Universidade Federal do Rio Grande do Sul

Programa de Pós-Graduação Ciências Médicas: Endocrinologia

Cristine Dieter

O papel de RNAs não-codificantes no desenvolvimento do diabetes mellitus e da

doença renal do diabetes

Porto Alegre

2023

Cristine Dieter

O papel de RNAs não-codificantes no desenvolvimento do diabetes mellitus e da doença renal do diabetes

Tese apresentada como requisito parcial à obtenção do título de doutora em Programa Endocrinologia pelo de Pósgraduação Ciências Médicas: em Endocrinologia da Faculdade de Medicina da Universidade Federal do Rio Grande do Sul. Orientador: Prof^a Dr^a Daisy Crispim Moreira Co-orientador: Prof^a Dr^a Taís Silveira Assmann

Porto Alegre

2023

CIP - Catalogação na Publicação

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os dados fornecidos pelo(a) autor(a).

AGRADECIMENTOS

Eu não poderia escrever essa tese sem agradecer aqueles que fizeram parte desta caminhada.

À minha mãe, Noeli Scherer, que sempre foi uma inspiração pra mim e me fazer querer chegar até aqui. Obrigada por sempre me incentivar e aplaudir todas as minhas conquistas. Obrigada não medir esforços para nos ajudar e cuidar de nós, inclusive ficando sem carro nesses últimos anos pós-pandemia em que precisei dele pra ir a Porto Alegre para fazer o doutorado. Essa conquista é nossa! Amo você!

À minha irmã, Daiane Dieter, por sempre me aconselhar, estar do meu lado e comemorar e vibrar comigo todas as minhas conquistas! Obrigada pelo teu olhar mais razão e menos emoção. Obrigada pela compressão quando precisei do teu celular pra gravar para a disciplina do doutorado e da Semana Científica do HCPA. E obrigada por trazer o Leonardo Diehl pra fazer parte da nossa família. Todas as vezes que precisei, vocês dois sempre me ajudaram. Jamais vou esquecer o quanto vocês dois comemoraram as minhas conquistas ao longo desses anos. Amo vocês!

Ao Guilherme Scartezzini Zagonel, por ser simplesmente você e me dar todo o apoio que precisei, especialmente nesta reta final. Obrigada por sempre me incentivar, por acreditar em mim, comemorar minhas conquistas e pelo melhor abraço e colo do mundo. Obrigada por toda compreensão neste período, sei o quanto abri mão de momentos contigo porque precisava terminar um artigo, escrever a tese e preparar uma apresentação. Sem dúvidas, tudo isso ficou mais leve e fácil com você do meu lado. Tu és o acaso mais incrível da minha vida e sou imensamente grata por te ter comigo. Obrigada por nunca soltar a minha mão. Te amo! À minha super orientadora, Daisy Crispim Moreira, por sempre acreditar em mim e me incentivar como aluna/pesquisadora. Tu com toda a certeza és um exemplo de professora e pesquisadora pra mim e tenho a sorte de ter entrado no teu grupo de pesquisa em 2014. Obrigada por sempre confiar nos meus projetos e nas minhas ideias. Obrigada pela troca de conhecimentos que tivemos ao longo desses anos. Sou muito grata por tudo que aprendi contigo.

À Taís Silveira Assmann, minha coorientadora, por desde a época do mestrado me auxiliar e ensinar sobre os RNAs não codificantes e as análises de bioinformática. Com certeza tu foste uma das pessoas que me inspiraram como pesquisadora. Obrigada pelo apoio, aprendizado, conhecimento compartilhado e auxilio no desenvolvimento desta tese.

À Dra Andrea Carla Bauer, Dr. Luís Henrique Canani, Dra Márcia Puñales, Dr. César Geremias e Dr. Balduíno Tscheidel pelas fundamentais colaborações e contribuições que enriqueceram este trabalho.

À Natália Emerim Lemos, minha mãe cientifica, por ser minha colega de laboratório, mas também um grande presente que o mundo da pesquisa me deu. Obrigada por dividir todo esse período comigo, pela ajuda nos experimentos, pela amizade que construímos ao longo desses anos, pelas idas e vindas à Porto Alegre, por sempre me auxiliar em todos os desafios que surgiram (ensaiar apresentações, processos seletivos) e por ser você! Obrigada por, mesmo estando em SP, comemorar muito e vibrar com as minhas conquistas! Como sempre te falei, sou muito grata por ter te encontrado em 2014 e aprendido tanto contigo. Se eu estou terminando o doutorado hoje, saibas que tu tens um papel muito importante nisso. Gratidão pela nossa amizade. Conta sempre comigo! Te amo!

Aos colegas e amigos do Serviço de Endocrinologia, pela troca de conhecimento, incentivo e amizades construídas ao longo desses anos.

Às alunas de iniciação cientifica Nathalia Rodrigues de Faria Corrêa, Denise Taurino Ramos e Eliandra Girardi, sem vocês essa tese não teria acontecido. Obrigada por estarem comigo ao longo deste período, pela contribuição nos experimentos no laboratório e principalmente pelas coletas no ICD. Se temos o nosso banco de amostras hoje, é porque vocês passaram muitas manhãs no ICD coletando e esperando os pacientes. Vocês foram fundamentais para a construção dessa tese de doutorado.

À Unidade de Pesquisa Experimental, em especial à Dra. Marina Siebert, pela ajuda nos experimentos de *microarray*.

Ao Núcleo de Bioinformática do Hospital de Clínicas de Porto Alegre, em especial à Thayne Woycinck Kowalski, Mariana Recamonde Mendoza e Giovanna Câmara Guidecelli, pelas análises de bioinformática e colaboração na presente tese.

Ao Instituto da Criança com Diabetes por confiar e acreditar em mais um projeto de pesquisa, seguindo com a parceira construída ao longo dos últimos anos.

Aos pacientes dos ambulatórios de endocrinologia do Hospital de Clínicas de Porto Alegre e do Instituto da Criança com Diabetes por aceitarem participar desse trabalho.

A Cristiane Dias, por cuidar da minha saúde mental nesses últimos anos. Se eu consegui curtir essa reta final de uma forma leve e tranquila, com certeza é porque você esteve comigo. Gratidão! Gratidão! Gratidão!

A todos os amigos e familiares que me apoiaram e incentivaram no decorrer desta caminhada.

A CAPES, CNPq, FAPERGS e FIPE-HCPA pelo apoio financeiro.

Por fim, agradeço a todos que de alguma forma contribuíram para a realização desse trabalho.

Esta tese de doutorado segue o formato proposto pelo Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Metabolismo e Nutrição da Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, sendo apresentada na forma de uma breve introdução sobre o assunto, seguida dos manuscritos originais sobre o tema da tese.

Artigo 1: "Urinary microRNAs are associated with progression to end-stage renal disease in type 1 diabetes patients"

Artigo 2: "The impact of lncRNAs in diabetes mellitus: A systematic review and *in silico* analyses"

Artigo 3: "Expressions of lncRNAs *MALAT1*, *MEG3*, and *TUG1* are upregulated in recently diagnosed type 1 diabetes patients"

Artigo 4: "The lncRNA *MALAT1* is upregulated in urine of type 1 diabetes mellitus patients with diabetic kidney disease"

Artigo 5: "The rs3931283/*PVT1* and rs7158663/*MEG3* polymorphisms are associated with diabetic kidney disease and markers of renal function in patients with type 2 diabetes mellitus"

Que os nossos esforços desafiem as impossibilidades. Lembrai-vos de que as grandes proezas da história foram conquistas daquilo que parecia impossível.

Charles Chaplin

RESUMO

Os RNAs não codificantes (ncRNAs) são um grande grupo de RNAs que não têm funções aparentes de codificação de proteínas, mas desempenham papéis importantes em diversos processos biológicos, incluindo a patogênese de doenças. Dentre os ncRNAs, duas classes vêm sendo amplamente estudadas, os microRNAs (miRNAs) e os RNAs nãocodificantes longos (lncRNAs).

Os miRNAs são pequenos ncRNAs que regulam a expressão gênica. Mudanças na expressão de miRNAs foram observadas em diversas situações patológicas, incluindo no diabetes mellitus (DM) e suas complicações crônicas. Os estudos que relacionaram miRNAs circulantes, urinários ou renais com a doença renal do diabetes (DRD) sugerem que um perfil de miRNAs parece se alterar nas diferentes fases desta complicação. Entretanto, os resultados desses estudos ainda são inconclusivos. Sendo assim, estudos ainda são necessários para identificar um perfil alterado de expressão de miRNAs em pacientes com DRD.

Os miRNAs encontrados em fluidos biológicos, tais como no sangue e na urina, são de especial interesse como potenciais biomarcadores, pois podem ser coletados facilmente e são estáveis sob diferentes condições de estocagem. Nesse sentido, os miRNAs urinários podem ser possíveis candidatos a biomarcadores da DRD, especialmente porque não são eliminados durante o processo de hemodiálise, não sofrem filtração glomerular e podem refletir mais diretamente alterações renais ao contrário de miRNAs circulantes no plasma ou soro, os quais podem estar marcando alterações em outros tecidos. Além disso, a coleta de urina aleatória é fácil de ser realizada, não necessita jejum e pode ser realizada a qualquer momento do dia.

Dessa forma, realizou-se uma análise do miRNoma urinário (análise de todos os miRNAs maduros conhecidos) em pacientes com DRD [progressores vs. não-progressores para declínio rápido na taxa de filtração glomerular estimada (TFGe)] e em pacientes sem essa complicação com o objetivo de identificar um perfil de miRNAs urinários envolvidos no desenvolvimento e progressão da DRD em pacientes com DM tipo 1 (DM1). Para isso, realizamos uma fase de screening, onde foi feita a análise do miRNoma urinário em pacientes com DM1, sendo 6 sem DRD e 14 com DRD [divididos em progressores (n= 7) e não-progressores (n= 7) em relação à diminuição rápida na TFGe (declínio ≥ 3,5 mL/min/1,73m²/ano) durante o período de seguimento do estudo (média de 11.6 \pm 3.6 anos)]. O microarray foi realizado utilizando o GeneChip miRNA 4.0 arrays (Thermo Fisher Scientific). Como resultado, identificamos 79 miRNAs diferencialmente expressos entre os grupos. Entre esses, 63 diferiram entre progressores vs. pacientes com TFGe normal; 12 entre não-progressores vs. pacientes com TFGe normal; e 15 entre progressores vs. nãoprogressores. Análises de bioinformática mostraram que esses miRNAs estão envolvidos em vias associadas com o DM e a DRD. Após a análise do miRNoma, 2 miRNAs diferencialmente expressos entre os grupos da amostra screening foram selecionados para validação individual por real-time PCR. Isso foi feito em uma amostra independente de 46 pacientes com DM1: 18 sem DRD e 28 com DRD, também divididos entre progressores (n = 12) e não-progressores (n = 16) para diminuição rápida na TFGe. Confirmamos que o hsamiR-30a-5p está aumentado em pacientes progressores vs. não-progressores e pacientes sem DRD. O hsa-miR-210-3p não teve seu resultado confirmado nesta amostra de validação. Além disso, realizamos uma segunda validação comparando os nossos dados do miRNoma com dados de um estudo de transcriptômica disponível no banco de dados público GEO (GSE121221). Esta análise confirmou que os hsa-miR-212-5p, hsa-miR-4484 e hsa-miR-4487 apresentam níveis de expressão diminuídos em pacientes com DRD em comparação aos pacientes sem esta complicação. Como conclusão desse primeiro artigo, os hsa-miR-30a-5p, hsa-miR-212-5p, hsa-miR-4484 e hsa-miR-4487 foram validados como potenciais biomarcadores para a progressão da DRD em pacientes com DM1.

Além de investigar o papel dos miRNAs na DRD, também avaliamos o envolvimento de lncRNAs no desenvolvimento do DM e da DRD. Os lncRNAs são moléculas de RNA longas (> 200 nucleotídeos) que estruturalmente se assemelham ao mRNA, mas não codificam proteínas. Essa classe de RNA não codificante já foi associada com funções como de regulação da expressão gênica, controle do ciclo celular, transcrição, regulação do *splicing*, diferenciação celular, inativação do cromossomo X e *imprinting* gênico. Interessantemente, lncRNAs têm sido identificados em condições normais e patológicas, podendo funcionar como biomarcadores de diversas doenças, tais como o DM e suas complicações crônicas. Desta forma, visando proporcionar um melhor entendimento do papel do lncRNAs no desenvolvimento do DM, realizamos uma revisão sistemática e um estudo de caso-controle, seguido de análises de bioinformática, com o objetivo de encontrar lncRNAs associados ao DM.

A revisão sistemática incluiu 53 estudos que investigaram a expressão de lncRNAs em pacientes com DM1 ou DM tipo 2 (DM2). Como resultado, encontramos 6 lncRNAs consistentemente desregulados em pacientes com DM (*ANRIL*, *HOTAIR*, *MALAT1*, *MIAT*, *KCNQ10T1* e *MEG3*) em comparação ao grupo controle. Análises de bioinformática demonstraram que esses lncRNAs estão envolvidos em vias relacionadas ao DM, tais como PI3K/Akt, MAPK, apoptose e FoxO. No estudo de caso-controle, investigamos a expressão dos lncRNAs *MALAT1*, *MEG3*, *MIAT*, *PVT1* e *TUG1* em células mononucleares de 27 pacientes com DM1 (casos) e 13 indivíduos saudáveis (controles). O grupo caso foi dividido em: 14 pacientes com <5 anos de diagnóstico de DM1 e 13 pacientes com \geq 5 anos de diagnóstico. As expressões dos lncRNAs *MALAT1* e *TUG1* foram aumentadas em pacientes com <5 anos de DM1 em comparação ao grupo controle e pacientes com \geq 5 anos de diagnóstico. A expressão de *MEG3* também estava aumentada nos pacientes <5 anos de DM1 *vs*. controles. Interessantemente, os níveis de expressão de *MALAT1* e *TUG1* foram negativamente correlacionados com o tempo de DM1 e os níveis de *MEG3* e *TUG1* foram positivamente correlacionados com os valores de hemoglobina glicada.

Além dos estudos em relação ao papel dos lncRNAs no contexto do DM, também avaliamos o envolvimento dessa classe de RNAs no desenvolvimento da DRD. Assim, em um primeiro estudo, avaliamos as expressões dos lncRNAs *MALAT1* e *TUG1* na urina de pacientes com DM1 categorizados em: 18 pacientes com DRD (casos) e 9 pacientes sem esta complicação (controles). A expressão do lncRNA *MALAT1* foi aumentada na urina dos pacientes com DRD em comparação ao grupo controle. Análises de bioinformática mostraram que esses dois lncRNAs estão envolvidos em vias relacionadas ao DM e a DRD, tais como glicólise/gliconeogênese, PI3K-Akt, AMPK e a via do DM1.

Num segundo estudo relacionado à associação de lncRNAs com DRD, comparamos as frequências dos polimorfismos rs3200401/*MALAT1*, rs1894720/*MIAT*, rs3931283/*PVT1*, rs11993333/*PVT1*, rs5749201/*TUG1* e rs7158663/*MEG3* entre 902 pacientes com DM2 com DRD (casos) e 394 pacientes com DM2 sem DRD (controles). Como resultado, o genótipo G/G do polimorfismo rs3931283/*PVT1* foi associado com risco para DRD após ajuste para covariáveis. Em concordância, os pacientes com o genótipo G/G também apresentaram níveis maiores de excreção urinária de albumina (EUA) em comparação aos pacientes com o genótipo A/A. Interessantemente, pacientes com o genótipo G/G do polimorfismo rs7158663/*MEG3* tiveram níveis diminuídos de creatinina e valores aumentados de TFGe comparado aos portadores do alelo A. Além disso, o alelo G deste polimorfismo no gene *MEG3* foi associado com proteção para DRD severa.

Em conclusão, os estudos incluídos nesta tese evidenciaram o papel de ncRNAs no DM e na DRD, demonstrando a contribuição de fatores epigenéticos no desenvolvimento dessas patologias. Um perfil de miRNAs associados com o desenvolvimento e progressão de DRD em pacientes com DM1 foi identificado. Além disso, nossos estudos indicam o envolvimento dos lncRNAs na patogênese do DM e da DRD, através de alterações nos seus níveis de expressão como também por meio da presença de polimorfismos genéticos nesses lncRNAs.

Palavras-chave: MicroRNAs. LncRNAs. Diabetes mellitus. Doença renal do diabetes. Biomarcadores.

ABSTRACT

Non-coding RNAs (ncRNAs) are a large group of RNAs that have no apparent protein-coding functions, but play important roles in diverse biological processes, including in the pathogenesis of diseases. Among ncRNAs, two classes have been widely studied, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs).

MiRNAs are small non-coding RNAs that negatively regulate gene expression. Changes in miRNA expressions have been observed in several pathological situations, including in diabetes mellitus (DM) and its chronic complications. The studies that have associated circulating, urinary, or renal miRNAs with diabetic kidney disease (DKD) suggest that a miRNA profile seems to be altered in the different stages of this disease. However, the results of these studies are still inconclusive. Therefore, additional studies are necessary to identify an altered profile of miRNA expression in patients with DKD.

MiRNAs found in biological fluids, such as circulating and urinary miRNAs, are of special interest as potential biomarkers since they can be collected easily and are stable under different storage conditions. In this context, urinary miRNAs could be potential biomarkers of DKD, specially because they are not eliminated during the hemodialysis process, do not undergo glomerular filtration, and may more directly reflect renal changes as opposed to circulating miRNAs in plasma or serum, which may be marking changes in other tissues. Moreover, a random urine collection is easy to perform, does not require fasting, and can be performed at any time of the day.

Therefore, a urinary miRNoma analysis (analysis of all known mature miRNAs) was performed in patients with DKD [progressors *vs.* non-progressors for a rapid decline in the estimated glomerular filtration rate (eGFR)] and patients without this complication, aiming to identify a profile of urinary miRNAs involved in the development and progression of DKD in patients with type 1 DM (T1DM). For this, in a screening phase, the urinary miRNoma was analyzed in 6 patients with T1DM without DKD and 14 with T1DM and DKD [divided into progressors (n=7) and non-progressors (n=7) in relation to a rapid decline in eGFR (\geq 3.5 mL/min/1.73 m²/year) during the study follow-up (mean of 11.6 ± 3.6 years)]. The miRNoma was performed with the microarray technique, using the GeneChip miRNA 4.0 arrays (Thermo Fisher Scientific). As a result, we identified 79 differentially expressed miRNAs between groups. Of these, 63 differed between progressors vs. patients with normal eGFR; 12 between non-progressors vs. patients with normal eGFR; and 15 between progressor vs. non-progressor groups. Bioinformatics analyses showed that these miRNAs are involved in pathways associated with DM and DKD. After miRNoma analysis, 2 differentially expressed miRNAs between groups of the screening sample were selected for individual validation by real-time PCR. This was done in an independent sample of 46 T1DM patients: 18 without DKD and 28 with DKD, also divided into progressors (n= 12) and non-progressors (n= 16) for a rapid decrease in eGFR. We confirmed that hsa-miR-30a-5p is increased in progressors vs. non-progressor patients and patients without DKD. Hsa-miR-210-3p was not confirmed in the validation sample. In addition, we performed a second validation comparing our miRNoma data with data from a transcriptomic study available in the public GEO database (GSE121221). This analysis confirmed that hsa-miR-212-5p, hsa-miR-4484 and hsa-miR-4487 show decreased expression levels in patients with DKD compared to patients without this complication. As a conclusion of this first paper, hsa-miR-30a-5p, hsa-miR-212-5p, hsa-miR-4484, and hsa-miR-4487 were validated as potential biomarkers of DKD progression in T1DM patients.

In addition to the study of the role of miRNAs in DKD, we also evaluated the involvement of lncRNAs in the development of DM and DKD. LncRNAs are RNAs with >200 nucleotides that structurally resemble mRNAs but are unable to encode proteins. This

class of non-coding RNAs has already been associated with functions such as regulation of gene expression, cell cycle control, transcription, splicing regulation, cell differentiation, X chromosome inactivation, and gene imprinting. Interestingly, lncRNAs have a key role in many physiological and pathological processes and, therefore, can be biomarkers of several diseases, including DM and DKD. Thus, to provide a better understanding of the role of lncRNAs in the development of DM, we carried out both a systematic review and a case-control study, followed by bioinformatics analysis, to find lncRNAs associated with DM.

The systematic review included 53 studies that investigated lncRNA expressions in patients with T1DM or type 2 DM (T2DM). As a result, we found 6 lncRNAs consistently dysregulated in patients with DM (*ANRIL*, *HOTAIR*, *MALAT1*, *MIAT*, *KCNQ10T1*, and *MEG3*) compared to the control group. Bioinformatics analyses demonstrated that these lncRNAs are involved in DM-related pathways, such as PI3K/Akt, MAPK, apoptosis, and FoxO. In the case-control study, we investigated the expression of lncRNAs *MALAT1*, *MEG3*, *MIAT*, *PVT1*, and *TUG1* in mononuclear cells from 27 T1DM patients (cases) and 13 healthy individuals (controls). The case group was divided into 14 patients with <5 years of diagnosis of T1DM and 13 patients with \geq 5 years of diagnosis. LncRNAs *MALAT1* and *TUG1* expressions were increased in patients with <5 years of T1DM compared to the control group and patients with \geq 5 years of diagnosis. *MEG3* expression was also increased in T1DM patients <5 years of diagnosis *vs*. controls. Interestingly, *MALAT1* and *TUG1* expressions were negatively correlated with T1DM duration, and *MEG3* and *TUG1* levels were positively correlated with glycated hemoglobin values.

Besides the studies about the role of lncRNAs in the DM context, we also evaluated the involvement of this type of RNAs in the development of DKD. Thus, in a first study, we evaluated the expressions of lncRNAs *MALAT1* and *TUG1* in the urine of patients with T1DM categorized into 18 patients with DKD (cases) and 9 patients without this complication (controls). LncRNA *MALAT1* expression was increased in the urine from DKD patients compared to the control group. Bioinformatics analyses showed that these two lncRNAs are involved in pathways related to DM and DKD, such as glycolysis/gluconeogenesis, PI3K-Akt, AMPK, and the T1DM pathway.

In a second study related to the association of lncRNAs with DKD, we compared the frequencies of rs3200401/*MALAT1*, rs1894720/*MIAT*, rs3931283/*PVT1*, rs11993333/*PVT1*, rs5749201/*TUG1*, and rs7158663/*MEG3* polymorphisms between 902 T2DM patients with DKD (cases) and 394 T2DM patients without DKD (controls). As a result, we demonstrated that the G/G genotype of the rs3931283/*PVT1* polymorphism was associated with risk for DKD after adjusting for covariates. Accordingly, patients with the G/G genotype of this polymorphism also had higher levels of urinary albumin excretion (UAE) compared to patients with the A/A genotype. Interestingly, patients carrying the G/G genotype of the rs7158663/*MEG3* polymorphism had decreased creatinine levels and increased eGFR values compared to A allele carriers. Furthermore, the G allele of the *MEG3* polymorphism was associated with protection against severe DKD.

In conclusion, the studies included here showed the role of ncRNAs in DM and DKD, demonstrating the contribution of epigenetic factors in the development of these pathologies. A profile of miRNAs associated with the development and progression of DKD was identified in T1DM patients. Furthermore, our studies indicate the involvement of lncRNAs in the pathogenesis of DM and DKD through alterations in their expression levels as well as the presence of genetic polymorphisms in these lncRNAs.

Keywords: MicroRNAs. LncRNAs. Diabetes mellitus. Diabetes kidney disease. Biomarkers.

LISTA DE ILUSTRAÇÕES

Figura 1. Número de indivíduos com DM (adultos de 20-79 anos, dados de 2021) 22
Figura 2. Hiperglicemia crônica e desenvolvimento de complicações do DM24
Figura 3. Lesões histopatológicas da Doença Renal do Diabetes
Figura 4. Valores para a classificação dos diferentes graus de doença renal crônica,
considerando-se a albuminúria e a taxa de filtração glomerular estimada (TFGe), de acordo
com as diretrizes da Kidney Disease/Improving Global Outcomes (KDIGO)
Figura 5. Biogênese de miRNAs
Figura 6. Classificação dos lncRNAs de acordo com sua localização genômica35
Figura 7. Principais funções dos lncRNAs no núcleo e no citoplasma

LISTA DE ABREVIATURAS E SIGLAS

1. INTRODUÇÃO

CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration

DM: Diabetes mellitus

DM1: diabetes mellitus tipo 1

DM2: diabetes mellitus tipo 2

DRC: doença renal crônica

DRCT: doença renal crônica terminal

DRD: doença renal do diabetes

EROs: espécies reativas de oxigênio

EUA: excreção urinária de albumina

HAS: hipertensão arterial sistêmica

IDF: International Diabetes Federation

KDIGO: Kidney Disease/Improving Global Outcomes

LncRNAs: RNAs não-codificantes longos

MALAT1: metastasis associated lung adenocarcinoma transcript 1

MEG3: maternally expressed gene 3

MIAT: myocardial infarction associated transcript

miRNAs: microRNAs

ncRNAs: RNAs não-codificantes

PARP1: poli(ADP ribose) polimerase 1

PVT1: plasmacytoma variant translocation 1

RD: retinopatia diabética

RI: resistência à insulina

RISC: complexo de silenciamento induzido por RNA TFG: taxa de filtração glomerular TGFe: taxa de filtração glomerular estimada TGF-β1: *transforming growth fator beta 1* TUG1: *taurine upregulated 1*

2. ARTIGOS

- CKD-EPI Chronic Kidney Disease Epidemiology Collaboration
- DCCT Diabetes Control and Complications Trial
- DEG differential gene expression
- DKD diabetic kidney disease
- DM diabetes mellitus
- DR diabetic retinopathy
- ECM extracellular matrix
- eGFR estimated Glomerular Filtration Rate
- EGR1 early growth response factor 1
- EMT epithelial-mesenchymal transition
- ESRD end-stage renal disease
- FC fold changes
- FDR false discovery rate
- GEO gene expression omnibus
- GFR glomerular filtration rate
- $GO-gene \ ontology$
- HbA1c Glycated hemoglobin
- HG high glucose

HGNC - HUGO gene nomenclature committee

- HK-2 human renal tubular epithelial cells
- HRECs human retinal endothelial cells
- HUVECs human umbilical vein endothelial cells
- HWE Hardy-Weinberg equilibrium
- KDIGO Kidney Disease Improving Global Outcomes
- LncRNAs long non-coding RNAs
- MALAT1 metastasis-associated ling adenocarcinoma transcript 1
- MCs mesangial cells
- MEG3 Maternally expressed gene 3
- MIAT Myocardial infarction-associated transcript
- MIN6 murine beta-cell line
- miRNAs microRNAs
- MtRNA mitochondrial RNA
- ncRNAS non-coding RNAs
- NPDR nonproliferative diabetic retinopathy
- PBMC peripheral blood mononuclear cells
- PBMCs peripheral blood mononuclear cells
- PDR proliferative diabetic retinopathy
- PVT1 Plasmacytoma variant translocation 1
- RMA robust multiaveraging
- RT-qPCR real-time quantitative PCR
- SNP single nucleotide polymorphism
- snRNAS small nuclear RNAs
- STROBE Strengthening the Reporting of Observational studies in Epidemiology

- STZ streptozotocin
- T1DM type 1 diabetes mellitus
- T2DM type 2 diabetes mellitus
- TGF- $\beta1$ Transforming growth factor- $\beta1$
- TUG1 taurine-upregulated gene 1
- UAE urinary albumin excretion

SUMÁRIO

1 INTRODUÇÃO	
1.1 DOENÇA RENAL DO DIABETES (DRD)	
1.2 MECANISMOS EPIGENÉTICOS	
1.2.1 MicroRNAs e a doença renal do diabetes	
1.2.2 LncRNAs no contexto do DM e da DRD	
2 OBJETIVOS	
2.1 OBJETIVOS GERAIS	
2.2 OBJETIVOS ESPECÍFICOS	
CAPÍTULO 1	
ARTIGO 1	
CAPÍTULO 2	
ARTIGO 2	
ARTIGO 3	
CAPÍTULO 3	
ARTIGO 4	
ARTIGO 5	
CONCLUSÕES GERAIS	
OUTRAS PRODUÇÕES NO PERÍODO	
PREMIAÇÕES NO PERÍODO DO DOUTORADO	

1 INTRODUÇÃO

O diabetes mellitus (DM) é um conjunto de distúrbios metabólicos que apresentam em comum à hiperglicemia, a qual pode ser resultante de defeitos na secreção de insulina, ação da insulina, ou ambos (1). De acordo com a Federação Internacional de Diabetes (*International Diabetes Federation* - IDF) (2), 537 milhões de indivíduos em todo o mundo apresentam algum tipo de diabetes mellitus (DM). Estatísticas mostram que o número de indivíduos afetados continua a aumentar e que providências se fazem necessárias para modificar a trajetória dessa epidemia. Caso isso não ocorra, a prevalência poderá chegar a 783 milhões de indivíduos com DM em 2045 (**Figura 1**) (2). No Brasil, mais de 12 milhões de indivíduos vivem hoje com algum tipo de DM (9% da população) (3).

Figura 1. Número de indivíduos com DM (adultos de 20-79 anos, dados de 2021). Fonte: Federação Internacional de Diabetes (Atlas IDF 2021) (2).

O DM tipo 1 (DM1) é uma doença autoimune de etiologia múltipla causada pela complexa associação de fatores de risco genéticos, ambientais, imunológicos e epigenéticos (4-6). Essa doença é causada pela destruição autoimune das células-beta pancreáticas mediada por linfócitos T e macrófagos, o que leva a uma deficiência total na secreção de insulina e faz com que os indivíduos necessitem de tratamento com insulina para a sobrevivência (4-7).

O DM tipo 2 (DM2) é caracterizado por uma hiperglicemia crônica causada por um desbalanço entre ação e secreção de insulina e ocorre principalmente em indivíduos com mais de 30 anos de idade e com obesidade (4, 8). Na maioria dos casos, a anormalidade inicial detectável é uma diminuição na sensibilidade das células-alvo à ação da insulina (resistência à insulina - RI). Como processo fisiológico compensatório a RI, ocorre um aumento na secreção de insulina pelas células-beta (hiperinsulinemia), resultando na manutenção de uma glicemia temporariamente normal. Entretanto, com o passar do tempo, ocorre uma "exaustão" na capacidade secretória das células-beta, fazendo com que a homeostase glicêmica no jejum não possa mais ser mantida e a forma clínica dessa doença se estabeleça, podendo ser então detectada (4, 8, 9). O DM2 também parece ser desencadeado por fatores ambientais em indivíduos com predisposição genética (10). Entre esses fatores ambientais podemos citar: a obesidade e o sobrepeso, excesso de gordura abdominal, sedentarismo, tabagismo, dieta hipercalórica, hipertensão arterial sistêmica (HAS), colesterol LDL e triglicerídeos elevados, diabetes gestacional e uso de corticoides (10).

A hiperglicemia crônica em pacientes com DM leva à geração de intermediários tóxicos, como as espécies reativas de oxigênio (EROs) (11). O fluxo excessivo de glicose pode gerar EROs de várias maneiras diferentes. O aumento da oxidação do substrato mitocondrial com consequente aumento do potencial de membrana mitocondrial leva à

superprodução de superóxido. Ao mesmo tempo, o aumento do fluxo de glicose leva à ativação da NADPH oxidase e ao desacoplamento da óxido nítrico sintase. Os danos no DNA mediados pelo aumento de EROs no núcleo ativam os mecanismos de reparo do DNA, incluindo a enzima poli (ADP ribose) polimerase 1 (PARP1), que inibe a principal enzima da via glicolítica, a gliceraldeído-3-fosfato desidrogenase (GAPDH), por poliADP-ribosilação. A inibição da atividade de GAPDH causa um bloqueio no processo de glicólise, resultando no acúmulo de intermediários glicolíticos, e consequentemente leva à disfunção celular, inflamação, apoptose e fibrose em células expostas ao fluxo excessivo de glicose (**Figura 2**) (11).

Figura 2. Hiperglicemia crônica e desenvolvimento de complicações do DM. A hiperglicemia crônica leva ao acúmulo de substrato de várias vias relacionadas ao processo de glicólise, tais como: vias de glicação avançada, poliol, hexosamina e proteína quinase C. Esse aumento de

substrato dessas vias leva a disfunção células e danos nessas células, resultando no desenvolvimento das complicações do DM. Fonte: (11).

Desta forma, a hiperglicemia crônica pode provocar lesões estruturais que causam danos, disfunções e falhas de vários órgãos e tecidos, levando ao aparecimento das complicações crônicas do DM (4). Estas complicações crônicas são divididas em microvasculares [doença renal do diabetes (DRD), retinopatia diabética (RD) e neuropatia diabética] e macro vasculares (doença arterial coronariana, doença vascular periférica e acidente vascular cerebral) (4). Seu desenvolvimento associa-se com elevada morbimortalidade e também à piora da qualidade de vida (12). De uma forma geral, a presença destas complicações depende do tempo de DM, idade do paciente, presença de HAS, dislipidemia, suscetibilidade genética do paciente ao tipo de complicação e da intensidade e persistência da hiperglicemia (13, 14).

1.1 DOENÇA RENAL DO DIABETES (DRD)

A DRD é a maior causa de doença renal crônica (DRC) e de doença renal crônica terminal (DRCT) a qual requer tratamento dialítico ou transplante renal (14, 15). Entre 25-40% dos pacientes com DM desenvolvem DRD até 25 anos de doença (16, 17). No Brasil, no ano de 2020, mais de 144 mil indivíduos estavam em tratamento com hemodiálise, sendo que 31% desses pacientes tinha como doença base o DM (18). Entre os pacientes diabéticos com DRD, o aumento do risco absoluto de mortalidade por todas as causas em relação ao grupo controle foi de 23,4% e o aumento correspondente no subgrupo sem DRD foi de apenas 3,4% (19). Isto sugere que entre os pacientes com diabetes, os portadores de DRD constituem um subgrupo de maior morbimortalidade, concentrando grande parte do risco hoje atribuído à presença de DM.

Normalmente a DRD é uma doença progressiva, caracterizada por alterações fisiopatológicas decorrentes do ambiente diabético, que começam por hiperfiltração renal e hipertrofia glomerular, podendo progredir para proteinúria e uma diminuição gradual da taxa de filtração glomerular (TFG) (14, 20). Com relação às alterações fisiopatológicas da DRD, o início é evidenciado pelo espessamento da membrana basal glomerular e aumento da deposição de colágeno na matriz extracelular, obliteração de pedicelos secundários e diminuição da quantidade de podócitos. Esses fatores contribuem para que ocorra a excreção de proteínas de alto peso molecular, como a albumina. Além disso, outras regiões do rim são afetadas, como, por exemplo, no túbulo proximal ocorre a atrofia do epitélio tubular com a perda de micro vilosidades, diminuição da quantidade de capilares e a infiltração inflamatória (21, 22) (**Figura 3**).

Figura 3. Lesões histopatológicas da Doença Renal do Diabetes. O glomérulo de um paciente saudável inclui arteríola aferente, capilares glomerulares, células endoteliais, membrana basal, podócitos, células epiteliais parietais, células túbulo-epiteliais e é impermeável à albumina. Em contraste, o glomérulo de um paciente com diabetes apresenta hialinose arteriolar, expansão mesangial, deposição de colágeno, espessamento da membrana basal, perda e hipertrofia de

podócitos, albuminúria, atrofia do epitélio tubular, acúmulo de matriz e mio fibroblastos ativados, influxo de células inflamatórias e rarefação de capilares. Também é mostrado tecido renal de glomérulo saudável e de paciente com DRD (corado com ácido periódico de Schiff). Fonte: Reidy e colaboradores (23).

Os processos envolvidos no desenvolvimento nas lesões e alterações renais são complexos e pouco conhecidos. Sem dúvida a hiperglicemia está muito relacionada ao desenvolvimento e progressão da DRD, afetando diversas células, como por exemplo, células endoteliais e mesangiais renais, células inflamatórias, podócitos, além do sistema tubular renal e ductos coletores. Como consequência da hiperglicemia, ocorre o aumento da produção de EROs pela mitocôndria, as quais ativam fatores de transcrição e moléculas de sinalização, aumentando assim a expressão de citocinas, fatores de crescimento e proteínas de matriz extracelular. Além disso, a hiperglicemia também aumenta a expressão celular de *transforming growth fator beta 1* (TGF- β 1), que estimula a produção de matriz extracelular, contribuindo para a hipertrofia celular e síntese de colágeno (24).

Para avaliação da gravidade da disfunção renal utilizam-se atualmente os valores de albuminúria juntamente com a estimativa da TFG (TFGe). A albuminúria reflete a gravidade do dano renal, podendo ser classificada de acordo com os níveis de excreção urinária de albumina (EUA): 1) albuminúria normal ou levemente aumentada; 2) albuminúria moderadamente aumentada (anteriormente conhecida como microalbuminúria) ou, 3) albuminúria severamente aumentada (anteriormente chamada de macroalbuminúria) (25). Além disso, recomenda-se a TFGe para o rastreamento da DRD, uma vez que alguns pacientes com valores normais de albumina já podem apresentar uma diminuição na TFG (TFGe < 60 mL/min/1,73m²) (26). Atualmente, a fórmula matemática mais utilizada para o cálculo da TFGe é a fórmula CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (27), por ter sido validada em uma coorte que compreendia indivíduos saudáveis e indivíduos com DRC, e, por isso, apresentar melhor desempenho.

Dessa forma, segundo as diretrizes da *Kidney Disease/Improving Global Outcomes* (KDIGO) (25), a classificação dos estágios da DRC deve basear-se tanto na EUA quanto na TFGe, conforme a **Figura 4**.

Prognósticos da DRC por categorias da TFG e albuminúria

Verde: baixo risco; Amarelo: risco moderadamente aumentado; Laranja: alto risco; Vermelho: altíssimo risco. * TGF: Taxa de filtração glomerular

Figura 4. Valores para a classificação dos diferentes graus de doença renal crônica, considerandose a albuminúria e a taxa de filtração glomerular estimada (TFGe), de acordo com as diretrizes da *Kidney Disease/Improving Global Outcomes* (KDIGO), 2012 (25).

Contudo, as equações utilizadas para determinar a TFG subestimam a TFG no DM e não permitem avaliar com precisão o curso da função renal (28, 29). Além disso, a EUA carece de sensibilidade e especificidade, pois estudos recentes mostram que há pacientes que desenvolvem a DRD antes que um aumento na EUA seja detectado. Dessa forma, novos biomarcadores estão sendo extensivamente investigados como indicadores mais precoces de DRD e são alvos de estudos para melhor compreensão do desenvolvimento da doença, como por exemplo, fatores epigenéticos, incluindo os RNAs não-codificantes de proteínas.

1.2 MECANISMOS EPIGENÉTICOS

O termo epigenética significa "em adição à informação genética codificada no DNA" (30). Segundo Tang e Ho (31), a epigenética é definida como mudanças herdáveis na expressão gênica que não alteram a sequência do DNA. Os fatores epigenéticos regulam a expressão gênica de forma tecido-específica e tem sido demonstrado que alterações epigenéticas podem ser os principais causadores de doenças humanas (32, 33), como o DM e suas complicações crônicas. Além disso, modificações epigenéticas têm sido identificadas como um dos mecanismos pelos quais o meio ambiente interage com o genoma e modifica o risco para o desenvolvimento do DM1 e do DM2, bem como de suas complicações crônicas, como a DRD (34-36).

A exposição de células endoteliais do tecido microvascular à hiperglicemia é capaz de induzir alterações nos mecanismos epigenéticos, alterando a expressão gênica e, consequentemente, induzindo a ativação de diversas vias pró-inflamatórias associadas com as complicações do DM (36, 37). No entanto, a hiperglicemia não é o único fator que leva a alterações epigenéticas em pacientes com DM. A formação de EROs, hipóxia, inflamação, produção de citocinas, fatores de crescimento, medicamentos, nutrição e atividade física também podem causar modificações epigenéticas que influenciarão o desenvolvimento do DM e de suas complicações crônicas (38, 39).

As três maiores classes de mecanismos epigenéticos são as alterações nas histonas, metilação do DNA e regulação gênica por RNAs não-codificantes (ncRNAs) (36, 40). Entre os ncRNAs, os microRNAs (miRNAs) e os RNAs não-codificantes de proteínas longos (lncRNAs) estão duas classes de ncRNAs mais descritas e estão associados com o desenvolvimento de diversas patologias (41-43), incluindo DM e DRD (43-48).

1.2.1 MicroRNAs e a doença renal do diabetes

Os miRNAs são uma classe de pequenos ncRNAs fita simples, de aproximadamente 19–25 nucleotídeos, que agem como potentes reguladores póstranscricionais da expressão de mais de 60% dos genes codificantes de proteínas (41, 42). No núcleo, a maioria dos transcritos primários de miRNAs (pri-miRNAs) são transcritos pela RNA polimerase II (RNA pol II). Um complexo formado pela ribonuclease DROSHA e a proteína DGCR8 cliva o pri-miRNA para gerar miRNAs precursores (pré-miRNAs), que então são exportados do núcleo pela exportina 5. No citoplasma, os pré-miRNAs são clivados por Dicer para formar um miRNA duplex, de aproximadamente 22 nucleotídeos, que interage com as proteínas Argonautas (AGO1-4) para formar o complexo de silenciamento induzido por RNA (RISC) (49). O RISC carregado com miRNA se liga a sequências complementares no seus mRNAs alvos. Essa ligação resulta no silenciamento do gene por repressão da tradução do mRNA ou por desestabilização ou degradação do mRNA. Além disso, os miRNAs maduros também podem ser alvo de RNAs longos não-codificantes (lncRNAs), que atuam como esponjas de miRNA (**Figura 5**) (49).

Na maioria dos casos, os miRNAs exercem seus efeitos regulatórios ligando-se à região 3'UTR de seus mRNA alvos. No entanto, a interação de miRNAs com outras regiões, incluindo as regiões 5'UTR e promotora, também já foi relatada (50). Além disso, foi demonstrado que os miRNAs podem ativar a expressão gênica sob certas condições (51). Um único miRNA pode ter até 100 mRNAs alvos e vários miRNAs podem ter como alvo o mesmo mRNA (52).

Figura 5. Biogênese de miRNAs. Fonte: Mahtal e colaboradores (49).

Estudos recentes demonstraram alterações na expressão de miRNAs em diversas patologias humanas, incluindo o DM e suas complicações crônicas (44, 48, 53, 54), o que enfatiza a importância dessas moléculas em processos fisiológicos e patológicos. Os miRNAs podem ser transportados de uma célula para outra, bem como podem circular nos diferentes fluidos biológicos de forma estável, constituindo uma nova forma de comunicação célula-célula (55, 56). Um perfil de expressão de miRNAs circulantes nos fluidos biológicos usualmente reflete um dano tecidual específico (57). Sendo assim, miRNAs circulantes são considerados bons biomarcadores não-invasivos para monitorar alterações fisiopatológicas e a progressão de diversas doenças (58). Consequentemente, miRNAs circulantes também são biomarcadores atraentes para o DM e suas complicações crônicas uma vez que podem ser facilmente coletados, são estáveis em diferentes condições de estocagem e podem ser quantificados usando-se *assays* específicos (44, 48). No contexto da DRD, o uso de miRNAs circulantes no plasma/soro ou miRNA urinários representa uma alternativa viável para o monitoramento do desenvolvimento e progressão

da doença, uma vez que eles não são eliminados durante a hemodiálise e não parecem ser afetados pela filtração glomerular, pois circulam nos fluídos biológicos complexados a proteínas, como a Argonauta-2, ou dentro de microvesículas, exossomos ou corpos apoptóticos (59, 60).

A associação entre miRNAs e disfunção renal foi inicialmente sugerida por estudos experimentais que demonstraram que a deleção específica da Dicer (uma enzima necessária para a produção dos miRNAs maduros) nos podócitos causou proteinúria, apoptose dos podócitos, glomeruloesclerose e fibrose (61). A hiperglicemia induziu a expressão de diversos miRNAs em células renais tanto em modelos *in vivo* quanto *in vitro*, promovendo o acúmulo de proteínas na matriz extracelular relacionadas com a fibrose e disfunção glomerular (61, 62). Além disso, alguns estudos usando células renais e modelos animais de DRD demonstraram relações funcionais entre a expressão aberrante de alguns miRNAs (miR-192, miR200b/c, miR-216 e miR-217) e processos relacionados à fibrose renal e DRD (63-66).

Em humanos, nos últimos anos, diversos estudos investigaram a expressão de diferentes miRNAs em pacientes com e sem DRD, buscando possíveis marcadores dos diferentes estágios dessa complicação (62, 67-74). Entretanto, os resultados desses estudos são variados e inconclusivos e podem ser específicos para uma dada população ou etnia. Dessa forma, visando sintetizar os resultados desses estudos, em 2018, nosso grupo realizou uma revisão sistemática da literatura sobre os 27 estudos que investigaram a expressão de miRNAs em pacientes com DRD e em indivíduos controles (48). Esses estudos avaliaram a expressão de um miRNA até 1066 miRNAs no plasma, soro, urina, exossomos urinários ou biópsias renais de pacientes diabéticos (DM1 ou DM2) com DRD e de indivíduos controles (DM sem DRD ou indivíduos saudáveis). A DRD foi diagnosticada usando-se diferentes critérios diagnósticos (EUA, TFGe, biópsia renal ou

razão EUA/creatinina). Como resultado, mostramos que 6 miRNAs estavam consistentemente desregulados em pacientes com diferentes graus de DRD comparados aos controles; isto é, eram diferencialmente expressos entre casos e controles em pelo menos 3 estudos da literatura. Entre esses miRNAs, miR-21-5p, miR-29a-3p, miR-126, miR-214 e miR-342 tinham a expressão aumentada, enquanto que o miR-192 tinha a expressão diminuída em pacientes com DRD comparado aos controles (48). Ainda, entre os 27 estudos revisados, 6 estudos mostraram perfis de expressão de miRNAs alterados na urina de pacientes com DRD comparado aos controles, demonstrando que miRNAs urinários também são possíveis biomarcadores do desenvolvimento da DRD.

Pezzolesi e colaboradores (68) investigaram a expressão de alguns miRNAs regulados por TGF-β1 no plasma de uma coorte de pacientes com DM1 proteinúricos, mas com TFGe normal. O TGF-β1 é um fator de crescimento que tem um papel chave na regulação da fibrose e inflamação e, consequentemente, na patogênese da DRD (48). Esses autores mostraram que os miRNAs let-7c-5p e miR-29a-3p foram associados com proteção contra progressão rápida para DRCT (medida pela diminuição na TFGe), enquanto let-7b-5p e miR-21-5p foram associados com risco de progressão rápida para DRCT (68). Esse estudo sugere que alguns miRNAs também tem o potencial de serem usados como biomarcadores da progressão de DRD para suas formas mais severas.

Recentemente, investigamos um perfil de expressão de 48 miRNAs no plasma de 23 pacientes com DM1 sem DRD (controles) e 35 pacientes com diferentes graus de DRD (casos) através de análise de *macroarray* (47). Nossos resultados demonstraram que 9 miRNAs foram diferencialmente expressos em pacientes com DRD comparados aos controles. Entre eles, 5 miRNAs foram escolhidos para validação em uma amostra independente de 19 casos e 10 controles por análise de real-time PCR (qPCR): miR-21-3p e miR-378a-5p tiveram a expressão aumentada, enquanto miR-16-5p e miR-29a-3p

tiveram a expressão diminuída nos pacientes com DRD severa comparado aos controles. A expressão do miR-503-3p não foi validada, isto é, esse miRNA não se confirmou como estando associado com DRD (47).

1.2.2 LncRNAs no contexto do DM e da DRD

LncRNAs são moléculas de RNA longas (> 200 nucleotídeos) que estruturalmente se assemelham ao mRNA, mas não codificam proteínas (75). A maioria dos lncRNAs ainda não é bem descrita, no entanto, algumas características já são conhecidas: a) possuem os promotores, regiões de *splicing*, éxons, posição no genoma e expressão bem conservadas (76); b) expressão dinâmica e *splicing* alternativo durante o processo de diferenciação celular (77); c) associação com conformações específicas da cromatina que são indicativos da transcrição de genes (78); e d) regulação dos lncRNAs por fatores de transcrição, pseudogenes e hormônios (79).

Com base na posição cromossômica dos lncRNAs, eles podem ser classificados em 5 principais tipos: *sense* lncRNAs – localizado sobre múltiplos íntrons ou éxons de um gene codificador de proteínas; *intronic* lncRNAs – dentro de um dos íntrons de um gene codificador de proteínas na fita 5'-3'; *antisense* lncRNAs – transcrito da fita oposta do gene codificador de proteínas; *bidirectional* lncRNAs – situados na fita oposta, mas dentro de 1kb do promotor na fita 5'-3'; *e intergenic* lncRNAs – localizados entre dois genes codificadores de proteínas (**Figura 6**) (80).

Figura 6. Classificação dos lncRNAs de acordo com sua localização genômica. Fonte: Bär e colaboradores (80).

Os lncRNAs estão localizados no núcleo ou no citoplasma, onde podem regular a expressão gênica em níveis transcricionais ou pós-transcricionais (80). Os lncRNAs localizados na região nuclear regulam a expressão gênica de vários modos, como: resposta a estímulos, sequestrando fatores de transcrição/complexo proteico, reunindo complexos multiproteicos ou guiando fatores de transcrição/complexo proteico para seu local alvo específico e induzindo o *looping* cromossômico para aumentar a associação entre o intensificador e a região promotora (80). Os lncRNAs citoplasmáticos (lineares ou circulares) podem estabilizar complexos de ribonucleoproteínas, regular a estabilidade de mRNA ou miRNAs, controlando assim a tradução (**Figura 7**) (80). Devido a seus importantes papéis como reguladores da expressão gênica, os lncRNAs já foram associados com funções como controle do ciclo celular, transcrição, regulação do *splicing*, diferenciação celular, inativação do cromossomo X e *imprinting* gênico (81).

Figura 7. Principais funções dos lncRNAs no núcleo e no citoplasma. Fonte: Bär e colaboradores (80).

Nos últimos anos, vários estudos vêm demonstrando um papel importante dessa classe de ncRNAs no desenvolvimento de doenças, incluindo o DM e a DRD. Neste contexto, o lncRNA *metastasis associated lung adenocarcinoma transcript 1 (MALAT1)*, um dos mais estudados até o momento, vem sendo descrito como tendo a sua expressão aumentada em pacientes com DM em comparação ao grupo controle. Juntamente com o *MALAT1*, os lncRNAs *HOTAIR*, *MEG3*, *LET*, *MIAT*, *CDKN2BAS1/ANRIL*, *XIST*, *PANDA*, *GAS5*, *Linc-p21*, *ENST00000550337.1*, *PLUTO*, *THRIL*, *SALRNA1* e *NBR2* estavam desregulados em pacientes com DM2 em comparação ao grupo (82). Interessantemente, os lncRNAs *SALRNA1* e *THRIL* foram negativamente correlacionados com o controle glicêmico e RI (82).

Em estudos experimentais, a regulação positiva do lncRNA *maternally expressed* gene 3 (MEG3) demonstrou aumentar a taxa de gliconeogênese e prejudicar a síntese de glicogênio estimulada pela insulina por meio do aumento da expressão de *FoxO1* em hepatócitos primários, promovendo resistência hepática à insulina (83). Além disso, You e colaboradores (84) demonstraram que a expressão de *Meg3* foi relativamente maior no pâncreas de camundongos do que em qualquer outro órgão, incluindo fígado, baço, pulmão e rim. A supressão da expressão de *Meg3 in vitro* e o *knockdown* de *Meg3 in vivo* podem afetar a síntese e secreção de insulina diminuindo a expressão de *Pdx-1* e *MafA* (84).

No contexto da DRD, uma revisão sistemática realizada por Zhao e colaboradores (85), que incluiu 28 artigos que avaliaram a expressão de lncRNAs em pacientes com e sem DRD, identificou 8 lncRNAs desregulados na DRD (MALAT1, GAS5, MIAT, CASC2, NEATI, NR 033515, ARAPI-AS2 e ARAPI-AS1). Análises de bioinformática mostraram que esses lncRNAs participam de vias relacionadas à DRD, tais como PI3K/Akt, TNF, HIF-1, AGE/RAGE, apoptose e FoxO (85). Estudos experimentais também vêm descrevendo o envolvimento de lncRNAs na DRD. Puthsnveetil e colaboradores (86) demonstraram que a expressão do lncRNA MALAT1 estava aumentada em células epiteliais tratadas com altas doses de glicose. O aumento na expressão do lncRNA MALATI correlacionou-se com o aumento na expressão de genes que regulam a inflamação, como tumor necrosis factor (TNF), serum amyloid A (SAA3) e interleukin-6 (IL-6). O silenciamento do lncRNA MALAT1 em células endoteliais normalizou os níveis de expressão de SAA3, IL-6 e TNF. Esses resultados indicam que certos lncRNAs podem interferir no processo de inflamação relacionado com a DRD, sugerindo que a sua modulação terapêutica poderia melhorar as complicações crônicas do DM. Interessantemente, os lncRNAs MALAT1 e myocardial infarction associated transcript (MIAT) foram demonstrados como reguladores da inflamação nas complicações do DM, incluindo a DRD (86-89). A expressão de *MIAT* estava diminuída em túbulos renais de ratos com DM e foi negativamente correlacionada com os níveis de creatinina (89). Além disso, esse ncRNA regula diversas vias de sinalização relacionadas a função celulares, tais como proliferação e apoptose (90).

Outro lncRNA que parece estar associado com doenças renais é o lncRNA intergênico *plasmacytoma variant translocation 1* (*PVT1*). O PVT1 foi identificado através dos estudos de varredura de genoma conduzidos para identificar variantes genéticas que contribuem para DRCT em pacientes com DM2 (40). O tratamento com altos níveis de glicose induziu a expressão de *PVT1*, assim como de fibronectina 1 (*FN1*), *colágeno tipo IV α1*, *TGF-β1* e inibidor do ativador de plasminogênio 1 (*PAI-1*; anteriormente conhecido como *SERPINE1*) em células renais humanas (32). O silenciamento do lncRNA *PVT1* resultou na diminuição da expressão desses fatores. Outro estudo demonstrou que um miRNA derivado de *PVT1*, miR-1207-5p, é altamente expresso no rim e é regulado pelos níveis de glicose e TGF- β 1 (91). Consistentemente, *PVT1* é expresso em todos os tipos celulares presentes no rim. Com o objetivo de investigar quais os mecanismos pelos quais o lncRNA *PVT1* contribui para o desenvolvimento da DRD, Alvarez e colaboradores (92) analisaram células mesangiais expostas a altos níveis de glicose e encontraram que esse lncRNA parece mediar o desenvolvimento e progressão da DRD através de mecanismos envolvendo acúmulo de matriz extracelular.

Do mesmo modo, o lncRNA *taurine upregulated 1 (TUG1*) também parece atuar no contexto renal (93, 94). Zang e colaboradores (93) demonstraram que esse lncRNA tinha sua expressão diminuída em ratos diabéticos e células mesangiais expostas a alta concentração de glicose. Ainda, a superexpressão de *TUG1* inibiu a taxa de proliferação das células mesangiais e diminuiu a expressão de genes relacionados com o acúmulo de matriz extracelular, sugerindo assim, que esse lncRNA possa ter um papel protetor na DRD (93). De acordo com esses achados, um estudo realizado por Xu e colaboradores (94) demonstrou que *TUG1* é capaz de proteger células HK-2, uma linhagem de célula renal, contra danos inflamatórios causados pela exposição a lipopolissacarídeo (LPS) (94).

O lncRNA *MEG3* foi demonstrado como estando desregulado em pacientes com DM (95-97). Além disso, esse lncRNA também parece ter um papel importante no desenvolvimento das complicações crônicas, tais como a DRD (98). Em ratos diabéticos e células mesangiais, a expressão de *MEG3* estava aumentada em comparação ao grupo controle. Além disso, a superexpressão de *MEG3* foi capaz de promover fibrose e respostas inflamatórias no contexto da DRD, através da via miR181a/Egr-1/TLR4, *in vivo* e *in vitro* (98).

REFERÊNCIAS DA INTRODUÇÃO

1. American Diabetes Association Professional Practice C. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17-S38.

2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice. 2022;183:109119.

3. Reis R, Duncan BB, Malta DC, Iser BPM, Schmidt MI. Evolution of diabetes in Brazil: prevalence data from the 2013 and 2019 Brazilian National Health Survey. Cadernos de saude publica. 2022;38Suppl 1(Suppl 1):e00149321.

4. American Diabetes A. 2. Classification and Diagnosis of Diabetes. Diabetes care. 2017;40(Suppl 1):S11-S24.

5. Pirot P, Cardozo AK, Eizirik DL. Mediators and mechanisms of pancreatic betacell death in type 1 diabetes. Arquivos brasileiros de endocrinologia e metabologia. 2008;52(2):156-65.

6. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5(4):219-26.

7. Eizirik DL, Mandrup-Poulsen T. A choice of death--the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44(12):2115-33.

8. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37 Suppl 1:S81-90.

9. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes. 2017;66(2):241-55.

10. Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int J Environ Res Public Health. 2018;15(1).

11. Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, et al. Diabetic kidney disease. Nature reviews Disease primers. 2015;1:15018.

12. Strong K, Mathers C, Leeder S, Beaglehole R. Preventing chronic diseases: how many lives can we save? Lancet. 2005;366(9496):1578-82.

13. Correa-Giannella ML, Vieira SM. [Genetic susceptibility to microangiopathy development in Type 1 diabetes mellitus]. Arquivos brasileiros de endocrinologia e metabologia. 2008;52(2):375-86.

14. Carpena M, Rados D, Sortica D, Souza B, Reis A, Canani L, et al. Genetics of diabetic nephropathy. Arquivos brasileiros de endocrinologia e metabologia. 2010;54(3):253-61.

15. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164-76.

16. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. Diabetes care. 2004;27 Suppl 1:S79-83.

17. Sortica DA, Crispim D, Zaffari GP, Friedman R, Canani LH. The role of ectonucleotide pyrophosphatase/phosphodiesterase 1 in diabetic nephropathy. Arq Bras Endocrinol Metabol. 2011;55(9):677-85. 18. Nerbass FB, Lima HDN, Thome FS, Vieira Neto OM, Lugon JR, Sesso R. Brazilian Dialysis Survey 2020. Jornal brasileiro de nefrologia : 'orgao oficial de Sociedades Brasileira e Latino-Americana de Nefrologia. 2022;44(3):349-57.

19. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302-8.

20. Ritz E, Zeng XX, Rychlik I. Clinical manifestation and natural history of diabetic nephropathy. Contrib Nephrol. 2011;170:19-27.

21. Macisaac RJ, Jerums G. Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens. 2011;20(3):246-57.

22. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Am J Kidney Dis. 2014;64(4):510-33.

23. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. The Journal of clinical investigation. 2014;124(6):2333-40.

24. Lemos NE, Dieter C, Dorfman LE, Assmann TS, Duarte GCK, Canani LH, et al. The rs2292239 polymorphism in ERBB3 gene is associated with risk for type 1 diabetes mellitus in a Brazilian population. Gene. 2018;644:122-8.

25. Group KDIGOKCW. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney international. 2013;Suppl. 3:1-150.

26. Zelmanovitz T, Gerchman F, Balthazar AP, Thomazelli FC, Matos JD, Canani LH. Diabetic nephropathy. Diabetology & metabolic syndrome. 2009;1(1):10.

27. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12.

28. Camargo EG, Soares AA, Detanico AB, Weinert LS, Veronese FV, Gomes EC, et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is less accurate in patients with Type 2 diabetes when compared with healthy individuals. Diabetic medicine : a journal of the British Diabetic Association. 2011;28(1):90-5.

29. Soares AA, Eyff TF, Campani RB, Ritter L, Weinert LS, Camargo JL, et al. Performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations in healthy South Brazilians. Am J Kidney Dis. 2010;55(6):1162-3.

30. Feinberg AP, Tycko B. The history of cancer epigenetics. Nature reviews Cancer. 2004;4(2):143-53.

31. Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Reviews in endocrine & metabolic disorders. 2007;8(2):173-82.

32. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nature reviews Genetics. 2007;8(4):253-62.

33. Jiang YH, Bressler J, Beaudet AL. Epigenetics and human disease. Annual review of genomics and human genetics. 2004;5:479-510.

34. Dang MN, Buzzetti R, Pozzilli P. Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes/metabolism research and reviews. 2013;29(1):8-18.

35. Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58(12):2718-25.

36. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58(3):443-55.

37. Pirola L, Balcerczyk A, Tothill RW, Haviv I, Kaspi A, Lunke S, et al. Genomewide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome research. 2011;21(10):1601-15. 38. Horsburgh S, Robson-Ansley P, Adams R, Smith C. Exercise and inflammationrelated epigenetic modifications: focus on DNA methylation. Exercise immunology review. 2015;21:26-41.

39. Milagro FI, Mansego ML, De Miguel C, Martinez JA. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Molecular aspects of medicine. 2013;34(4):782-812.

40. Reddy MA, Tak Park J, Natarajan R. Epigenetic modifications in the pathogenesis of diabetic nephropathy. Semin Nephrol. 2013;33(4):341-53.

41. Butz H, Kinga N, Racz K, Patocs A. Circulating miRNAs as biomarkers for endocrine disorders. Journal of endocrinological investigation. 2016;39(1):1-10.

42. Esteller M. Non-coding RNAs in human disease. Nature reviews Genetics. 2011;12(12):861-74.

43. Feng F, Jiao P, Wang J, Li Y, Bao B, Luoreng Z, et al. Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells. 2022;11(22).

44. Assmann TS, Recamonde-Mendoza M, de Souza BM, Crispim D. MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatics analysis. Endocr Connect. 2017.

45. Nielsen LB, Wang C, Sorensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res. 2012;2012:896362.

46. Pandey A, Ajgaonkar S, Jadhav N, Saha P, Gurav P, Panda S, et al. Current Insights into miRNA and lncRNA Dysregulation in Diabetes: Signal Transduction, Clinical Trials and Biomarker Discovery. Pharmaceuticals. 2022;15(10).

47. Assmann TS, Recamonde-Mendoza M, Costa AR, Punales M, Tschiedel B, Canani LH, et al. Circulating miRNAs in diabetic kidney disease: case-control study and in silico analyses. Acta Diabetol. 2019;56(1):55-65.

48. Assmann TS, Recamonde-Mendoza M, de Souza BM, Bauer AC, Crispim D. MicroRNAs and diabetic kidney disease: Systematic review and bioinformatic analysis. Molecular and cellular endocrinology. 2018.

49. Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nature reviews Nephrology. 2022;18(10):643-62.

50. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Molecular cell. 2016;64(2):320-33.

51. Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley interdisciplinary reviews RNA. 2012;3(3):311-30.

52. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58-63.

53. Assmann TS, Recamonde-Mendoza M, Punales M, Tschiedel B, Canani LH, Crispim D. MicroRNA expression profile in plasma from type 1 diabetic patients: Casecontrol study and bioinformatic analysis. Diabetes research and clinical practice. 2018;141:35-46.

54. Dieter C, Assmann TS, Costa AR, Canani LH, de Souza BM, Bauer AC, et al. MiR-30e-5p and MiR-15a-5p Expressions in Plasma and Urine of Type 1 Diabetic Patients With Diabetic Kidney Disease. Frontiers in genetics. 2019;10:563.

55. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nature reviews Endocrinology. 2013;9(9):513-21.

56. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clinical chemistry. 2010;56(11):1733-41.

57. Seyhan AA, Nunez Lopez YO, Xie H, Yi F, Mathews C, Pasarica M, et al. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci Rep. 2016;6:31479.

58. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(30):10513-8.

59. Martino F, Lorenzen J, Schmidt J, Schmidt M, Broll M, Gorzig Y, et al. Circulating microRNAs are not eliminated by hemodialysis. PloS one. 2012;7(6):e38269.

60. Lorenzen JM, Thum T. Circulating and urinary microRNAs in kidney disease. Clinical journal of the American Society of Nephrology : CJASN. 2012;7(9):1528-33.

61. Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. Journal of the American Society of Nephrology : JASN. 2008;19(11):2150-8.

62. Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Annals of the New York Academy of Sciences. 2015;1353:72-88.

63. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011;80(4):358-68.

64. Kato M, Natarajan R. Diabetic nephropathy--emerging epigenetic mechanisms. Nature reviews Nephrology. 2014;10(9):517-30.

65. Park JT, Kato M, Yuan H, Castro N, Lanting L, Wang M, et al. FOG2 protein down-regulation by transforming growth factor-beta1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. The Journal of biological chemistry. 2013;288(31):22469-80.

66. Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, et al. Post-transcriptional upregulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. The Journal of biological chemistry. 2010;285(44):34004-15.

67. Argyropoulos C, Wang K, McClarty S, Huang D, Bernardo J, Ellis D, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PloS one. 2013;8(1):e54662.

68. Pezzolesi MG, Satake E, McDonnell KP, Major M, Smiles AM, Krolewski AS. Circulating TGF-beta1-Regulated miRNAs and the Risk of Rapid Progression to ESRD in Type 1 Diabetes. Diabetes. 2015;64(9):3285-93.

69. Chung AC, Yu X, Lan HY. MicroRNA and nephropathy: emerging concepts. International journal of nephrology and renovascular disease. 2013;6:169-79.

70. Argyropoulos C, Wang K, Bernardo J, Ellis D, Orchard T, Galas D, et al. Urinary MicroRNA Profiling Predicts the Development of Microalbuminuria in Patients with Type 1 Diabetes. J Clin Med. 2015;4(7):1498-517.

71. Du B, Ma LM, Huang MB, Zhou H, Huang HL, Shao P, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010;584(4):811-6.

72. Peng H, Zhong M, Zhao W, Wang C, Zhang J, Liu X, et al. Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients. PloS one. 2013;8(12):e82607.

73. Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PloS one. 2013;8(11):e73798.

74. Bijkerk R, Duijs JM, Khairoun M, Ter Horst CJ, van der Pol P, Mallat MJ, et al. Circulating microRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2015;15(4):1081-90.

75. Yan B, Wang Z. Long noncoding RNA: its physiological and pathological roles. DNA and cell biology. 2012;31 Suppl 1:S34-41.

76. Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006;22(1):1-5.

77. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433-45.

78. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223-7.

79. Koshimizu TA, Fujiwara Y, Sakai N, Shibata K, Tsuchiya H. Oxytocin stimulates expression of a noncoding RNA tumor marker in a human neuroblastoma cell line. Life Sci. 2010;86(11-12):455-60.

80. Bar C, Chatterjee S, Thum T. Long Noncoding RNAs in Cardiovascular Pathology, Diagnosis, and Therapy. Circulation. 2016;134(19):1484-99.

81. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends in cell biology. 2011;21(6):354-61.

82. Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Human genomics. 2018;12(1):41.

83. Zhu X, Wu YB, Zhou J, Kang DM. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochemical and biophysical research communications. 2016;469(2):319-25.

84. You L, Wang N, Yin D, Wang L, Jin F, Zhu Y, et al. Downregulation of Long Noncoding RNA Meg3 Affects Insulin Synthesis and Secretion in Mouse Pancreatic Beta Cells. Journal of cellular physiology. 2016;231(4):852-62.

85. Zhao Y, Yan G, Mi J, Wang G, Yu M, Jin D, et al. The Impact of lncRNA on Diabetic Kidney Disease: Systematic Review and In Silico Analyses. Computational intelligence and neuroscience. 2022;2022:8400106.

86. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. Journal of cellular and molecular medicine. 2015;19(6):1418-25.

87. Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell death & disease. 2014;5:e1506.

88. Jae N, Dimmeler S. Long noncoding RNAs in diabetic retinopathy. Circulation research. 2015;116(7):1104-6.

89. Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X. Long non-coding MIAT mediates high glucose-induced renal tubular epithelial injury. Biochemical and biophysical research communications. 2015;468(4):726-32.

90. Sun C, Huang L, Li Z, Leng K, Xu Y, Jiang X, et al. Long non-coding RNA MIAT in development and disease: a new player in an old game. J Biomed Sci. 2018;25(1):23.

91. Simmons R. Epigenetics and maternal nutrition: nature v. nurture. The Proceedings of the Nutrition Society. 2011;70(1):73-81.

92. Alvarez ML, DiStefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One. 2011;6(4):e18671.

93. Zang XJ, Li L, Du X, Yang B, Mei CL. LncRNA TUG1 inhibits the proliferation and fibrosis of mesangial cells in diabetic nephropathy via inhibiting the PI3K/AKT pathway. European review for medical and pharmacological sciences. 2019;23(17):7519-25.

94. Xu Y, Deng W, Zhang W. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;104:509-19.

95. Luo L, Ji LD, Cai JJ, Feng M, Zhou M, Hu SP, et al. Microarray Analysis of Long Noncoding RNAs in Female Diabetic Peripheral Neuropathy Patients. Cellular Physiology and Biochemistry. 2018;46(3):1209-17.

96. Kameswaran V, Golson ML, Ramos-Rodriguez M, Ou K, Wang YJ, Zhang J, et al. The Dysregulation of the DLK1-MEG3 Locus in Islets From Patients With Type 2 Diabetes Is Mimicked by Targeted Epimutation of Its Promoter With TALE-DNMT Constructs. 2018;67(9):1807-15.

97. Zhang D, Qin H, Leng Y, Li X, Zhang L, Bai D, et al. LncRNA MEG3 overexpression inhibits the development of diabetic retinopathy by regulating TGF- β 1 and VEGF. Experimental and Therapeutic Medicine. 2018;16(3):2337-42.

98. Zha F, Qu X, Tang B, Li J, Wang Y, Zheng P, et al. Long non-coding RNA MEG3 promotes fibrosis and inflammatory response in diabetic nephropathy via miR-181a/Egr-1/TLR4 axis. Aging (Albany NY). 2019;11(11):3716-30.

JUSTIFICATIVA

O DM é uma doença complexa que caracteriza um grave problema de saúde pública, pois possui acentuada morbidade e mortalidade bem como devido a repercussões econômicas e sociais decorrentes do impacto de suas complicações crônicas, as quais comprometem a qualidade de vida e a produtividade dos indivíduos afetados, além dos elevados custos requeridos para seu tratamento. Estatísticas mostram que o número de indivíduos com DM está aumentando e providências se fazem necessárias para modificar a trajetória dessa doença. Neste contexto, a descoberta de novos biomarcadores poderá melhorar a identificação de indivíduos em risco para o DM em um período em que medidas preventivas podem ainda ser eficazes.

Além disso, a hiperglicemia crônica nos pacientes com DM está associada ao desenvolvimento de complicações crônico micro- e macrovasculares associadas a elevada morbimortalidade. Uma importante complicação crônica microvascular do DM é a DRD, a qual que afeta 25-40% dos pacientes com DM. A DRD é a maior causa de DRC e de DRCT em todo o mundo, sendo uma grande preditora de mortalidade em pacientes com DM. O comprometimento renal pode ser identificado pela redução da TFGe e/ou pelo aumento da EUA ou outras proteínas relacionadas à função dos túbulos renais. Entretanto, existem pacientes que mesmo com EUA alterada não progridem para DRCT, enquanto outros pacientes progridem rapidamente para os estágios avançados da doença. Além disso, a EUA carece de sensibilidade e especificidade, pois estudos recentes mostram que há pacientes que desenvolvem a DRD antes que um aumento na EUA seja detectado. Ainda, as equações atualmente recomendadas subestimam a TFGe no DM e não permitem avaliar com precisão o curso da função renal. Dessa forma, a descrição de novos

biomarcadores se faz necessária para a identificação de pacientes com alto risco de desenvolver essa complicação do DM e progredir para o estado de DRCT.

MiRNAs e lncRNAs são classes de ncRNAs que regulam a expressão gênica. Mudanças na expressão desses ncRNAs foram observadas em diversas situações patológicas, incluindo no DM e suas complicações crônicas. Os estudos que relacionaram miRNAs/lncRNAs circulantes, urinários ou renais com a DRD em humanos ou em modelos animais sugerem que perfis de miRNAs e de lncRNAs parecem se alterar nas diferentes fases desta complicação. Entretanto, os resultados desses estudos ainda não são conclusivos, isto é, não apontam um perfil único de expressão de miRNAs/lncRNAs circulantes no plasma/soro, urinários ou teciduais que possa ser usado como biomarcador das diferentes fases da DRD. Sendo assim, muitos estudos ainda são necessários para identificar um perfil alterado de expressão de miRNAs/lncRNAs no contexto do DM e suas complicações, incluindo a DRD.

A identificação de perfis de expressão de miRNAs/lncRNAs que possam ser usados como biomarcadores do desenvolvimento de DM ou para o surgimento ou prognóstico da DRD poderá contribuir para a busca da prevenção do DM ou diminuição da progressão da DRD. Além disso, estudos que identifiquem o papel dos miRNAs e lncRNAs na fisiopatogênese do DM e da DRD podem contribuir para a elucidação de importantes mecanismos regulatórios, gerando potenciais alvos terapêuticos e contribuindo para um melhor entendimento da base epigenética dessas doenças.

2 OBJETIVOS

2.1 OBJETIVOS GERAIS

- Investigar um perfil de miRNAs associado ao desenvolvimento ou progressão da DRD, medida pelo declínio rápido na TFGe, através da análise do miRNoma urinário.

- Investigar o papel dos lncRNAs no desenvolvimento de DM, através de uma revisão sistemática e de análises de bioinformática.

- Avaliar os níveis de expressão de lncRNAs em pacientes com DM1 e indivíduos saudáveis.

-Avaliar os níveis de expressão urinária de lncRNAs em pacientes com DM1 com e sem DRD.

- Avaliar a associação de polimorfismos em lncRNAs rs3200401/MALAT1, rs1894720/MIAT, rs3931283/PVT1, rs11993333/PVT1, rs5749201/TUG1, e rs7158663/MEG3 e o desenvolvimento de DRD.

2.2 OBJETIVOS ESPECÍFICOS

- Comparar a expressão do miRNoma urinário (todos os miRNAs maduros conhecidos) entre pacientes com DM1 sem DRD e pacientes com DM1 e DRD (divididos em progressores e não-progressores para declínio rápido na TFGe). Validar os miRNAs mais diferencialmente expressos entre os grupos da análise do miRNoma em uma amostra independente de pacientes com DM1 sem DRD e DM1 com DRD (divididos em progressores e não-progressores para declínio rápido na TFGe), através de qPCR individual.

- Validar os miRNAs mais diferencialmente expressos entre os grupos da análise do miRNoma, através da comparação dos nossos resultados com um *dataset* público de transcriptômica.

- Investigar as vias metabólicas nas quais os genes regulados pelos miRNAs diferencialmente expressos nos pacientes com DRD participam através de análises de bioinformática.

- Realizar uma revisão sistemática de todos os estudos de expressão de lncRNAs em pacientes com DM, visando identificar um perfil de lncRNAs associados ao desenvolvimento de DM.

- Avaliar a expressão dos lncRNAs *MALAT1*, *MEG3*, *MIAT*, *PVT1* e *TUG1* em células mononucleares de pacientes com DM1 e indivíduos saudáveis, utilizando a técnica de qPCR.

- Correlacionar as expressões dos lncRNAs *MALAT1*, *MEG3*, *MIAT*, *PVT1* e *TUG1* com características laboratoriais relacionadas ao DM.

Avaliar a expressão dos lncRNAs *MALAT1* e *TUG1* na urina de pacientes com DM1 com
 e sem DRD, através da técnica de qPCR.

- Correlacionar os níveis de expressões urinárias dos lncRNAs *MALAT1* e *TUG1* com características laboratoriais relacionadas à DRD, tais como EUA e TFGe.

- Comparar as frequências dos polimorfismos rs3200401/MALAT1, rs1894720/MIAT, rs3931283/PVT1, rs11993333/PVT1, rs5749201/TUG1 e rs7158663/MEG3 em pacientes com DM2 com e sem DRD.

- Avaliar a associação dos polimorfismos rs3200401/*MALAT1*, rs1894720/*MIAT*, rs3931283/*PVT1*, rs11993333/*PVT1*, rs5749201/*TUG1* e rs7158663/*MEG3* com características laboratoriais relacionadas à DRD, tais como EUA e TFGe.

CAPÍTULO 2

LncRNAs e o Diabetes Mellitus

ARTIGO 2

"The impact of lncRNAs in diabetes mellitus: A systematic review and in silico

analyses"

Artigo publicado na revista Frontiers in Endocrinology 2021 – Fator de impacto 6,055

The Impact of IncRNAs in Diabetes Mellitus: A Systematic Review and *In Silico* Analyses

Cristine Dieter^{1,2}, Natália Emerim Lemos¹, Nathalia Rodrigues de Faria Corrêa¹, Taís Silveira Assmann^{1,2} and Daisy Crispim^{1,2*}

¹ Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil, ² Post-Graduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Long non-coding RNAs (IncRNAs) are non-coding transcripts that have emerged as one

OPEN ACCESS

Edited by:

Åke Sjöholm, Gävle Hospital, Sweden

Reviewed by:

Manal Said Fawzy, Suez Canal University, Egypt Subrata Chakrabarti, Western University, Canada

> *Correspondence: Daisy Crispim dcmoreira@hcpa.edu.br

Specialty section:

This article was submitted to Diabetes: Molecular Mechanisms, a section of the journal Frontiers in Endocrinology

Received: 03 September 2020 Accepted: 15 February 2021 Published: 19 March 2021

Citation:

Dieter C, Lemos NE, Corrêa NRdF, Assmann TS and Crispim D (2021) The Impact of IncRNAs in Diabetes Mellitus: A Systematic Review and In Silico Analyses. Front. Endocrinol. 12:602597. doi: 10.3389/fendo.2021.602597 of the largest and diverse RNA families that regulate gene expression. Accumulating evidence has suggested a number of IncRNAs are involved in diabetes mellitus (DM) pathogenesis. However, results about IncRNA expressions in DM patients are still inconclusive. Thus, we performed a systematic review of the literature on the subject followed by bioinformatics analyses to better understand which IncRNAs are dysregulated in DM and in which pathways they act. Pubmed, Embase, and Gene Expression Omnibus (GEO) repositories were searched to identify studies that investigated IncRNA expression in cases with DM and non-diabetic controls. LncRNAs consistently dysregulated in DM patients were submitted to bioinformatics analysis to retrieve their target genes and identify potentially affected signaling pathways under their regulation. Fifty-three eligible articles were included in this review after the application of the inclusion and exclusion criteria. Six hundred and thirty-eight IncRNAs were differentially expressed between cases and controls in at least one study. Among them, six IncRNAs were consistently dysregulated in patients with DM (Anril, Hotair, Malat1, Miat, Kcng1ot1, and Meg3) compared to controls. Moreover, these six IncRNAs participate in several metabolismrelated pathways, evidencing their importance in DM. This systematic review suggests six IncRNAs are dysregulated in DM, constituting potential biomarkers of this disease.

Keywords: IncRNAs (long non-coding RNAs), type 1 diabetes mellitus (DM1), type 2 diabetes mellitus (T2DM), systematic review, target prediction

INTRODUCTION

Diabetes mellitus (DM) is a group of metabolic disorders that have in common the chronic hyperglycemia, which results from defects in insulin secretion, insulin action, or both (1). Accordingly to the International Diabetes Federation Atlas 2019, an estimated 463 million adults are currently living with DM (9.3% of the world population), and this number is projected to reach 700 million by 2045 (2). Thus, DM has achieved epidemic proportions worldwide, being associated

with increased morbidity and mortality rates due to its specific micro- and macrovascular complications (1, 2).

Type 1 DM (T1DM) accounts for 5–10% of all DM cases and usually appears in people younger than 30 years (1, 2). T1DM is an autoimmune disease caused by the progressive destruction of pancreatic beta-cells by macrophages and T lymphocytes, making patients insulin-dependent for life (1, 3). Type 2 DM (T2DM) comprises 90–95% of worldwide diabetic cases and generally arises in subjects older than 40 years and with obesity. Hyperglycemia in T2DM patients is caused by insulin resistance associated with different degrees of a relative beta-cell failure (1, 2). It is well known that susceptibility for both T1DM and T2DM is triggered by a multifaceted interaction among several environmental, genetic, and epigenetic factors (4–8).

Epigenetic factors regulate the complex crosstalk between genes and environmental factors without altering the DNA sequence and include DNA methylation, histone posttranslational modifications, and non-coding RNAs (ncRNAs) (7, 8). NcRNAs are regulatory RNAs that typically lack protein-coding capacity and play key roles in both physiological and pathological processes (9, 10). According to their length and functions, ncRNAs can be classified into different subtypes, including the long ncRNAs (lncRNAs), which are those ncRNAs with >200 nucleotides in length (10, 11).

LncRNAs can be located in the nucleus or cytoplasm and exhibit more specific expression profiles than mRNAs, being expressed in cell/tissue-, developmental stage-, or disease statespecific manners (10, 12, 13). A number of studies have suggested lncRNAs participate in several molecular processes involved in gene regulation, including epigenetic, transcriptional, and post-transcriptional regulation, through interaction with chromatin-remodeling complexes, binding to transcription factors or regulation of mRNA-binding proteins and microRNAs (another class of ncRNAs) (10, 14–16).

In this context, growing evidence has shown lncRNAs play key roles in regulating beta-cell function, apoptosis, insulin secretion, glucose metabolism, and insulin resistance (10, 17– 22). Accordingly, a number of studies have reported changes in lncRNA expressions in patients with DM or in murine models of T1DM or T2DM (10, 23–29). Thus, lncRNAs are likely to be novel potential biomarkers for early diagnosis and prognosis of T1DM or T2DM (10, 29). For example, Carter et al. showed GAS5 might be a prognostic biomarker for T2DM since this lncRNA was decreased in serum of patients with DM from a US military veterans cohort (23). Individuals with lower GAS5 expression were almost 12× more likely to have T2DM (23). Li et al. reported *ENST00000550337.1* upregulation in blood had high diagnostic value for identifying pre-DM and T2DM in patients from a Chinese cohort (25).

Therefore, to further investigate which lncRNAs may be involved in DM pathogenesis and used as potential biomarkers of this disease, we performed a systematic review of the literature on the subject. Moreover, bioinformatics analyses were performed to investigate the regulatory and functional roles of dysregulated lncRNAs in DM pathogenesis.

MATERIALS AND METHODS

Search Strategy, Eligibility of Studies, and Data Extraction

This systematic review was designed and described in accordance with current guidelines (30, 31), and its protocol was registered at PROSPERO (http://www.crd.york.ac.uk/PROSPERO), under the identification: CRD42019124368. PubMed and EMBASE repositories were searched to retrieve all articles that investigated lncRNA expressions in T1DM or T2DM patients compared to non-diabetic controls. The research question was constructed based on the PICOS strategy (31), as follows: P (Population): patients with T1DM or T2DM; I (Intervention): IncRNA expression; C (Comparators): healthy control groups; O (Outcomes): DM; S (Study designs): case-control study, crosssectional or cohort. The following medical subject headings (MeSH) were used: ("diabetes mellitus" OR "diabetes mellitus, type 1" OR "diabetes mellitus, type 2") AND ("RNA, long noncoding" OR "untranslated RNA"). The search was restricted to English, Spanish, or Portuguese language papers and was finished on April 2020. Reference lists from all included articles were also manually reviewed in order to identify other relevant citations. Moreover, studies were also searched in the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

We included original articles that analyzed lncRNA expressions in patients with T1DM or T2DM (cases) and subjects without DM (controls). Studies that did not have an appropriate control group were excluded. Two researchers (CD and NL) independently reviewed titles and abstracts of all articles to evaluate if they were eligible for inclusion in this systematic review.

Results were independently collected by two investigators (CD and NL) using a standardized abstraction form (31). Discrepancies between investigators were solved by discussion between them and, when necessary, a third reviewer (DC) was consulted. The following information was collected from each study included in this review: 1) characteristics of studies and samples; 2) information regarding lncRNA expressions, quantification method, analyzed tissue, and number of lncRNAs investigated; and 3) lncRNA expression profile in case and control groups.

Evaluation of IncRNA Putative Target Genes and Functional Enrichment Analysis

Potential target genes for the consistently dysregulated lncRNAs in DM were searched using lncRNA2Target v2.0 (32) and starBase (33). The criteria for selecting the consistently dysregulated lncRNAs were: 1) lncRNAs with concordant results in \geq 75% of the studies in which they were analyzed; and 2) lncRNAs analyzed in at least three studies. Statistical significances were reported after Benjamini–Hochberg (q-*value*) corrections for multiple comparisons (34). To better understand the biological relevance of lncRNA target genes, a network analysis was executed using PathDIP (accessed 23th April 2020) (35). The nomenclature of mRNAs and lncRNAs were unified based on HUGO gene nomenclature committee (HGNC) and LNCipedia v5.2, respectively.

RESULTS

Literature Search and Characteristics of Eligible Studies

Figure 1 shows the flowchart illustrating the strategy used to identify and select articles for inclusion in this systematic review. Following the search criteria, a total of 3,314 publications were retrieved from databases; however, after careful full text analysis, only 53 articles fulfilled the eligibility criteria and were included in the present review. The main characteristics of these studies are shown in **Table 1** and the **Supplementary Table 1**.

The number of lncRNAs differentially expressed between case and control groups from the different included studies varied from 1 (23, 39, 41, 43, 46–49, 52, 57, 60, 64, 68, 69, 73–75, 77) to 97,286 (58), and the sample sizes ranged from 4 (66) to 370 (73). Among the 53 studies included in this systematic review, 74% of them analyzed T2DM patients, while 26% did not report which DM type patients had. The tissues most analyzed were serum, plasma, and peripheral blood mononuclear cells (PBMCs).

Differentially Expressed IncRNAs in DM

As shown in the **Supplementary Table 2**, 623 lncRNAs were reported as being dysregulated in patients with DM from one study (17, 21, 24–28, 41, 42, 44, 47, 54, 55, 57–60, 64, 73, 75), while only seven were dysregulated in cases in two studies (*ENST00000550337.1, Pluto, LncRNAp3134, n335556, n336109, n342533*, and *Pvt1*) (17, 19, 21, 25, 28, 63, 66, 67). Eight lncRNAs were dysregulated in patients from three or more studies, being chosen for further evaluation (**Supplementary Table 2** and **Table 2**). Among these eight lncRNAs, those showing

concordant results in more than 75% of the studies were considered consistently dysregulated in DM. Thus, as shown in **Table 2**, six lncRNAs were consistently dysregulated in patients with DM (upregulated: *Anril, Hotair, Malat1, Miat,* and *Kcnq1ot1*; downregulated: *Meg3*) compared to controls. *GAS5* and *H19* were upregulated in patients from some studies and downregulated in others, which could be explained by differences in the tissue types analyzed (serum, pancreatic islets, liver, plasma, and PBMCs) (**Table 2**).

Putative Target Genes and Enrichment Pathway Analysis of the Six Differentially Expressed IncRNAs in Human Samples

Bioinformatics analyses were carried out to find putative targets and biological pathways regulated by the six lncRNAs (*Anril*, *Hotair*, *Malat1*, *Miat*, *Kcnq1ot1*, and *Meg3*) consistently dysregulated in samples of DM patients. These six lncRNAs regulate together the expression of 1,860 unique target genes (**Supplementary Table 3**). *Malat1* has the largest number of target genes (1,671), followed by *Kcnq1ot1* (91), *Miat* (65), and *Hotair* (59), while *Meg3* and *Anril* have the lowest number of targets (32 and 20, respectively) (**Figure 2A** and **Supplementary Table 3**). Among the 1,860 target genes, 1,307 were protein coding genes, 287 were pseudogenes, 100 were small nuclear RNAs (snRNAs), and 225 were other type of ncRNAs, including microRNAs, rRNA, tRNA, and mitochondrial RNA (mtRNA) (**Supplementary Table 3**).

Next, to further explore the functional consequences of the dysregulation of the six lncRNAs of interest, we performed functional enrichment analysis of their protein-encoding target

FIGURE 1 | Flowchart illustrating the search strategy used to identify studies that investigated the association between IncRNAs and diabetes mellitus. *Other: articles excluded due to lack of important information; studies with cell lines; and studies written in other idioms (not English, Spanish or Portuguese).

TABLE 1 | Characteristics of studies included in the systematic review.

Author, year [Reference]	Sample size Case/Control	Tissue	Method	Total number of studied IncRNAs	Statistically significant IncRNAs	
					Upregulated	Downregulated
Akerman et al. 2017 (17)	10 T2DM patients/50 controls	Pancreatic islets	RNA-seq and qPCR	2,373	0	16
Alikhah et al. 2018 (36)	18 T2DM patients/18 controls	PBMCs	qPCR	1	0	0
Carter et al. 2015 (23)	5 T2DM patients/5 controls	Serum	Microarray	84	0	1
	47 T2DM patients/49 controls (validation)		and qPCR			
Chen et al. 2019 (37)	25 DM patients/20 controls	Serum	aPCB	1	0	0
Chen et al. 2018 (38)	27 DM patients/17 controls	Serum	aPCB	1	0	0
Cheng et al. 2019 (39)	30 DM patients/30 controls	Perinheral blood	aPCB	1	1	0
Dai et al. 2020 (40)	60 T2DM patients/60 controls	Plasma		1	0	0
Dat et al. $2020 (40)$	5 T2DM patients/50 controls	CD14 monoputor	4FCN aPCD	1	1	0
Das et al. 2018 (41)	5 12DM patients/5 controls	CD14+ monocytes	4PCR	1	1	0
(42) De Gonzalo-Calvo et al. 2016	48 12DM patients/12 controls	Serum	dhCK	12	1	3
Erfanian Omidvar et al. 2019 (24)	100 T2DM patients/100 controls	PBMCs	qPCR	2	0	2
Esguerra et al. 2020 (43)	9 T2DM patients/10 controls	Pancreatic islets	qPCR	1	1	0
Fadista et al. 2014 (44)	12 T2DM patients/51 controls	Pancreatic islets	RNA-seq	493	NA	NA
Fawzy et al. 2020 (45)	53 T2DM patients/110 controls	Plasma	aPCR	2	1	1
Gao et al. 2014 (46)	5 T2DM patients/4 controls	Lateral quadriceps muscle biopsy	qPCR	1	0	1
Jiao et al. 2019 (47)	43 DM patients/48 controls	Serum	aPCB	1	1	0
Kameswaran et al 2014 (48)	4 T2DM patients/3 controls	Pancreatic islets	aPCB	1	0	1
Li et al 2018 (49)	10 T2DM patients/10 controls	Liver bionsy	aPCB	1	1	0
Li et al. 2010 (50)	56 T2DM patients/10 controls	Sorum		1	0	0
Li et al. 2019 (50)	50 T2DIVI patients/40 controls	Diagona		1	0	0
Li et al. 2018 (51)	63 DIVI patients/56 controls	Plasma	dPCR	1	0	0
Li et al. 2018 (25)	6 12DM patients/6 controls 20 T2DM patients/20 controls (validation)	Peripheral blood	Microarray and qPCR	41,000	14	3
Liu et al. 2019 (52)	90 T2DM patients/30 controls	Serum	aPCB	1	1	0
Luc et al. 2018 (52)	6 T2DM patients/6 controls	PBMCs	Microarray	ΝΔ	316	126
Luo et al. 2010 (00)	26 T2DM patients/26 controls	FDMOS	and qPCR	NA	510	120
Mo at al. $2020(54)$	(Validation)	DRMCa	Arrow and	41.000	4.4	04
Wa et al. 2020 (54)	122 T2DM patients/125 controls	FDIVICS	qPCR	41,000	44	24
Maraa ani at al. 0010 (00)	(validation)			0	0	0
Mansoori et al. 2018 (26)	100 12DM patients/100 controls	PBINICS	dPCR	2	0	2
Mohamadi et al. 2019 (55)	100 12DM patients/100 controls	PBMCs	qPCR	2	0	0
Moran et al. 2012 (56)	16 12DM patients/19 controls	Pancreatic islets	qPCR	13	1	1
Motterle et al. 2017 (57)	10 T2DM patients/10 controls	Pancreatic islets	qPCR	1	0	1
Pengyu et al. 2020 (58)	4 T2DM patients/4 controls	Serum	RNAseq and qPCR	NA	68763	28523
Pradas-Juni et al. 2020 (59)	4 T2DM patients/4 controls	Liver	RNAseq	13,805	126	384
Reddy et al. 2014 (60)	4 T2DM patients/4 controls	Monocytes	qPCR	1	1	0
Ren et al. 2019 (61)	178 T2DM patients/44 controls	Plasma	qPCR	1	0	0
Ruan et al. 2018 (19)	3 T2DM patients/3 controls 30 T2DM patients/30 controls	Blood	Microarray and qPCR	40,914		2269
	(validation) 30 T2DM patients/30 controls	Exosome serum/	qPCR	1	1	0
		exosome-free serum				
Saeidi et al. 2018 (27)	100 I2DM patients/100 controls	PBMCs	qPCR	2	0	2
Sathishkumar et al. 2018 (21)	30 T2DM patients/32 controls	PBMCs	qPCR	17	13	2
Shaker et al. 2019 (62)	30 T2DM patients/81 controls	Blood	qPCR	2	2	0
Toraih et al. 2019 (63)	55 T2DM patients/108 controls	Plasma	qPCR	4	4	0
Wan et al. 2020 (64)	32 T2DM patients/32 controls	Serum	qPCR	1	1	0
Wang et al. 2018 (65)	296 T2DM patients/56 controls	Serum	qPCR	1	0	0
Wang et al. 2018 (66)*	2 T2DM patients/2 controls	Blood	Microarray and gPCR	NA	NA	NA
Wang et al. 2017 (28)	6 T2DM patients/6 controls 60 T2DM patients/60 controls (validation)	Peripheral blood	Microarray and qPCR	NA	39	16

(Continued)

TABLE 1 | Continued

Author, year [Reference]	Sample size Case/Control	Tissue	Method	Total number of studied IncRNAs	Statistically significant IncRNAs	
					Upregulated	Downregulated
Wang et al. 2020 (67)	156 T2DM/100 controls	Peripheral blood	qPCR	3	3	0
Yang et al. 2018 (68)	8 DM patients/8 controls	Serum	qPCR	1	1	0
Yang et al. 2018 (69)	6 DM patients/6 controls	Serum	qPCR	1	1	0
Yang et al. 2018 (70)	36 DM patients/41 controls	Serum	qPCR	1	0	0
Yang et al. 2019 (71)	DM patients/controls	Serum	Array	30,586	245	680
Yin et al. 2019 (72)	62 DM patients/48 controls	Plasma	qPCR	1	0	0
Zha et al. 2019 (73)	244 T2DM patients/126 controls	Plasma	qPCR	1	0	1
Zhang et al. 2018 (74)	28 DM patients/30 controls	Serum	qPCR	1	0	1
Zhang et al. 2020 (75)	99 T2DM patients/50 controls	Serum	qPCR	1	0	1
Zhang et al. 2017 (76)	30 DM patients/28 controls	Plasma	Microarray	NA	NA	NA
Zhang et al. 2019 (77)	24 T2DM patients/26 controls	Serum	qPCR	1	1	0
Zhang et al. 2019 (78)	244 T2DM patients/102 controls	Plasma	qPCR	1	0	0
Zhang et al. 2019 (79)	60 DM patients/60 controls	Plasma	qPCR	1	0	0

*Abstract from congress. DM, diabetes mellitus; NA, information not available; PBMCs, Peripheral blood mononuclear cells; qPCR, quantitative real time PCR; RNA seq, RNA sequencing; T2DM, type 2 diabetes mellitus.

 TABLE 2 | LncRNAs differentially expressed in at least three studies included in the systematic review.

LncRNA	Reference	Samples	Tissue	Change of expression
ANRIL	Sathishkumar et al. (21)	T2DM patients	PBMCs	Up
	Toraih et al. (63)	T2DM patients	Plasma	Up
	Zhang and Wang (77)	T2DM patients	Serum	Up
GAS5	Carter et al. (23)	T2DM patients	Serum	Down
	Esguerra et al. (43)	T2DM patients	Pancreatic islets	Up
	Sathishkumar et al. (21)	T2DM patients	PBMCs	Up
H19	Cheng et al. (39)	T2DM patients	Peripheral blood	Up
	Fawzy et al. (45)	T2DM patients	Plasma	Up
	Gao et al. (46)	T2DM patients	Muscle	Down
HOTAIR	Li et al. (49)	T2DM patients	Liver	Up
	Sathishkumar et al. (21)	T2DM patients	PBMCs	Up
	Shaker et al. (62)	T2DM patients	Blood	Up
Kcnq1ot1	Móran et al. (56)	T2DM patients	Pancreatic islets	Up
	Yang et al. (68)	DM patients	Serum	Up
	Yang et al. (69)	DM patients	Serum	Up
MALAT1	Liu et al. (52)	T2DM patients	Serum	Up
	Luo et al. (53)	T2DM patients	Blood	Up
	Sathishkumar et al. (21)	T2DM patients	PBMCs	Up
	Shaker et al. (62)	T2DM patients	Blood	Up
	Toraih et al. (63)	T2DM patients	Plasma	Up
MEG3	Kameswaran et al. (48)	T2DM patients	Pancreatic islets	Down
	Luo et al. (53)	T2DM patients	Blood	Down
	Sathishkumar et al. (21)	T2DM patients	PBMCs	Up
	Zhang et al. (74)	DM patients	Serum	Down
MIAT	De Gonzalo-Calvo et al. (42)	T2DM patients	Serum	Up
	Sathishkumar et al. (21)	T2DM patients	PBMCs	Up
	Toraih et al. (63)	T2DM patients	Plasma	Up

DM, diabetes mellitus; PBMCs, Peripheral blood mononuclear cells; T2DM, type 2 diabetes mellitus.

genes using pathways maps from the KEGG repository. As a result, a total of 168 unique pathways were enriched for lncRNA target genes (**Supplementary Table 4**). Moreover, as demonstrated in **Figure 2B**, only one pathway is shared among the five lncRNAs (*Anril, Hotair, Malat1, Kcnq1ot1*, and *Meg3*): Kaposi sarcoma-associated herpes virus infection. Many of the 168 pathways are well established to be involved in DM pathogenesis, such as PI3K/Akt, MAPK, apoptosis, AGE/

RAGE, and FoxO (Figure 3 and Supplementary Table 4). Of note, we could not find any significant KEGG pathway for *Miat*.

DISCUSSION

Currently, several studies have reported the association between epigenetic mechanisms and DM development [reviewed in

(6, 7, 80, 81)]. In this context, lncRNAs are a class of ncRNAs that appear to be involved in DM pathogenesis (10). Thus, here, we performed a systematic review to further investigate which lncRNAs are mainly associated with DM. Our results demonstrated six lncRNAs were consistently dysregulated in patients with DM. Anril, Hotair, Kncq1ot1, Malat1, and Miat

were consistently upregulated, while *Meg3* was downregulated in diabetic cases compared to controls.

Malat1 (metastasis-associated lung adenocarcinoma transcript 1, also known as *Neat2*) is one of the most analyzed lncRNAs in T2DM samples. Here, our qualitative analysis shows this lncRNA is upregulated in serum, plasma, and PBMCs of

number and the range of the pathway's q-value, respectively. The y-axis represents the KEGG pathways, and the x-axis shows the five lncRNAs that participated in each selected pathways. *Q-values*: P-values corrected for multiple tests using the Benjamini– Hochberg method.

T2DM patients (21, 52, 53, 62, 63). Moreover, studies performed in animal models of DM indicate that the expression of Malat1 is increased in liver, macrophages, and serum of different murine models of T2DM compared to controls (20, 27, 52). Malat1 is a highly conserved nuclear lncRNA initially identified as a predictor of lung cancer metastasis (82). Several studies have reported the involvement of this lncRNA in signaling pathways related to DM pathogenesis, such as PI3K/Akt (83), NF-KB (84), MAPK/ERK (85, 86), and Wnt/β-catenin (87). Accordingly, our in silico analysis shows Malat1 is involved in a number of pathways involved in DM and its complications that, besides PI3K/Akt, MAPK, and Wnt, include apoptosis, insulin, cell cycle, AMPK, FoxO, ErbB, HIF-1, AGE/RAGE, adipocytokines, and protein processing in endoplasmic reticulum. In agreement with Malat1 upregulation in T2DM, its expression was also increased in human umbilical vein endothelial cells (HUVECs) cultured with high-glucose (HG) and positively correlated with inflammatory cytokine (IL6 and TNF) levels (88). Additionally, this lncRNA was upregulated in mice with diabetic retinopathy (DR) compared to control animals (89).

Hotair was also consistently upregulated in liver, blood, and PBMCs of patients with T2DM (21, 38, 62). Accordingly, Li et al. reported this lncRNA was upregulated in liver of two T2DM murine models (db/db and C57BL/6J mice) treated with high-fat diet (49). *Hotair* is located within the *HOMEOBOX C* (*HOXC*) gene cluster on chromosome 12q13.13 and is involved in cellular proliferation, inhibition of apoptosis, genomic instability, angiogenesis, and metastasis (90–92). Moreover, *Hotair* upregulation promotes hepatic insulin resistance *via* the Akt/ GSK pathway (38), which might partially explain its association with T2DM. Our *in silico* analysis demonstrates the involved of *Hotair* in several DM-related pathways, such apoptosis, PI3K-Akt, MAPK, HIF-1, TNF, and FoxO. This lncRNA seems also to be involved in the pathogenesis of diabetic chronic complications. *Hotair* was upregulated in serum of patients with different degrees of DR compared to healthy controls, and its expression was able to distinguish patients with non-proliferative DR from those with proliferative DR (62). Increased expression of *Hotair* was also found in kidney of patients with diabetic kidney disease (DKD) and in kidneys of db/db and STZ-induced diabetic mice (93). Accordingly, mouse podocytes cultured under HG conditions also expressed high levels of *Hotair* (93).

In addition to Malat1 and Hotair, the lncRNA Anril was also increased in PBMCs, plasma, or serum of patients with T2DM compared to controls (21, 63, 77). This lncRNA has been associated with several types of cancer, such as gliomas, breast, lung, liver, colon, and thyroid cancers [reviewed in (94)]. Anril seems also to be involved in DR pathogenesis, since its expression was upregulated in human retinal endothelial cells (HRECs) cultured under HG conditions and in retinal tissue of STZ-induced diabetic mice (95). Blockade of Anril prevented HG-induced VEGF upregulation in HRECs, which is a key angiogenic factor in DR pathogenesis (95, 96). In line with these findings, Zhang et al. showed Anril overexpression in diabetic rats complicated with cerebral infarction upregulated VEGF and improved angiogenesis through activation of the NFκB pathway (97). Our in silico analysis indicates that Anril is also involved in the TGFB, PI3K-Akt, MAPK, cell cycle, FoxO, and AGE/RAGE pathways, which are known pathways related to DM and its chronic complications.

Kcnq1ot1 is another lncRNA consistently upregulated in islets and serum of patients with T2DM (56, 68, 69). *Kcnq1ot1* is an antisense lncRNA that seems to regulate the expression of both neighboring or distant genes (98), including the *CDKN1C*, a known regulator of beta-cell development (99). Interestingly, a meta-analysis study, including 51,075 DM cases and 10,6134 controls, demonstrated the association between the rs231362 polymorphism in the *Kcnq1ot1* gene and risk for T2DM [OR 1.10 (95% CI 1.06–1.15), $P < 10^{-4}$] (100). Our *in silico* analysis indicates this lncRNA regulates genes from the protein processing in endoplasmic reticulum stress pathway.

Miat was also consistently upregulated in serum, plasma, or PBMCs of T2DM patients compared to controls (21, 42, 63). This lncRNA seems to act as a regulator of several signaling pathways related to cellular function, such as proliferation and apoptosis and as a competitive endogenous RNA (101). Additionally, Miat seems to be involved in diabetic complications (102). Miat was upregulated in the myocardium of diabetic rats, while its knockdown inhibited apoptosis in cardiomyocytes exposed to HG (103). In contrast, in renal tubuli of diabetic rats, Miat was downregulated compared to control rats and negatively correlated to serum creatinine levels (104). Growing evidence has also shown Miat dysregulation in a number of diseases, such as myocardial infarction, age-related cataract, different cancers, and ischemic stroke [reviewed in (101)]. Here, we were not able to find any significant KEGG pathway for Miat; therefore, how this lncRNA is involved in DM and other diseases still needs to be clarified.

Our systematic review indicates *Meg3* is downregulated in islets, whole blood, and serum of patients with DM (48, 53, 74). Accordingly, this lncRNA was downregulated in islets of db/db mice (105) and in serum of diabetic patients with DR compared to controls (74). However, it was upregulated in liver or primary hepatocytes of different T2DM murine models (59, 106). In a murine beta-cell line (MIN6), *Meg3* suppression led to increased apoptosis due to *caspase-3* and *Bax* upregulation and *Bcl2* downregulation (105). In addition, *Meg3* seems to regulate insulin synthesis and secretion since its blockade in murine beta-cells decreased the expression of key transcription factors involved in insulin synthesis (Pdx-1 and mafA); thus, decreasing insulin gene transcription (105). Besides apoptosis, our *in silico* analysis suggests this lncRNA is involved in PI3K/Akt, VEGF, and MAPK pathways.

Of note, our bioinformatics analysis also demonstrated that Anril, Hotair, Malat1, Kcnq1ot1, and Meg3 regulate genes from the Kaposi sarcoma-associated herpes virus infection (KSHV) pathway. KSHV, also known as human herpesvirus 8, is a human tumor virus associated with the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma, and Multicentric Castleman's disease. The KSHV pathway contains genes related to IFN antiviral response, inflammatory cytokines, and cell proliferation pathways [https://www.genome.jp/kegg/kegg2. html]. Interestingly, the association between KSHV and DM was previously reported by observational studies (107, 108). Cui et al. described that patients with T2DM had an elevated risk of KSHV (107). Accordingly, Piras et al. showed 58% of T2DM patients were seropositive for KSHV vs. 27% of the healthy subjects (108). Even though the mechanisms behind this association are unknown, this virus causes metabolic changes that might lead to altered insulin uptake and accumulation of neutral lipids in cells and also induce an impairment of the immune system [review in (109)], which are mechanisms related to DM pathogenesis.

Even though this systematic review indicates a group of lncRNAs consistently associated with DM and the pathways possible regulated by them, it has few limitations. First, there is no official nomenclature for lncRNAs; thus, we cannot exclude the possibility that we have lost some information. Second, some studies, especially those using RNAseq and microarrays technologies, did not inform which were the differentially expressed lncRNAs or their expression pattern (up- or downregulation) (19, 25, 44, 53, 54, 58, 66, 71, 76). Third, studies used different techniques to quantify lncRNA expressions and usually did not provide the expression values, only the pattern of expression of the dysregulated lncRNAs; therefore, making impossible to perform a reliable quantitative analysis of the data (meta-analysis). Fourth, most of the studies investigated lncRNAs in patients with T2DM or did not inform the type of DM, evidencing the lack of studies in T1DM population. In this context, four of the dysregulated lncRNAs found in this study were analyzed only in T2DM patients (Anril, Hotair, Malat1, and Miat). Thus, our results are more representative of this type of DM. Fifth, although six lncRNAs were consistently dysregulated in patients with DM compared to controls, it was not possible to perform a stratified analysis by tissue type since the number of studies that evaluated the same lncRNA in a given tissue is very small. Lastly, as commented above, Anril, Hotair, Kcnq1ot1, Malat, Meg3, and Miat lncRNAs seem to be dysregulated in patients with DR and DKD. However, most of the studies included in this systematic review did not report the percentage of patients with these diabetic chronic complications. Thus, here, it was impossible to evaluate if presence of diabetic chronic complications is impacting our results. Further studies are required to clarify this point.

In conclusion, our systematic review indicates that six lncRNAs are consistently dysregulated in DM, especially in patients with T2DM. This study also contributes to enlighten the pathways regulated by these lncRNAs and involved in the DM pathogenesis, such as PI3K/Akt, MAPK, apoptosis, AGE/ RAGE, and FoxO. Although this systematic review included 53 studies which analyzed lncRNA expression in DM-related tissues, further studies are necessary to better understand the involvement of lncRNAs in the pathogenesis of this complex disease and its chronic complications. As much as lncRNAs seem to be good candidates as biomarkers and therapeutic targets for DM, further investigations on organ-specific distribution of these regulatory molecules may be useful to clarify their role in DM.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

CD designed the study, researched data, performed the analysis, and wrote the manuscript. NL researched data, performed the analysis, and reviewed the manuscript. NC researched data and reviewed the manuscript. TA researched data, performed the bioinformatics analyses, contributed to discussion, and reviewed the manuscript. DC designed the study, contributed to the discussion, and wrote and reviewed the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This study was partially supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundo de Incentivo à Pesquisa e Eventos (FIPE, number 2018-0470) at Hospital de Clínicas de Porto Alegre,

REFERENCES

- American Diabetes Association ADA. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. *Diabetes Care* (2019) 42:S13–28. doi: 10.2337/dc19-S002
- 2. International Diabetes Federation IDF. *IDF Diabetes Atlas. 9th edn.* Brussels, Belgium: International Diabetes Federation (2019).
- Katsarou A, Gudbjornsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. *Nat Rev Dis Primers* (2017) 3:17016. doi: 10.1038/nrdp.2017.16
- Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. *Nat Rev Endocrinol* (2019) 15:635–50. doi: 10.1038/ s41574-019-0254-y
- Nyaga DM, Vickers MH, Jefferies C, Perry JK, O'Sullivan JM. The genetic architecture of type 1 diabetes mellitus. *Mol Cell Endocrinol* (2018) 477:70– 80. doi: 10.1016/j.mce.2018.06.002
- Zhang H, Pollin TI. Epigenetics Variation and Pathogenesis in Diabetes. Curr Diabetes Rep (2018) 18:121. doi: 10.1007/s11892-018-1091-4
- Dhawan S, Natarajan R. Epigenetics and Type 2 Diabetes Risk. Curr Diabetes Rep (2019) 19:47. doi: 10.1007/s11892-019-1168-8
- Loh M, Zhou L, Ng HK, Chambers JC. Epigenetic disturbances in obesity and diabetes: Epidemiological and functional insights. *Mol Metab* (2019) 27S:S33–41. doi: 10.1016/j.molmet.2019.06.011
- 9. Mattick JS, Makunin IV. Non-coding RNA. *Hum Mol Genet* (2006) 15(Spec No 1):R17–29. doi: 10.1093/hmg/ddl046
- Guo J, Liu Z, Gong R. Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. *Clin Sci (Lond)* (2019) 133:1321–39. doi: 10.1042/CS20190372
- St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. *Trends Genet* (2015) 31:239–51. doi: 10.1016/ j.tig.2015.03.007
- Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. *Genome Res* (2012) 22:1775–89. doi: 10.1101/gr.132159.111
- Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet (2016) 17:47–62. doi: 10.1038/nrg.2015.10
- Chen X, Sun Y, Cai R, Wang G, Shu X, Pang W. Long noncoding RNA: multiple players in gene expression. *BMB Rep* (2018) 51:280–9. doi: 10.5483/ BMBRep.2018.51.6.025
- Sun M, Kraus WL. Minireview: Long noncoding RNAs: new "links" between gene expression and cellular outcomes in endocrinology. *Mol Endocrinol* (2013) 27:1390–402. doi: 10.1210/me.2013-1113
- Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA Interactions. *Methods Mol Biol* (2016) 1402:271–86. doi: 10.1007/978-1-4939-3378-5_21
- Akerman I, Tu Z, Beucher A, Rolando DMY, Sauty-Colace C, Benazra M, et al. Human Pancreatic beta Cell lncRNAs Control Cell-Specific Regulatory Networks. *Cell Metab* (2017) 25:400–11. doi: 10.1016/j.cmet.2016.11.016

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (Edital FAPERGS/CNPq 12/2014 PRONEX -Processo n° 16/2551 - 0000483-8), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). DC is recipient of scholarships from CNPq, while CD and TSA are recipients from scholarships from CAPES, and NL is recipient of scholarships from FAPERGS.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2021. 602597/full#supplementary-material

- Jin F, Wang N, Zhu Y, You L, Wang L, De W, et al. Downregulation of Long Noncoding RNA Gas5 Affects Cell Cycle and Insulin Secretion in Mouse Pancreatic β Cells. *Cell Physiol Biochem* (2018) 43:2062–73. doi: 10.1159/ 000484191
- Ruan Y, Lin N, Ma Q, Chen R, Zhang Z, Wen W, et al. Circulating LncRNAs Analysis in Patients with Type 2 Diabetes Reveals Novel Genes Influencing Glucose Metabolism and Islet β-Cell Function. *Cell Physiol Biochem* (2018) 46:335–50. doi: 10.1159/000488434
- Yan C, Chen J, Chen N. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. *Sci Rep* (2016) 6:22640. doi: 10.1038/srep22640
- Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. *Hum Genomics* (2018) 12:41. doi: 10.1186/s40246-018-0173-3
- 22. Feng SD, Yang JH, Yao CH, Yang SS, Zhu ZM, Wu D, et al. Potential regulatory mechanisms of lncRNA in diabetes and its complications. *Biochem Cell Biol* (2017) 95:361–7. doi: 10.1139/bcb-2016-0110
- Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. *BBA Clin* (2015) 4:102–7. doi: 10.1016/j.bbacli. 2015.09.001
- 24. Erfanian Omidvar M, Ghaedi H, Kazerouni F, kalbasi S, Shanaki M, Miraalamy G, et al. Clinical significance of long noncoding RNA VIM-AS1 and CTBP1-AS2 expression in type 2 diabetes. J Cell Biochem (2019) 120:9315–23. doi: 10.1002/jcb.28206
- 25. Li X, Zhao Z, Gao C, Rao L, Hao P, Jian D, et al. The Diagnostic Value of Whole Blood lncRNA ENST000005503371 for Pre-Diabetes and Type 2 Diabetes Mellitus. *Exp Clin Endocrinol Diabetes* (2017) 125:377–83. doi: 10.1055/s-0043-100018
- 26. Mansoori Z, Ghaedi H, Sadatamini M, Vahabpour R, Rahimipour A, Shanaki M, et al. Downregulation of long non-coding RNAs LINC00523 and LINC00994 in type 2 diabetes in an Iranian cohort. *Mol Biol Rep* (2018) 45:1227–33. doi: 10.1007/s11033-018-4276-7
- Saeidi L, Ghaedi H, Sadatamini M, Vahabpour R, Rahimipour A, Shanaki M, et al. Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. *Mol Biol Rep* (2018) 45(6):2601–8. doi: 10.1007/s11033-018-4429-8
- Wang X, Chang X, Zhang P, Fan L, Zhou T, Sun K. Aberrant Expression of Long Non-Coding RNAs in Newly Diagnosed Type 2 Diabetes Indicates Potential Roles in Chronic Inflammation and Insulin Resistance. *Cell Physiol Biochem* (2017) 43:2367–78. doi: 10.1159/000484388
- He X, Ou C, Xiao Y, Han Q, Li H, Zhou S. LncRNAs: Key players and novel insights into diabetes mellitus. *Oncotarget* (2017) 8:71325–41. doi: 10.18632/ oncotarget.19921
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA (2000) 283:2008–12. doi: 10.1001/jama.283.15.2008

- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* (2009) 339:b2535. doi: 10.1136/bmj.b2535
- Cheng L, Wang P, Tian R, Wang S, Guo Q, Luo M, et al. LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. *Nucleic Acids Res* (2019) 47:D140–4. doi: 10.1093/nar/gky1051
- 33. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNAceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. *Nucleic Acids Res* (2014) 42:D92–7. doi: 10.1093/nar/gkt1248
- Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc.: Ser B (Methodol) (1995) 57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
- Rahmati S, Abovsky M, Pastrello C, Jurisica I. pathDIP: an annotated resource for known and predicted human gene-pathway associations and pathway enrichment analysis. *Nucleic Acids Res* (2017) 45:D419–26. doi: 10.1093/nar/gkw1082
- 36. Alikhah A, Pahlevan Kakhki M, Ahmadi A, Dehghanzad R, Boroumand MA, Behmanesh M. The role of lnc-DC long non-coding RNA and SOCS1 in the regulation of STAT3 in coronary artery disease and type 2 diabetes mellitus. J Diabetes Its Complications (2018) 32:342–8. doi: 10.1016/j.jdiacomp.2017.12.001
- Chen SZ, Zhong HM, Wang Y, Wang ZH, Liang XQ, Li SQ, et al. The clinical significance of long non-coding RNA ANRIL level in diabetic retinopathy. *Acta Diabetol* (2019) 57:409–18. doi: 10.1007/s00592-019-01442-2
- Chen Y, Tan S, Liu M, Li J. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. *Scandinavian Cardiovasc J* (2018) 52:335–9. doi: 10.1080/14017431.2018.1546896
- 39. Cheng XW, Chen ZF, Wan YF, Zhou Q, Wang H, Zhu HQ. Long Noncoding RNA H19 Suppression Protects the Endothelium Against Hyperglycemic-Induced Inflammation via Inhibiting Expression of miR-29b Target Gene Vascular Endothelial Growth Factor a Through Activation of the Protein Kinase B/Endothelial Nitric Oxide Synthase Pathway. *Front Cell Dev Biol* (2019) 7:11. doi: 10.3389/fcell.2019.00263
- Dai R, Sun Z, Qian Y, Zhang B, Han Y, Deng G. LncRNA LUADT1 inhibits cell apoptosis in diabetic retinopathy by regulating miR-383/peroxiredoxin 3 axis. Arch Physiol Biochem (2020) 1–6. doi: 10.1080/13813455.2020.1716016
- 41. Das S, Reddy MA, Senapati P, Stapleton K, Lanting L, Wang M, et al. Diabetes Mellitus-Induced Long Noncoding RNA Dnm3os Regulates Macrophage Functions and Inflammation via Nuclear Mechanisms. *Arteriosclerosis Thrombosis Vasc Biol* (2018) 38:1806–20. doi: 10.1161/ ATVBAHA.117.310663
- 42. de Gonzalo-Calvo D, Kenneweg F, Bang C, Toro R, van der Meer RW, Rijzewijk LJ, et al. Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with wellcontrolled type 2 diabetes. *Sci Rep* (2016) 6:37354. doi: 10.1038/srep37354
- Esguerra JLS, Ofori JK, Nagao M, Shuto Y, Karagiannopoulos A, Fadista J, et al. Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA. *Mol Metab* (2020) 32:160–7. doi: 10.1016/ j.molmet.2019.12.012
- 44. Fadista J, Vikman P, Laakso EO, Mollet IG, Esguerra JL, Taneera J, et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. *Proc Natl Acad Sci U S A* (2014) 111:13924–9. doi: 10.1073/pnas.1402665111
- 45. Fawzy MS, Abdelghany AA, Toraih EA, Mohamed AM. Circulating long noncoding RNAs H19 and GAS5 are associated with type 2 diabetes but not with diabetic retinopathy: A preliminary study. *Bosnian J Basic Med Sci* (2020) 20(3):365–71. doi: 10.17305/bjbms.2019.4533
- Gao Y, Wu F, Zhou J, Yan L, Jurczak MJ, Lee HY, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. *Nucleic Acids Res* (2014) 42:13799–811. doi: 10.1093/nar/gku1160
- Jiao H, Xie D, Qiao Y. LncRNA PRINs is involved in the development of nephropathy in patients with diabetes via interaction with smad7. *Exp Ther Med* (2019) 17:3203–8. doi: 10.3892/etm.2019.7307
- Kameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. *Cell Metab* (2014) 19:135–45. doi: 10.1016/ j.cmet.2013.11.016

- Li M, Guo Y, Wang XJ, Duan BH, Li L. HOTAIR participates in hepatic insulin resistance via regulating SIRT1. *Eur Rev Med Pharmacol Sci* (2018) 22:7883–90. doi: 10.26355/eurrev_201811_16414
- Li P, Zhang N, Ping F, Gao Y, Cao L. LncRNA SCAL1 inhibits inducible nitric oxide synthase in lung cells under high-glucose conditions. *Exp Ther Med* (2019) 18:1831–6. doi: 10.3892/etm.2019.7729
- 51. Wen X, Han XR, Wang YJ, Wang S, Shen M, Zhang ZF, et al. Down-regulated long non-coding RNA ANRIL restores the learning and memory abilities and rescues hippocampal pyramidal neurons from apoptosis in streptozotocin-induced diabetic rats via the NF-κB signaling pathway. J Cell Biochem (2018) 119:5821–33. doi: 10.1002/jcb.26769
- Liu SX, Zheng F, Xie KL, Xie MR, Jiang LJ, Cai Y. Exercise Reduces Insulin Resistance in Type 2 Diabetes Mellitus via Mediating the lncRNA MALAT1/ MicroRNA-382-3p/Resistin Axis. *Mol Ther Nucleic Acids* (2019) 18:34–44. doi: 10.1016/j.omtn.2019.08.002
- Luo L, Ji LD, Cai JJ, Feng M, Zhou M, Hu SP, et al. Microarray Analysis of Long Noncoding RNAs in Female Diabetic Peripheral Neuropathy Patients. *Cell Physiol Biochem* (2018) 46:1209–17. doi: 10.1159/000489071
- Ma Q, Wang L, Yang Y, Su Y, Wang T, Hou Q, et al. Association between lncRNA and GCKR gene in type 2 diabetes mellitus. *Clin Chim Acta* (2020) 501:66–71. doi: 10.1016/j.cca.2019.10.004
- 55. Mohamadi M, Ghaedi H, Kazerouni F, Erfanian Omidvar M, Kalbasi S, Shanaki M, et al. Deregulation of long noncoding RNA SNHG17 and TTC28-AS1 is associated with type 2 diabetes mellitus. *Scandinavian J Clin Lab Invest* (2019) 79:519–23. doi: 10.1080/00365513.2019.1664760
- 56. Morán I, Akerman I, Van De Bunt M, Xie R, Benazra M, Nammo T, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissuespecific, dynamically regulated, and abnormally expressed in type 2 diabetes. *Cell Metab* (2012) 16:435–48. doi: 10.1016/j.cmet.2012.08.010
- Motterle A, Gattesco S, Peyot ML, Esguerra JLS, Gomez-Ruiz A, Laybutt DR, et al. Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes. *Mol Metab* (2017) 6:1407–18. doi: 10.1016/ j.molmet.2017.08.005
- Pengyu Z, Yan Y, Xiying F, Maoguang Y, Mo L, Yan C, et al. The Differential Expression of Long Noncoding RNAs in Type 2 Diabetes Mellitus and Latent Autoimmune Diabetes in Adults. *Int J Endocrinol* (2020) 2020:12. doi: 10.1155/2020/9235329
- Pradas-Juni M, Hansmeier NR, Link JC, Schmidt E, Larsen BD, Klemm P, et al. A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. *Nat Commun* (2020) 11:644. doi: 10.1038/s41467-020-14323-y
- 60. Reddy MA, Chen Z, Park JT, Wang M, Lanting L, Zhang Q, et al. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. *Diabetes* (2014) 63:4249–61. doi: 10.2337/db14-0298
- Ren S, Zhang Y, Li B, Bu K, Wu L, Lu Y, et al. Downregulation of lncRNA-SRA participates in the development of cardiovascular disease in type II diabetic patients. *Exp Ther Med* (2019) 17:3367–72. doi: 10.3892/ etm.2019.7362
- Shaker OG, Abdelaleem OO, Mahmoud RH, Abdelghaffar NK, Ahmed TI, Said OM, et al. Diagnostic and prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in diabetic retinopathy. *IUBMB Life* (2019) 71:310–20. doi: 10.1002/iub.1970
- 63. Toraih EA, Abdelghany AA, Abd El Fadeal NM, Al Ageeli E, Fawzy MS. Deciphering the role of circulating lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients. *Graefes Arch Clin Exp Ophthalmol* (2019) 257:1897–913. doi: 10.1007/s00417-019-04409-9
- 64. Wan W, Wan W, Long Y, Li Q, Jin X, Wan G, et al. Physcion 8-O-βglucopyranoside exerts protective roles in high glucose-induced diabetic retinopathy via regulating lncRNA NORAD/miR-125/STAT3 signalling. Artif Cells Nanomed Biotechnol (2020) 48:463–72. doi: 10.1080/21691401.2019.1709861
- Wang L, Su N, Zhang Y, Wang G. Clinical significance of serum lncRNA cancer susceptibility candidate 2 (CASC2) for chronic renal failure in patients with type 2 diabetes. *Med Sci Monitor* (2018) 24:6079–84. doi: 10.12659/MSM.909510
- 66. Wang W, Liu H, Zhou S, Yu P. Differential expression of lncRNA MEG3 in patients with different glycometabolism and analysis of related functions. *Diabetes/Metabol Res Rev* (2018) 34:1–2.

- Wang X, Cheng Y, Zhang P, Chang X, Sun K. Potentials of long non-coding RNAs to differentiate latent autoimmune diabetes in adults from type 2 diabetes. *Int J Clin Exp Med* (2020) 13:742–9.
- Yang F, Qin Y, Wang Y, Li A, Lv J, Sun X, et al. LncRNA KCNQ10T1 Mediates Pyroptosis in Diabetic Cardiomyopathy. *Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol* (2018) 50:1230–44. doi: 10.1159/ 000494576
- 69. Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, et al. Silencing long noncoding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. *Cell Death Dis* (2018) 9:13. doi: 10.1038/s41419-018-1029-4
- Yang H, Kan QE, Su Y, Man H. Long Non-Coding RNA CASC2 Improves Diabetic Nephropathy by Inhibiting JNK Pathway. *Exp Clin Endocrinol Diabetes* (2018) 127(8):533–7. doi: 10.1055/a-0629-9958
- Yang Y, Lv X, Fan Q, Wang X, Xu L, Lu X, et al. Analysis of circulating lncRNA expression profiles in patients with diabetes mellitus and diabetic nephropathy: Differential expression profile of circulating lncRNA. *Clin Nephrol* (2019) 92:25–35. doi: 10.5414/CN109525
- Yin L, Sun Z, Ren Q, Su X, Zhang D. Long non-coding RNA BANCR is overexpressed in patients with diabetic retinopathy and promotes apoptosis of retinal pigment epithelial cells. *Med Sci Monitor* (2019) 25:2845–51. doi: 10.12659/MSM.913359
- 73. Zha T, Su F, Liu X, Yang C, Liu L. Role of Long Non-Coding RNA (LncRNA) LINC-PINT Downregulation in Cardiomyopathy and Retinopathy Progression Among Patients with Type 2 Diabetes. *Med Sci Monit* (2019) 25:8509–14. doi: 10.12659/MSM.918358
- 74. Zhang D, Qin H, Leng Y, Li X, Zhang L, Bai D, et al. LncRNA MEG3 overexpression inhibits the development of diabetic retinopathy by regulating TGF- β 1 and VEGF. *Exp Ther Med* (2018) 16:2337–42. doi: 10.3892/etm.2018.6451
- 75. Zhang FF, Liu YH, Wang DW, Liu TS, Yang Y, Guo JM, et al. Obesityinduced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation. *Diabetologia* (2020) 63:811–24. doi: 10.1007/s00125-020-05090-y
- 76. Zhang L, Li R, He J, Yang Q, Wu Y, Huang J, et al. Co-expression analysis among microRNAs, long non-coding RNAs, and messenger RNAs to understand the pathogenesis and progression of diabetic kidney disease at the genetic level. *Methods* (2017) 124:46–56. doi: 10.1016/j.ymeth.2017.05.023
- Zhang L, Wang YM. Expression and function of lncRNA ANRIL in a mouse model of acute myocardial infarction combined with type 2 diabetes mellitus. *J Chin Med Assoc* (2019) 82:685–92. doi: 10.1097/JCMA.00000000000182
- Zhang X, Zou X, Li Y, Wang Y. Downregulation of lncRNA BANCR participates in the development of retinopathy among diabetic patients. *Exp Ther Med* (2019) 17:4132–8. doi: 10.3892/etm.2019.7444
- 79. Zhang X, Shi E, Yang L, Fu W, Hu F, Zhou X. LncRNA AK077216 is downregulated in diabetic retinopathy and inhibited the apoptosis of retinal pigment epithelial cells by downregulating miR-383. *Endocrine J* (2019) 66:1011–6. doi: 10.1507/endocrj.EJ19-0080
- Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. *Nat Rev Nephrol* (2019) 15:327–45. doi: 10.1038/ s41581-019-0135-6
- Rosen ED, Kaestner KH, Natarajan R, Patti ME, Sallari R, Sander M, et al. Epigenetics and Epigenomics: Implications for Diabetes and Obesity. *Diabetes* (2018) 67:1923–31. doi: 10.2337/db18-0537
- 82. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. *Oncogene* (2003) 22:8031–41. doi: 10.1038/sj.onc.1206928
- Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. *Tumour Biol J Int Soc Oncodevelopmental Biol Med* (2015) 36:1477–86. doi: 10.1007/s13277-014-2631-4
- Zhao G, Su Z, Song D, Mao Y, Mao X. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-kappaB. *FEBS Lett* (2016) 590:2884–95. doi: 10.1002/ 1873-3468.12315
- 85. Chen L, Feng P, Zhu X, He S, Duan J, Zhou D. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK

signalling pathway in N2a cells. J Cell Mol Med (2016) 20:2102–10. doi: 10.1111/jcmm.12904

- Liu S, Yan G, Zhang J, Yu L. Knockdown of Long Noncoding RNA(lncRNA) Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Inhibits Proliferation, Migration, and Invasion and Promotes Apoptosis by Targeting miR-124 in Retinoblastoma. *Oncol Res* (2018) 26:581–91. doi: 10.3727/096504017X14953948675403
- Liang J, Liang L, Ouyang K, Li Z, Yi X. MALAT1 induces tongue cancer cells' EMT and inhibits apoptosis through Wnt/beta-catenin signaling pathway. J Oral Pathol Med (2017) 46:98–105. doi: 10.1111/jop.12466
- Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. *J Cell Mol Med* (2015) 19:1418–25. doi: 10.1111/ jcmm.12576
- Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. *Cell Death Dis* (2014) 5:10. doi: 10.1038/cddis.2014.466
- Toy HI, Okmen D, Kontou PI, Georgakilas AG, Pavlopoulou A. HOTAIR as a Prognostic Predictor for Diverse Human Cancers: A Meta- and Bioinformatics Analysis. *Cancers* (2019) 11:17. doi: 10.3390/cancers11060778
- 91. Tang Q, Hann SS. HOTAIR: An Oncogenic Long Non-Coding RNA in Human Cancer. Cell Physiol Biochem (2018) 47:893–913. doi: 10.1159/000490131
- Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. *Cancer Biol Med* (2015) 12:1–9. doi: 10.7497/j.issn.2095-3941.2015.0006
- Majumder S, Hadden MJ, Thieme K, Batchu SN, Niveditha D, Chowdhury S, et al. Dysregulated expression but redundant function of the long noncoding RNA HOTAIR in diabetic kidney disease. *Diabetologia* (2019) 62 (11):2129–42. doi: 10.1007/s00125-019-4967-1
- Kong Y, Hsieh CH, Alonso LC. ANRIL: A lncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. *Front Endocrinol* (2018) 9:405. doi: 10.3389/fendo.2018.00405
- Thomas AA, Feng B, Chakrabarti S. ANRIL: A Regulator of VEGF in Diabetic Retinopathy. *Invest Ophthalmol Visual Sci* (2017) 58:470–80. doi: 10.1167/iovs.16-20569
- Ruiz MA, Feng B, Chakrabarti S. Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy. *PLoS One* (2015) 10:e0123987. doi: 10.1371/journal.pone.0123987
- 97. Zhang B, Wang D, Ji TF, Shi L, Yu JL. Overexpression of lncRNA ANRIL upregulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-kappaB signaling pathway in a rat model. *Oncotarget* (2017) 8:17347–59. doi: 10.18632/ oncotarget.14468
- Mitsuya K, Meguro M, Lee MP, Katoh M, Schulz TC, Kugoh H, et al. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. *Hum Mol Genet* (1999) 8:1209–17. doi: 10.1093/hmg/8.7.1209
- Kassem SA, Ariel I, Thornton PS, Hussain K, Smith V, Lindley KJ, et al. p57 (KIP2) expression in normal islet cells and in hyperinsulinism of infancy. *Diabetes* (2001) 50:2763–9. doi: 10.2337/diabetes.50.12.2763
- 100. Liu J, Wang F, Wu Y, Huang X, Sheng L, Xu J, et al. Meta-analysis of the effect of KCNQ1 gene polymorphism on the risk of type 2 diabetes. *Mol Biol Rep* (2013) 40:3557–67. doi: 10.1007/s11033-012-2429-7
- 101. Sun C, Huang L, Li Z, Leng K, Xu Y, Jiang X, et al. Long non-coding RNA MIAT in development and disease: a new player in an old game. *J BioMed Sci* (2018) 25:23. doi: 10.1186/s12929-018-0427-3
- 102. Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. *Circ Res* (2015) 116:1143–56. doi: 10.1161/CIRCRESAHA.116.305510
- 103. Zhou X, Zhang W, Jin M, Chen J, Xu W, Kong X. lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. *Cell Death Dis* (2017) 8:e2929. doi: 10.1038/cddis.2017.321
- 104. Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X. Long non-coding MIAT mediates high glucose-induced renal tubular epithelial injury. *Biochem Biophys Res Commun* (2015) 468:726–32. doi: 10.1016/j.bbrc.2015.11.023
- 105. You L, Wang N, Yin D, Wang L, Jin F, Zhu Y, et al. Downregulation of Long Noncoding RNA Meg3 Affects Insulin Synthesis and Secretion in Mouse

Pancreatic Beta Cells. J Cell Physiol (2016) 231:852-62. doi: 10.1002/ jcp.25175

- 106. Zhu X, Wu YB, Zhou J, Kang DM. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. *Biochem Biophys Res Commun* (2016) 469:319–25. doi: 10.1016/j.bbrc. 2015.11.048
- 107. Cui M, Fang Q, Zheng J, Shu Z, Chen Y, Fan Y, et al. Kaposi's sarcomaassociated herpesvirus seropositivity is associated with type 2 diabetes mellitus: A case-control study in Xinjiang, China. Int J Infect Dis (2019) 80:73–9. doi: 10.1016/j.ijid.2019.01.003
- 108. Piras E, Madeddu MA, Palmieri G, Angius F, Contini P, Pompei R, et al. High Prevalence of Human Herpesvirus 8 Infection in Diabetes Type 2 Patients and Detection of a New Virus Subtype. Adv Exp Med Biol (2017) 973:41–51. doi: 10.1007/5584_2016_73
- 109. Pompei R. The Role of Human Herpesvirus 8 in Diabetes Mellitus Type 2: State of the Art and a Medical Hypothesis. Adv Exp Med Biol (2016) 901:37– 45. doi: 10.1007/5584_2015_5014

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Dieter, Lemos, Corréa, Assmann and Crispim. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

SUPPLEMENTARY MATERIAL

Supplementary Table 1. Characteristics of patients of the studies included in the systematic review.

Supplementary Table 2. LncRNAs analyzed in human samples.

Supplementary Table 3. Target genes of the consistently dysregulated lncRNAs in DM patients.

Supplementary table 4. Significantly KEGG pathways regulated by the target genes of the lncRNAs dysregulated in DM patients.

Supplementary Table 1. Characteristics of patients of the studies included in the systematic review.

Author, year [Reference]	Sample size Case/Control	Tissue	Gender (% males) Case/control	Age (case/control)	Country
Akerman, 2017 [17]	10 T2DM patients / 50 controls	Pancreatic islets	55.6 / 53.7	$57.0 \pm 4.0 \ / \ 59.0 \pm 9.0$	Sweden
Alikhah, 2018 [95]	18 T2DM patients / 18 controls	PBMCs	NA	NA	Iran
Carter, 2015 [23]	5 T2DM patients / 5 controls 47 T2DM patients / 49 controls (validation)	Serum	NA	$70.3 \pm 9.1 \ / \ 66.9 \pm 9.7$	United States
Chen, 2019 [96]	25 DM patients/ 20 controls	Serum	48.0 / 50.0	59.5 ± 9.0 / 55.7 ± 10.1	China
Chen, 2018 [74]	27 DM patients/ 17 controls	Serum	51.8 / 52.9	$44.4 \pm 5.7 \ / \ 41.9 \pm 6.2$	China
Cheng, 2019 [36]	30 DM patients/ 30 controls	Peripheral blood	NA	NA	China

Dai, 2020 [97]	60 T2DM patients/ 60 controls	Plasma	63.3 / 63.3	$44.2 \pm 5.0 / 44.3 \pm 5.1$	China
Das, 2018 [37]	5 T2DM patients / 5 controls	PBMCs	NA	NA	United States
De Gonzalo-Calvo, 2016 [59]	48 T2DM patients / 12 controls	Serum	NA	57.5 ± 5.4 / 57.7 ± 6.7	Netherlands
Erfanian Omidvar, 2019 [24]	100 T2DM patients/ 100	PBMCs	52.0 / 65.0	54.5 ± 8.7 / 52.2 ± 8.5	Iran
Esguerra, 2020 [38]	9 T2DM patients / 10 controls	Pancreatic islets	40.0 /50.0	49.3 / 56.9	Sweden
Fadista, 2014 [56]	12 T2DM patients / 51 controls	Pancreatic islets	50.0 / 64.7	61.0 ± 10.0 / 56.0 ± 12.0	Sweden
Fawzy, 2020 [98]	53 T2DM patients / 110 controls	Plasma	79.2 / 25.5	$62.6 \pm 7.3 \ / \ 60.5 \pm 10.7$	Egypt
Gao, 2014 [39]	5 T2DM patients / 4 controls	Lateral quadríceps muscle biopsy	40.0 / 25.0	63.0 / 24.7	China
Jiao, 2019 [40]	43 DM patients / 48 controls	Serum	55.8 / 56.2	48.4 ± 7.1 / 48.1 ± 6.2	China
Kameswaran, 2014 [41]	4 T2DM patients / 3 controls	Pancreatic islets	50.0 / 33.3	53.2 / 35.3	United States

Li, 2018 [51]	10 T2DM patients / 10 controls	Liver biopsy	50.0 / 60.0	$45.6 \pm 7.4 / 48.2 \pm 4.2$	China
Li, 2019 [99]	56 T2DM patients/ 40 controls	Serum	53.6 / 65.0	$44.8 \pm 5.2 \ / \ 46.0 \pm 6.4$	China
Li, 2018 [100]	63 DM patients / 56 controls	Plasma	57.1 / 57.1	46.1 ± 6.5 / 45.3 ± 7.2	China
	6 T2DM patients / 6 controls				
Li, 2017 [25]	20 T2DM patients / 20 controls (validation)	Peripheral blood	NA	NA	China
Liu, 2019 [47]	90 T2DM patients / 30 controls	Serum	62.2 / 53.3	$55.5 \pm 9.8 \ / \ 53.6 \pm 9.2$	China
Luo, 2018 [64]	6 T2DM patients / 6 controls 26 T2DM patients / 26 controls (validation)	PBMCs	NA	NA	China
Ma, 2020 [57]	5 T2DM patients / 5 controls 122 T2DM patients / 125 controls (validation)	PBMCs	NA	54.3 ± 9.8 / 48.3 ± 10.2	China

Mansoori, 2018 [26]	100 T2DM patients / 100 controls	PBMCs	NA	$60.9 \pm 0.9 \: / \: 58.1 \pm 1.2$	Iran
Mohamadi, 2019 [58]	100 T2DM patients / 100 controls	PBMCs	52.0 / 65.0	$54.5 \pm 8.7 \ / \ 52.2 \pm 8.5$	Iran
Móran, 2012 [83]	16 T2DM patients / 19 controls	Pancreatic islets	37.5 / 50.0	55.5 / 49.2	France
Motterle, 2017 [42]	10 T2DM patients / 10 controls	Pancreatic islets	50.0 / 50.0	$55.5 \pm 3.0 \ / \ 56.9 \pm 2.5$	Switzerland
Pengyu, 2020 [53]	4 T2DM patients / 4 controls	Serum	NA	NA	China
Pradas-Juni, 2020 [55]	4 T2DM patients / 4 controls	Liver	100.0 / 100.0	$75.5\pm0.7~/~60.7\pm9.0$	Germany
Reddy, 2014 [43]	4 T2DM patients / 4 controls	Monocytes	NA	$43.2\pm 6.3 \ / \ 37.5\pm 3.8$	United States
Ren, 2019 [101]	178 T2DM patients / 44 controls	Plasma	53.7 / 61.3	$46.2\pm6.2~/~46.7\pm5.5$	China
Ruan, 2018 [19]	3 T2DM patients / 3 controls 30 T2DM patients / 30 controls (validation)	Blood	66.6 / 46.6	42.2 ± 9.7 / 48.9 ± 10.5	China

	30 T2DM patients / 30 controls	Exosome serum/			
		exosome-nee serum			
Saeidi, 2018 [27]	100 T2DM patients/ 100 controls	PBMCs	36.0 / 35.0	$60.90{\pm}~0.9~/~58.1~{\pm}~1.2$	Iran
Sathishkumar, 2018 [21]	30 T2DM patients /32 controls	PBMCs	56.2 / 60.0	$46 \pm 8 / 44 \pm 8$	India
Shaker, 2019 [65]	30 T2DM patients / 81 controls	Blood	63.3 / 66.6	$51.0 \pm 6.1 \ / \ 50.7 \pm 7.7$	Egypt
Toraih, 2019 [60]	55 T2DM patients/ 108 controls	Plasma	26.9 / 56.5	$60.8 \pm 8.7 \ / \ 59.2 \pm 5.6$	Egypt
Wan, 2020 [44]	32 T2DM patients / 32 controls	Serum	59.4 / 62.5	$45.1 \pm 5.6 / 43.5 \pm 6.6$	China
Wang, 2018 [102]	296 T2DM patients / 56 controls	Serum	56.1 / 53.6	$47.4 \pm 6.1 \ / \ 49.5 \pm 7.7$	China
Wang, 2018 [54]*	2 T2DM patients / 2 controls	Blood	NA	NA	China
	6 T2DM patients / 6 controls				
Wang, 2017 [28]	60 T2DM patients / 60 controls (validation)	Peripheral blood	61.7 / 58.3	50.4 ± 13.4 / 51.0 ± 9.0	China
Wang, 2020 [61]	156 T2DM / 100 controls	Peripheral blood	62.2 / 57.0	$53.3 \pm 11.7 \ / \ 51.8 \pm 9.6$	China
------------------	----------------------------------	------------------	-------------	------------------------------------	-------
Yang, 2018 [52]	8 DM patients / 8 controls	Serum	NA	NA	China
Yang, 2018 [46]	6 DM patients / 6 controls	Serum	NA	NA	China
Yang, 2018 [103]	36 DM patients / 41 controls	Serum	NA	NA	China
Yang, 2019 [94]	DM patients / controls	Serum	NA	NA	China
Yin, 2019 [104]	62 DM patients / 48 controls	Plasma	54.8 / 47.9	$47.9 \pm 6.9 / 48.8 \pm 6.1$	China
Zha, 2019 [45]	244 T2DM patients / 126 controls	Plasma	56.1 / 53.9	48.2±5.6 / 48.9±5.3	China
Zhang, 2018 [48]	28 DM patients / 30 controls	Serum	42.8 / 36.6	$53 \pm 14.1 \ / \ 54 \pm 13.7$	China
Zhang, 2020 [49]	99 T2DM patients / 50 controls	Serum	50.5 / 54.0	$53.1 \pm 9.2 / 50.9 \pm 6.8$	China
Zhang, 2017 [93]	30 DM patients / 28 controls	Plasma	60.0 / 60.7	53.2 ± 7.8 / 33.1 ± 10.8	China
Zhang, 2019 [50]	24 T2DM patients / 26 controls	Serum	NA	NA	China

Zhang, 2019 [105]	244 T2DM patients / 102 controls	Plasma	54.5 / 53.6	$46.4 \pm 5.5 \ / \ 48.1 \pm 6.2$	China
Zhang, 2019 [106]	60 DM patients / 60 controls	Plasma	56.6 / 58.3	$49.1 \pm 6.3 \ / \ 51.9 \pm 6.7$	China

*Abstract from congress. DM: diabetes mellitus; NA: not available; PBMCs: Peripheral blood mononuclear cells; T2DM: type 2 diabetes mellitus.

Supplementary Table 2. LncRNAs analyzed in human samples.

IncRNA identity	First author, year	Tissue	Change of expression
ADORA2A-AS1 / ENSG00000178803	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ALKBH3-AS1 / ENSG00000244926	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
APOA1-AS / ENSG00000235910	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ASO2208	Li, X. 2017	Peripheral blood from T2DM patients	Up
BAZ2B / ENSG00000226266	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
C1QTNF-AS1 / ENSG00000265096	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
C1RL-AS1 / ENSG00000205885	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
C7orf13 / ENSG00000182648	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
CDKN2BAS1/ANRIL	Zhang, L. 2019	Serum from T2DM patients	Up
CDKN2BAS1/ANRIL	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
CDKN2BAS1/ANRIL	Toraih, E.A. 2019	Plasma from T2DM patients	Up
CRHR1-IT1	Fadista, J. 2014	Pancreatic islets	NI
CRNDE	Fadista, J. 2014	Pancreatic islets	NI
CTBP1-AS2	Erfanian Omidvar M, 2018	PBMCs from T2DM patients	Down
CTD-2270F17.1 / ENSG00000253647	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
CYP1B1-AS1 / ENSG00000232973	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
DANT2 / ENSG00000235244	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
DKFZp779M0652 / ENSG00000205106	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
DLGAP1-AS1	Fadista, J. 2014	Pancreatic islets	NI
DLX6-AS1	Fadista, J. 2014	Pancreatic islets	NI
DNAJC27-AS1 / ENSG00000224165	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
Dnm3os	Das, S. 2018	CD14+ monocytes from T2DM patients	Up
DPYD-AS1 / ENSG00000232878	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
DSG1-AS1 / ENSG00000266729	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
E330013P06	Reddy, MA. 2014	Bone marrow-derived macrophages from T2DM patients	Up
EIF2B5-AS1 / ENSG00000230215	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000166770	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000167046	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000176659	Pradas-Juni, M. 2020	Liver from T2DM patients	Up

ENSG00000176912	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000176984	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000179141	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000179577	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000187229	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000188525	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000188825	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000196634	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000197099	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000203441	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000203643	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000203709	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000204860	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000204960	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000205181	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000205663	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000205664	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000205790	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000205971	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000213373	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000214039	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000214184	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000214870	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000218537	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000222017	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000223387	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000223511	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000223525	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000223634	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000223754	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000223901	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000224043	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000224220	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

ENSG00000224272	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000224596	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000224794	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000224822	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000224943	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000224959	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000225299	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000225855	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000226163	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000226179	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000226200	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000226263	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000226291	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000226899	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227258	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227306	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000227527	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227531	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227544	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000227589	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227681	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227712	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227719	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227733	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000227773	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000227959	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000228013	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000228065	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000228271	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000228323	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000228368	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000228434	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000228862	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

ENSG00000228919	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000228923	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000229017	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000229227	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000229393	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000229719	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000229862	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000229893	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000229996	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000230325	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000230435	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000230550	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000230612	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000230731	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000230815	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000230836	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000231013	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000231064	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000231134	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000231420	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000231731	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000231890	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000232283	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000232300	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000232470	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000232518	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000232533	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000232611	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000232667	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000232721	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000233058	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000233340	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000233376	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

ENSG00000233695	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000233817	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000233985	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000234015	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000234427	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000234449	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000234509	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000234665	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000234675	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000234832	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000234938	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000235099	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000235245	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000235381	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000235532	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000235781	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000236039	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000236209	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000236341	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000236345	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000236514	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000236758	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000236924	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000237076	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000237188	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000237371	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000237390	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000237556	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000237768	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000238156	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000240219	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000240859	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000241169	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

ENSG0000241213	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000241754	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000242086	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000242861	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000243368	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000244128	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000244675	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000245080	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000245694	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000245768	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000246790	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000246851	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000246982	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000247134	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000247373	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000247735	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248029	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248092	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248161	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248242	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248359	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248408	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248458	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248884	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248898	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000248975	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000249173	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000249258	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000249352	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000249359	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000249395	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000249588	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000249614	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

ENSG0000249618	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000249684	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000249790	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000250101	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000250141	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000250413	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000250658	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000250696	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000250893	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000250903	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000251161	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000251487	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000251603	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000251637	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000253196	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000253301	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000253666	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000253821	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000253878	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000254042	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000254162	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000254362	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000254485	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000254687	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000254787	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000254826	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000254859	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000254898	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000255270	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000255462	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000255671	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000256020	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000256139	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

ENSG00000256151	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000256287	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000256403	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000256473	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000256560	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000256637	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000256694	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000256969	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000256995	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000257221	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000257345	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000257443	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000257808	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000257894	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000257925	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000257940	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000258082	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000258096	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000258407	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000258460	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000258498	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000258604	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000258623	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000258667	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000258694	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000258744	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000258768	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000259038	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000259291	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000259334	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000259343	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000259418	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000259498	Pradas-Juni, M. 2020	Liver from T2DM patients	Up

ENSG00000259583	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000259594	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000259967	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000259999	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000260236	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000260340	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000260362	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000260528	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000260855	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000260891	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000260923	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000260975	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000261051	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000261058	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261096	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261172	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000261200	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261211	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261216	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261275	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000261404	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261441	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000261469	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261734	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261789	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000261816	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000262115	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000262410	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000262881	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000262995	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000263089	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000263466	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000263590	Pradas-Juni, M. 2020	Liver from T2DM patients	Up

ENSG00000263698	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000263904	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000264546	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000264895	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000265743	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000265799	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000266445	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000266602	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000266664	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000267002	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000267196	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000267284	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000267286	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000267325	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000267610	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000267675	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000267726	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000267749	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000267787	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000267868	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000268683	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000268707	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000269044	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000269102	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000269289	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000269353	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000269524	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000269752	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000269976	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000270403	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000270487	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000270607	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000270933	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

ENSG00000270956	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000271420	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000271715	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000271771	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000271806	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000271828	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000271874	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000271916	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000272189	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000272320	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272430	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272505	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272506	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272555	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272663	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000272689	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272732	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272789	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000272840	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272909	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000272927	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000272933	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000272970	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000272989	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000273138	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000273142	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000273151	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000273271	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000273295	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000273350	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000273407	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000273437	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000273448	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

ENSG00000273582	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000273669	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000273824	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000273901	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000274080	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000274173	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000274225	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000274354	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000274685	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000274825	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000274827	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000275216	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000275236	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000275294	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000275392	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000275426	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000275438	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000275894	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000275897	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000275995	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000276107	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000276337	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000276403	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000276434	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000276488	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000276651	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000276854	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000276980	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG00000277020	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000277697	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000278000	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000278192	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG00000278464	Pradas-Juni, M. 2020	Liver from T2DM patients	Up

ENSG00000279159	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000279217	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000279440	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000279442	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000279548	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000280007	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000280018	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000280191	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000280207	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000280279	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000280384	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000280434	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000280721	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
ENSG0000281538	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENSG0000282793	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ENST0000364558	Pengyu, Z. 2020	Serum from T2DM patients	Up
ENST00000431705.1	Li, X. 2017	Peripheral blood from T2DM patients	Up
ENST00000451350.1	Li, X. 2017	Peripheral blood from T2DM patients	Down
ENST00000506795.1	Li, X. 2017	Peripheral blood from T2DM patients	Up
ENST00000512246.1	Li, X. 2017	Peripheral blood from T2DM patients	Up
ENST00000539163.1	Li, X. 2017	Peripheral blood from T2DM patients	Up
ENST00000550337.1	Li, X. 2017	Peripheral blood from T2DM patients	Up
ENST00000550337.1	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
ENST00000565382	Pengyu, Z. 2020	Serum from T2DM patients	Down
ENST00000583854.1	Li, X. 2017	Peripheral blood from T2DM patients	Up
ENST00000588058.1	Li, X. 2017	Peripheral blood from T2DM patients	Up
ENST00000588707.1	Ma, Q. 2019	PBMCs from T2DM patients	Down
ENST0000608916	Pengyu, Z. 2020	Serum from T2DM patients	Up
FLJ22447 / ENSG00000232774	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
FZD10-AS1	Fadista, J. 2014	Pancreatic islets	NI
Gas5	Carter, G. 2015	Serum from T2DM patients	Down
Gas5	Esguerra, JLS. 2020	Islets from T2DM patients	Up
Gas5	Fawzy, MS. 2020	Plasma from T2DM patients	Down

Gas5	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
GDNF-AS1 / ENSG00000248587	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
H19	Cheng, X. 2019	Peripheral blood from DM patients	Up
H19	Fawzy, MS. 2020	Plasma from T2DM patients	Up
H19	Gao, Y. 2014	Muscle from T2DM patients	Down
HAS2-AS1	Fadista, J. 2014	Pancreatic islets	NI
HCG27_201	Saeidi, L. 2018	PBMCs from T2DM patients	Down
HCP5 / ENSG00000206337	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
HI-LNC1107	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC2346	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC2579	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC2634	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC2867	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC2972	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC3113	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC3613	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC4105	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC45	Morán, I. 2012.	Islets from T2DM patients	Down
HI-LNC4554	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC4564	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC4567	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC683	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC71/PLUTO	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC71/PLUTO	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
HI-LNC780	Akerman, I. 2017	Islets from T2DM patients	Down
HI-LNC79	Akerman, I. 2017	Islets from T2DM patients	Down
HIPK1-AS1 / ENSG00000235527	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
Hotair	Li, M. 2018	Liver from T2DM patients	Up
Hotair	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
Hotair	Shaker, OG. 2018	Blood from T2DM patients	Up
HRAT92 / ENSG00000223855	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
HS1BP3-IT1 / ENSG00000231948	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
HTR2A-AS1 / ENSG00000224517	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

IGF2-AS / ENSG0000099869	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ITGB2-AS1 / ENSG00000227039	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
JAKMIP2-AS1 / ENSG00000280780	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
KCNMA1-AS2 / ENSG00000225497	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
Kenqlotl	Morán, I. 2012.	Islets from T2DM patients	Up
Kcnq1ot1	Yang, F. 2018 ^a	Serum from DM patients	Up
Kcnq1ot1	Yang, F. 2018 ^b	Serum from DM patients	Up
KCTD21-AS1 / ENSG00000246174	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
KRTAP5-AS1 / ENSG00000233930	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LET	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
LINC00035	Fadista, J. 2014	Pancreatic islets	NI
LINC00239	Fadista, J. 2014	Pancreatic islets	NI
LINC00240 / ENSG00000224843	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC00313 / ENSG00000185186	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LINC00399 / ENSG00000229792	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC00479	Fadista, J. 2014	Pancreatic islets	NI
LINC00485 / ENSG00000258169	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC00524 / ENSG00000259023	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC00528 / ENSG00000269220	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LINC00540 / ENSG00000276476	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LINC00562 / ENSG00000260388	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC00574 / ENSG00000231690	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC00589 / ENSG00000251191	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LINC00896 / ENSG00000236499	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LINC00960 / ENSG00000242516	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
Linc00994	Mansoori, Z. 2018	PBMCs from T2DM patients	Down
LINC01018 / ENSG00000250056	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC01126 / ENSG00000279873	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC01410 / ENSG00000238113	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LINC01441 / ENSG00000224008	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC01443 / ENSG00000266554	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC01561 / ENSG00000177234	Pradas-Juni, M. 2020	Liver from T2DM patients	Up

LINC01569 / ENSG00000262468	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LINC01609 / ENSG00000253103	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
Linc0523	Mansoori, Z. 2018	PBMCs from T2DM patients	Down
Lincp21	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
Lnc PINT	Zha, T. 2019	Plasma from T2DM patients	Down
LncRNA PRINS	Jiao, H. 2019	Serum from DM patients	Up
LncRNAp3134	Ruan, Y. 2018	Blood from T2DM patients	Up
LncRNAp3134	Ruan, Y. 2018	Exosome serum from T2DM patients	Up
LOC100129175 / ENSG00000224090	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC100130111 / ENSG00000256802	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC100130417 / ENSG00000223764	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC100131635 / ENSG00000228804	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC100133286 / ENSG00000230212	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC100133985	Fadista, J. 2014	Pancreatic islets	NI
LOC100288846 / ENSG00000258940	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC100506082 / ENSG00000254480	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC100506085 / ENSG00000248319	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC100506585 / ENSG00000233038	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC100507053 / ENSG00000246090	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC100996286 / ENSG00000245954	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC101927124 / ENSG00000250365	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101927138 / ENSG00000227599	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101927587 / ENSG00000233008	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101927653 / ENSG00000257259	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC101927683 / ENSG00000236497	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101927746 / ENSG00000232445	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101927768 / ENSG00000228624	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC101927815 / ENSG00000254319	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101927843 / ENSG00000233215	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101927907 / ENSG00000234653	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101928137 / ENSG00000258123	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101928651 / ENSG00000248529	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC101928694 / ENSG00000259293	Pradas-Juni, M. 2020	Liver from T2DM patients	Down

LOC101928731 / ENSG00000258274	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101928737 / ENSG00000260750	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101928782 / ENSG00000224865	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101928791 / ENSG00000258826	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101928880 / ENSG00000260420	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101928947 / ENSG00000264968	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101929384 / ENSG00000256577	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101929415 / ENSG00000254254	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101929475 / ENSG00000229656	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC101929592 / ENSG00000229444	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101929710 / ENSG00000251314	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101930100 / ENSG00000278932	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC101930452 / ENSG00000260423	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC102546228 / ENSG00000248107	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC102723493 / ENSG00000259347	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC102724058 / ENSG00000236107	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC102724190 / ENSG00000258819	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC102724913 / ENSG00000265352	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC102724927 / ENSG00000262185	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC102724933 / ENSG00000258171	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC105370489 / ENSG00000258843	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC105370792 / ENSG00000174171	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC105372751 / ENSG00000237484	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC105374524 / ENSG00000248837	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC105378405 / ENSG00000227896	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC105379695 / ENSG00000272273	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
LOC116437	Fadista, J. 2014	Pancreatic islets	NI
LOC151475 / ENSG00000226125	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC283177	Fadista, J. 2014	Pancreatic islets	NI
LOC283575 / ENSG00000246548	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LOC643623 / ENSG00000224506	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
LY86_AS1	Saeidi, L. 2018	PBMCs from T2DM patients	Down
MALAT1	Liu, SX. 2019	Serum from T2DM patients	Up

MALAT1	Luo, L. 2018	PBMCs from T2DM patients	Up
MALAT1	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
MALAT1	Shaker, OG. 2018	Blood from T2DM patients	Up
MALAT1	Toraih, E.A. 2019	Plasma from T2DM patients	Up
MANEA-AS1 / ENSG00000261366	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
MEG3	Kameswaran, V. 2014	Islets from T2DM patients	Down
MEG3	Luo, L. 2018	PBMCs from T2DM patients	Down
MEG3	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
MEG3	Zhang, D. 2018	Serum from DM patients	Down
Miat	De Gonzalo-Calvo, 2016	Serum from T2DM patients	Up
Miat	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
Miat	Toraih, E.A. 2019	Plasma from T2DM patients	Up
MIR2052HG / ENSG00000254349	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
MIR4500HG / ENSG00000228824	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
MIR503HG / ENSG00000223749	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
MIR600HG	Fadista, J. 2014	Pancreatic islets	NI
MRPL23-AS1 / ENSG00000226416	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
MTHFS / ENSG00000261229	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
n324738	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n325222	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n325643	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n325833	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n326353	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n333279	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n335556	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n335556	Wang, X. 2020	Peripheral blood from T2DM patients	Up
n336109	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n336109	Wang, X. 2020	Peripheral blood from T2DM patients	Up
n336302	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n336551	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n336823	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n337573	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n338909	Wang, X. 2017	Peripheral blood from T2DM patients	Down

n341012	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n341216	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n341270	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n341520	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n341587	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n341903	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n341954	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n342270	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n342324	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n342443	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n342476	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n342533	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n342533	Wang, X. 2020	Peripheral blood from T2DM patients	Up
n344987	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n346259	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n384014	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n384561	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n385322	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n385775	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n405950	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n406639	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n409152	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n409772	Wang, X. 2017	Peripheral blood from T2DM patients	Up
n410159	Wang, X. 2017	Peripheral blood from T2DM patients	Down
n410510	Wang, X. 2017	Peripheral blood from T2DM patients	Up
NAV2-AS5 / ENSG00000255043	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
NBR2	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
NCOA7-AS1 / ENSG00000232131	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
NORAD	Wan, W. 2020	Serum from T2DM patients	Up
Panda	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
PCAT4 / ENSG00000251321	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
PCAT6 / ENSG00000228288	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
PK155	Fadista, J. 2014	Pancreatic islets	NI

PRKX-AS1 / ENSG00000236188	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
PSORS1C3 / ENSG00000204528	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
PVT1	Wang, W. 2018	Blood from DM patients	Up
PVT1	Toraih, E.A. 2019	Plasma from T2DM patients	Up
RAB30-AS1 / ENSG00000246067	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
RDH10-AS1 / ENSG00000250295	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ROIT	Zhang, FF. 2020	Serum from T2DM patients	Down
RPL34-AS1 / ENSG00000234492	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
RRS1-AS1 / ENSG00000246145	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
SALRNA1	Sathishkumar, C. 2018	PBMCs from T2DM patients	Down
SCGB1B2P / ENSG00000268751	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
SENCR / ENSG00000254703	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
SLC6A1-AS1 / ENSG00000232287	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
SMIM2-IT1 / ENSG00000235285	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
SNAI3-AS1 / ENSG00000260630	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
SNHG17	Mohamadi, M. 2019	PBMCs from T2DM patients	Down
SNHG5	Fadista, J. 2014	Pancreatic islets	NI
SNHG8	Fadista, J. 2014	Pancreatic islets	NI
ST7-AS2 / ENSG00000226367	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
TCONS_00000886	Li, X. 2017	Peripheral blood from T2DM patients	Up
TCONS_00004187	Ma, Q. 2019	PBMCs from T2DM patients	Down
TCONS_00007244	Li, X. 2017	Peripheral blood from T2DM patients	Up
TCONS_00024610	Li, X. 2017	Peripheral blood from T2DM patients	Up
TDRG1	Fadista, J. 2014	Pancreatic islets	NI
THRIL	Sathishkumar, C. 2018	PBMCs from T2DM patients	Down
TMEM92-AS1 / ENSG00000251179	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
TMEM9B-AS1 / ENSG00000254860	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
TPRG1-AS1 / ENSG00000234076	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
TTC28AS1	Mohamadi, M. 2019	PBMCs from T2DM patients	Down
uc.167+	Li, X. 2017	Peripheral blood from T2DM patients	Up
uc011fnr.2	Li, X. 2017	Peripheral blood from T2DM patients	Down
uc0111lp.1	Li, X. 2017	Peripheral blood from T2DM patients	Down
uc011mfi.2	De Gonzalo-Calvo, 2016	Serum from T2DM patients	Down

uc022bqu.1	De Gonzalo-Calvo, 2016	Serum from T2DM patients	Down
uc022bqw.1	De Gonzalo-Calvo, 2016	Serum from T2DM patients	Down
VIM-AS1	Erfanian Omidvar M, 2018	PBMCs from T2DM patients	Down
Xist	Sathishkumar, C. 2018	PBMCs from T2DM patients	Up
XR_242704.2	Li, X. 2017	Peripheral blood from T2DM patients	Up
XR_427389.1	Li, X. 2017	Peripheral blood from T2DM patients	Up
ZNF337-AS1 / ENSG00000213742	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ZNF350-AS1 / ENSG00000269235	Pradas-Juni, M. 2020	Liver from T2DM patients	Down
ZNF385D-AS1 / ENSG00000225542	Pradas-Juni, M. 2020	Liver from T2DM patients	Up
β-linc3	Motterle, A. 2017	Islets from T2DM patients	Down

623 IncRNAs analyzed in only one study. 7 IncRNAs analyzed in two studies;

8 lncRNAs analyzed in three or more studies;

6 IncRNAs consistently* dysregulated in DM samples vs. control groups.

* Consistently dysregulated = those lncRNAs with concordant results in 3 or more studies.

NI= no information about the change in expression

Yang, F. 2018^a - LncRNA KCNQ10T1 Mediates Pyroptosis in Diabetic Cardiomyopathy.

Yang, F. 2018^b - Silencing long non-coding RNA Kenq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy

IncRNA	Target	Gene type
ANRIL	ABCB1	protein coding
ANRIL	ABCC1	protein coding
ANRIL	ABCC2	protein coding
ANRIL	ADIPOR1	protein coding
ANRIL	CARD8	protein coding
ANRIL	CDKN1A	protein coding
ANRIL	CDKN2B	protein coding
ANRIL	KLF2	protein coding
ANRIL	MIR122	protein coding
ANRIL	MIR125A	protein coding
ANRIL	MIR199A1	miRNA
ANRIL	MIRLET7A1	miRNA
ANRIL	МҮС	miRNA
ANRIL	SMAD2	miRNA
ANRIL	SMAD7	protein coding
ANRIL	SOX2	protein coding
ANRIL	TGFB1	protein coding
ANRIL	TMEM258	protein coding
ANRIL	VAMP3	protein coding
ANRIL	VEGFA	protein coding
HOTAIR	ABCC1	protein coding
HOTAIR	ADAMTS5	protein coding
HOTAIR	AKT1	protein coding
HOTAIR	ANGPT2	protein coding
HOTAIR	AR	protein coding
HOTAIR	ARID4A	protein coding
HOTAIR	BCL2	protein coding
HOTAIR	C22ORF28	protein coding
HOTAIR	CACNA1C	protein coding
HOTAIR	CASP3	protein coding
HOTAIR	CAV1	protein coding
HOTAIR	CCNE1	protein coding
HOTAIR	CD82	protein coding
HOTAIR	CDH1	protein coding
HOTAIR	CDKN1A	protein coding
HOTAIR	DNMT1	protein coding
HOTAIR	E7	protein coding
HOTAIR	eIF4AIII	protein coding
HOTAIR	ERBB2	protein coding
HOTAIR	EZH2	protein coding
HOTAIR	FASN	protein coding
HOTAIR	FMRP	protein coding
HOTAIR	FUS	protein coding
HOTAIR	HIF1A	protein coding
HOTAIR	hnRNPC	protein coding
HOTAIR	HOXA5	protein coding
HOTAIR	HuR	protein coding

Supplementary Table 3. Target genes of the consistently dysregulated IncRNAs in DM patients

HOTAIR	IGF2BP1	protein coding
HOTAIR	IGF2BP2	protein coding
HOTAIR	IGF2BP3	protein coding
HOTAIR	LAMB3	protein coding
HOTAIR	LAMC2	protein coding
HOTAIR	LIN28A	protein coding
HOTAIR	LIN28B	protein coding
HOTAIR	ΜΑΡΚ8	protein coding
HOTAIR	MMP1	protein coding
HOTAIR	MMP3	protein coding
HOTAIR	MMP9	protein coding
HOTAIR	PTEN	protein coding
HOTAIR	PUM2	protein coding
HOTAIR	QKI	protein coding
HOTAIR	RB1	protein coding
HOTAIR	RBM38	protein coding
HOTAIR	RN7SKP80	misc RNA
HOTAIR	RN7SKP9	misc RNA
HOTAIR	RUNX3	protein coding
HOTAIR	SETD2	protein coding
HOTAIR	SIRT1	protein coding
HOTAIR	SNAI1	protein coding
HOTAIR	TJP1	protein coding
HOTAIR	TNFRSF10B	protein coding
HOTAIR	TP53	protein coding
HOTAIR	TWIST1	protein coding
HOTAIR	U2AF65	protein coding
HOTAIR	UPF1	protein coding
HOTAIR	VEGFA	protein coding
HOTAIR	WIF1	protein coding
HOTAIR	ZC3H7B	protein coding
HOTAIR	ZEB1	protein coding
KCNQ10T1	ABCB1	protein coding
KCNQ10T1	AC010186.4	processed transcript
KCNQ10T1	AC025627.3	processed pseudogene
KCNQ10T1	AC026471.1	antisense
KCNQ10T1	AC044810.1	processed pseudogene
KCNQ10T1	AC079949.1	miRNA
KCNQ10T1	AD000090.1	antisense
KCNQ10T1	ADAT1	protein coding
KCNQ10T1	ADIPOR1	protein coding
KCNQ10T1	AL355315.1	protein coding
KCNQ10T1	AL359915.2	antisense
KCNQ10T1	ALDOA	protein coding
KCNQ10T1	ANKS6	protein coding
KCNQ10T1	ANXA7	protein coding
KCNQ10T1	ARL17A	protein coding
KCNQ10T1	ARPC4-TTLL3	protein coding
KCNQ10T1	Asp_tRNA	tRNA
KCNQ10T1	ATXN7	protein coding

KCNQ10T1	BCLAF1	protein coding
KCNQ10T1	CHD4	protein coding
KCNQ10T1	DGCR8	protein coding
KCNQ10T1	DPM2	protein coding
KCNQ10T1	DUSP3	protein coding
KCNQ10T1	EEF1A1P29	processed pseudogene
KCNQ10T1	EIF2AK2	protein coding
KCNQ10T1	EIF4H	protein coding
KCNQ10T1	EPC1	protein coding
KCNQ10T1	FAM122A	protein coding
KCNQ10T1	FNTA	protein coding
KCNQ10T1	FUS	protein coding
KCNQ10T1	GGA1	protein coding
KCNQ10T1	GGA2	protein coding
KCNQ10T1	GNB1	protein coding
KCNQ10T1	HACE1	protein coding
KCNQ10T1	HECTD4	protein coding
KCNO1OT1	HMGB2	protein coding
KCNO1OT1	HNRNPL	protein coding
KCNO1OT1	HOXA9	protein coding
KCNO1OT1	HSP90B1	protein coding
KCNO1OT1	KIF1B	protein coding
KCNO1OT1	1163	protein coding
	111(7) 3	protein coding
KCNO1OT1	MAP2K7	protein coding
KCNQ10T1	MAP3K2	protein coding
	MIR424	miRNA
	miR504	miRNA
	MRRE	nrotein coding
		protein coding
	MTRNR218	protein coding
	MT-TI 1	Mt tRNA
	NCARGO	protein coding
	ND2E1	protein coding
		protein coding
	RARDE	protein coding
	PAPDS	protein coding
	PDCD0IPP2	transcribed unprocessed pseudogene
	PGLS	protein coding
	PI4KZA	protein coding
	PLCG2	protein coding
KCNQIOTI	PPIF	protein coding
KCNQIOTI	PPINEI	protein coding
KCNQ1011	RAC3	protein coding
KCNQ1011	RF00019	misc RNA
	RIC8A	protein coding
KCNQ1011	KMRP	lincRNA
KCNQ10T1	RN7SKP50	misc RNA
KCNQ10T1	RNA18N5	rRNA
KCNQ1OT1	RNA28S5	rRNA

KCNQ10T1	RP13-996F3.3	pseudogene
KCNQ10T1	RPL38	protein coding
KCNQ10T1	RRP1B	protein coding
KCNQ10T1	SARAF	protein coding
KCNQ10T1	SBF1	protein coding
KCNQ10T1	SDR39U1	protein coding
KCNQ10T1	SEC31A	protein coding
KCNQ10T1	SEPT8	protein coding
KCNQ10T1	SSNA1	protein coding
KCNQ10T1	SSR3	protein coding
KCNQ10T1	STRADA	protein coding
KCNQ10T1	TBX1	protein coding
KCNQ10T1	ТВХЗ	protein coding
KCNQ10T1	<i>TMEM115</i>	protein coding
KCNQ10T1	TRABD	protein coding
KCNQ10T1	TRAP1	protein coding
KCNQ10T1	TRMU	protein coding
KCNQ10T1	TTLL3	protein coding
KCNQ10T1	UBXN7	protein coding
KCNQ10T1	UNC119B	protein coding
KCNQ10T1	UPF1	protein coding
KCNQ10T1	XRCC6	protein coding
KCNQ10T1	ZNF592	protein coding
MALAT1	AARS	protein coding
MALAT1	ABCA1	protein coding
MALAT1	ABCC4	protein coding
MALAT1	ABCD4	protein coding
MALAT1	ABR	protein coding
MALAT1	ABT1	protein coding
MALAT1	AC005515.1	transcribed unprocessed pseudogene
MALAT1	AC005899.4	processed transcript
MALAT1	AC005912.1	processed pseudogene
MALAT1	AC006511.5	processed transcript
MALAT1	AC007192.1	protein coding
MALAT1	AC007285.1	antisense
MALAT1	AC007906.1	sense_intronic
MALAT1	AC007952.4	lincRNA
MALAT1	AC007969.1	processed pseudogene
MALAT1	AC008038.1	processed pseudogene
MALAT1	AC008731.1	pseudogene
MALAT1	AC008758.3	transcribed unprocessed pseudogene
MALAT1	AC008758.4	protein coding
MALAT1	AC009245.1	processed pseudogene
MALAT1	AC009336.2	protein coding
MALAT1	AC009362.1	processed pseudogene
MALAT1	AC010343.1	processed pseudogene
MALAT1	AC010542.4	lincRNA
MALAT1	AC010547.6	unprocessed pseudogene
MALAT1	AC011503.2	sense_intronic
MALAT1	AC011825.1	processed pseudogene

MALAT1	AC011979.1	processed pseudogene
MALAT1	AC016739.1	processed pseudogene
MALAT1	AC017035.1	processed pseudogene
MALAT1	AC018523.1	processed pseudogene
MALAT1	AC019176.2	unprocessed pseudogene
MALAT1	AC020765.3	unprocessed pseudogene
MALAT1	AC022861.1	processed pseudogene
MALAT1	AC023157.1	processed pseudogene
MALAT1	AC023813.2	processed pseudogene
MALAT1	AC024293.1	processed pseudogene
MALAT1	AC024451.1	unprocessed pseudogene
MALAT1	AC025458.1	processed pseudogene
MALAT1	AC026410.1	processed pseudogene
MALAT1	AC026784.1	transcribed processed pseudogene
MALAT1	AC026826.1	processed pseudogene
MALAT1	AC046176.1	processed pseudogene
MALAT1	AC068580.4	protein coding
MALAT1	AC068831.7	protein coding
MALAT1	AC068946.2	protein coding
MALAT1	AC073508.2	protein coding
MALAT1	AC073610.1	processed pseudogene
MALAT1	AC073610.3	protein coding
MALAT1	AC073861.1	processed pseudogene
MALAT1	AC078817.1	processed pseudogene
MALAT1	AC078991.1	processed pseudogene
MALAT1	AC087632.1	protein coding
MALAT1	AC090498.1	processed pseudogene
MALAT1	AC090543.2	processed pseudogene
MALAT1	AC090589.1	processed pseudogene
MALAT1	AC091078.2	processed pseudogene
MALAT1	AC091167.2	protein coding
MALAT1	AC091685.2	processed pseudogene
MALAT1	AC092035.1	processed pseudogene
MALAT1	AC092597.1	processed pseudogene
MALAT1	AC093668.2	protein coding
MALAT1	AC093809.1	processed pseudogene
MALAT1	AC098614.2	processed pseudogene
MALAT1	AC099654.3	unprocessed pseudogene
MALAT1	AC100771.1	processed pseudogene
MALAT1	AC104390.1	processed pseudogene
MALAT1	AC104563 1	processed pseudogene
MALAT1	AC104619.3	processed pseudogene
MALAT1	AC107890.1	processed pseudogene
MALAT1	AC107956 1	processed pseudogene
MALAT1	AC108134 2	lincRNA
MALAT1	ΔC108161 1	processed nseudogene
MALAT1	Δ <i>C</i> 108725 1	processed pseudogene
MALAT1	Δ(115222.1	processed pseudogene
MALAT1	ΔC116533 1	processed pseudogene
ΜΔΙΔΤ1	Δ(12/212 1	protein coding
	70124012.1	protein couling

MALAT1	AC131235.1	processed pseudogene
MALAT1	AC132825.1	unprocessed pseudogene
MALAT1	AC135068.6	processed pseudogene
MALAT1	AC138761.1	transcribed unprocessed pseudogene
MALAT1	AC138894.1	protein coding
MALAT1	AC140481.3	pseudogene
MALAT1	AC211485.1	processed pseudogene
MALAT1	AC241584.1	processed pseudogene
MALAT1	AC245014.3	lincRNA
MALAT1	AC245047.2	processed pseudogene
MALAT1	AC246787.1	processed pseudogene
MALAT1	ACBD6	protein coding
MALAT1	ACOT8	protein coding
MALAT1	ACTA2	protein coding
MALAT1	АСТВ	protein coding
MALAT1	ACTBP11	processed pseudogene
MALAT1	ACTBP12	processed pseudogene
MALAT1	ACTBP9	processed pseudogene
MALAT1	ACTG1	protein coding
MALAT1	ACTG1P10	processed pseudogene
MALAT1	ACTG1P19	processed pseudogene
MALAT1	ACTR3	protein coding
MALAT1	AD000090.1	antisense
MALAT1	ADAMTS12	protein coding
MALAT1	ADAT1	protein coding
MALAT1	ADD3	protein coding
MALAT1	ADGRG5	protein coding
MALAT1	ADGRI2	protein coding
MALAT1	ADH5P4	processed pseudogene
MALAT1	ADIPOR1	protein coding
MALAT1	ADIPOR2	protein coding
MALAT1	ADNP	protein coding
MALAT1	ADO	protein coding
MALAT1	ADSS	protein coding
MALAT1	AFDN	protein coding
ΜΔΙΔΤ1	AGPAT5	protein coding
ΜΔΙΔΤ1	ΔΗΣΔ2Ρ	transcribed unitary nseudogene
MALAT1	AK2	protein coding
ΜΔΙΔΤ1	ΔΚΔΡ8Ι	protein coding
ΜΔΙΔΤ1	AKR1A1	protein coding
ΜΑΙΑΤΙ	ΔKR1R1P7	processed pseudogene
ΜΔΙΔΤ1	ΔΚΡΖΔΟ	protein coding
	AKT1	protein coding
	AKT1 AL021546 1	protein coding
	AL021340.1	protein couling
	AL021707.2	
	ALU22311.1	sense_overiapping
	ALU31/2/.1	processed pseudogene
	ALU35456.1	processed pseudogene
	ALU8U243.2	processea pseudogene
IVIALA I 1	AL132838.1	processed pseudogene

MALAT1	AI 133352.1	protein coding
MALAT1	AL 135925 1	lincRNA
MALAT1	AL 136126.1	processed pseudogene
MALAT1	AL 136295 1	protein coding
ΜΔΙΔΤ1	ΔΙ 136295 Δ	protein coding
	AL130255.4 AL138785 1	processed pseudogene
	AL138785.1 AL120210 1	processed pseudogene
	AL159019.1 AL157202 E	pseudogene protoin coding
	ALIJ7392.J	processed pseudogono
	ALI56201.1	processed pseudogene
	AL354/10.1	processed pseudogene
	AL355075.4	difficence
	AL350488.2	
	AL358113.1	protein coding
	AL359918.1	
	AL360012.1	
MALAT1	AL390728.4	transcribed unprocessed pseudogene
MALAI1	AL390728.5	
MALAT1	AL391416.1	processed pseudogene
MALAT1	AL450405.1	processed pseudogene
MALAT1	AL512488.1	sense_intronic
MALAT1	AL513328.1	processed pseudogene
MALAT1	AL590762.3	processed pseudogene
MALAT1	AL591806.3	protein coding
MALAT1	AL592293.2	processed pseudogene
MALAT1	AL627402.1	processed pseudogene
MALAT1	AL645465.1	antisense
MALAT1	AL669983.1	processed pseudogene
MALAT1	Ala_tRNA	tRNA
MALAT1	ALCAM	protein coding
MALAT1	ALDOA	protein coding
MALAT1	ALDOAP2	processed pseudogene
MALAT1	ALG2	protein coding
MALAT1	AMD1P2	processed pseudogene
MALAT1	AMMECR1L	protein coding
MALAT1	ANAPC16	protein coding
MALAT1	ANKRD10	protein coding
MALAT1	ANKRD17	protein coding
MALAT1	ANKRD46	protein coding
MALAT1	ANKRD50	protein coding
MALAT1	ANLN	protein coding
MALAT1	ANO10	protein coding
MALAT1	ANO5	protein coding
MALAT1	ANP32F	protein coding
MALAT1	ANXA11	protein coding
MALAT1	AP000354.1	processed pseudogene
MALAT1	AP000763 2	processed pseudogene
MALAT1	ΔΡΛΛΛ781 2	nrotein coding
ΜΔΙΔΤ1	ΔΡΛΛΛ9Λ2 1	processed nseudogene
ΜΔΙΔΤ1	ADUUU03E 3	processed pseudogene
	A DOOD 1	processed pseudogene
	AF000942.1	processed pseudogene

MALAT1	AP001024.1	processed pseudogene
MALAT1	AP001453.4	lincRNA
MALAT1	AP001646.2	processed pseudogene
MALAT1	AP001888.1	processed pseudogene
MALAT1	AP002990.1	protein coding
MALAT1	AP003108.2	protein coding
MALAT1	AP003175.1	processed transcript
MALAT1	AP1B1	protein coding
MALAT1	AP2A2	protein coding
MALAT1	AP5M1	protein coding
MALAT1	APLP2	protein coding
MALAT1	APPBP2	protein coding
MALAT1	APRT	protein coding
MALAT1	ARCN1	protein coding
MALAT1	ARF1	protein coding
MALAT1	ARF3	protein coding
ΜΔΙΔΤ1	ARF6	protein coding
	Ara tRNA	tRNA
	ARHGAR12	protein coding
	ARTIGAT 12 ARHCAR17	protein coding
		protein coding
	ARTIGAFZI ARHCARA5	protein coding
		protein coding
	ARHCARS	protein coding
		protein coding
		protein coding
		protein coding
	ARLOIPS	protein coding
MALATI	ARMICX3	protein coding
MALAT1	ARPP19	protein coding
MALAT1	ASH1L	protein coding
MALA I 1	ASH2L	protein coding
MALAT1	Asp_tRNA	tRNA
MALAT1	ATF4P3	processed pseudogene
MALAT1	ATF4P4	transcribed processed pseudogene
MALAT1	ATG3	protein coding
MALAT1	ATG9A	protein coding
MALAT1	ATIC	protein coding
MALAT1	ATP1A1	protein coding
MALAT1	ATP5F1C	protein coding
MALAT1	ATP5F1D	protein coding
MALAT1	ATP5MC2	protein coding
MALAT1	ATP5PBP7	processed pseudogene
MALAT1	ATP5PO	protein coding
MALAT1	ATP6V0E2	protein coding
MALAT1	ATRN	protein coding
MALAT1	B2M	protein coding
MALAT1	B3GAT3	protein coding
MALAT1	B4GALT1	protein coding
MALAT1	BABAM2	protein coding
MALAT1	BACH1	protein coding

MALAT1	BAG3	protein coding
MALAT1	BAG6	protein coding
MALAT1	BBS2	protein coding
MALAT1	BBS9	protein coding
MALAT1	BCAP29	protein coding
MALAT1	BCAT1	protein coding
MALAT1	BCL2L2	protein coding
MALAT1	BCLAF1P1	processed pseudogene
MALAT1	BDH1	protein coding
MALAT1	BHLHE40	protein coding
MALAT1	BIRC5	protein coding
MALAT1	BLACAT1	lincRNA
MALAT1	BLOC1S5-TXNDC5	protein coding
MALAT1	BMP8B	protein coding
MALAT1	BMPER	protein coding
MALAT1	BORCS8	protein coding
MALAT1	BORCS8-MEF2B	protein coding
MALAT1	BPTF	protein coding
MALAT1	BRD4	protein coding
MALAT1	BRD7P2	processed pseudogene
MALAT1	BRK1	protein coding
MALAT1	BSG	protein coding
MALAT1	BTBD10	protein coding
MALAT1	BTG2	protein coding
MALAT1	BTG3P1	processed pseudogene
MALAT1	BX284668.2	lincRNA
MALAT1	BX842559.2	processed pseudogene
MALAT1	C11orf98	protein coding
MALAT1	C14orf119	protein coding
MALAT1	C17orf62	protein coding
MALAT1	C19orf48	protein coding
MALAT1	C19orf54	protein coding
MALAT1	C1orf226	protein coding
MALAT1	C1orf43	protein coding
MALAT1	C20orf194	protein coding
MALAT1	C20orf204	protein coding
MALAT1	C21orf59	protein coding
MALAT1	C5orf17	lincRNA
MALAT1	C5orf24	protein coding
MALAT1	C6orf48	protein coding
MALAT1	C6orf62	protein coding
MALAT1	C8orf37	protein coding
MALAT1	CA2	protein coding
MALAT1	CACNB4	protein coding
MALAT1	CALR	protein coding
MALAT1	CALU	protein coding
MALAT1	CAPN1	protein coding
MALAT1	CAPNS1	protein coding
MALAT1	CARHSP1	protein coding
N / N N T 1	CASC3	protein coding

MALAT1	CASD1	protein coding
MALAT1	CASP3	protein coding
MALAT1	CASP9	protein coding
MALAT1	CBS	protein coding
MALAT1	CBSL	protein coding
MALAT1	CBX1	protein coding
MALAT1	CC2D1B	protein coding
MALAT1	CCAR1	protein coding
MALAT1	CCAR2	protein coding
MALAT1	CCDC144CP	transcribed processed pseudogene
MALAT1	CCDC6	protein coding
MALAT1	CCL2	protein coding
MALAT1	CCL22	protein coding
MALAT1	CCL3L1	protein coding
MALAT1	CCL4L1	protein coding
MALAT1	CCNB2	protein coding
MALAT1	CCND1	protein coding
MALAT1	CCND2	protein coding
MALAT1	CCNG1	protein coding
MALAT1	CCNH	protein coding
MALAT1	CCNT1	protein coding
MALAT1	CCT3	protein coding
MALAT1	CCT4	protein coding
MALAT1	CD276	protein coding
MALAT1	CD33	protein coding
MALAT1	CD36	protein coding
MALAT1	CDC25A	protein coding
ΜΔΙΔΤ1	CDC7	protein coding
ΜΔΙΔΤ1	CDCA3	protein coding
MALAT1	CDCP1	protein coding
ΜΔΙΔΤ1	CDH1	protein coding
	CDH2	protein coding
	CDH5	protein coding
ΜΔΙΔΤ1	CDHR1	protein coding
		protein coding
	CDK12	protein coding
	CDK2	protein coding
ΜΔΙΔΤ1	CDKN1A	protein coding
	CDKN1A CDKN1B	protein coding
	CENDV	protein coding
	CEL1	protein coding
	CHAFIB	protein coding
		processed pseudogopo
		processed pseudogene
		protein coding
		protein couling
		protein coding
	CKAP2L	protein coding
	CLASP1	protein coding
	CLDN4	protein coding
IVIALA I 1	CLDN5	protein coding

MALAT1	CLIC4	protein coding
MALAT1	CLN3	protein coding
MALAT1	CLNS1A	protein coding
MALAT1	CNIH4	protein coding
MALAT1	CNNM2	protein coding
MALAT1	CNNM4	protein coding
MALAT1	CNOT3	protein coding
MALAT1	CNOT9	protein coding
MALAT1	CNPPD1	protein coding
MALAT1	COA1	protein coding
MALAT1	СОСН	protein coding
MALAT1	COG3	protein coding
MALAT1	COG4	protein coding
MALAT1	COL6A1	protein coding
MALAT1	COPB1	protein coding
MALAT1	CORO1B	protein coding
MALAT1	CORO1C	protein coding
MALAT1	COTL1	protein coding
MALAT1	COX5A	protein coding
MALAT1	COX6A1	protein coding
MALAT1	COX6B1	protein coding
MALAT1	СРМ	protein coding
MALAT1	CPSF1	protein coding
MALAT1	CPSF6	protein coding
MALAT1	СРТ2	protein coding
MALAT1	CRCP	protein coding
MALAT1	CRKL	protein coding
MALAT1	CRTC2	protein coding
MALAT1	CS	protein coding
MALAT1	CSF1	protein coding
MALAT1	CSNK1D	protein coding
MALAT1	CSNK2A2	protein coding
MALAT1	CSNK2B	protein coding
MALAT1	CSTB	protein coding
MALAT1	CTHRC1	protein coding
MALAT1	CTNNA1	protein coding
MALAT1	CTNNB1	protein coding
MALAT1	CTNND1	protein coding
MALAT1	CTSD	protein coding
MALAT1	CXCI 14	protein coding
MALAT1	CXCL5	protein coding
MALAT1	CYB5D2	protein coding
MALAT1	Cys tRNA	tRNA
MALAT1	DAD1	protein coding
MALAT1	DANCR	processed transcript
ΜΔΙΔΤ1	ΠΔ7ΔΡ2	protein coding
ΜΔΙΔΤ1		protein coding
		protein coding
	DD1 DCAE12	protein coding
	DCAF13 DCAF7	protein couling
IVIALATI	DLAF/	protein coung

	DCTN1	investation and the
MALATI	DCTN1	protein coding
MALAT1	DCTN3	protein coding
MALA I 1	DCTN4	protein coding
MALAT1	DDI2	protein coding
MALAT1	DDIT4	protein coding
MALAT1	DDX17	protein coding
MALAT1	DDX23	protein coding
MALAT1	DDX41	protein coding
MALAT1	DDX5	protein coding
MALAT1	DDX56	protein coding
MALAT1	DEAF1	protein coding
MALAT1	DEF8	protein coding
MALAT1	DGAT1	protein coding
MALAT1	DGCR2	protein coding
MALAT1	DGKH	protein coding
MALAT1	DGUOK	protein coding
MALAT1	DHX15	protein coding
MALAT1	DHX9P1	processed pseudogene
MALAT1	DIAPH1	protein coding
MALAT1	DIP2A	protein coding
MALAT1	DLEU2	antisense
MALAT1	DMTF1	protein coding
MALAT1	DNAJA3	protein coding
MALAT1	DNAJB5	protein coding
MALAT1	DNAJC14	protein coding
MALAT1	DNASE1	protein coding
MALAT1	DNM2	protein coding
MALAT1	<i>DOCK3</i>	protein coding
MALAT1	DOLPP1	protein coding
MALAT1	DPP3	protein coding
MALAT1	DPY19L1	protein coding
MALAT1	DRD1	protein coding
MALAT1	DSC2	protein coding
MALAT1	DSC3	protein coding
MALAT1	DSP	protein coding
ΜΔΙΔΤ1		protein coding
		protein coding
ΜΔΙΔΤ1	DIISP14	protein coding
		protein coding
		protein coding
		processed pseudogene
		processed pseudogene
	62E4	protein coding
		protein couling
		protein coding
		protein coding
		processea pseudogene
		processed pseudogene
MALAI1	<i>EEF1A1P13</i>	processed pseudogene
MALA [1	EEF1A1P14	processed pseudogene
MALAT1	EEF1A1P16	processed pseudogene
--------	--------------------	----------------------------------
MALAT1	EEF1A1P19	processed pseudogene
MALAT1	EEF1A1P22	processed pseudogene
MALAT1	EEF1A1P24	processed pseudogene
MALAT1	EEF1A1P29	processed pseudogene
MALAT1	EEF1A1P4	processed pseudogene
MALAT1	EEF1A1P5	processed pseudogene
MALAT1	EEF1A1P6	processed pseudogene
MALAT1	EEF1A1P8	processed pseudogene
MALAT1	EEF1A1P9	processed pseudogene
MALAT1	EEF1G	protein coding
MALAT1	EEF1GP5	processed pseudogene
MALAT1	EEF2	protein coding
MALAT1	EFR3A	protein coding
MALAT1	EHMT1	protein coding
MALATI	FIF2S3B	protein coding
MALAT1	FIF3F	protein coding
	FIF31	protein coding
	FIF31 P1	
	EIFAA2	protein coding
	EII 4A2 FIF/R	protein coding
	EII 4D FIEAERD2	protein coding
	EIEAC1	protein coding
	EIF4G1	protein coding
	EIF4GZ	protein coding
	EIFSA	protein coding
	ELK4	protein coding
	ELOVLO	protein coding
	EMCI	protein coding
MALATI	EMC10	protein coding
MALATI	EMC6	protein coding
MALAII	EMC8	protein coding
MALAT1	ENO1	protein coding
MALAT1	ENO1P1	transcribed processed pseudogene
MALAT1	EPB41	protein coding
MALAT1	EPB41L2	protein coding
MALAT1	EPHB4	protein coding
MALAT1	EPM2AIP1	protein coding
MALAT1	EPS15L1	protein coding
MALAT1	ERCC1	protein coding
MALAT1	ERG28	protein coding
MALAT1	ERK1	protein coding
MALAT1	ERMP1	protein coding
MALAT1	ESPL1	protein coding
MALAT1	ETF1	protein coding
MALAT1	ETFA	protein coding
MALAT1	EXT2	protein coding
MALAT1	EZH2	protein coding
MALAT1	EZR	protein coding
MALAT1	F11R	protein coding
MALAT1	FAM117A	protein coding

MALAT1	FAM193B	protein coding
MALAT1	FANCD2	protein coding
MALAT1	FAR1	protein coding
MALAT1	FBLN1	protein coding
MALAT1	FBXO22	protein coding
MALAT1	FBXO30	protein coding
MALAT1	FBXW11	protein coding
MALAT1	FCF1	protein coding
MALAT1	FDPSP5	processed pseudogene
MALAT1	FEN1	protein coding
MALAT1	FIG4	protein coding
MALAT1	FKBP5	protein coding
MALAT1	FLNA	protein coding
MALAT1	FLOT2	protein coding
MALAT1	FMNL2	protein coding
MALAT1	FN1	protein coding
MALAT1	FO393411.1	processed pseudogene
MALAT1	FP565260.1	protein coding
MALAT1	FRAS1	protein coding
MALAT1	FRAT2	protein coding
MALAT1	FREM2	protein coding
MALAT1	FSD1	protein coding
MALAT1	FTH1P16	processed pseudogene
MALAT1	FTL	protein coding
MALAT1	FTLP17	processed pseudogene
MALAT1	FTLP2	processed pseudogene
MALAT1	FTI P3	processed pseudogene
MALAT1	FUS	protein coding
MALAT1	FXYD6	protein coding
MALAT1	G6PC3	protein coding
MALAT1	GAB2	protein coding
MALAT1	GABARAPI 1	protein coding
MALAT1	GABBR1	protein coding
MALAT1	GALNT18	protein coding
MALAT1	GANAB	protein coding
MALAT1	GAPDH	protein coding
MALAT1	GAPDHP25	processed pseudogene
MALAT1	GAPDHP40	processed pseudogene
MALAT1	GAPDHP41	processed pseudogene
ΜΔΙΔΤ1	GAPDHP46	processed pseudogene
ΜΔΙΔΤ1	GAPDHP62	processed pseudogene
ΜΔΙΔΤ1	GAPDHP70	processed pseudogene
ΜΔΙΔΤ1	GAPDHP72	transcribed processed pseudogene
		processed pseudogene
	GAS5	processed transcript
	GATA2	protein coding
	GATAS COM	protein coding
		protein couling
		processed pseudogopo
		protesseu pseudogene
	GFKAL	protein couling

MALAT1	GGT7	protein coding
MALAT1	GINM1	protein coding
MALAT1	GLG1	protein coding
MALAT1	Glu_tRNA	tRNA
MALAT1	GLUD2	protein coding
MALAT1	GLUL	protein coding
MALAT1	Gly_tRNA	tRNA
MALAT1	GNAS	protein coding
MALAT1	GNB1	protein coding
MALAT1	GNL2	protein coding
MALAT1	GPC6	protein coding
MALAT1	GPI	protein coding
MALAT1	GPR137	protein coding
MALAT1	GRWD1	protein coding
MALAT1	GSPT1	protein coding
MALAT1	GSTA4	protein coding
MALAT1	GTF2I	protein coding
MALAT1	GTE3C5	protein coding
MALAT1	GTPBP1	protein coding
MALAT1	GTPBP6	protein coding
MALAT1	GUCA1A	protein coding
MALAT1	НАЛН	protein coding
MALAT1	HBP1	protein coding
MALAT1	HCEC1	protein coding
ΜΔΙΔΤ1	НСР5	sense overlanning
MALAT1	ного Норса	protein coding
ΜΔΙΔΤ1	HDGE	protein coding
ΜΔΙΔΤ1	HDGEL3	protein coding
	HEATR1	protein coding
	HEMK1	protein coding
	HEXDC	protein coding
	HGSNAT	protein coding
	HIC2	protein coding
	HICZ HIELA	protein coding
		protein coding
	ראמות באמוע	protein coding
	HIFKZ	
		IRNA protoin coding
		protein coding
	HIST THZAE	protein coding
	HIST THZAPSZ	transcribed processed pseudogene
	HISTIHJA	protein coding
	HISTZHJA	protein coding
	HLA-A	protein coding
MALATI	HLA-B	protein coding
MALATI	HLA-C	protein coding
	HLA-DMA	protein coding
MALAT1	HLA-DRA	protein coding
MALAT1	HLA-E	protein coding
MALAT1	HLA-J	transcribed unprocessed pseudogene
MALAT1	HM13	protein coding

MALAT1	HMGA1	protein coding
MALAT1	HMGB1	protein coding
MALAT1	HMGCR	protein coding
MALAT1	HMGCS1	protein coding
MALAT1	HMMR	protein coding
MALAT1	HNF4G	protein coding
MALAT1	HNRNPAO	protein coding
MALAT1	HNRNPA2B1	protein coding
MALAT1	HNRNPC	protein coding
MALAT1	HNRNPDL	protein coding
MALAT1	HNRNPK	protein coding
MALAT1	HNRNPL	protein coding
MALAT1	HNRNPUL1	protein coding
MALAT1	HOMER1	protein coding
MALAT1	HOTAIRM1	antisense
MALAT1	HOXD4	protein coding
MALAT1	HS6ST3	protein coding
MALAT1	hsa-miR-4485	miRNA
MALAT1	hsa-miR-7641	miRNA
MALAT1	HSD17B10	protein coding
MALAT1	HSF1	protein coding
MALAT1	HSP90AA2P	processed pseudogene
MALAT1	HSP90AB1	protein coding
MALAT1	HSP90AB3P	processed pseudogene
MALAT1	HSPA4	protein coding
MALAT1	HSPA8	protein coding
MALAT1	HSPA8P1	processed pseudogene
MALAT1	HSPA8P5	processed pseudogene
MALAT1	HSPA9	protein coding
MALAT1	HSPG2	protein coding
MALAT1	IARS	protein coding
MALAT1	IF130	protein coding
MALAT1	IFI6	protein coding
MALAT1	IGDCC3	protein coding
MALAT1	IGF1R	protein coding
MALAT1	IGF2	protein coding
MALAT1	IGF2BP1	protein coding
MALAT1	IGF2BP2	protein coding
MALAT1	IGSF8	protein coding
MALAT1	IGSF9	protein coding
MALAT1	IKZF2	protein coding
MALAT1	ILF2	protein coding
MALAT1	ILF3	protein coding
MALAT1	IMMT	protein coding
MALAT1	IMPACT	protein coding
MALAT1	INPP5D	protein coding
MALAT1	INTS8	protein coding
MALAT1	IPO7	protein coding
MALAT1	IRF4	protein coding
MALAT1	IRF6	protein coding
	-	

MALAT1	ISOC1	protein coding
MALAT1	ISYNA1	protein coding
MALAT1	ITGA3	protein coding
MALAT1	ITGB1	protein coding
MALAT1	ITPRIPL2	protein coding
MALAT1	JADE2	protein coding
MALAT1	JPH4	protein coding
MALAT1	JPT1	protein coding
MALAT1	JRK	protein coding
MALAT1	JUND	protein coding
MALAT1	JUP	protein coding
MALAT1	КАТ6А	protein coding
MALAT1	ΚΑΤ7	protein coding
MALAT1	KCNK1	protein coding
MALAT1	KDELR1	protein coding
MALAT1	KDELR2	protein coding
MALAT1	KDM5B	protein coding
MALAT1	KHDC4	protein coding
MALAT1	KHSRP	protein coding
MALAT1	KIAA0040	protein coding
MALAT1	KIF1C	protein coding
MALAT1	KIF3C	protein coding
MALAT1	KIFC1	protein coding
MALAT1	KLHL8	protein coding
MALAT1	KMT2A	protein coding
MALAT1	KPNA2	protein coding
MALAT1	KRCC1	protein coding
MALAT1	KRT13	protein coding
MALAT1	KRT5	protein coding
MALAT1	KRT7	protein coding
MALAT1	LAD1	protein coding
MALAT1	LAPTM5	protein coding
MALAT1	LARP1	protein coding
MALAT1	LAYN	protein coding
MALAT1		protein coding
MALAT1	ICP1	protein coding
MALAT1	L DB1	protein coding
MALAT1	I DHA	protein coding
MALAT1	I DHAP3	processed pseudogene
ΜΑΙ ΔΤ1	ΙΠΗΔΡ5	processed pseudogene
ΜΑΙ ΔΤ1	LENG8	protein coding
ΜΑΙ ΔΤ1	Lev tRNA	tRNA
	IGALS9B	protein coding
	LINCU1333	
IVIALATI	LINCU1933	IIIICKNA

MALAT1	LINGO1	protein coding
MALAT1	LITAF	protein coding
MALAT1	LNPEP	protein coding
MALAT1	LONP1	protein coding
MALAT1	LPAR1	protein coding
MALAT1	LPXN	protein coding
MALAT1	LRCH1	protein coding
MALAT1	LRIF1	protein coding
MALAT1	LRIG3	protein coding
MALAT1	LRPPRC	protein coding
MALAT1	LRRC58	protein coding
MALAT1	LRRC61	protein coding
MALAT1	LRRN1	protein coding
MALAT1	LSM12	protein coding
MALAT1	LSM2	protein coding
MALAT1	LSM3	protein coding
MALAT1	LSM4	protein coding
MALAT1	LTBP3	protein coding
MALAT1	LY6K	protein coding
MALAT1	Lys_tRNA	tRNA
MALAT1	MAGT1	protein coding
MALAT1	MAN1B1	protein coding
MALAT1	MAN2B1	protein coding
MALAT1	MAP2K1	protein coding
MALAT1	MAP2K2	protein coding
MALAT1	MAP3K4	protein coding
MALAT1	ΜΑΡΚ1	protein coding
MALAT1	MAPK10	protein coding
MALAT1	MAPK14	protein coding
MALAT1	МАРКЗ	protein coding
MALAT1	ΜΑΡΚ8	protein coding
MALAT1	ΜΑΡΚ9	protein coding
MALAT1	MARCH6	protein coding
MALAT1	MARCKS	protein coding
MALAT1	MARCKSL1	protein coding
MALAT1	MARK3	protein coding
MALAT1	MARS	protein coding
MALAT1	MAT2A	protein coding
MALAT1	MATN2	protein coding
MALAT1	MATR3	protein coding
MALAT1	MBD2	protein coding
MALAT1	MBNL1	protein coding
MALAT1	MCAM	protein coding
MALAT1	MCL1	protein coding
MALAT1	МСМ3	protein coding
MALAT1	MCM7	protein coding
MALAT1	MCTS2P	processed pseudogene
MALAT1	MDFIC	protein coding
MALAT1	MDH1	protein coding
MALAT1	MDK	protein coding

MALAT1	MEK1	protein coding
MALAT1	Met_tRNA	tRNA
MALAT1	METTL2B	protein coding
MALAT1	METTL4	protein coding
MALAT1	METTL9	protein coding
MALAT1	MGAT3	protein coding
MALAT1	MGEA5	protein coding
MALAT1	MGLL	protein coding
MALAT1	MGST1	protein coding
MALAT1	MIA2	protein coding
MALAT1	MICAL3	protein coding
MALAT1	MIER1	protein coding
MALAT1	MIOS	protein coding
MALAT1	miR-101	miRNA
MALAT1	miR-124	miRNA
MALAT1	MIR124-1	miRNA
MALAT1	MIR129-1	miRNA
MALAT1	MIR140	miRNA
MALAT1	MIR142	miRNA
MALAT1	MIR143	miRNA
MALAT1	MIR144	miRNA
MALAT1	MIR145	miRNA
MALAT1	MIR195	miRNA
MALAT1	MIR200A	miRNA
ΜΔΙΔΤ1	MIR200C	miRNA
ΜΔΙΔΤ1	MIR2034	miRNA
ΜΔΙΔΤ1	MIR205	miRNA
ΜΔΙΔΤ1	MIR205HG	miRNA
	MIR205HG	miRNA
ΜΔΙΔΤ1	MIR217	miRNA
ΜΔΙΔΤ1	MIR219	miRNA
ΜΔΙΔΤ1	MIR23B	miRNA
	MIR26B	miRNA
	miR-30b	miRNA
	MIR320A	miRNA
	MIR262	miPNA
	MIR275	miPNA
	MIR375	miRNA
	MIREOG	miRNA
	IVIIRSUU	IIIIRINA protoin coding
		protein coding
	IVIKRINI NALEC	protein coding
	MILEC	protein coding
		protein coding
		protein coding
		protein coaing
		protein coding
	MMP2	protein coding
	<i>MMP9</i>	protein coding
MALAT1	MOB1A	protein coding
MALAT1	MON1B	protein coding

MALAT1	MPZ	protein coding
MALAT1	MPZL1	protein coding
MALAT1	MRI1	protein coding
MALAT1	MROH1	protein coding
MALAT1	MRPL2	protein coding
MALAT1	MRPL33	protein coding
MALAT1	MRPL40	protein coding
MALAT1	MRPL42	protein coding
MALAT1	MRPL43	protein coding
MALAT1	MRPL44	protein coding
MALAT1	MRPS16	protein coding
MALAT1	MRPS25	protein coding
MALAT1	MRPS6	protein coding
MALAT1	MT-ATP6	protein coding
MALAT1	MTATP6P1	unprocessed pseudogene
MALAT1	MT-ATP8	protein coding
MALAT1	MTATP8P1	unprocessed pseudogene
MALAT1	MTATP8P2	processed pseudogene
MALAT1	MTCH2	protein coding
MALAT1	MT-CO1	protein coding
MALAT1	MTCO1P12	unprocessed pseudogene
MALAT1	MTCO1P15	processed pseudogene
MALAT1	MTCO1P18	unprocessed pseudogene
MALAT1	MTCO1P2	unprocessed pseudogene
MALAT1	MTCO1P22	processed pseudogene
MALAT1	MTCO1P3	processed pseudogene
MALAT1	MTCO1P40	processed pseudogene
MALAT1	MTCO1P53	processed pseudogene
MALAT1	MTCO1P55	processed pseudogene
MALAT1	MT-CO2	protein coding
MALAT1	MTCO2P12	unprocessed pseudogene
MALAT1	MTCO2P2	processed pseudogene
MALAT1	MT-CO3	protein coding
MALAT1	MTCO3P12	unprocessed pseudogene
MALAT1	MTCO3P13	unprocessed pseudogene
MALAT1	MTCO3P22	processed pseudogene
MALAT1	MTCO3P24	unprocessed pseudogene
MALAT1	MTCYBP13	unprocessed pseudogene
MALAT1	MTCYBP18	processed pseudogene
MALAT1	MTCYBP22	processed pseudogene
MALAT1	MTCYBP35	processed pseudogene
MALAT1	MTCYBP41	processed pseudogene
MALAT1	MT-ND1	protein coding
MALAT1	MTND1P23	unprocessed pseudogene
MALAT1	MTND1P32	processed pseudogene
MALAT1	MTND2P20	processed pseudogene
MALAT1	MTND2P28	unprocessed pseudogene
MALAT1	MT-ND4	protein coding
MALAT1	MT-ND4I	protein coding
MALAT1	MTND4I P1	processed pseudogene
· —	·····	

MALAT1	MTND4LP30	processed pseudogene
MALAT1	MTND4LP5	processed pseudogene
MALAT1	MTND4P12	processed pseudogene
MALAT1	MTND4P24	processed pseudogene
MALAT1	MTND4P35	processed pseudogene
MALAT1	MT-ND5	protein coding
MALAT1	MTND5P10	processed pseudogene
MALAT1	MTND5P11	processed pseudogene
MALAT1	MTND5P12	processed pseudogene
MALAT1	MTND5P32	processed pseudogene
MALAT1	MTPN	protein coding
MALAT1	MT-RNR1	Mt_rRNA
MALAT1	MT-RNR2	Mt_rRNA
MALAT1	MTRNR2L1	protein coding
MALAT1	MTRNR2L11	protein coding
MALAT1	MTRNR2L12	protein coding
MALAT1	MTRNR2L3	protein coding
MALAT1	MTRNR2L8	protein coding
MALAT1	MUC16	protein coding
MALAT1	MUC19	protein coding
MALAT1	MUC4	protein coding
MALAT1	MVB12B	protein coding
MALAT1	MXD3	protein coding
MALAT1	MYBL2	protein coding
MALAT1	МҮС	protein coding
MALAT1	MYDGF	protein coding
MALAT1	МҮН9	protein coding
MALAT1	MYL8P	processed pseudogene
MALAT1	MY01E	protein coding
MALAT1	NACA	protein coding
MALAT1	NAGPA	protein coding
MALAT1	NAPRT	protein coding
MALAT1	NARS	protein coding
MALAT1	NCAM1	protein coding
MALAT1	NCAPH2	protein coding
MALAT1	NDFIP1	protein coding
MALAT1	NDOR1	protein coding
MALAT1	NDUFB11	protein coding
MALAT1	NDUFB8	protein coding
MALAT1	NDUFV1	protein coding
MALAT1	NEAT1	lincRNA
MALAT1	NECAP1	protein coding
MALAT1	NEDD8	protein coding
MALAT1	NEK4	protein coding
MALAT1	NEK7	protein coding
MALAT1	NEK9	protein coding
MALAT1	NFATC2IP	protein coding
MALAT1	NFE2L1	protein coding
MALAT1	NFE2L2	protein coding
MALAT1	NFXL1	protein coding

MALAT1	NGRN	protein coding
MALAT1	NIF3L1	protein coding
MALAT1	NIN	protein coding
MALAT1	NIPSNAP1	protein coding
MALAT1	NNMT	protein coding
MALAT1	NOA1	protein coding
MALAT1	NOC3L	protein coding
MALAT1	NOP9	protein coding
MALAT1	NOTCH2	protein coding
MALAT1	NOTCH2P1	processed pseudogene
MALAT1	NPDC1	protein coding
MALAT1	NPM1P35	processed pseudogene
MALAT1	NPM1P50	transcribed processed pseudogene
MALAT1	NR2F2	protein coding
MALAT1	NRBP1	protein coding
MALAT1	NRDE2	protein coding
MALAT1	NREP	protein coding
MALAT1	NRXN1	protein coding
MALAT1	NT5C	protein coding
MALAT1	NUBP1	protein coding
MALAT1	NUCKS1	protein coding
MALAT1	NUDT21	protein coding
MALAT1	NUFIP2	protein coding
MALAT1	NUMA1	protein coding
MALAT1	NUP153	protein coding
MALAT1	NUP62	protein coding
MALAT1	NUTM2A-AS1	antisense
MALAT1	NUTM2B-AS1	antisense
MALAT1	OAS2	protein coding
MALAT1	OAS3	protein coding
MALAT1	OBSL1	protein coding
MALAT1	OCLN	protein coding
MALAT1	OGT	protein coding
MALAT1	OR2A25	protein coding
MALAT1	OST4	protein coding
MALAT1	P2RX5-TAX1BP3	protein coding
MALAT1	P2RY11	protein coding
MALAT1	P4HB	protein coding
MALAT1	PABPC1	protein coding
MALAT1	PAFAH1B1	protein coding
MALAT1	PAK1	protein coding
MALAT1	PAPD7	protein coding
MALAT1	PARP10	protein coding
MALAT1	PAXIP1-AS2	antisense
MALAT1	PBRM1	protein coding
MALAT1	PCBD1	protein coding
MALAT1	PCRP2	protein coding
MALAT1	ΡΓ ΠΡΔ	protein coding
MAI AT1	PCDH11Y	protein coding
ΜΔΙΔΤ1	ΡΓΙΔΕ	nrotein coding
		protein coung

MALAT1	PCNA	protein coding
MALAT1	PCSK9	protein coding
MALAT1	РСТР	protein coding
MALAT1	PCYOX1L	protein coding
MALAT1	PDCD2	protein coding
MALAT1	PDCD4	protein coding
MALAT1	PDCD6IP	protein coding
MALAT1	PDIA3	protein coding
MALAT1	PDIA6	protein coding
MALAT1	PDZD8	protein coding
MALAT1	PFN1	protein coding
MALAT1	PGAM1P8	transcribed processed pseudogene
MALAT1	PGK1	protein coding
MALAT1	PGM1	protein coding
MALAT1	PGS1	protein coding
MALAT1	PHF2	protein coding
MALAT1	PHIP	protein coding
MALAT1	PHTF2	protein coding
MALAT1	РІКЗСВ	protein coding
MALAT1	ΡΙΡ5Κ1Α	protein coding
MALAT1	PJA2	protein coding
MALAT1	PKIG	protein coding
MALAT1	РКМ	protein coding
MALAT1	PKMP1	processed pseudogene
MALAT1	PLAGL1	protein coding
MALAT1	PLCG2	protein coding
MALAT1	PLEKHA1	protein coding
MALAT1	PLEKHF2	protein coding
MALAT1	PLEKHG3	protein coding
MALAT1	PLEKHM1	protein coding
MALAT1	PLIN3	protein coding
MALAT1	PLXNA1	protein coding
MALAT1	PLXNA4	protein coding
MALAT1	PLXND1	protein coding
MALAT1	РМРСВ	protein coding
MALAT1	PNISR	protein coding
MALAT1	PNMA8A	protein coding
MALAT1	PNPT1P1	processed pseudogene
MALAT1	POFUT1	protein coding
MALAT1	POIM	protein coding
ΜΔΙΔΤ1	POIRSE	protein coding
ΜΔΙΔΤ1	POIRMT	protein coding
ΜΔΙΔΤ1	POM121C	protein coding
	POTEI	protein coding
	POU2E1	protein coding
	DDA7	protein coding
		protein coding
	FFANGCID DDIA	protein couling
	ΓΓΙΑ	processed acouderene
	PPIAP19	processed pseudogene
	PPIAP4	processed pseudogene

MALAT1	PPIF	protein coding
MALAT1	PPIG	protein coding
MALAT1	PPIL2	protein coding
MALAT1	PPIL3	protein coding
MALAT1	PPOX	protein coding
MALAT1	PPP1CB	protein coding
MALAT1	PPP1R12A	protein coding
MALAT1	PPP1R12C	protein coding
MALAT1	PPP1R8	protein coding
MALAT1	PPP2CA	protein coding
MALAT1	PPP2R1A	protein coding
MALAT1	PPP2R5D	protein coding
MALAT1	PPP4R1	protein coding
MALAT1	PPT1	protein coding
MALAT1	PRC1	protein coding
MALAT1	PRKCD	protein coding
MALAT1	PRKCF	protein coding
ΜΔΙΔΤ1	PRKDC	protein coding
MALAT1	PRKRIP1	protein coding
ΜΔΙΔΤ1		protein coding
ΜΔΙΔΤ1	PRPF18	protein coding
	DRDE10	protein coding
	DRDEQ	protein coding
	FNFI0 NDD12D2	processed pseudogopo
		processed pseudogene
		protein coding
	PRKJ-AKHGAP8	protein coding
	PRRC2B	protein coding
MALATI	PRIG	protein coding
MALA 11	PSAP	protein coding
MALA 11	PSAT1	protein coding
MALA I 1	PSMA4	protein coding
MALAT1	PSMB5	protein coding
MALAT1	PSMC1P1	processed pseudogene
MALAT1	PSMC5	protein coding
MALAT1	PSMC6	protein coding
MALAT1	PSMD3	protein coding
MALAT1	PSMD5	protein coding
MALAT1	PSMD7	protein coding
MALAT1	PSMF1	protein coding
MALAT1	PTBP1	protein coding
MALAT1	РТВРЗ	protein coding
MALAT1	PTDSS2	protein coding
MALAT1	PTK2	protein coding
MALAT1	PTMA	protein coding
MALAT1	PTPN1	protein coding
MALAT1	PTPN11	protein coding
MALAT1	PTPRCAP	protein coding
	PTPRD	protein coding
MALAT1		protein coung
MALAT1 MALAT1	PTPRF	protein coding

MALAT1	PWWP2A	protein coding
MALAT1	PXDN	protein coding
MALAT1	PXN	protein coding
MALAT1	PYCR1	protein coding
MALAT1	PYM1	protein coding
MALAT1	QRICH1	protein coding
MALAT1	QSOX1	protein coding
MALAT1	R3HDM2	protein coding
MALAT1	RAB11B	protein coding
MALAT1	RAB12	protein coding
MALAT1	RAB6A	protein coding
MALAT1	RAB7A	protein coding
MALAT1	RABAC1	protein coding
MALAT1	RABGGTB	protein coding
MALAT1	RAC2	protein coding
MALAT1	RACK1	protein coding
MALAT1	RAD51AP1	protein coding
MALAT1	RALGAPA1	protein coding
MALAT1	RALGPS2	protein coding
MALAT1	RAP1B	protein coding
MALAT1	RAPGEF1	protein coding
MALAT1	RAPH1	protein coding
MALAT1	RASA4B	protein coding
MALAT1	RASSF5	protein coding
MALAT1	RASSF6	protein coding
MALAT1	<i>RBM19</i>	protein coding
MALAT1	RBM25	protein coding
MALAT1	RBM33	protein coding
MALAT1	RBM5	protein coding
MALAT1	RCAN3	protein coding
MALAT1	RCC2	protein coding
MALAT1	RCOR2	protein coding
MALAT1	REEP3	protein coding
MALAT1	RER1	protein coding
MALAT1	RF00019	misc RNA
MALAT1	RF00409	snoRNA
MALAT1	RF00568	snoRNA
MALAT1	RGPD2	protein coding
MALAT1	RGS10	protein coding
MALAT1	RHBDF2	protein coding
MALAT1	RHOA	protein coding
MALAT1	RIC8A	protein coding
MALAT1	RIMBP3	protein coding
MALAT1	RIPOR1	protein coding
MALAT1	RMC1	protein coding
MALAT1	RN7SKP104	misc RNA
MALAT1	RN7SKP111	misc RNA
MALAT1	RN7SKP131	misc RNA
MALAT1	RN7SKP160	misc RNA
MALAT1	RN7SKP180	misc RNA

MALAT1	RN7SKP187	misc RNA
MALAT1	RN7SKP281	misc RNA
MALAT1	RN7SKP80	misc RNA
MALAT1	RN7SKP87	misc RNA
MALAT1	RN7SKP95	misc RNA
MALAT1	RN7SL128P	misc RNA
MALAT1	RN7SL151P	misc RNA
MALAT1	RN7SL166P	misc RNA
MALAT1	RN7SL230P	misc RNA
MALAT1	RN7SL444P	misc RNA
MALAT1	RN7SL566P	misc RNA
MALAT1	RN7SL573P	misc RNA
MALAT1	RN7SL575P	misc RNA
MALAT1	RN7SL610P	misc RNA
MALAT1	RN7SL617P	misc RNA
MALAT1	RN7SL674P	misc RNA
MALAT1	RN7SL685P	misc RNA
MALAT1	RN7SL70P	misc RNA
MALAT1	RN7SL828P	misc RNA
MALAT1	RN7SL861P	misc RNA
MALAT1	RN7SL87P	misc RNA
MALAT1	RNA18N5	rRNA
MALAT1	RNA18S5	rRNA
MALAT1	RNA28S5	rRNA
MALAT1	RNA5-8S5	rRNA
MALAT1	RNA5-8SP2	rRNA
MALAT1	RNA5-8SP6	rRNA
MALAT1	RNA5S1	rRNA
MALAT1	RNA5S10	rRNA
MALAT1	RNA5S11	rRNA
MALAT1	RNA5S12	rRNA
MALAT1	RNA5S13	rRNA
MALAT1	RNA5S14	rRNA
MALAT1	RNA5S16	rRNA
MALAT1	RNA5S17	rRNA
MALAT1	RNA5S2	rRNA
MALAT1	RNA5S4	rRNA
MALAT1	RNA5S6	rRNA
MALAT1	RNA5S7	rRNA
MALAT1	RNA5SP122	rRNA
MALAT1	RNA5SP141	rRNA
MALAT1	RNA5SP19	rRNA
MALAT1	RNA5SP225	rRNA
MALAT1	RNA5SP267	rRNA
MALAT1	RNA5SP283	rRNA
MALAT1	RNA5SP329	rRNA
MALAT1	RNA5SP336	rRNA
MALAT1	RNA5SP348	rRNA
MALAT1	RNA5SP350	rRNA
MALAT1	RNA5SP352	rRNA

MALAT1	RNA5SP358	rRNA
MALAT1	RNA5SP370	rRNA
MALAT1	RNA5SP382	rRNA
MALAT1	RNA5SP426	rRNA
MALAT1	RNA5SP429	rRNA
MALAT1	RNA5SP442	rRNA
MALAT1	RNA5SP48	rRNA
MALAT1	RNA5SP506	rRNA
MALAT1	RNA5SP74	rRNA
MALAT1	RNA5SP77	rRNA
MALAT1	RNA5SP86	rRNA
MALAT1	RNASE6	protein coding
MALAT1	RNF111	protein coding
MALAT1	RNF150	protein coding
MALAT1	RNF167	protein coding
MALAT1	RNF170	protein coding
MALAT1	RNF213	protein coding
MALAT1	RNF26	protein coding
MALAT1	RNF41	protein coding
MALAT1	RNU1-1	snRNA
MALAT1	RNU1-100P	snRNA
MALAT1	RNU1-106P	snRNA
MALAT1	RNU1-117P	snRNA
MALAT1	RNU1-11P	snRNA
MALAT1	RNU1-124P	snRNA
MALAT1	RNU1-131P	snRNA
MALAT1	RNU1-133P	snRNA
MALAT1	RNU1-135P	snRNA
MALAT1	RNU1-136P	snRNA
MALAT1	RNU1-138P	snRNA
MALAT1	RNU1-141P	snRNA
MALAT1	RNU1-148P	snRNA
MALAT1	RNU1-14P	snRNA
MALAT1	RNU1-150P	snRNA
MALAT1	RNU1-18P	snRNA
MALAT1	RNU1-19P	snRNA
MALAT1	RNU1-2	snRNA
MALAT1	RNU1-21P	snRNA
MALAT1	RNU1-27P	snRNA
MALAT1	RNU1-28P	snRNA
MALAT1	RNU1-3	snRNA
MALAT1	RNU1-32P	snRNA
MALAT1	RNU1-35P	snRNA
MALAT1	RNU1-39P	snRNA
MALAT1	RNU1-4	snRNA
MALAT1	RNU1-42P	snRNA
MALAT1	RNU1-43P	snRNA
MALAT1	RNU1-44P	snRNA
MALAT1	RNU1-49P	snRNA
MALAT1	RNU1-51P	snRNA

MALAT1	RNU1-56P	snRNA
MALAT1	RNU1-61P	snRNA
MALAT1	RNU1-67P	snRNA
MALAT1	RNU1-69P	snRNA
MALAT1	RNU1-72P	snRNA
MALAT1	RNU1-74P	snRNA
MALAT1	RNU1-75P	snRNA
MALAT1	RNU1-77P	snRNA
MALAT1	RNU1-7P	snRNA
MALAT1	RNU1-80P	snRNA
MALAT1	RNU1-82P	snRNA
MALAT1	RNU1-84P	snRNA
MALAT1	RNU1-87P	snRNA
MALAT1	RNU1-88P	snRNA
MALAT1	RNU1-89P	snRNA
MALAT1	RNU1-94P	snRNA
MALAT1	RNU2-23P	snRNA
MALAT1	RNU2-2P	snRNA
MALAT1	RNU2-32P	snRNA
MALAT1	RNU2-35P	snRNA
MALAT1	RNU2-38P	snRNA
MALAT1	RNU2-42P	snRNA
MALAT1	RNU2-46P	snRNA
MALAT1	RNU2-48P	snRNA
MALAT1	RNU2-5P	snRNA
MALAT1	RNU4-1	snRNA
MALAT1	RNU4-2	snRNA
MALAT1	RNU4-76P	snRNA
MALAT1	RNU5A-1	snRNA
MALAT1	RNU5A-8P	snRNA
MALAT1	RNU5B-1	snRNA
MALAT1	RNU5B-2P	snRNA
MALAT1	RNU5E-1	snRNA
MALAT1	RNU6-116P	snRNA
MALAT1	RNU6-1175P	snRNA
MALAT1	RNU6-1332P	snRNA
MALAT1	RNU6-140P	snRNA
MALAT1	RNU6-16P	snRNA
MALAT1	RNU6-18P	snRNA
MALAT1	RNU6-208P	snRNA
MALAT1	RNU6-25P	snRNA
MALAT1	RNU6-31P	snRNA
MALAT1	RNU6-346P	snRNA
MALAT1	RNU6-393P	snRNA
MALAT1	RNU6-42P	snRNA
MALAT1	RNU6-48P	snRNA
MALAT1	RNU6-4P	snRNA
MALAT1	RNU6-585P	snRNA
MALAT1	RNU6-5P	snRNA
MALAT1	RNU6-61P	snRNA

MALAT1	RNU6-628P	snRNA
MALAT1	RNU6-671P	snRNA
MALAT1	RNU6-672P	snRNA
MALAT1	RNU6-7	snRNA
MALAT1	RNU6-776P	snRNA
MALAT1	RNU6-893P	snRNA
MALAT1	RNU6-905P	snRNA
MALAT1	RNU6-908P	snRNA
MALAT1	RNU6-984P	snRNA
MALAT1	RNU6ATAC	snRNA
MALAT1	RNU6ATAC4P	snRNA
MALAT1	RNVU1-1	snRNA
MALAT1	<i>RNVU1-11</i>	snRNA
MALAT1	<i>RNVU1-14</i>	snRNA
MALAT1	RNVU1-15	snRNA
MALAT1	RNVU1-17	snRNA
MALAT1	<i>RNVU1-18</i>	snRNA
MALAT1	RNVU1-6	snRNA
MALAT1	RNVU1-7	snRNA
MALAT1	RNY1	misc RNA
MALAT1	RNY3	misc RNA
MALAT1	RNY3P15	misc RNA
MALAT1	RNY5	misc RNA
ΜΔΙΔΤ1	ROBO1	nrotein coding
	ROMO1	protein coding
	RPI 104P2	processed pseudogene
	RDI 10AD5	processed pseudogene
	RELIDARS RDI 10016	processed pseudogene
		processed pseudogene
		processed pseudogene
	RFL12 RPL12D22	
	RPL12P32	processed pseudogene
	RPL12P38	transcribed processed pseudogene
	RPL13	protein coding
	RPLI3A	protein coding
MALAT1	RPL13AP20	processed pseudogene
MALAT1	RPL13AP25	processed pseudogene
MALAI1	RPL13AP3	transcribed processed pseudogene
MALAT1	RPL13AP5	processed pseudogene
MALAT1	RPL13AP7	processed pseudogene
MALAT1	RPL13P12	processed pseudogene
MALAT1	RPL13P2	processed pseudogene
MALAT1	RPL15	protein coding
MALAT1	RPL17	protein coding
MALAT1	RPL18A	protein coding
MALAT1	RPL18AP3	processed pseudogene
MALAT1	RPL18AP8	processed pseudogene
MALAT1	RPL21P119	processed pseudogene
MALAT1	RPL22	protein coding
MALAT1	RPL22L1	protein coding

MALAT1	RPL23	protein coding
MALAT1	RPL24	protein coding
MALAT1	RPL28	protein coding
MALAT1	RPL29P23	processed pseudogene
MALAT1	RPL3	protein coding
MALAT1	RPL30	protein coding
MALAT1	RPL30P14	processed pseudogene
MALAT1	RPL30P4	processed pseudogene
MALAT1	RPL32	protein coding
MALAT1	RPL32P26	processed pseudogene
MALAT1	RPL32P28	processed pseudogene
MALAT1	RPL32P34	processed pseudogene
MALAT1	RPL35	protein coding
MALAT1	RPL36P16	processed pseudogene
MALAT1	RPL37A	protein coding
MALAT1	RPL37AP8	processed pseudogene
MALAT1	RPL37P2	processed pseudogene
MALAT1	RPI 39	protein coding
MALAT1	RPI.3P2	processed pseudogene
MALAT1	RPI 3P4	processed pseudogene
MALAT1	RPI 4	protein coding
MALAT1	RPI 41P5	processed pseudogene
MALAT1	RPI 4P2	processed pseudogene
MALAT1	RPI 4P4	processed pseudogene
MALAT1	RPI 4P5	processed pseudogene
MALAT1	RPI 5P14	processed pseudogene
ΜΔΙΔΤ1	RPI 5P30	processed pseudogene
ΜΔΙΔΤ1	RPI 5P9	processed pseudogene
ΜΔΙΔΤ1	RPI 7AP6	processed pseudogene
	RPI 7AP66	processed pseudogene
	RDI 71 1	protein coding
	RDI 9	protein coding
	NF LO DDI 9D2	processed pseudogene
	RPLOPZ RDLO	processed pseudogene
	RELY	
	RPL9P8	pseudogene protoin coding
		protein coding
	RPLPUP2	transcribed processed pseudogene
	KPLPUP6	processed pseudogene
	RPLP1	protein coding
MALAT1	RPLP2	protein coding
MALAT1	RPS11	protein coding
MALAT1	RPS11P5	processed pseudogene
MALAT1	RPS12P26	transcribed processed pseudogene
MALAT1	RPS12P28	processed pseudogene
MALAT1	RPS13	protein coding
MALAT1	RPS14P4	processed pseudogene
MALAT1	RPS15AP1	processed pseudogene
MALAT1	RPS15AP11	processed pseudogene
MALAT1	RPS16	protein coding
MALAT1	RPS18	protein coding

MALAT1	RPS18P9	processed pseudogene
MALAT1	RPS2	protein coding
MALAT1	RPS20	protein coding
MALAT1	RPS23	protein coding
MALAT1	RPS23P2	processed pseudogene
MALAT1	RPS23P8	processed pseudogene
MALAT1	RPS26	protein coding
MALAT1	RPS26P43	processed pseudogene
MALAT1	RPS2P7	processed pseudogene
MALAT1	RPS3	protein coding
MALAT1	RPS3AP37	processed pseudogene
MALAT1	RPS3AP6	processed pseudogene
MALAT1	RPS3P6	processed pseudogene
MALAT1	RPS4XP13	processed pseudogene
MALAT1	RPS4XP14	processed pseudogene
MALAT1	RPS4XP2	processed pseudogene
MALAT1	RPS4XP22	processed pseudogene
MALAT1	RPS6	protein coding
MALAT1	RPS6P22	processed pseudogene
MALAT1	RPS8P10	unprocessed pseudogene
MALAT1	RPS9	protein coding
MALAT1	RPSA	protein coding
MALAT1	RPSAP12	processed pseudogene
MALAT1	RPSAP54	processed pseudogene
MALAT1	RPUSD3	protein coding
MALAT1	RRP36	protein coding
MALAT1	RSC1A1	protein coding
MALAT1	RSPRY1	protein coding
MALAT1	RTF1	protein coding
MALAT1	RTN3	protein coding
MALAT1	RUFY3	protein coding
MALAT1	S1PR2	protein coding
MALAT1	SAP130	protein coding
MALAT1	SARS2	protein coding
MALAT1	SBF2	protein coding
MALAT1	SCAMP1	protein coding
MALAT1	SCARNA7	snoRNA
MALAT1	SCD	protein coding
MALAT1	SCDP1	processed pseudogene
MALAT1	SCNM1	protein coding
MALAT1	SCPEP1	protein coding
MALAT1	SDHAF2	protein coding
MALAT1	SDHB	protein coding
MALAT1	SDHC	protein coding
MALAT1	SEC11A	protein coding
MALAT1	SEC23A	protein coding
MALAT1	SEC61A1	protein coding
MALAT1	SELL	protein coding
MALAT1	SEMA3F	protein coding
MALAT1	SEMA6C	protein coding

MALAT1	SENP1	protein coding
MALAT1	SEPT10	protein coding
MALAT1	SEPT11	protein coding
MALAT1	SEPT2	protein coding
MALAT1	SEPT6	protein coding
MALAT1	SERF2	protein coding
MALAT1	SERINC2	protein coding
MALAT1	SERPINB6	protein coding
MALAT1	SETD2	protein coding
MALAT1	SETD5	protein coding
MALAT1	SF3A3	protein coding
MALAT1	SF3B4	protein coding
MALAT1	SFRP1	protein coding
MALAT1	SGCB	protein coding
MALAT1	SH3KBP1	protein coding
MALAT1	SHC1	protein coding
MALAT1	SHMT1	protein coding
MALAT1	SIGMAR1	protein coding
MALAT1	SIM2	protein coding
MALAT1	SIPATI 1	protein coding
ΜΔΙΔΤ1	SKIV2I	protein coding
ΜΔΙΔΤ1	SI AME6	protein coding
ΜΔΙΔΤ1	SLC1246	protein coding
	SIC12A7	protein coding
	SIC12A9	protein coding
	SIC12A8	protein coding
	SICIDAI	protein coding
	SLC17A5	protein coding
		protein coding
	SLC25A11	protein coding
	SLC25A15	protein coding
	SLC25A3	protein coding
	SLC25A44	protein coding
	SLC25A5P3	processed pseudogene
MALAT1	SLC25A6	protein coding
MALAT1	SLC29A1	protein coding
MALA I 1	SLC29A3	protein coding
MALAT1	SLC38A1	protein coding
MALAT1	SLC41A1	protein coding
MALAT1	SLC43A3	protein coding
MALAT1	SLC44A2	protein coding
MALAT1	SLC6A9	protein coding
MALAT1	SLCO4A1	protein coding
MALAT1	SLK	protein coding
MALAT1	SLMAP	protein coding
MALAT1	SMAD2	protein coding
MALAT1	SMARCA1	protein coding
MALAT1	SMARCA2	protein coding
MALAT1	SMARCD2	protein coding
MALAT1	SMARCE1	protein coding
MALAT1	SMDT1	protein coding

MALAT1	SMG1	protein coding
MALAT1	SMG1P1	transcribed unprocessed pseudogene
MALAT1	SMYD4	protein coding
MALAT1	SMYD5	protein coding
MALAT1	SNAI2	protein coding
MALAT1	SNCA	protein coding
MALAT1	SNHG14	processed transcript
MALAT1	SNHG8	lincRNA
MALAT1	SNORA40	snoRNA
MALAT1	SNORA63	snoRNA
MALAT1	SNORA66	snoRNA
MALAT1	SNORA73B	snoRNA
MALAT1	SNORA74A	snoRNA
MALAT1	SNORD118	snoRNA
MALAT1	SNORD13	snoRNA
MALAT1	SNORD14A	snoRNA
MALAT1	SNORD14C	snoRNA
MALAT1	SNORD14D	snoRNA
MALAT1	SNORD3A	snoRNA
MALAT1	SNORD3B-1	snoRNA
MALAT1	SNORD3B-2	snoRNA
MALAT1	SNORD3C	snoRNA
MALAT1	SNRNP25	protein coding
MALAT1	SNRPD2P1	processed pseudogene
MALAT1	SNRPN	protein coding
MALAT1	SNUL13	protein coding
ΜΔΙΔΤ1	SNURF	protein coding
ΜΔΙΔΤ1	SNX13	protein coding
ΜΔΙΔΤ1	SORD	protein coding
ΜΔΙΔΤ1	SOND SOXA	protein coding
ΜΔΙΔΤ1	SOXA	protein coding
	SDAG SD1	protein coding
	SP100	protein coding
	SP 100	protein coding
	ST C52	protein coding
	SPCINI SPCINI	protein coding
	SPGN	protein coding
	SAGN	protein coding
	5000	protein coding
	SRF72	protein coding
	SKKI	protein coding
	SRSF2	protein coding
	SRSFD	protein coding
	SRSF9	protein coding
MALAT1	SRSF9P1	processed pseudogene
	55K4	protein coding
	SIAII	protein coding
	5701	protein coding
MALAT1	STK38L	protein coding
MALAT1	STMN1	protein coding
MALAT1	STMP1	protein coding

MALAT1	STRAP	protein coding
MALAT1	STT3B	protein coding
MALAT1	STXBP3	protein coding
MALAT1	SUCLG1	protein coding
MALAT1	SULF2	protein coding
MALAT1	SUMO2	protein coding
MALAT1	SUPT16HP1	processed pseudogene
MALAT1	suz12	protein coding
MALAT1	SYMPK	protein coding
MALAT1	SYNRG	protein coding
MALAT1	SYT7	protein coding
MALAT1	SZRD1	protein coding
MALAT1	ТАВЗ	protein coding
MALAT1	ТАССЗ	protein coding
MALAT1	TAF1D	protein coding
MALAT1	TAGLN2	protein coding
MALAT1	TALDO1	protein coding
MALAT1	ΤΑΟΚ3	protein coding
MALAT1	TARS	protein coding
MALAT1	TAX1BP1	protein coding
MALAT1	TAX1BP3	protein coding
MALAT1	TBI 1XR1	protein coding
MALAT1	TCFA1P2	processed pseudogene
MALAT1	TCI 1A	protein coding
MALAT1	TCOF1	protein coding
MALAT1	TCP1	protein coding
MALAT1	ТСТА	protein coding
ΜΔΙΔΤ1	TEAD3	protein coding
ΜΔΙΔΤ1	TEX261	protein coding
ΜΔΙΔΤ1	ΤΕΔΡΔ	protein coding
ΜΔΙΔΤ1	TGIF1	protein coding
ΜΔΙΔΤ1	THOCE	protein coding
	Thr tRNA	+RNA
		protein coding
	TIGDS	protein coding
	TIMANATOR	protein coding
	TIMMADD	protein coding
		protein coding
	TID1	protein coding
		protein coding
		protein coding
	TLINI TNAOSE1	
	TM9SF1	protein coding
		protein coding
		processed pseudogene
		protein coaing
	IMEM123	protein coding
		protein coding
MALAI1		protein coding
MALAT1	TMEM199	protein coding

MALAT1	TMEM206	protein coding
MALAT1	TMEM245	protein coding
MALAT1	TMEM248	protein coding
MALAT1	TMEM259	protein coding
MALAT1	TMEM50A	protein coding
MALAT1	ТМРО	protein coding
MALAT1	TMSB4X	protein coding
MALAT1	TNFAIP3	protein coding
MALAT1	TNPO2	protein coding
MALAT1	TNS4	protein coding
MALAT1	TOB1	protein coding
MALAT1	TOB2	protein coding
MALAT1	TOGARAM1	protein coding
MALAT1	TOLLIP	protein coding
MALAT1	TOMM40	protein coding
MALAT1	TOMM7	protein coding
MALAT1	TOMM70	protein coding
MALAT1	ТОР2В	protein coding
MALAT1	TP53	protein coding
MALAT1	TP73-AS1	transcribed unitary pseudogene
MALAT1	TPI1	protein coding
MALAT1	ТРРР	protein coding
MALAT1	TPR	protein coding
MALAT1	TPT1	protein coding
MALAT1	TPT1P13	processed pseudogene
MALAT1	TPT1P2	processed pseudogene
MALAT1	TRAPPC1	protein coding
MALAT1	TRIP10	protein coding
ΜΔΙΔΤ1	TRIP13	protein coding
MALAT1	TRNP1	protein coding
MALAT1	TROVE2	protein coding
ΜΔΙΔΤ1	TRRAP	protein coding
ΜΔΙΔΤ1	75C22D3	protein coding
	TSSC4	protein coding
	TSTA3	protein coding
ΜΔΙΔΤ1	TTC17	protein coding
ΜΔΙΔΤ1	TTC3	protein coding
	TTC38	protein coding
	TTI	protein coding
		protein coding
	TURAIR	protein coding
	TUBA1C	protein coding
	TUBAAA	protein coding
		processed accudegene
	TUBAPZ	processed pseudogene
	TUBAP4	transcribed processed pseudogene
		protein coding
	IUBB4B	protein coding
		transcribed processed pseudogene
	I UHM	protein coding
IVIALA I 1	IXNDC5	protein coding

MALATI	TXNP5	processed pseudogene
MALAT1	TYSND1	protein coding
MALAT1	U2SURP	protein coding
MALAT1	UBA1	protein coding
MALAT1	UBA52	protein coding
MALAT1	UBAP2L	protein coding
MALAT1	UBB	protein coding
MALAT1	UBC	protein coding
MALAT1	UBD	protein coding
MALAT1	UBE2G1	protein coding
MALAT1	UBE2H	protein coding
MALAT1	UBE2J1	protein coding
MALAT1	UBE2L6	protein coding
MALAT1	UBE2M	protein coding
MALAT1	UBE2R2	protein coding
MALAT1	UBE2V1	protein coding
MALAT1	UBE3C	protein coding
MALAT1	UBF4A	protein coding
MALAT1	UBL3	protein coding
MALAT1	UBI 5	protein coding
MALAT1		protein coding
MALAT1	UCHI 1	protein coding
MALAT1	LIHRE1	protein coding
ΜΔΙΔΤ1	LINC5B	protein coding
ΜΔΙΔΤ1	LIPRT	protein coding
	UOCRES1P1	processed pseudogene
		processed pseudogene
	UOCRH	protein coding
MALATI MALATI	UQCRH	protein coding
MALATI MALATI MALATI	UQCRH URB2 UTP14A	protein coding protein coding
MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4	protein coding protein coding protein coding
MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6	protein coding protein coding protein coding protein coding
MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6	protein coding protein coding protein coding protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN	protein coding protein coding protein coding protein coding protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3	protein coding protein coding protein coding protein coding protein coding protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA	protein coding protein coding protein coding protein coding protein coding protein coding protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1	protein coding protein coding protein coding protein coding protein coding protein coding protein coding protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA	protein coding protein coding protein coding protein coding protein coding protein coding protein coding protein coding protein coding processed pseudogene protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25 VPS25 VPS39	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25 VPS25 VPS39 VTI1B	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25 VPS25 VPS39 VTI1B VTRNA1-1	protein coding protein coding misc RNA
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS13C VPS25 VPS39 VTI1B VTRNA1-1 WAC	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25 VPS25 VPS25 VPS25 VPS39 VTI1B VTRNA1-1 WAC WARS	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25 VPS25 VPS39 VTI1B VTRNA1-1 WAC WARS WASF2	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25 VPS25 VPS39 VTI1B VTRNA1-1 WAC WARS WASF2 WASHC2A	protein coding protein coding
MALATI MALATI	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25 VPS25 VPS25 VPS39 VTI1B VTRNA1-1 WAC WARS WASF2 WASHC2A WASHC5	protein coding protein coding
MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALATI MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1 MALAT1	UQCRH URB2 UTP14A UTP4 UTP6 UTRN VAMP3 VAPA VDAC1P1 VEGFA VEGFB VOPP1 VPS13C VPS25 VPS39 VTI1B VTRNA1-1 WAC WARS WASF2 WASHC2A WASHC5 WBP11	protein coding protein coding

MALAT1	WDR27	protein coding
MALAT1	WDR73	protein coding
MALAT1	WDR74	protein coding
MALAT1	WDTC1	protein coding
MALAT1	WIZ	protein coding
MALAT1	WLS	protein coding
MALAT1	XIST	lincRNA
MALAT1	XRCC6	protein coding
MALAT1	XRCC6P2	processed pseudogene
MALAT1	YBX2	protein coding
MALAT1	YJEFN3	protein coding
MALAT1	YWHAB	protein coding
MALAT1	YWHAE	protein coding
MALAT1	YWHAEP5	processed pseudogene
MALAT1	YWHAQ	protein coding
MALAT1	YWHAZ	protein coding
MALAT1	ZBED1	protein coding
MALAT1	ZBTB41	protein coding
MALAT1	ZEB1	protein coding
MALAT1	ZEB2	protein coding
MALAT1	ZER1	protein coding
MALAT1	ZFAS1	antisense
MALAT1	ZFP36L1	protein coding
MALAT1	ZFP91	protein coding
MALAT1	ZFYVE27	protein coding
MALAT1	ZIK1	protein coding
MALAT1	ZKSCAN1	protein coding
MALAT1	ZMIZ1	protein coding
MALAT1	ZNF142	protein coding
MALAT1	ZNF160	protein coding
MALAT1	ZNF174	protein coding
MALAT1	ZNF175	protein coding
MALAT1	ZNF202	protein coding
MALAT1	ZNF207	protein coding
MALAT1	ZNF224	protein coding
MALAT1	ZNF232	protein coding
MALAT1	ZNF277	protein coding
MALAT1	ZNF282	protein coding
MALAT1	ZNF354B	protein coding
MALAT1	ZNF500	protein coding
MALAT1	ZNF518A	protein coding
MALAT1	ZNF646	protein coding
MALAT1	ZNF678	protein coding
MALAT1	ZZEF1	protein coding
MEG3	ABCB1	protein coding
MEG3	ABCC1	protein coding
MEG3	ABCG2	protein coding
MEG3	AKAP11	protein coding
MEG3	ATG3	protein coding
MEG3	BCL2	protein coding

MEG3	BMP4	protein coding		
MEG3	CASP3	protein coding		
MEG3	CASP8	protein coding		
MEG3	CASP9	protein coding		
MEG3	EZH2	protein coding		
MEG3	IDH1	protein coding		
MEG3	KDR	protein coding		
MEG3	LC3-II	protein coding		
MEG3	MDM2	protein coding		
MEG3	MIR127	miRNA		
MEG3	MIR140	miRNA		
MEG3	MIR181A1	miRNA		
MEG3	MIR181B1	miRNA		
MEG3	MIR183	miRNA		
MEG3	MIR21	miRNA		
MEG3	MIR214	miRNA		
MEG3	MIR421	miRNA		
MEG3	MIR664A	miRNA		
MEG3	miRNA-9	miRNA		
MEG3	Notch1	protein coding		
MEG3	osteocalcin	protein coding		
MEG3	RAC2	protein coding		
MEG3	RUNX2	protein coding		
MEG3	SP7	protein coding		
MEG3	TP53	protein coding		
MEG3	UBE2B	protein coding		
MIAT	ATP5F1BP1	lincRNA		
MIAT	ATP5MC2P1	lincRNA		
MIAT	BEX3	lincRNA		
MIAT	CAPRIN1	lincRNA		
MIAT	CDC16	protein coding		
MIAT	CEP170	lincRNA		
MIAT	CFL 1	lincRNA		
MIAT	COPS5	lincRNA		
MIAT	CORO1C	lincRNA		
MIAT	CRFB3	protein coding		
MIAT	CSRP2	protein coding		
MIAT	DIG3	protein coding		
MIAT	FFF1A1P5	processed pseudogene		
ΜΙΔΤ	FRP29	nrotein coding		
ΜΙΔΤ	FZR	lincRNA		
MIAT	FASTKD5	lincRNA		
ΜΙΔΤ	FTI	protein coding		
ΜΙΔΤ	GDI2	protein coding		
ΜΙΔΤ	Glu tRNA	tRNΔ		
ΜΙΔΤ		lincRNA		
ΜΙΔΤ	Ηςροηλασο	lincRNA		
	HIIME1	nrotein coding		
	ΙΟΨΕΙ	protein couling		
	11VG00D 1CT1	protein couling		
IVIIAT	1511	protein couling		

MIAT	KIF4A	lincRNA
MIAT	LINGO1	protein coding
MIAT	LSM12	lincRNA
MIAT	LSM14B	protein coding
MIAT	MAZ	lincRNA
MIAT	MEGF8	lincRNA
MIAT	MIATNB	lincRNA
MIAT	MLF2	lincRNA
MIAT	MTCH1	protein coding
MIAT	MTCO1P53	lincRNA
MIAT	MTCO3P12	lincRNA
MIAT	NONO	lincRNA
MIAT	PFN1	lincRNA
MIAT	PGAM1P5	transcribed processed pseudogene
MIAT	PLAGL2	protein coding
MIAT	POU5F1P3	processed pseudogene
MIAT	PPP1R42	lincRNA
MIAT	PRODH	lincRNA
MIAT	PRR5	lincRNA
MIAT	PRRC2A	lincRNA
MIAT	PTMS	protein coding
MIAT	PYCR2	protein coding
MIAT	<i>RF00019</i>	misc RNA
MIAT	RHEB	protein coding
MIAT	RNA18N5	lincRNA
MIAT	RNA1855	lincRNA
MIAT	RPL13P2	processed pseudogene
MIAT	RPL3	protein coding
MIAT	RPS3	lincRNA
MIAT	RPS4XP11	processed pseudogene
MIAT	RPSA	lincRNA
MIAT	SAP18	protein coding
MIAT	SART3	protein coding
MIAT	SIGMAR1	lincRNA
MIAT	STAU1	protein coding
MIAT	TINF2	lincRNA
MIAT	TPI1P2	lincRNA
MIAT	TUBA1B	lincRNA
MIAT	UBE2V1	protein coding
MIAT	YBX1	lincRNA
MIAT	YWHAE	lincRNA

Supplementary table 4. Significant KEGG pathways regulated by the target genes of the 5 IncRNAs.

Pathway Source	Pathway Name	p-value	q-value (FDR: BH-method)
KEGG	Ribosome	6,37E-25	1,87E-22
KEGG	MicroRNAs in cancer	9,92E-22	1,45E-19
KEGG	Proteoglycans in cancer	1,45E-20	1,41E-18
KEGG	Focal adhesion	2,14E-17	1,57E-15
KEGG	Cellular senescence	3,33E-16	1,95E-14
KEGG	Epstein-Barr virus infection	1,01E-15	4,91E-14
KEGG	Pathways in cancer	2,57E-15	1,07E-13
KEGG	Parkinson disease	9,61E-15	3,52E-13
KEGG	Hepatitis B	1,50E-14	4,89E-13
KEGG	Prostate cancer	1,10E-13	2,93E-12
KEGG	PI3K-Akt signaling	1,01E-13	2,97E-12
KEGG	Fluid shear stress and atherosclerosis	1,55E-13	3,79E-12
KEGG	Adherens junction	2,94E-13	6,63E-12
KEGG	Human cytomegalovirus infection	3,49E-13	7,31E-12
KEGG	Tight junction	4,83E-13	9,43E-12
KEGG	Kaposi sarcoma-associated herpesvirus infection	1,56E-12	2,86E-11
KEGG	Cell cycle	1,73E-12	2,97E-11
KEGG	Bladder cancer	2,91E-12	4,49E-11
KEGG	Human T-cell leukemia virus 1 infection	2,83E-12	4,60E-11
KEGG	Hepatitis C	4,54E-12	6,65E-11
KEGG	AGE-RAGE signaling pathway in diabetic complications	9,75E-12	1,36E-10
KEGG	Colorectal cancer	1,84E-11	2,45E-10
KEGG	Leukocyte transendothelial migration	2,95E-11	3,76E-10
KEGG	Human papillomavirus infection	4,73E-11	5,77E-10
KEGG	Pancreatic cancer	5,40E-11	6,33E-10
KEGG	Hippo signaling	8,28E-11	9,33E-10
KEGG	FoxO signaling	1,88E-10	2,04E-09
KEGG	Viral myocarditis	1,98E-10	2,07E-09
KEGG	Pathogenic Escherichia coli infection	6,80E-10	6,64E-09

KEGG	Small cell lung cancer	6,72E-10	6,79E-09
KEGG	Thermogenesis	7,49E-10	7,08E-09
KEGG	Hepatocellular carcinoma	7,76E-10	7,10E-09
KEGG	Human immunodeficiency virus 1 infection	1,01E-09	9,00E-09
KEGG	Viral carcinogenesis	1,24E-09	1,07E-08
KEGG	Herpes simplex infection	2,38E-09	1,99E-08
KEGG	Protein processing in endoplasmic reticulum	2,52E-09	2,05E-08
KEGG	HIF-1 signaling	2,93E-09	2,32E-08
KEGG	Sphingolipid signaling	3,01E-09	2,32E-08
KEGG	Chronic myeloid leukemia	3,66E-09	2,75E-08
KEGG	Alzheimer disease	5,90E-09	4,32E-08
KEGG	MAPK signaling	6,59E-09	4,71E-08
KEGG	Rap1 signaling	8,99E-09	6,27E-08
KEGG	Fc gamma R-mediated phagocytosis	1,28E-08	8,51E-08
KEGG	Apoptosis	1,25E-08	8,51E-08
KEGG	Endometrial cancer	1,36E-08	8,88E-08
KEGG	Gastric cancer	1,71E-08	1,09E-07
KEGG	Neurotrophin signaling	1,79E-08	1,11E-07
KEGG	ErbB signaling	2,17E-08	1,33E-07
KEGG	Oxidative phosphorylation	3,55E-08	2,12E-07
KEGG	Thyroid hormone signaling	5,22E-08	3,06E-07
KEGG	p53 signaling	6,10E-08	3,50E-07
KEGG	Regulation of actin cytoskeleton	6,47E-08	3,65E-07
KEGG	Autophagy - animal	7,42E-08	4,10E-07
KEGG	Huntington disease	9,45E-08	4,94E-07
KEGG	TNF signaling	9,31E-08	4,96E-07
KEGG	Fc epsilon RI signaling	1,00E-07	4,99E-07
KEGG	Influenza A	9,26E-08	5,03E-07
KEGG	VEGF signaling	9,99E-08	5,05E-07
KEGG	Relaxin signaling	9,99E-08	5,13E-07
KEGG	Thyroid cancer	1,25E-07	6,10E-07
KEGG	Glioma	2,98E-07	1,43E-06
KEGG	AMPK signaling	4,34E-07	2,05E-06

KEGG	Bacterial invasion of epithelial cells	5,44E-07	2,53E-06
KEGG	Cell adhesion molecules (CAMs)	5,92E-07	2,71E-06
KEGG	Non-small cell lung cancer	6,22E-07	2,76E-06
KEGG	IL-17 signaling	6,21E-07	2,80E-06
KEGG	Toxoplasmosis	6,75E-07	2,95E-06
KEGG	Renal cell carcinoma	9,36E-07	4,04E-06
KEGG	Insulin signaling	1,07E-06	4,53E-06
KEGG	Ras signaling	1,29E-06	5,42E-06
KEGG	Choline metabolism in cancer	1,39E-06	5,73E-06
KEGG	Melanoma	2,03E-06	8,24E-06
KEGG	Spliceosome	2,18E-06	8,77E-06
KEGG	Oocyte meiosis	2,36E-06	9,33E-06
KEGG	Chagas disease (American trypanosomiasis)	2,54E-06	9,91E-06
KEGG	Central carbon metabolism in cancer	2,92E-06	1,13E-05
KEGG	Mitophagy - animal	2,92E-06	1,13E-05
KEGG	Shigellosis	2,92E-06	1,13E-05
KEGG	C-type lectin receptor signaling	3,39E-06	1,26E-05
KEGG	Estrogen signaling	3,57E-06	1,31E-05
KEGG	Non-alcoholic fatty liver disease (NAFLD)	4,48E-06	1,60E-05
KEGG	Salmonella infection	4,48E-06	1,62E-05
KEGG	Insulin resistance	5,15E-06	1,82E-05
KEGG	Gap junction	6,11E-06	2,13E-05
KEGG	Prolactin signaling	7,34E-06	2,53E-05
KEGG	mRNA surveillance	9,56E-06	3,26E-05
KEGG	GnRH signaling	1,10E-05	3,72E-05
KEGG	Endocytosis	1,14E-05	3,80E-05
KEGG	Breast cancer	1,24E-05	4,08E-05
KEGG	Toll-like receptor signaling	1,39E-05	4,52E-05
KEGG	TGF-beta signaling	1,49E-05	4,80E-05
KEGG	Phagosome	1,89E-05	6,00E-05
KEGG	RNA transport	2,59E-05	8,07E-05
KEGG	Measles	2,57E-05	8,09E-05
KEGG	Vibrio cholerae infection	2,73E-05	8,43E-05

KEGG	Phospholipase D signaling	3,02E-05	9,22E-05
KEGG	Transcriptional misregulation in cancer	4,39E-05	1,33E-04
KEGG	Arrhythmogenic right ventricular cardiomyopathy (ARVC)	4,86E-05	1,45E-04
KEGG	cAMP signaling	5,41E-05	1,60E-04
KEGG	Type II diabetes mellitus	7,05E-05	2,07E-04
KEGG	Progesterone-mediated oocyte maturation	7,55E-05	2,19E-04
KEGG	Cushing syndrome	7,97E-05	2,29E-04
KEGG	NOD-like receptor signaling	9,33E-05	2,65E-04
KEGG	Antigen processing and presentation	1,00E-04	2,82E-04
KEGG	Ribosome biogenesis in eukaryotes	1,31E-04	3,66E-04
KEGG	Wnt signaling	1,39E-04	3,85E-04
KEGG	Apoptosis - multiple species	1,67E-04	4,57E-04
KEGG	Chemokine signaling	1,84E-04	5,00E-04
KEGG	Natural killer cell mediated cytotoxicity	2,25E-04	6,04E-04
KEGG	Th17 cell differentiation	2,62E-04	6,99E-04
KEGG	Pertussis	3,51E-04	9,28E-04
KEGG	Platelet activation	3,60E-04	9,41E-04
KEGG	Necroptosis	3,85E-04	9,99E-04
KEGG	Axon guidance	4,21E-04	1,08E-03
KEGG	Epithelial cell signaling in Helicobacter pylori infection	4,96E-04	1,26E-03
KEGG	Glycolysis / Gluconeogenesis	4,96E-04	1,26E-03
KEGG	RNA degradation	5,06E-04	1,27E-03
KEGG	Osteoclast differentiation	5,67E-04	1,40E-03
KEGG	Tuberculosis	5,65E-04	1,40E-03
KEGG	N-Glycan biosynthesis	6,15E-04	1,49E-03
KEGG	Th1 and Th2 cell differentiation	6,13E-04	1,50E-03
KEGG	Parathyroid hormone synthesis, secretion and action	7,68E-04	1,84E-03
KEGG	Ubiquitin mediated proteolysis	1,30E-03	3,09E-03
KEGG	Cysteine and methionine metabolism	2,04E-03	4,83E-03
KEGG	B cell receptor signaling	2,34E-03	5,49E-03
KEGG	Vascular smooth muscle contraction	2,57E-03	5,97E-03
KEGG	Retrograde endocannabinoid signaling	2,89E-03	6,66E-03
KEGG	Non-homologous end-joining	3,05E-03	6,98E-03

KEGG	Citrate cycle (TCA cycle)	3,19E-03	7,24E-03
KEGG	Pentose phosphate	3,19E-03	7,24E-03
KEGG	mTOR signaling	3,31E-03	7,39E-03
KEGG	Oxytocin signaling	3,53E-03	7,84E-03
KEGG	Signaling pathways regulating pluripotency of stem cells	3,66E-03	8,06E-03
KEGG	T cell receptor signaling	4,02E-03	8,79E-03
KEGG	Rheumatoid arthritis	4,60E-03	9,99E-03
KEGG	Protein export	4,82E-03	1,04E-02
KEGG	Acute myeloid leukemia	5,23E-03	1,11E-02
KEGG	Cardiac muscle contraction	5,20E-03	1,11E-02
KEGG	Dopaminergic synapse	5,69E-03	1,17E-02
KEGG	Legionellosis	5,59E-03	1,18E-02
KEGG	ABC transporters	5,67E-03	1,19E-02
KEGG	Aminoacyl-tRNA biosynthesis	5,67E-03	1,19E-02
KEGG	Proteasome	6,44E-03	1,32E-02
KEGG	Prion diseases	7,06E-03	1,43E-02
KEGG	Adipocytokine signaling	7,01E-03	1,43E-02
KEGG	Apelin signaling	7,88E-03	1,58E-02
KEGG	Long-term depression	8,55E-03	1,70E-02
KEGG	Allograft rejection	9,30E-03	1,84E-02
KEGG	Leishmaniasis	1,01E-02	1,98E-02
KEGG	Inositol phosphate metabolism	1,10E-02	2,15E-02
KEGG	Hippo signaling pathway - multiple species	1,15E-02	2,23E-02
KEGG	Adrenergic signaling in cardiomyocytes	1,27E-02	2,45E-02
KEGG	Longevity regulating	1,29E-02	2,48E-02
KEGG	Graft-versus-host disease	1,52E-02	2,89E-02
KEGG	cGMP-PKG signaling	1,54E-02	2,90E-02
KEGG	Type I diabetes mellitus	1,90E-02	3,56E-02
KEGG	Amoebiasis	1,97E-02	3,66E-02
KEGG	Lysosome	1,97E-02	3,67E-02
KEGG	ECM-receptor interaction	2,06E-02	3,79E-02
KEGG	Inflammatory mediator regulation of TRP channels	2,40E-02	4,39E-02
KEGG	Bile secretion	2,45E-02	4,45E-02

KEGG	Proximal tubule bicarbonate reclamation	2,54E-02	4,60E-02
KEGG	Lysine degradation	2,67E-02	4,79E-02
KEGG	Vibrio cholerae infection	2,73E-02	4,26E-02
KEGG	Phospholipase D signaling	3,02E-02	4,22E-02
KEGG	Transcriptional misregulation in cancer	4,39E-02	4,33E-02
KEGG	Arrhythmogenic right ventricular cardiomyopathy (ARVC)	4,86E-02	4,93E-02
KEGG	cAMP signaling	4,41E-02	4,92E-02

CONCLUSÕES GERAIS

O envolvimento dos fatores epigenéticos no desenvolvimento de patologias vem sendo muito investigado nos últimos anos. Dentre esses fatores epigenéticos, temos os miRNAs e lncRNAs, que são RNAs não-codificantes de proteínas que exercem funções relacionadas à regulação da expressão gênica e vêm sendo sugeridos como potenciais biomarcadores para diagnósticos de diversas patologias, incluindo o DM e a DRD. Neste contexto, buscando entender o envolvimento dos miRNAs e lncRNAs no DM e DRD, bem como seu possível uso como potenciais biomarcadores dessas patologias, realizamos cinco estudos sobre este tema.

O primeiro artigo identificou 79 miRNAs desregulados entre pacientes com DRD e pacientes sem esta complicação. Visto que classificamos os pacientes com DRD de acordo com o declínio da TFGe (progressores e não-progressores), destacamos que identificamos um grupo específico de 15 miRNAs que difere entre indivíduos progressores e não-progressores para declínio rápido na TFGe, possibilitando assim, um melhor entendimento dos fatores associados à progressão da DRD em pacientes com DM1. Dentre esses miRNAs, validamos o hsa-miR-30a-5p, confirmando que sua expressão está aumentada nos pacientes com DM1 e DRD progressores em comparação aos demais grupos. Ainda, por meio da comparação dos nossos dados com um estudo público de transcriptômica, validamos mais 3 miRNAs diferencialmente expressos entre progressores e não-progressores em comparação ao grupo sem DRD (TFGe normal). Análises de bioinformática demonstraram que esses miRNAs regulam genes envolvidos na patogênese da DRD, tais como apoptose, insulina, TGF-β e estresse oxidativo.

Num estudo de revisão sistemática sobre lncRNAs envolvidos no DM, identificamos 6 lncRNAs diferencialmente expressos em pacientes com DM em comparação ao grupo controle (*ANRIL*, *HOTAIR*, *MALAT1*, *MIAT*, *KCNQ10T1* e *MEG3*). Nossas análises de bioinformática demonstraram que esses lncRNAs estão envolvidos em vias relacionadas à patogênese do DM, tais como PI3K/Akt, MAPK, apoptose, AGE/RAGE e FoxO. Através deste estudo também destacamos a falta de dados sobre o papel e expressão de lncRNAs em pacientes com DM1 visto que a maioria dos estudos incluídos na presente revisão foram feitos em pacientes com DM2.

Assim, para investigar o papel dos lncRNAs em pacientes com DM1, realizamos um estudo de caso-controle (artigo 3) e identificamos que as expressões dos lncRNAs *MALAT1*, *MEG3* e *TUG1* estão desreguladas em pacientes com <5 anos de DM1. Também demonstramos que os níveis de expressão de *MALAT1* e *TUG1* foram negativamente correlacionados com o tempo de duração do DM1 e os níveis de *MEG3* e *TUG1* foram positivamente correlacionados com os valores de HbA1c, indicando assim o envolvimento dos lncRNAs *MALAT1*, *MEG3* e *TUG1* no desenvolvimento do DM1.

No que se refere à expressão de lncRNAs em pacientes com DRD, nosso quarto estudo identificou um aumento nos níveis de expressão do lncRNA *MALAT1* na urina de pacientes com DRD em comparação ao grupo com DM1 sem DRD. Análises de bioinformática demonstraram que esse lncRNA está envolvido em vias relacionadas ao DM e a DRD, incluindo: glicólise/gliconeogênese, PI3K-Akt, MAPK e a via do DM1.

Por fim, realizamos mais um estudo de caso-controle onde avaliamos a associação dos polimorfismos rs3200401/*MALAT1*, rs1894720/*MIAT*, rs3931283/*PVT1*, rs11993333/*PVT1*, rs5749201/*TUG1* e rs7158663/*MEG3* com a DRD. Neste estudo, demonstramos que o genótipo G/G do polimorfismo rs3931283/*PVT1* estava associado com risco para DRD e com maiores níveis de EUA nos pacientes com DM2. Além disso, o polimorfismo rs7158663/*MEG3* também parece estar envolvido com a DRD, uma vez que pacientes com o genótipo G/G tinham níveis diminuídos de creatinina e aumentados de TFGe em comparação aos portadores do alelo A.

Assim, a presente tese identificou miRNAs associados com a DRD e gerou uma lista de novos miRNAs que são potenciais alvos de estudos futuros que visem identificar o papel específico de cada um deles no desenvolvimento e progressão da DRD. Além disso, lncRNAs foram identificados no contexto do DM e da DRD, demonstrando o envolvimento dessa classe de RNAs não-codificantes de proteínas na patogênese dessas doenças.

Como perspectivas futuras, pretendemos validar mais miRNAs identificados no estudo do miRNoma urinário e posteriormente avaliar a expressão dos miRNAs validados em amostras de exossomos urinários de pacientes com DM1 e em amostras de pacientes com DM2, buscando assim identificar um perfil de expressão de miRNAs que possa ser usado como biomarcador das fases iniciais da DRD ou da sua progressão para a DRCT.

Além disso, pretendemos realizar uma análise de dados transcriptômicos de pacientes com DM com e sem DRD para melhor compreender mecanismos moleculares associados com esta importante complicação do DM. Nesta análise, pretendemos investigar as expressões de mRNAs, miRNAs e lncRNAs e assim, integrar conjuntos de dados distintos, revelando mudanças globais nos padrões de expressão gênica associados à DRD. Por meio de uma abordagem de bioinformática, também investigaremos as potenciais interações e processos biológicos associados aos mRNAs, miRNAs e lncRNAs encontrados diferencialmente expressos na nossa análise dos dados de *microarray* disponíveis em bancos de dados públicos.
OUTRAS PRODUÇÕES NO PERÍODO

Artigos produzidos durante o período do doutorado como primeira autora, ou dividindo a

primeira autoria.

Archives of Endocrinology and Metabolism

Decision Letter (AEM-2022-0100.R1)

- From: bschaan@hcpa.edu.br
 - To: dcmoreira@hcpa.edu.br

CC:

Subject: Archives of Endocrinology and Metabolism - Decision on Manuscript ID AEM-2022-0100.R1

Body: 06-Dec-2022

Dear Dr. Crispim:

It is a pleasure to accept your manuscript entitled "Polymorphisms in TIE2 and ANGPT-1 genes are associated with protection to diabetic retinopathy in a Brazilian population" in its current form for publication in the Archives of Endocrinology and Metabolism. The comments of the reviewer(s) who reviewed your manuscript are included at the foot of this letter.

Thank you for your fine contribution. On behalf of the Editors of the Archives of Endocrinology and Metabolism, we look forward to your continued contributions to the Journal.

Please provide an editorial certificate of English language as required in the "Instructions for Authors", which is mandatory for publication in the AE&M.

Sincerely, Prof. Beatriz Schaan Editor-in-Chief, Archives of Endocrinology and Metabolism bschaan@hcpa.edu.br

Associate Editor Comments to the Author: (There are no comments.)

Entire Scoresheet: Date Sent: 06-Dec-2022

🗵 Close Window

Polymorphisms in *TIE2* and *ANGPT-1* genes are associated with protection to diabetic retinopathy in a Brazilian population

Cristine Dieter^{a,b}, Natália Emerim Lemos^{a,b}, Nathalia Rodrigues de Faria Corrêa^a, Taís Silveira Assmann^{a,b}, Felipe Mateus Pellenz^{a,b}, Luís Henrique Canani^{a,b}, Letícia de Almeida Brondani^a, Andrea Carla Bauer^{a,b,c}, Daisy Crispim^{1a,b*}.

a – Endocrine Division, Hospital de Clínicas de Porto Alegre. Porto Alegre, Rio Grande
 do Sul, Brazil.

b – Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of
 Internal Medicine, Postgraduate Program in Medical Sciences: Endocrinology.

c - Nephrology Division, Hospital de Clínicas de Porto Alegre. Porto Alegre, Rio Grande do Sul, Brazil.

* Correspondence to: Dr. Daisy Crispim. Rua Ramiro Barcelos 2350; prédio 12; 4° andar. Zip Code 90035-003. Porto Alegre, Rio Grande do Sul, Brazil. E-mail: dcmoreira@hcpa.edu.br

Abbreviated title: *TIE2* and *ANGPT-1* genes and DR

Keywords: *ANGPT-1* gene; *TIE2* gene; polymorphism, type 2 diabetes mellitus; diabetic retinopathy.

Word count: 3126

Original Article

Article Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19

Cristine Dieter ^{1,2}, Leticia de Almeida Brondani ^{1,3}, Natália Emerim Lemos ¹, Ariell Freires Schaeffer ², Caroline Zanotto ¹, Denise Taurino Ramos ¹, Eliandra Girardi ¹, Felipe Mateus Pellenz ^{1,2}, Joiza Lins Camargo ^{2,3,4}, Karla Suzana Moresco ⁵, Lucas Lima da Silva ¹, Mariana Rauback Aubin ¹, Mayara Souza de Oliveira ^{1,2}, Tatiana Helena Rech ^{2,4}, Luís Henrique Canani ^{1,2,4}, Fernando Gerchman ^{1,2,4}, Cristiane Bauermann Leitão ^{1,2,4} and Daisy Crispim ^{1,2,4,*}

- ¹ Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- ² Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- ³ Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- ⁴ Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- ⁵ Campus Realeza, Universidade Federal da Fronteira Sul, Realeza 85770-000, PR, Brazil
- * Correspondence: dcmoreira@hcpa.edu.br

Abstract: Although advanced age, male sex, and some comorbidities impact the clinical course of COVID-19, these factors only partially explain the inter-individual variability in disease severity. Some studies have shown that genetic polymorphisms contribute to COVID-19 severity; however, the results are inconclusive. Thus, we investigated the association between polymorphisms in ACE1, ACE2, DPP9, IFIH1, IFNAR2, IFNL4, TLR3, TMPRSS2, and TYK2 and the clinical course of COVID-19. A total of 694 patients with COVID-19 were categorized as: (1) ward inpatients (moderate symptoms) or patients admitted at the intensive care unit (ICU; severe symptoms); and (2) survivors or non-survivors. In females, the rs1990760/IFIH1 T/T genotype was associated with risk of ICU admission and death. Moreover, the rs1799752/ACE1 Ins and rs12329760/TMPRSS2 T alleles were associated with risk of ICU admission. In non-white patients, the rs2236757/IFNAR2 A/A genotype was associated with risk of ICU admission, while the rs1799752/ACE1 Ins/Ins genotype, rs2236757/IFNAR2 A/A genotype, and rs12329760/TMPRSS2 T allele were associated with risk of death. Moreover, some of the analyzed polymorphisms interact in the risk of worse COVID-19 outcomes. In conclusion, this study shows an association of rs1799752/ACE1, rs1990760/IFIH1, rs2236757/IFNAR2, rs12329760/TMPRSS2, and rs2304256/TYK2 polymorphisms with worse COVID-19 outcomes, especially among female and non-white patients.

Keywords: polymorphisms; SARS-CoV-2; COVID-19; ACE1; IFIH1; IFNAR2; TMPRSS2; TYK2

1. Introduction

Coronavirus Disease 2019 (COVID-19) is a respiratory and systemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. According to the World Health Organization, 626 million people around the world have been infected by this virus, and 6,564,556 have died due to COVID-19 (https://covid19.who.int/ accessed on 25 October 2022). This disease is characterized by a variety of clinical manifestations ranging from asymptomatic to severe symptoms, which can progress to pneumonia, respiratory failure, multiple organ dysfunction, and death [2].

Although advanced age, male sex, obesity, diabetes mellitus (DM), and other comorbidities are associated with risk for the severe forms of the disease, these factors alone do not completely explain inter-individual variability in COVID-19 severity [2,3]. Therefore,

Citation: Dieter, C.; de Almeida Brondani, L.; Lemos, N.E.; Schaeffer, A.F.; Zanotto, C.; Ramos, D.T.; Girardi, E.; Pellenz, F.M.; Camargo, J.L.; Moresco, K.S.; et al. Polymorphisms in *ACE1*, *TMPRSS2*, *IFIH1*, *IFNAR2*, and *TYK2* Genes Are Associated with Worse Clinical Outcomes in COVID-19. *Genes* **2023**, 14, 29. https://doi.org/10.3390/ genes14010029

Received: 28 October 2022 Revised: 29 November 2022 Accepted: 10 December 2022 Published: 22 December 2022

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Citation: Dieter C, Brondani LdA, Leitão CB, Gerchman F, Lemos NE, Crispim D (2022) Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS ONE 17(7): e0270627. https://doi.org/10.1371/journal. pone.0270627

Editor: Giuseppe Novelli, Universita degli Studi di Roma Tor Vergata, ITALY

Received: March 8, 2022

Accepted: June 15, 2022

Published: July 6, 2022

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0270627

Copyright: © 2022 Dieter et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its <u>Supporting</u> Information files.

RESEARCH ARTICLE

Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and metaanalysis

Cristine Dieter^{1,2®}, Letícia de Almeida Brondani^{1,2®}, Cristiane Bauermann Leitão^{1,2}, Fernando Gerchman^{1,2}, Natália Emerim Lemos^{1,2}, Daisy Crispim^{1,2}*

1 Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil, 2 Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

• These authors contributed equally to this work.

* dcmoreira@hcpa.edu.br

Abstract

Although advanced age and presence of comorbidities significantly impact the variation observed in the clinical symptoms of COVID-19, it has been suggested that genetic variants may also be involved in the disease. Thus, the aim of this study was to perform a systematic review with meta-analysis of the literature to identify genetic polymorphisms that are likely to contribute to COVID-19 pathogenesis. Pubmed, Embase and GWAS Catalog repositories were systematically searched to retrieve articles that investigated associations between polymorphisms and COVID-19. For polymorphisms analyzed in 3 or more studies, pooled OR with 95% CI were calculated using random or fixed effect models in the Stata Software. Sixty-four eligible articles were included in this review. In total, 8 polymorphisms in 7 candidate genes and 74 alleles of the HLA loci were analyzed in 3 or more studies. The HLA-A*30 and CCR5 rs333Del alleles were associated with protection against COVID-19 infection, while the APOE rs429358C allele was associated with risk for this disease. Regarding COVID-19 severity, the HLA-A*33, ACE1 Ins, and TMPRSS2 rs12329760T alleles were associated with protection against severe forms, while the HLA-B*38, HLA-C*6, and ApoE rs429358C alleles were associated with risk for severe forms of COVID-19. In conclusion, polymorphisms in the ApoE, ACE1, TMPRSS2, CCR5, and HLA loci appear to be involved in the susceptibility to and/or severity of COVID-19.

Introduction

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in China near the end of 2019, and progressed to a pandemic condition in March 2020, resulting in a major public health problem worldwide due to its social and economic burdens [1]. As of February 1, 2022, COVID-19 affected more than

Contents lists available at ScienceDirect

Microvascular Research

journal homepage: www.elsevier.com/locate/ymvre

The rs705708 A allele of the *ERBB3* gene is associated with lower prevalence of diabetic retinopathy and arterial hypertension and with improved renal function in type 1 diabetic patients

Eloísa Toscan Massignam^{a,b,1}, Cristine Dieter^{a,b,1}, Taís Silveira Assmann^{a,b}, Guilherme Coutinho Kullmann Duarte^{a,b}, Andrea Carla Bauer^c, Luis Henrique Canani^{a,b}, Daisy Crispim^{a,b,*}

^a Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil

^b Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Rio Grande do Sul, Brazil

^c Nephrology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil

ARTICLE INFO

ABSTRACT

Keywords: Type 1 diabetes mellitus Polymorphism ERBB3 PA2G4 Microvascular complications Hypertension *Introduction:* The Erb-b2 receptor tyrosine kinase 3 (ERBB3) is involved in autoimmune processes related to type 1 diabetes mellitus (T1DM) pathogenesis. Accordingly, some studies have suggested that single nucleotide polymorphisms (SNPs) in the ERBB3 gene confer risk for T1DM. Proliferation-associated protein 2G4 (PA2G4) is another candidate gene for this disease because it regulates cell proliferation and adaptive immunity. Moreover, PA2G4 regulates ERBB3. To date, no study has evaluated the association of PA2G4 SNPs and T1DM. *Aim:* To evaluate the association of *ERBB3* rs705708 (G/A) and *PA2G4* rs773120 (C/T) SNPs with T1DM and its clinical and laboratory characteristics. *Methods:* This case-control study included 976 white subjects from Southern Brazil, categorized into 501 cases with T1DM and 475 non-diabetic controls. The *ERBB3* and *PA2G4* SNPs were genotyped by allelic discrimination-real-time PCR. *Results: ERBB3* rs705708 and *PA2G4* rs773120 SNPs were not associated with T1DM considering different inheritance models and also when controlling for covariables. However, T1DM patients carrying the *ERBB3* rs705708 A allow developed T1DM at an oarling are up *C/C* nations.

rs705708 A allele developed T1DM at an earlier age vs. G/G patients. Interestingly, in the T1DM group, the rs705708 A allele was associated with lower prevalence of diabetic retinopathy and arterial hypertension as well as with improved renal function (higher estimated glomerular filtration rate and lower urinary albumin excretion levels) compared to G/G patients.

Conclusions: Although no association was observed between the *ERBB3* rs705708 and *PA2G4* rs773120 SNPs and T1DM, the rs705708 A allele was associated, for the first time in literature, with lower prevalence of diabetic retinopathy and arterial hypertension. Additionally, this SNP was associated with improved renal function.

1. Introduction

Type 1 diabetes mellitus (T1DM) accounts for 5-10% of all cases of

diabetes, and is characterized by the cellular-mediated autoimmune destruction of pancreatic beta cells, causing absolute insulin deficiency (American Diabetes Association, 2021). The resulting chronic

Abbreviations: ASP, Affected sibling pair; BP, Blood pressure; BMI, Body mass index; CKD, Chronic kidney disease; CI, Confidence intervals; DKD, Diabetic kidney disease; DR, Diabetic retinopathy; DBP, Diastolic BP; EGF, Epidermal growth factor; EGFR, Epidermal growth factor receptor; ERBB3, Erb-b2 receptor tyrosine kinase 3; eGFR, Estimated glomerular filtration rate; HWE, Hardy–Weinberg Equilibrium; HBDI, human Biological Data Interchange; OD, Odd ratios; PA2G4, Proliferation-associated protein 2G4; SNPs, Single nucleotide polymorphisms; SHRs, Spontaneously hypertensive rats; SBP, Systolic BP; TGF-β, Transforming growth-factor beta; T1DGC, Type 1 Diabetes Genetics Consortium; T1DM, Type 1 diabetes mellitus; T2DM, Type 2 diabetes mellitus; UAE, Urinary albumin excretion.

* Corresponding author at: 2350 Ramiro Barcelos St., building 12, 4th floor, 90035-003 Porto Alegre, Rio Grande do Sul, Brazil.

- E-mail address: dcmoreira@hcpa.edu.br (D. Crispim).
- ¹ These authors contributed equally to this work.

https://doi.org/10.1016/j.mvr.2022.104378

Received 7 March 2022; Received in revised form 21 April 2022; Accepted 11 May 2022 Available online 17 May 2022 0026-2862/© 2022 Elsevier Inc. All rights reserved.

Involvement of *miR-126* rs4636297 and *miR-146a* rs2910164 polymorphisms in the susceptibility for diabetic retinopathy: a case–control study in a type 1 diabetes population

Eloísa Toscan Massignam,^{1,2} Cristine Dieter,^{1,2} Felipe Mateus Pellenz,^{1,2}

¹Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

²Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

ABSTRACT.

Background and purpose: MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. *MiRNA-126* and *miRNA-146a* have been described as having abnormal expressions in diabetic retinopathy (DR) patients. Polymorphisms in genes codifying miRNAs (miRSNPs) may alter the expression of the corresponding miRNA and, thus, interfere with susceptibility to DR. Therefore, miRSNPs in *miR-126* and *miR-146a* genes could be associated with DR susceptibility. The purpose of this study was to investigate the association between *miR-126* rs4636297 (G/A) and *miR-146a* rs2910164 (G/C) miRSNPs and DR.

Methods: This case–control study included 195 type 1 diabetes mellitus (T1DM) patients with DR (cases) and 215 patients without DR and with \geq 10 years of T1DM (controls). MiRSNPs were genotyped by real-time PCR.

Results: Genotype distributions of two analysed miRSNPs were in Hardy– Weinberg equilibrium in controls (p > 0.050). Frequencies of the *miR-126* rs4636297 miRSNP were not significantly different between case and control groups (p = 0.169). However, after adjustment for age, glycated haemoglobin, triglycerides, estimated glomerular filtration rate and ethnicity, the A allele of this miRSNP was associated with protection for DR under additive [OR: 0.444 (95% CI: 0.211–0.936), p = 0.033] and dominant [OR: 0.512 (95% CI: 0.303–0.865), p = 0.012] inheritance models. Genotype and allele frequencies of *miR-146a* rs2910164 miRSNP did not differ between groups (p = 0.368 and p = 0.957), and this polymorphism was not associated with DR when assuming different inheritance models.

Conclusion: Our results suggest an association between the A allele of *miR-126* rs4636297 miRSNP and protection for DR in a Southern Brazilian population.

Key words: diabetic retinopathy – microRNA – polymorphism – rs2910164 – rs4636297 – type 1 diabetes mellitus

[†]These authors contributed equally to the study.

Acta Ophthalmol. 2021: 99: e461–e469 © 2020 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd

doi: 10.1111/aos.14638

Introduction

Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM) and is the leading cause of vision loss in working middle-aged adults worldwide (Solomon et al. 2017; Kusuhara et al. 2018). DR has a higher incidence in patients with type 1 DM (T1DM) than type 2 DM (T2DM) (Yau et al. 2012), and in Brazil, it affects 35.7% of the T1DM patients (Melo et al. 2018). Known risk factors for DR, such as poor glycaemic control, long-term duration of DM, arterial hypertension and dyslipidaemia, explain some of the disease heterogeneity. However, there are patients who develop this complication despite excellent glycaemic control and others who do not develop DR even with long-term DM and chronic hyperglycaemia. Thus, genetic and epigenetic factors may explain some of the remaining heterogeneity in DR development (Cho & Sobrin 2014; Kowluru & Mishra 2015).

Epigenetic modifications regulate the complex interplay between genes and environmental factors without altering the DNA sequence (Kowluru & Mishra 2015; Kumari et al. 2019). The three major classes of epigenetic factors are DNA methylation, histone modification and non-coding RNAs (ncRNAs) (Kowluru & Mishra 2015; Kumari et al. 2019). NcRNAs are regulatory RNAs that lack protein-coding The rs2442598 polymorphism in the ANGPT-2 gene is associated with risk for diabetic retinopathy in patients with type 1 diabetes mellitus in a Brazilian population

¹ Divisão de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil ² Programa de Pós-graduação em Ciências Médicas – Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil ³ Divisão de Nefrologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil

Correspondence to:

Andrea Carla Bauer Rua Ramiro Barcelos, 2.350, prédio 12, 4° andar 90035-003 – Porto Alegre, RS, Brasil abauer@hcpa.edu.br

Received on Feb/01/2021 Accepted on July/12/2021

DOI: 10.20945/2359-3997000000417

Cristine Dieter^{1,2} https://orcid.ora/0000-0003-2765-930X

Natália Emerim Lemos^{1,2} https://orcid.org/0000-0002-0096-5801

Nathalia Rodrigues de Faria Corrêa¹ https://orcid.org/0000-0001-9654-9433

Aline Rodrigues Costa^{1,2} https://orcid.org/0000-0003-4736-2319

Luís Henrique Canani^{1,2} https://orcid.org/0000-0002-1813-4491

Daisy Crispim^{1,2} https://orcid.org/0000-0001-5095-9269

Andrea Carla Bauer^{1,2,3} https://orcid.org/0000-0002-5041-4792

ABSTRACT

Objective: As studies have reported the involvement of angiopoietin-2 (ANGPT-2) in the pathogenesis of diabetic retinopathy (DR), the aim of this study was to investigate the association between the *ANGPT-2* rs2442598 polymorphism and DR. **Materials and methods:** This case-control study comprised 107 patients with type 1 diabetes mellitus (T1DM) and DR (cases) and 129 patients with T1DM without DR (controls) and with ≥ 10 years of DM. The *ANGPT-2* rs2442598 (G/A) polymorphism was genotyped by real-time PCR using TaqMan MGB probes. **Results:** Genotype distributions of this polymorphism were consistent with the Hardy-Weinberg equilibrium. The frequency of the rs2442598 A allele was higher in cases compared to controls (p = 0.011). Moreover, the A/A genotype was more frequent in cases than in controls (p = 0.017) and was associated with risk for DR after adjustments for duration of DM, HbA1c, triglycerides, estimated glomerular filtration rate, and hypertension (odds ratio [OR] = 5.19, 95% confidence interval [CI] 1.21-22.27). This association was maintained under recessive (OR = 4.78, 95% CI 1.14-19.99) and additive (OR = 6.861, 95% CI 1.45-32.38) inheritance models. **Conclusion**: Our data demonstrated, for the first time, an association between the *ANGPT-2* rs2442598 A allele and risk for DR inT1DM patients from southern Brazil. Additional studies are necessary to replicate this association in other populations. Arch Endocrinol Metab. 2021;65(6):794-800

Keywords

ANGPT-2 gene; polymorphism; type 1 diabetes mellitus; diabetic retinopathy

INTRODUCTION

Diabetic retinopathy (DR) is one of the most disabling microvascular complications of diabetes mellitus (DM) (1). According to the International Diabetes Federation, DR is the leading cause of blindness in working-age adults (2). Clinically, DR is characterized by the presence of typical retinal microvascular signs, such as microaneurysms, hemorrhages, cotton-wool spots, hard exudates, and neovascularization (1). The development and progression of DR depend on the complex interaction of clinical risk factors, environmental factors, and genetic factors (1,3). In this context, the identification of new genetic polymorphisms associated with DR can contribute to a better understanding of the risk factors and predisposition to this diabetic complication.

The A allele of the rs759853 single nucleotide polymorphism in the *AKR1B1* gene confers risk for diabetic kidney disease in patients with type 2 diabetes from a Brazilian population

¹ Divisão Endócrina do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
² Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Clínica Médica, Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
³ Serviço de Nefrologia do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil

Correspondence to:

Andrea Carla Bauer Rua Ramiro Barcelos, 2.350, prédio 12, 4° andar 90035-003 – Porto Alegre, RS, Brasil andreacarlabauer@gmail.com

Received on March/30/2021 Accepted on Sept/22/2021

DOI: 10.20945/2359-3997000000432

Cristine Dieter^{1,2} https://orcid.org/0000-0003-2765-930X

Natália Emerim Lemos^{1,2} https://orcid.org/0000-0002-0096-5801

Nathalia Rodrigues de Faria Corrêa¹ https://orcid.org/0000-0001-9654-9433

Felipe Mateus Pellenz^{1,2} https://orcid.org/0000-0002-7829-9407

Luís Henrique Canani^{1,2} https://orcid.org/0000-0002-1813-4491

Daisy Crispim^{1,2} https://orcid.org/0000-0001-5095-9269

Andrea Carla Bauer^{1,2,3} https://orcid.org/0000-0002-5041-4792

ABSTRACT

Objective: The *AKR1B1* gene encodes an enzyme that catalyzes the reduction of glucose into sorbitol. Chronic hyperglycemia in patients with diabetes mellitus (DM) leads to increased AKR1B1 affinity for glucose and, consequently, sorbitol accumulation. Elevated sorbitol increases oxidative stress, which is one of the main pathways related to chronic complications of diabetes, including diabetic kidney disease (DKD). Accordingly, some studies have suggested the rs759853 polymorphism in the *AKR1B1* gene is associated with DKD; however, findings are still contradictory. The aim was to investigate the association of the rs759853 polymorphism in the *AKR1B1* gene and DKD. **Materials and methods:** The sample comprised 695 patients with type 2 DM (T2DM) and DKD (cases) and 310 patients with T2DM of more than 10 years' duration, but no DKD (controls). The polymorphism did not differ significantly between groups. However, the A/A genotype was associated with risk for DKD after adjustment for gender, triglycerides, BMI, presence of hypertension and diabetic retinopathy, and duration of DM, under both recessive (P = 0.048) and additive (P = 0.037) inheritance models. **Conclusion:** Our data suggest an association between the *AKR1B1* rs759853A/A genotype and risk for DKD in Brazilians T2DM patients. Arch Endocrinol Metab. 2022;66(1):12-8

Keywords

AKR1B1 gene, DNA polymorphism, diabetic kidney disease

Diabetic kidney disease (DKD) is an important microvascular complication that affects around 40% of all patients with diabetes mellitus (DM), and is the leading cause of end-stage renal disease in individuals on renal replacement therapy. Moreover, patients with DKD have increased cardiovascular mortality compared to patients with DM without this complication (1,2). DKD is defined clinically by presence of albuminuria and/or a gradual decline in the glomerular filtration rate (GFR) (3). Known risk factors for DKD are long-lasting hyperglycemia, arterial hypertension, dyslipidemia, and genetic polymorphisms (1,4).

Aldo-keto reductase family 1 member B (AKR1B1), also known as aldose reductase, belongs to the aldo/ keto reductase superfamily and is the first enzyme of the polyol pathway, catalyzing the reduction of glucose into sorbitol using NADPH as a cofactor [reviewed in (5,6)]. This reaction is the rate-limiting step of the polyol pathway. Under chronic hyperglycemia in patients with

The rs11755527 polymorphism in the *BACH2* gene and type 1 diabetes mellitus: case control study in a Brazilian population

Objective: Type 1 diabetes mellitus (T1DM) is an autoimmune disorder caused by a complex interaction between environmental and genetic risk factors. BTB domain and CNC homolog 2 (*BACH2*) gene encodes a transcription factor that acts on the differentiation and formation of B and T lymphocytes. BACH2 is also involved in the suppression of apoptosis and inflammation in pancreatic beta-cells, indicating a role for it in the development of T1DM. Therefore, the aim of this study was to evaluate the association of the *BACH2* rs11755527 single nucleotide polymorphism (SNP) with T1DM. **Subjects and methods:** This case-control study comprised 475 patients with T1DM and 598 nondiabetic individuals. The *BACH2* rs11755527 (C/G) SNP was genotyped using real-time PCR with TaqMan MGB probes. **Results:** Genotype distributions of rs11755527 SNP were in accordance with frequencies predicted by the Hardy–Weinberg equilibrium in case and control groups and were similar between groups (P = 0.729). The minor allele frequency was 43.6% in cases and 42.5% in controls (P = 0.604). Moreover, the G allele frequency did not differ between groups when considering different

inheritance models and adjusting for age, gender, body mass index, and HLA DR/DQ genotypes of

high-risk for T1DM. Although, well-known high-risk T1DM HLA DR/DQ genotypes were associated

with T1DM in our population [OR= 7.42 (95% CI 3.34 – 17.0)], this association was not influenced by the rs11755527 SNP. Conclusion: The BACH2 rs11755527 SNP seems not to be associated with T1DM in a

¹ Divisão de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil ² Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil ³ Universidade do Vale do Rio dos Sinos (Unisinos), São Leopoldo, RS, Brasil ⁴ Departamento de Nutrición, Ciencia de los Alimentos y Fisiología, Universidad de Navarra, Navarra, Espanha

Cristine Dieter^{1,2*} http://orcid.org/0000-0003-2765-930X

Natália Emerim Lemos^{1,2}

Guilherme Coutinho Kullmann Duarte^{1,2}

Brazilian population. Arch Endocrinol Metab. 2020;64(2):138-43

Type 1 diabetes mellitus; DNA polymorphisms; BACH2 gene

http://orcid.org/0000-0002-0096-580

Taís Silveira Assmann^{1,4}

http://orcid.org/0000-0001-9114-8243

http://orcid.org/0000-0001-5095-9269

Daisy Crispim^{1,2}

ABSTRACT

Luiza Emy Dorfman³ http://orcid.org/0000-0001-5903-5185

* The authors participated similarly in the study

Correspondence to:

Natália Emerim Lemos Rua Ramiro Barcelos, 2350, prédio 12; 4º andar 90035-003 – Porto Alegre, RS, Brasil natiemerim@hotmail.com

Received on May/2/2019 Accepted on Sept/2/2019

DOI: 10.20945/2359-399700000214

INTRODUCTION

Type 1 diabetes mellitus (T1DM) affects 10-15% of patients with diabetes mellitus (DM) and is caused by autoimmune destruction of pancreatic beta-cells, making patients dependent of insulin for life (1,2). This disease most likely arises from a multifaceted interaction between multiple environmental and genetic risk factors (2). The *HLA DR/DQ* locus has the greatest impact on susceptibility, accounting for up to 30-50% of the genetic variance of T1DM (3). Although more than 50 genes have been described as having smaller effects on T1DM susceptibility in

Keywords

comparison to *HLA* loci, it has been suggested that the interaction between *HLA* haplotypes and non-*HLA* single nucleotide polymorphisms (SNPs) could be useful to help improve prediction of the disease (4,5). Consequently, identification of non-*HLA* SNPs associated with T1DM may help disease prediction (6).

Many genome-wide association studies (GWAS) have found a number of *loci* associated with T1DM [reviewed in (4,7)], including polymorphisms in the BTB domain and CNC homolog 2 (*BACH2*) gene. *BACH2* encodes a transcription factor that acts in the immune system, which is involved in the development

G

ELSEVIER

Review

Keywords: Leukemia

IncRNAs

Epigenetics

Systematic review

Contents lists available at ScienceDirect

Gene

journal homepage: www.elsevier.com/locate/gene

Association of long non-coding RNA and leukemia: A systematic review

Cristine Dieter*, Eloir Dutra Lourenco, Natália Emerim Lemos

Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil

ARTICLE INFO

ABSTRACT

Introduction: Long non-coding RNAs (IncRNAs) are RNA molecules that structurally resemble mRNA but do not encode proteins. Studies have been associated this class of non-coding RNA with the development of several disease, among them the different types of leukemia. However, the results are contradictory. Thus, we performed a systematic review of the literature available in order to better understand the involvement of lncRNAs in the development of leukemia.

Materials and methods: Pubmed and Embase databases were used to identify all studies that evaluated the expression of one or more lncRNA between human samples (peripheral blood, bone marrow) with leukemia (cases) and without leukemia (controls).

Results: A total of 3675 articles were found in the databases, and after exclusion of articles that did not meet the eligibility criteria, 86 articles were included in this systematic review. In the 86 included studies, 3927 lncRNAs were differentially expressed between cases and controls. Among these, 110 lncRNAs were reported as being altered in samples from at least 2 studies and only 16 of them in \geq 3 studies, which were selected for further evaluation. Of these, 12 lncRNAs were consistently dysregulated between cases and controls (CCAT1, CCDC26, CRNDE, HOTAIR, KCNQ5IT1, LINC00265, MALAT1, PVT1, SNHG5, TUG1: increased in cases, MEG3 and NEAT1: decreased in cases) in human samples of patients with some type of leukemia. *Conclusion:* Our data demonstrate that 12 lncRNAs are dysregulated in leukemia.

1. Introduction

Leukemia is a type of cancer that affects the blood and bone marrow and is characterized by the uncontrolled production and accumulation of blood cells (Juliusson and Hough, 2016). According to American Cancer Society (Society, 2019), cancer the second leading cause of deaths among children, adolescents and young adults younger than 20 years, and leukemia is the main type of cancer that affect children. In addition, 381,774 people are living with or in remission from leukemia in the US (Society, 2019). Radiation exposure, viral infections, ethnicity, gender and genetic mutations are some of the risk factors of leukemia (Juliusson and Hough, 2016). However, more studies are necessary to better understand the development and the pathogenesis of the different types of leukemia.

In this context, epigenetic factors, such as non-coding RNAs (ncRNA), have been associated with leukemia development. NcRNAs are a group of regulatory RNAs that are not translated into protein (Mattick and Makunin, 2006). NcRNAs longer than 200 nucleotides are

classified as long non-coding RNAs (lncRNAs). LncRNAs are located in nucleus, where they can act as molecular scaffolds, help in alternative splicing or modify chromatin structures. In addition, there are some lncRNAs that have functions in cytoplasm, such as modulating translation, promoting or inhibiting mRNA degradation, and acting as miRNAs sponges (Knoll et al., 2015).

Dysregulated expression of this lncRNAs is highly associated with human diseases, including the different types of leukemia [review in (Alvarez-Dominguez et al., 2014; Alvarez-Dominguez and Lodish, 2017; Lammens et al., 2017)]. Take into account that a large number of studies have demonstrated the association of lncRNA expression with leukemia and that many findings are contradictory, the aim of this study is clarify the involvement of lncRNAs in the pathogenesis of leukemia, performing a systemic review of the literature on the subject.

E-mail address: tinedieter@hotmail.com (C. Dieter).

https://doi.org/10.1016/j.gene.2020.144405 Received 6 November 2019; Accepted 27 January 2020 Available online 31 January 2020 0378-1119/ © 2020 Elsevier B.V. All rights reserved.

475

Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; BBMC, bone marrow mononuclear cell; CLL, chronic lymphoid leukemia; CML, chronic myeloid leukemia; FAB, French American Bristish; JMML, juvenile myelomonocytic leukemia; LncRNA, long non-coding RNA; MESH, medical subject heading; NcRNA, non-coding RNA; NOS, New Castle-Ottawa Scale; PBMC, peripheral blood mononuclear cell; WHO, World Health Organization * Corresponding author at: Universidade Feevale, ERS-239, 2755, 93525-075 Novo Hamburgo, Rio Grande do Sul, Brazil.

Genetics and Molecular Biology, 43, 2, e20180374 (2020) Copyright © 2020, Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2018-0374

Research Article Human and Medical Genetics

-866G/A and Ins/Del polymorphisms in the *UCP2* gene and diabetic kidney disease: case-control study and meta-analysis

Cristine Dieter^{1,2}, Taís Silveira Assmann³, Natália Emerim Lemos^{1,2}, Eloísa Toscan Massignam¹, Bianca Marmontel de Souza^{1,2}, Andrea Carla Bauer^{1,2,4}, and Daisy Crispim^{1,2}

¹Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto Alegre, RS, Brazil. ²Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brazil.

³Universidad de Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, Spain. ⁴Hospital de Clínicas de Porto Alegre, Nephrology Division, Porto Alegre, RS, Brazil.

Abstract

Uncoupling protein 2 (UCP2) decreases reactive oxygen species (ROS). ROS overproduction is a key contributor to the pathogenesis of diabetic kidney disease (DKD). Thus, *UCP2* polymorphisms are candidate risk factors for DKD; however, their associations with this complication are still inconclusive. Here, we describe a case-control study and a meta-analysis conducted to investigate the association between *UCP2* -866G/A and Ins/Del polymorphisms and DKD. The case-control study comprised 385 patients with type 1 diabetes mellitus (T1DM): 223 patients without DKD and 162 with DKD. *UCP2* -866G/A (rs659366) and Ins/Del polymorphisms were genotyped by real-time PCR and conventional PCR, respectively. For the meta-analysis, a literature search was conducted to identify all studies that investigated associations between *UCP2* polymorphisms and DKD in patients with T1DM or type 2 diabetes mellitus. Pooled odds ratios were calculated for different inheritance models. Allele and genotype frequencies of -866G/A and Ins/Del polymorphisms did not differ between T1DM case and control groups. Haplotype frequencies were also similar between groups. Four studies plus the present one were eligible for inclusion in the meta-analysis. In agreement with case-control data, the meta-analysis results showed that the -866G/A and Ins/Del polymorphisms were not associated with DKD. In conclusion, our case-control and meta-analysis studies did not indicate an association between the analyzed *UCP2* polymorphisms and DKD.

Keywords: UCP2, polymorphisms, diabetic kidney disease.

Received: Dezembro 11, 2018; Accepted: April 11, 2019.

Introduction

Diabetic kidney disease (DKD) is a common microvascular complication that affects 40% of patients with diabetes mellitus (DM) (Gross et al., 2005, Macisaac et al., 2014). DKD is the leading cause of end-stage renal disease in subjects starting renal replacement therapy and is associated with increased cardiovascular mortality (Gross et al., 2005, Assmann et al., 2018). This complication is a progressive disease, characterized by pathophysiological changes resulting from the diabetic milieu, which begin with glomerular hypertrophy and hyperfiltration, and might progress to albuminuria and a gradual decline in the glomerular filtration rate (GFR) (Kanwar et al., 2011, Ritz et al., 2011). The progressive decline in renal function during DKD is a result of pathophysiological alterations in the kidneys, such as mesangial expansion and tubulointerstitial fibrosis due to the accumulation of extracellular matrix proteins, basement

Send correspondence to Daisy Crispim. Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto Alegre, RS, Brazil. E-mail: dcmoreira@hcpa.edu.br.

membrane thickening, and podocyte dysfunction (Assmann *et al.*, 2018) (Figure 1). The main risk factors for DKD are the duration of chronic hyperglycemia, arterial hypertension, dyslipidemia, and genetic susceptibility (Carpena *et al.*, 2010, Ahlqvist *et al.*, 2015).

At the cellular level, chronic hyperglycemia causes renal damage through five main mechanisms: increased formation of advanced glycation end-products; increased expression of the receptor for advanced glycation end-products; activation of protein kinase C isoforms; increased flux of glucose through the polyol pathway; and upregulation of the hexosamine pathway (Du *et al.*, 2000, Giacco and Brownlee, 2010). Several lines of evidence have shown that the mitochondrial overproduction of reactive oxygen species (ROS) is the unifying upstream mechanism by which hyperglycemia activates all these five pathways (Brownlee, 2005; Rich, 2006; Giacco and Brownlee, 2010).

Uncoupling protein 2 (UCP2) is a mitochondrial anion carrier protein expressed in a number of tissues, including adipose tissue, liver, kidney, and retina (Souza *et al.*, 2011; Donadelli *et al.*, 2014). This protein mildly uncouples the

MiR-30e-5p and MiR-15a-5p Expressions in Plasma and Urine of Type 1 Diabetic Patients With Diabetic Kidney Disease

Cristine Dieter^{1,2}, Taís Silveira Assmann³, Aline Rodrigues Costa¹, Luís Henrique Canani^{1,2}, Bianca Marmontel de Souza^{1,2}, Andrea Carla Bauer^{1,2,4} and Daisy Crispim^{1,2*}

¹ Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil, ² Post-Graduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, ³ Department of Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain, ⁴ Nephrology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

OPEN ACCESS

Edited by:

Rui Henrique, Portuguese Oncology Institute, Portugal

Reviewed by:

Ling-Qing Yuan, Central South University, China Charles Affourtit, University of Plymouth, United Kingdom

*Correspondence:

Daisy Crispim dcmoreira@hcpa.edu.br

Specialty section:

This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics

Received: 31 January 2019 Accepted: 29 May 2019 Published: 12 June 2019

Citation:

Dieter C, Assmann TS, Costa AR, Canani LH, de Souza BM, Bauer AC and Crispim D (2019) MiR-30e-5p and MiR-15a-5p Expressions in Plasma and Urine of Type 1 Diabetic Patients With Diabetic Kidney Disease. Front. Genet. 10:563. doi: 10.3389/fgene.2019.00563 **Introduction:** Diabetic kidney disease (DKD) is a common microvascular complication that affects 40% of patients with diabetes mellitus (DM). Emerging evidence suggests a role for several microRNAs (miRNAs) in the development of DKD. In this context, miR-15a-5p and miR-30e-5p have been shown to regulate the expression of the uncoupling protein 2 (UCP2), a mitochondrial protein that decreases reactive oxygen species (ROS) formation by the mitochondria. Since ROS overproduction is a key contributor to the pathogenesis of DKD, dysregulation of these two miRNAs could be involved in DKD pathogenesis. Thus, the aim of this study was to compare the expressions of miR-15a-5p and miR-30e-5p in type 1 DM (T1DM) patients with DKD (cases) and without this complication (controls), and to perform bioinformatics analyses to investigate their putative targets and biological pathways under their regulation.

Methods: MiR-15a-5p and miR-30e-5p expressions were analyzed in plasma and urine of 17 T1DM controls and 23 DKD cases (12 with moderate DKD and 11 with severe DKD) using qPCR. Bioinformatics analyses were performed in Cytoscape software.

Results: MiR-30e-5p expression was downregulated in plasma of patients with moderate and severe DKD compared to T1DM controls. Moreover, this miRNA was also downregulated in urine of patients with severe DKD compared to the other groups. No difference was found in miR-15a-5p expression between groups. Bioinformatics analyses indicated that miR-30e-5p and miR-15a-5p regulate various genes that participate in pathways related to angiogenesis, apoptosis, cell differentiation, oxidative stress, and hypoxia.

Conclusion: MiR-30e-5p seems to be downregulated in plasma and urine of patients with DKD.

Keywords: microRNA expression, miR-15a-5p, miR-30e-5p, diabetic kidney disease, bioinformatics analysis, type 1 diabetes mellitus

1

Demais produções no período do doutorado.

Original Article

Genetics

Diabetes Metab J 2021;45:899-908 https://doi.org/10.4093/dmj.2020.0194 pISSN 2233-6079 · eISSN 2233-6087

The rs2304256 Polymorphism in *TYK2* Gene Is Associated with Protection for Type 1 Diabetes Mellitus

Felipe Mateus Pellenz^{1,2}, Cristine Dieter^{1,2}, Guilherme Coutinho Kullmann Duarte^{1,2}, Luís Henrique Canani^{1,2}, Bianca Marmontel de Souza^{1,2}, Daisy Crispim^{1,2}

¹Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre,

²Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Faculty of Medicine, Porto Alegre, Brazil

Background: Tyrosine kinase 2 (*TYK2*) is a candidate gene for type 1 diabetes mellitus (T1DM) since it plays an important role in regulating apoptotic and pro-inflammatory pathways in pancreatic β -cells through modulation of the type I interferon signaling pathway. The rs2304256 single nucleotide polymorphism (SNP) in *TYK2* gene has been associated with protection for different autoimmune diseases. However, to date, only two studies have evaluated the association between this SNP and T1DM, with discordant results. This study thus aimed to investigate the association between the *TYK2* rs2304256 SNP and T1DM in a Southern Brazilian population.

Methods: This case-control study comprised 478 patients with T1DM and 518 non-diabetic subjects. The rs2304256 (C/A) SNP was genotyped by real-time polymerase chain reaction technique using TaqMan minor groove binder (MGB) probes.

Results: Genotype and allele frequencies of the rs2304256 SNP differed between T1DM patients and non-diabetic subjects (P<0.0001 and P=0.001, respectively). Furthermore, the A allele was associated with protection against T1DM under recessive (odds ratio [OR], 0.482; 95% confidence interval [CI], 0.288 to 0.806) and additive (OR, 0.470; 95% CI, 0.278 to 0.794) inheritance models, adjusting for human leukocyte antigen (*HLA*) *DR*/*DQ* genotypes, gender, and ethnicity.

Conclusion: The A/A genotype of *TYK2* rs2304256 SNP is associated with protection against T1DM in a Southern Brazilian population.

Keywords: Autoimmune diseases; Diabetes mellitus, type 1; Polymorphism, genetic; Polymorphism, single nucleotide; TYK2 kinase

INTRODUCTION

Chronic hyperglycemia in type 1 diabetes mellitus (T1DM) is caused by the severe autoimmune destruction of pancreatic β -cells by macrophages and T lymphocytes, which renders subjects insulin-dependent for life [1]. Autoimmunity against β -cells occurs in the context of crosstalk between invading immune cells and the target β -cells, and is triggered by a multifaceted interaction between several genetic and environmental risk factors [1-3]. To date, genome-wide association studies have identified more than 60 loci associated with T1DM.

Received: Aug. 6, 2020; Accepted: Dec. 4, 2020

Among these loci, the human leukocyte antigen (HLA) class II (DR/DQ) region has shown the greatest impact on T1DM susceptibility, with an odds ratio (OR) >7 [2,4,5]. Although single nucleotide polymorphisms (SNPs) in other loci confer modest risks (OR <2) for T1DM, studies have suggested the combination of *HLA* genotypes with non-*HLA* SNPs may be useful for disease prediction [5-7].

 β -Cells express 80% of T1DM candidate genes [8-10], which may contribute to T1DM pathogenesis by regulating important pathways in these cells, such as activation of apoptosis, antiviral activity, and innate immunity, involving retinoic acid-

Copyright © 2021 Korean Diabetes Association https://e-dmj.org

Corresponding author: Daisy Crispim
[®] https://orcid.org/0000-0001-5095-9269 Endocrinology Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° Andar, Porto Alegre 90035-003, Brazil E-mail: dcmoreira@hcpa.edu.br

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Genetics and Molecular Biology, 44, 2, e20200425 (2021) Copyright © Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2020-0425

Research Article Human and Medical Genetics

Association of *TYK2* polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis

Felipe Mateus Pellenz^{1,2} , Cristine Dieter^{1,2}, Natália Emerim Lemos^{1,2}, Andrea Carla Bauer^{1,2,3,} Bianca Marmontel de Souza^{1,2} and Daisy Crispim^{1,2}

¹Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil. ²Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil. ³Hospital de Clínicas de Porto Alegre, Serviço de Nefrologia, Porto Alegre, RS, Brazil.

Abstract

Autoimmune diseases are characterized by the loss of self-tolerance, leading to immune-mediated tissue destruction and chronic inflammation. Tyrosine kinase 2 (TYK2) protein plays a key role in immunity and apoptosis pathways. Studies have reported associations between single nucleotide polymorphisms (SNPs) in the *TYK2* gene and autoimmune diseases; however, results are still inconclusive. Thus, we conducted a systematic review followed by meta-analysis. A literature search was performed to find studies that investigated associations between *TYK2* SNPs and autoimmune diseases (multiple sclerosis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, rheumatoid arthritis, type 1 diabetes, and inflammatory bowel disease). Pooled odds ratios (OR) with 95 % CI were calculated using random (REM) or fixed (FEM) effects models in the Stata 11.0 Software. Thirty-four articles were eligible for inclusion in the meta-analyses, comprising 9 different SNPs: rs280496, rs280500, rs280523, rs280519, rs2304256, rs12720270, rs12720356, rs34536443, and rs35018800. Meta-analysis results showed the minor alleles of rs2304256, rs12720270, rs12720356, rs34536443, and rs35018800 SNPs were associated with risk for systemic lupus erythematosus. Our meta-analyses demonstrated that the rs2304256, rs12720270, rs12720356, rs34536443, and rs35018800 SNPs was associated with risk for systemic lupus erythematosus. Our meta-analyses demonstrated that the rs2304256, rs12720270, rs12720356, rs34536443, rs35018800, and rs280519 SNPs in the *TYK2* gene are associated with different autoimmune diseases.

Keywords: Tyrosine kinase 2, autoimmunity, autoimmune disease, single nucleotide polymorphism, meta-analysis.

Received: November 19, 2020; Accepted: March 09, 2021.

Introduction

Autoimmune diseases are complex diseases triggered by multifaceted interactions between several genetic and environmental factors (Gutierrez-Roelens and Lauwerys, 2008; Rose, 2016), and are characterized by the loss of selftolerance leading to immune-mediated tissue destruction and chronic inflammation (Marrack et al., 2001; Lee and Bae, 2016; Odhams et al., 2017). These diseases share common etiological pathways, with genetic factors being considered as strong determinants of their development (Gutierrez-Roelens and Lauwerys, 2008; Lee and Bae, 2016). Regarding genetic factors, tyrosine kinase 2 (TYK2) is a candidate gene for autoimmune diseases since it encodes a member of Janus Kinase (JAK) family of tyrosine kinases, which have a central role in immune response since they mediate signaling pathways for several cytokines and type I interferon (IFN-I) (Ghoreschi et al., 2009; Strobl et al., 2011).

TYK2 is a non-receptor protein that bounds to the IFN-I receptor (IFNAR1) on the cell surface in its inactive form. After IFN- α binding to IFNAR1, TYK2 and JAK1 proteins are activated, leading to the recruitment and phosphorylation of the signal of transducers and activators of transcription

(STAT) 1 and 2. STAT1/2 heterodimers then translocate to the nucleus, where they are major regulators of the expression of a number of IFN-stimulated genes (Yamaoka et al., 2004; Strobl et al., 2011). TYK2 is also associated with IL-6, IL-10, IL-12, and IL-23 receptors, playing a key role in the activation of these cytokine pathways (Ghoreschi et al., 2009; O'Shea and Plenge, 2012). Abnormal expression of IFN-I and other cytokines or JAK kinase members in immune cells are well known players in the pathogenesis of autoimmune diseases (Strobl et al., 2011; O'Shea and Plenge, 2012; Deng et al., 2019). Besides its role in the IFN-I and other type I and II cytokine receptor pathways, TYK2 plays a key role in other immune processes, including the activity of natural killer cells, maturation of B and Treg cells, and differentiation of Th1 and Th17 cells. Accordingly, dysregulated TYK2 expression has been associated with autoimmune diseases, specially systemic lupus erythematosus (SLE) [reviewed in (Deng et al., 2019)].

Consistent with the role of TYK2 in immune processes, several studies have suggested common single nucleotide polymorphisms (SNPs) in this gene are associated with different autoimmune diseases, including multiple sclerosis (MS) (Tao *et al.*, 2011), SLE (Tao *et al.*, 2011; Lee *et al.*, 2012; Lee and Bae, 2016; Yin *et al.*, 2018), Crohn's Disease (CD) (Lees *et al.*, 2011; Tao *et al.*, 2011; Ellinghaus *et al.*, 2016), ulcerative colitis (UC) (Lees *et al.*, 2011; Tao *et al.*, 2011; Ellinghaus *et al.*, 2011; Ellinghaus *et al.*, 2011; Ellinghaus *et al.*, 2011; Lee and Bae, 2016), westra *et al.*, 2018), type 1

Send correspondence to Daisy Crispim. Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, 90035-003, Porto Alegre, RS, Brazil. E-mail: dcmoreira@hcpa.edu.br.

Contents lists available at ScienceDirect

Human Immunology

ELSEVIER

journal homepage: www.elsevier.com/locate/humimm

The effects of gene polymorphisms on susceptibility to acute GVHD and survival of allogeneic HSCT recipients: IL-10 gene polymorphisms as a more accessible target to predict prognosis

Mariela Granero Farias^{a,b,*}, Camila Andrade dos Santos^b, Bruna de Mello Vicente^c, Muriel Habigzang^c, Priscila de Oliveira da Silva^b, Natália Emerim Lemos^b, Cristine Dieter^b, Alessandra Paz^b, Liane Esteves Daudt^{a,b,c}

^a Graduate Program in Child and Adolescent Health, Federal University of Rio Grande, do Sul/UFRGS, Brazil

^b Hospital de Clínicas de Porto Alegre/HCPA, Brazil

^c Federal University of Rio Grande do Sul/UFRGS, Brazil

ARTICLE INFO

Keywords: Cytokine gene polymorphism Allogeneic stem cell transplantation Interleukin Graft-versus-host disease

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a therapeutic modality commonly used to treat hematological and immunological disorders. Among the main complications of allo-HSCT is the acute graft-versus-host disease (a-GVHD), a condition which accounts for a high incidence of mortality. Several genes encoding inflammatory mediators may present polymorphisms, which have been implicated in the risk of developing a-GVHD. In our study, we investigated the association between genotypes of cytokine-encoding genes and the incidence and severity of a-GVHD and survival of HSCT recipients. No statistically significant association was found between IL and 6-174 G/C, INF- γ + 874 T/A, TNF- α -238 A/G, -308 A/G and IL-10-819C/T, -592 A/C polymorphisms and the presence or severity of a-GVHD. A higher risk of a-GVHD was associated with the IL-10-1082 GG genotype compared to the AA + AG genotypes of recipients and donors. The IL-10-1082 genotype can be used as a prognostic determinant to predict which HSCT recipient will be more responsive to the transplant. Thus, cytokine gene assays may be useful in the individualization of prophylactic regimens and for an appropriate selection of immunosuppressants based on the HSCT recipient's responsiveness.

1. Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been used to treat various hematological, metabolic, and immunodeficiency diseases [1]. Despite the extensive progress of allo-HSCT protocols achieved so far, the recipient's post-transplant survival rate is as low as 50–68% according to the literature [2,3]. The transplant prognosis depends on many factors such as the underlying disease, the type of conditioning regimen and the characteristics of recipients and donors. Acute graft-versus-host disease (a-GVHD) and infections are the leading causes of morbidity and mortality in HSCT patients [4].

GVHD is a major complication following allo-HSCT whose acute form occurs in 40–60% of recipients, even in cases where the recipient and donor are HLA-compatible [5,6]. The pathophysiology of a-GVHD involves a "cytokine storm" induced by the pre-transplant conditioning regimen, with a massive release of inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF- α) and interleukin-2 (IL-2). Other cytokines, such as interleukin 10 (IL-10), are responsible for modulating the effect of inflammatory mediators. This process is amplified by the activation of transplanted donor T cells and host tissue damage caused by a direct effect of cytokines and toxic effects of the conditioning regimen, ultimately leading to apoptotic cell death [7].

Cytokines are gene-encoded products involved in an extensive network of synergistic and antagonistic interactions that may exhibit either a positive or negative regulatory effect on several cell types [8]. Nucleotide variations in the regulatory region of the genes encoding these proteins have a strong influence on the susceptibility to, and severity of, several diseases. Recent evidence has demonstrated the role of polymorphisms in inflammatory genes, both in recipients and donors, in the occurrence of GVHD [8]. Mounting evidence has proven the role of cytokine gene polymorphisms, such as $TNF-\alpha$, IL-10, IL-6 and $INF-\gamma$, in the prognosis of HSCT, specifically in the risk for a-GVHD, transplant-

https://doi.org/10.1016/j.humimm.2019.12.002

Received 19 August 2019; Received in revised form 28 November 2019; Accepted 5 December 2019

Available online 27 December 2019

0198-8859/ © 2019 Published by Elsevier Inc. on behalf of American Society for Histocompatibility and Immunogenetics.

^{*} Corresponding author at: Specialized Diagnostic Unit, Flow Cytometry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcellos, 2350 Porto Alegre, Brazil. *E-mail address:* mgfarias@hcpa.edu.br (M. Granero Farias).

ORIGINAL ARTICLE

Renal effects of exendin-4 in an animal model of brain death

Natália Emerim Lemos^{1,2} · Cristine Dieter^{1,2} · Rodrigo Carlessi³ · Jakeline Rheinheimer^{1,2} · Letícia de Almeida Brondani^{1,2} · Cristiane Bauermann Leitão^{1,2} · Andrea Carla Bauer^{1,2,4} · Daisy Crispim^{1,2}

Received: 12 November 2018 / Accepted: 5 February 2019 / Published online: 13 February 2019 © Springer Nature B.V. 2019

Abstract

Organ transplantation is the gold standard therapy for the majority of patients with terminal organ failure. However, it is still a limited treatment especially due to the low number of brain death (BD) donors in relation to the number of waiting list recipients. Strategies to increase the quantity and quality of donor organs have been studied, and the administration of exendin-4 (Ex-4) to the donor may be a promising approach. Male Wistar rats were randomized into 3 groups: (1) control, without central nervous system injury; (2) BD induced experimentally, and (3) BD induced experimentally +Ex-4 administered immediately after BD induction. After BD induction, animals were monitored for 6 h before blood collection and kidney biopsy. Kidney function was assessed by biochemical quantification of plasma kidney markers. Gene and protein expressions of inflammation- and stress-related genes were evaluated by RT-qPCR and immunoblot analysis. Animals treated with Ex-4 had lower creatinine and urea levels compared with controls. BD induced oxidative stress in kidney tissue through increased expression of *Ucp2*, *Sod2* and *Inos*, and Ex-4 administration reduced the expressions were up-regulated in the BD group compared with controls, but Ex-4 treatment had no effect on these genes. Our findings suggest that Ex-4 administration in BD rats reduces BD-induced kidney damage by decreasing the expression of oxidative stress genes and increasing the expression of *Bcl2*.

Keywords Brain death · Kidney transplantation · Renal tissue · Exendin-4

Introduction

Organ transplantation is currently the gold standard therapy for the majority of patients with terminal organ failure. However, it is still a limited treatment especially due to the low number of brain death (BD) donors in relation to the number

Daisy Crispim dcmoreira@hcpa.edu.br

- ¹ Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, Rio Grande Do Sul 90035-003, Brazil
- ² Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
- ³ School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley, Perth, WA 6102, Australia
- ⁴ Nephrology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande Do Sul, Brazil

of waiting list recipients. Because of this, a rising number of "marginal" brain-dead donors have been accepted for transplantation, even though this approach is related to increased risk for primary graft non-function and/or delayed primary function, besides worse long-term graft survival [1]. There are currently over 120,000 patients waiting for lifesaving organ transplants in the United States. The majority of those patients (n=100,791) are waiting for a kidney transplant [2].

BD is an irreversible cessation of all brain functions associated with a systemic inflammation that causes a massive catecholamine release, leading to worse graft outcomes [3-5]. Therefore, strategies to increase the quantity and quality of donor organs have been studied and are of great interest [6-8]. One of the target points is the management of donor candidates with interventions to reduce damage caused by BD itself. It is known that BD is associated with a cascade of inflammatory reactions that can lead to donor organ dysfunction and has been associated with risk of rejection [9-12]. Despite the progressive improvement in kidney transplant graft survival rates in the last years, delayed graft Artigos em fase de submissão/finalização.

 The rs1800469 T/T and rs1800470 C/C genotypes of the *TGFB1* gene confer protection against diabetic retinopathy in a Southern Brazilian population.
 Autores: Aline Rodrigues Costa, Cristine Dieter, Luís Henrique Canani, Taís

<u>Autores:</u> Aline Rodrigues Costa, **Cristine Dieter**, Luis Henrique Canani, Tais Silveira Assmann, Daisy Crispim.

Artigo em fase de R1 na revista Genetics and Molecular Biology.

• Exenatide improves function of rat pancreatic islets exposed to inflammatory stress: an in vitro study

<u>Autores:</u> Natália Emerim Lemos, **Cristine Dieter**, Rodrigo Carlessi, Jakeline Rheinheimer, Bianca Marmontel de Souza, Cristiane Bauermann Leitão, Andrea Carla Bauer, Daisy Crispim.

Artigo em fase de R1 na revista Arquives of Endocrinology and Metabolism.

• Development of a polygenic risk score to predict the risk of type 1 diabetes mellitus in a Southern Brazilian population.

<u>Autores:</u> Felipe Mateus Pellenz, Taís Silveira Assmann, Mayara Souza de Oliveira, Guilherme Coutinho Kullmann Duarte, **Cristine Dieter**, Daisy Crispim.

PREMIAÇÕES NO PERÍODO DO DOUTORADO

- DESTAQUE no Seminário de Pós-Graduação do INOVAMUNDI 2022 / UNIVERSIDADE FEEVALE na Grande Área CIÊNCIAS DA SAÚDE com o trabalho "MicroRNAs na urina são potenciais biomarcadores para identificação de progressão de doença renal em pacientes com diabetes mellitus tipo 1". – Este trabalho está relacionado ao artigo 1 da presente tese.
- PRIMEIRO LUGAR GERAL no Seminário de Pós-Graduação do INOVAMUNDI 2022 / UNIVERSIDADE FEEVALE com o trabalho "MicroRNAs na urina são potenciais biomarcadores para identificação de progressão de doença renal em pacientes com diabetes mellitus tipo 1". – Este trabalho está relacionado ao artigo 1 da presente tese.
- Destaque de Melhor Apresentação Oral da 42ª Semana Científica do HCPA com o trabalho "The rs1799752/ACE1, rs12329760/TMRPSS2 and rs1990760/IFIH1 polymorphisms are associated with risk to COVID-19 severity in women". – Este trabalho está relacionado ao artigo intitulado "Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19", publicado na revista Genes (fator de impacto 4.141) em dezembro de 2022, com primeira autoria de Cristine Dieter.