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Understanding fluctuations and associations between swimming performance-related

variables provide strategic insights into a swimmer’s preparation program. Through

network analysis, we verified the relationships between anthropometrics, maturation, and

kinematics changes (1) in 25-m breaststroke (BREAST) and butterfly (FLY) swimming

performance, before and after a 47-week swimming training season. Twenty age-group

swimmers (n =11 girls: 10.0 ± 1.3 years and n = 9 boys: 10.5 ± 0.9 years) performed a

25-m all-out swim test (T25) in BREAST and FLY techniques, before and after 47 weeks.

Three measures of centrality, transformed into a z-score, were generated: betweenness,

closeness, and strength. Data were compared (t-test) and effect sizes were identified with

Hedges’ g. Large effect sizes were observed for swimming performance improvements

in BREAST (32.0 ± 7.5 to 24.5 ± 3.8 s; g = 1.26; 1 = −21.9 %) and FLY (30.3 ± 7.0 to

21.8 ± 3.6 s; g = 1.52; 1 = −26.5 %). Small to moderate effect sizes were observed for

anthropometric changes. Moderate effect size was observed for maturity offset changes

(−2.0 ± 0.9 to −1.3 ± 1.0; g = 0.73; 1 = 50.9 ± 281 %). Changes in maturity offset,

stroke rate (SR), and stroke length for both BREAST and FLY swimming speeds were

highlighted by the weight matrix. For betweenness, closeness, and strength, changes in

arm span (AS) (BREAST) and stroke length (FLY) were remarkable. The dynamic process

of athletic development and the perception of complexity of fluctuations and associations

between performance-related variables were underpinned, particularly for simultaneous

swimming techniques in age-group swimmers.

Keywords: analysis, digital technology, long-term athletic development, biomechanics, technique,

anthropometrics, exercise physiology, maturation

INTRODUCTION

The performance of age-group swimmers improves based on the relationships
among technical, physical and anthropometric factors, which are characterized
by a complex adaptive system (CAS). Whereas there is body growth, drag and
propulsion change, i.e., the swimming performance related factors may be deeply
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influenced by the anthropometric characteristics. Not
conceptualizing swimming performance as a CAS phenomenon
is a limitation that should be avoided (Morais et al., 2014;
Ferreira et al., 2019; Zacca et al., 2020b). To complement
the traditional statistical approaches, a multivariate model
(as global as possible) could bring new insights on changes
in swimming performance, particularly during a training
season. Network analyses can provide a global view of
this multivariate phenomenon, that is, accessing both
linear and nonlinear relationships between swimming
performance-related variables (Holland, 2006; Schmittmann
et al., 2013; Goethel et al., 2020; Guido, 2020; Pol et al.,
2020).

There is a scientific and practical interest in individual
maturation and the ideal period to start working on individual
physical skills in long-term athletic development (LTAD;
Lätt et al., 2009; Dias et al., 2012; Collins et al., 2019).
Longitudinal studies can provide relevant insights (Mitchell
et al., 2020; Zacca et al., 2020a), but there are few longitudinal
studies based on 12-year-old and under age-group swimmers
(Morais et al., 2014, 2020; Ferreira et al., 2019). It is well
reported that anthropometrics and maturation can affect
athletic development in age-group swimmers (Dias et al., 2012;
Moreira et al., 2014; Morais et al., 2020), with enhanced
swimming performance being observed even after detraining
periods (Meylan et al., 2014; Moreira et al., 2014). The
interplay between maturation and training response should be
considered by coaches (Muller et al., 2017; Pichardo et al.,
2018), but most previous analyses are fragmented instead of
considering the interdependence among the selected variables
(Goethel et al., 2020). Monitoring maturity status through
age at peak height velocity (PHV) can be an effective,
practical, and noninvasive approach (Beunen and Malina,
1988; Mirwald et al., 2002; Philippaerts et al., 2006; Malina,
2016).

The human body consists of several interdependent systems,
and multiple factors can affect the ability to swim fast.
Identifying which factors are important for fast swimming and
how to maximize these factors for performance improvements
requires understanding the existing network relationships.
Interventions and/or phenomena in a specific system can trigger
responses in another apparently unrelated system (Goethel
et al., 2020). By applying network analysis, it is possible
to identify the effects and interactions of each variable in
a global approach, especially when considering the effects
of changes in variables over time and their possible effects
on changes in other variables. We therefore performed a
global analysis using the changes in representative variables
to assess which variables, in relation to their changes, could
be more important for swimming performance. So, the aim
of this study is to identify the relationships between changes
in anthropometrics, maturation, and swimming kinematics on
breaststroke (BREAST) and butterfly (FLY), before and after a
47-week swimming training season in 12-year-old and under
age-group swimmers.

METHODS

Participants
Twenty age-group swimmers participated in this study. Age for
girls (n= 11) and boys (n= 9) were, respectively, 10.0± 1.3 (4.0)
and 10.5 ± 0.9 (2.5) years (mean ± SD, and range), respectively.
The participants were engaged in swimming training for at least
12 months, swimming 3 to 5 times per week, 1.000 to 2.000m
per session and had been engaged in a swimming training
program for at least for 6 months. During the 47 weeks, the best
performance in the 50-m front crawl was, for girls and boys,
respectively, 40.2 ± 5.4 (min–max: 36.6–43.8) and 36.8 ± 6.5
(31.8–41.9) s.

Procedures
All swimmers were evaluated during two identical testing
sessions: (i) before the training season, that is, during the first
week of training after the summer vacation; and (ii) after 47
weeks, at the end of the last macrocycle of the season. First,
the anthropometric profile was obtained, which was consisted
by height (HE), arm span (AS), total body mass (BM), and
sitting height (SH). After an approximately 400-m moderate-
intensity warmup, swimmers performed two 25-m all-out swim
tests (T25; randomized order), one in breaststroke (BREAST),
and one in butterfly (FLY), whereas kinematic variables were
collected manually by one trained and experienced evaluator
(Hay and Guimarães, 1983) using a stopwatch (CASIO HS-
70w, Japan). We used manual data collection to assess technical
variables (kinematic) since it is feasible for swimming coaches
in their daily training. The performance of 25m (s), time (s)
to swim intermediate 10m, and time (s) to perform three
consecutive stroke cycles along the intermediate 10m were
collected manually (Hay and Guimarães, 1983), with kinematic
variables being calculated according to Equations 1–4:

Swimming speed (m.s−1) : v = 10 m.time of 10 m−1 (1)

Stroke rate (cycles.s−1) : SR = 3 stroke

cycles.time of 3 stroke cycles−1 (2)

Stroke length (m): SL = v.SR−1 (3)

Stroke index (m2.s−1) : SI = v.SL (4)

Then, stroke rate (SR) was multiplied by 60 to obtain SR
in cycles·min−1.

Anthropometrics
Height, AS, BM, and SH were measured (Heyward and
Stolarczyk, 1996), and leg length (LL) was estimated as stature
minus sitting height (Mirwald et al., 2002). For BM, a weighting
scale (TECHLINE R©, Brazil) was used. For HE, AS, SH, and LL, a
250-cm tape (VONDER R©, Brazil) was used.
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Maturation
Maturity offset equations (Mirwald et al., 2002) were applied with
anthropometrics and age data. The equations for boys and girls
are, respectively (Equations 5 and 6):

BMO = −9.236+
[

0.0002708∗
(

LL∗SH
)]

−
[

0.001663∗
(

A∗LL
)]

+ [0.007216∗(A∗SH)]+ {0.02292∗[

(

BM

height

)

∗100]} (5)

GMO = −9.376+
[

0.0001882∗
(

LL∗SH
)]

+
[

0.0022∗
(

A∗LL
)]

+
[

0.005847∗
(

A∗SH
)]

− [0.002658∗
(

A∗BM
)

]

+ {0.07693∗[

(

BM

height

)∗

100]} (6)

where BMO and GMO are, respectively, boys and girl’s maturity
offset; LL is leg length; SH is sitting height; A is age, and BM
is body mass. With BMO and GMO data, any negative result
is before PHV (maturity offset < 0, i.e., time left to reach the
peak), and any positive results are after PHV (maturity offset =
or > 0, i.e., indicating whether the participant is exactly at the
beginning moment of PHV or how much this has passed). These
equations are gender-specific, considering biological significance
and statistics to predict maturity. Maturity offset indicates how
far, in years, an age-group swimmer is approaching or moving
away from PHV.

Statistical Analysis
Mean, SD and 95% confidence intervals were obtained and
reported for all studied variables. Shapiro–Wilk test was applied
to verify the data distribution, and comparisons were performed
with paired-samples t-tests. In fact, gender as an independent
variable was initially considered, but no significant effect was
identified for any of the studied variables, possibly due to
a similar maturation level of the participants. Therefore, we
performed t-test comparisons instead of factorial ANOVA.
Effect sizes were calculated from Hedges’ g (Lakens, 2013)
and interpreted with the following criteria: 0–0.19 trivial, 0.2–
0.59 small, 0.6–1.19 moderate, 1.2–1.99 large, 2.0–3.99 very
large, and ≥ 4.0 nearly perfect (Hopkins, 2002). Changes in
% [1 = (value after – value before)·100] were calculated for
all variables.

To verify the associations among anthropometric, kinematics,
and maturation variables changes, for both, BREAST and FLY,
a machine learning technique (Network Analysis) was used
(Epskamp et al., 2012). Gender was inserted in the network as
a dichotomous variable (1= girls and 2= boys). In the network,
variables were separated in Group 1, with gender and 1 of age,
height, arm span, body mass; group 2 with 1 of T25, v, SR, SL,
SI; and group 3 with just the 1 of the MO. Measures of centrality
were generated to understand the role of each variable’s change in
the system, that is, the values are transformed into a z-score. We
used three measures in our study (Epskamp et al., 2012):

(i) Betweenness centrality: estimated from the number of times
that a node is part of the shortest path among all other pairs
of nodes connected to the network.

(ii) Closeness centrality: determined from the inverse of the
distances from one node to all others.

(iii) Strength centrality: the sum of all the weights of the paths
that connect a node to the others.

We used the pairwise Markov random field model to improve
the accuracy of the partial correlation network. The estimation
algorithm used assumes the highest-order interaction of the true
graph. The algorithm includes an L1 (regularized neighborhood
regression) penalty. Regularization is achieved by a “less absolute
contraction and selection operator” (LASSO) that controls the
model’s sparsity (Friedman et al., 2008). The Bayesian extended
information criterion (EBIC) was used due to its conservative
method for selecting the Lambda from the regularization
parameter. The EBIC uses a hyperparameter (y) that determines
how much the EBIC selects sparse models (Chen and Chen,
2008; Foygel and Drton, 2010). The y value is usually set between
zero and 0.5; higher values indicate more parsimonious models
with fewer edges, whereas a value closer to zero indicates an
estimate with more edges. A y value of 0.25 is potentially useful
for exploratory networks, and this value was adopted in our study
(Foygel and Drton, 2010). The adjustment function returns the
estimated parameters and a weighted and unweighted adjacency
matrix. The positive relationships in the network are expressed in
green and the negative in red. The thickness and intensity of the
colors represent the magnitude of the associations. The “graph”
package in the Rstudio software (http://www.rstudio.com/), and
the “qgraph” package was used to construct the graphs (Epskamp
et al., 2012).

RESULTS

Table 1 shows the results for anthropometrics and kinematics
changes, effect sizes, and 1. Small to moderate effect sizes were
observed for changes on anthropometrical variables. Large effect
sizes were observed for changes in nearly all kinematic variables,
both in BREAST and in FLY. Performance of T25 in BREAST and
FLY showed large improvements after 47 weeks. Only BREAST
(trivial) and FLY (small) SL did not present at least moderate
changes.

For BREAST, Figure 1 shows the network of association
among changes in anthropometrics, maturation, and kinematics.
Specifically in relation to the changes in T25 BREAST, the
followings stand out: the strong and negative association with1v,
the negative association with 1SR, and the positive association
with 1AS. Positive and strong associations were identified
between changes in height and AS, and between changes in AS
and body mass. The relationship between changes in SL and
SR was strong. Changes in SR showed more central associations
inside the network.

The weight matrix for the BREAST is presented in Table 2.
The results found for 1MO and 1v (−0.93), 1MO and 1SR
(−0.59), and for 1SR and 1SL (0.49) are highlighted.

For FLY, Figure 2 shows the network of association among
changes in anthropometrics, maturation, and kinematics.
Specifically in relation to the changes in T25 FLY, the followings
stand out: the strong and negative association with 1v, the
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TABLE 1 | BEFORE and AFTER 47 weeks (47w) mean ± SD values (95% confidence intervals), p-values, effects sizes (Hedges’ g), and 1% for anthropometric and

performance/kinematics (n = 20).

Before 47 weeks After 47 weeks p-value; Effect size 1% (before vs. after)

Anthropometrics

Age (years) 10.2 ± 1.2

(9.6 to 10.8)

11.1 ± 1.2

(10.5 to 11.7)

<0.001; 0.75 (moderate)

8.9 ± 1.3

Height (cm) 142.3 ± 9.7

(137.7 to 146.6)

147.8 ± 9.5

(143.1 to 151.9)

<0.001; 0.57 (small)

3.8 ± 1.4

AS (cm) 143.6 ± 10.4

(138.5 to 148.1)

150.8 ± 11.3

(145.1 to 155.6)

<0.001; 0.41 (small)

4.9 ± 1.8

BM (kg) 36.7 ± 8.2

(32.9 to 36.4)

41.4 ± 8.5

(37.0 to 45.0)

<0.001; 0.56 (small)

12.1 ± 6.7

MO (years) −2.0 ± 0.9

(−2.4 to −1.5)

−1.3 ± 1.0

(−1.8 to −0.8)

<0.001; 0.73 (moderate)

50.9 ± 281

Performance/

kinematics

BREAST FLY BREAST FLY BREAST FLY

T25 (s) 32.0 ± 7.5

(28.4 to 35.7)

30.3 ± 7.0

(27.0 to 33.6)

24.5 ± 3.8

(22.7 to 26.4)

21.8 ± 3.6

(20.1 to 23.5)

<0.001; 1.26 (large)

−21.9 ± 9.5

<0.001; 1.52 (large)

−26.5 ± 11.0

v (m·s−1) 0.71 ± 0.12

(0.65 to 0.77)

0.76 ± 0.18

(0.68 to 0.85)

0.90 ± 0.12

(0.84 to 0.96)

1.05 ± 0.16

(0.97 to 1.12)

<0.001; 1.58 (large)

28.5 ± 19.7

<0.001; 1.70 (large)

41.0 ± 25.3

SR (cycles·min−1 ) 45.9 ± 11.9

(40.4 to 51.5)

37.1 ± 9.7

(32.5 to 41.6)

58.6 ± 8.6

(54.4 to 62.8)

45.6 ± 11.8

(40.0 to 51.1)

0.001; 1.22 (large)

26.7± 44.1

0.002; 0.78 (moderate)

16.3 ± 23

SL (m) 0.96 ± 0.23

(0.84 to 1.07)

1.30 ± 0.38

(1.13 to 1.48)

0.93 ± 0.13

(0.84 to 1.07)

1.43 ± 0.25

(1.31 to 1.55)

0.63; 0.16 (trivial)

2.2 ± 26.1

0.11; 0.40 (small)

16.7 ± 32.5

SI (m2 · s−1) 0.69 ± 0.24

(0.58 to 0.81)

1.04 ± 0.41

(0.84 to 1.23)

0.84 ± 0.20

(0.75 to 0.94)

1.50 ± 0.35

(1.33 to 1.66)

0.005; 0.67 (moderate)

31.9 ± 49.2

0.001; 1.20 (large)

66.8 ± 77.4

AS, arm span; BM, body mass; MO, maturity offset; T25, performance in 25-m; v, swimming speed; SR, stroke rate; SL, stroke length; SI, stroke index.

negative association with 1SR and 1SL. Positive and strong
associations were identified between changes in HE and AS,
and between changes in AS and BM. The relationship between
changes in SL and SR was strong. Changes in SR showed more
central associations inside the network.

The weight matrix for the FLY is presented in Table 3. The
results found for 1MS and 1SR (−0.92) are highlighted.

Table 4 shows the centrality measurements for BREAST and
FLY. We highlight for betweenness, closeness, and strength 1AS
in BREAST and1SL in FLY. As gender is a dichotomous variable
and does not suffer changes, those centrality measures will not be
accounted.

DISCUSSION

We performed a global analysis to identify the relationships
between changes in anthropometrics, maturation, and
kinematics in 12-year-old and under age-group swimmers
when swimming BREAST and FLY during a typical training
season (47 weeks). The main finding of this study was that
changes in performance and kinematics were higher than
anthropometrics after 47 weeks, that is, improvements in
swimming performance (T25) do not seem to be so dependent
on growth, even though AS has stood out in the analysis of
centrality measures.

Changes in technique (kinematics) may be related to motor
coordination development in swimming (Guignard et al., 2017).
Young swimmers are susceptible to change in their swimming

FIGURE 1 | BREAST network of association between changes (1) in

anthropometrics, maturation, and kinematics (using gender as a dichotomous

variable); n = 20.

mechanics at least three times in each competitive season (Morais
et al., 2020). Typically, front crawl is the first swimming technique
during swimming lessons in North America, whereas BREAST
is the first in Europe, Asia, and Japan (Langerdorfer, 2013).
However, Brazilian age-group swimmers composed our sample,
where North America’s learning sequence is normally followed.
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TABLE 2 | The weight matrix for the BREAST with the 1% (gender as a dichotomous variable) (n = 20).

BREAST

Gender 1Age 1Height 1AS 1BM 1MO 1T25 1v 1SR 1SL 1SI

Gender 0

1Age −0.24 0

1Height −0.19 −0.22 0

1AS 0.10 −0.28 0.79 0

1BM 0.09 −0.15 0.29 0.38 0

1T25 0.01 −0.26 0.23 0.37 0.07 0

1v −0.03 0.24 −0.10 −0.27 −0.02 –0.93 0

1SR 0.04 −0.08 −0.00 −0.07 −0.36 –0.59 0.63 0

1SL 0.02 0.02 −0.17 −0.02 0.54 0.05 −0.03 –0.60 0

1SI −0.21 0.23 0.11 0.18 0.77 −0.04 0.05 −0.38 0.49 0

1MO −0.12 −0.05 −0.63 −0.64 −0.26 0.17 −0.18 −0.18 0.18 −0.07 0

1, delta%; age; height; AS, arm span; BM, body mass; T25, performance in 25-m; v, swimming speed; SR, stroke rate; SL, stroke length; SI, stroke index; MO, maturity offset. Bold

values that stand out in the analyzes.

Thus, swimmers from our study were probably still in the process
of learning simultaneous swimming techniques.

Simultaneous swimming techniques involve more
coordinative skills and are less economic than alternate
ones (Zamparo et al., 2020). BREAST is characterized by
underwater recovery of both arms and legs (Leblanc et al., 2009),
which produces resistive forces and consequently more energy
expenditure (Zamparo et al., 2009). Other aspects that can
influence poor glide and more exhausting action in BREAST are
the head position combined with the breathing phase (Kapus
et al., 2018) and the poor effectiveness of leg propulsion (Strzała
et al., 2012). Similar events occur in FLY, in which both hands
move to the surface from the water simultaneously (Thomas,
1990), something that tends to destabilize the positioning of the
body (Sanders et al., 1995), turning the FLY into an “undulating
stroke” (Riewald and Rodeo, 2015), characterized by the up- and
downmovements of the body. Based on the motor coordination
development, there are constraints in the motor learning process
in the aquatic environment, which are visualized with the
Newell (1986) model. Environmental, task, and organism factors
may restrict the dynamic of the response, which could follow
the reasoning about the process for improving simultaneous
stroke performance.

The network analyses using changes in anthropometrics,
maturation, and kinematics for both, BREAST and FLY, revealed
the complexity of the systems. In swimming (Guignard et al.,
2017), every action of a swimmer somehow disturbs the
aquatic environment. This disturbance leads to new patterns
of movement and so on. Likewise, a network analysis using
data from a longitudinal approach that somehow can influence
performance showed the multiple associations between changes
after 47 weeks on anthropometric and kinematic variables.
Even that, changes in T25 were mainly linked to 1v, 1SR,
and 1AS for BREAST, and 1v, 1SR, and 1SL for FLY. The
notion of complexity on changes in swimming performance
was reinforced, especially for simultaneous techniques in age-
group swimmers.

FIGURE 2 | FLY network of association between changes (1) in

anthropometrics, maturation, and kinematics (using gender as a dichotomous

variable); n = 20.

Regarding centrality, the betweenness indicates which
variables are closer to others and could be the easiest path
for changes. In the BREAST, changes in AS and SR (both
1.34) and SI (0.94) were highlighted. Clearly, AS changes are
beyond intervention possibilities. However, the focus on SR and
stroke index (SI, an indirect measure swimming efficiency) to a
given v (Costill et al., 1985) seems to be important in BREAST
performance development. Regarding FLY, changes in the SL
(2.02) are probably related to the variation in the distance
covered per cycle, but in a specific way; that is, the complex
coordination between one arm stroke, one undulation, and two
kicks could be executed in an easier way by young swimmers
(Tosta et al., 2019), which implies an improved performance.

The closeness measure can indicate which variables could
be more quickly affected by interventions. Regarding BREAST,
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TABLE 3 | The weight matrix for the FLY with the 1% (gender (gender as a dichotomous variable) (n = 20).

FLY

Gender 1 Age 1 Height 1 AS 1 BM 1 T25 1v 1 SR 1 SL 1 SI 1 MO

Gender 0.00

1 Age −0.39 0.00

1 Height −0.33 −0.08 0.00

1AS −0.04 −0.03 0.78 0.00

1BM −0.07 0.13 0.36 0.59 0.00

1T25 −0.16 −0.07 0.10 0.08 0.13

1v 0.11 0.07 −0.07 −0.11 −0.32 0.00

1SR −0.30 0.13 0.41 0.46 0.14 –0.92 0.00 0.00

1SL 0.43 −0.08 –0.53 –0.55 −0.34 −0.24 0.30 −0.82 0.00

1SI 0.39 −0.38 0.08 0.13 0.31 −0.30 0.27 −0.21 0.12 0.00

1MO −0.27 −0.10 −0.43 −0.35 −0.17 0.11 −0.21 0.10 −0.07 −0.09 0.00

1, delta%; age; height; AS, arm span; BM, body mass; T25, performance in 25-m; v, swimming speed; SR, stroke rate; SL, stroke length; SI, stroke index; MO, maturity offset. Bold

values that stand out in the analyzes.

TABLE 4 | BREAST and FLY centrality measures (gender as dichotomous variable) (n = 20).

Betweenness Closeness Strength

BREAST FLY BREAST FLY BREAST FLY

Gender −1.05 1.73 −2.39 0.31 −2.33 −0.01

1Age −0.25 −0.83 −0.88 −1.44 −1.10 −1.56

1Height −0.25 0.02 −0.18 0.77 0.46 0.98

1AS 1.34 0.02 1.19 0.82 1.11 0.91

1BM 0.94 0.02 0.72 0.47 0.82 0.08

1T25 0.14 −0.83 0.67 −1.09 0.45 −0.53

1v −1.05 −0.25 0.02 −0.74 0.08 −0.19

1SR 1.34 −0.83 0.30 0.71 0.82 0.89

1SL −1.05 2.02 0.14 1.67 −0.52 1.50

1SI 0.94 −0.25 0.85 −0.49 0.14 −0.72

1MO −1.05 −0.83 −0.46 −0.99 0.05 −1.34

z-scored centrality metrics; 1, delta%; age; height; AS, arm span; BM, body mass; T25, performance in 25-m; v, swimming speed; SR, stroke rate; SL, stroke length; SI, stroke index;

MO, maturity offset. Bold values that stand out in the analyzes.

changes in AS and SR (both 1.34) and SI (0.94) were highlighted.
Since AS is an anthropometric variable, the focus for faster
changes in performance in BREAST should be on changes
in SR and SI (a variable that incorporates both SL and v)
(Costill et al., 1985). Regarding FLY, as in the betweenness
measure, changes in SL are dominant in performance changes.
The strength measure indicates which variables (in the current
pattern of the network) have the strongest relationships. For both
BREAST and FLY, changes in AS showed high values of strength.
However, changes in SR (for BREAST) and SL (for FLY) were also
highlighted. All these centralitymeasuresmust be analyzed under
the environment constraint theory (Newell, 1986).

According to Newell (1986), environment constraints refer
to the environmental conditions surrounding the subject and
can be physical or social, such as the aquatic milieu, water
and air temperature, and audience, among others. Establishing
oneself as an independent individual in the aquatic milieu is

a long and necessary process to become a swimmer. This skill
mastery requires repetitive exercise for a certain time before
actually mastering it (Gani et al., 2019). The individual thus
acquires “water sensitivity” and can properly use his or her body
dimensions and propulsive force to advance. This relationship
was evident for FLY, mainly due to changes in SL. Perhaps,
changes in SL were related to the undulation, that is, the FLY
leg kick. This movement is not a “natural” movement for
humans, that is, it involves an individual adaptation with the
environment combined with a development in motor skills. Over
time, children replace the “pedaling” movement of the legs by
oscillation of the flippered foot (Collard et al., 2013), which leads
to the issue of task constraints.

Task constraints describe the activity to be performed by the
subject and whether individual objectives, rules or instructions,
and possible implements are included. Task constraints can
generate changes in movement patterns, and these changes
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trigger changes in the system, which leads individuals to a new
organizational state (Newell, 1986). Synchronization between
specific motor points of arm and leg actions are the key
factor for fast FLY swimming (Strzała et al., 2017). Technical
development provides a more economic technique, using less
force for a determinant movement. Previous data by Havriluk
(2010) indicated that the advantage of faster swimmers derives
more from technique than force capacity.

Typically, beginner swimmers spend more time with the head
out of water during breathing time when swimming BREAST. It
has been well reported that head position influences technique
(Kapus et al., 2018), and leg glide is significantly smaller among
nonexperienced swimmers (Leblanc et al., 2009). The authors
observed that recreational swimmers perform BREAST arm
recovery while doing their leg kick, which shows a simultaneous
extension of their two pairs of limbs. In addition, novice
swimmers are prone to not pull with their arms while recovering
their legs (Taguchi, 1975). These actions are related to changes
in motor skills which are developed during training sessions
(Table 1). Moreover, impaired SL combined with increased
SR when comparing before and after may be related to less
time spent during breathing time when swimmers are more
experienced, making the stroke more cyclic and adjusted to the
T25 pace.

Organism constraints refer to the characteristics of the subject
(Newell, 1986), such as anthropometric, physiological, and
psychological factors. Changes in AS for both BREAST and FLY
presented a high strength value (Table 4) and was one of the
variables with the strongest associations inside the network. A
previous study (Sammoud et al., 2018) indicated that fat mass
is the most important whole-body size characteristic for 100-
m BREAST (∼12 years old) and was one of the variables with
the strongest associations inside the network. Sammoud et al.
(2017) suggested that anthropometric measurements are strongly
associated with the 100-m butterfly speed performance of age-
group swimmers (∼13 years old). High-level swimmers present
a wider AS, imposing higher v and SI, and therefore, faster
performance (Sammoud et al., 2017) than those with shorter
AS. These findings highlight that anthropometric factors are
somehow related to the performance changes during a training
season in age-group swimmers.

Maturity offset can play a role in the organism constraints
for stroke coordination. For BREAST and FLY, changes in MO
showed a high relationship with the development process, with
high values for betweenness (Table 4), that is, puberty affects
swimming technique development. Likewise, in FLY, changes in
MO showed higher values of closeness and strength. Swimmers
with a more advanced maturation status presented better
coordination when swimming FLY than others (Tosta et al.,
2019). However, although maturation of prepubertal swimmers
seems to be an important factor for consideration in FLY stroke
coordination, it does not affect the maximum performance for
short distances (Tosta et al., 2019). Despite some correlation
between changes in AS and changes performance of T25,
kinematics (SR and SI) better explained swimming performance.

The swimming athletic development process is multifactorial
(Zacca et al., 2020a). Coaches should be aware of their athletes’

maturation processes, understand the impact of growth on
changes in performance, and seek the best swimming technique
(Zacca et al., 2020b). However, looking at all factors, as a global
model, is fundamental to understanding swimmer’s development
(Goethel et al., 2020). Knowing how to handle changes in SR
and SL and considering body growth and maturation can help
in LTAD strategies for swimming and related aquatic sports.

The use of network analysis to understand a phenomenon in
sports and health sciences is quite new, but its basic ideas have
been noted since the 1960s (Grusky, 1963). The digital technology
development has contributed to an exponential increase in
network analysis studies in health and sport sciences (Wäsche
et al., 2017; Goethel et al., 2020; Lord et al., 2020). Although
network analysis offers advantages compared to traditional
statistical procedures, it is important to acknowledge some
shortcomings and potential limitations. Network analysis, a set of
integrated techniques, was applied in this study trying to describe
relations among variables, by analyzing the structures that
emerge from the recurrence of these relations. When performing
a network analysis, it is assumed that better interpretations
of phenomena are yielded. Despite that, causal relationships
between networks and a specific phenomenon normally involve
a theoretically informed decision that identifies the independent
and dependent variables. Whereas deterministic methods usually
highlight that network analysis enables to study how the structure
of relationships affectsthe phenomena, “structurally bounded
purposive actions may affect the social structure and vice
versa (Chiesi, 2001). The sample size can be a problem for
estimating networks with many parameters and consequently for
interpretation. To increase reliability and limit the number of
possibly spurious relationships in the network, we use statistical
regularization techniques that consider the complexity of the
model to minimize the small sample. First, we used a LASSO
(Friedman et al., 2008) applied to the estimation of partial
correlation networks. LASSO performs well in estimating partial
correlation networks (Fan et al., 2009), and this results in some
small weak edge estimates being reduced to exactly zero, resulting
in a sparse network (Tibshirani, 1996). LASSO generates a tighter
graph (fewer connections between nodes), reflecting merely the
most important empirical relationships in the data. Simulation
studies suggest that LASSO has a low probability of false positives,
which provides some confidence that an observed edge is indeed
present in the network in small samples (Krämer et al., 2009).
Besides, LASSO requires the definition of a tuning parameter.
The sparsity of the produced network by LASSO depends on
the value that the researcher sets the fitting parameter (λ),
that is, the higher the selected λ value, the more edges are
removed from the network, Thus, its value directly influences
the structure of the output (i.e., the network). Thus, the fitting
parameter “λ” needs to be carefully selected to generate a
network structure that minimizes the number of spurious edges
while maximizing the number of true edges (Foygel and Drton,
2010). To ensure an optimal fitting selected parameter, a typical
method includes estimating multiple networks under different
λ values. These different networks range from a completely
connected network (where each node is connected to each
other) to an empty network (where no nodes are connected).

Frontiers in Sports and Active Living | www.frontiersin.org 7 February 2022 | Volume 4 | Article 799690

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Fiori et al. Network Analysis Applied in Swimming

LASSO estimations generate a collection of networks rather than
a single network, that is, it is important to select the ideal
network model, which is usually achieved by minimizing the
“extended Bayesian information criterion” (EBIC) (Chen and
Chen, 2008), which works well in identifying the true network
structure (Foygel and Drton, 2010; van Borkulo et al., 2014),
especially when the true network is scarce. EBIC has been
extensively used in psychology networks (e.g., Beard et al., 2016;
Isvoranu et al., 2016), preschoolers (Bandeira et al., 2020; Martins
et al., 2021) by increasing the accuracy and interpretability of
generated networks (Tibshirani, 1996). Thus, although network
models can be reliable and robust with small samples, this aspect
may be a limitation in our study. Finally, studies with older
swimmers and/or adding physiological related variables (e.g.,
metabolic power and energy cost; di Prampero, 1986; Zamparo
et al., 2020; Zacca et al., 2020b) will be welcomed in the next
related experiments.

Twelve-year-old and under age-group swimmers regularly
change their technique when swimming BREAST and FLY.
Maturation, HE, AS, and SL showed a great impact on BREAST
development, whereas age, SR, and HE had a strong impact
for FLY. The SI represents an indirect measure of swimming
efficiency and should be monitored in both BREAST and FLY to
connect growth with the other technique variables. The dynamic
process of athletic development and the perception of complexity
of changes and relationships between swimming performance-
related variables were underpinned, particularly for simultaneous
techniques in age-group swimmers.
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