).

Ho (1995) shows that combining several trees improves predictive performance
while simultaneously providing regularization. This way, there is no need to use
pruning to attack the overfitting problem, we can fully grow trees and average their
predictions. Every tree is fitted individually and the final estimator is an average of
all individual models, resulting in a predictor with better performance than any of
the individual trees (Rokach, 2010).
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Since the growth of a traditional individual tree follows a deterministic proce-
dure, in order to use a combination of them it is necessary to introduce some kind
of randomness, enabling the creation of several slightly different trees. Ho (1998)
accomplished that via randomly selecting the subset of candidate covariates in each
splitting node (the random subspace method).

Breiman (1996) takes another approach and employs bagging, short for bootstrap
aggregation, which is a procedure that trains several simple models, each one with
slightly different data through bootstrap sampling (Efron, 1977) the original dataset.
The final estimator is an average from all trees, as follows:

f̂(x) = 1
B

B∑
b=1

f̂b(x) ,

where B is the number of individual models to be trained. This increases the stability
of the model, i.e., decreases its variance, easying the impact of extreme values on the
data. We can think of this averaging of predictions as a way of imposing a regularizing
effect on the model (Yildiz et al., 2016).

Random forest, introduced by Breiman (2001), combines the ideas behind bagging
and the random subspace method. In this new perspective, the growing of several
individual trees has two sources of randomization: the first one is the bootstrap
sampling of the training set, where sometimes an observation will be drawn more
than once and sometimes will not be drawn at all, whereas the second source is the
random selection of the subset of candidate regressors in each split of the trees. This
results in trees that are less correlated with each other, and, in a final estimator,
averaged from the trees, with better predictive performance and less variance than
either individual approaches (Hastie et al., 2009; Berk, 2016).

The insight behind the good predictions that random forests provide is that in
a forest, the effect of any individual tree that overfits because of noisy training ob-
servations is dilluted in the averaging process. The individual trees will be slightly
different from each other, therefore averaging them improves predicive performance
in comparisson with any individual tree. Breiman (2001) presents theoretical results
showing that the lower the correlations among trees, the lower the upper bound for
the error of the ensemble. So it is critical to achieve diversity in the individual compo-
nents that make a forest of trees. Typically any particular tree will have suboptimal
splits, because the parameters are estimated locally, i.e., the whole tree structure
is not considered at each node, only the data that reached that point. A node is
not “aware” of further splits and their implications on the parameters estimation.
Thus any individual tree is almost never the global optimal solution over all possi-
ble models, but an ensemble of those weak learners improves the overall predictive
performance (Strobl et al., 2009).

As a complex method, with several degrees of randomization process, it is nat-
urally hard to explain matematically the mecanics of how and why random forest
works, besides intuitive explanations and simulation studies. Biau et al. (2008) and
Lin and Jeon (2006) explore this issue, although imposing several simplifying assump-
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tions, due to the inner complexity of the ensembling procedure.

More recently, other types of random forests ensemblings have been proposed,
notably Extremely Randomized Forests (ERF) (Geurts et al., 2006), Canonical Cor-
relation Forests (CCF) (Rainforth and Wood, 2017), Acceptance–Rejection Forests
(ARF) (Calhoun et al., 2020) and Probabilistic Forests (PF-RF) (Alkhoury et al.,
2020). They are all natural extensions of Extremely Randomized trees, Canonical
Correlation trees, Acceptance-Rejection trees and Probabilistic trees to the classical
random forest framework.

Finally, another way of ensembling trees is the boosting procedure, which was
introduced by Friedman (2001) and is significantly different from the random forest.
In boosting, trees are trained sequentially, where the next tree is fitted with greater
weights on the observations that were poorly fitted in the previous step and lower
weights on the ones that had a good fit. This boosts the performance of the model by
forcing the trees to choose parameters that approximate better the observations that
previous trees had difficulties dealing with (Miller et al., 2015). The final estimator is
an additive model of all individual trees (Awaya and Ma, 2021). In the case of STR-
Trees, the boosting approach for regression was stablished by the “BooST” method
(Fonseca et al., 2020), which we use as one of the benchmarks in the simulation study
(Chapter 2). Exploring the details of boosting is out of the scope of this work.

1.4 LASSO-type methods

Variable selection is important in modern statistical modeling, especially with the
very large sizes of datasets available in recent years, both in terms of number of
observations and in quantity of variables. Traditional methods like best subset or
stepwise selection have their own difficulties dealing with a high number of regressors,
with reduced accuracy of forecasts or large computational cost, which can make the
estimation infeasible (Hastie et al., 2009).

Another approach is regularization, with methods like Ridge regression (Hoerl
and Kennard, 1970) and Least Absolute Shrinkage and Selection Operator (LASSO)
(Tibshirani, 1996). These procedures employ a penalization on the coefficients of a
model, and shrink the magnitude of some of them, hence being known as shrinkage
methods. While Ridge applies a `2-penalty on the coefficients estimation, resulting
in lower βs than those estimated by OLS, LASSO imposes a `1-penalty and sets
some of them to zero, effectively performing simultaneously parameter estimation
and variable selection.

Zhao and Yu (2006) demonstrated that the ordinary LASSO regression do not
have consistency in selecting the relevant variables and the true coefficients when the
size of training set increases, and also do not have the oracle property (the estimator
identifies the true model and has the optimal estimation rate) (Fan and Li, 2001;
Zou, 2006). Zou (2006) proposes the Adaptive LASSO method (adaLASSO), which
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has the oracle property and is asymptotically unbiased. This is done through the
addition of different weights for each variable in the penalty factor.

Notice that nevertheless these LASSO-type approaches present the property of
automatic variable selection, they are still linear methods, and capture only the linear
relationships in the data. If the data has nonlinear (or both linear and nonlinear)
generating terms, neither LASSO nor adaLASSO will be a good solution, and for
this reason we propose a combination of those methods with a more flexible, non-
parametric approach.

1.5 Proposal of this work

This work focus on regression problems where the DGP has both linear and nonlinear
components. We propose a novel hybrid method for the estimation of regression
models, which is based on a combination of LASSO and STR random forests, as a
way of capturing the linearities and non-linearities in the data, in a flexible way.

The proposal is presented in the form of an article in Chapter 2, where i) first
we make a brief revision of the methods in which we build upon, namely the tra-
ditional CART decision tree, the Tree-Structured Smoothed Transition Regression
(STR-Tree), the Random Forest and the LASSO family of regularization methods; ii)
we present our method, combining LASSO-type methods with a STR random forest,
followed by numerical examples both with simulated and empirical data, and com-
parisson of our approach with other benchmarks; iii) we present our conclusions and
provide suggestions for future related work.



Chapter 2

ARTICLE

The attached research article, Combining LASSO-Type Methods with a Smooth Tran-
sition Random Forest (Gandini and Ziegelmann, 2022), comprises the main contri-
bution of the present Dissertation.
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Abstract

In this work, we propose a novel hybrid method for the estimation of regression

models, which is based on a combination of LASSO-type methods and smooth

transition (STR) random forests. Tree-based regressions are known for their

flexibility and skills to learn even very nonlinear patterns. The STR-Tree model

introduces smoothness into traditional splitting nodes, leading to a non-binary

labeling, which can be interpreted as a group membership degree for each ob-

servation. Our proposed approach has two steps, as follows: in the first step we

fit a penalized linear regression, via LASSO-type methods, then, in the second

step, we take the residuals from the first step fit and estimate a STR random

forest for these residuals once more against the original covariates. Therefore,

by doing so, we can capture the possibly important linear relationship in the

data generating process, if any, via a parametric approach in the first step, and

let a highly flexible model “attack” the non-linearities in the second step. We

present numerical studies, both with simulated and real data, to illustrate the

performance of our method. Our proposal has shown advantages in terms of

predictive power in comparisson with other benchmarks, especially if the data

possesses both linear and nonlinear features.

Keywords: Regression, LASSO, adaLASSO, STR-Tree, Random Forest,

Smoothness.

1. INTRODUCTION

Tree-based methods have been widely applied in regression since the publi-

cation of the seminal CART (Classification and Regression Trees) paper from
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Breiman et al. (1984), which consolidated several approaches that were devel-

oped after the first appearence of a tree algorithm in the literature, with Morgan5

& Sonquist (1963). They are known to be highly flexible in the way they can

capture hidden, possibly nonlinear, patterns from the data (Hastie et al., 2009).

The CART approach is a greedy, top-down algorithm that searches for the

feature and value that split the observations from the root node on, recursivelly,

until some stop criteria is met. This spliting proccess is guided by the response,10

because the estimated parameters for each node (variable and value) are the

ones that produce the lowest combined mean squared error (MSE) in the two

resulting groups after the split (Breiman et al., 1984).

In addition to this classical univariate tree, with hard splits aligned to the

axis of the selected variable, there are also models that use the full vector of15

the variables space, defining a linear discriminant in every split (multivariate

linear, Murthy et al. (1994); Yildiz & Alpaydın (2000)) and nonlinear splitting

surfaces (multivariate nonlinear, Guo & Gelfand (1992)). Other strategies in-

clude allowing oblique splits, instead of the typical axis-aligned, where the later

fail to adequately capture linear relationships (Rainforth & Wood, 2017), and20

randomizing both the set of variables and the value in every split, regardless of

the response (Geurts et al., 2006). In all these works, the approach of hard splits

in the observations space can cause problems in the estimation in the context

of noisy data, especially on the boundaries of the training set, as demonstrated

by Irsoy et al. (2012) and Linero & Yang (2017).25

More recently there has been an effort to develop trees that do not do hard

assignments of data points to regions, with the introduction of some kind of

smoothness in the spliting function. In contrast to the hard split trees, where

an observation traverses a single path from the root to one of the terminal

nodes, in smoothed trees an observation is linked to all regions, but with different30

associated degrees of group membership. An observation follows all the paths to

all the regions, but with different weights. The final prediction is a combination

of the predictions of each node. In essence, while in hard split regression trees

there is only one possible final region for a particular observation, in smoothed

trees we consider all K regions, but with different degrees of group membership.35

Soft trees (Irsoy et al., 2012), Fuzzy trees (Suarez & Lutsko, 2000) and STR-

trees (da Rosa et al., 2008) all use a sigmoid-like function in each node, assigning

a group membership degree to the observations to be on the left or on the right

child node. Soft trees and Fuzzy trees are very similar to each other, with only

minor differences. They both are multivariate trees, accessing the whole vector40
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of variables to establish the membership of observations down the structure of

the tree. STR-trees follow the same guidelines but, in contrast, use a single

variable in the sigmoid function.

Probabilistic Regression trees (Alkhoury et al., 2020) are another multivari-

ate tree method with a smoothness effort, but it takes a different approach45

and rely on a parametric probability distribution chosen beforehand via expert

knowledge or selected through cross-validation.

In general, trees with soft assignments have the main advantage of providing

a smooth response near the boundaries of the training data, where traditional

hard split trees present discontinuity. This allows smooth trees to have lower50

bias in the predictions around the split boundaries (Irsoy et al., 2012). They

also lead to fits that are smoother, therefore generalizing better, in the sense

that they are less prone to overfit (Yildiz et al., 2016). Smoothness also brings

in the possibility of estimating derivatives (such as elasticities) as well as a way

of accessing variable importance.55

Despite this advantage, smoothed trees are computationally more intensive

than traditional trees, and suffer from the same high variance problem that the

latter ones. That is, the estimated parameters and predictions of a single tree

present high variability and are for the most part dependent on the random

subset of data they were fitted for (Wehenkel, 1997; Geurts et al., 2006; Geurts60

& Wehenkel, 2007).

One of the drawbacks of regression trees is that they are prone to over-

fitting, which can be thought as the situation where an estimated model fits

the characteristics of a particular sample, instead of generalizing to the pop-

ulation structure (Miller et al., 2015; Berk, 2016). It usually is the result of65

an overly complex model, which leads to high error in the predictions of new

data on which the model was not trained on (Breiman, 1996; Friedman, 1997;

Dietterich, 2000).

In order to overcome this bias-variance tradeoff in the predictions, we can

prune the tree (remove some of the splits near the leafs) after it is fully grown,70

in order to reduce the complexity of the model (Hastie et al., 2009). Another

way to control overfitting is to create an ensemble of trees, in the sense that the

final forecast is a combination of several individual predictions. The classical

approachs are the Random Forest (Breiman, 2001) (explained in detail in Section

2) and Boosting (Friedman, 2001) (whose exploration is out of the scope of this75

work).

This work focus on regression problems where the DGP has both linear and

3



nonlinear components. Our novel approach combines a LASSO linear regression

(Tibshirani, 1996), in the first step, with a STR random forest on the residuals

(of the first step) in the second step. Therefore, any inner linearity in the data80

can be captured in the first step, leaving the non-linearities to be depicted by

the more flexible model afterwards.

In the simulations, our approach resulted in better out-of-sample predictive

performance especially when the data generating process presents both linear

and nonlinear terms, with bigger coefficients in the linear terms. In tests with85

real data, the method performed well against the benchmarks and has estab-

lished itself as an alternative for regression problems.

This paper is organized as follows: i) first we make a brief revision of the

methods in which we build upon (Section 2), namely the traditional CART

decision tree, the Tree-Structured Smoothed Transition Regression (STR-Tree),90

the Random Forest and the LASSO family of regularization methods; ii) we

present our method, combining LASSO-type methods with a STR random forest

(Section 3), followed by numerical examples both with simulated and empirical

data, and comparisson of our approach with other benchmarks (Section 4);

iii) we present our conclusions and provide suggestions for future related work95

(Section 5).

2. TREE-BASED AND SHRINKAGE METHODS

2.1. Regression trees

A standard regression tree is a non-parametric model whose estimation is

obtained by recursivelly partitioning the space of covariates, aiming to approx-100

imate the unknown data generating function (Breiman et al., 1984). It accom-

plishes that building a structure that resembles an inverted tree: starting from

the root, or the initial node, the model searchs the variable sj and the value

of that particular variable cj that generates the (locally) optimal spliting of

the data. In the context of regression, this can be represented by the lowest105

combined MSE (mean squared error) of the two groups that resulted from the

first split (Hastie et al., 2009). After this first division, two new groups are

generated, each one containing the observations that met the criteria defined

in the first split: the ones in which the value of the variable sj is less than or

equal to the value cj are attributed to the left child node, and observations in110

which the value of the variable sj is greater than the value cj are attributed

to the right child node. This process continues until some stop criteria is met,

4



usually a minimum number of observations on the terminal node or a negligible

improvement of the MSE in a new division of the tree.

More generally, we can formally describe a regression tree as follows. Let

xi = (xi1, . . . , xim) ∈ Rm for i = 1, 2, ..., n, aleatory vector of covariates

and

yi ∈ R the response variable

such that

yi = f(xi) + εi, where E
[
εi|Xj

]
= 0.

Then

f̂(xi) =
K∑

k=1

β̂kIk(xi ∈ Rk) ,

where115

• K is the number of terminal nodes or regions;

• Ik(xi ∈ Rk) is the indicator function, returning 1 if the observation xi is

in the region Rk, and 0 otherwise;

• β̂k is sample mean of the observations in the kth region.

In the case of a simple tree, with only one splitting node (the root), depth

equal to one and two terminal nodes (or leafs), the estimated model is repre-

sented by:

ŷi = β̂1I(xi; s0, c0) + β̂2[1− I(xi; s0, c0)] , (1)

where120

• s0 is the variable used in the root node;

• c0 is the value used in the root node;

• β̂1 and β̂2 are the response sample mean for the observations in regions

k = 1 and k = 2.

The estimation of the model usually is done by exaustive search of the pa-125

rameters in each node in a way that minimizes the residual sum of squares.

In the example of our simple tree it means finding the variable s0 and value

c0 which minimize the combined MSE of the two terminal regions k = 1 and

k = 2:
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(s0, c0) = arg min
s,c

{ ∑

i:xi∈k=1

(yi − ŷi(s, c))2 +
∑

i:xi∈k=2

(yi − ŷi(s, c))2
}
,

where ŷi is represented by equation 1. In a deeper tree, this process is reapeted130

recursivelly and with every division a lower number of observations reach the

nodes that are more distant from the root, until a minimum threshold is met,

when the growth stops.

More generally, a regression tree can be expressed by the following nota-

tion, which we borrow from da Rosa et al. (2008) and Fonseca et al. (2020),135

summarized in Table 1.

Table 1: Identifying nodes in a regression tree

Type of node Set of nodes Quantity of nodes Index of a node

Internal (or parent) J J j
Terminal (or leaf or region) K K k

Then f(x;θ) is the additive model representing the tree, where θ is the

vector of parameters. More especifically:

ŷi = f̂(xi; θ̂) =
∑

k∈K
β̂kBJk(xi; θ̂k), (2)

where the function BJk(·) is defined as

BJk(xi;θk) =
∏

j∈J
I(xsj,i; cj)

nkj(1+nkj)

2 [1− I(xsj,i; cj)(1−nkj)(1+nkj)] (3)

and

I(xsj,i; cj) =

{
1, if xsj,i ≤ cj
0, otherwise ,

with

nkj =





−1, if the path to leaf k does not include the parent node j

0, if the path to leaf k include the right-hand child of the parent node j ,

1, if the path to leaf k include the left-hand child of the parent node j
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where
0 ≤ BJk(xi;θk) ≤ 1 ,
∑

k∈K
BJk(xi;θk) = 1 ,

with θ being the vector of parameters in the form

θ = (θ0, . . . ,θK),

and finally θk is the set of values for every node:

θk = {cj}, j ∈ J, k ∈ K .

Note that the functions B(·) return one for the complete path, from the root

to the terminal node, where a particular observation xi was fitted, and zero for

all other possible paths. The expoents in equation 3 always return either one

or zero, depending on the path took by the observation xi down the structure140

of the tree. Thus, equation 3, being a product of indicator functions, represents

the set of nodes traversed by a particular observation. This way we can fully

specify any tree structure.

2.2. STR-Tree model

In da Rosa et al. (2008), the regression tree is modified by replacing the

indicator function by a logistic one, defined as follows:

L(xsj ,i; γj , cj) =
1

1 + e−γj(xsj,i
−cj) , (4)

where145

• γj is the smoothness parameter;

• cj is the location parameter, similar to the splitting value of a traditional

tree.

The parameters γj and cj define the smoothness of the transition close to each

tree node. If γj if large, L(·) behaves like an indicator function, and if γj is150

small, L(·) becomes linear.

The STR-Tree model can then be represented by equation 2 with B(·) re-
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placed by

BJk(xi;θkS) =
∏

j∈J
L(xsj ,i; γj , cj)

nkj(1+nkj)

2 [1− L(xsj ,i; γj , cj)
(1−nkj)(1+nkj)] ,

(5)

where L(·) is the logistic function defined in equation 4 and θkS is the set of

variable, smoothness and location parameters s, γ and c for each node j:

θkS = {sj , γj , cj}, j ∈ Jk.

Note that now we do not have sharp splits in the nodes of the tree any-

more. For every region k we have a value in the [0, 1] interval for a particular

observation, meaning the degree of that observation belonging to that region.

In contrast to the traditional tree, where an observation follows only one path155

to the bottom and ignores the others, in STR-tree every observation belongs to

all the terminal regions, but with different degrees of membership.

Growing a tree means to find, for each node, the transition variable and to

estimate its respective smoothness and location parameters. This is done by

minimizing the sum of the squared errors conditional on the structure of the160

tree until that particular node. If we have a grown tree, the set of estimated

parameters δ of a new split is

δ̂ = (j, ŝj , γ̂j , ĉj , β̂2j+1, β̂2j+2) = arg min
δ

n∑

i=1

[
yi − ẑ(xi, δ)

]2
,

where

• j is the index which identify a particular node;

• ŝj is the transition variable for node j;165

• γ̂j is the smoothness parameter for node j;

• ĉj is the location parameter for node j;

• β̂2j+1 is the coefficient for the left child node of this new split;

• β̂2j+2 is the coefficient for the right child node of this new split;

and
ẑ(xi, δ) =

∑

k∈K,k 6=j
β̂kBJk(xi; θ̂kS)

+ β̂2j+1L(xsj,i; γj , cj)BJj(xi; θ̂jS)

+ β̂2j+2

[
1− L(xsj,i; γj , cj)

]
BJj(xi; θ̂jS).
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The expression above means that, for every split one must choose the particular170

node j to split, the variable sj and the γj , cj parameters that minimize the

squared error considering the actual structure of the tree until that point and

the two new child nodes generated by this new split.

Algorithm 1, from Fonseca et al. (2020), describes the overall procedure of

growing a STR-Tree.175

Algorithm 1 Growing a STR-Tree

Data: {xi}ni=1, {yi}
n
i=1

Input: η = 0, J = ∅,K = ∅ and K
Output: {βk}k∈K, {θk}k∈K, {ŷi}

n
i=1

while η < K do
if η = 0 then

Find the index of the best splitting variable, s0 and threshold c0;
Compute L(xi,s0 , γ0, c0);
Compute BJk(xi; θk), for k = 1, 2;
Compute βk, for k = 1, 2;
Set J = 0 and K = {1, 2};

else
Find the node to split, j ∈ K, the index of the best splitting variable,
sj , the smoothness parameter, γj , and splitting threshold cj ;
Compute L(xi,sj , γj , cj), BJk(xi; θk), for k = 2j + 1, k = 2j + 2;
Compute βk, for k = 2j + 1, k = 2j + 2;
Update J and K;

end if
Update η = η + 1;

end while

2.3. Ensembling trees

Ho (1995) shows that combining several trees improves predictive perfor-

mance while simultaneously providing regularization. This way, there is no

need to use pruning to attack the overfitting problem, we can fully grow trees

and average their predictions. Every tree is fitted individually and the final180

estimator is an average of all individual models, resulting in a predictor with

better performance than any of the individual trees (Rokach, 2010).

Since the growth of a traditional individual tree follows a deterministic pro-

cedure, in order to use a combination of them it is necessary to introduce some

kind of randomness, enabling the creation of several slightly different trees. Ho185

(1998) accomplished that via randomly selecting the subset of candidate covari-

ates in each splitting node (the random subspace method).
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Breiman (1996) takes another approach and employs bagging, short for boot-

strap aggregation, which is a procedure that trains several simple models, each

one with slightly different data through bootstrap sampling (Efron, 1977) the

original dataset. The final estimator is an average from all trees, as follows:

f̂(x) =
1

B

B∑

b=1

f̂b(x) ,

where B is the number of individual models to be trained. This increases the

stability of the model, i.e., decreases its variance, easying the impact of extreme

values on the data. We can think of this averaging of predictions as a way of190

imposing a regularizing effect on the model (Yildiz et al., 2016).

Random forest, introduced by Breiman (2001), combines the ideas behind

bagging and the random subspace method. In this new perspective, the growing

of several individual trees has two sources of randomization: the first one is the

bootstrap sampling of the training set, where sometimes an observation will be195

drawn more than once and sometimes will not be drawn at all, whereas the

second source is the random selection of the subset of candidate regressors in

each split of the trees. This results in trees that are less correlated with each

other, and, in a final estimator, averaged from the trees, with better predictive

performance and less variance than either individual approaches (Hastie et al.,200

2009; Berk, 2016).

The insight behind the good predictions that random forests provide is that,

in a forest, the effect of any individual tree that overfits because of noisy training

observations is dilluted in the averaging process. The individual trees will be

slightly different from each other, therefore averaging them improves predicive205

performance in comparisson with any individual tree. Breiman (2001) presents

theoretical results showing that the lower the correlations among trees, the

lower the upper bound for the error of the ensemble. So it is critical to achieve

diversity in the individual components that make a forest of trees. Typically any

particular tree will have suboptimal splits, because the parameters are estimated210

locally, i.e., the whole tree structure is not considered at each node, only the

data that reached that point. A node is not “aware” of further splits and their

implications on the parameters estimation. Thus any individual tree is almost

never the global optimal solution over all possible models, but an ensemble of

those weak learners improves the overall predictive performance (Strobl et al.,215

2009).
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As a complex method, with several degrees of randomization process, it is

naturally hard to explain matematically the mecanics of how and why random

forest works, besides intuitive explanations and simulation studies. Biau et al.

(2008) and Lin & Jeon (2006) explored this issue, although imposing several220

simplifying assumptions, due to the inner complexity of the ensembling proce-

dure.

Finally, another way of ensembling trees is the boosting procedure, which

was introduced by Friedman (2001) and is significantly different from the ran-

dom forest. In boosting, trees are trained sequentially, where the next tree is225

fitted with greater weights on the observations that were poorly fitted in the

previous step and lower weights on the ones that had a good fit. This boosts

the performance of the model by forcing the trees to choose parameters that

approximate better the observations that previous trees had difficulties dealing

with (Miller et al., 2015). The final estimator is an additive model of all in-230

dividual trees (Awaya & Ma, 2021). In the case of STR-Trees, the boosting

approach for regression was stablished by the “BooST” method (Fonseca et al.,

2020), which we use as one of the benchmarks in the simulation study (Section

4). Exploring the details of boosting is out of the scope of this work.

2.4. Shrinkage methods and variable selection235

Variable selection is important in modern statistical modeling, especially

with the very large sizes of datasets available in recent years, both in terms of

number of observations and in quantity of variables. Traditional methods like

best subset or stepwise selection have their own difficulties dealing with a high

number of regressors, with reduced accuracy of forecasts or large computational240

cost, which can make the estimation infeasible (Hastie et al., 2009).

Another approach is regularization, with methods like Ridge regression (Ho-

erl & Kennard, 1970) and Least Absolute Shrinkage and Selection Operator

(LASSO) (Tibshirani, 1996). These procedures employ a penalization on the

coefficients of a model, and shrink the magnitude of some of them, hence being245

known as shrinkage methods. While Ridge applies a `2-penalty on the coeffi-

cients estimation, resulting in lower βs than those estimated by OLS, LASSO

imposes a `1-penalty and sets some of them to zero, effectively performing si-

multaneously parameter estimation and variable selection.

Consider the following linear model:

yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + εi , (6)
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where we have p predictors, i = 1, . . . , n is the index of a particular observation

and can also be writen in matrix notation as

y = Xβ + ε.

Then the LASSO estimator is obtained by the following optimization prob-250

lem:

β̂LASSO = arg min
β

{
n∑

i=1

(
yi − β0 −

p∑

j=1

βjxji

)2
}

subject to
p∑

j=1

|βj | ≤ t ,

that can also be writen in the equivalent following way:

β̂LASSO = arg min
β

{
n∑

i=1

(
yi − β0 −

p∑

j=1

βjxji

)2

+ λ

p∑

j=1

|βj |
}
,

where λ is the parameter that controls the amount of shrinkage (or penalty).

Zhao & Yu (2006) demonstrated that the ordinary LASSO regression do not

have consistency in selecting the relevant variables and the true coefficients when

the size of training set increases, and also do not have the oracle property (the255

estimator identifies the true model and has the optimal estimation rate) (Fan &

Li, 2001; Zou, 2006). Zou (2006) proposes the Adaptive LASSO (adaLASSO),

which presents the oracle property and is asymptotically unbiased. This is done

through the addition of different weights for each variable in the penalty factor:

β̂adaLASSO = arg min
β

{
n∑

i=1

(
yi − β0 −

p∑

j=1

βjxji

)2

+ λ

p∑

j=1

ωj |β̂j |
}
,

where ωj = |β̂j |−τ , τ > 0, are the coefficients obtained in a previous step via260

OLS or even through a standard LASSO regression. Hence, differente variables

coefficients have different weights in this optimization problem.

Notice that nevertheless these LASSO-type approaches present the property

of automatic variable selection, they are still linear methods, and capture only

the linear relationships in the data. If the data has nonlinear (or both linear265
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and nonlinear) generating terms, neither LASSO nor adaLASSO will be a good

solution, and for this reason we propose a combination of those methods with

a more flexible, non-parametric approach, in the next section.

3. COMBINING LASSO-TYPE METHODS WITH A SMOOTH TRAN-

SITION RANDOM FOREST270

The idea behind the proposed method is to capture the linear relationships

in the data, if any, in a parametric first step with the adaLASSO regression

and let the flexibility of a STR random forest accesss the non-linearities in the

second step. The ensemble of STR-Trees tend to produce better predictions

near the boundaries of the training set due to its smoothness, compared to the275

traditional regression tree alternative, so we expect lower out-of-sample errors in

some cases. Furthermore, in the context of sparse data with irrelevant variables,

the adaLASSO fitting in the first step can act as a “filter”, capturing most of

the linearities, and letting an easier task to be completed by the second step

non-parametric regression (STR random forest) in attacking the nonlinearities.280

Our method is a two step procedure described as bellow:

1. Fit an adaLASSO regression on the data with the response y, as defined

by model 6, generating the prediction ŷ1sti , for i = 1, . . . , n;

2. Calculate the residuals of the previous regression: ε̂1sti = yi − ŷ1sti , for

i = 1, . . . , n;285

3. Draw B bootstrap samples of the data;

4. Fit B STR-trees (using only a fraction of the predictors in each split of the

tree), on each sample, with the response variable being the residuals from

the previous step (ε1sti ), generating the prediction ε̂2ndi , for i = 1, . . . , n;

5. Average the B predictions of the individual trees to have the random forest290

forecast: ε̂2ndi RF = 1
B

∑n
i ε̂

2nd
i ;

6. Sum both intermediary predictions to have the final one: ŷi = ŷ1sti + ε̂2ndi RF,

for i = 1, . . . , n.

Our method have shown advantages in terms of predictive performance in

some cases in contrast to other benchmarks, as shown in the next section, es-295

pecialy if the data generating process presents both linear and nonlinear com-

ponents.
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4. NUMERICAL EXAMPLES

4.1. Settings

As the first step of our method involves an adaLASSO regression, we are300

naturally interested in evaluate its variable selection capabilities, in scenarios

where the data include linear and nonlinear terms. In order to access the abil-

ity of the method in capturing the linearity in the data, we follow the works

of Medeiros & Mendes (2015) and Konzen & Ziegelmann (2016) and use the

variable selection evaluation metrics described in Table 2.305

Table 2: Variable selection metrics

Metric Description

FVCI Fraction of variables correctly identified. It is the sum of the number
of relevant variables included and the number of irrelevant variables
excluded, divided by the total number of variables, in every replication,
averaged across all replications;

TMI True model included. The fraction of replications in that all relevant
variables were correctly included;

FRVI Fraction of relevant variables included. For each replication, the fraction
of relevant variables that were correctly included, averaged across all
replications;

FIVE Fraction of irrelevant variables excluded. For each replication, the frac-
tion of irrelevant variables that were correctly excluded, averaged across
all replications.

In the simulations, we calculated these metrics after the first step of the

method, i.e., after the estimation of the adaLASSO coefficients. Specifically

for the FRVI metric, we make the following segmentation: first we consider

all relevant variables (FRVI all variables), and then compute it only for the

variables generated linearly (FRVI linear variables) and finally for the variables310

generated from nonlinear functions (FRVI nonlinear variables).

In Section 4.2 we performed simulation studies, with datasets generated with

sample size n = (50, 200, 1000) and subsequently fitted by all regression methods

in 500 replications on a training partition with size 2
3n, randomly choosen each

time, and we evaluate its performance on the remaining test partition (with size315

1
3n).
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We use the Root Mean Squared Relative Errors (RMSRE1) of the out-of-

sample predictions as the metric to evaluate the models. This is because we

want to access the predictive performance with different sets of coefficients for

the linear terms, and simultaneously be able to compare the errors with slightly320

different DGPs.

In the case of the real datasets (Section 4.3), where we do not know the true

DGP, the data remained the same across the replications, but the training and

test sets of observations were choosen randomly each time. The performance

metric choosen was the Root Mean Squared Error (RMSE) of the out-of-sample325

predictions.

The regression methods used as benchmarks are listed in Table 3. Even

though OLS and (standalone) adaLASSO are not equiped to deal with non-

linearities, we opted to keep them in the simulations for comparisson purposes.

Table 3: Regression methods used as benchmarks

Classical Tree-based Proposed methods

Ordinary Least Squares (OLS) Traditional Random Forest (RF) adaLASSO + RF

Adaptive LASSO (adaLASSO) STR-Tree Random Forest (STR RF) adaLASSO + STR RF

Support Vector Regression (SVR) STR-Tree Boosting (BooST)2

Usually the estimation of the parameters of tree-based methods are not330

affected by the magnitude of the variables, but for other methods it is normally

a problem if the variables have big differences in scale (Hastie et al., 2009).

So in order to be able to compare the errors of different regression models, we

pre-process the X matrix standardizing each variable before the fittings.

In respect to the number of STR-trees used in the random forest, we ran a335

simulation on the “example” DGP generated in Section 4.2, where we measured

the MSE of the out of sample prediction for different numbers of smooth trees in

the random forest ensemble. We observed that the prediction error keeps falling

when more trees are added into the random forest, plateauing at about 200 trees

onwards. So we choose to use 200 trees in the random forest of our simulations,340

since only modest gains in predictive performance are obtained past that point,

and also not to create unnecessary computational burden.

1RMSRE =

√
1
n

∑n
i=1

(
ŷi−yi

yi

)2
, Göçken et al. (2016).

2Fonseca et al. (2020).
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All models were fitted using the default parameters of their respective im-

plementations3. Our implementation can be found at the authors repository4.

4.2. Monte Carlo studies345

The idea behind this section is to test the predictive performance of our

method against simulated datasets in which we control the magnitude of the

linear features while constructing the response. This is done varying the co-

efficients of the linear terms in the additive model, attributing more (or less)

importance to the linear features, in contrast to the nonlinear variables.350

We also include irrelevant variables, which do not contribute to the response

y, to access whether the feature selection in the first step of the model con-

tributes to an overall better fitting or not. We start with the “example” DGP

from Table 4.

Table 4: Example DGP

DGP Variables

y = a x1 + b x2 + c x3 + 3 sin(x4) + 3 e−x
2
5 +
√
x6 + ε

x1, . . . , x50 ∼ N(π2 ,
1
2 )

ρxi,xj = 0.85 ∀ i 6= j

ε ∼ Niid(0, 14 )

The mean and variance of the normally distributed variables were choosen in355

order to not generate a response y with values near zero, which would yield irre-

alistic measures of relative error, since its calculation involves dividing the error

by the true response. Note that 44 variables (x7 to x50) are non-informative,

they do not contribute to the response y, but nevertheless all 50 variables were

used in the fittings.360

The out-of-sample prediction RMSRE for the “example” DGP, for various

values of the (a, b, c) coefficients is shown in Table 5.

3We use the Scikit-Learn library implementations (https://scikit-learn.org/), except for
the BooST model https://github.com/gabrielrvsc/BooST.

4https://github.com/alexgand/adalasso STR RF. The code for the STR-tree model was
partially modified from the BooST repository.
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Table 5: Test RMSRE for the example DGP from Table 4

Size (a, b, c) OLS adaLASSO SVR RF STR RF BooST adaLASSO adaLASSO

coefficients + RF + STR RF

50

( 1
2 , 12 , 12 ) 0.1126 0.0846 0.0749 0.0715 0.0669 0.0783 0.0717 0.0796

( 1
2 , 12 ,1) 0.1033 0.0795 0.0769 0.0692 0.0827 0.0744 0.0670 0.0724

( 1
2 ,1,1) 0.0945 0.0743 0.0792 0.0673 0.0898 0.0688 0.0627 0.0680

(1,1,1) 0.0878 0.0707 0.0829 0.0668 0.1001 0.0647 0.0593 0.0636

(1,1,2) 0.0794 0.0615 0.0948 0.0688 0.1195 0.0600 0.0518 0.0542

(1,2,2) 0.0721 0.0550 0.1060 0.0709 0.1334 0.0569 0.0459 0.0496

(2,2,2) 0.0666 0.0504 0.1168 0.0736 0.1443 0.0566 0.0419 0.0437

(2,2,3) 0.0642 0.0464 0.1302 0.0765 0.1573 0.0537 0.0382 0.0441

(2,3,3) 0.0607 0.0423 0.1369 0.0773 0.1667 0.0505 0.0352 0.0378

(3,3,3) 0.0586 0.0395 0.1518 0.0816 0.1698 0.0540 0.0323 0.0356

200

( 1
2 , 12 , 12 ) 0.0865 0.0829 0.0701 0.0670 0.0700 0.0575 0.0635 0.0569

( 1
2 , 12 ,1) 0.0781 0.0754 0.0698 0.0646 0.0854 0.0529 0.0578 0.0518

( 1
2 ,1,1) 0.0712 0.0694 0.0701 0.0623 0.1002 0.0496 0.0531 0.0480

(1,1,1) 0.0657 0.0642 0.0718 0.0612 0.1121 0.0458 0.0491 0.0444

(1,1,2) 0.0572 0.0566 0.0801 0.0597 0.1346 0.0416 0.0429 0.0383

(1,2,2) 0.0507 0.0508 0.0874 0.0600 0.1517 0.0390 0.0383 0.0346

(2,2,2) 0.0457 0.0462 0.0959 0.0617 0.1650 0.0363 0.0346 0.0309

(2,2,3) 0.0416 0.0419 0.1062 0.0624 0.1770 0.0341 0.0315 0.0284

(2,3,3) 0.0381 0.0387 0.1146 0.0637 0.1871 0.0327 0.0289 0.0271

(3,3,3) 0.0354 0.0363 0.1238 0.0657 0.1953 0.0315 0.0269 0.0242

1000

( 1
2 , 12 , 12 ) 0.0736 0.0758 0.0565 0.0540 0.0755 0.0450 0.0481 0.0457

( 1
2 , 12 ,1) 0.0662 0.0684 0.0541 0.0523 0.0914 0.0408 0.0435 0.0411

( 1
2 ,1,1) 0.0603 0.0626 0.0527 0.0507 0.1060 0.0374 0.0399 0.0372

(1,1,1) 0.0556 0.0580 0.0524 0.0497 0.1189 0.0346 0.0368 0.0345

(1,1,2) 0.0485 0.0507 0.0546 0.0475 0.1428 0.0304 0.0320 0.0297

(1,2,2) 0.0431 0.0454 0.0574 0.0459 0.1610 0.0275 0.0285 0.0264

(2,2,2) 0.0388 0.0410 0.0610 0.0452 0.1759 0.0253 0.0257 0.0239

(2,2,3) 0.0355 0.0376 0.0658 0.045 0.1891 0.0231 0.0234 0.0215

(2,3,3) 0.0326 0.0347 0.0706 0.0443 0.2004 0.0219 0.0215 0.0197

(3,3,3) 0.0303 0.0324 0.0754 0.0445 0.2097 0.0208 0.0199 0.0184

First we can confirm our intuition in the sense that, the greater the influence

of the linear terms in y, the lower the error of the proposed adaLASSO+STR

RF method. This behaviour is present for all sample sizes and is also true365

for the adaLASSO+RF and BooST methods. Naturally OLS and standalone

adaLASSO also benefit from greater linear features.

For small sized data, with n = 50, the method with the lower overall

errors was the adaLASSO+RF and for n = 200 the best method was the

adaLASSO+STR RF. For a larger dataset, with n = 1000, BooST performed370

better for lower values of the (a, b, c) coefficients, but the higher the magnitude

of the linear terms, the less it surpassed the adaLASSO+STR RF method. For

high values of (a, b, c), the adaLASSO+STR RF presented the lowest errors.
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It is worth mentioning that, with the implementations used in this study,

the BooST algorithm was the slowest, approximately five to ten times slower375

than the adaLASSO+STR RF one. Our implementation takes advantage of

the parallel computing when training the random forest trees, while boosting

is intrinsically a sequential process. In real world problems where speed is

paramount, it may be worth to give up a little gain in reducing the predictive

error in order to have a “good enough” fast answer.380

In terms of selection of the correct variables in the adaLASSO step of our

method, we can see in Table 6 that the higher the magnitude of the (a, b, c)

coefficients, the more the relevant variables were correctly included in the model

(FVCI and FRVI metrics), for all sample sizes. The true model (TMI) was

almost never fully identified in this first step, although the linear variables were385

easily correctly included, even with a low n. Finaly, the metric for the correctly

excluded variables (FIVE) remained relatively stable across all combination of

the linear coefficients.
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Table 6: adaLASSO variable selection metrics for the example DGP from Table
4

Size (a, b, c) FVCI TMI FRVI FRVI FRVI FIVE
coefficients all vars. linear vars. non-linear vars.

50

( 1
2 , 12 , 12 ) 0.8499 0.0 0.1808 0.2942 0.0675 0.9411

( 1
2 , 12 ,1) 0.8503 0.0 0.2922 0.5062 0.0782 0.9264

( 1
2 ,1,1) 0.8486 0.0 0.3701 0.6625 0.0778 0.9138

(1,1,1) 0.8537 0.0 0.4415 0.7975 0.0854 0.9099
(1,1,2) 0.8560 0.0 0.4759 0.8609 0.0909 0.9078
(1,2,2) 0.8592 0.0 0.5034 0.9273 0.0796 0.9077
(2,2,2) 0.8624 0.0 0.5396 0.9945 0.0847 0.9064
(2,2,3) 0.8637 0.0 0.5399 0.9972 0.0826 0.9078
(2,3,3) 0.8609 0.0 0.5353 0.9961 0.0745 0.9053
(3,3,3) 0.8659 0.0 0.5395 1.0 0.0790 0.9104

200

( 1
2 , 12 , 12 ) 0.8863 0.0 0.4171 0.7587 0.0755 0.9503

( 1
2 , 12 ,1) 0.8896 0.0 0.4769 0.8685 0.0852 0.9458

( 1
2 ,1,1) 0.8863 0.0056 0.5046 0.9204 0.0889 0.9384

(1,1,1) 0.8866 0.0055 0.5497 1.0 0.0994 0.9326
(1,1,2) 0.8902 0.0 0.5493 1.0 0.0987 0.9366
(1,2,2) 0.8913 0.0056 0.5456 1.0 0.0912 0.9384
(2,2,2) 0.8899 0.0 0.5496 1.0 0.0993 0.9363
(2,2,3) 0.8892 0.0 0.5481 1.0 0.0963 0.9357
(2,3,3) 0.8913 0.0 0.5506 1.0 0.1013 0.9377
(3,3,3) 0.8923 0.0 0.5454 1.0 0.0907 0.9396

1000

( 1
2 , 12 , 12 ) 0.9275 0.0 0.5984 1.0 0.1968 0.9724

( 1
2 , 12 ,1) 0.9258 0.0 0.6092 1.0 0.2183 0.9690

( 1
2 ,1,1) 0.9272 0.0 0.6158 1.0 0.2317 0.9697

(1,1,1) 0.9268 0.0 0.6115 1.0 0.2230 0.9698
(1,1,2) 0.9269 0.0 0.6115 1.0 0.2230 0.9699
(1,2,2) 0.9272 0.0 0.6056 1.0 0.2113 0.9710
(2,2,2) 0.9257 0.0 0.6087 1.0 0.2175 0.9689
(2,2,3) 0.9268 0.0 0.6080 1.0 0.2160 0.9702
(2,3,3) 0.9273 0.0 0.6092 1.0 0.2183 0.9707
(3,3,3) 0.9276 0.0 0.5986 1.0 0.1972 0.9725

Now we pass to analyse a more challenging dataset, introduced by Friedman

(1991), as shown in Table 7.390

Table 7: Modified Friedman #1 dataset

DGP Variables

y = 10 sin(πx1x2) + 20 (x3 − 0.5)2 + a x4 + b x5 + ε
x1, . . . , x50 ∼ Uiid(0, 1)

ε ∼ Niid(0, 1)

Friedman used a = 10 and b = 5 in the original paper. We appropriate
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these (a, b) coefficients to do the same analysis of the previous “example” DGP,

varying their values in order to access the variable selection and predictive results

of our method. Here again we have irrelevant variables (x6 to x50) which do not

contribute to the response.395

Table 8 presents the test RMSRE for sample sizes n = (50, 200, 1000) and

for various values of the (a, b) coefficients for the modified Friedman #1 DGP.

Table 8: Test RMSRE for the Friedman #1 DGP (Table 7)

Size (a, b) OLS adaLASSO SVR RF STR RF BooST adaLASSO adaLASSO

coefficients + RF + STR RF

50

(1,1) 2.1265 2.0558 2.3674 1.9421 0.7752 1.5565 1.8200 1.7006

(5,1) 1.0260 1.1102 1.3255 1.1024 0.7518 0.8515 0.9930 0.9367

(5,5) 0.6057 0.5729 0.6724 0.5738 0.3837 0.4494 0.5222 0.5061

(10,5) 0.8741 0.8464 1.0848 0.9534 0.3472 0.7413 0.8011 0.7576

(15,10) 0.4776 0.4057 0.6715 0.5313 0.3177 0.3957 0.3902 0.3833

(25,20) 0.3723 0.2160 0.6069 0.4087 0.3441 0.2458 0.2043 0.2003

(35,30) 0.3622 0.1667 0.6843 0.4298 0.3808 0.2266 0.1562 0.1532

(45,40) 0.3690 0.1334 0.7256 0.4442 0.4047 0.2030 0.1251 0.1206

(55,50) 0.3674 0.1096 0.6867 0.4106 0.4271 0.2035 0.1025 0.1018

200

(1,1) 1.8421 2.3409 3.0613 1.7931 1.9126 1.0529 1.4596 1.2401

(5,1) 0.8414 1.0068 1.4857 0.9001 0.5894 0.4813 0.6474 0.5960

(5,5) 0.5601 0.6734 1.0568 0.7247 0.7431 0.3960 0.4899 0.4413

(10,5) 0.4055 0.4563 0.8409 0.5127 0.6342 0.2739 0.3354 0.3036

(15,10) 0.2390 0.2611 0.6427 0.3651 0.4251 0.1690 0.1912 0.1798

(25,20) 0.1556 0.1661 0.6649 0.2842 0.4324 0.1244 0.1237 0.1159

(35,30) 0.1183 0.1242 0.7224 0.2542 0.4645 0.1081 0.0938 0.0881

(45,40) 0.0963 0.1003 0.7759 0.2422 0.4937 0.0997 0.0756 0.0712

(55,50) 0.0814 0.0845 0.8222 0.2375 0.5162 0.0888 0.0643 0.0606

1000

(1,1) 2.2719 2.7768 3.1292 1.6490 2.7814 0.9946 1.2736 1.3306

(5,1) 1.3411 1.7564 2.1321 1.3180 1.4815 0.6515 0.8918 0.9506

(5,5) 0.6645 0.7909 1.0541 0.6581 0.6087 0.3070 0.3957 0.4341

(10,5) 0.3127 0.3663 0.5520 0.3321 0.5114 0.1533 0.1917 0.2170

(15,10) 0.2367 0.2764 0.5835 0.3167 0.4995 0.1350 0.1522 0.1649

(25,20) 0.1396 0.1607 0.5695 0.2217 0.4795 0.0833 0.0873 0.0985

(35,30) 0.1028 0.1147 0.6304 0.1829 0.4907 0.0625 0.0648 0.0723

(45,40) 0.0830 0.0926 0.7016 0.1642 0.5189 0.0546 0.0527 0.0592

(55,50) 0.0701 0.0778 0.7595 0.1501 0.5478 0.0461 0.0445 0.0495

Again, we see that for all sample sizes, the higher the (a, b) coefficients, the

lower the error for the adaLASSO+STR RF method (also true for adaLASSO+RF,

BooST, OLS and adaLASSO), confirming our hypothesis that predictive per-400

formance would increase with greater linear terms.

For this dataset, with sample sizes n = 50 and n = 200, initially BooST

had the lowest prediction errors, but as the magnitude of the linear terms grew,
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the adaLASSO+STR RF method started to be the best performer. For a large

sample size (n = 1000), this pattern was once more observed, but the best405

method for larger linear (a, b) coefficients was the adaLASSO+RF, instead of

the adaLASSO+STR RF.

Analysing the variable selection metrics of the adaLASSO step of our method

in Table 9, we can see the same patterns explained in the “example” DGP,

for instance, the true model (TMI) was almost never selected, the fraction of410

correctly identified variables grew as the linear coefficients were being increased

(FVCI, FRVI), and the proportion of correctly excluded variables (FIVE) was

relatively stable across all variations.

Table 9: adaLASSO variable selection metrics for the Friedman #1 DGP (Table
7)

Size (a, b) FVCI TMI FRVI FRVI FRVI FIVE
coefficients all vars. linear vars. non-linear vars.

50

(1,1) 0.8946 0.0034 0.3116 0.0582 0.4806 0.9594
(5,1) 0.8914 0.0237 0.4210 0.3085 0.4960 0.9437
(5,5) 0.8847 0.0712 0.5119 0.5356 0.4960 0.9262

(10,5) 0.8845 0.0918 0.6456 0.7738 0.5601 0.9110
(15,10) 0.8873 0.1288 0.7390 0.9712 0.5842 0.9037
(25,20) 0.8880 0.0847 0.7329 1.0 0.5548 0.9052
(35,30) 0.8925 0.0746 0.7295 1.0 0.5492 0.9106
(45,40) 0.8965 0.0442 0.7259 1.0 0.5431 0.9155
(55,50) 0.8975 0.1270 0.7302 1.0 0.5503 0.9160

200

(1,1) 0.9338 0.0 0.4213 0.0532 0.6667 0.9907
(5,1) 0.9439 0.0 0.6243 0.5536 0.6714 0.9794
(5,5) 0.9514 0.0423 0.8085 1.0 0.6808 0.9673

(10,5) 0.9506 0.0352 0.8070 1.0 0.6784 0.9665
(15,10) 0.9555 0.0210 0.8042 1.0 0.6737 0.9723
(25,20) 0.9531 0.0420 0.8084 1.0 0.6807 0.9692
(35,30) 0.9569 0.0211 0.8042 1.0 0.6737 0.9739
(45,40) 0.9551 0.0282 0.8056 1.0 0.6761 0.9717
(55,50) 0.9575 0.0210 0.8042 1.0 0.6737 0.9745

1000

(1,1) 0.9470 0.0 0.4785 0.1963 0.6667 0.9990
(5,1) 0.9643 0.0 0.6618 0.6544 0.6667 0.9979
(5,5) 0.9778 0.0146 0.8029 1.0 0.6715 0.9972

(10,5) 0.9785 0.0 0.8000 1.0 0.6667 0.9984
(15,10) 0.9768 0.0 0.8000 1.0 0.6667 0.9964
(25,20) 0.9751 0.0 0.8000 1.0 0.6667 0.9946
(35,30) 0.9770 0.0 0.8000 1.0 0.6667 0.9967
(45,40) 0.9779 0.0 0.8000 1.0 0.6667 0.9977
(55,50) 0.9771 0.0 0.8000 1.0 0.6667 0.9967
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4.3. Real datasets

We use a selection of real data from a broad range of areas, with diversity415

both in sample size and in the number of covariates, inspired by the works of

Calhoun et al. (2020) and Breiman (2001). They were obtained either from the

UCI (Dua & Graff, 2021) and OpenML (Vanschoren et al., 2013) repositories

or directly from the Scikit-Learn library (Pedregosa et al., 2011).

All datasets present numeric responses, and the majority of them only con-420

tain numeric variables. In the case of the ones that contain categorical or

qualitative variables, those have been excluded. None present missing values.

In Table 10 we can find some information about the selected real datasets.

Table 10: Information about the real datasets

Name Size n Number of

variables

Short description from source

Abalone 4,177 7 Predicting the age of abalone from physical

measurements. The age of abalone is deter-

mined by cutting the shell through the cone,

staining it, and counting the number of rings

through a microscope – a boring and time-

consuming task.

Ailerons 13,740 40 This dataset addresses a control problem,

namely flying a F16 aircraft. The attributes

describe the status of the aeroplane, while the

goal is to predict the control action on the

ailerons of the aircraft.

Bodyfat 252 14 Lists estimates of the percentage of body fat

determined by underwater weighing and vari-

ous body circumference measurements for 252

men.

Debutanizer 2,394 7 Temperature and pressure measures of butane

from the debutanizer process.

Diabetes 442 10 Ten baseline variables were obtained for each

of diabetes patients, as well as the response of

interest, a quantitative measure of disease pro-

gression one year after baseline.

Diamonds 53,940 6 This dataset contains the prices and other at-

tributes of about 54,000 diamonds.
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Sulfur 10,081 6 The sulfur recovery unit removes environmen-

tal pollutants from acid gas streams before they

are released into the atmosphere. Furthermore,

elemental sulfur is recovered as a valuable by-

product. The inputs variables are gas and air

flows. Output to predict is H2S concentra-

tions.

Table 10: The data from the above datasets can be found at: Abalone, Ailerons, Bodyfat,
Debutanizer, Diabetes, Diamonds and Sulfur.

Table 11 shows the out-of-sample prediction RMSE for the real datasets

(standard errors in brackets).425

Table 11: Test RMSE for the real datasets

Dataset OLS adaLASSO SVR RF STR RF BooST adaLASSO adaLASSO

+ RF + STR RF

Abalone 2.2466 2.2990 2.1894 2.2078 2.2042 2.1380 2.2166 2.2028

(0.0627) (0.0686) (0.0646) (0.0584) (0.0621) (0.0854) (0.0690) (0.0674)

Ailerons 0.000171 0.000174 0.000997 0.000169 0.000193 0.000200 0.000160 0.000165

(0.000004) (0.000004) (0.000121) (0.000004) (0.000006) (0.000150) (0.000004) (0.000004)

Bodyfat 1.3215 1.7836 4.0707 1.4104 1.3297 1.2833 1.2024 1.1838

(0.5463) (0.2416) (0.5399) (0.4818) (0.4099) (0.4054) (0.6306) (0.5989)

Diamonds 1520.5072 1552.4293 3886.2191 1482.0128 1426.6054 1447.8242 1471.6791 1422.1754

(66.6279) (46.8758) (107.7864) (47.6162) (51.1793) (72.9805) (45.0823) (47.8769)

Debutanizer 0.1410 0.1454 0.1023 0.0738 0.1278 0.0998 0.0705 0.1256

(0.0057) (0.0056) (0.0041) (0.0048) (0.0053) (0.0041) (0.0044) (0.0054)

Diabetes 55.0954 56.9455 71.3997 58.1980 56.1425 61.0016 56.4176 55.0640

(2.3727) (2.3054) (3.2751) (2.6141) (2.4211) (2.9232) (2.4612) (2.3377)

Sulfur 0.0434 0.0470 0.0439 0.0259 0.0277 0.0258 0.0259 0.0278

(0.0048) (0.0050) (0.0034) (0.0053) (0.0051) (0.0047) (0.0053) (0.0051)

First, we can see that the adaLASSO+STR method performed best in three

out of the seven real datasets (Bodyfat, Diamonds and Diabetes), a higher

count than any of the other methods, and was the second best in one dataset

(Ailerons). The related adaLASSO+RF method presented the lowest errors in

two datasets (Ailerons and Debutanizer). Combined, these two methods were430

the top performers in 71.4% of this particular selection of real data. BooST had

the best performance in two datasets.

In this selection of real data, in which the true generating process is unknown,

we can see the adaLASSO+STR RF method has shown to be a competitive

alternative to other benchmarks for prediction in regression problems.435
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5. CONCLUSION

We presented a novel regression method combining LASSO-type penalties

and a STR random forest, which has shown advantages in predictive perfor-

mance with respect to other benchmarks on several selected simulated and real

data. We ran experiments which led us to believe that our hybrid method is440

capable of capturing the linearities in the data, if any, better than any of the

standalone procedures. By employing a parametric penalized linear regression

in the first step, most of the linear relations presented in the data is captured

first, and we let a highly flexible non-parametric approach to access the re-

maining nonlinear relations which were not properly “understood” in the first445

step.

Tree-based methods are ideal in this case, because they do not demand any

assumption about the distribution of the data, and can capture patterns which

linear methods cannot. In addition to that, we innovate in using an ensemble

of smoothed trees, in contrast to the traditional hard split tree, which is known450

to generalize the fit better near the boundaries of the training region. To the

best of our knowledge, our work is the first to implement a random forest of

STR-trees.

Also, our simulations revealed that the higher the influence of linear com-

ponents in the data, the better the adaLASSO+STR RF and adaLASSO+RF455

methods predictive performance is. The predited errors tend to be lower when

the magnitude of the linear terms are greater. With a response formed by a

combination of linear and nonlinear terms, the proposed methods had performed

better predicting the out-of-sample values when the linear terms are bigger, in

comparisson to the other terms. This is in line with the rational developed in460

Section 2.

Other advantage of the proposed method, especially in contrast to the boost-

ing approach, is that, in the case of random forests, the individual tree growth

process can be parallelized, and our implementation takes advantage of this,

while boosting is intrinsically a sequential process. This result in a much faster465

execution by the adaLASSO+STR RF method in contrast to the BooST model,

for example5.

Finally, one possible future work is to expand the method to deal with time

series data, using the WLadaLASSO (Konzen & Ziegelmann, 2016) model, in

5In our simulations, adaLASSO+STR RF was five to ten times faster than BooST.
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which every lagged variable has a different penalty weight, in the first step of470

the proposed method. Another path of development may be the adaptation of

the proposed procedure to deal with classification problems, possibly employ-

ing other types of smoothed trees, such as Soft, Fuzzy or Probabilistic trees,

mentioned in the introduction.
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Chapter 3

FINAL REMARKS AND
FUTURE WORK

We presented a novel regression method combining LASSO-type penalties and a STR
random forest, which have shown advantages in predictive performance with respect
to other benchmarks on several selected simulated and real data. We ran experiments
which led us to belive that our hybrid method is capable of capturing the linearities
in the data, if any, better than any of the standalone procedures. By employing a
parametric penalized linear regression in the first step, most of the linear relations
presented in the data is captured first, and we let a highly flexible non-parametric
approach to access the remaining nonlinear relations which were not properly “un-
derstood” in the first step.

One possible future work is to expand the method to deal with time series data,
using the WLadaLASSO Konzen and Ziegelmann (2016) model, in which every lagged
variable has a different penalty weight, in the first step of the proposed method.
Another possibility is to incorporate the idea of variable importance, which can be
done via permutation of the features that are trained each time in the ensemble of
trees, such as random forests, following the works of Strobl et al. (2007), Louppe et al.
(2013) and Gregorutti et al. (2016), combined with the property of variable selection
of the LASSO, to build a way of simultaneously identify linear and nonlinear features
which have more importance to the response. Another path of development may be
the adaptation of the proposed procedure to deal with classification problems, possibly
employing other types of smoothed trees, such as Soft, Fuzzy or Probabilistic trees.
Lastly, it may be worth exploring the interpretability of the method. A random forest
is by nature much less interpretable than an individual tree, but recently there has
been an effort to understand better its modeling process, see for example the works
of Audemard et al. (2011) and Miller et al. (2015). The selection of important linear
terms done in the first step of our method can contribute to the interpretation of the
whole model.
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Chapter 4

APPENDICES

4.1 Glossary

• Regression Tree: a non-parametric regression method whose estimation is ob-
tained by recursivelly partitioning the space of covariates, aiming to approxi-
mate the unknown data generating function. It accomplishes that building a
structure that resembles an inverted tree (Hastie et al., 2009);

• CART: Classification and Regression Trees, a greedy, top-down algorithm that
searches for the feature and cut point that split the observations from the root
node on, recursivelly, until some stop criteria is met (Breiman et al., 1984);

• STR-Tree: a regression tree method which uses a sigmoid-like function in each
node, assigning a group membership degree to the observations (da Rosa et al.,
2008);

• Random Forest: a method that combines the ideas behind bagging and the
random subspace method, where the growing of several individual trees has
two sources of randomization: the first one is the bootstrap sampling of the
training set, where sometimes an observation will be drawn more than once and
sometimes will not be drawn at all, whereas the second source is the random
selection of the subset of candidate regressors in each split of the trees (Breiman,
2001);

• LASSO: Least Absolute Shrinkage and Selection Operator, a regression method
with a `1 penalization on the coefficients of a model, which sets some of them to
zero, effectively performing simultaneously parameter estimation and variable
selection (Tibshirani, 1996).
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