
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

INSTITUTO DE INFORMÁTICA 

CURSO DE ENGENHARIA DE COMPUTAÇÃO 

 

 

 

 

 

GABRIEL LUCA NAZAR 

 

 

 

 

QR Decomposition Algorithms for MIMO 
Systems: Impact on Computational Effort 

and Hardware Implementations 
 

 

 

 

 

Trabalho de Diplomação. 
 
 
 
 
 
Prof. Dr. Luigi Carro 
Orientador 
 
 

 
 
 
 
 
 
 
 

Porto Alegre, abril de 2009.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 
Reitor: Prof. Carlos Alexandre Netto 
Vice-Reitor: Prof. Rui Vicente Oppermann 
Pró-Reitora de Graduação: Profa. Valquiria Link Bassani 
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner 
Coordenador do ECP: Prof. Gilson Inácio Wirth 
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro 

  



 

 

 

ACKNOWLEDGEMENTS 

I would like to thank Christina Gimmler and Prof. Dr.-Ing. Norbert Wehn, from TU 
Kaiserslautern, for the support and guidance during my stay in Germany. I would also 
like to thank Prof. Dr. Luigi Carro for being my advisor on this work after my return to 
Brazil. 

And last but not least, I would like to thank my family and friends for the support. 
And one very special thank to Bianca for always believing in me. 



 

 

 

 

CONTENTS 

LIST OF ABBREVIATIONS AND ACRONYMS ............................................ 6 

LIST OF FIGURES ........................................................................................ 7 

LIST OF TABLES .......................................................................................... 9 

RESUMO ..................................................................................................... 10 

ABSTRACT ................................................................................................. 11 

1 INTRODUCTION ................................................................................... 12 

1.1 Context and Motivation ............................................................................... 12 

1.2 Contributions ................................................................................................ 12 
1.3 Report Structure ........................................................................................... 13 
2 COMMUNICATION CHAIN MODEL ..................................................... 14 

2.1 Channel model .............................................................................................. 14 
2.2 The Sphere Decoding algorithm .................................................................. 15 
2.2.1 The usage of the QR decomposition....................................................... 16 

2.2.2 Sphere Shrinking .................................................................................... 18 

3 QR DECOMPOSITION ALGORITHM ................................................... 20 

3.1 The Gram-Schmidt process ......................................................................... 20 

3.2 Modified Gram-Schmidt process ................................................................ 21 

3.3 Sorted QR Decomposition ........................................................................... 24 

3.4 MMSE Pre-processing ................................................................................. 27 
3.4.1 Bias subtraction ...................................................................................... 29 

4 SIMULATION CHAIN AND RESULTS .................................................. 31 

4.1 Simulation parameters ................................................................................. 31 

4.2 Simulation results ......................................................................................... 32 
4.2.1 Effect of the quantization of the output .................................................. 32 

4.2.2 Effect of a Newton-Raphson iteration .................................................... 33 

4.2.3 Amount of bits necessary for 2×2 and 4×4 systems ............................... 34 

4.2.4 Effects of the sorted QR decomposition and sphere shrinking .............. 37 
4.2.5 Effects of the usage of the norm update method .................................... 38 

4.2.6 Comparison of different bias subtraction methods for MMSE .............. 39 
4.2.7 Reduced sphere radii for MMSE-SQRD ................................................ 40 

4.2.8 Comparison between ES and IS with reduced sphere ............................ 43 
4.2.9 Effects of error in the σ estimation for MMSE ...................................... 45 
4.2.10 MMSE-SQRD with constant σ ............................................................... 46 
4.3 Simulation results summary ........................................................................ 48 

5 HARDWARE ARCHITECTURES .......................................................... 49 

5.1 Unsorted QR Decomposition ....................................................................... 49 
5.1.1 Complex multiplier ................................................................................. 50 

5.1.2 Adder/Subtracter ..................................................................................... 51 

5.1.3 Inner product........................................................................................... 51 



 

 

 

5.1.4 Inverse square root.................................................................................. 52 

5.1.5 Vector operations .................................................................................... 55 

5.1.6 Matrices storage ...................................................................................... 55 

5.1.7 Top level architecture ............................................................................. 55 

5.1.8 Finite state machine ................................................................................ 56 

5.2 Sorted QR Decomposition ........................................................................... 57 
5.2.1 Matrix storage elements.......................................................................... 57 

5.2.2 Top level architecture ............................................................................. 58 

5.2.3 Finite state machine for SQRD ............................................................... 58 

5.3 MMSE Sorted QR Decomposition .............................................................. 59 
5.3.1 Storage element for the modified Q matrix ............................................ 59 

5.3.2 Top level architecture ............................................................................. 60 

5.4 Reduced order matrices ............................................................................... 60 

6 HARDWARE IMPLEMENTATION RESULTS ...................................... 62 

6.1 Timing results ............................................................................................... 62 
6.1.1 Real time requirements ........................................................................... 63 

6.2 Area results ................................................................................................... 63 
6.2.1 FPGA area results ................................................................................... 63 

6.2.2 ASIC area results .................................................................................... 65 

6.3 Comparison with high-level synthesis ........................................................ 66 

7 CONCLUSIONS .................................................................................... 69 

REFERENCES ............................................................................................. 70 

APPENDIX ................................................................................................... 72 
  



 

 

 

 

LIST OF ABBREVIATIONS AND ACRONYMS 

ASIC Application Specific Integrated Circuit 

BCJR Bahl, Cocke, Jelinek and Raviv 

CS Constant Sphere 

ES Early Subtraction 

FER Frame Error Rate 

FPGA Field-Programmable Gate Array 

FSM Finite State Machine 

IS Intermediate Subtraction 

LDPC Low-Density Parity Check 

LLR Logarithmic Likelihood Ratio 

LS Late Subtraction 

LUT Look-Up Table 

MAP Maximum A-Posteriori 

MIMO Multiple Input Multiple Output 

MMSE Minimum Mean-Square Error 

NR Newton-Raphson 

NU Norm Update 

OSS Ordered Sphere Shrinking 

PED Partial Euclidean Distance 

QAM Quadrature Amplitude Modulation 

SISO Soft Input Soft Output 

SNR Signal-to-Noise Ratio 

SQRD Sorted QR Decomposition 

SS Sphere Shrinking 

VHDL Very-high-speed integrated circuit Hardware Description Language 

 

 



 

 

 

LIST OF FIGURES 

Figure 2.1: System model ............................................................................................... 14 
Figure 2.2: Tree search for a system with 4-QAM and 4×4 antennas ............................ 17 

Figure 2.3: Sphere shrinking example for a 4×4 antennas system with 4-QAM ........... 19 

Figure 3.1: Gram-Schmidt process for two vectors ........................................................ 20 

Figure 3.2: Average PED increase and average number of visited nodes per layer for a 
4×4 system, with 16-QAM and a SNR of 12dB ............................................................. 24 

Figure 3.3: Average PED increase variance per layer for a 4×4 system, with 16-QAM 
and a SNR of 12dB ......................................................................................................... 25 
Figure 3.4: Receiver modified for SQRD usage............................................................. 27 

Figure 3.5: Average PED increase and average number of visited nodes per layer for a 
4×4 system, with 16-QAM and a SNR of 12dB ............................................................. 28 

Figure 3.6: Average PED increase variance per layer for a 4×4 system, with 16-QAM 
and a SNR of 12dB ......................................................................................................... 28 
Figure 4.1: Effect of the quantization of the output in a 4×4 antennas system .............. 32 

Figure 4.2: FER improvement due the use of one Newton-Raphson iteration .............. 33 

Figure 4.3: Different amounts of fractional bits in a 4×4 antennas system .................... 34 

Figure 4.4: Different amounts of integer bits in a 4×4 antennas system ........................ 35 

Figure 4.5: Different amounts of fractional bits in a 2×2 antennas system .................... 35 

Figure 4.6: Different amounts of integer bits in a 2×2 antennas system ........................ 36 

Figure 4.7: FER for different algorithms with floating point in a 4×4 antennas system 37 

Figure 4.8: Average amount of visited nodes with floating point and 4×4 antennas ..... 38 

Figure 4.9: FER for different number formats using the norm update (NU) technique . 38 

Figure 4.10: FER for different bias subtraction techniques............................................ 39 

Figure 4.11: Average amount of visited nodes for different bias subtraction techniques
 ........................................................................................................................................ 40 

Figure 4.12: FER for different sphere radii in using early bias subtraction ................... 41 

Figure 4.13: Visited nodes for different sphere radii in using early bias subtraction ..... 41 

Figure 4.14: FER for different sphere radii in using intermediate bias subtraction ....... 42 

Figure 4.15: Visited nodes for different sphere radii in using intermediate bias 
subtraction ...................................................................................................................... 42 

Figure 4.16: Normalized executions and average visited nodes for each big loop 
iteration with 13dB and different constant sphere radii ................................................. 43 

Figure 4.17: FER for each bias subtraction method with its minimum sphere radius ... 44 

Figure 4.18: Visited nodes for each bias subtraction method with its minimum sphere 
radius .............................................................................................................................. 44 

Figure 4.19: FER for full fixed point systems with sigma estimation error ................... 45 

Figure 4.20: Average amount of visited nodes for full fixed point systems with sigma 
estimation error ............................................................................................................... 46 
Figure 4.21: FER for MMSE-ES with different constant σ values ................................ 47 



 

 

 

 

Figure 4.22: Average visited nodes for MMSE-ES with different constant σ values .... 47 
Figure 5.1: Complex multiplier schematic ..................................................................... 50 
Figure 5.2: Rounding and saturation schematic for a 2.3 format ................................... 50 

Figure 5.3: Comparison of truncation (top) and rounding (bottom) .............................. 51 

Figure 5.4: Sequential inner product block .................................................................... 52 
Figure 5.5: Combinational inner product block, for a N=4 system ................................ 52 

Figure 5.6: Inverse square root approximation hardware structure ................................ 53 

Figure 5.7: Inverse square root with improved approximation and overflow check ...... 54 

Figure 5.8: Basic matrix storage block ........................................................................... 55 
Figure 5.9: Top level architecture for unsorted QR decomposition ............................... 56 

Figure 5.10: Simplified FSM for the unsorted QR decomposition hardware ................ 57 

Figure 5.11: Swapping hardware for one row ................................................................ 58 
Figure 5.12: Top level architecture for sorted QR decomposition ................................. 58 

Figure 5.13: Simplified FSM to perform the SQRD algorithm ...................................... 59 

Figure 5.14: Top level architecture for the MMSE-SQRD algorithm ............................ 60 

Figure 6.1: Amount of cycles for each QR decomposition version ............................... 62 

Figure 6.2: Slice LUTs and registers for different algorithms in FPGA ........................ 64 

Figure 6.3: FPGA area results for QRD using different number formats ...................... 64 

Figure 6.4: ASIC area results for different algorithm versions and clock frequencies .. 65 

Figure 6.5: ASIC area results for QRD using different number formats and clock 
frequencies ...................................................................................................................... 66 

Figure 6.6: Comparison between Catapult and manual VHDL implementations .......... 67 

Figure 6.7: Latency-area product for Catapult and manual VHDL implementations, in 
millions of ns.µm2 ........................................................................................................... 67 
Figure 6.8: Area, latency and latency×area comparison between manual VHDL and 
Catapult versions synthesized with Synopsys DC .......................................................... 68 

 



 

 

 

LIST OF TABLES 

Table 4.1: Default parameters for simulations ............................................................... 32 
Table 4.2: Parameters for simulations in Figure 4.1....................................................... 33 
Table 4.3: Parameters for simulations in Figure 4.2....................................................... 33 
Table 4.4: Parameters for simulations in Figure 4.3....................................................... 34 
Table 4.5: Parameters for simulations in Figure 4.4....................................................... 35 
Table 4.6: Parameters for simulations in Figure 4.5....................................................... 36 
Table 4.7: Parameters for simulations in Figure 4.6....................................................... 36 
Table 4.8: Parameters for simulations in Figures 4.7 and 4.8 ........................................ 38 

Table 4.9: Parameters for simulations in Figure 4.9....................................................... 39 
Table 4.10: Parameters for simulations in Figures 4.10 and 4.11 .................................. 40 

Table 4.11: Parameters for simulations in Figures 4.12 and 4.13 .................................. 41 

Table 4.12: Parameters for simulations in Figures 4.14 and 4.15 .................................. 43 

Table 4.13: Parameters for simulations in Figures 4.17 and 4.18 .................................. 44 

Table 4.14: Parameters for simulations in Figures 4.19 and 4.20 .................................. 46 

Table 4.15: Parameters for simulations in Figures 4.21 and 4.22 .................................. 47 

 

 

  



 

 

 

 

Algoritmos de decomposição QR para sistemas MIMO: Impacto no 
esforço computacional e implementações de hardware 

RESUMO 

Dentre as abordagens para se atingir altas taxas de transmissão em sistemas de 
comunicação sem fio, uma se destaca como muito promissora: sistemas de múltiplas 
antenas (ou Multiple Input Multiple Output – MIMO), nos quais a informação é 
transmitida e recebida por mais de uma antena. Tais sistemas podem atingir altas taxas 
de transmissão usando, entre outras possibilidades, algoritmos de sphere decoding para 
decodificar os símbolos MIMO recebidos. 

Para diversos algoritmos para detecção MIMO, tal como sphere decoding, uma 
variação do algoritmo de Fincke-Pohst (FINCKE, 1985), é necessário ter um hardware 
eficiente de decomposição QR, uma vez que esse é utilizado cada vez que a resposta 
impulsiva do canal modifica-se significativamente. E para obter-se uma implementação 
eficiente é necessário utilizar uma representação com ponto fixo para as matrizes, tanto 
por motivos de área quanto de latência. 

Evidentemente, a perda de precisão resultante do uso de ponto fixo introduz erros 
nas matrizes calculadas, e é provável que isso leve a um aumento na taxa de erros de 
quadros (FER). Um dos propósitos deste trabalho é determinar a quantidade mínima de 
bits necessária para manter esse aumento suficientemente baixo. Este trabalho também 
avalia a redução no esforço computacional para execução de detecção MIMO por 
algoritmos baseados em busca em árvore resultante do uso de versões melhoradas do 
algoritmo de decomposição QR. Mais especificamente, a sorted QR decomposition 
(SQRD) e a minimum mean-square error SQRD são avaliadas. 

O outro propósito deste trabalho é projetar arquiteturas de hardware capazes de 
computar a decomposição QR e suas variações para matrizes pequenas, tipicamente de 
2ª e 4ª ordem. Também é importante obter uma descrição em VHDL desse hardware e 
comparar resultados de área e latência das diferentes versões. 

 
 

 

 

 
 

Palavras-Chave: Decomposição QR, SQRD, MMSE-SQRD, Sphere Decoding. 



 

 

 

ABSTRACT 

Among the approaches to achieve high data rates in wireless systems, one rises as 
very promising: multiple-antenna systems (or Multiple Input Multiple Output – MIMO), 
in which the information is transmitted and received by multiple antennas. Such systems 
can achieve high data rates with using, among other possible choices, sphere decoding 
algorithms to decode the received MIMO symbols. 

For many algorithms used for MIMO detection, such as sphere decoding, a variation 
of the Fincke-Pohst Algorithm (FINCKE, 1985), it is required to have an efficient QR 
decomposition hardware, since it is used each time the channel impulse response 
changes significantly. And to achieve an efficient hardware implementation it is 
necessary to use a fixed point representation for the matrices, both for area and latency 
purposes. 

Evidently, the loss in precision resultant from fixed point precision introduces errors 
in the output matrices, and this is likely to lead to an increase in the frame error rate 
(FER). One of the purposes of this work is to determine the minimum amount of bits 
both for fractional and integer parts that are necessary to keep this increase sufficiently 
low. This work also evaluates the complexity reduction resultant from improved 
versions of the QR decomposition in tree-based search algorithms. More specifically, 
the sorted QR decomposition (SQRD) and the minimum mean-square error SQRD are 
evaluated. 

The other main purpose of this work is to come up with hardware architectures 
capable of computing the QR decomposition and its improved versions (SQRD and 
MMSE-SQRD) for small matrices, typically of 2nd and 4th order. It is also important to 
have a fully functional VHDL description of this hardware and compare the different 
versions regarding area and latency. 

 

 

 

 

 

 

 

Keywords: QR decomposition, SQRD, MMSE-SQRD, Sphere Decoding. 



 

 

12 

 

1 INTRODUCTION 

1.1 Context and Motivation 
Devices such as smart phones, laptops and other similar mobile communication 

gadgets are becoming growingly common. The applications heterogeneity is also 
increasing, since such devices can be used from applications as simple as sending text 
messages or reading e-mail up until watching live video streams. Many of these 
applications, especially those involving multimedia streams, require high data rates to 
be performed with satisfactory quality. Therefore, there is an increasing demand for 
devices able to transmit and receive efficiently at high speed and better techniques are 
required to increase spectral efficiency, while reducing error rates and decoding 
complexity. 

In order to reach the expected data rates for future wireless systems, multiple-input 
multiple-output (MIMO) systems rise as one of the most promising techniques 
(GIMMLER, 2007), (LUETHI, 2008). In MIMO systems, multiple transmit antennas 
send MIMO symbols over the channel in the same frequency band, which are received 
also by multiple antennas. Such systems are especially attractive due to their high 
spectral efficiency (TELATAR, 1999). On the other hand, these systems have the 
drawback of increased complexity in the receiver, since it is responsible for determining 
which modulation symbol was sent by each transmit antenna. 

Many different algorithms can be used to reduce the complexity of detecting MIMO 
symbols, such as sphere decoding and successive interference cancellation. For many of 
these algorithms, the QR decomposition is a critical operation to ensure a good quality 
of the successive decoding steps. Also, improved versions of the QR decomposition can 
be used to further improve the detection quality, reducing frame error rates or 
computational effort, depending on the detection algorithm used (WÜBBEN, 2001), 
(MENNENGA, 2009). A number of different QR decomposition architectures were 
proposed in other works, such as (SALMELA, 2008) and (LUETHI, 2008). In these 
works, however, the results are presented regarding the architecture itself, not 
addressing the overall system performance. 

1.2 Contributions 
The extended versions of the QR decomposition evaluated, namely the sorted QR 

decomposition (SQRD) and the minimum mean-square error SQRD (MMSE-SQRD) 
can reduce the total computational effort associated with detecting a MIMO symbol, 
when tree-search based algorithms are used (MENNENGA, 2009). However, the actual 
reduction that can be achieved must still be measured and compared for each different 
version, concerning the complete communication chain. Also, the cost of using these 
algorithms must be evaluated, regarding increase in area and decomposition latency. 



 

 

13 

 

 

Therefore, in this work the computational effort and error rates of different versions 
of the QR decomposition are measured using a communication chain model. In order to 
obtain a fixed point implementation that is sufficiently precise, the error rates of 
different quantizations is also analysed. 

A new QR decomposition hardware architecture is presented. The proposed 
architecture is extended to perform the SQRD and MMSE-SQRD. The implementation 
results are presented, regarding total area and latency, which is compared to the 
requirements of a real system’s real time requirements. The results are also compared to 
those obtained from a high-level synthesis tool, the Mentor Graphics Catapult C. 

1.3 Report Structure 
The remainder of this report is structured as follows. Chapter 2 presents the 

communication chain model and briefly describes each of its components. Chapter 3 
describes the chosen QR decomposition algorithm and the investigated improvements. 
Chapter 4 explains the different simulation parameters and presents several simulation 
results. In chapter 5 the QR decomposition hardware architectures are presented and 
each of the required components is described. Chapter 6 analyses the area and timing 
results of the hardware implementations for FPGAs and ASICs. Finally, chapter 7 
presents the conclusions. 



 

 

14 

 

2 COMMUNICATION CHAIN MODEL 

In order to evaluate the functionality and the results obtained from modifications 
applied to the system, a communication chain model is required. The used model 
consists of: source, channel encoder, interleaver, QAM mapper, channel, sphere 
decoder, de-interleaver and channel decoder. 

Figure 2.1 shows the basic chain. The source generates a random bit sequence b, in 
which each bit has an equal probability of being 1 or 0. This generated sequence is the 
input of the channel encoder, which can use many different algorithms, such as LDPC 
or convolutional codes. Since the evaluation of such algorithms is not in the scope of 
this work, only the latter is used. The used convolutional code has 64 states, and it is 
non-systematic, non-recursive and uses the Maxlog MAP (BCJR) algorithm. The 
encoded sequence c' is then interleaved. The interleaved sequence c is then mapped into 
a complex QAM symbols vector s by the QAM mapper, and then transmitted by NT 
antennas over a noisy channel with Rayleigh fading, to be received by NR antennas. 

The received sequence y is then decoded by the sphere decoder, de-interleaved and 
then decoded by the channel decoder. This process is repeated iteratively, in the called 
big loop iterations. During this process, the sphere and channel decoders exchange 
logarithmic likelihood ratios (LLRs), which express the belief of each decoder for each 
bit being 1 or 0. The extrinsic information vector eSD, generated by the sphere decoder, 
is de-interleaved and then decoded by the channel decoder, which has two outputs: the 

b̂ bit vector, and the extrinsic information vector e'CD. The latter is interleaved and 
used by the sphere decoder in the next big loop iteration. Both decoders are called soft-
input soft-output (SISO) decoders. 

 

Figure 2.1: System model 

2.1 Channel model 
The channel model describes how the transmitted symbols are modified before the 

reception. Typically it involves the addition of noise and, for the multiple antennas case, 
the multiplication by a channel impulse response matrix H. 

When compared to the one used in (GIMMLER, 2007), one important change was 
made in the channel model. Instead of 

Source
Channel 
Encoder

π
QAM 

Mapper
Channel

Sphere 
Decoder

π-1 Channel 
Decoder

π

b c’ c s y eSD e’SD

eCD e’CD

b̂



 

 

15 

 

 

nHs
N

SNR
y

T

+=  

 was used the model 

 

 

  y : NR × 1, received symbol vector 

  H : NR × NT, complex channel matrix 

  s : NT × 1, transmitted symbol vector 

  n : NR × 1, additive gaussian complex noise 

This means that, instead of scaling the H matrix with the signal to noise ratio, the 
noise vector is divided by this same ratio. With this change we get a more predictable 
range for the values in H, since it is no longer scaled by the SNR. The other main 
difference caused by this change is the alteration of the sphere radius (SIMHA S, 2009), 
being much smaller than in (GIMMLER, 2007). 

The H matrix and the noise vector n are both constituted of complex random values, 
with mean zero and unit variance. In the rest of this work it is assumed that NR = NT = 
N. 

2.2 The Sphere Decoding algorithm 
The sphere decoder has the purpose of determining the logarithmic likelihood ratio 

LD of each bit bj in the received complex vector y. This numbers form a vector which 
represents the belief of the sphere decoder for each bit being 1 or 0. 

)1(

)0(
ln)(

=
=

=
j

j
jD bP

bP
bL  

This means that, if LD(bj) > 0, the hard-decision is bj = 0 and it is bj = 1 if LD(bj) < 0. 
Accordingly, if LD(bj) = 0, no information can be extracted, as P(bj = 0) = P(bj = 1). 

To determine the probability of each bit being 1 or 0, a search has to be performed 
through the solution space, where the distances between the received vector and the 
possible solutions in the discrete QAM constellation are considered. Assuming that the 
receiver knows the channel matrix H, the squared Euclidean distance between the 
received y vector and each possible solution vector s is: 

2
)( Hsysd −=

 

This distance is then updated with the logarithmic probabilities for each bit 
calculated in the previous big loop iteration by the channel decoder, and the sphere 
decoder then tries to find the symbol vector which results in the minimum distance: 

))(log)(min( ∑−
j

jbPsd
 

SNR

n
Hs

N
y

T

+= 1

(2.1) 

(2.2) 

(2.4) 

(2.5) 

(2.3) 



 

 

16 

 

Where P(bj) denotes the probability of the jth bit having the value that was assumed 
for it in s. In other words, the purpose of this operation is to reduce the distance of the 
symbols that the channel decoder agrees with. However, these logarithmic probabilities 
are not used in this work. Instead, logarithmic likelihood ratios (LLRs) are used to 
approximate this value. The search performed by the sphere decoder then becomes: 

)),()(min( ∑+
j

jj baLLRsd
 

where aj is the a-priori information received from the channel decoder. The 
straightforward approach to find these minimum values is to try all possible values for s. 
However, it is clear that the computational effort required to analyse each possible s 
vector makes this approach very ineffective. For example, in a system with 4×4 
antennas and a 16-QAM constellation, we would have 164 = 65536 possibilities. A 
variation of the Fincke-Pohst algorithm can be used to reduce this problem, analyzing 
through a tree search only the elements that reside inside a sphere of a given radius. 
This reduces the search space and makes it possible to recursively calculate the squared 
Euclidean distance using partial Euclidean distances (PEDs). In order to do so, the 
equation for the distance needs to be modified, using the QR decomposition of matrix 
H. This will be further discussed in section 2.2.1. 

The output of the sphere decoder is also logarithmic likelihood ratios. They are 
calculated, however, as the difference of the minimum distance for this bit being 1 and 
0: 

jjj 0min1min −=Λ  

These values keep the properties described for the LD values in equation 2.3. 

Because during the big loop iterations only the new information discovered by the 
sphere decoder should be sent forward to the channel decoder, the added a-priori 
information aj of bit bj must be subtracted from the difference of the minima vectors, to 
form the output eSD. 

jjjSD ae −Λ=  

Since Λj is calculated as the mentioned difference, the a-priori information must be 
added in a manner that maintains the property in equation 2.9, so that its subtraction 
effectively removes its value from the result: 

jjjjj abaLLRbaLLR ==−= )0,()1,(  

Therefore, the purpose of the LLR function in equation 2.6 is to transform the aj 
values received in a vector which respects the property in 2.9. Several different 
implementations for this function are discussed in (GIMMLER, 2007). In this work, the 
version used adds only the a-priori information of bits that are 1: 

( )






=

=
=

0,0

1,
,

j

jj

jj b

ba
baLLR

 

2.2.1 The usage of the QR decomposition 

In order to simplify the calculation of the distance between the received vector and 
other constellation point vectors, the QR decomposition can be employed: 

(2.6) 

(2.10) 

(2.9) 

(2.8) 

(2.7) 



 

 

17 

 

 

2

2

2

)(

)(

)(

RsyQsd

QRsysd

Hsysd

H −=

−=

−=

 

The QR decomposition of a matrix H is a mathematical operation that generates two 
matrices, namely Q and R, which have the following properties: 

i) The columns of Q are orthogonal (or orthonormal). That means the inner product 
of any two columns of Q is zero, and the inner product of a column with itself is one 
(for the orthonormal case). From this fact derives the useful property that the inverse of 
Q is its transpose (or Hermitian transpose, if Q is complex). 

ii)  R is an upper-triangular matrix. That means that any element under the main 
diagonal is zero. 

iii) Finally, the product of Q and R must be H. 

QRH =  

Using these definitions, a tree search can then occur in a tree with N+1 levels, with 
each level after the first standing for one element of the solution vector s and with each 
node having M children, where M is the number of possible constellation points in the 
used QAM modulation, as in Figure 2.2. 

 

Figure 2.2: Tree search for a system with 4-QAM and 4×4 antennas 

Starting at the root with a PED TN(s(N)) = 0, it is possible do build the tree 
downwards calculating the distances Ti(s

(i)) recursively. Once a leaf node is reached, its 
distance T0(s

(0)) is actually the distance for the whole symbol sequence that connects it 
to root node. The a-priori information from the previous big loop iteration can also be 
added during process. 

The partial Euclidean distances Ti(s
(i)) are calculated recursively with the equation: 

T4

T3

T2

T1

T0

+|e3(s(3))|2

+|e2(s(2))|2

+|e1(s(1))|2

+|e0(s(0))|2

T4(s(4))=0

(2.11) 

(2.12) 

(2.13) 

(2.14) 



 

 

18 

 

2)()1(
1

)( )()()( i
i

i
i

i
i sesTsT += +

+  

The partial increases |ei(s
(i))|2, already adding the a-priori information for the 

relevant bits, are obtained with: 

∑∑ +−=
−

= k
kk

N

ij
jiji

i
i baLLRsRyse ),(ˆ)(

2
12)(  

yQy H=ˆ  

Where k iterates the bits which form the current symbol si. To emphasize the effect 
of si in the partial Euclidean distance increase, equation 2.16 can be rewritten as: 

( )( ) ∑+−= +
+

k
kkiii

i
i

i
i baLLRsRsbse ),()(

2

,
1

1

2)(

 

( )( ) ∑
−

+=

+
+ −=

1

1
,

1
1 ˆ

N

ij
jjii

i
i sRysb  

Note that equation 2.19 is equal for all brother nodes. 

The sphere radius can be applied during this search: an intermediary node with a 
high PED can have its whole sub-tree excluded from the search, reducing the amount of 
evaluated possibilities and saving computational time. 

2.2.2 Sphere Shrinking 

One important improvement that can be applied to the sphere decoding algorithm is 
sphere shrinking. The main purpose of this technique is to reduce the amount of visited 
nodes by reducing the sphere radius as the tree search proceeds. 

At any given stage of the tree search, it is possible to determine the maximum value 
of the distance of a leaf node that may cause an alteration in the minima vectors. The 
sphere shrinking radius SSR is equal to the largest value currently in a minima vector, 
since that any distance larger than this will not modify any position in the vectors and is, 
therefore, irrelevant for the output. Thus, if a node reaches this value at any point of the 
search, one can know that the entire sub-tree below it is irrelevant – which is the same 
as redefining the sphere radius. Evidently, if the initial radius ISR is smaller than this 
new value, it is kept. 

( )SSRISRSR ,min=  

( ) ( )( )10 minmax,minmaxmax=SSR  

At this point, however, it is important to consider the manner in which the a-priori 
information is added, as it can be negative. This means that an intermediate node which 
lies outside the sphere can have a final point (or leaf node) under it which would cause 
an update in a minima vector, since negative a-priori information can cause the distance 
of a given branch in the tree to actually decrease as the search proceeds, provided it 
overcomes the positive PED. Even though this may occur with considerable frequency, 
its influence in the final error rates is not significant. 

Among the LLR functions presented in (GIMMLER, 2007), one ensures that the a-
priori information is always positive (equation 2.22), which does not happen when 

(2.15) 

(2.16) 

(2.17) 

(2.21) 

(2.20) 

(2.18) 

(2.19) 



 

 

19 

 

 

equation 2.10 is used. However, equation 2.10 has other advantages: the amount of 
additions done is only the half of equation 2.22 and it needs to visit fewer nodes to 
achieve the same FER performance (GIMMLER, 2007). 

( )








<∧=−

≥∧=

=

otherwise

aba

aba

baLLR jjj

jjj

jj

,0

00,

01,

,  

Other improvements can be applied to the sphere shrinking. As the search proceeds 
down the tree, decisions are made for the value of each bit. This means that leaf nodes 
reached in the current sub-tree cannot affect the minima of the other value for the 
already decided bits. Hence, the definition of the SSR in equation 2.21 can be further 
improved to consider only the minima of the chosen values for the bits that lie upwards 
in the tree. Bits that are still to have their values chosen down the tree must have both 
minima considered. Figure 2.3 illustrates this for a system with 4×4 antennas and 4-
QAM. Consider that the tree search is currently in the gray node, labelled T1, and needs 
to evaluate whether it is inside the sphere or not. The first six bits of the sequence 
already have their values defined, and therefore only those values can have their minima 
changed. The last two, on the other hand, are still undefined. For this reason, only the 
minima in gray need to be considered to determine the current radius, as they are the 
only ones that are eligible to be changed. The maximum value in the gray painted 
positions will be used as the sphere radius. 

 

Figure 2.3: Sphere shrinking example for a 4×4 antennas system with 4-QAM 

 The last improvement of the sphere shrinking to be considered in this work is the 
ordering of the child nodes. This is called ordered sphere shrinking. The idea is to 
always choose the node with the smallest PED as the first candidate when descending 
the tree. This is a greedy algorithm used to obtain quickly leaf nodes with reasonably 
small distances and hence speed-up the shrinkage of the tree, further reducing the 
average amount of visited nodes. 

T4

T3

T2

T1

11

10

00

min0 min1Bits

7

6

5

4

3

2

1

0

(2.22) 



 

 

20 

 

3 QR DECOMPOSITION ALGORITHM 

  The QR decomposition of a matrix H is defined as the matrices Q and R, where Q 
has orthonormal columns, R is upper-triangular and H=QR. There are many different 
algorithms to compute the QR decomposition, such as using the Gram-Schmidt process, 
Householder reflections or Givens rotations and variations (GOLLUB, 1996). In this 
work, the Gram-Schmidt process is used, due to its simplicity and vast use in previous 
works, such as (SALMELA, 2008), (WÜBBEN, 2001) and (LUETHI, 2008). 

3.1 The Gram-Schmidt process 
The Gram-Schmidt process initially orthogonalizes a set of vectors by subtracting 

the projection of one on the other. Figure 3.1 shows the process for two vectors. 

 

Figure 3.1: Gram-Schmidt process for two vectors 

 To perform the process, the definitions of inner product and vector projection are 
necessary. Since we are working in an Euclidean space, the inner product of two vectors 
h and u is defined as the dot product: 

[ ] [ ] [ ] [ ] [ ] [ ]NuNhuhuhuh ....2.21.1, +++=  

If the vectors are complex, which is the case here, a slight alteration in this equation 
is necessary, where conj denotes the complex conjugate of a number: 

[ ] [ ] [ ] [ ] [ ] [ ]NuNhconjuhconjuhconjuh ).(...2).2(1).1(, +++=  

The projection of a vector h on a vector u can be defined as: 

u
uu

hu
hproju ,

,
)( =  

Given these definitions, the Gram-Schmidt process is computed as follows, 
iteratively subtracting the projection of each vector on the others: 

u1 = h1

proju1(h2)

h2
u2 = h2 - proju1(h2)

e2

e1

(3.1) 

(3.2) 

(3.3) 



 

 

21 

 

 

∑
−

=

−=

−−=
−=

=

1

1

323133

2122

11

)(

)()(

)(

k

j
kujkk

uu

u

hprojhu

hprojhprojhu

hprojhu

hu

M

 

We can consider that the vectors hk are the columns of the input matrix H = (h1, h2, 
…, hN), which were transformed into a set of orthogonal vectors uk. This set of vectors 
can be then transformed into an orthonormal set by dividing each element by its own 
modulus: 

k

k
k u

u
e =  

Since the inner product of two vectors is directly proportional to the norm of each 
vector, and the inner product of a vector with itself is its squared norm, the projections 
in equation 3.4 can be rewritten as: 

jkjj

j

kj

j

j

kj

ku ehee
u

hu
u

u

hu
hproj

j
,

,,
)(

2
===  

Equation 3.4 can be rewritten using equation 3.6, the fact that iiii uehe =, , since ei 

has norm 1 and is collinear to ui, and isolating the elements hk: 

∑
=

=

++=

+=

=

k

j
jkjk eheh

eheeheeheh

eheeheh

eheh

1

3332321313

2221212

1111

,

,,,

,,

,

M

 

Rewriting the above equations in matrices results in: 

( )




















=

NN

N

N

N

he

hehe

hehehe

eeeH

,0

00

...,0

,...,,

.|...|| ,222

12111

21

MM

MO

 
As the vectors ek are orthonormal and the second matrix in the above product is 

upper triangular, it can be seen that the first and second matrices in the right hand side 
of equation 3.8 are, respectively, Q and R. 

3.2 Modified Gram-Schmidt process 
The direct application of the Gram-Schmidt process in a system with finite precision 

(such as any computational system) yields poor results. More specifically, the 

(3.4) 

(3.5) 

(3.7) 

(3.8) 

(3.6) 



 

 

22 

 

orthogonality of the columns of Q is seriously damaged as the precision is reduced 
(GOLLUB, 1996).  

These results can be improved by an alteration in the ordering in which the 
calculations are done, resulting in the algorithm called Modified Gram-Schmidt (MGS) 
(GOLLUB, 1996), which calculates, at each iteration of its external loop, one column of 
the Q matrix and one row of the R matrix. 

Let H denote the input matrix, hk denote the kth column of H and qk
 H denote the 

Hermitian transpose of qk. A pseudo-code for this algorithm is: 

  R = 0 

  for  k=0:N-1 

   R(k, k) = || hk || 

   qk = hk / R(k, k) 

   for  j=k+1:N-1 

    R(k, j) = qk
 H. hj 

    hj = hj – qk .R(k, j) 

   end 

  end 

Algorithm 1: Modified Gram-Schmidt Process (MGS) 

This version of the algorithm, however, has some visible hardware implementation 
issues. First, it requires the calculation of the norm of a vector, which implies the need 
of a square root hardware. Second, there is the need for a division hardware. And, if this 
vector division operation is ever to be parallelized, then many instances of this hardware 
would be required. 

One approach to avoid these implementation issues is presented at (SALMELA, 
2008). Instead of calculating the norm of the vector, the inverse square root is calculated 
directly. This allows the replacement of the divisions by multiplications. The actual 
square root, necessary to form the main diagonal of the R matrix, can be calculated 
using the mathematical property: 

x
xxxxx

12/12/1 === −  

This means that multiplying the input and the output of the inverse square root 
hardware results in the square root of the input. The gain in area from this alteration can 
be even larger if an approximation hardware is used, rather than an exact one, to 
calculate the inverse square root. The hardware used for this purpose is further 
discussed and presented in chapter 5. However, in order to keep this approximation 
close enough to the correct result, numeric methods such as the Newton-Raphson 
method can be used. 

Given a function f(y), its derivative f’(y) and an initial guess for a root y0, the 
Newton-Raphson method can be used to improve this guess, iteratively finding a better 
root approximation (PRESS, 1992): 

(3.9) 



 

 

23 

 

 

)('

)(
1

i

i
ii yf

yf
yy −=+  

The equation for the inverse square root must then be rewritten: 

x
y

y
x

=

=

2

1

1

 

Then the function f(y) must be defined in a way that when f(y) = 0, y = x/1 : 

x
y

yf −=
2

1
)(  

Its derivative is: 

3

2
)('

y
yf

−=  

By applying 3.13 and 3.14 to 3.10, equation 3.15 is obtained: 

22

3

1

xyy
yy ii

ii −+=+  

This equation can be applied iteratively to make y a better approximation of the 
inverse square root of x. In this work, only one iteration was considered. 

Let isqrt_i and isqrt_o denote, respectively, the input and the output of the inverse 
square root hardware. The again modified algorithm, now using the inverse square root 
and multiplications, becomes: 

  R = 0 

  for  k=0:N-1 

   isqrt_i = hk
 H. hk 

   isqrt_o = 1/√isqrt_i 

   R(k, k) = isqrt_i.isqrt_o 

   qk = hk .isqrt_o 

   for  j=k+1:N-1 

    R(k, j) = qk
 H. hj 

    hj = hj – qk . R(k, j) 

   end 

  end 

Algorithm 2: MGS modified for hardware implementation 

This algorithm has yet the undesired property that the input matrix H is altered 
during its execution and therefore it would need to be copied by the hardware to an 
internal memory. However, after the kth column of Q is calculated, the kth column of the 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 



 

 

24 

 

copy of H is no longer used. For this reason, also as suggested in (GOLLUB, 1996), this 
code can be further improved with the merge of this copy of the input matrix and Q. 
Therefore, Algorithm 3 is also functional, given that Q is initialized with the input 
matrix: 

  R = 0; Q = H 

  for  k=0:N-1 

   isqrt_i = qk
 H. qk 

   isqrt_o = 1/√isqrt_i 

   R(k, k) = isqrt_i.isqrt_o 

   qk = Q(0:N-1, k).isqrt_o 

   for  j=k+1:N-1 

    R(k, j) = qk
 H. qj 

    qj = qj – qk . R(k, j) 

   end 

  end  

Algorithm 3: MGS with improved memory usage 

3.3 Sorted QR Decomposition 
The order in which the transmitted signals are evaluated can affect the performance 

of the sphere decoding algorithm (STUDER, 2008). This order can be modified using 
the sorted QR decomposition (SQRD) algorithm. 

The intent of the SQRD is to sort the elements of main diagonal of R, Rk,k, 
decreasingly in the order of evaluation of the sphere decoding algorithm, i.e. from the 
bottom right corner to the top left corner. The benefits of doing so can be seen in 
equation 2.18: the larger Rk,k is, the more different will the PED increases of each 
brother node be, as Rk,k can amplify the value of si and thus improve the range of the 
search. This effectively increases the average PED and average PED variance in the 
layers closer to the root, which will result in more branches reaching the sphere radius 
in the top layers and therefore being left out of the search. 

 
Figure 3.2: Average PED increase and average number of visited nodes per layer for 

a 4×4 system, with 16-QAM and a SNR of 12dB 

0

0,5

1

1,5

2

2,5

3

3 2 1 0

P
E

D
 in

cr
ea

se

Tree layer

Unsorted QR
Sorted QR

1

10

100

1000

10000

3 2 1 0

V
is

ite
d 

no
de

s

Tree layer

Unsorted QR
Sorted QR



 

 

25 

 

 

 
Figure 3.3: Average PED increase variance per layer for a 4×4 system, with 16-

QAM and a SNR of 12dB 

Also, as we get closer to the leaf nodes, the PED increases become smaller than 
those of the unsorted QR decomposition system. This leads to the evaluation of almost 
the same amount of leaf nodes, which are the ones that actually define the output. 
Figure 3.2 shows the average partial Euclidean distance and amount of visited nodes per 
tree layer for a 4×4 16-QAM system with 12dB of SNR. Figure 3.3 shows the average 
variance. Both variations use a constant sphere radius of 0.8 and present similar frame 
error rates. 

The SQRD algorithm used in this work is based on the one presented in (WÜBBEN, 
2001). As the elements Rk,k are calculated in the inverse order of their usage in the 
sphere decoder, the algorithm tries to minimize each element it calculates. Inspecting 
Algorithm 3, one can realize that these elements are calculated from the norm of the 
columns of Q, which was initialized with the input matrix. This SQRD algorithm 
chooses, before calculating each Rk,k, the column of Q with the smallest norm and 
swaps it with the kth column. The same exchange is done in R and p, which is the 
permutation vector. It is initialized with 0, 1, …, N-1 and in the end of the computation 
it will have a record of the swaps that were done. 

  R = 0; Q = H 

  for  k=0:N-1 

   i = arg 
1:

min
−= Nkj

|| qj ||
 2 

   Exchange columns k and i in Q, R and p 

   R(k, k) = || qk || 

   qk = qk / R(k, k) 

   for  j=k+1:N-1 

    R(k, j) = qk
 H. qj 

    qj = qj – qk.R(k, j) 

   end 

  end 

Algorithm 4: Sorted QR decomposition (SQRD) 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

3 2 1 0

P
E

D
 in

cr
ea

se
 v

ar
ia

nc
e

Tree layer

Unsorted QR

Sorted QR



 

 

26 

 

It is important to note that the ordering obtained by Algorithm 4 is an 
approximation, rather than the exact optimal ordering. For simplicity, the algorithm is 
presented with the original mathematical definitions of Algorithm 1. 

In Algorithm 4, however, it is clear that the addition of sorting to the algorithm is 
expensive. It involves calculating the squared norm (inner product with itself) of the kth 
vector and all vectors to the right of it at each iteration, instead of only the squared norm 
of the kth vector. In a 4×4 system, for example, this means that 6 extra squared norm 
calculations are to be done. 

However, Algorithm 4 can be improved to calculate the norm of each column of Q 
only once, and then only update this value as the projections are subtracted in the inner 
loop (WÜBBEN, 2003). This is done with a norm vector, which contains the squared 
norm of each column of Q. Let conj denotes the complex conjugate of a number. The 
SQRD algorithm using the norm update method becomes: 

  R = 0; Q = H 

  for  k=0:N-1 

   norm(k) = || qk ||
 2  

  end 

  for  k=0:N-1 

   i = arg 
1:

min
−= Nkj

norm(j) 

   Exchange columns k and i in Q, R, p and norm 

   R(k, k) = || qk || 

   qk = qk / R(k, k) 

   for  j=k+1:N-1 

    R(k, j) = qk
 H. qj 

    qj = qj – qk.R(k, j) 

    norm(j) = norm(j) – conj(R(k, j)).R(k, j) 

   end 

  end 

Algorithm 5: Improved sorted QR decomposition (SQRD)  

With this improvement, the amount of inner products to be calculated remains the 
same as in the unsorted QR decomposition, and the complexity increase is reduced to 
the ordering and norm updating steps. 

The p vector obtained after the computation of the SQRD is necessary to reorder the 
output, so that it matches the values expected by the channel decoder, as shown in 
Figure 3.4. The a-priori information obtained from the channel decoder also needs to be 
reordered to match the new sorting of the transmit antennas. 



 

 

27 

 

 

 
Figure 3.4: Receiver modified for SQRD usage 

3.4 MMSE Pre-processing 
As the SQRD algorithm, the minimum mean squared error (MMSE) pre-processing 

was initially developed to be used with linear decoders (WÜBBEN, 2003). For those 
detectors, as the name suggests, it is used to reduce the probability of errors, as is the 
SQRD algorithm. The same modification happens when this technique is brought to 
sphere decoders, i.e. it can be used to reduce the amount of visited nodes 
(MENNENGA, 2009). It can also be coupled with the SQRD algorithm, thus achieving 
further complexity reductions. Also as occurs with SQRD, the MMSE pre-processing 
reduces the average amount of visited nodes by increasing the average PED and the 
average PED increase variance in the top layers, allowing bad branches to be pruned 
earlier in the tree, as shown in Figures 3.5 and 3.6. 

The MMSE pre-processing is done using an extended (NT+NR) × NT matrix as the 
input. In our particular case, the input matrix dimensions become 2N×N. Let IN denote 
the N-order identity matrix and σ denote the standard deviation of the noise vector. The 
modified matrices then become: 

'''
.

'
2

1 R
Q

Q
RQ

I

H
H

N








==








=

σ
 

Where Q1 and Q2 are square matrices of order N. 

It is important to note at this point that, from equation 3.16, σIN=Q2R’ . From this 
comes that: 

2
1 1

' QR
σ

=−  

This means that Q2 is the scaled inverse of R’ . Since R’  is an upper-triangular 
matrix, so is Q2. This property will be used during the hardware architecture design. 

The value of σ for the used channel model (equation 2.2) is associated with the 
signal to noise ratio. Since the n vector has a standard deviation of 1 and it is scaled by 
the inverse square root of the SNR, the noise standard deviation is: 

SNR

1=σ
 

Reorder

Sphere 
decoder

p

Reorder

p

Π

Π-1

Channel 
decoder

y eSD e’SD

e’CDeCD

b̂

(3.16) 

(3.17) 

(3.18) 



 

 

28 

 

 
Figure 3.5: Average PED increase and average number of visited nodes per layer for 

a 4×4 system, with 16-QAM and a SNR of 12dB 

 
Figure 3.6: Average PED increase variance per layer for a 4×4 system, with 16-

QAM and a SNR of 12dB 

Aside from the different size and initialization of Q, the algorithm to perform the 
MMSE-SQRD is almost equal to that of the original SQRD. The main difference is that 
not all rows of Q are swapped, only the first N+i. In order to match the extended output 
matrix Q’ , the received vector y also needs to be modified, becoming y’  = [y 0N]T, 
where 0N denotes the N-order zero vector. This way, the resulting vector becomes: 

yQyQy HH .'.''ˆ 1==  

The 'ŷ vector has the same dimension of the originalŷ vector and is then used in the 
same way by the sphere decoder. 

The algorithm to perform the SQRD in the modified matrices is: 

0

0,5

1

1,5

2

2,5

3

3 2 1 0

P
E

D
 In

cr
ea

se

Tree Layer

Unsorted QR

Sorted QR

MMSE Sorted QR

1

10

100

1000

10000

3 2 1 0

V
is

ite
d 

no
de

s

Tree layer

Unsorted QR

Sorted QR

MMSE Sorted QR

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

3 2 1 0

P
E

D
 in

cr
ea

se
 v

ar
ia

nc
e

Tree layer

Unsorted QR

Sorted QR

MMSE Sorted QR

(3.19) 



 

 

29 

 

 

  R = 0; Q1 = H; Q2 = σIN; p = [0, 1, …, N-1] 

  for  k=0:N-1 

   norm(k) = || qk ||
 2  

  end 

  for  k=0:N-1 

   i = arg 
1:

min
−= Nkj

norm(j) 

   Exchange columns k and i in R, p and norm and the 
   first N+i rows of Q 

   R(k, k) = || qk || 

   qk = qk / R(k, k) 

   for  j=k+1:N-1 

    R(k, j) = qk
 H. qj 

    qj = qj – qk.R(k, j) 

    norm(j) = norm(j) – conj(R(k, j)).R(k, j) 

   end 

  end 

Algorithm 6: Sorted QR decomposition with MMSE pre-processing  

3.4.1 Bias subtraction 

As a result from the mentioned alterations in the matrices and vectors, the MMSE 
pre-processing introduces a bias in the distance calculation metrics (MENNENGA, 
2009): 

2222
'' sHsysHy σ+−=−  

This bias must be subtracted from the distance calculated by the sphere decoder in 
order to avoid an increase in the error rates. There are many different ways to do so, and 
in this work, three different approaches were evaluated. 

Aside from the bias, the distances themselves are modified by the MMSE algorithm, 
which means that the optimal values for the sphere radius that are used with the other 
QRD algorithms may not apply directly in this case, and are also likely to be different 
for each norm subtraction method. Further analysis and simulation results on this matter 
can be found in chapter 4. 

3.4.1.1  Late subtraction 

One of the possible approaches is to subtract the bias as late as possible. This means 
that the sphere decoding is executed completely ignoring the bias and then it is 
subtracted only when the LLRs are calculated: 

)00(min)11(min jjjjj biasbias −−−=Λ  

This approach has, however, some disadvantages. First, it is necessary to keep track 
of the bias that was introduced in each bit when the minimum distance for it being 0 or 

(3.20) 

(3.21) 



 

 

30 

 

1 was found, which requires two extra vectors. Second, the minima vectors update is 
done with biased distances. Since the bias is the norm of the s vector, multiplied by σ, 
this creates a preference for points that are closer to the origin of the QAM 
constellation, which will have reflections in the resultant error rates.

 

3.4.1.2  Early subtraction 

As the distances are calculated recursively by the algorithm, so can the bias 
subtraction be done. The module of the s vector can be separated into the module of 
each individual symbol, and this value can be subtracted directly as the PEDs are 
calculated. The unbiased PEDs are calculated with: 

∑∑ −+−=
−

= k
ikk

N

ij
jiji

i
i sbaLLRsRyse

22

2
12)( ),(ˆ)( σ

 

The advantages of this approach are that, since the subtraction is done as early as 
possible, the system is entirely bias-free. Also, it requires no extra storage elements. 
However, it has a tendency of visiting more nodes than the other approaches, since the 
bias is always positive and therefore the PEDs obtained with this method are always 
smaller. On the other hand, this may mean that smaller sphere radii are acceptable when 
using early subtraction. 

3.4.1.3  Intermediate subtraction 

This method is an attempt to take the main advantages of the two others. In order to 
avoid a preference for points closer to the origin, the bias must be subtracted before the 
minima vectors are updated. However, to reduce the amount of visited nodes, the bias 
must be subtracted after the PEDs are compared to the sphere radius. With these two 
restrictions, the only sphere decoder step to perform the bias subtractions is when a leaf 
node is reached, before the minima update. 

To do so, whenever a leaf node is reached, the sphere decoder must calculate the 
bias associated with the symbols in the path towards the tree root and then subtract it 
from the distance associated with the point that was reached. The unbiased distance is 
then used to update the minima vectors. 

This approach requires no extra storage elements when using a constant sphere 
radius. However, when sphere shrinking is used, the minima vectors are used to 
dynamically determine the sphere radius. Since the PEDs are still biased and the 
minima are not, this causes the comparison of a biased distance with an unbiased sphere 
radius, resulting in the early exclusion of many relevant branches from the tree. To 
avoid this problem, auxiliary vectors are necessary to keep the biased minima vectors. 
These vectors are used to determine the sphere radius and the unbiased ones to calculate 
the LLRs in the end of the execution. 

(3.22) 



 

 

31 

 

 

4 SIMULATION CHAIN AND RESULTS 

The model described in chapter 2 was entirely coded as a C++ simulation model, 
using the IT++ library for vector and matrix handling. The main purpose of this model 
was to analyse the effects that the changes in the QR decomposition algorithm would 
have in the resultant FER and computational effort.  

To evaluate this changes, the QR decomposition algorithm was coded with the 
ac_fixed and ac_complex data types, provided with Mentor Graphics’ Catapult. These 
types allow the definition of the amount of integer and fractional bits, signedness, 
rounding and saturation. The rest of the chain remained with floating point precision. 
With this approach it is possible to evaluate the isolated effects of the fixed point 
precision in the QR decomposition, since the rest of the system remains equal.  

In most graphs, the result with floating point QR decomposition is also plotted, for 
comparison reasons. The format x.y denotes x integer bits, including the sign bit, and y 
fractional bits for fixed point implementations. 

4.1 Simulation parameters 
There are many different parameters that define each simulation. Regarding the 

communication chain as a whole, there are the amount of different QAM symbols (and 
the according amount of bits represented by each symbol), the size of the frame word, 
the amount of transmit and receive antennas (as mentioned, these two numbers are 
considered always the same in this work), the signal to noise ratios to be simulated and 
the amount big loop iterations to be executed. Considering simulation-only parameters, 
the most important is used to define the end of the simulation. The parameter used was a 
limit of frame errors, typically 50, 100 or 150. However, aside from this frame error 
limit, there was also a limit of frames sent, which in all cases was 100000. 

Another important fact is that early-stopping is used to accelerate the simulation. 
This means that if the output is correct before the last big loop iteration, the process is 
finished and the chain moves to the next frame. 

Concerning the sphere decoder itself, the main parameters are the sphere radius to be 
used and the usage of sphere shrinking, as discussed in chapter 2. 

As for the QR decomposition, the most important parameters are the amount of 
integer and fractional bits and the usage or not of saturation and rounding. Another 
important parameter is the usage or not of a Newton-Raphson iteration at the output of 
the approximation inverse square root hardware. This has a huge influence in the 
resulting FER. 

Some of these parameters are kept equal in all simulations, since they are not a part 
of the scope of analysis. It is used 5 big loop iterations and an initial sphere radius of 



 

 

32 

 

0.8, which is sufficient to allow a small loss (SIMHA S, 2009), unless stated otherwise. 
Also the equation for addition of a-priori information is not changed. All fixed point 
operations were executed with rounding and saturation. The use of rounding means that 
the quantization of the input matrix and the reduction of the output of the multipliers 
consider the most significant bit left out of the result. If this bit is 1, then 1 is added to 
the least significant bit of the result. The use of saturation means that, whenever an 
overflow would happen, the result is replaced with the largest number possible in the 
used representation format. Unless stated otherwise, the values in table 4.1 are the ones 
used in the simulations. 

Table 4.1: Default parameters for simulations 

Parameter Value 

Initial sphere radius 0.8 

M (QAM Symbols) 16 

Frame word size 994 bits 

Big loop iterations 5 

Sent frames limit 100000 

4.2 Simulation results 
4.2.1  Effect of the quantization of the output 

The effect of a fixed point output can be analysed isolated from the effect of the 
whole algorithm running with fixed point precision. This allows the determination of 
how many bits are needed in the output. The full floating point algorithm was executed 
and then the output’s precision was limited according to different amounts of bits. 
However, these amounts are not necessarily related to the amount of bits necessary in 
the internal calculations. 

 

Figure 4.1: Effect of the quantization of the output in a 4×4 antennas system 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

Floating point

Quant. (3.11)

Quant. (3.9)

Quant. (3.7)

Quant. (3.5)

Quant. (3.3)



 

 

33 

 

 

 

Table 4.2: Parameters for simulations in Figure 4.1 

Parameter Value 

Number of antennas 4 

Frame errors limit 50 

In Figure 4.1 it is possible to see that 3 integer bits and 5 fractional bits are enough 
to represent the output without significant increase in the FER, compared to the floating 
point output. However, when the number of fractional bits is further reduced to 3, this 
increase becomes much greater.  

4.2.2 Effect of a Newton-Raphson iteration 

The application of Newton-Raphson iterations is a well known method for 
improving the approximation of a function. One single iteration is used here to improve 
the output of the inverse square root approximation hardware. Figure 4.2 shows the FER 
gain resultant from this, using a fixed point unsorted QR decomposition, compared to 
the floating point version. 

 
Figure 4.2: FER improvement due the use of one Newton-Raphson iteration 

Table 4.3: Parameters for simulations in Figure 4.2 

Parameter Value 

Number of antennas 4 

Number format 4.9 

Frame errors limit 100 

As the FER is significantly increased when the Newton-Raphson iteration is not 
used, all further simulations using fixed point formats consider that this optimization is 
activated. 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

Floating point

Fixed point 4.9

Fixed point 4.9 
without NR



 

 

34 

 

4.2.3 Amount of bits necessary for 2×2 and 4×4 systems 

As the system to be developed requires satisfactory performance with both 2×2 and 
4×4 antennas, one must analyse the minimum amount of bits required for the integer 
and fractional parts of both systems. Sections 4.2.3.1 to 4.2.3.4 analyse separately how 
many bits are required for each part of both system configurations, considering 16-
QAM modulation. Section 4.2.3.5 analyses the required precision for a system targeting 
both configurations. 

4.2.3.1  Amount of fractional bits for 4×4 antennas 

To obtain the minimum amount of fractional bits necessary to introduce only a 
tolerable FER in a 4×4 antennas system, different formats were tested. 

 
Figure 4.3: Different amounts of fractional bits in a 4×4 antennas system 

 Table 4.4: Parameters for simulations in Figure 4.3 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

 
Simulations started with 9 fractional bits, value which was further decreased until 

the introduced FER became significant. As can be seen in Figure 4.3, 8 fractional bits 
are enough to introduce little increase to the FER. 

4.2.3.2  Amount of integer bits for 4×4 antennas 

As was done for the fractional bits, different amounts of integer bits were tested 
decreasingly until the introduced FER became too large. 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

Floating point

Fixed point 4.9

Fixed point 4.8

Fixed point 4.7

F
E

R

SNR(dB)



 

 

35 

 

 

 
Figure 4.4: Different amounts of integer bits in a 4×4 antennas system 

Table 4.5: Parameters for simulations in Figure 4.4 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

 
As can be seen in Figure 4.4, the introduced FER with 3 integer bits could still be 

considered tolerable. With 2 integer bits, the FER introduced is too large for any real 
application. 

4.2.3.3  Amount of fractional bits for 2×2 antennas 

As for 4×4 antennas, the analysis for the optimal fixed point format was done for a 
2×2 antennas system. 

 
Figure 4.5: Different amounts of fractional bits in a 2×2 antennas system 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

Floating point

Fixed point 4.8

Fixed point 3.8

Fixed point 2.8

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
E

R

SNR(dB)

Floating point

Fixed Point 4.7

Fixed Point 4.8



 

 

36 

 

Table 4.6: Parameters for simulations in Figure 4.5 

Parameter Value 

Number of antennas 2 

Frame errors limit 150 

 
As shown in Figure 4.5, the system exhibits satisfactory behaviour with 8 fractional 

bits. The degradation with 7 fractional bits can be considered tolerable, depending on 
the application. 

4.2.3.4  Amount of integer bits for 2×2 antennas 

The same approach was applied to the amount of integer bits in a 2×2 antennas 
system. 

 
Figure 4.6: Different amounts of integer bits in a 2×2 antennas system 

Table 4.7: Parameters for simulations in Figure 4.6 

Parameter Value 

Number of antennas 2 

Frame errors limit 150 

Figure 4.6 shows that it is required to have 4 integer bits in a 2×2 antennas system in 
order to not introduce a large degradation, compared to the floating point 
implementation. 

4.2.3.5  Total amount of bits 

For the 4×4 system, it was determined that 3 integer and 8 fractional bits are enough. 
However, for the 2×2 system, 4 integer and 7 or 8 (according to application 
specifications) fractional bits are required. Therefore, a QR decomposition hardware 
that is intended for both systems should have 4 integer and 8 fractional bits to ensure a 
tolerable loss in precision for all cases. It is important to emphasize that this results are 
valid specifically for the 16-QAM modulation used. For higher order constellations, 
more bits may be required. 

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
E

R

SNR(dB)

Floating point

Fixed Point 3.8

Fixed Point 4.8



 

 

37 

 

 

4.2.4 Effects of the sorted QR decomposition and sphere shrinking 

The intent of the SQRD algorithm is to reduce the amount of visited nodes, as is the 
intent of sphere shrinking (SS). For this reason, in the following sections, the average 
amount of visited nodes is also plotted. These graphs consider only intermediate nodes 
the lie inside the sphere. The FER graphs are also plotted to analyse the effects of this 
alterations, since they may introduce significant increase in the loss, due to the fact that 
the a-priori information can be negative. 

The combination of these techniques was also simulated, i.e. SQRD with SS and 
with ordered sphere shrinking (OSS). These algorithms are expected to combine their 
gains in the amount of visited nodes, especially when SQRD is used with OSS, as the 
increase of the variance in the top layers allows very good branches to be found very 
quickly, further accelerating the shrinkage of the sphere. The simulations in this section 
use the original SQRD algorithm (Algorithm 4). 

4.2.4.1  Results for 4×4 antennas 

All combinations between SQRD, SS, OSS and CS (constant sphere) were simulated 
with floating point precision at first, to analyse the effects of these combinations 
without the errors introduced by the fixed point quantization. The results with 2×2 
antennas and also with the 4.8 fixed point format are similar and can be found in the 
Appendix. 

 
Figure 4.7: FER for different algorithms with floating point in a 4×4 antennas 

system 

Figure 4.7 shows that there was no significant change in the frame error rate with 
any combination of the algorithms. This confirms the fact that the possible negative a-
priori information can be neglected when using sphere shrinking. As for the average 
amount of visited nodes in Figure 4.8, the results confirm that the usage of sorted QR 
decomposition have significant impact. Also, sphere shrinking and ordered sphere 
shrinking can further reduce this number, and this reduction effectively stacks with that 
of the SQRD.  

 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

CS

SS

OSS

SQRD and CS

SQRD and SS

SQRD and OSS



 

 

38 

 

 
Figure 4.8: Average amount of visited nodes with floating point and 4×4 antennas 

Table 4.8: Parameters for simulations in Figures 4.7 and 4.8 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format Floating point 

4.2.5 Effects of the usage of the norm update method 

Algorithm 5, presented in chapter 3, reduces the complexity increase caused by the 
sorting of the columns in the input matrix by updating the norms contained in the norm 
vector instead of recalculating them at each iteration. This alteration, however, has side 
effects in the precision of the output when dealing with fixed point representations. 

 
Figure 4.9: FER for different number formats using the norm update (NU) technique 

0

50

100

150

200

250

300

350

400

450

500

5 6 7 8 9 10 11 12 13 14 15

N
od

es

SNR (dB)

CS
SS
OSS
SQRD and CS
SQRD and SS
SQRD and OSS

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

SQRD 4.8

SQRD-NU 4.8

SQRD-NU 4.9

SQRD-NU Hybrid



 

 

39 

 

 

Table 4.9: Parameters for simulations in Figure 4.9 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format Fixed point 

 
Figure 4.9 shows that the 4.8 bits format is indeed no longer sufficient to accurately 

perform the algorithm. On the other hand, it also shows that the addition of one single 
fractional bit eliminates this issue, reaching practically the same FER of the original 
SQRD algorithm. The necessity of this extra bit is due to the accumulated error in the 
norm vector, since the norm update used adds more quantization error at each iteration, 
thus having great effects especially in the last columns calculated. For this reason, a 
hybrid architecture was also tested, having 9 fractional bits only in the norm vector and 
in the norm update path. The results, however, were only intermediary, not close 
enough to the ones obtained with a full 4.9 hardware. Hence, and also due to the 
increased complexity of dealing with different representation formats in the same 
hardware, this option is excluded from further analysis. 

This problem is not observed in 2×2 antennas systems, since the norm update 
hardware is used only once and the quantization error accumulated does not become 
significant. 

4.2.6 Comparison of different bias subtraction methods for MMSE 

In order to eliminate (or reduce) the increase in the error rates caused by the usage of 
MMSE pre-processing, different methods for subtracting the introduced bias in the 
metrics were presented: namely, late subtraction (LS), early subtraction (ES) and 
intermediate subtraction (IS). In this section, the FER and average amount of visited 
nodes with each method is compared. The results obtained with the original SQRD are 
also plotted for comparison. 

 
Figure 4.10: FER for different bias subtraction techniques 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

SQRD

MMSE-ES

MMSE-LS

MMSE-IS



 

 

40 

 

 

 
Figure 4.11: Average amount of visited nodes for different bias subtraction 

techniques 

 Table 4.10: Parameters for simulations in Figures 4.10 and 4.11 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format Floating point 

 
Figure 4.10 shows that, as expected, the late subtraction method is not suitable for 

our case, due to the significant increase in the frame error rate. For this reason, it is 
excluded from further simulations. Also, as can be seen in Figure 4.11, the early 
subtraction method presents no gain in the amount of visited nodes, when compared to 
the original SQRD algorithm. On the other hand, the intermediate subtraction method 
has almost identical FER when compared to the original SQRD and the MMSE-ES 
algorithms and still achieves an amount of visited nodes which is comparable to that of 
the MMSE-LS method. All these simulations, however, consider a constant sphere 
radius of 0.8. 

4.2.7 Reduced sphere radii for MMSE-SQRD 

Since the distance metrics are modified by the MMSE-SQRD algorithm, new 
optimal values for the sphere radius, i.e. the smallest value that causes no significant 
increase in the error rates, are to be found. Also, it is likely that each subtraction method 
has a different optimal sphere radius. 

Figure 4.12 shows the FER associated with different constant sphere radii, using the 
early subtraction method and Figure 4.13 shows the amount of visited nodes associated 
with each of these radii, considering a constant sphere. 

 

0

50

100

150

200

250

300

350

400

5 6 7 8 9 10 11 12 13 14 15

N
od

es

SNR(dB)

SQRD

MMSE-ES

MMSE-LS

MMSE-IS



 

 

41 

 

 

 
Figure 4.12: FER for different sphere radii in using early bias subtraction 

 
Figure 4.13: Visited nodes for different sphere radii in using early bias subtraction 

 Table 4.11: Parameters for simulations in Figures 4.12 and 4.13 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format 

Bias subtraction method 

Floating point 

Early subtraction 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

MMSE ES 0.8

MMSE ES 0.7

MMSE ES 0.6

MMSE ES 0.5

MMSE ES 0.4

MMSE ES 0.3

MMSE ES 0.2

MMSE ES 0.1

0

50

100

150

200

250

300

350

400

5 6 7 8 9 10 11 12 13 14 15

N
od

es

SNR (dB)

MMSE ES 0.8

MMSE ES 0.7

MMSE ES 0.6

MMSE ES 0.5

MMSE ES 0.4

MMSE ES 0.3

MMSE ES 0.2

MMSE ES 0.1



 

 

42 

 

Figure 4.12 shows that 0.4 is the smallest radius that ensures no significant FER 
increase for all simulated SNRs. For higher SNRs, however, much smaller radii are 
acceptable. In Figure 4.13 it is visible that the reduction obtained in the average amount 
of visited nodes is very significant when the reduced radii are used. 

The same analysis was done for the intermediate bias subtraction. 

 
Figure 4.14: FER for different sphere radii in using intermediate bias subtraction 

 
Figure 4.15: Visited nodes for different sphere radii in using intermediate bias 

subtraction 

 

 

 

 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

MMSE CS IS 0.8

MMSE CS IS 0.6

MMSE CS IS 0.5

MMSE CS IS 0.4

MMSE CS IS 0.2

0

50

100

150

200

250

300

5 6 7 8 9 10 11 12 13 14 15

N
od

es

SNR (dB)

MMSE CS IS 0.8

MMSE CS IS 0.6

MMSE CS IS 0.5

MMSE CS IS 0.4

MMSE CS IS 0.2



 

 

43 

 

 

 Table 4.12: Parameters for simulations in Figures 4.14 and 4.15 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format 

Bias subtraction method 

Floating point 

 Intermediate subtraction 

 
Also when using intermediate subtraction, a smaller sphere is acceptable when 

dealing with higher SNRs. However, considering a constant sphere for all SNRs, the 
minimum value would be around 0.6, as shown in Figure 4.14, which is the value used 
for further comparison with the early subtraction method. In Figure 4.15 the associated 
visited nodes can be seen for each radius. 

Figure 4.15 also shows some points in which smaller spheres visit averagely more 
nodes than larger spheres. This is due to the early stopping: when a larger sphere is 
used, more frames are correctly decoded in the initial big loop iterations, and this is also 
reflected in the large difference between FERs. Since the trees built in these iterations 
tend to have much less nodes then in the last ones, the algorithm can actually visit 
averagely more nodes with a smaller sphere, in some very specific points for some 
configurations. 

  
Figure 4.16: Normalized executions and average visited nodes for each big loop 

iteration with 13dB and different constant sphere radii 

Simulations in Figure 4.16 illustrate the variation in the amount of nodes per 
iteration, and the frequency each iteration is reached. It considers a constant sphere, 
with MMSE pre-processing and intermediate bias subtraction, in the specific 13dB SNR 
point. The amount of executions of each big loop iteration is normalized to the amount 
of frames sent. Also, it is important to emphasize that, even though perfect early 
stopping in impossible, good approximations can be used in real systems (GILBERT, 
2003). 

4.2.8 Comparison between ES and IS with reduced sphere 

In section 4.2.7 it was shown that both early and intermediate bias subtraction 
methods allow a reduction in the sphere radius without significant increase in the error 
rates. The minimum sphere radii were determined to be 0.4 for early subtraction and 0.6 

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5

N
or

m
al

iz
ed

 ti
m

es
 e

xe
cu

te
d

Iteration

MMSE CS IS 0.4

MMSE CS IS 0.2

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

A
ve

ra
ge

 v
is

ite
d 

no
de

s

Iteration

MMSE CS IS 0.4

MMSE CS IS 0.2



 

 

44 

 

for late subtraction, considering that the same radius is used for all SNRs. The frame 
error rates and average amount of visited nodes obtained with each of these systems can 
now be compared, as can the effects of sphere shrinking in each one of them. 

 
Figure 4.17: FER for each bias subtraction method with its minimum sphere radius 

 
Figure 4.18: Visited nodes for each bias subtraction method with its minimum 

sphere radius 

 Table 4.13: Parameters for simulations in Figures 4.17 and 4.18 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format Floating point 

 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

SQRD and OSS

MMSE CS ES 0.4

MMSE CS IS 0.6

MMSE OSS ES 0.4

MMSE OSS IS 0.6

0

50

100

150

200

250

5 6 7 8 9 10 11 12 13 14 15

N
od

es

SNR (dB)

SQRD and OSS

MMSE CS ES 0.4

MMSE CS IS 0.6

MMSE OSS ES 0.4

MMSE OSS IS 0.6



 

 

45 

 

 

Figure 4.17 shows that, even with a smaller radius, the early subtraction method has 
a slightly better FER performance for 8 and 9dB of SNR. For the other SNRs, the FER 
is nearly identical. In Figure 4.18, IS shows better performance for smaller SNRs and 
ES for larger. The best results achieved without MMSE regarding the amount of visited 
nodes, which were with SQRD and OSS, are also plotted for comparison reasons. Early 
subtraction could outperform these results even with a constant sphere, for high SNRs. 
When ordered sphere shrinking is used, ES can visit less than half the amount of nodes 
visited by SQRD at 15dB. 

4.2.9 Effects of error in the σ estimation for MMSE 

Works on MMSE-SQRD so far, such as (WÜBBEN, 2003) and (MENNENGA, 
2009), have considered that the receiver has perfect knowledge of noise standard 
deviation σ. This, however, is an unreal assumption, since the receiver will only have 
access to approximations of this value. 

In this section we analyse how resilient to these errors are systems with MMSE-
SQRD. In order to make this analysis further realistic, a full fixed point system is used, 
i.e. not only the QR decomposition is performed with fixed point, but also the sphere 
and channel decoding. The system was simulated with early subtraction and considering 
the noise overestimated and underestimated by 3dB. Also, for comparison reasons, the 
results for the floating point and full fixed point systems with constant sphere and 
unsorted QR decomposition are plotted. 

The QR decomposition is executed with 4.8 bits, while the sphere and channel 
decoders use different number formats for each type of number (SIMHA S, 2009), 
which range from 0.6 to 4.9. The sphere radius is 0.8 for the simulations without MMSE 
and 0.4 for the ones with it. 

 
Figure 4.19: FER for full fixed point systems with sigma estimation error 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

Floating point

Fixed point

MMSE ES 0.4

MMSE ES 0.4 σ-3dB

MMSE ES 0.4 σ+3dB



 

 

46 

 

 
Figure 4.20: Average amount of visited nodes for full fixed point systems with 

sigma estimation error 
 Table 4.14: Parameters for simulations in Figures 4.19 and 4.20 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format 

Sphere type 

Full fixed point 

Constant sphere 

 
The system shows remarkable resilience to errors in the σ estimation, presenting 

almost no FER increase with the considered 3dB error, as can be seen in Figure 4.19. 
The amount of visited nodes, however, suffers an alteration, visiting more nodes when 
the noise standard deviation is overestimated and fewer nodes when it is 
underestimated, as shown in Figure 4.20. 

Figure 4.19 also shows that a 4.8 bits format is sufficient for MMSE-SQRD fixed 
point implementations. 

4.2.10 MMSE-SQRD with constant σ 

The results in Figure 4.19 showed no significant increases in the error rates when 
considering an overestimation and an underestimation of 3dB. This raises the possibility 
of using a constant σ for large SNR intervals, which would represent a great 
simplification in the receptor, since it would only need a rough estimation of noise 
variation. 

The simulations in Figures 4.21 and 4.22 use an entirely fixed point simulation 
chain, as described in section 4.2.9, i.e. QR decomposition with 4.8 bits and sphere and 
channel decoders with different formats for each number type. 

0

50

100

150

200

250

300

350

400

450

500

5 6 7 8 9 10 11 12 13 14 15

N
od

es

SNR (dB)

Floating point

Fixed point

MMSE ES 0.4

MMSE ES 0.4 σ-3dB

MMSE ES 0.4 σ+3dB



 

 

47 

 

 

 
Figure 4.21: FER for MMSE-ES with different constant σ values 

 
Figure 4.22: Average visited nodes for MMSE-ES with different constant σ values 

 Table 4.15: Parameters for simulations in Figures 4.21 and 4.22 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format Full fixed point 

 
The results show that using the σ² associated with an intermediate SNR value (0.1 is 

the value associated with a SNR of 10dB) is enough to ensure no increase in the FER 
and no significant increase in the amount of visited nodes in a 10dB SNR interval. The 

0,0001

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

MMSE

MMSE σ²=0.3

MMSE σ²=0.1

MMSE σ²=0.03

MMSE σ²=0

0

50

100

150

200

250

5 6 7 8 9 10 11 12 13 14 15

N
od

es

SNR (dB)

MMSE

MMSE σ²=0.3

MMSE σ²=0.1

MMSE σ²=0.03

MMSE σ²=0



 

 

48 

 

values of 0.3 and 0.03 are rounded in the figures’ legends: they are actually 0.316228 
and 0.0316228, which are the values associated with 5 and 15dB of SNR, respectively. 
The opposite end of the graph shows a small increase the error rate in both cases. Also, 
the amount of visited nodes again shows that overestimating the noise causes more 
nodes to be visited. For all cases, all points after that which has the associated σ² value 
show increase in the average visited nodes amount. 

The results with σ²=0 are also plotted, but show significant increase in the FER, 
since this value would only be achieved with SNR=∞. 

4.3 Simulation results summary 
From the simulations in section 4.2, several conclusions were made. The Newton-

Raphson improvement at the output of the inverse square root hardware was determined 
to be critical for a good FER performance of the fixed point QR decomposition. Also, 
the minimum quantization for internal representation, when using 16-QAM in the 
chosen SNR interval, was shown to be 4.8 bits, considering a system that runs both with 
4×4 and 2×2 antennas. However, fewer bits are required at the output. 

It was also shown that SQRD can successfully reduce the amount of visited nodes 
and that this reduction can be coupled with that obtained from sphere shrinking 
techniques, ordered or not. The same occurs when MMSE-SQRD is used, and it can 
further increase the improvements obtained from the original SQRD. The average 
reduction obtained by using MMSE-SQRD, when comparing the original system, is 
57% less visited nodes. This value can be improved 74% when ordered sphere shrinking 
is used together. 

Specifically for the MMSE-SQRD case, different bias subtraction methods were 
tested. The early and intermediate methods were the ones that successfully avoided 
increases in the FER. These techniques also allowed a reduction in the initial sphere 
radius, with the intermediate subtraction method visiting fewer nodes then the early one 
for lower SNRs but more for the higher ones. Also, it was shown that MMSE-SQRD 
systems are highly tolerant to variations in the value of σ, presenting no significant 
changes in the FER when a coarse approximation is used.  



 

 

49 

 

 

5 HARDWARE ARCHITECTURES 

In order to implement the desired QR decomposition hardware, the presented 
algorithms must be translated into hardware descriptions. To do so, the first step is to 
come up with data paths able to perform the required operations and control finite state 
machines to coordinate them. In this chapter, the required operations are presented, as 
well as hardware schematics to perform each of them, a top level schematic to connect 
all of the required blocks and finally a finite state machine to control all operations, 
initially for the unsorted QR decomposition. The same approach is then applied to the 
sorted and MMSE sorted versions.  

5.1 Unsorted QR Decomposition 
Taking a look to the final version presented of the algorithm, a few basic operations 

are visible: 

  R = 0; Q = H 

  for  k=0:N-1 

   isqrt_i = qk
 H. qk 

   isqrt_o = 1/√isqrt_i 

   R(k, k) = isqrt_i.isqrt_o 

   qk = Q(0:N-1, k).isqrt_o 

   for  j=k+1:N-1 

    R(k, j) = qk
 H. qj 

    qj = qj – qk . R(k, j) 

   end 

  end 

 
It is required to have a block able to perform the inner product of two complex 

vectors, a block to compute the inverse square root of a real scalar, one multiplier for 
two real scalars, a vector multiplier, with one complex vector and one complex scalar as 
operands, and a vector subtracter, with two complex vectors as operands. To build such 
blocks other basic structures are required, such as complex multipliers and 
adders/subtracters. Storage elements for the matrices are also required. 



 

 

50 

 

5.1.1 Complex multiplier 

The multiplication of two complex numbers is an operation that requires the use of 
the distributivity of multiplication over addition. The full expression for two complex 
numbers a and b becomes: 

( )( ) ( ) ( )ibabababaibbiaa ReImImReImImReReImReImRe ++−=++  

Figure 5.1 shows a simple hardware scheme to explore the possible parallelism 
available in this operation. 

 
Figure 5.1: Complex multiplier schematic 

The operands and results sizes are also important at this point. If each part of the 
operands have W bits, each part of the result should also have W bits, since it is going 
to be used in subsequent parts of the algorithm. Hence, rounding and saturation should 
be used to discard, with reduced the loss in precision, the extra bits obtained from the 
multiplication. 

Considering a fixed point number with X integer bits and Y fractional bits 
(X+Y=W), the result of its multiplication with another number in the same format has 
2X integer and 2Y fractional bits. To fit the output in the same format of the inputs, X 
integer and Y fractional bits must be removed, as shown in Figure 5.2. This should be 
done after the addition and subtraction in Figure 5.1, to achieve a better precision. For 
this reason, those two operations are done with 2W bits. 

 
Figure 5.2: Rounding and saturation schematic for a 2.3 format 

*

*

*

*

a_re

b_re

a_im

b_im

+

+

c_re

c_im

-

W
2W

2W

Integer 
bits

Fractional 
bits

= “111” or 
“000” ?

+
0

“01111”

“10000”

(5.1) 



 

 

51 

 

 

Saturation consists of replacing the output with the closest value possible whenever 
an overflow occurs (this can be either the largest positive or smallest negative available 
in the representation). 

Rounding consists of adding the most significant bit removed from the factional part 
to the result. This effectively divides by two the maximum error caused by the removal 
of the Y least significant bits, when compared to simple truncation, as can be seen in 
Figure 5.3, where ∆ is the distance between two adjacent numbers in the representation 
format (1/2Y). While the maximum error is given by ∆ when truncation is used, it is 
only ∆/2 when rounding is used. 

 
Figure 5.3: Comparison of truncation (top) and rounding (bottom) 

5.1.2 Adder/Subtracter 

The addition and subtraction of complex numbers is much simpler then the 
multiplication. The reasons are that the amount of bits produced is the same as in the 
input (if the carry out is ignored) and that direct associativity can be applied. The 
expression for two complex numbers a and b is: 

( ) ( ) ( ) ( )ibabaibbiaa ImImReReImReImRe +++=+++  

This means that two simple adders can be applied to perform this operation. The 
result, however, must still be checked for overflow and replaced by the largest positive 
or smallest negative available if necessary. 

When an addition is calculated, an overflow can occur only if the two inputs have 
the same sign. In this case, an overflow happened if the sign of the output is different 
from that of the inputs. 

In the subtraction case, however, an overflow can occur only if the two inputs have 
different signs. In this case, an overflow happened if the sign of the output is different 
from that of the first input. 

It is important to note that this overflow checking must also be performed in the 
adders and subtracters present in the complex multipliers. In this case, it can be done in 
parallel to the rounding and saturation due to reduction of the bit amount, presented in 
Figure 5.2, provided the adders operate with the increased bit widths. 

5.1.3 Inner product 

The inner product (or dot product) of two complex vectors, as described by equation 
3.2, is the summation of the product of the conjugate of each ith element of input vector 
h with the ith element of input vector u. In order to obtain the conjugate of the elements 
of the first vector, sign change blocks would be required. However, swapping the adder 
and the subtracter in the complex multiplier presented in Figure 5.1 gives the same 
result without the need of this extra block, as shown by equation 5.3. The multiplication 
blocks used in this section have this alteration. 

AA-∆ A+∆ A+2∆
… …

AA-∆ A+∆ A+2∆
… …

(5.2) 



 

 

52 

 

( )( ) ( ) ( )ibabababaibbiaa ReImImReImImReReImReImRe −++=+−  

The inner product can be done in a full parallel way, as in Figure 5.5, or in a 
sequential manner, using only one complex multiplier and one adder, as in Figure 5.4. 

 
Figure 5.4: Sequential inner product block 

If the multiplication, the addition and the accumulator setup times could fit in a 
period of the desired clock cycle then the inner product done sequentially would take N 
cycles. This is not likely, however, considering reasonable target frequencies. To 
overcome this issue, timing barriers can be added to the data path, pipelining the 
execution, which would then take N+D-1 cycles, where D is the pipeline depth. 

The fully parallelized combinational version has N complex multipliers and N-1 
complex adders. The amount of cycles required to compute the result is variable, 
depending on the technology used and target frequency. 

 
Figure 5.5: Combinational inner product block, for a N=4 system 

5.1.4 Inverse square root 

The alterations done in the original MGS algorithm to make it more suitable for a 
hardware implementation create the necessity of an inverse square root hardware. To 
perform this, a polynomial approximation is used, as presented in (SALMELA, 2008). 

The original function to be approximated, x/1 , is highly non-linear. To make the 

approximation easier, the more linear u+1/1  is used instead. The new input u is 
obtained by shifting the input x by α bits until it is in the format 1.u. If x ≥ 2, then it will 
have to be shifted right to fit the desired format, and α will be negative. 

( ) α−+= 2.1 ux  

Using this definition, the function to be calculated can be modified: 

+ acc
u[i]

v[i]
*

*

*

*

*

u[0]

u[3]

u[2]

u[1]

v[0]

v[1]

v[2]

v[3]

+

+

+

(5.3) 

(5.4) 



 

 

53 

 

 

( ) uux +
=

+
=

− 1

1
2

2.1

11 2/α
α

 

The multiplication by 2α/2 can be performed by shifts only if α is even. For this 
reason, the approximation can be calculated by two different functions, thus allowing 
only shifters to be used. 

For even values of alpha, k is defined as α/2: 

uux
k

+
=

+
=

1

1
2

1

1
2

1 2/α  

For odd values of alpha, k is defined as (α-1)/2. The function to be calculated then 
becomes: 

uuux
k

+
=

+
=

+
=

−

1

1
22

1

1
22

1

1
2

1 2

1
2/

α
α  

The functions to be approximated can use first order polynomials, due to the reduced 
non-linearity. The chosen polynomials’ coefficients can be described as shifts. This 
eliminates the necessity for multipliers. 

uu
u 32

1

4

1
96582.0

1

1 −−≅
+

 

uu
u 16

1

2

1
385742.1

1

1
2 +−≅

+
 

The resultant hardware structure is shown in Figure 5.6. 

 
Figure 5.6: Inverse square root approximation hardware structure 

Since 1 must be subtracted from α only when it is odd, the calculation of k can be 
simplified to a simple one bit right shift. However, as α is treated in the hardware by its 
modulus, accompanied by a shift direction bit, 1 must be added to k in the particular 
case of the shift direction being right and α being odd. This is due to the fact that the 
subtraction of one from α in the exponent would increase its modulus value, increasing 
the amount of bits to be shifted right. This operation is implemented by rounding the 
division by two in the shift right case. 

# leading 
zeros

Shifter
amount   dir.

< INT_BITS-1

+

+

INT_BITS-1
-

-

1.u Remove 
integer part

u

u/4

u/32

u/2

u/16

+

+
-

+

+

0.98652

1.385742

Shifter
amount   dir.

/2

parity

Rounding

Output

-

(5.5) 

(5.6) 

(5.7) 

(5.9) 

(5.8) 



 

 

54 

 

The output of the block in Figure 5.6 is a first rough estimation of the desired value 
for the inverse square root. This approximation is not sufficiently precise to achieve a 
reasonably small increase in the FER, when compared to the floating point version of 
the QR decomposition, as can be seen in Figure 4.2. To improve this approximation, 
one Newton-Raphson iteration is used, with the equation deduced in section 3.2. Also, 
this block needs to be tested for possible overflows, which may occur when the input is 
too small. The minimum input I required is that which will produce the largest positive 
number L available in the representation as output: 

L
I

=1
 

2

1

L
I =  

The complete inverse square root block is shown in Figure 5.7. 

 
Figure 5.7: Inverse square root with improved approximation and overflow check 

The original equation for the improvement of the result (equation 3.15) was slightly 
modified to make it more suitable for a hardware implementation: 

2

.

2

2

1

xyyy
yy iii

ii −+=+
 

When the output is too large, the multiplier that calculates its square will overflow. 
Even if saturation is used, the fine adjustment of the Newton-Raphson iteration is better 
left out, since the loss in precision caused by the saturation would actually make the 
result worse. For this reason, the application of the improvement is conditional, 
determined by a maximum value O for the basic block’s output: 

LO

LO

=

=2

 
This way the output of the inverse square root is divided into three intervals: 

- If the input is too small, the largest positive possible is the output; 

- If the output of the basic inverse square root block is too large to be squared, the 
Newton-Raphson method is bypassed; 

- Otherwise the output used is that of the Newton-Raphson approximation 
improvement hardware. 

Basic inverse 
square root

>I?

*

*
*

+

+

<O?

L

Input Output

/2

/2

-

(5.10) 

(5.11) 

(5.12) 

(5.14) 

(5.13) 



 

 

55 

 

 

5.1.5 Vector operations 

It is required to have a block for multiplying a vector by a scalar and a block for 
subtracting one vector from another. Both blocks can perform these operations in 
parallel or sequentially, using the basic complex multiplier and complex subtracter, with 
the trade-off between area and speed. 

5.1.6 Matrices storage 

The input matrix and output matrices need to be stored efficiently for computations. 
With the alterations in the MGS algorithm, the input matrix H and the output matrix Q 
can be stored in the same registers, with Q overwriting H as the algorithm proceeds. 
The R matrix, however, still needs its own storage area. 

 
Figure 5.8: Basic matrix storage block 

Figure 5.8 shows a simple way to organize the registers to store the matrices. By 
grouping the elements by line, it is possible to easily create an output for a whole 
column, which is very useful, as many computations are done over columns. The single 
element output, however, may still be necessary if sequential blocks are used, such as 
the sequential versions of the inner product or vector operations. 

The writing lines are omitted in Figure 5.8. Unless an entirely sequential hardware is 
used, writings are going to be by column in Q and by single element in R. 

Evidently, the storage block for R does not require registers for the elements under 
the main diagonal, as they are always zero. 

5.1.7 Top level architecture 

The basic blocks presented allow the creation of a top level architecture that 
interconnects them to compute the unsorted QR decomposition algorithm. Many 

col_sel

row_sel

Single element 
output

Full column
output



 

 

56 

 

different combinations of sequential and parallel blocks are possible, specifically 
regarding the inner product and the vector operations. 

By analyzing the algorithm, it is possible to determine how many times each block 
is used. For the 4×4 antennas example, the external loop is executed 4 times and the 
internal 7. This means that both the inner product and the vector multiplier are used 11 
times, while the vector subtracter is used only 7. The first proposed architecture makes a 
compromise in the selection of the type of each block: the inner product is fully 
sequential and pipelined and the vector multiplier and subtracter are parallel. This is an 
attempt to create a design that is both sufficiently fast and with a reasonable area. 

 
Figure 5.9: Top level architecture for unsorted QR decomposition 

Figure 5.9 shows the complete top level architecture. The thick lines represent 
columns; the thin ones are for scalar elements. 

To increase the parallelism, the storage element for the Q matrix has two full 
column and two single element outputs. However, the full column outputs actually 
share multiplexers with the single element ones, as in Figure 5.8. 

Multiplexers 1 and 2 are for bypassing. Whenever the execution is entering the 
internal loop, the kth column of Q is going to be used in the first input of the inner 
product block. However, this same column is being written, as it was just calculated in 
the vector multiplier block. The bypass multiplexer 1 allows taking the first element of 
the vector directly from the input of the matrix storage block, which, in this case, comes 
from the vector multiplier. The other situation in which bypassing is needed is when the 
last iteration of the external loop is beginning. In the last iteration of the inner loop, the 
last column of Q is written, and it is going to be used in the inner product of the external 
loop. Both inputs must come from the output of the vector subtracter, in this case. For 
both cases, only the first element of the vector is bypassed and all the others come from 
the memory block, as it will already have written the vector correctly by then. 

5.1.8 Finite state machine 

To control all the operations required to compute the QR decomposition, a finite 
state machine was obtained directly from the algorithm. 

Matrix
Q

Inner 
Product

Inverse 
Square Root

Vector 
Multiplier

Vector 
Subtracter

Scalar real 
Multiplier

Matrix
RVector input

Q vector output

-

R vector output

1

2

3

4

5



 

 

57 

 

 

In Figure 5.10, a simplified version of this FSM can be seen, showing the main steps 
of the algorithm. During the idle state, the column selection is controlled by the external 
ports. This way, the output of the last execution can be read and the input for the next 
one can be written. The external port start triggers the execution of the algorithm with 
the matrix currently in the Q matrix registers. Inner product 1 calculates the squared 
norm of the current column of Q and Inv. Sqrt. yields the inverse square root of the 
norm. During the Mult state, the computation of the current element of the main 
diagonal of R, which is the input of the inverse square root block multiplied by its 
output, is done in parallel with the calculation of the current column of Q, which is the 
product of itself with the output of the inverse square root. The transition to the internal 
loop is done with the first bypass activated (multiplexer 1 in Figure 5.9). Inner product 
2 calculates the elements of R that are not in the main diagonal and the Mult and sub 
state performs the subtraction of the projection of qj on qk. The return to the Inner prod 
1 state is done with both bypasses activated, but only if the last iteration of the external 
loop is beginning. The computation is finished in the Mult state, since the internal loop 
is not executed in the last iteration of the external one. 

 
Figure 5.10: Simplified FSM for the unsorted QR decomposition hardware 

5.2 Sorted QR Decomposition 
Most of the basic building blocks for the SQRD hardware are the same as for the 

unsorted version, with the exception of the matrix storage elements. The main changes 
in the data path and in the FSM are also presented in the following sections. 

5.2.1 Matrix storage elements 

The storage elements need to be modified in order to allow efficient swapping 
operations. These operations are performed internally in each storage element, due to 
performance issues. The same signals that are connected to the vector outputs (for the 
case of the Q matrix) can be used as inputs for the registers, and all swapping operations 
can be performed in a single cycle, greatly reducing the added amount of time. For the 
R matrix, extra column selection multiplexers were added to allow this operation, 
creating a second column output that is accessible only internally. Figure 5.11 shows the 
basic swapping schematic for one matrix row. 

idle

Inner 
prod 1

Inv. 
Sqrt.

Mult

Inner 
prod 2

Mult
and sub

donereset

start External loop

Internal loop



 

 

58 

 

 
Figure 5.11: Swapping hardware for one row 

5.2.2 Top level architecture 

The main changes in the data path structure are the introduction of the norm and 
permutation vectors and the norm update hardware. Both vectors are stored in elements 
similar to the ones used for the matrices’ lines, as presented in Figure 5.11, to allow fast 
swapping. 

 
Figure 5.12: Top level architecture for sorted QR decomposition 

Figure 5.12 presents the resulting architecture. Since all dot products are calculated 
before the beginning of the external loop, the bypass multiplexer for the second port of 
the inner product is no longer necessary (multiplexer 2 in Figure 5.9). 

The permutation vector is not connected to any other block, since it only records the 
swaps that are done in the matrices and in the norm vector. 

5.2.3 Finite state machine for SQRD 

Figure 5.13 shows the FSM to perform the SQRD. It is derived from the one used 
for unsorted version of the hardware and the alterations that led to Algorithm 5. 

col_sel_1

col_sel_2

ext ext ext ext

Matrix
Q

Inner 
Product

Inverse 
Square Root

Vector 
Multiplier

Vector 
Subtracter

Scalar real 
Multiplier

Matrix
RVector input

Q vector output

-

R vector output

1

2

3

4
Norm vector

Norm 
update

Permutation 
Vector



 

 

59 

 

 

 
Figure 5.13: Simplified FSM to perform the SQRD algorithm 

The states that were added are Norm vec init, Min norm and swap. The first one 
initializes the norm vector with the squared norm of each column of the input matrix. 
The second one searches for the column with the smallest norm among the ones that are 
still left to be calculated and the swap state activates the signals to perform the required 
swap operations in the Q and R matrix, as well as in the norm and permutation vectors. 

The norm update is performed in parallel with the multiplication and subtraction 
already present in the internal loop (Mult and sub state). Once it is finished, it can return 
to the Min norm state or skip directly to the Inv. Sqrt. state, since in the last iteration no 
minimum norm search or swap operations are required. 

5.3 MMSE Sorted QR Decomposition 
As occurred for the original SQRD algorithm, most of the basic blocks necessary for 

the MMSE-SQRD are already defined. The finite state machine is also basically the 
same used for the SQRD hardware, since the algorithm itself is almost the same. The 
main challenge here is to develop a hardware that is not excessively larger and not 
excessively slower, when compared to the other versions, since we are now working 
with vectors that have 2N elements. And it is also necessary to create an efficient way to 
store the modified Q matrix, which has several different properties when compared to 
the previous versions of the algorithm. 

5.3.1 Storage element for the modified Q matrix 

When using the MMSE-SQRD pre-processing, the Q matrix is extended. More 
specifically, it becomes a 2N×N matrix. Also, its top (Q1) and bottom (Q2) parts have 
several different properties. While Q1 is initialized with the input matrix, Q2 is 
initialized with σIN. Also, Q2 is upper triangular, since it is the scaled inverse of R. 
Another difference is that, when a swapping operation is done, not all rows of Q2 are 
swapped, but only the first i. For all these reasons, and also to allow a larger parallelism 
in the required operations, the Q1 and Q2 matrices are stored in separate blocks. 

By storing these two matrices in two different blocks, one can easily explore the 
main differences of the matrices for better results. The Q1 matrix is actually identical to 
the Q matrix of the SQRD algorithm, since it is also initialized with the input matrices 
and, when a swap operation is done, all of its rows are exchanged. The Q2 matrix, on the 

idle
Norm 
vec init

Inv. 
Sqrt.

Mult

Inner 
prod 2

done
start

External loop

Internal loop

Min 
norm

Mult
and sub

swap



 

 

60 

 

other hand, does not need registers for the elements under the main diagonal, as the R 
matrix. The swap automatically exchanges only the required columns and the reset port 
loads the initial matrix in one single cycle. 

5.3.2 Top level architecture 

As mentioned, the MMSE-SQRD architecture needs to deal with the extended 
vectors in a way that does not increase excessively the area nor the amount of cycles 
required. 

In order not to introduce too many extra cycles, one extra inner product block is 
used. Since these blocks are sequential, using only one complex multiplier each, the 
extra area is not too expensive. Each block operates on one half of the Q matrix, and in 
the end the results are added, yielding the desired dot product. The vector operations, 
namely multiplication and subtraction, however, are done in parallel, which means that 
adding one extra block of each can be overly expensive. Pipelining these operations, on 
the other hand, adds little extra area and only one extra cycle. Therefore, both the vector 
multiplier and subtracter remained with the same size of the previous versions, i.e. N 
elements in parallel, and operate in pipeline, first processing a column of Q1, then a 
column of Q2. Figure 5.14 shows the resultant hardware schematic. 

 
Figure 5.14: Top level architecture for the MMSE-SQRD algorithm 

Note that the bypass multiplexer 1 now is required only in the input of the second 
inner product block, since the vector operations are done in pipeline, and the columns of 
Q1 have one extra cycle to be written, therefore being available at the input of the inner 
product when required. 

5.4 Reduced order matrices 
One extra requirement for all QR decomposition hardware implementations is that 

they must work with two different matrix sizes. Aside from the maximum capacity, 
when the hardware is used to its maximum, they must be able to work with matrices that 

Matrix
Q1

Inner 
Product

Inverse 
Square Root

Vector 
Multiplier

Vector 
Subtracter

Scalar real 
Multiplier

Matrix
R

Vector input

Q vector output

R vector output

1

2

3

4
Norm vector

Norm 
update

Permutation 
Vector

Matrix
Q2

Inner 
Product

+

-



 

 

61 

 

 

have their order divided by two. For example, the hardware synthesized to work with 
4×4 matrices must be able to work with 2×2 matrices as well. 

 This could be done, for the unsorted case, directly by placing the smaller matrix 
on the top left corner of the larger input matrix and leaving the rest of the input with 
zeroes, with the hardware completely unaware of the reduced order. The desired Q and 
R matrices would come out automatically on the top left corner. 

However, this would mean that many cycles are wasted, since the decomposition 
time is highly dependent on the matrices’ order. Also, the sorted versions would not 
work, because the zeroed columns would interfere with the sorting. For these reasons, 
one external control port must be added to the designs. When activated, this port 
modifies all FSM cycle counts that are related to the matrices’ orders, which include the 
external and internal loop iterations and also the amount of inputs expected by 
sequential operators, more specifically, the inner product blocks, thus greatly reducing 
the total execution time. 



 

 

62 

 

6 HARDWARE IMPLEMENTATION RESULTS 

The three main variations of the QR decomposition algorithm, i.e. unsorted QRD, 
SQRD and MMSE-SQRD, were implemented in VHDL, following the architectures 
described in chapter 5. These implementations were synthesized and had their results 
analysed for Xilinx FPGAs of the Virtex-5 family and also using Synopsys Design 
Compiler with STMicroelectronics 65nm library. 

6.1 Timing results 
All hardware variations were designed to achieve a clock frequency of 200MHz in 

Xilinx Virtex-5 FPGAs. These same designs reached up to 500MHz when implemented 
for ASIC, using the mentioned library. In order to achieve these clock frequencies, 
some timing barriers were added to critical combinational paths. Also, a multi-cycle 
path was defined for the inverse square root hardware, which takes 4 four cycles to 
finish its computation in FPGA and 3 cycles in ASIC, including the Newton-Raphson 
approximation improvement. A multi-cycle path is a way to define that the 
combinational path between two timing barriers does not need to be executed in one 
single cycle. This way, the tool can correctly calculate the resulting clock frequency and 
also spend the appropriate optimization effort in that path. It is still, however, required 
that the designer ensures that the correct amount of cycles is given to the hardware to 
perform its execution. 

Aside from the clock frequency, the amount of cycles spent for each QR 
decomposition is important to determine the total computation time. This number is 
evidently different for each algorithm and for each matrix size. Figure 6.1 shows the 
results for a 4×4 matrices hardware, also working with 2×2 matrices, when the reduced 
order external port is activated. 

 

Figure 6.1: Amount of cycles for each QR decomposition version 

43 45 48

138 147 157

0

20

40

60

80

100

120

140

160

180

QRD SQRD MMSE-SQRD

2×2

4×4C
yc

le

s



 

 

63 

 

 

The results in Figure 6.1 consider 3 cycles for each inverse square root execution, 
i.e. the time taken by the ASIC implementation. The total execution time for FPGA 
versions is 4 cycles longer for 4×4 and 2 cycles longer for 2×2. 

6.1.1 Real time requirements 

The real-time requirements are related to the target communication technology and 
target speed of the receiver. They are calculated using the coherence time tcoh, which is 
the time in which the channel impulse response is essentially invariant (SALMELA, 
2008). It is given by: 

fv

c
t

r
coh =  

Where c is the speed of light (3×108m/s), vr is the receiver speed and f is the carrier 
frequency. Considering, for example, 3G LTE MIMO systems, f is 2.4GHz. 
Considering a maximum receiver speed of 250km/h, tcoh = 1.8ms. However, bullet train 
speeds can also be considered (SALMELA, 2009), such as 500km/h. This results in tcoh 
= 0.9ms. During this time, the QR decomposition for all the 1021 sub-carriers of the 
OFDM modulation proposed for such systems must be computed (BACHL, 2007). This 
leaves us with 1,763µs for each decomposition, considering the first constraint, and 
0,881µs, considering the second one. 

The FPGA implementation takes 161 cycles to compute one 4×4 MMSE-SQRD, 
which is the one that takes the longest. Since its maximum frequency is 200MHz, it 
takes 0,805µs to perform this computation. Therefore, it is capable of meeting even the 
strictest constraint. Since the ASIC implementation takes less cycles, it can obviously 
also satisfy these constraints running at 200MHz. Future research, however, may 
require faster decompositions, as can systems that work with higher carrier frequencies. 
For these reasons, the higher operation frequencies of the ASIC implementation are also 
analysed in sections 6.2 and 6.3. 

6.2 Area results 
The different algorithms to perform the QR decomposition had their area results 

analysed also with FPGA and ASIC synthesis tools. The results between each different 
algorithm and different bit widths are presented and compared in the following sections. 
Also, for the ASIC implementations, different target clocks are compared. 

6.2.1 FPGA area results 

Using Xilinx ISE to synthesize the different hardware variations for a Virtex-5 
XC5VFX30T FPGA, the total amount of used registers, LUTs and multipliers can be 
compared between each implementation. 

Virtex-5 FPGAs use blocks called DSP48E for multiplication. Each block contains 
one 25×18 bits multiplier, one adder and one accumulator. Since all bit widths used are 
under a total of 18 bits, the amount of DSP48E blocks used is not bit width dependant. 

6.2.1.1  Comparison between different algorithm versions 

The three different algorithm variations are compared using the specific amount of 
bits required to not introduce significant degradation in the frame error rate. The 
original QRD uses the 4.8 format, determined in chapter 4. Figure 6.2 shows the results 
in LUTs and registers. Since the SQRD algorithm implemented uses the norm update 

(6.1) 



 

 

64 

 

optimization, i.e. it initializes the norm vector at the beginning of execution and then 
only updates it, it requires 4 integer and 9 fractional bits, as shown in Figure 4.11. Even 
though the MMSE-SQRD version also uses the norm vector, no significant FER 
increase was observed when using a 4.8 format (Figure 4.21). For this reason, this is the 
chosen format for MMSE-SQRD versions. 

 

Figure 6.2: Slice LUTs and registers for different algorithms in FPGA 

The amount of used DSP48E blocks also varies between each implementation. The 
QRD hardware uses a total of 24 multipliers: 16 in the vector multiplier (4 complex 
multipliers with 4 multipliers each); 4 in the inner product block (one complex 
multiplier); 3 in the inverse square root block (for the Newton-Raphson method) and 1 
to calculate the elements in the main diagonal of R. The SQRD version uses 26 
multipliers, with the two extra ones being used to calculate the norm update, which is 
done using half complex multiplier, since the imaginary part of the result is always zero. 
Finally, the MMSE-SQRD uses 30 multipliers, where the extra 4 ones are used in the 
second inner product block. 

6.2.1.2  Comparison between different bit widths 

The original QRD algorithm was synthesized for different number formats to 
evaluate the area progression as the precision is increased. Figure 6.3 shows this 
progression for bit widths ranging from 11 to 14, always with 4 integer bits. 

 
Figure 6.3: FPGA area results for QRD using different number formats 

1685

3015

3809

974 1135 1392

0

500

1000

1500

2000

2500

3000

3500

4000

QRD 4.8 SQRD 4.9 MMSE-SQRD 4.8

LUTs

Registers

1508
1685 1812

1959

897 974 1048 1122

0

500

1000

1500

2000

2500

4.7 4.8 4.9 4.10

LUTs

Registers



 

 

65 

 

 

6.2.2 ASIC area results 

As was done for FPGA, the area results can be compared for different algorithm 
versions and different bit widths for ASIC implementations. Also, the Synopsys Design 
Compiler works with a target clock frequency, which has significant impact on the 
resultant area. Therefore, the area progression is also evaluated for different target clock 
frequencies. All results are using STMicroelectronics 65nm library and in µm2, the 
default output unit for this library. 

6.2.2.1  Comparison between different algorithm versions and clock frequencies 

The three different algorithms were synthesized for different clock frequencies, 
ranging from 200MHz to 500MHz. The main difference between these results and the 
ones obtained for FPGAs is that these include all area in a single value, i.e. 
combinational logic, memory units and multipliers, which are obtained as separated 
values when using FPGAs. Again, the only algorithm using the 4.9 format is the SQRD. 

 

Figure 6.4: ASIC area results for different algorithm versions and clock frequencies 

Figure 6.4 shows that the ratio between the area for the QRD and the MMSE-SQRD 
versions is much more favourable for the latter when implemented for ASIC then when 
for FPGA. While the amount of LUTs used by MMSE is more than two times that 
which was used by the original QRD, here the area is only around 39% larger for 
200MHz and 37% for 500MHz, for example. Aside from different tool optimization 
algorithms, which may have better results for one algorithm than for the other, this can 
be explained by the required amount of registers and multipliers. These values are 
counted separately for FPGAs, and have ratios more favourable for the MMSE version 
then that of the required amount of LUTs. 

Also, it can be seen that, when working with 500MHz, the area for MMSE-SQRD is 
actually smaller than that for SQRD. This due the extra bit required by SQRD, which 
has a more significant impact in the area when we approach the clock frequency limit, 
since the tool will need a larger effort to meet this constraint in all paths. 

6.2.2.2  Comparison between different bit widths 

The same bit widths used for FPGA analysis (from 11 to 14) were synthesized using 
Synopsis DC, also using 4 integer bits. Figure 6.5 shows the results for the original 
QRD algorithm and frequencies ranging from 200MHz to 500MHz. 

0

20000

40000

60000

80000

100000

120000

140000

200 300 400 500

A
re

a

Frequency (MHz)

QRD 4.8

SQRD 4.9

MMSE 4.8



 

 

66 

 

 

Figure 6.5: ASIC area results for QRD using different number formats and clock 
frequencies 

The result for the 4.10 format and 500MHz is actually for a frequency of 
497.51MHz, which is the maximum frequency that could be reached using this bit 
width. 

Again, it is visible that largest area increases are observed when we approach the 
maximum frequency, especially when dealing with larger bit widths. 

6.3 Comparison with high-level synthesis 
For further evaluation of the obtained results, one can compare them with those of 

an automatic high-level synthesis tool. Here, Mentor Graphics’ Catapult was used. This 
tool transforms pure ANSI C++ code directly into VHDL and Verilog RTL 
descriptions. It also identifies loops and allows the user to determine which ones will be 
left rolled and which ones will be unrolled and parallelized. 

Using Catapult’s unrolling functionality, the QR decomposition C code was 
synthesized in the most similar way to that which was determined for the manual 
VHDL implementation: vector operations (multiplications and subtraction) were 
unrolled and inner products and the main loops (both internal and external) were left 
rolled. The ac_fixed and ac_complex types, the same ones used in the simulation chain, 
allow the definition of fixed point formats and usage of rounding and saturation. All 
results in this section are for the unsorted QRD with a 4.8 fixed point format. 

Aside from the RTL descriptions, Catapult also outputs latency and area results. 
These results are based on a sample library chosen before synthesis, which is the same 
one used by the tool to determine which operations can be executed in a clock period of 
the target frequency. 

The following graphics compare the results obtained with Catapult’s 65nm sample 
library and the ones from section 6.2.2.1, obtained with Synopsys DC and 
STMicroelectronics 65nm library. Also, for comparison purposes, the latency-area 
product is plotted. This product allows a quick comparison of the quality of two 

0

20000

40000

60000

80000

100000

120000

140000

200MHz 300MHz 400MHz 500MHz

A
re

a

Frequency

4.7

4.8

4.9

4.10



 

 

67 

 

 

solutions, since latency versus area trade-offs such as the choice between parallel and 
sequential hardware have little impact on it. 

 
Figure 6.6: Comparison between Catapult and manual VHDL implementations 

 
Figure 6.7: Latency-area product for Catapult and manual VHDL implementations, 

in millions of ns.µm2 

Figure 6.6 shows that the area is smaller for the manual implementation for all 
frequencies except 400MHz, for which Catapult’s version is slightly smaller. Catapult’s 
versions are faster than the manual ones for 200MHz and 300MHz. This is mainly due 
to the fact that all manual implementations use the same timing barriers, which were 
positioned for a high frequency design, and therefore take the same amount of cycles. 
The high-level tool can reposition all barriers optimizing for the current target 
frequency, thus greatly reducing the amount of required cycles for lower frequencies. 
Another interesting fact is that increasing the target frequency in Catapult does not 
necessarily reduce the delay. 

The latency-area graphic, in Figure 6.7, shows that Catapult achieves its optimal 
result for a target frequency of 300MHz, while the manual versions best results are for 
400MHz and 500MHz, which yield the best latency-area products among all variations. 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

200MHz 300MHz 400MHz 500MHz

Catapult

VHDL

A
re

a
 (

μ
m

²)

Frequency

0

100

200

300

400

500

600

700

800

200MHz 300MHz 400MHz 500MHz

Catapult

VHDL

La
te

n
cy

 (
n

s)

Frequency

0

5

10

15

20

25

30

35

40

45

50

200MHz 300MHz 400MHz 500MHz

Catapult

VHDL

A
re

a
*

La
te

n
cy

(M
n

s 
μ

m
2
)

Frequency



 

 

68 

 

It is important to emphasize, though, that these results use different libraries, which 
may have different area and latency values, even though they both use 65nm 
technologies. Perhaps a more accurate and fair comparison is to take the VHDL 
generated by Catapult for each target frequency and obtain results from Synopsys DC 
with the exact same library as used for the manual versions. 

When trying to do this, however, one important observation immediately comes to 
hand: RTL descriptions generated for a given target frequency by Catapult do not 
always have their timing constraints successfully met for the same frequency in 
Synopsys DC. This means that Catapult’s sample library is probably more optimistic 
about delays than a real library. Most notably, the outstanding 300MHz version cannot 
be synthesized for 300MHz. 

Using Catapult-generated designs in Synopsys DC, 200MHz were successfully 
reached with the code generated for this same frequency. Catapult designs targeting 
300, 350 and 380MHz could not be successfully synthesized for 300MHz. A design 
targeting 400MHz had to be used, which takes 233 cycles instead of 89 for a single 
decomposition. Finally, 400MHz could not be reached, even when using designs that 
were synthesized for frequencies as high as 600MHz. Also, for both successful 
synthesis cases, the reported area was significantly larger than that informed by 
Catapult. The following graphics show the comparison between the results. 

 
Figure 6.8: Area, latency and latency×area comparison between manual VHDL and 

Catapult versions synthesized with Synopsys DC 

Figure 6.8 shows that Catapult’s inability to maintain a low cycle count for higher 
frequencies and the large area increase for 200MHz placed both versions’ latency-area 
products above those which were obtained for the manual VHDL implementations.  

0

20000

40000

60000

80000

100000

120000

200MHz 300MHz

Catapult

VHDL

A
re

a
 (

μ
m

²)

Frequency

0

100

200

300

400

500

600

700

800

900

200MHz 300MHz
Frequency

La
te

n
cy

 (
n

s)

0

10

20

30

40

50

60

70

200MHz 300MHz

A
re

a
*

La
te

n
cy

(M
n

s 
μ

m
2
)

Frequency



 

 

69 

 

 

7 CONCLUSIONS 

The specific requirements for the QR decomposition for sphere decoding were 
analysed and the chosen algorithm, the Gram-Schmidt process, received the appropriate 
modifications and improvements to make it more suitable for a hardware 
implementation. Also, two pre-processing improvements, namely the sorted QR 
decomposition and the minimum mean squared error SQRD, were defined and had their 
impacts analysed in the system. The analysis considered both error rates and 
computational effort, measured by the amount of visited nodes in the tree search of the 
sphere decoder. The simulations showed that both techniques have beneficial effects in 
the overall system, significantly reducing the amount of visited nodes without 
significant changes in the error rates. Average reductions of up to 74% could be 
reached, when coupling MMSE-SQRD and OSS, in a 4×4 system. 

The three pre-processing variations had their hardware architectures specified, 
considering the required data path and finite state machine for each one. The proposed 
architectures were implemented in VHDL and synthesized for the required bit widths, 
and were able to reach relatively high frequencies both in FPGAs (200MHz) and in 
ASICs (500MHz). The amount of cycles necessary was also reasonable, when 
compared to other implementations, such as in (SALMELA, 2008). The increases when 
using SQRD and MMSE-SQRD are tolerable, since the system was able to meet a real-
time constraint for a real projected technology, 3G LTE, even for the FPGA 
implementation of the MMSE-SQRD version, considering a receiver at 500km/h. 

The area increase when comparing the different algorithms is most expensive when 
FPGA LUTs are taken for measure. Considering that other resources, more specifically 
registers and multipliers, are not increased by the same factor, the comparison becomes 
less unfavourable for the improved versions. This comparison is also less unfavourable 
for the larger versions when ASIC area is considered, especially for MMSE-SQRD. In 
this case, the average increase, when compared to the original QRD, is under 40% for 
the analysed clock frequencies. 



 

 

70 

 

REFERENCES 

BACHL, R. et al. The long term evolution towards a new 3GPP* air interface standard. 
Bell Labs Technical Journal, v. 11, n. 4, p. 25–51, 2007. 

FINCKE, U.; POHST, M. Improved methods for calculating vectors of short length in a 
lattice, including a complexity analysis. Mathematics of Computation, v. 44, n. 4, p. 
463-471, 1985. 

GILBERT, F.; KIENLE, F.; WEHN, N. Low Complexity Stopping Criteria for UMTS 
Turbo-Decoders. In: SPRING VEHICULAR TECHNOLOGY CONFERENCE, 2003, 
Proceedings... Jeju, Korea: IEEE, p. 2376–2380. 

GIMMLER, C. Performance and complexity of iterative sphere/channel decoding 
in MIMO systems. 2007. 83 f. Thesis (Diploma Thesis) - Fachbereich Elektrotechnik 
und Informationstechnik, Technische Universität Kaiserslautern, Kaiserslautern. 

GOLLUB, G. H.; VAN LOAN, C. F. Matrix Computations.  3rd ed. Baltimore, MD: 
John Hopkins University Press, 1996. 

LUETHI, P. et al. Gram-Schmidt-Based QR Decomposition for MIMO Detection: 
VLSI Implementation and Comparison. In: ASIA PACIFIC CONFERENCE ON 
CIRCUITS AND SYSTEMS, 2008, Proceedings… Macao, China: IEEE, 2008, p. 
830–833. 

MENNENGA, B.; FRITZSCHE, R.; FETTWEIS, G. P. Iterative Soft-In Soft-Out 
Sphere Detection for MIMO Systems. In: VEHICULAR TECHNOLOGY 
CONFERENCE, 2009, Proceedings... Barcelona, Spain: IEEE, 2009. 

PRESS, W. H. et al. Numerical Recipes in C. 2nd ed. Cambridge: Cambridge 
University Press, 1992. 

SALMELA, P. et al. 3G long term evolution baseband processing with application-
specific processors. International Journal of Digital Multimedia Broadca sting, v. 
2009, 2009. 

SALMELA, P. et al. Complex-valued QR decomposition implementation for MIMO 
receivers. In: INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND 
SIGNAL PROCESSING, 2008, Proceedings… Las Vegas, NV: IEEE, 2008, p. 1433-
1436. 

SIMHA S, V. Fixed Point Implementation of Soft Input/Soft Output Sphere 
Decoder and EXIT Chart Analysis. 2009. Thesis (Master Thesis) - Fachbereich 
Elektrotechnik und Informationstechnik, Technische Universität Kaiserslautern, 
Kaiserslautern. 



 

 

71 

 

 

STUDER, C.; BURG, A.; BÖLCSKEI, H. Soft-Output Sphere Decoding: Algorithms 
and VLSI Implementation. IEEE Journal on Selected Areas in Communications, v. 
26, n. 2, p. 290–300, 2008. 

TELATAR, I. E. Capacity of multi-antenna Gaussian channels. European 
Transactions on Telecommunications, v. 10, n. 6, p. 585–595, 1999. 

WÜBBEN, D. et al. Efficient Algorithm for Decoding Layered Space-Time Codes. IEE 
Electronics Letters, v. 37, n. 22, p. 1348–1350, 2001. 

WÜBBEN, D. et al. MMSE Extension of V-BLAST based on Sorted QR 
Decomposition. In: VEHICULAR TECHNOLOGY CONFERENCE, 2003, 
Proceedings... Orlando, FL: IEEE, 2003, p. 508-512. 

 



 

 

72 

 

APPENDIX 

A.1 Additional simulations with sphere shrinking and SQRD 
 

 
Figure A.1: FER for different algorithms with fixed point in a 4×4 antennas 

system 

 
Figure A.2: Average amount of visited nodes with fixed point in a 4×4 antennas 

system 

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15

F
E

R

SNR (dB)

CS

SS

OSS

SQRD and CS

SQRD and SS

SQRD and OSS

0

50

100

150

200

250

300

350

400

450

500

5 6 7 8 9 10 11 12 13 14 15

N
od

es

SNR (dB)

CS

SS

OSS

SQRD and CS

SQRD and SS

SQRD and OSS



 

 

73 

 

 

Table A.1: Parameters for simulations in Figures A.1 and A.2 

Parameter Value 

Number of antennas 4 

Frame errors limit 100 

Number format Fixed point 4.8 

 

 
Figure A.3: FER for different algorithms with floating point in a 2×2 antennas 

system 

 
Figure A.4: Average amount of visited nodes with floating point in a 2×2 

antennas system 
 

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
E

R

SNR (dB)

CS

SS

OSS

CS and SQRD

SS and SQRD

OSS and SQRD

0

2

4

6

8

10

12

14

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
od

es

SNR (dB)

CS

SS

OSS

CS and SQRD

SS and SQRD

OSS and SQRD



 

 

74 

 

Table A.2: Parameters for simulations in Figures A.3 and A.4 

Parameter Value 

Number of antennas 2 

Frame errors limit 150 

Number format Floating point 

The results found for 2×2 antennas agree with the ones for 4×4. However, as the 
amount of intermediate nodes in the tree is much smaller, the effects of most algorithm 
combinations cannot be seen so clearly. Still, it is even clearer in this case that the 
combination of SQRD with OSS has outstanding performance. 

 
Figure A.5: FER for different algorithms with fixed point in a 2×2 antennas system 

 
Figure A.6: Average amount of visited nodes with fixed point in a 2×2 antennas 

system 

0,001

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
E

R

SNR (dB)

CS
SS
OSS
CS and SQRD
SS and SQR
OSS and SQRD

0

2

4

6

8

10

12

14

5 7 9 11 13 15 17 19

N
od

es

SNR (dB)

CS

SS

OSS

CS and SQRD

SS and SQR

OSS and SQRD



 

 

75 

 

 

Table A.3: Parameters for simulations in Figures A.5 and A.6 

Parameter Value 

Number of antennas 2 

Frame errors limit 150 

Number format Fixed point 4.8 

A.2 Simulation results with 64-QAM 

 
Figure A.7: Required amount of fractional bits for a 64-QAM 2×2 antennas system 

 
Figure A.8: Required amount of integer bits for a 64-QAM 2×2 antennas system 

 

 

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

F
E

R

SNR (dB)

4.8

4.9

4.10

Floating point

0,01

0,1

1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

F
E

R

SNR(dB)

4.10

5.9

5.10

Floating point



 

 

76 

 

Table A.4: Parameters for simulations in Figures A.7 and A.8 

Parameter Value 

Number of antennas 2 

Frame errors limit 150 

Figures A.7 and A.8 show that the 4.8 format used for 16-QAM is not enough when 
dealing with 64-QAM. For the chosen SNR interval, 5 integer and 10 fractional bits 
were sufficient. All simulations are with constant sphere and unsorted QRD. 


