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ABSTRACT

In the context of Automatic Chord Recognition (ACR), the main goal is to extract
and classify musical chords from sequential information (audio excerpts). It is a
challenging task, not only when developing a classifier for it, but also when labelling
its data. It requires a certain expertise in the domain when defining the ground truth
for the data, unlike other tasks, such as object recognition. This results in a limited
number of publicly available datasets and even more limited number of rare chord
samples in general, resulting in a very biased performance by classifiers. In this
work, some techniques to mitigate this issue will be explored. First, a modified loss
function, known as focal loss will be applied, attempting to improve the performance
of these rarer classes. Next, an image recognition training technique known as Noisy
Student, which applies an iterative self-learning process to improve performance, will
be modified for the audio domain and applied to the problem of ACR. Furthermore,
an extension for this last technique using a weakly labeled generated ACR dataset for
confidence boosting in the self-learning process will be proposed and applied. The
dataset generation algorithm, based on data extracted from online musical chord
communities will also be presented. The experiments performed showed significant
improvements on the prediction accuracy of rare chords, while also slightly improving
the overall accuracy for all chords in general.
Keywords: Automatic chord recognition, data imbalance, self-learning, focal loss,
weak labels, sequential data.



Melhorando o Reconhecimento de Acordes Raros Através de Técnicas de
Auto-Aprendizagem e Geração de Rótulos Fracos

RESUMO

No contexto de Reconhecimento Automático de Acordes (ACR), o principal objetivo
é o de extrair e classificar acordes musicais a partir de um dado sequencial (trechos
de áudio). Essa é uma tarefa desafiadora, não somente quando desenvolvendo um
classificador para ela, mas também quando rotulando seus dados, já que é necessária
uma expertise em seu domínio para poder definí-lo, diferentemente de outras áreas,
como reconhecimento de imagem. Isso resulta em um número limitado de conjuntos
de dados disponíveis publicamente, e um número ainda mais limitado de amostras de
acordes raros, gerando resultados enviesados em classificadores. Neste trabalho, al-
gumas técnicas para mitigar esse problema serão exploradas. Primeiro, uma função
de loss modificada, conhecida como Focal Loss, será aplicada, buscando uma me-
lhoria nessas classes mais raras. Em seguida, uma técnica de auto-aprendizagem do
domínio de reconhecimento de imagem, conhecida como Noisy Student, será exten-
dida ao domínio de áudio e aplicada ao problema de ACR. Além disso, uma extensão
para essa mesma, utilizando um conjunto de dados com rótulos fracos e gerados au-
tomáticamente para aumentar a confiança do algoritmo de auto-aprendizagem, será
proposta e aplicada. O algorítmo utilizado para a geração desse conjunto de da-
dos, com base em dados extraídos de comunidades online para acordes musicais,
também será apresentado. Os experimentos realizados trouxeram ganhos significa-
tivos de performance para os acordes raros, também gerando um pequeno ganho na
performance de acordes em geral.

Palavras-chave: reconhecimento automático de acordes, dados desbalanceados, auto-
aprendizagem, focal loss, rótulos fracos, dados sequenciais.
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1 INTRODUCTION

Identifying and labeling musical chords is a complex task, not only for algo-
rithms and classifiers but also for humans. Its scope comprises multiple different
nuances and ambiguities that sometimes may even cause disagreements between ex-
pert musicians. Therefore, such a difficult task might not be so easily handled by
Machine Learning (ML) algorithms.

In Computer Science, there is a field of study that specializes in extracting
and labeling data related to music, known as Music Information Retrieval (MIR). It
is in a sub-task of this field, known as Automatic Chord Recognition (ACR), that
this thesis will provide a contribution. ACR usually consists of identifying a sequence
of chords out of a musical audio excerpt. This means retrieving the onset and offset
timestamps as well as the label that identifies the chord being played during that
period of time. Although it seems like a straightforward classification problem, there
are many possible chord labels, some of which are, as will be referenced from now
on in this document, considered rare or complex chords.

These rare and complex chords can be described as such because they are
underrepresented in most ACR datasets or even in music recordings, depending on
their musical style. For instance, consider that most ACR datasets are mainly based
on western popular music, which includes Rock, Pop, Jazz and Blues musical styles.
This results in a set of chords being more common in some of these styles than others,
and some of them not being common at all. Besides, these chords are sometimes
defined in such a way that their structure is significantly more complex than their
common counterparts. More details on the musical concepts for chords and ACR
will be provided in Chapter 2. Also, it is important to mention that although these
different styles are played using different sets of instruments, it is expected that
ACR techniques such as this one provide an instrument-agnostic solution.

The capability of recognizing such chords has different kinds of applications
both in educational and commercial contexts. For instance, consider a music learning
application that shows the user a series of chords to be played and can recognize if
it was played correctly, giving immediate feedback. Another example could be the
transcription of any given music to a sequence of chords for it. In this case, any user
would be able to extract the chords for a song they are listening to, making it easy
for them to use this information. In this context, the so-called rare and complex
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chords play a significant role, as they are often the ones harder to learn or to identify
from audio, therefore providing good performance for them is necessary.

Current state-of-the-art algorithms for ACR have evolved from a knowledge-
driven strategy to a data-driven one (PAUWELS et al., 2019). This means that
in its beginnings, the classification process relied much more on pre-determined
musical knowledge that would be imbued in an algorithm. This is no longer the
case with data-driven systems: these latter solutions rely much more on the volume
of labeled data made available for them to learn from, and not on the specific musical
knowledge that its creator could provide to it.

However, in the current scenario of the ACR community, most publicly avail-
able datasets comprise no more than a few hundred recordings, creating a clear lim-
itation for data-driven models based on ML. Besides, there is a strong imbalance
issue in these datasets, as rare chords are a relatively small portion of the overall
dataset composition. For example, Table 1.1 provides an overview of the chord class
distribution in four datasets commonly used in ACR: Isophonics (HARTE, 2010),
RWC (GOTO et al., 2002), Billboard (BURGOYNE; WILD; FUJINAGA, 2011),
and USPOP (BERENZWEIG et al., 2004). As is shown in the table, there are two
classes that stand out as always having the largest representation in the dataset: the
maj and min chords, which are the common chords mentioned previously. Although
some other chords may sometimes have a similar representation reaching more than
10% of the dataset, they mostly are a very small portion, in some cases representing
less than 1%. This not only creates difficulty in scaling the learning capabilities of
a classifier due to lack of data, but also creates a learning environment that is likely
to be biased towards the more common chords if no care is taken when selecting the
appropriate evaluation metrics.
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Isophonics RWC Billboard USPOP
maj 50.4 45.1 50.4 56.1
min 12.6 14.7 12.6 14.6

7 10 7.2 10 6.4
min7 7.8 13.8 7.8 8.9
maj7 2.8 7.4 2.8 2.7
sus4 2.7 2.6 2.7 1.6
maj6 1.1 2.3 1.2 0.8
min6 0.3 0.3 0.2 0.8

9 1 0.3 0.4 0.8
dim 0.2 0.8 0.2 0.1
aug 0.1 0.4 0.1 0.1

hdim7 0.2 0.4 0.2 0.1
other chords1 10.8 4.7 11.4 7

Table 1.1 – Chord class distribution (in percentage) on different ACR datasets

If there is a clear need for more and more data, with new samples from each
of the different classes, the first solution might be to work towards building new
datasets. However, this solution is not one that scales well in solving the problem.
In fact, creating a new ACR dataset is not a trivial task: it requires musical training,
and such a task may not be done by any person, unlike, for instance, labeling
common objects, which require no specialized knowledge, in an image.

It is in this context of the need for more easily accessible data and bias
towards common chords that the work presented here is inserted. It will explore the
use of different training techniques for reducing this bias, and also will attempt to
increase the amount of available data for training through the usage of weak labeling
techniques.

Weak Labelling is a technique in which noisy labels are used, and it has
already been explored in this context of data-driven solutions (HAN et al., 2018).
This work will also attempt to provide solutions for the lack of data available for ACR
tasks by exploring a weak labeling technique based on the usage of chord information
extracted from online guitar chord communities. These weak labels will, in turn, be
used in conjunction with the techniques mentioned above to attempt to maximize
the gain obtained from them.

Regarding the training process, the techniques that will be explored aim at
providing a solution that could be applied to any classifier and mitigate the intrinsic
bias existing in the datasets presented above. This will be done through the usage

1dim7, minmaj7, sus2, maj9, min9, 11, 13
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of an adapted loss function, known as Focal Loss (LIN et al., 2017) and through the
adaptation to the musical domain of a self-learning technique used in imbalanced
image classification scenarios, known as NoisyStudent (XIE et al., 2020).

This work is organized as follows: Chapter 2 will provide a brief overview of
the musical and ACR concepts relevant to its understanding; Chapter 3 will present
a review of the existing work related to the one being presented here; Chapter 4
will outline the weak label dataset generation technique presented above; Chapter
5 will describe the different techniques and algorithms evaluated with the objective
of improving the performance of rare chord recognition in ACR classifiers; Chapter
6 will provide the results and discussion of the experiments performed; and finally
Chapter 7 will wrap up this work, by presenting its conclusion.
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2 MUSIC THEORY AND AUTOMATIC CHORD RECOGNITION

This chapter provides a brief overview of two relevant concepts to be un-
derstood before diving deeper into the contributions of this work. The first one is
related to basic music theory, particularly the definitions of chords, their relation to
one another, and what common, rare and complex chords are. The second subject
links these music theory concepts with ACR, and provide some important differ-
ences and parallels between other subjects where Machine Learning is applied in a
similar way.

This chapter is essential, as the reader might not know the concepts presented
here, and their understanding is indispensable for an easier understanding of what
will be discussed in further chapters. Music theory, in itself, is outside the scope of
this work, but much of the proposed contributions and pre-processing steps used in
the experiments described were developed based on these concepts.

Besides, a brief introduction to ACR will also be important to identify simi-
larities with other, more widespread techniques, such as image recognition or generic
audio processing. This will allow for techniques from these related fields to be drawn
upon in the experiments that follow. Also, it will allow for the differences between
these fields to be described and addressed.

2.1 Musical Theory

This section presents some basic concepts and naming conventions extracted
from music theory.

Pitch is a tone generated through vibration at a certain frequency: faster
vibration means a higher pitch. Every time this frequency doubles, we say that
there is an octave between these two pitches. Besides, these pitches have very
similar perceived sounds, and therefore they are determined as being part of the
same pitch class (LAITZ, 2022). For instance, let us consider Figure 2.1, which
contains a drawing of a piano keyboard and its respective pitches. In particular, we
highlight pitch class C and all the different pitches that are part of it. In musical
notation, such pitches are represented by notes placed on certain positions of a score.

1Extracted from: <https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S1_
MusicalNotesPitches.html>

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S1_MusicalNotesPitches.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S1_MusicalNotesPitches.html


14

Figure 2.1 – Pitches and Pitch Classes on a piano.1

Whenever two pitches are played, they are called a dyad. Three pitches form
a triad, four a tetrad, and so on. This paragraph handles a brief overview of chords,
which is the main concept in musical theory that is the main focus in ACR problems.
A chord is a set of pitches being played at the same time, or sometimes, sequentially
in a short time span (e.g., arpeggios). Its lowest pitch, with the smallest frequency,
is known as the root, and the remaining pitches can be identified based on this root
in conjunction with a quality (LAITZ, 2022).

Chords are built based on the interval relations between the pitches that
compose them, which are mostly based on an underlying musical scale, defining the
chord type, or qualifier. This introduces two new concepts: the intervals and the
scales. The interval is a name given to the relation between two pitches, based on
their distance and frequency ratios. One example of an already seen interval is an
octave, which has a frequency ratio of 2:1 and represents pitches from the same
class. In between the two pitches of an octave, other kinds of intervals may be built,
such as thirds, fifths, sixths, and so on, with some of them being major, minor,
augmented, or diminished.

One important concept is that all of these intervals can be defined based on
the number of semitones that compose them. A semitone is the smallest musical
interval that is referenced in western tonal music, and in the scheme provided above,
it represents the interval between two adjacent pitches (or keys in the piano key-
board). So, for example, an octave has 12 semitones, or 12 pitches between each
end of the interval, a major third has four semitones, and a perfect fifth has 7. This
allows for a clear definition of intervals and an easier way to understand how chord
names are constructed.

The second important point is the notion of scales, which are a set of musical
notes grouped together. For the context being presented here, there is no need
to go into much detail, as it focuses more on western tonal music, and the chords
existing in it, so a simple overview and its relation to chords will be presented. Scales
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Figure 2.2 – C major scale

follow certain guidelines when being built, based on the interval relations between
its components. For example, a major scale follows a certain sequence of semitone
and tone (i.e., an interval of two semitones) between each of its pitch members,
resulting in a set of 7 distinct notes. A natural minor scale follows another recipe,
but is also very clearly defined. This allows for a scale to be built based on different
starting points, resulting in the same scale type, as long as they follow the same
rules. This has a tight relationship to chords, as most chord types are built based
on the scale of its root pitch, as we’ll see next.

Let us consider the C:maj chord, which has three pitches: the root itself (C), a
major third interval above the root (i.e., the E note) and the interval of a fifth above
the root (i.e., the G note). Any major chord will follow this exact same relationship
between its pitches, and the reason for that is tightly coupled with the scale on
which it is based. Let us take a look at figure 2.2, which presents the C major scale
on a music score, along the note names and the sequential set of numbers, which
represent the pitches degree of that scale. As we can see, the C, E and G notes are,
respectively, the first, third, and fifth members of the scale. Considering that there
is a predefined relationship between the intervals of any major scale, as long as we
take the pitches from the same relative positions of other major scales, we’ll always
have a major chord. The same applies, for instance, to minor chords, which take the
first, third and fifth pitches of the natural minor scale, which provides a different
set of intervals between its pitches, therefore resulting in a different chord.

After providing a short overview of the required musical context, we provide
some definitions of common, rare, and complex chords. Common chords, as will be
defined from now on, are the major (maj) and minor (min) triads, which are by
far the most common and also some of the simplest chords available, as they are
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composed of only three pitches. Complex chords will be defined in this work as
the ones with four or more pitches, while rare chords will simply be the ones that
are usually underrepresented in datasets. We note that some chords are complex
but might not be so rare, such as the seventh chord, while others are not complex
but are usually quite rare, such as the augmented and diminished chords. Despite
having different natures, rare and complex chords will be considered part of the
same group along this work, as most algorithms treat them with bias similarly and
the challenges they face are related and will be referred as being simply rare chords.

Finally, there are some relevant points to be discussed regarding the rela-
tionship between some triads and their more complex counterparts. There are some
complex chord qualities that are, by definition, composed of a more simple triad.
Such chords have a very strong relation between them, as the more complex is a
sort of “extension” of the other. An example can be seen between the seventh and
major chords, as the seventh chord is built by including an extra pitch to the major
triad. Besides, it is possible for different complex chords to share the same basic
triad, as is the case with the major seventh chord, which is also based on the major
triad. These relationships are essential in the context of ACR, as it is very com-
mon for biased classifiers to mistake the complex chords for their more common
counterparts, as will be seen in future chapters. Besides this issue, another kind of
ambiguity is intrinsic to the definition and naming of chords, which might generate
further issues.

Chords with different quality and root names can be composed of the same
pitches. Physically, when looking simply at the soundwaves being produced and the
sound being heard, these two chords will be exactly the same. However, considering
the role they play in music theory, because of reasons that are out of the scope
of this work, these two chords can have completely different roles. The important
point is that these enharmonic chords, as they are called, generate a certain degree
of ambiguity and might create some further obstacles for classifiers. One example
of such chords can be seen in Figure 2.3.

2Extracted from: <https://www.pianochord.org/>

https://www.pianochord.org/
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(a) Gm7 chord composed of G, Bb, D and F
pitches

(b) Bb6 chord composed of Bb D F and G
pitches

Figure 2.3 – Example of enharmonic chords, in which differently named chords contain
the same set of pitches 2

2.2 Automatic Chord Recognition

This section details a bit of the more specific problems related to ACR, and
how this task relates to others that are similar to it in Machine Learning. As already
presented, the main goal in ACR is to identify a chord being played on a given audio
excerpt. This raises several sub-problems, such as which kind of feature to use, how
to define a chord, consistency over time and ambiguity (PAUWELS et al., 2019). For
instance, it is possible to use the raw audio (time domain) as a feature for a classifier,
or use the Fourier transform (frequency domain) to extract frequencies from it, or
even further, use a Constant-Q Transform (CQT) (BROWN, 1991), which is much
more suited to a musical environment because of its properties. For instance, one
advantage it provides is that the bin sizes used in its transformation have a variable
size, which allows them to be smaller in lower frequencies and larger in higher ones.
Because of the nature of musical audio, in which pitch frequencies double every
octave, this generates a more suitable transformation process, and better captures
both extremes with a single operation. Defining solutions for these problems is not
always immediate and allows for different branches of contributions to arise from
them.

Atlhough ACR presents some particular characteristics, it presents common
challenges with other Machine Learning problems. For example, image classification
problems also have to deal with rare categories or imbalanced datasets, which might
involve specific loss functions or training strategies. With that in mind, a new path
of opportunities to be explored is created. On the other hand, it is important to
account for some major differences between these fields, as the audio domain is
intrinsically sequential, while image recognition is not. One example that might
require specific treatment is that of data augmentation. Data augmentation means
applying certain techniques to generate slightly modified or synthetic data samples,
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in order to create a larger and more varied dataset. In the case of images for
example certain visual augmentation may be applied slightly modifying the image,
however in audio, these same techniques might not be available and some equivalent
needs to be found. Regarding the generic audio domain, it is even more similar,
as it handles the same data structure (i.e., audio signals), meaning that it is also
sequential. However, it is interesting to consider that an extra layer of treatment
to the musical data can be explored, as some specific augmentation steps or pre-
processing techniques can be applied to music and might not be that useful for
audio itself. For instance, pitch-shifting is an augmentation technique widely used
for musical data (MCFEE; HUMPHREY; BELLO, 2015; HUMPHREY; BELLO,
2012; MCFEE; BELLO, 2017), as it augments the data in a predictable way for the
labels to also be updated. Besides, as mentioned before, a transformation such as
the CQT is much more useful when applied to musical data and not audio excerpts
in general.
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3 RELATED WORK

The work presented here will focus on improving the performance of rare
chord recognition, and will be done by evaluating some classifier training techniques.
One of these will also involve the generation of a weakly labeled dataset of timed
chord annotations, which later on be presented as part of one of the proposed training
techniques. In this section, an overview of the state of the art in the ACR community
will be first provided. Next, the focus will shift more towards the more specific work
in ACR related to this one, with rare chord recognition, chord class imbalance, and
dataset generation.

Finally, a brief overview of techniques that attempt to tackle these same
issues of class imbalance and few labeled datasets will be explored. These techniques,
although applied to different domains, could be explored and an equivalent solution
for the ACR domain defined.

3.1 Automatic Chord Recognition

Automatic chord recognition, as the name states, is a field of research that
aims at automatically identifying and labeling musical chords in audio excerpts.
With more than 20 years of history and development, chord classifiers had initially
started as being much more knowledge-driven, such as the proposed solution by
Fujishima (1999), in which a 12-dimension binary vector, known as chroma feature,
was proposed and compared to their chord template representations in order to
identify the chord being played. This work provided the base on which most of the
early work in ACR was built upon (PAUWELS et al., 2019).

In more recent ACR approaches, these knowledge-driven classifiers have shifted
towards a much more data-driven context, attempting to replace the framework of
chroma features initially proposed (PAUWELS et al., 2019). Some early examples
of this shift can be found in (SHEH; ELLIS, 2003), in which Gaussian models were
used to represent the chroma features and Hidden Markov Models (HMM) to ac-
count for the temporal relation between subsequent chords. Lee (2007) also explored
the usage of HMMs, but trained them to be genre-specific and on synthesized audio
in order to avoid the massive human labor required for data annotation.

Continuing on this evolution towards data-driven classifiers, more recent
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Raw Audio

Dropout 
+ 

Fully-Connected Layers 
+ 

Bi-directional Self-
attention Layer

CQT Softmax Chord Recognition
Probabilites

Figure 3.1 – Simplified version of architecture proposed by Park et al. (2019)

work has explored it even further with the usage of Deep Learning techniques.
In (BOULANGER-LEWANDOWSKI; BENGIO; VINCENT, 2013), a Deep Neu-
ral Network (DNN) is explored in order to extract audio features and a Recurrent
Neural Network (RNN) was used to provide the sequence of chord labels taking
into consideration their temporal relationship. In (MCFEE; BELLO, 2017), an
encoder-decoder architecture is used with a Convolutional Neural Network (CNN)
and recurrent networks in the encoding step to convert audio to a latent feature,
and afterward, in the decoding step, convert these features to chord labels.

One key concept of ACR is the need to provide a time-aware classification of
the chord sequence. In the methods cited above, it was possible to see the tools used
for this purpose, such as HMMs and RNNs. In more recent work, also following the
line of more data-dependent solutions, the usage of Long Short-Term Memory RNNs,
such as in (DENG; KWOK, 2017) and (Wu; Li, 2019a). The usage of Transformer
architectures has also been explored in this context, such as in (PARK et al., 2019)
and (CHEN; SU, 2021).

Park et al. (2019) explored the concept of attention-based models, which
provides a more flexible way of using the input data in sequence translation problems.
Their work uses a Bi-directional Transformer architecture in this context, allowing
them to better capture long-term dependencies in the sequence. This last point is a
very relevant aspect in the context of music, as it relies heavily on these long-term
relations because of the chord relationships and harmony component in music. Their
approach managed to achieve competitive results when compared to other state-of-
the-art techniques in ACR and has been also recently explored as the ACR module
for automatic lyrics transcription in (GAO; GUPTA; LI, 2022). A brief overview of
the architecture proposed by Park et al. (2019) can be seen in Figure 3.1.
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3.2 Class Imbalance in ACR

Class imbalance is an issue present in many different classification problems,
and ACR is not an exception. Furthermore, with the current scenario in the ACR
community, in which classifiers have moved from a knowledge-driven domain to a
data-driven approach, the need for more and more data made this issue even more
evident. New techniques and architectures have been proposed to handle this prob-
lem. For example, Wu and Li (2019b) use digital audio to train a CNN for feature
extraction and (KORZENIOWSKI; WIDMER, 2016), which applies detuning to the
input audio in order to augment its training dataset, applying it to a CNN for audio
extraction followed by a Conditional Random Field (CRF) for decoding the final
chord sequence. Although these techniques explore ways of minimizing these issues,
the problem of class imbalance still remains open for this task.

Besides the need for different techniques to handle a data-driven problem, it
is necessary to have the supporting data for such a scenario. The literature reviewed
here presented three different kinds of strongly-labeled datasets used for training:
manually labeled, synthetic and semi-automatic datasets. They are better described
next.

The labeled datasets are the ones with a set of songs that were manually
analyzed by musical experts, which defined the corresponding labels for each excerpt
based on their own knowledge. Out of these datasets, it is necessary to outline three
established examples that are widely adopted by the ACR community. First, there is
the Billboard dataset (BURGOYNE; WILD; FUJINAGA, 2011), which is a selection
of songs from the Billboard “Hot 100” chart with their labels hand-annotated by
a group of experts. Next, there is the Isophonics dataset (HARTE et al., 2005),
which is composed of hand-annotated songs from The Beatles, Queen, Zweieck, and
Carole King. Its labels were also manually defined, but the validation was made
through the continuous usage of them by members of the MIR community. Finally,
the RWC Popular Music dataset (GOTO et al., 2002) provides 100 chord annotated
songs.

The second group of datasets originates not from manually annotated labels
on pre-existing songs, but generated labels for synthesized music. The idea behind
it is that, as the music is synthesized, the labels are known beforehand, allowing the
final output to be the synthesized audio and the precise chord annotations for it. One
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of the main examples in this scenario is the MAPS dataset (EMIYA et al., 2010),
where piano recordings were generated through the use of virtual piano software or
Disklavier. The usage of synthesized datasets has already been attempted, however,
the interest for having real music datasets still remained (BURGOYNE; WILD;
FUJINAGA, 2011). Although the usage of synthetic data does help the training
process, there are some specific components of real audio that are not so easily
reproducible by synthetic data and might not allow it to completely replace it during
model training and evaluation.

The third group presented in this discussion are the semi-automatically la-
beled datasets, which are a mix between real audio and synthesized data. Guitarset
(XI et al., 2018) uses hexaphonics pickups to precisely detect onsets and offsets.
IDSMT-SMT guitar (KEHLING et al., 2014) applies a multi-pitch detection based
algorithm to estimate the musical content of the audio recordings. Here, the original
audio is captured, but more precise labels are generated automatically.

Another important aspect that will be discussed in this work will be the
use of chord labels from online communities. Therefore, it is important to present
some related work that also explored online communities. In (MAUCH; FUJIHARA;
GOTO, 2011), these labels were used to improve the performance of a lyric alignment
algorithm, and Odekerken, Koops and Volk (2020) used them to estimate chord
labels for one of the entries of an ensemble classifier.

In addition, it is possible to see some approaches that propose solutions for
the imbalance issue through different training and classifier frameworks. In (Wu; Li,
2019a; MCFEE; BELLO, 2017; JIANG et al., 2019), we can see some approaches
aiming to improve the classification of rarer classes through the use of specific frame-
works targeting this problem. Rowe and Tzanetakis (2021) proposes both an archi-
tecture and the application of a specialized training technique targeting this chal-
lenge. One interesting point that will be made clearer later in this work is that most
of the techniques above are compatible with the solution which will be proposed
here, as it relies on an iterative training process, and each iteration could apply
these techniques.
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3.3 Class Imbalance in Related Fields

As mentioned before, there is a lot that can be drawn from other classi-
fication tasks to be used in ACR, especially when dealing with class imbalance,
and a thorough review of class imbalance in CNNs can be seen in (BUDA; MAKI;
MAZUROWSKI, 2018). In (BEERY et al., 2020), the classification results are im-
proved through the use of synthetic images of rarely seen animals are used to improve
animal recognition in images. In (LIN et al., 2017), the impact of the loss of easily
classified samples during training was mitigated through the use of a modification to
the cross-entropy loss (called focal loss). The use of noisy labels might be handled
in different ways, such as by using an additional noisy layer (BEKKER; GOLD-
BERGER, 2016), by exploring knowledge distillation (LI et al., 2017; HINTON;
VINYALS; DEAN, 2015), combining multi-source of features with filtering of noisy
labels (Yadati et al., 2018), or by co-training two networks with noisy labels (HAN
et al., 2018), to name a few.

Self-learning techniques have proven useful when working with noisy data.
In (LI et al., 2019), a supervised teacher model is first trained with labeled data,
and an enlarged training set is obtained based on its predictions of the weakly (or
unlabeled) data. Xie et al. (2020) proposed the Noisy Student algorithm, in which
a combination of labeled and unlabeled data was used with a self-learning technique
to increase the overall accuracy in the context of image classification.

Our work follows the Noisy Student strategy by extending it to the musical
domain and also exploring the automatic creation of a dataset with weak labels that
are combined in the self-supervision process, as described in the following chapters.
The translation of this technique to the audio domain is not trivial, as there are
several sequential aspects of the domain which need to be taken into account when
preparing the iterative self-learning process. Besides, we’ll also explore the usage
of weak labels in these same context of self-learning techniques in order to further
improve its results
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4 GENERATING A WEAKLY LABELED DATASET

This chapter presents a technique to generate a weakly labeled dataset for
ACR. As discussed in the previous chapters, a very high cost is involved in obtain-
ing labeled chord annotations. This is a result of the necessity of having expert
annotators working towards labeling existing musical files or generating new audio
and annotations from scratch. Therefore, it is very interesting for future algorithms
to have access to an additional source of annotations, as this adds an extra variety
of musical styles and allows for more recent songs to be included, despite the weak
labels. The application of datasets with noisy labels has already been seen in Chap-
ter 3, but related to image recognition tasks. Later in this work, we will present
an approach for exploring noisy labels in chord datasets for chord recognition by
adapting approaches used for images.

The algorithm proposed for the dataset generation is based on two different
sources of information that can be obtained with less effort than annotated chord
labels. The first source is retrieving chord information for any given song from one
of the many online chord annotation communities, which associate the chord with
the song’s lyrics. The second source is the timed-lyric annotations for these same
songs, which are not available by default, but requires no expert musical knowledge
for labeling – hence, being easier to annotate. The next sections begin by detailing
the data collection process for both data sources. After that, the pre-processing
steps involved in preparing the data collected for the algorithm are detailed and,
finally, the technique used to combine both sources of information into the weakly
labeled dataset is presented. A detailed step-by-step of this process can be seen in
Figure 4.1.

G
Every	breath	you	take
																										Em
Every	move	you	make

Parsed	Chord	Data

Dynamic	Time	Warping

Annotated Lyrics Timestamps

16.3-16.8		16.8-17.3		17.3-17.5		17.5-18.5
	Ab:maj
	Every			breath				you					take

20.4-20.9		20.9-21.4		21.4-21.7		21.7-22.3
																																												F:min
	Every						move						you							make

Pre-Processing

Ab:maj
Every	breath	you	take
																										F:min
Every	move	you	make

Every	Breath	You	Take
The	Police
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Parsed	Metadata
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0							16.3		X
16.3		21.8		Ab:maj
21.7		25.8		F:min
.
.
.

16.3-16.8		16.8-17.3		17.3-17.5		17.5-18.5		20.1-20.2
	Every			breath				you					--take				and

20.4-20.9		20.9-21.4		21.4-21.7		21.7-22.3
Every						move						you							--make

onset time
offset time

Figure 4.1 – Example of label generation process using an excerpt from the song Every
Breath You Take
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4.1 Data Collection

As mentioned before, the number of publicly available annotated chord datasets
is limited, and creating new ones is not an easy task. As a consequence, the variety
of songs and styles available for training a classifier is also limited. However, there
is an almost limitless quantity of annotations associating the chords of a song with
its lyrics. These chord-lyrics files can be found in online chord communities, where
users create and review the annotations. Each song might receive multiple versions
of the chord annotations, and the users themselves provide feedback regarding their
quality. The proposed technique aims to explore this vast amount of data and
provide a way of using it to contribute to improving automatic chord recognition
classifiers.

As will be seen later on, this information by itself might not be as useful as
expected because it provides no time information for the chord onsets and offsets.
Therefore, a second complementary source of data will be required to include this
information in the final annotation. First, we present the structure in which chord-
lyrics files from online communities are usually found and how this will be useful
for the dataset generation. Then, we provide a way to obtain the second part of the
required data (i.e., the time-annotated lyrics).

4.1.1 Chord-Lyric Data

Chord-Lyrics files from all chord communities usually follow the same struc-
ture, in which the song lyrics are presented every other line with chords between
them, right above the word – or part of the word – on which their onset is supposed
to happen. However, these files might sometimes contain other information, such as
section names of the song, some description regarding how to play, tabs for guitar
solos, or even if capo1 usage is required. Therefore, retrieving the association be-
tween chords and lyrics from these files is not trivial. Figure 4.2 shows an example
of how one of these files might look.

It is important to notice that although there is other information present in

1Capo is a musical device often used in string instruments such as guitars. It is placed on the
neck of the instrument, reducing the length of the string, thus raising the pitch and transposing
the notes being played
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these files, we can clearly infer a relationship between chords and the song lyrics, as
mentioned by Mauch, Fujihara and Goto (2011). This relationship is the key aspect
of the technique presented here, as it allows our algorithm to extract the exact word
in a song during which a chord change is supposed to happen and also which chord
should be played next. With this information in hand, it is then possible to estimate
the chord sequence from a song and during which word the change should happen.
However, there is still one significant gap between this data and an annotated chord
dataset: time information. As mentioned before, an ACR dataset relies both on the
chord label information and the time label for the onset and offset of each chord. A
technique to obtain such data will be presented shortly, but first, a brief description
of some other useful information found on such chord-lyric files will be detailed.

Besides providing the relationship between chords and lyrics, other useful
data can be extracted from such online community chord files. First, it is possible
to extract the capo information for the song, allowing our technique to adjust chord
labels accordingly. Structural information about the song may also be extracted, and
it might indicate that some sections might repeat themselves, usually also repeating
chord sequences.

Finally, for the rating provided by users of online communities, the developed
solution supported two different scenarios based on the different formats the ratings
appeared along the chord communities. In the first scenario, we can retrieve the
actual average rating provided by the users for each file, so that it represents the
actual quality metric perceived by the users for a given chord annotation file. In the
second scenario, however, no explicit rating is available. Instead, only the number
of people who rated the file is available, and we consider this information as a source
of positive feedback.

4.1.2 Timed-Lyric Data

As described above, it is necessary to obtain a way of linking chord data with
timestamps in order to obtain an annotated ACR dataset. The technique proposed
here relies on joining a data source that associates chords and lyrics with another
source that associates lyrics and timestamps, therefore allowing for an association
between chords and timestamps to be inferred. In this section, we describe the
second source, which provides the lyric–timestamps relation. We assume that access
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吀攀砀琀 漀渀氀礀 
猀攀挀琀椀漀渀

䌀愀瀀漀
䤀渀昀漀爀洀愀琀椀漀渀

䌀栀漀爀搀猀 愀渀搀 
氀礀爀椀挀猀 猀攀挀琀椀漀渀

吀攀砀琀 漀渀氀礀 
猀攀挀琀椀漀渀

䤀渀猀琀爀甀洀攀渀琀愀氀
猀攀挀琀椀漀渀

䔀瘀攀爀礀 䈀爀攀愀琀栀 夀漀甀 吀愀欀攀 挀栀漀爀搀猀
吀栀攀 倀漀氀椀挀攀 㤀㠀㌀ ⠀吀栀攀 倀漀氀椀挀攀⤀

䌀愀瀀漀 䤀

嬀䤀渀琀爀漀崀

䜀 䔀洀 䌀 䐀 䜀

嬀嘀攀爀猀攀崀

䜀䜀
䔀瘀攀爀礀 戀爀攀愀琀栀 礀漀甀 琀愀欀攀
               䔀洀
䔀瘀攀爀礀 洀漀瘀攀 礀漀甀 洀愀欀攀
             䌀
䔀瘀攀爀礀 戀漀渀搀 礀漀甀 戀爀攀愀欀
               䐀
䔀瘀攀爀礀 猀琀攀瀀 礀漀甀 琀愀欀攀䔀瘀攀爀礀 猀琀攀瀀 礀漀甀 琀愀欀攀
              䜀
䤀ᤠ氀氀 戀攀 眀愀琀挀栀椀渀最 礀漀甀

Figure 4.2 – Example of extracted sections from an excerpt of a crowdsourced chord
label page

to these time-annotated lyrics is available2.
In order to proceed with the dataset generation, we obtain lyric annotations

from an existing dataset called DALI (MESEGUER-BROCAL; COHEN-HADRIA;
PEETERS, 2018), which was initially intended for usage in singing-voice MIR tasks.
It provides detailed lyrics onset and offset for over 5,000 songs with different styles,
countries, and decades. This association between lyrics and timestamps is illus-
trated in Figure 4.1 (see Annotated Lyrics Timestamps). The DALI dataset also
describes how to obtain the exact same audio files used to generate the annotations,
maintaining the coherence between the audio and the timed onset and offset labels.

4.2 Pre-processing

Considering now that data from both of the sources above have been col-
lected, it is possible to start describing which pre-processing steps are required to
clean this data and prepare it for usage in our technique. First, let us consider the
data obtained from online chord annotation communities, which provides a clear

2Even if it were necessary to annotate these lyric files, the task could be accomplished by a
group of non-experts in musical transcription, requiring only knowledge of the language present in
the lyrics and the effort to label each word.
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relation between the lyric words and the song chords. Such information is often
mixed with other not-so-relevant sections in the files obtained from the communi-
ties, as illustrated in Figure 4.2. As we can see, this file excerpt also includes some
indications of the different kinds of sections that can be identified, such as sections
with lyrics and chords, text sections, or instrumental-only sections. Although help-
ful information could be retrieved from text-only and instrumental-only sections,
the technique proposed here for generating a dataset will be focused on using the
relation between chords and lyrics, and therefore a crucial pre-processing step is to
identify and extract only such sections from the obtained files. The identification
of these sections is made based on the notation present in such files, which often
represents them with a chord placed right above the text it is associated to. This
way, it is possible to search for sections following this pattern and retrieve them, as
seen in figure 4.2.

Besides identifying and extracting relevant sections, it is essential to consider
that chord annotations are created manually by a large community of individuals,
each one with its own preferences regarding chord notation. Thus, another important
pre-processing step is to convert the chord notation to a standard format. The
standardized notation that will be used is the one proposed by Harte et al. (2005),
which has been widely used in the ACR community and is usually compatible with
state-of-the-art classifiers. This notation consists of a way of defining the chord root
note, quality, bass and other intervals contained in it. Some examples would be the
C major chord (C:maj), or the A minor with C as bass (A:min/3, where 3 represents
the pitch at the third degree of this chord, which is C).

Finally, there is also another important piece of information that can be
extracted from these files, which is not related to the chords or lyrics sections.
Usually, the files contain a certain degree of metadata available for collection and,
if care is not taken, might even interfere with the resulting annotations. Most of
the chord notation in these files was done by and for guitar players, which means
that some files contain capo and tuning information explicitly made for the guitar.
For instance, if a capo is indicated for usage on a certain song, all chord notations
will be made relative to the position of the capo on the guitar. This means that
the indicated chord is not the same as the one being played, and requires a pre-
processing step to transpose it according to the capo position. An example of capo
pre-processing can be seen in Figure 4.1, in which the chord notation was updated
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based on the presence of a Capo in the first fret position, transposing the chord
labels up by one semitone. The same logic applies to songs that indicate that a
different guitar tuning is to be used. In this scenario, the chord label also refers to
their position on the guitar and not the sound they produce, as the guitar’s tuning
is not the standard one. This also means that these chords need to be adjusted, so
the label actually represents the correct sound that is expected to be played.

4.3 Generating the Label Files

After pre-processing and converting the chord annotations to a final standard
format and filtering the lyric annotation files, the next few steps will be related to
label generation. The description of this process will be divided into two parts:
merging information from both files into a single one through an adapted Dynamic
Time-Warping technique and estimating the final ACR annotation files, which are
composed of the predicted chord and its onset and offset.

4.3.1 Dynamic Time-Warping

One of the crucial steps in attempting to join the two files is to handle the
small differences present in them, especially on the word level. Both files were gen-
erated from independent sources, one being from online chord communities, and the
next coming from an already existing lyrics dataset. Therefore, words can be writ-
ten differently, being them typos, different word separation, or sections and words
that were simply not present in one of the versions. Because of these differences, it
was not possible to simply expect an exact match for both files from the same song,
and a certain degree of uncertainty had to be dealt with.

The selected technique to handle such issues was Dynamic Time-Warping
(DTW) (MÜLLER, 2016), which is a method commonly used with the purpose
of aligning two time series but can be used with other types of data that present
sequential information. The main idea behind it is that a measure of distance is
calculated between the data points of each series, and DTW considers this distance
as a cost function in order to find the lowest cost path (i.e., the alignment of both
series) between the two files. Let us consider two different time series X and Y ,
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each one being a vector of datapoints x ∈ X and y ∈ Y . The main idea behind
the DTW is to calculate the distance between these two vectors and, by using
the smallest obtained distance, align these two vectors, considering that their data
points are ordered in time. For this purpose, a cost function between each pair
of datapoints (x, y) is defined as d(x, y), and used in the calculation for the final
alignment.

In our scenario, the time series are actually lyrics files, and the words from
each file as the data points. To adapt the DTW for matching text files, we need to
define a cost function and use it to obtain the lowest-cost alignment between the
chord and lyric annotation files. As the objective of this alignment is to take typos,
misspellings, and missing sections into account, the most appropriate cost function
for the DTW should take the degree of difference of the words into account when
calculating the cost. A widely known metric for this purpose is Levenshtein’s string
edit distance (LEVENSHTEIN, 1966), which calculates the number of character
changes required in order to change a given word into another. This metric will,
in this scenario, provide low costs for simple typos and misspellings, and the DTW
itself would be in charge of ignoring missing sections, as the cost for them in the
comparison would be very high. Hence, our cost function d(x, y) is defined as

d(x, y) = lev(x, y), (4.1)

where lev(x, y) is the Levenshtein’s edit distance, and x and y are elements from our
X and Y vectors, which in our scenario would be vectors of word tokens extracted
from our data sources. An example of how this alignment would be applied can be
seen iNn Figure 4.1, where our word tokens would be extracted from each of the
sources serving as input to the “Dynamic Time Warping” step, and their resulting
alignment can be then extrapolated to retrieve the original positions of both the
token timestamps and the chord labels, as seen in the output example for the step.

In more detail, an example of the matching process can be seen in Figure 4.3,
in which two different lyrics sources are passed to the DTW function, using the dis-
tance measurement described above. Its output provides a word-by-word match
between these two sources, accounting for extra words, repetition, and spelling mis-
takes. The third column in the output provides the resulting distance between the
matches, which the DTW aims to minimize.
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Every Bond You Break 
Every Step You Make 
I will be watching you

Lyrics Source 1

Every Bond You Break and 
Every Step You Take 

I'll be watchin' you

Lyrics Source 2

DTW

DTW Match Sample 
Source 1 Source 2 Distance

Every Every 0
Bond Bond 0
You You 0

Break Break 0
- and 3

Every Every 0
Step Step 0
You You 0

Make Take 1
I I'll 3

will I'll 2
be be 0

watching watchin' 1
you you 0

Figure 4.3 – Sample of how the DTW is applied to match two different text sources, with
the resulting distances between matches.

4.3.2 Label Estimation

The procedure described so far produces an association between lyric words,
their onsets and offsets, and the position of the chords related to these lyric words.
The final step is to generate the final chord and timestamp association. As seen in
the data collection and pre-processing steps, the chord is associated with a particular
word in the online chord community files by being placed above it (check the “Chords
and Lyrics” section in Figure 4.2). Thus, it is possible to infer the chord onset
timestamp from the time information obtained for the word placed closest to it on
the line below. Also, its offset can be determined based on the next chord onset, as
the chords usually follow one another. In case an instrumental- or text-only section
begins, it is also possible to consider that the previous chord should end there, as
our technique cannot infer information without both lyric and chord components.
Besides, in order to take these sections into account and leave no gaps in the song
timeline, the proposed generation technique will mark these sections with a label
“X” from their onset to their offset, which indicates that no label could be obtained
for these parts. The output file follows the standard format used for ACR dataset
notation, where each line provides three columns with the onset, offset and chord
label, respectively, and thus providing a chord and timestamp association required
for training classifiers. The rightmost box in Figure 4.1 illustrates an example of
final time-stamped chord annotation.

The approach described in this chapter can generate a weakly-labeled ACR
dataset. Since it does not involve musical experts, it presents a large potential for
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increasing the variety of songs used in the process of training classifiers and allows
us to explore new techniques for self-training using weak labels. In the chapters
that follow, this dataset will be used to improve the performance of a baseline chord
recognition approach, particularly for rare chords.
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5 IMPROVING RARE CHORD RECOGNITION

In this chapter, we present the techniques applied to improve rare chord
recognition. We first introduce a technique that only uses unlabeled data, and then
our final approach, in which weak labels are also included for training the model. The
techniques presented here aim to tackle one major problem in the ACR task, which
is the difficulty in obtaining good predictions on rare chords, while also attempting
to maintain the overall prediction quality. The experiments were performed with
each of the proposed changes individually and by combining the most promising
ones to verify if their combination could boost the results even further. This will
reflect directly upon the experimentation setup presented next.

The following sections of this chapter continue with a description of the
two different approaches. The first one is based on an iterative training technique
and a loss adjustment factor, both previously seen in image recognition tasks and
that require no labels at all. The second method applies an extra step of confidence
boosting based on the weakly labeled dataset described in Chapter 4 to the iterative
technique presented in the first experiment.

5.1 Improving Recognition With Unlabeled Data

This section will describe the two main directions we explored to improve the
classification accuracy, particularly of rare chords. The first direction described will
be the usage of a focal loss (LIN et al., 2017), adapted to the context of sequential
data. The second direction will be the extension of an image recognition self-learning
training method, known as Noisy Student (XIE et al., 2020), to a sequential data
context, which is the case of audio and musical data in particular.

5.1.1 Focal Loss

One of the main issues this work aims to tackle is the strong imbalance in
ACR datasets. Besides the imbalance in the duration of chords, there is also an im-
balance in chord complexity. As mentioned before, some chords contain more notes
than others, an unusual combination of notes, or even certain combinations of notes
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that make similar-sounding chords have different labels. It is in this context that
the focal loss technique is expected to provide an overall performance improvement,
but in particular for these more complex chords.

Most classifiers used in ACR rely on a standard log-loss function for their
training process. This function assigns a certain value based on comparing the label
prediction confidence and the actual label for the excerpt. In this scenario, even
predictions that provide high confidence for the correct label can generate a small
impact on the loss function if the number of samples is small. Let us consider
datasets comprised mostly of a certain group of chord types, which additionally are
relatively “easy” to predict. These circumstances might end up generating small
individual loss components for each of these common chord instances since correct
and high-confidence predictions might be made. Although the loss components for
these easy chord samples tend to get closer to zero, because they are comprise
most of the dataset, the sum of these small components, results in a large value.
Meanwhile, rare chords generate a large loss component each, but because they
are rare throughout the dataset, the sum of their loss components might not be
significant enough when compared to the overall loss of more common chords. This
scenario could make these rare, complex chords even more difficult to be learned by
the classifier.

In order to reduce the impact of these easy and high-confidence predictions,
the focal loss presents a modified version of the standard cross-entropy loss function
that reduces the value for easier, already-learned, training samples. This is done
through the introduction of a power term in the traditional log-loss function, given
by

FL = (1− pt)
γ log(pt), (5.1)

where pt is the estimated probability for a ground truth chord and γ is the power term
mentioned above, and can be adapted to be influenced by how much the weight of
the already learned samples will be reduced during training. The higher the value
of γ, the less influence easier samples will have on the summed loss function for
multiple samples, and the loss should then “focus” on harder chords.
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Figure 5.1 – Noisy Student Iterative Process

5.1.2 Extended Noisy Student

The second direction explored involved extending a state-of-the-art self-learning
technique from the domain of image recognition to the sequential domain of audio.
The technique known as Noisy Student (XIE et al., 2020) relies on using a large unla-
beled dataset, along with a small labeled dataset using an iterative, teacher-student
training process.

The process starts in the first iteration with the training of the classifier
using the fully labeled dataset, generating the first teacher. This teacher is, in
turn, used to classify the large unlabeled dataset, generating pseudo-labels for it. A
selection algorithm is applied to these pseudo-labels in order to create a subset of
high-confidence predictions out of them, with a similar amount of samples as the
labeled dataset. Augmentation techniques are applied to this subset to make the
pseudo labels samples become noisy.

Now, both the labeled dataset and subset of noisy pseudo-labels are merged
into a new training dataset, which is, in turn used to train a student classifier. The
student classifier then becomes the new teacher classifier, generating new pseudo-
labels for the large unlabeled dataset and repeating this iterative process. A diagram
with the definition of the iterative process can be seen in Figure 5.1.

Having an outline of the process done by this technique, it is now possible to
dive further into some details for its execution, in particular, the subset selection and
augmentation methods. The selection algorithm used in the original Noisy Student
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algorithm relies on selecting, with replacement, a random set of samples out of
the pseudo-labeled dataset that present prediction confidence above a certain, pre-
defined, threshold. An important point here is that the number of samples selected
from each of the different classes in the problem is the same, thus making the selected
subset have a certain class balance with high-confidence predictions.

The second part that can be detailed is the set of augmentation techniques
being used, as this will be one of the points that will need to be considered when
extending the technique to the audio domain. Two different kinds of noise are used
in the original technique: dropout (SRIVASTAVA et al., 2014) and stochastic depth
(HUANG et al., 2016) during the training process, and input noise, through the
usage of data augmentation techniques found in RandAugment (CUBUK et al.,
2020), done directly on the selected subset of pseudo-labeled samples.

5.1.2.1 Adapting to the Audio Domain

Many of the strategies described above are not immediately compatible with
the audio domain, which differs from the image domain mainly in the aspect of the
former being sequential while the latter is not. Because of this crucial difference,
it is important for some characteristics of the original technique to be reconsidered
and adapted in order for them to work properly in this new context.

First, let us consider the pseudo-label selection algorithm and the issues that
might arise from this change of context. The original technique relies on classifying
single examples and providing a label with confidence for each image. This, however,
is not true when dealing with audio, as each chord is linked sequentially to its
neighbors, and there is a certain reliance on this context when making a prediction
and assigning it a confidence value. Another issue that also originates from the need
for context in ACR datasets is that a truly balanced dataset can never be obtained:
as all samples must be selected along with their context, they will most likely include
different labels along with the chosen one. Finally, as we have already seen, most
of the samples in an ACR dataset are composed of major and minor chords, which
means that it is very likely that many of the chords in selected subsets’ contexts will
be one of these chord types.

In order to address these issues, the following adaptations were proposed for
the subset selection algorithm. To mitigate the requirement for context in sequential
data, a minimum length of each selected excerpt has to be defined, here called
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Figure 5.2 – Chord Selection Iterative Process

minLength. As the dataset composition is calculated based on the overall duration
in seconds for a given chord type and not the number of samples, a definition of the
duration for each chord class required to achieve a balanced outcome is needed and
will be called in this document as desiredDuration. This will indicate the amount
of time we would like to assign for each chord type selected, resulting in a balanced
dataset. As the objective is to obtain a dataset of pseudo-labels with roughly the
same duration as the original labeled dataset, the chosen desiredDuration is, by
definition, the total duration of the labeled dataset divided by the number of rare
classes present in the pseudo-labels. It is important to notice that only rare chords
will be used in the selection, as we expect that the more common chords will be
present in this final dataset just by appearing in the context around the selected
samples. By selecting these more common chords directly, the resulting subset would
likely be very imbalanced, going against the purpose of this technique.

The adapted technique, summarized in Algorithm 1, uses the variables de-
fined above and selects the pseudo-labels with the highest confidence for each of the
rare chord classes, with excerpts with at least minLength. This is done by iterating
through rare chord class one at a time, and ordering all samples from that class
based on their prediction’s confidence. For each of the ordered entries, an audio
excerpt centered on the sample is selected, which has a duration of at least min-
Length if the size of the sample is smaller than it, and adjusting the boundaries if the
sample is at the beginning or end of the audio file. The selected sample is included
in the pseudo-label dataset along with its context until the total duration of that
chord type, here called selectedDuration, reaches the desiredDuration. When this is
matched for a given chord type, the next one is selected, and the process continues.

An example of such iterative process can be seen in Figure 5.2, where we can
see a musical excerpt being currently evaluated. It contains a G7 chord (in red),
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which is the rare class currently being evaluated (seventh chords), but also shows the
associated musical context around it (in blue). Once such as excerpt of minLength

is selected, the selectedDuration for each of these chords is increased. Then, if
the desiredDuration for the current class being analyzed (seventh chords in this
scenario) is reached, the next rare chord class excerpts undergo this same process.
Otherwise, the next seventh chord excerpt is evaluated and selected.

The outcome of this adaptation generates a pseudo-labeled dataset that is
much more balanced than a standard ACR dataset. This can be seen in Figure 5.3b,
which presents the distribution of one of the pseudo-labeled datasets generated by
the adaptation presented above, which can be compared with the Isophonics dataset
distribution, presented in Figure 5.3a. As was mentioned in this section, the major
and minor chords were still expected to dominate the dataset, as most of the chords
in the context around the rare chords selected would be of that type. Although none
of them were selected directly, they still ended up composing a large percentage of
the dataset. Another important point to notice is that the set of chord types that
the classifier we used could predict was limited, which results in a dataset without
some of the chord classes present in the labeled dataset.

Algorithm 1 Balanced Pseudolabel Dataset Selection
1: minLength = minimum length for each audio excerpt
2: desiredDuration = total duration desired for each rare chord type
3: for each rare chord type ct do
4: Filter labeled entries by ct ordering by prediction confidence
5: Initialize selectedDuration = 0
6: for each ordered excerpt do
7: Create new excerpt centered on excerpt, with duration minLength
8: Add it to the dataset, merging overlaps to avoid duplicates
9: Increment selectedDuration by duration of the excerpt

10: If selectedDuration ≥ desiredDuration then move to next chord type

The second point we considered in our adaptation was adding noise to the
training and augmentation processes. The model noise techniques (i.e., dropout and
stochastic depth) present in the original algorithm did not rely on any specific as-
pects related to image or audio and, therefore, could be maintained as-is. However,
augmentation strategies applied directly to training data had to be adapted. Consid-
ering the context of MIR, some augmentation techniques can be used, such as pitch
shifting or adding overlapping random noises. The classifier used for the training
process already relied on pitch-shifting augmentation, and therefore another kind
of random noise was also included for further augmentation. The usage of random
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(a) Isophonics (b) Balanced Pseudolabeled

Figure 5.3 – Comparison of chord type distributions on Isophonics and the Balanced
Pseudolabeled datasets

audio excerpts from the UrbanSound8K dataset (SALAMON; JACOBY; BELLO,
2014) was used to include a certain degree of random noise in the pseudo-labeled
dataset, which was done using the MUDA library (MCFEE; HUMPHREY; BELLO,
2015).

5.1.3 First Experiment Setup

The first experiment consisted of comparing both techniques described above,
and a combination of them against a baseline classifier. A state-of-the-art ACR
classifier architecture (PARK et al., 2019) was chosen and trained only using the
Isophonics (HARTE, 2010) dataset, which contains 199 songs by The Beatles and
Queen, in order to be used as the baseline. The chosen classifier works by receiving
the raw audio as input data and generating a chord prediction for every time frame.
This frame is the result of a windowing function applied to the raw audio, which
selects short audio durations in time, and is able to generate a prediction for each.
These predictions are condensed into larger units, which are in turn aggregated
and turned into an onset/offset pair in time, along with the associated label for it,
following the format proposed in (HARTE et al., 2005). In the case of the Noisy
Student algorithm, which requires the prediction confidence to be included, the orig-
inal architecture was modified to include the prediction confidence, calculated based
on the softmax output of the last layer in the network. Regarding other training
parameters (e.g., number of epochs and mini-batch size), we used the recommended
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values provided by Park et al. (2019) in the original paper.
The first experiment being proposed here can be split into three phases,

starting with the focal loss, followed by the extended Noisy Student by itself, and
finishing with the combination of the best results for each of the techniques when
tested alone. For the focal loss, different values of γ were tested to define which one
would benefit the technique the most in this scenario. In the case of the extended
Noisy Student, two different scenarios were created: one without adding the random
noise augmentation as described above, and another one including it. Also, the
iterations were performed until the results started to decline, which happened at
the fourth iteration. After performing these tests individually, the best performing
γ value for the focal loss and the best performing scenario for the extended Noisy
Student were selected. With this information, the final phase of the experiment with
the combination of these best scenarios for each of the first two phases was done.
This phased experiment was required in order to reduce the required amount of time
to execute the complete experiment, as the training and evaluation processes were
very costly time-wise.

Three datasets were used in the different experiment configurations presented
here. In the case of the focal loss, a single labeled dataset is required for training,
similar to what happens in the case of the baseline classifier, and the same Isophonics
dataset was used in this scenario. The Isophonics dataset was split into training and
validation datasets, both here and in the baseline, with 80% for training and 20%
for evaluation, used in the early stopping of the classifier.

Regarding the experiments involving the extended Noisy Student technique,
a large additional unlabeled dataset is required for the iterative process. We used
the DALI dataset (MESEGUER-BROCAL; COHEN-HADRIA; PEETERS, 2018),
which is a singing voice dataset that contains over 5,000 songs in its catalog. Finally,
another ACR dataset containing 100 songs, known as RWC (GOTO et al., 2002),
was used as the test set for all scenarios to provide a cross-dataset evaluation for
the techniques being tested and the baseline.

5.2 Improving Recognition With Weak Labels

After considering the scenario proposed for the techniques using only unla-
beled data, this section will define a new extension to the modified Noisy Student
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Figure 5.4 – Changes to the Initial Noisy Student Iterative Flow

technique defined above. This extension will rely on an independent source of weak
labels to be used during the selection of the subset of pseudo-labeled predictions
as a confidence boost whenever the classifier’s prediction and the independent data
source match their predictions. The main idea behind this extension is that by
using two different, independent, sources of pseudo-labels, besides the one gener-
ated from the classifier’s predictions themselves, it might be possible to improve the
pseudo-label dataset selection process, generating better results.

The approach described in Section 5.1 requires only a set of Predicted Labels
(PL), which are extracted from the teacher model. However, we believe that better
results can be achieved by also including the External Labels (EL) provided in the
weakly labeled dataset. Both sources can be considered somewhat independent, as
one relies on the output prediction of the trained classified and the other originates
from an external source with no relation to this same classifier.

Following the usage of these two datasets, this method aims to artificially
increase the confidence of the teacher prediction used in the Noisy Student’s pseudo-
label dataset selection process whenever the labels from both sources match based
on certain domain-specific comparisons. These comparison techniques must take
into account some of the specifics of the ACR domain, such as the notes that com-
pose chords and some chord similarity metrics. An overview of the changes to the
iterative flow can be seen in Figure 5.4. In the following section, we will describe
the techniques that were applied when testing this modification.



42

5.2.1 Calculating Prediction Confidence Boost

This section will present the three confidence-boosting techniques that will
be tested along with the technique described here. Each of the techniques will
rely on comparing two instances of chords, one from each of the two different label
sources, the PL and the EL. Every comparison will result in a similarity metric
between the two instances, which will be the value applied in the confidence-boosting
formula. The following notation will be used: Lp(x) ∈ PL is the predicted label of
the teacher for a chord x, and Ld(x) ∈ EL the corresponding annotation from an
external source. For the original prediction confidence generated by classifier, the
notation used will be κp(x) ∈ [0, 1]. Finally, using the similarity factor between the
two chords instances as s(Lp(x), Ld(x)) ∈ [0, 1], the following equation can be used
to boost the original confidence, generating a new confidence κo(x), as such:

κo(x) = κp(x) + (1− κp(x))s (Lp(x), Ld(x)) . (5.2)

Note that Eq. (5.2) will boost the original confidence closer to its maximum
possible value proportionally to the similarity between the two chord instances be-
ing compared. This way, it is possible to keep the same confidence format used
previously, as its boundaries are still being respected, but allowing this similarity
to be taken into account.

The first of the three similarity metrics that will be presented is also the
simplest one. It involves simply checking if the label of the two chord instances is
the same. This method does not take into account the many nuances of ACR and
might miss out on some of the chords that are similar but have different labels, as
we mentioned before. However, it provides a good starting point for a similarity
metric. This similarity metric can be defined as

seq(Lp, Ld) = δ(Lp − Ld) =

 1 if Lp = Ld

0 if Lp ̸= Ld

, (5.3)

where δ is the discrete unit impulse function.
The second technique considers some musical concepts to provide a more

sophisticated similarity metric. Here, the chord label L is converted into its chroma
feature representation, which consists of a 12-position binary vector L with each



43

position indicating the presence of the 12 different notes when collapsed into a
single octave. The chroma feature vectors are generated for the two chords being
compared, and the Chroma Feature Similarity (CFS) score is calculated for them
based on the cosine similarity, as seen in (MÜLLER, 2016):

sc(Lp,Ld) =
⟨Lp,Ld⟩

||Lp|| · ||Ld||
, (5.4)

where ⟨·, ·⟩ denotes the inner product operator.
This second technique takes into account a more specific aspect of chord

similarity, which is the note components of a chord. However, there are still more
complex aspects and ambiguities involved in chord comparison, which might make,
for instance, similarly composed chords perceived as very different by the listeners.
There have been studies in which such ambiguities have been dealt with through
custom chroma templates that provide encodings for the harmonic components of
fundamental frequencies belonging to a chord, such as the work by Oudre, Grenier
and Févotte (2009). Besides, one very important aspect of chord comparison is
the perception of the sound, and in this direction, there have been some studies
analyzing music perception and attempting to provide some degree of mathematical
modeling to reproduce such perception nuances (LERDAHL, 1988; CHEW, 2002).
Also, in (HAAS et al., 2010; BERNARDES et al., 2016; MARQUES, 2019), some
alternative distance estimations between chords were pursued based on these same
techniques cited above.

Based on these aspects, the third similarity metric used will attempt to pro-
vide a more perceptual distance metric, which in this case was the Tonal Interval
Space (BERNARDES et al., 2016). This technique relies on mapping the previously
presented chroma feature vector into a complex-valued vector, the Tonal Interval
Vector (TIV). This mapping is achieved through the Discrete Fourier Transform
with a set of custom weights based on these mathematical models related explicitly
to musical features and perception. This provides the tools to convert a chroma
feature vector L into a more meaningful vector T from the musical point of view.
Bernardes et al. (2016) also suggest using euclidean or cosine distances to calculate
the similarity between two TIVs. In this work, the cosine similarity will be used
because its range of possible values is known. The proposed metric is the same as
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the one before, but with the TIV vectors instead:

stiv(Tp,Td) =
⟨Tp,Td⟩

||Tp|| · ||Td||
, (5.5)

where Tp and Td are the TIVs from the chords in PL and EL, respectively.

5.2.2 Second Experiment Setup

The second experiment proposed here will be focused on evaluating the ex-
tension to the Noisy Student presented in the first experiment by including the
confidence-boosting techniques. All three techniques will be compared to the base-
line Noisy Student classifier, to the baseline classifier without Noisy Student trained
both on a set containing only the labeled data and on another containing both la-
beled and weakly labeled data. The configuration will be very similar to what was
done in the first Noisy Student experiment (i.e., the same classifier containing the
prediction confidence output and the same hyperparameters).

Another significant difference from the previous experiment is that this one
relies on the existence of an external source of labels. The source used for this
weakly labeled dataset was already described in Chapter 4, with the generation of
a dataset using the chord labels obtained from online communities. That way, the
same large unlabeled dataset already being used for the training process will now
possess an extra set of labels generated by the previously presented technique.

One crucial factor to consider is that the weakly labeled generated dataset
has no clear way of being validated, as such a task would require extensive work by
experts in musical knowledge. This experiment also aims to implicitly validate the
usefulness of such a dataset by verifying if it can indeed improve the accuracy of the
baseline ACR algorithm when compared to the Noisy Student baseline without the
labels. This will be a comparison of the impact of using this dataset, along with the
impact of the technique itself.



45

6 RESULTS AND DISCUSSION

The previous chapter presented an overview of the experiment setup, de-
tailing two main experiments. In this chapter, a quick overview of the evaluation
metrics will be provided, followed by an outline of the results obtained from each
experiment. Finally, these results will be thoroughly discussed, with the positive
aspects of the proposed techniques and the points identified that could be used for
future advances.

6.1 Evaluation Metrics

One central point to be considered when evaluating ACR performance is that
the metrics themselves might bias the analysis of our results if not treated carefully.
One widely used metric is the Weighted Chord Symbol Recall (WCSR) (HARTE,
2010). It can be defined by first computing the Chord Symbol Recall (CSR) for
each music track, defined as

CSR =
|Spred ∩ Strue|

|Strue|
, (6.1)

where Spred and Strue are the predicted and ground-truth labels, respectively. The
“Weighted” part of the WCSR is obtained by weighing the CSR by the length of
the track, yielding

WCSR =

∑
TiCSRi∑

Ti

, (6.2)

where Ti is the duration and CSRi the Chord Symbol Recall of the i-th track,
respectively.

Although this metric is widely used and provides a good overall score for
the performance of a classifier, there is one point in which it lacks. As it does
not take into account the classifier performance per chord type in any way, the
chords that represent the majority of components on the datasets will have a much
larger influence over the final results. Let us take, for instance, the major chords,
which represent more than half of most datasets available: by focusing on a good
performance on these chord types, the classifier will already obtain a good metric
result even if it fails for less frequent chords.

As the purpose of this work is to also take into account the performance of
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rarer chord classes, we will also explore metrics that consider potentially imbalanced
datasets. The Average Chord Quality Accuracy (ACQA) is calculated similarly to
the WCSR, with one main difference in that it weighs the performance of each chord
class equally. It is defined as the sum of the WCSR for each chord type C (WCSRC),
divided by the number of chord classes, as follows:

WCSRC =

∑
i CiCSRCi∑

i Ci

, (6.3)

where Ci is the duration of the i−th chord instance of type C and CSRCi
is the

respective chord symbol recall. Finally, we obtain the ACQA score through

ACQA =

∑
C WCSRC

|C|
, (6.4)

with C being the set of chord types.

6.2 Results of the First Experiment

As described in the previous chapter, the first experiment consisted of com-
paring two different strategies to improve the accuracy of rare chords: focal loss and
the Noisy Student. Table 6.1 presents a sensitivity analysis of parameter γ in the fo-
cal loss and also an ablation study that includes or suppresses different components.
It is important to note that the noisy student technique ran for three iterations, as
they started to decline in performance after that, but only the best results for each
configuration are displayed in this table.

WCSR ACQA
Baseline 53.5 19.6

Focal loss (γ = 2) 53.5 21.9
NoisyStudent without random noise 53.7 25.4

NoisyStudent with random noise 53.7 26.4
NoisyStudent + Focal loss (γ = 2) 53.8 26.3

Table 6.1 – Weighted Chord Symbol Recall (WCSR) and Average Chord Quality
Accuracy (ACQA) for each of the setups in the first experiment performed.

It is possible to see in Table 6.1 that all the experiments provided an improve-
ment over the baseline in the ACQA metric while keeping the WCSR very similar to
the original value. Out of the setups provided, the Noisy Student component seems
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to have had the largest impact, with the best ACQA metric in the Noisy Student
with random noise, while the largest WCSR was found when Noisy Student was
combined with the Focal Loss.

As mentioned before, the NoisyStudent ran for three iterations, so the plots
presented in Figures 6.1a and 6.1b provide the scores along each iteration for the
WCSR and ACQA metrics respectively. Here, some interesting aspects can be ob-
served. For instance, all techniques initially provided a significant gain over the
baseline for the WCSR, which later started to decrease. Meanwhile, the ACQA
score continued to increase for almost all setups along the iterations. One possi-
ble explanation for this behavior could be that the classifiers were starting to get
better at identifying the rare chords, while their performance for the more common
chords was decreasing, indicating slight overfitting towards these rarer chords. An-
other important factor to consider here is that such compromises had already been
observed in (CHO, 2014), where the experiment performed was unable to improve
both scores at the same time. In the scenario presented here, we were able to im-
prove both metrics, as seen for the first two iterations in all setups. The techniques
provided improvements on both metrics at the same time, and the results selected
as the best ones were the ones with the highest ACQA (in iteration 2), which were
then compiled in the previously presented Table 6.1, with the Noisy Student with
random noise being the one with the highest ACQA overall score.

(a) WCSR performance (b) ACQA performance
Figure 6.1 – Performance over the Label Equality, Chroma Feature Similarity, TIV

Similarity, compared to the Noisy Student (blue) and classifier (red) baselines during the
first experiment

For the sake of comparison, Cho (2014) reported a gain of 20% in ACQA
versus a reduction of 3% in WCSR. Meanwhile, the approach proposed here in
its best scenario obtained an increase in both metrics, with 0.4% improvement in
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the WCSR and 34.7% in the ACQA score. Considering the WCSR metric, the
scenario that provided the largest increase happened during the first iteration of the
NoisyStudent without random noise. It provided a gain of 3% in the WCSR score,
while the ACQA increased by 23% when compared to the baseline.

6.3 Comparison of Confidence-Boosting Techniques

This section will provide the results of the second experiment, which con-
sisted of comparing different confidence-boosting techniques against three different
baselines: one is the same baseline as in the first experiment (using a smaller but
strongly labeled training dataset), a second one done with the purpose of measuring
the degree of impact of the generated dataset, and a third baseline using the best
technique from the previous experiment (i.e., Noisy Student with random noise).
The first and second baselines follow the same single iteration training scheme, one
using the Isophonics dataset exclusively and the second using both the Isophonics
and Generated Pseudolabel dataset.

The last baseline will follow the iterative Noisy Student training scheme pre-
sented in previous chapters and use the Isophonics dataset to train the teacher
model on the first iteration, and the DALI dataset audios as the large unlabeled
dataset. It is important to notice that a second baseline using both the Isophonics
and the Generated dataset as input on a single training iteration was necessary, as
the Generated dataset will be used in the experiment with the confidence-boosting
techniques, so evaluating its impact without these techniques is necessary to have a
fair comparison. In the case of the Noisy Student baseline, it is not included, as its
corresponding audios are already being used in the iterative training process.

6.3.1 Overall Results

Table 6.2 presents a summary of the results obtained on the best iterations
of each different setup. First, it is important to notice that the baselines without
Noisy Student are not trained in an iterative process and therefore have only a single
entry for each metric. Also, an additional iteration was trained for the NoisyStudent
baseline to standardize the experiment, as improvements for the new techniques
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tested were still available on the third iteration.

WCSR ACQA
Iteration 1 2 3 4 1 2 3 4

Labeled Baseline 53.5 19.6
Labeled and Generated Baseline 40.7 13.6

Noisy Student Baseline 54.8 53.8 52.6 53.6 24.9 26.3 26.3 25.1
Label Equality 55.1 55.5 55.6 54.5 25.1 26.5 26.6 27.7

CFS 55.2 55.6 53.8 52.9 24.4 27.7 24.1 23.4
TIV Similarity 54.5 55.4 54.2 54 23.1 25.6 24.6 23.3

Table 6.2 – Weighted Chord Symbol Recall (WCSR) and Average Chord Quality
Accuracy (ACQA) for each experiment and the baselines on the RWC dataset on the

second experiment.

Initially, the first thing to notice is that the “Labeled and Generated Base-
line”, which used the two sets of labels during training, provided much worse results
than the rest. In particular, the results were even worse than the “Labeled Base-
line”, which uses a much smaller training set but with strong labels. Since adding
the large, weakly labeled dataset directly to the training set reduces the accuracy,
we believe that several of the weak labels are not correct, which is expected due to
the nature of the dataset generation. Because of these results, this baseline will not
be considered in some of the more detailed analyses presented below to simplify the
discussion.

Now, considering the other setups used for this experiment, it is possible to
see that the usage of the weak labels improved both the WCSR and ACQA metrics
when explored for self-learning. However, it seems that for most of the techniques
applied, this improvement started to decay after a few iterations, especially in the
WCSR. The best scores for each metric vary along the techniques and iterations,
with the best WCSR scores being found in the Label Equality and CFS scenarios
in iterations 3 and 2, respectively. Meanwhile, the best ACQA scores are found
in these same setups, in iterations 4 and 2, respectively. As the CFS technique
provided in a single iteration the best results for each metric, it can be considered
the best performing result out of the experiment.

Looking at Table 6.2, the best result provided an increase of 1.5% over the
Noisy Student baseline and 3.9% over the Labeled baseline in the WCSR score.
Meanwhile, the ACQA score was improved by 5.3% compared to the Noisy Student
baseline and by more than 41% when compared to the Labeled Baseline. The
Label Equality boosting scheme provided these same improvements, although they
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appeared in different iterations, and the TIV Similarity provided improvements over
the baselines, but not as significant as the ones in the other two setups.

Similar to the results presented from the first experiment, and in compari-
son with (CHO, 2014), this new experiment presented in this section provided not
only improvements over the baseline in the ACQA score, but it also provided im-
provements on the WCSR at the same time. Hence, the proposed schemes do not
compromise one metric to boost the other, as opposed to (CHO, 2014).

6.3.2 Results by Chord Type

One of the crucial aspects that the techniques presented here aim to achieve is
to improve the performance of the classifier in an imbalanced training and evaluation
scenario. Most of the metrics presented in the previous sections already reflect this
objective. However, it is important to dive deeper into this analysis and show not
only the aggregated metrics (such as the WCSR or ACQA), but also the individual
performance per chord type. This section will break down the analysis into a more
granular level by comparing a per-chord performance.

This analysis starts from Table 6.3, in which the accuracy of some of the
techniques presented in previous sections are shown for certain groups of chord
types (i.e., the WCSRC). The choice for these chord types was made to provide a
varied range of types, regarding their classification difficulty, from the easier ones
(such as major and minor) up to some very difficult ones (such as hdim7). Only
chords which the selected classifier could support were included here.

maj min 7 min7 maj7 dim hdim7
% of train dataset 63 16.1 6.9 2.6 1 0.4 0.2
% of test dataset 45 15 7.2 13.8 7.4 0.8 0.4
Labeled Baseline 78.1 73 37 15.9 3 11.8 2

Labeled and Generated Baseline 61.1 66.2 12.6 1.9 0 0 0
Noisy Student Baseline 67.3 55.7 56.6 48.6 19.3 28.9 41.3

Label Equality 70.7 51 50.5 56 24.2 28.7 39.7
CFS 69.1 51 52.9 58 27.4 36.4 31.7

TIV Similarity 73 65 46.4 41 13.9 29.7 38.9

Table 6.3 – Accuracy for each of the experiments divided by chord class on RWC dataset
for the second experiment

Following the naming conventions of the second experiment, we can see three
baselines and the three techniques tested in that experiment. Immediately, it is
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possible to observe that, again, the “Labeled and Generated Baseline” provided a
degradation in the performance across all chord types when compared to the Labeled
baseline, so no further analysis for it will be made. Regarding the Noisy Student
baseline and the other improved techniques based on the Noisy Student, it is possible
to see a major improvement for rarer chord types (i.e., the ones with less than 10%
of the test dataset). However, these same techniques provided worse results for the
major and minor chords, although not enough to impact the WCSR score, as seen
in the previous sections.

Now, looking in more detail at the techniques proposed in the second ex-
periment, it is possible to see how the one that performed the best both in the
WCSR and ACQA scores, the CFS technique, achieved the best results in three
out of the five rare chords presented here. On the other hand, it provided one of
the worst scores for the remaining chords when compared to the other techniques.
For instance, by looking at the Label Equality results, which also obtained very
good WCSR and ACQA scores, we can see how the performance is a little bit more
balanced across the presented chords and could be a good choice for this purpose.

Meanwhile, the TIV Similarity, which did not provide any improvements
over the Noisy Student Baseline, could be considered the worst one at first glance.
However, it is interesting to notice that although its results were not the best, it
provided an improvement for rare chords over the Labeled Baseline, with the least
amount of reduction in the score for the common classes when compared to the
other Noisy Student techniques. This means it could also be considered a more
balanced choice over CFS if there is a need to keep the common chord scores a bit
more elevated.

A second analysis for the individual chord performance can be seen in Fig-
ure 6.2, which presents the confusion matrices for the Labeled Baseline and CFS
techniques, respectively. Again, some of the possible chords were omitted to make
the plot clearer. It is interesting to notice that the confusion matrix of the CFS
technique presents a much more expressive diagonal component over the Labeled
Baseline. This is a more visual way of seeing how these techniques act upon the
classifiers. In the Labeled Baseline, we can see that the predictions are gathered
around the major and minor chords, which supports the initial hypothesis that
these classifiers are much more biased toward these predominant chord types. On
the other hand, the CFS matrix shows a much more distributed set of predictions,
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which are much more well distributed along all the available possibilities despite
being still gathered around these common chord types.

(a) Labeled Baseline confusion matrix

(b) CFS confusion matrix
Figure 6.2 – Confusion matrices for the baseline and best setup from the second

experiment

6.3.3 Performance based on the Presence of Singing-Voice

Finally, another aspect considered important to analyze is the difference in
performance for excerpts with and without a singing voice. The reason why this



53

could be important is based on the way the techniques presented in the second
experiment are organized. As the dataset generation technique depends upon the
existence of lyrics for matching the chord files and the word timestamps, it is possible
that the proposed technique would provide improvements only for these excerpts or
even reduce the performance in purely instrumental excerpts.

As the techniques were evaluated on the RWC dataset, it was possible to
use an extension by Mauch et al. (2011), which provides the voice and instrumental
activity annotations for this same dataset. With this information, it was possible
to calculate both the WCSR and ACQA scores exclusively for excerpts with and
without lyrics, and allow the comparison between them to be made. The results for
the Labeled Baseline, Noisy Student Baseline, and the best-performing iteration of
the CFS technique can be seen in Table 6.4. Immediately, it is possible to notice that
CFS provided improvements over both baselines in all scenarios considering score
types and excerpt types. Another interesting point to note is that the excerpts with
singing voice performed slightly worse in general for the presented Baselines, but
were the ones with the largest improvements in the CFS scenario. This behavior is
actually expected, since the weakly generated dataset contains only audio excerpts
with a singing voice. However, it is also able to improve the metrics in Instrumental
only sections, which is an interesting characteristic.

Overall Singing Voice Instrumental
WCSR ACQA WCSR ACQA WCSR ACQA

Labeled Baseline Scores 53.5 19.6 52.6 19 54.5 19.7
Noisy Student Baseline Scores 53.8 26.3 53.4 26.1 54.3 26.4

Change +0.56% +34.18% +1.52% +37.37% -0.37% +34.01%
CFS (Best Iteration) Scores 55.6 27.3 55.4 27.5 56 26.6

Change +3.93% +39.29% +5.35% +44.74% +2.75% +35.03%

Table 6.4 – Performance of different techniques when split by instrumental only and
singing voice excerpts
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7 CONCLUSION

This work presented self-learning strategies in the context of ACR, in par-
ticular focusing on the recognition of rare classes. The first approach consisted of
using a baseline classifier trained using manually annotated data (strong labels), and
then training a student model using a large unlabeled dataset. The second approach
extends the first one by automatically generating weak labels for the large dataset
using information from online music communities, and then combining these weak
labels with the predictions of the teacher to improve ACR.

In the first experiment using unlabeled data only, two different techniques
were applied. The first, known as Focal Loss, attempted to improve the performance
of complex, hard-to-learn chords by using a modified loss function, without the
need for additional data. The second technique explored was the translation of an
iterative image training procedure, known as Noisy Student, to the audio domain.
This technique was based on the usage of a small labeled dataset, along with a large
unlabeled one, and through an iterative self-learning process, aimed to improve and
balance the classification results for the proposed setup.

During the second experiment, a modified version of the above-mentioned
extension of the Noisy Student algorithm was applied by using not only unlabeled
data, but also a set of weak-labels for the same unlabeled dataset. This resulted in
a second extension to the Noisy Student technique, in which the weak-labels were
used as a way to better select the samples during the self-learning iterative process,
by boosting the prediction confidence. Three different musical-aware techniques for
the boosting process were tested: Label Equality, Chroma Feature Similarity, and
TIV Similarity.

As an additional contribution of this thesis, we presented a technique for
automatically obtaining the weakly-labeled dataset. It was based on the usage of
song lyrics, on- and off-set information along with guitar community chord labels.
As the lyrics could be considered easier to label, because no expert knowledge is
required for it, this work proposed using an on- and off-set lyrics dataset in order to
evaluate the technique’s performance. By merging the time information from this
lyrics dataset with the chord labels from the guitar chord community, we made a
weakly labeled estimation for the chord on and off-set.

The results presented in this thesis show that it was not only possible to
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improve the rare and complex chord performance on its own, but it was also possible
to improve the overall classification performance obtained by evaluating all chords
together. These results provide a different outcome from previous work that aimed
at improving the performance in the same way (DENG; KWOK, 2017), in which
the rare chord classification metrics were improved at the cost of the overall results.

Based on the evaluated approaches, it is possible to conclude that the exper-
iment that used both the Noisy Student technique and the weakly labeled dataset
using the CFS boosting technique achieved the best results regarding both rare
chord and overall performance. Besides, the improvement occurred in excerpts with
and without lyrics, which was a concern, considering that the confidence-boosting
technique was only usable for excerpts with lyrics. The evaluation of the results
provided a better confusion matrix, as it had a much more distinctive diagonal com-
ponent and only a slight reduction in performance for some of the more common
classes.

Regarding future work, there are some different aspects that could be fur-
ther explored related to the techniques proposed and evaluated here. In the Noisy
Student extension, it was necessary to account for the temporal relationship of the
audio, which was not present in the original technique, focused on image classifica-
tion. One possibility for extension would be to further evaluate different techniques
for accounting for the sequential aspect of this domain, with different minimum ex-
cerpt sizes, or varying the excerpt size based on chord type, to further explore their
musical relationships. Also in this direction, it would be possible to evaluate differ-
ent excerpt selection techniques in order to better balance the self-labeled dataset
during the iterative training or to use different techniques to add noise and evaluate
their impacts on the performance.

There are also other avenues that could be explored regarding the dataset
generation process. One initial idea would be to evaluate better selection techniques
for the weak labels, such as combining different chord community annotations, or
files from different communities, in order to vote for the label most likely to be
correct. In this same line, videos containing song covers or guitar tutorials could
also be explored, as they usually provide some image reference for the chord being
played. Another aspect to be explored in this same problem would be to properly
evaluate the lyric-chord matching process done in order to estimate the weak labels.
This would allow different dataset generation techniques to be evaluated and possibly
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discover better ways of achieving this dataset.
Finally, regarding the second extension to the Noisy Student technique in-

volving confidence boosting, it is also left for future work to evaluate different
confidence-boosting techniques and their combinations, besides the ones already
tested. Also, the overall experiment could also be further extended by combining
the techniques with different classifiers and dataset combinations to further assess
its performance under different conditions.
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APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS

O reconhecimento de acordes musicais é uma tarefa complexa, não somente
para algoritmos, mas também para pessoas. O campo de estudo para tarefas rela-
cionadas a musica em geral na ciência da computação se chama Music Informa-
tion Retrieval (MIR) e é responsável, entre outras coisas, pelo reconhecimento de
acordes. Nesse contexto, este trabalho fornecerá sua contribuição, ao explorar téc-
nicas de treinamento, auto-aprendizagem (self-learning) e geração de rótulos fracos
(weak labels) para melhorar a performance no reconhecimento de acordes raros.

Estes acordes raros são em geral sub-representados nos conjuntos de dados
para treinamento de classificadores. Por causa disso, um certo viés acaba sendo
gerado, tanto na capacidade de aprendizagem do modelo, quanto na sua perfor-
mance de validação, sempre beneficiando acordes mais comuns. Diferentes estilos
musicais tem diferentes necessidades em termos de tipos de acorde a serem recon-
hecidos, podendo um acorde considerado raro no contexto dos conjuntos de dados
de treinamento, ser extremamente comum em um estilo específico. Por causa disso,
as contribuições deste trabalho visam melhorar de maneira global essa performance,
além de trazer resultados mais balanceados, podendo classificadores como esse serem
utilizados em aplicações comerciais e educacionais de transcrição de acordes, onde
uma performance cada vez melhor de reconhecimento traz grandes benefícios.

A tarefa de reconhecimento de acordes tem sua origem com algoritmos muito
dependentes de um conhecimento pré-programado neles, como em Fujishima (1999),
Sheh and Ellis (2003), Lee (2007). Porém, ao longo do tempo, houve uma transição
para técnicas mais voltadas para uso em massa de dados e deep learning (PAUWELS
et al., 2019). Nesse contexto diversas técnicas foram exploradas, como Deep Neural
Networks (BOULANGER-LEWANDOWSKI; BENGIO; VINCENT, 2013), arquite-
tura de encoder-decoder e Convolutional Neural Network (MCFEE; BELLO, 2017).
Além disso, algumas técnicas ainda mais recentes buscam explorar a forte relação
temporal existente no contexto de áudio musical. Nesse cenário podemos observar
técnicas como Long Short-Term Memory foram usadas (DENG; KWOK, 2017; Wu;
Li, 2019a) e o uso de arquitetura do tipo Transformer (PARK et al., 2019; CHEN;
SU, 2021).

Mais específicamente para o reconhecimento de acordes raros, temos tam-
bém muitos trabalhos relevantes relacionados, focando principalmente na utilização
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de arquiteturas voltadas para trazer um melhor resultado em problemas desbal-
anceados, como em (Wu; Li, 2019a; MCFEE; BELLO, 2017; JIANG et al., 2019).
Além disso, também é importante mencionar duas técnicas que aplicaram o uso de
rótulos provenientes de comunidades online para anotação de acordes em (MAUCH;
FUJIHARA; GOTO, 2011; ODEKERKEN; KOOPS; VOLK, 2020), pois também
será algo relevante no contexto desse trabalho.

O trabalho apresentado aqui atuou em duas frentes, ambas focadas no recon-
hecimento de acordes raros. Primeiramente, um algoritmo para a geração de rótulos
fracos para acordes é apresentado. Em segundo lugar, diferentes técnicas de treina-
mento para classificadores são testadas, voltadas para a melhoria de performance
nesses acordes considerados raros.

A técnica de geração de rótulos é desenvolvida com base no uso de rótulos de
acordes obtidos em comunidades online, onde diferentes usuários podem fornecer a
relação entre acordes e o texto da letra de uma música em formato de texto. Com
base nessa relação, adicionado de um componente extra, que é a associação entre
cada palavra de uma música e o momento preciso de seu início e fim, é possível
extrapolar o momento aproximado em que cada acorde deveria iniciar e terminar.
Apesar dessa informação não estar disponível imediatamente, espera-se que rotular
esses momentos precisos associados a letra da música, por ser uma tarefa sem ne-
cessidade de especialista, seria algo menos custoso ao se gerar um novo conjunto de
dados. Para o contexto desse trabalho, essa informação foi obtida através de um
conjunto de dados pré-existente, chamado DALI (MESEGUER-BROCAL; COHEN-
HADRIA; PEETERS, 2018). Também é importante mencionar que a técnica pro-
posta funciona apenas em trechos onde a letra da música está presente, pois há essa
dependência.

Para as técnicas de treinamento de classificador foram exploradas algumas
diferentes alternativas. Uma primeira técnica, conhecida como Focal Loss (LIN et
al., 2017), visa trazer uma melhor performance em exemplos mais difíceis de treina-
mento, ao modificar a componente da loss, adicionando um componente exponencial.
Esse componente diminui o impacto da componente da loss de exemplos que pos-
suem uma maior confiança na predição do modelo, aumentando o peso de exemplos
com menor confiança, como seriam o caso de acordes mais raros.

As outras duas técnicas testadas, focaram no uso de uma técnica de treina-
mento iterativo com auto-aprendizagem, conhecido como Noisy Student (XIE et al.,
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2020). Essa técnica utiliza dados não-rotulados para tentar aumentar a gama de
exemplos de um dataset de treinamento, trazendo ao mesmo tempo um maior bal-
anceamento e melhoria de performance. Originalmente essa técnica foi desenvolvida
para o contexto de reconhecimento de imagem, portanto, também foi desenvolvida
nesse trabalho uma adaptação dessa técnica para melhor se adaptar ao contexto
de áudio e música, principalmente passando a levar em conta o contexto temporal
intrínseco deste domínio.

Utilizando essa mesma técnica, uma segunda extensão foi adicionada, na
qual os dados gerados utilizando acordes de comunidades online foram incluídos no
processo iterativo de treinamento da Noisy Student. Nessa adaptação, diferentes
técnicas de aumento de confiança de predição foram utilizadas no processo de auto-
aprendizagem, para melhorar o processo iterativo de seleção existente. Com isso,
a expectativa é obter uma melhor seleção de exemplos ao longo do processo, o que
traria um melhor resultado também na performance final do classificador. Três difer-
entes técnicas para melhoria de confiança foram testadas, com base na igualdade de
label ou diferentes graus de similaridade calculados com base nos conceitos musicais
por trás dos acordes.

Para o resultado dos experimentos e sua avaliação, além da métrica mais
comum aplicada no contexto de reconhecimento de acordes, que fornece uma perfor-
mance global, também foi feita uma avaliação com uma métrica alternativa. Essa
outra métrica produz um resultado levando em consideração um peso igual da per-
formance de cada acorde, independente do percentual que ele representa no conjunto
de dados. Todas as técnicas aplicadas nesse trabalho produziram ganhos significa-
tivos de performance nas métricas balanceadas. Além disso, as técnicas baseadas
no Noisy Student geraram também uma melhoria na métrica de performance geral,
em especial as técnicas desenvolvidas utilizando o conjunto de dados gerado e au-
mento de confiança no processo iterativo. Este último cenário trouxe os melhores
resultados entre todos os experimentos feitos, trazendo também uma comprovação
da eficácia do processo de geração de rótulos fracos.

Para trabalhos futuros restam algumas avenidas a serem exploradas. Para o
processo de seleção do Noisy Student, novas técnicas de seleção iterativa poderiam
ser testadas no contexto de áudio, além de novas técnicas de aumento de confiança.
Além disso, para a geração do dataset, poderíamos explorar outras alternativas,
como por exemplo combinar diferentes fontes de dados, ou utilizar videos educativos
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com exemplos visuais para extrair os rótulos. Nesse mesmo contexto, poderíamos
também explorar uma maneira mais concreta de avaliar o resultado da geração dos
rótulos fracos, que apenas foi validado indiretamente ao ser utilizado pela técnica
de treinamento.
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