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Abstract. We prove a large deviations principle for the empirical measure of the one dimensional
symmetric simple exclusion process in contact with reservoirs. The dynamics of the reservoirs is
slowed down with respect to the dynamics of the bulk of the system, that is, the rate at which
the system exchanges particles with the boundary reservoirs is of order n−θ, where n is number of
sites in the system, θ is a non negative parameter, and the system is taken in the diffusive time
scaling tn2. Two regimes are studied here, the subcritical θ ∈ (0, 1) whose hydrodynamic equation
is the heat equation with Dirichlet boundary conditions and the supercritical θ ∈ (1,+∞) whose
hydrodynamic equation is the heat equation with Neumann boundary conditions. In the subcritical
case θ ∈ (0, 1), the rate function that we obtain matches with the rate function corresponding to the
case θ = 0 which was derived on previous works, see Bertini et al. (2009); Farfan et al. (2011). In the
supercritical case θ ∈ (1,+∞), the rate function is equal to infinity outside the set of trajectories
that preserve the total mass, meaning that, despite the discrete system exchanges particles with the
reservoirs, this phenomenon has super-exponentially small probability in the diffusive scaling limit.
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1. Introduction

Due to its special features and simplicity, the exclusion process became a prototype interacting
particle system in Probability and Statistical Mechanics: on one hand it presents an interaction
among particles (the hard-core interaction) describing many physical phenomena of interest. On
the other hand, it is a mathematically treatable model, allowing rigorous proofs of those phenomena
Kipnis and Landim (1999).

In plain words, the exclusion process is described by independent random walks on some graph
under the constraint that at most one particle is allowed to occupy each vertex of the graph.
Variations of the exclusion dynamics then lead to many different physical situations. One of the
most common and relevant is to put the exclusion process in contact with reservoirs, and this has
been widely studied in the literature, see for instance the seminal paper Eyink et al. (1990). In
particular, the symmetric exclusion in contact with reservoirs is the subject of study in this paper.

Recently, in Baldasso et al. (2017) it was derived the hydrodynamic limit of the one-dimensional
symmetric exclusion process on the box with n sites and in contact with slow reservoirs. That is, the
dynamics is given by a superposition of a Kawasaki dynamics and a Glauber dynamics at the end
points of the box. More precisely, the symmetric simple exclusion dynamics acts on the bulk, that
is the set of points {1, . . . , n − 1} and, at the sites 1 and n − 1, particles can be injected/removed
to/from the bulk at a rate which is slowed down with respect to the bulk dynamics. More precisely,
particles enter (respectively, leave) the system through the left boundary at rate α/nθ (respectively,
(1− α)/nθ) and particles enter (respectively, leave) the system through the right boundary at rate
β/nθ (respectively, (1− β)/nθ). Here, 0 < α, β < 1 and θ ≥ 0 are fixed parameters.

Given that the hydrodynamic limit has been established, which is, in some sense, a law of large
numbers for the density of particles, since its limit is deterministic, it is quite natural to ask about
its large deviations. That is, the asymptotic probability to observe rare events (which, grosso modo,
goes exponentially fast to zero for events that do not contain the expected limit from the law of large
numbers). This is precisely what we do here: in this paper we analyze the large deviations of the
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model studied in Baldasso et al. (2017), in both the subcritical case θ ∈ (0, 1) and the supercritical
case θ ∈ (1,+∞). The critical case, θ = 1, was recently analyzed in Franco et al. (2022).

We describe next the main features of this work, starting with some words about the super-
exponential replacement lemmas which are of fundamental importance in the derivation of our
results. For θ ∈ (0, 1) since we are in the regime of Dirichlet boundary conditions, we need to replace
the value of the empirical measure at the left (resp. right) boundary by the value α (resp. β). This
can be achieved by taking as reference measure a product measure associated to a continuous profile
gα,β which is locally constant equal to α at the left boundary and locally constant equal to β at
the right boundary. For θ ∈ (1,+∞), we need to assure that profiles not preserving the total mass
of the system have a super-exponentially small probability. These facts help solving the elliptic
equation (associated to the weakly asymmetric system), and this provides the correct perturbation
in order to observe a given profile.

For θ ∈ (0, 1), the large deviations rate function that we obtained coincides with the large
deviations rate function of many previous works, as Bertini et al. (2003), or Farfan et al. (2011)
in dimension one and parameter a = 0, or in Bodineau and Lagouge (2012) if we do not consider
the reaction dynamics as they do. We stress that despite having the same large deviations rate
function, the case θ ∈ (0, 1) is not a particular case of those aforementioned works, since many of
the estimates that we need are harder to obtain. Nevertheless, their exchange rates at the boundary
corresponds to taking θ = 0 in our rates. At the end, we prove that slowing down the exchange rate
of the boundary by n−θ, with θ ∈ (0, 1) the large deviations behave as in the case θ = 0.

For θ ∈ (1,+∞), contrarily to the case θ ∈ (0, 1), the large deviations rate function depends on
the value of the density profile at the boundary. The rate functions for the cases θ ∈ (0, 1) and
θ ∈ (1,+∞) are then written in the following succinct form, as the supremum over the set of possible
perturbations H of the price function JθH(ρ) to be precisely defined in Subsection 2.5, restricting
the set of reachable profiles ρ to distinct sets in each case. In other words, the rate functions for
θ ∈ (0, 1) and θ ∈ (1,+∞) are quite similar, in their form, but they have, as natural, different
attainable profiles. The constraint ρt(0) = α and ρt(1) = β defines the set of reachable profiles for
θ ∈ (0, 1), which corresponds to the Dirichlet case. On the other hand, for θ ∈ (1,+∞), reachable
trajectories must have constant mass in time, which corresponds to the Neumann case. Both sets
of reachable profiles are natural if we take into consideration that the corresponding hydrodynamic
equations have Dirichlet and Neumann boundary conditions, respectively.

In neither the cases θ ∈ (0, 1) and θ ∈ (1,+∞) the current through the boundary plays any role.
This can be explained as follows. For θ ∈ (0, 1), in the same spirit of Bertini et al. (2003); Bodineau
and Lagouge (2012); Farfan et al. (2011), a super-exponential replacement lemma at the boundary
holds, meaning that the exchange of particles is fast enough to not allow any large deviations in the
diffusive time scaling. On the other hand, for θ ∈ (1,+∞), the exchange of particles is so slow that
any large deviations of the current through the boundary have no strength to interfere in the large
deviations of the density. That is, the current through the boundary disappears super-exponentially
fast in the diffusive time scaling. This phenomenon does not appear in the case θ = 1. In that case,
the current has an impact in the large deviations functional, as we can see in equations (2.10)-(2.12)
in Franco et al. (2022) and because of this, different techniques have to be derived in order to prove
the large deviations principle.

The paper is structured as follows: In Section 2 we give definitions and we state our main results.
Section 3 contains the necessary super-exponential replacement lemmas which are crucial along the
arguments. In Section 4 we study the hydrodynamic limit of the associated weakly asymmetric
process. In Sections 5 and 6 it is presented the large deviations upper bound and lower bound,
respectively.
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2. Statement of results

2.1. The model. Given n ≥ 1, denote Σn = {1, . . . , n − 1} and consider the state space Ωn :=
{0, 1}Σn . Configurations on this state space Ωn will be denoted by η so that, for x ∈ Σn, η(x) = 0
means that the site x is vacant while η(x) = 1 means that the site x is occupied. We define the
infinitesimal generator Ln = Ln,0 + n−θLn,b as follows. For any function f : Ωn → R,

(Ln,0f)(η) =

n−2∑
x=1

(
f(ηx,x+1)− f(η)

)
, (2.1)

(Ln,bf)(η) =
∑

x∈{1,n−1}

[
rx(1− η(x)) + (1− rx)η(x)

](
f(σxη)− f(η)

)
, (2.2)

with r1 = α and rn−1 = β. Above, for x ∈ {1, . . . , n− 2}, the configuration ηx,x+1 is obtained from
η by exchanging the occupation variables η(x) and η(x+ 1), i.e.,

(ηx,x+1)(y) =

 η(x+ 1) , if y = x ,
η(x) , if y = x+ 1 ,
η(y) , otherwise,

(2.3)

and for x ∈ {1, n− 1} the configuration σxη is obtained from η by flipping the occupation variable
η(x), i.e,

(ηx)(y) =

{
1− η(y) , if y = x ,
η(y) , otherwise. (2.4)

The dynamics of this model can be described in words in the following way. In the bulk, particles
move according to continuous time symmetric random walks under the exclusion rule: whenever
a particle tries to jump to an occupied site, such jump is suppressed. Additionally, at the left
boundary, particles can be created (resp. removed) at rate α/nθ (resp. at rate (1− α)/nθ) and at
the right boundary, particles can be created (resp. removed) at rate β/nθ (resp. at rate (1−β)/nθ),
see Figure 2.1 for an illustration. When α = β = ρ, for which there is no external current induced by

1 2 n−1

α/nθ

(1− α)/nθ

1

(1− β)/nθ

β/nθ

1

Figure 2.1. Illustration of jump rates. The leftmost and rightmost rates are the
entrance/exiting rates.

the reservoirs, the Bernoulli product measures given by νρ{η : η(x) = 1} = ρ are invariant. However,
when α 6= β, this is no longer true. Nevertheless, for α 6= β, there is a unique stationary measure of
the system, that we denote by µss, which is not a product measure. For further properties on this
measure we refer the reader to Derrida (2007), for instance. In Baldasso et al. (2017, Theorem 2.2),
it is shown that this measure is associated to a profile ρ̄(·) which is stationary with respect to the
corresponding hydrodynamic equation.

Fix, once and for all, a time horizon T > 0. We denote by {ηt : t ∈ [0, T ]} the Markov process
with generator n2Ln, omitting the dependence on n to shorten notation. This family of Markov
processes {ηt : t ∈ [0, T ]} indexed on n ∈ N is what we will call the Exclusion Process with Slow
Boundary (EPSB).
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2.2. Empirical measure. The so-called empirical measure, which represents the spatial density of
particles in the system, is defined by

πn(du) = πn(η, du) :=
1

n

n−1∑
x=1

η(x) δ x
n

(du) , (2.5)

where δ x
n
is the Dirac-measure at x/n ∈ [0, 1] and η ∈ Ωn. Note that the empirical measure is a

random positive measure on [0, 1] with total mass bounded by one. Let

M = {µ is a positive measure on [0, 1] : µ([0, 1]) ≤ 1} , (2.6)

hence πn ∈ M. The integral of a function f : [0, 1] → R with respect to the empirical measure
is denoted by 〈πn, f〉 =

∫ 1
0 f(u)πn(du) = 1

n

∑n−1
x=1 η(x) f(xn), for which we will write 〈πn, f〉. The

time evolution of the density of particles can be represented by the time evolution of the empirical
measure as

πnt (du) = πn(ηt, du) :=
1

n

n−1∑
x=1

ηt(x) δ x
n

(du) ,

where {ηt : t ∈ [0, T ]} is the EPSB. This is the object we are concerned with in this work.

2.3. Notations. In what follows we present notations to be used everywhere in this paper and we
also recall some classical spaces from Analysis.
•We will write 〈·, ·〉 to denote both an integral of a function f with respect to a measure µ, that is,

〈µ, f〉 =
∫ 1

0 f(u) dµ(u), and to denote the inner product on L2(0, 1) given by 〈f, g〉 =
∫ 1

0 f(u) g(u) du
and the corresponding norm is denoted by ‖·‖L2 . The double bracket 〈〈·, ·〉〉 denotes the inner product
in L2([0, T ]× (0, 1)) and the corresponding norm is denoted by ‖ · ‖L2(0,T ;(0,1)).
• Recall Ωn from the beginning of the Section 2. Let DΩn = D([0, T ],Ωn) be the space of

trajectories that are right continuous, with left limits and taking values in Ωn. Denote by Pµn the
probability measure on DΩn induced by {ηt : t ∈ [0, T ]} and by the initial measure µn, and let Eµn
be the expectation with respect to Pµn .

Denote by DM = D([0, T ],M) the space of trajectories that are right continuous, with left limits
and taking values inM, which was defined in (2.6). Denote by Qµn the probability on DM induced
by {πnt : t ∈ [0, T ]} and by the initial measure µn on Ωn.

Denote by DM0 the subset of DM consisting of trajectories taking values on measures which have
a density ρ with respect to the Lebesgue measure such that 0 ≤ ρ ≤ 1.
• We will denote by Ci,j := Ci,j([0, T ] × [0, 1]) the set of functions with i derivatives in time, j

derivatives in space with all partial derivatives in C0([0, T ]× [0, 1]). By Cj := Cj([0, 1]) we denote
the set of functions which are Cj in space. When a subindex 0 appears, it will restrict the considered
sets to functions which vanish at the boundary of [0, 1]. When a subindex c appears, it will restrict
the considered set to functions of support compact in (0, 1). For example, by C1,2

c we mean the
subset of C1,2 of functions with compact support in [0, T ]× (0, 1) and by C1,2

0 we mean the subset
of C1,2 composed by functions H such that H(t, 0) = H(t, 1) = 0 for all t ≥ 0.

Define then

Cθ =

{
C1,2

0 , if θ ∈ (0, 1),

C1,2, if θ ∈ (1,+∞).
(2.7)

• Given a function g : [0, T ] × [0, 1], we sometimes use gt(u) to denote g(t, u). It should not be
confounded with the notation ∂tg(t, u) for the time derivative.
• The notation g(n) = O(f(n)) means g(n) is bounded from above by Cf(n), where the constant

C > 0 does not depend on n. A presence of subindexes in the O(·) means that the constant
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may depend on those subindexes. Equivalently, f . g will stand for f = O(g). The notation
g(n) = o(f(n)) will stand for lim

n→∞
g(n)/f(n) = 0.

• The indicator function of a set A will be written as 1A(u), which is one if u ∈ A and zero
otherwise.
• The discrete derivatives and the discrete Laplacian are defined by

∇+
nHn(xn) = n

[
H(x+1

n )−H(xn)
]
, ∇−nHn(xn) = n

[
H(xn)−H(x−1

n )
]
, (2.8)

∆nHn(xn) = n2
[
H(x+1

n ) +H(x−1
n )− 2H(xn)

]
. (2.9)

Definition 2.1 (Sobolev Space). Let H1 be the set of all locally summable functions ζ : (0, 1)→ R
such that there exists a function ∂uζ ∈ L2 satisfying 〈∂uG, ζ〉 = −〈G, ∂uζ〉, for all G ∈ C∞c . For
ζ ∈ H1, we define the norm

‖ζ‖H1 :=
(
‖ζ‖2L2 + ‖∂uζ‖2L2

)1/2
.

Let L2(0, T ;H1) be the space of all measurable functions ξ : [0, T ]→ H1 such that

‖ξ‖2L2(0,T ;H1) :=

∫ T

0
‖ξt‖2H1 dt < ∞ .

Remark 2.2. An equivalent definition for the Sobolev space L2(0, T ;H1) is the set of bounded
functions ξ : [0, T ]× T→ R such that there exists a function ∂ξ ∈ L2([0, T ]× T) satisfying

〈〈∂uH, ξ〉〉 = −〈〈H, ∂ξ〉〉 ,

for all functions H ∈ C0,1
c .

2.4. Hydrodynamic limit. Fix a measurable profile γ : [0, 1] → [0, 1]. For each n ∈ N, let µn
be a probability measure on Ωn. We say that the sequence {µn}n∈N is associated to the profile
γ : [0, 1]→ [0, 1] if, for any δ > 0 and any f ∈ C0, the following limit holds:

lim
n→∞

µn

[
η :
∣∣∣〈πn0 , f〉 − 〈γ, f〉∣∣∣ > δ

]
= 0 . (2.10)

From Baldasso et al. (2017) we have the following result:

Theorem 2.3 (Hydrodynamic limit for the EPSB, c.f. Baldasso et al., 2017). Suppose that the
sequence {µn}n∈N is associated to a measurable profile γ : [0, 1] → [0, 1] in the sense of (2.10).
Then, for each t ∈ [0, T ], for any δ > 0 and any continuous function f : [0, 1]→ R,

lim
n→+∞

Pµn
[
η· :

∣∣∣〈πnt , f〉 − 〈ρt, f〉 ∣∣∣ > δ
]

= 0 ,

where ρ(t, ·) is:

• If 0 < θ < 1, the unique weak solution of the heat equation with Dirichlet boundary conditions
∂tρ(t, u) = ∂2

uρ(t, u) , for t > 0 , u ∈ (0, 1) ,

ρ(t, 0) = α , ρ(t, 1) = β for t > 0 ,

ρ(0, u) = γ(u) , for u ∈ [0, 1] .

(2.11)

• If θ > 1, the unique weak solution of the heat equation with Neumann boundary conditions
∂tρ(t, u) = ∂2

uρ(t, u) , for t > 0 , u ∈ (0, 1) ,

∂uρ(t, 0) = ∂uρ(t, 1) = 0 , for t > 0 ,

ρ(0, u) = γ(u) , u ∈ [0, 1] .

(2.12)
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In Baldasso et al. (2017) the authors prove that the sequence of probability measures {Qµn}n∈N
converges weakly to Q as n → +∞, where Q is the probability measure on DM which gives mass
1 to the path π(t, du) = ρt(u)du, ρt(·) being the unique weak solution of (2.11). Observe that
Theorem 2.3 is a corollary of this result.

2.5. Large Deviations Principle. We start by recalling the notion of energy similarly to Bertini et al.
(2003); Farfan et al. (2011); Franco and Neumann (2017) and many other related papers.

Definition 2.4. For H ∈ C0,1
c , define EH : DM → R ∪ {+∞} by

EH(π) =

{
〈〈∂uH, ρ〉〉 − 2〈〈H,H〉〉 , if π ∈ DM0 and πt(du) = ρt(u) du ,

∞ , otherwise .

The energy functional E : DM → R+ ∪ {∞} is then defined as

E(π) = sup
H∈C0,1

c

EH(π) .

By the Riesz Representation Theorem, it is well-known that E(π) <∞ implies πt = ρt(u)du with
ρ belonging to the Sobolev space L2(0, T ;H1), see Franco and Neumann (2017, Proposition 3.10)
for instance.

Given a profile ρ ∈ L2(0, T ;H1), which is bounded away from 0 and 1, and a measurable profile
γ : [0, 1]→ [0, 1], we define the linear functional `θH(ρ|γ) acting on H ∈ C1,2 as

`θH(ρ|γ) = 〈ρT , HT 〉 − 〈γ,H0〉 −
∫ T

0
〈ρs, (∂s + ∆)Hs〉 ds+

∫ T

0

(
β∂uHs(1)− α∂uHs(0)

)
ds,

if θ ∈ (0, 1), and

`θH(ρ|γ) = 〈ρT , HT 〉 − 〈γ,H0〉 −
∫ T

0
〈ρs, (∂s + ∆)Hs〉 ds+

∫ T

0

(
ρs(1)∂uHs(1)− ρs(0)∂uHs(0)

)
ds

= 〈ρT , HT 〉 − 〈γ,H0〉 −
∫ T

0
〈ρs, ∂sHs〉 ds+

∫ T

0
〈∂uρs, ∂uHs〉 ds,

if θ ∈ (1,+∞). Let ΦH(ρ) be the non-negative convex functional acting on H ∈ C1,2 as

H 7→ ΦH(ρ) =

∫ T

0
〈χ(ρs), (∂uHs)

2〉 ds (2.13)

where χ(u) = u(1 − u) is the so-called static compressibility of the system. Given H ∈ C1,2, we
define the functional JθH : DM → R ∪ {+∞} by

JθH(π|γ) =

{
`θH(ρ|γ)− ΦH(ρ) , if π ∈ Fθ and E(π) <∞ with πt = ρt(u)du ,

+∞ , otherwise,
(2.14)

where

Fθ :=

{
DM, if θ ∈ (0, 1),{
π ∈ DM : 〈πt, 1〉 = 〈π0, 1〉 , ∀t ∈ [0, T ]

}
, if θ ∈ (1,+∞).

(2.15)

We point out that, for θ ∈ (1,+∞), Fθ is the set of trajectories whose total mass is constant in time.
Note that the boundary integrals in `θH(ρ|γ) are well-defined due to the assumption ρ ∈ L2(0, T ;H1)
and the notion of trace of a Sobolev space, see for instance Evans (1998).

We study in this paper the large deviations of the empirical measure starting the system from
a deterministic configuration ηn, such that the sequence {ηn}n∈N of deltas of Dirac is associated
to the profile γ, where γ : [0, 1] → [0, 1] is a measurable profile bounded away from 0 and 1. The
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probability and expectation of the process starting from a delta of Dirac measure at ηn will be
denoted by Pδηn and Eδηn , respectively. We define next the large deviations rate function.

Definition 2.5. Recall from (2.7) the definition of Cθ. Let IθT (· |γ) : DM → R+∪{+∞} be defined
by

IθT (π|γ) = sup
H∈Cθ

JθH(π|γ) . (2.16)

The rate functional (2.16) is lower semi-continuous with compact level sets in both cases θ ∈ (0, 1)
and θ ∈ (1,+∞). The proof of this fact can be readily adapted from Landim and Tsunoda (2018,
Theorem 4.7) taking into account that the set of trajectories with constant mass is a closed set in
DM.

We are now in position to state the main result of this paper. Let Qδηn be the probability measure
induced by the empirical measure when we start the system from ηn, where {ηn}n∈N is a sequence of
deterministic configurations associated to the measurable profile γ : [0, 1]→ [0, 1], which is bounded
away from 0 and 1.

Theorem 2.6. The sequence of probability measures {Qδηn}n≥1 satisfies the following large devia-
tions principle:
a) (Upper bound) For any closed subset C of DM,

lim
n→∞

1
n logQδηn

[
C
]
≤ − inf

π∈C
IθT (π|γ) .

b) (Lower bound) For any open subset O of DM,

lim
n→∞

1
n logQδηn

[
O
]
≥ − inf

π∈O
IθT (π|γ) .

3. Super-exponential Replacement Lemmas

We start this section by stating some important estimates on entropy bounds and Dirichlet forms.
For technical reasons, it will be important to fix a particular profile and we choose one which is
locally constant equal to α near zero, locally constant equal to β near one, and linearly interpolated
elsewhere. We denote once and for all this profile by gα,β : [0, 1] → [0, 1] and we illustrate it in
Figure 3.2.

gα,β

0

1

α

δ 1−δ 1

β

Figure 3.2. Profile gα,β . Note that it depends on δ, which is fixed and whose
specific value does not play any role.
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Let νngα,β(·) be the slow varying Bernoulli product measure on Ωn with parameters given by the
profile gα,β , that is,

νngα,β(·)
{
η ∈ Ωn : η(x) = 1 for all x ∈ D

}
=
∏
x∈D

gα,β
(
x
n

)
, ∀D ⊂ Σn . (3.1)

3.1. Entropy bounds and estimates on Dirichlet forms. For a density function f : Ωn → [0,∞) with
respect to νngα,β(·) we define

Dn(
√
f, νngα,β(·)) := Dn,0(

√
f, νngα,β(·)) +Dn,b(

√
f, νngα,β(·)) ,

where

Dn,0(
√
f, νngα,β(·)) :=

∑
x∈Σn

〈
1,
(√

f(ηx,x+1)−
√
f(η)

)2 〉
νn
gα,β(·)

, (3.2)

Dn,b(
√
f, νngα,β(·)) :=

1

nθ

∑
x∈{1,n−1}

〈
rx(1− η(x)) + (1− rx)η(x),

(√
f(ηx)−

√
f(η)

)2〉
νn
gα,β(·)

(3.3)

where rx was defined in (2.2). Our first goal is to express a relationship between the Dirichlet form
defined by 〈Ln

√
f,
√
f〉νn

gα,β(·)
and Dn(

√
f, νngα,β(·)). We claim that

〈Ln
√
f,
√
f〉νn

gα,β(·)
. −Dn(

√
f, νngα,β(·)) +

n−1∑
x=1

(
gα,β(x+1

n )− gα,β(xn)
)2

. −Dn(
√
f, νngα,β(·)) +

1

n
.

(3.4)

The second inequality above is readily deduced from the definition of gα,β . To prove the first
inequality, we recall the following lemma from Bernardin et al. (2019); Gonçalves (2019).

Lemma 3.1. Let T : Ωn → Ωn be a map and let c : η → c(η) be a positive local function. Let f be
a density with respect to a probability measure µ on Ωn. Then〈

c(η)[
√
f(T (η))−

√
f(η)] ,

√
f(η)

〉
µ
. −

∫
c(η)

([√
f(T (η))

]
−
[√

f(η)
])2

dµ

+

∫
1

c(η)

[
c(η)− c(T (η))

µ(T (η))

µ(η)

]2 ([√
f(T (η))

]
+
[√

f(η)
])2

dµ . (3.5)

As a consequence of the previous lemma, taking µ = νngα,β(·) we have that

〈
Ln,0

√
f,
√
f
〉
νn
gα,β(·)

. −Dn,0(
√
f, νngα,β(·)) +

n−1∑
x=1

(
gα,β(xn)− gα,β(x+1

n )
)2

〈
Ln,b

√
f,
√
f
〉
νn
gα,β(·)

. −Dn,b(
√
f, νngα,β(·)) +

1

nθ

{(
gα,β( 1

n)− α
)2

+
(
gα,β(n−1

n )− β
)2}

for any density f with respect to νngα,β(·). We leave of details of deriving the above inequalities to
the reader. We stress that the profile gα,β(·) is assumed to satisfy the conditions described below
(3.1), hence the error coming from the bulk dynamics is of order O( 1

n). In the case θ ∈ (1,+∞) we
do not need to impose any extra condition on the profile gα,β(·) in order to have the bound given
by (3.4) since the factor 1

nθ
is enough to control this term. On the other hand, in the case θ ∈ (0, 1)

we choose the profile gα,β(·) as being equal to α (resp. β) at 0 (resp. 1) and locally constant in a
neighborhood of the boundary so that we can control the error in the previous display.
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3.2. Replacement lemmas and energy estimates. In this section we prove the replacement lemmas
required to write down the Radon-Nikodym derivative as a function of the empirical measure, as
well as some energy estimates. Before proceeding, we introduce the notion of the empirical average
on a box around x. By abuse of notation, let εn denotes bεnc, the integer part of εn.

Definition 3.2. For any x ∈ Σn and ε > 0 that satisfy x + εn ∈ Σn we denote by ηεn(x) the
centred average on a box of size εn situated to the right or to the left of the site x ∈ Σn, that is,

ηεn(x) =


1

εn

x+εn∑
z=x+1

η(z) , if x ∈ {1, . . . , n− 1− εn} ,

1

εn

x−1∑
z=x−εn

η(z) , if x ∈ {n− 1− εn, . . . , n− 1} . (3.6)

Lemma 3.3. Let ψ = ψx,ε,n : Ωn → R be a uniformly bounded function on n and ε which is
invariant for the map η 7→ ηy,y+1 for any y ∈ {x+ 1, . . . , x+ εn}, that is, ψ(η) = ψ(ηy,y+1) for any
y ∈ {x + 1, . . . , x + εn}. Then, for any density f with respect to νngα,β(·), for any n ≥ 1, for any
ε > 0 and for any positive constant A, it holds that∣∣∣∣〈ψ(η)

[
η(x)− ηεn(x)

]
, f
〉
νn
gα,β(·)

∣∣∣∣ . 1
ADn(

√
f, νngα,β(·)) +Aεn+ ε .

Proof : We present the proof only for the case x ∈ {1, ..., n − 1 − εn} since the remaining case is
analogous. Note that

η(x)− ηεn(x) =
1

εn

x+εn∑
y=x+1

y−1∑
z=x

η(z)− η(z + 1) .

and 〈
ψ(η)

(
η(z + 1)− η(z)

)
, f(η)

〉
νn
gα,β(·)

=
1

2

〈
ψ(η)

(
η(z + 1)− η(z)

)
, f(η)− f(ηz,z+1)

〉
νn
gα,β(·)

+
1

2

〈
ψ(η)

(
η(z + 1)− η(z)

)
, f(η) + f(ηz,z+1)

〉
νn
gα,β(·)

.

By using the fact that for any a, b ≥ 0, (a− b) = (
√
a−
√
b)(
√
a+
√
b), from Young’s inequality, for

any positive constant A, it holds that∣∣∣ 〈ψ(η)
(
η(x)− ηεn(x)

)
, f
〉
νn
gα,β(·)

∣∣∣
.

A

εn

x+εn∑
y=x+1

y−1∑
z=x

〈(
η(z + 1)− η(z)

)2
,
(√

f(η) +
√
f(ηz,z+1)

)2
〉
νn
gα,β(·)

+
1

Aεn

x+εn∑
y=x+1

y−1∑
z=x

〈
1,
(√

f(η)−
√
f(ηz,z+1)

)2
〉
νn
gα,β(·)

+
1

εn

x+εn∑
y=x+1

∣∣∣∣∣
y−1∑
z=1

〈
ψ(η)

(
η(z + 1)− η(z)

)
, f(η) + f(ηz,z+1)

〉
νn
gα,β(·)

∣∣∣∣∣ . (3.7)

Note that the second term on the right-hand side of last display is bounded from above by
1
ADn(

√
f, νngα,β(·)). Since there is at most one particle per site and since f is a density, the first term

at the right-hand side of last display is bounded from above by Aεn. Finally, to estimate the third
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term on the right-hand side of last display, we note that, since gα,β(·) is Lipschitz and there is at
most a particle per site, it is not complicated to show that

y−1∑
z=1

∣∣∣∣〈ψ(η)
(
η(z + 1)− η(z)

)
, f(η) + f(ηz,z+1)

〉
νn
gα,β(·)

∣∣∣∣ . y−1∑
z=1

∣∣∣gα,β( z+1
n

)
− gα,β

(
z
n

)∣∣∣ . y

n
,

from where the proof ends. �

In what follows ϕn is a sequence of functions in C0,0 with uniformly bounded supremum norm.
Define, for all θ ≥ 0,

V θ,ϕn

ε,0 (ηs, s) =
1

n

n−2∑
x=1

ϕns (xn)

{(
ηs(x)− ηs(x+ 1)

)2
2

− χ
(
ηεns (x)

)}
, (3.8)

where χ is the static compressibility of the system defined below (2.13). Although this expression
does not depend on θ, we keep θ in the notation to make short some statements in the sequel. For
x ∈ {1, n− 1}, let

V θ,ϕn

ε,x (ηs, s) =

{
ϕns (xn)

[
ηs(x)− rx

]
, if θ ∈ (0, 1) ,

ϕns (xn)
[
ηs(x)− ηεns (x)

]
, if θ ∈ (1,+∞) ,

(3.9)

where r1 = α, rn−1 = β and ηεn(x) was defined in (3.6).

Proposition 3.4. For any t ∈ [0, T ], any θ ≥ 0 and any x = 0, 1, n− 1, we have that

lim
ε↓0

lim
n→∞

1

n
logPνn

gα,β(·)

[∣∣∣ ∫ t

0
V θ,ϕn

ε,x (ηs, s) ds
∣∣∣ > δ

]
= −∞ ,

for all δ > 0.

Proof : Note that, for an → +∞ and bn, cn > 0,

lim
n→+∞

1

an
log(bn + cn) = max

{
lim

n→+∞

1

an
log bn, lim

n→+∞

1

an
log cn

}
. (3.10)

Using this fact, in order to prove (3.14) it is enough to show that estimate without the absolute
value. By the exponential Chebychev’s inequality, this probability (without the absolute value) is
bounded from above by

exp{−Cδn}Eνn
gα,β(·)

[
exp

{
Cn

∫ t

0
V θ,ϕn

ε,x (ηs, s) ds
}]

,

for any C > 0. From Feynman-Kac’s formula, last expectation is bounded from above by

exp

{∫ t

0
sup
f

{
〈CnV θ,ϕn

ε,x (η, s), f〉νn
gα,β(·)

+ n2〈Ln
√
f,
√
f〉νn

gα,β(·)

}
ds

}
,

where the supremum is carried over all the densities f with respect to νngα,β(·). Up to here we have

1

n
logPνn

gα,β(·)

[∣∣∣ ∫ t

0
V θ,ϕn

ε,x (ηs, s) ds
∣∣∣ > δ

]
≤ −Cδ +

∫ t

0
sup
f

{
〈CV θ,ϕn

ε,x (η, s), f〉νn
gα,β(·)

+ n〈Ln
√
f,
√
f〉νn

gα,β(·)

}
ds . (3.11)

Due to (3.4), the last expression is bounded from above by a constant times

− Cδ +

∫ t

0
sup
f

{
〈CV θ,ϕn

ε,x (η, s), f〉νn
gα,β(·)

− nDn(
√
f, νngα,β(·)) + 1

}
ds . (3.12)
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The next step is to obtain a relationship between the two first parcels inside the supremum above,
which has been provided by Lemma 3.3. Last display can be bounded from above by

− Cδ + t sup
f

{C
A
Dn(

√
f, νngα,β(·)) + CAεn+ Cε− nDn(

√
f, νngα,β(·)) + 1

}
. (3.13)

Choosing A = C
n on the previous expression, we get −Cδ + t(εC2 + εC + 1), so taking ε → 0, we

get −Cδ + t. And then taking C → +∞ we conclude the proof, because t ∈ [0, T ] and δ > 0 are
fixed. �

In possession of the previous results, it is a standard procedure to derive the (super-exponential)
energy estimate as written below. One can follow the arguments of Franco and Neumann (2017),
for instance.

Proposition 3.5. For a function H ∈ C0,1
c and ` ∈ R fixed, the following inequality holds:

lim
ε↓0

lim
n→∞

1
n logPνn

gα,β(·)

[
EH(πn ∗ ιε) ≥ `

]
≤ −` .

Corollary 3.6. For k ∈ N, for functions {Hj}1≤j≤k in C1
c , and ` ∈ R fixed, we have

lim
ε↓0

lim
n→∞

1
n logPνn

gα,β(·)

[
max

1≤j≤k
EHj
(
πn ∗ ιε

)
≥ `

]
≤ −` .

We can now move towards super-exponential replacement lemmas for the system starting from
the configuration ηn associated to the profile γ. Since

dPδηn
dPνn

gα,β(·)

=
dδηn

dνngα,β(·)
= 1ηn(η)

n−1∏
x=1

(
gα,β

(
x
n

))η(x)(
1− gα,β

(
x
n

))1−η(x)
,

we deduce that there exists a constant cα,β > 0 such that∣∣∣∣ dPδηn
dPνn

gα,β(·)

∣∣∣∣ ≤ ecα,βn .

From the inequality above, we have Pδηn [·] ≤ exp{cα,βn}Pνn
gα,β(·)

[·]. Then, from Proposition 3.4,
Proposition 3.5 and Corollary 3.6 we obtain the analogous results when the system starts from ηn,
that is:

Proposition 3.7. For any t ∈ [0, T ], any θ ≥ 0 and any x = 0, 1, n− 1, we have that

lim
ε↓0

lim
n→∞

1

n
logPδηn

[∣∣∣ ∫ t

0
V θ,ϕn

ε,x (ηs, s) ds
∣∣∣ > δ

]
= −∞ , (3.14)

for all δ > 0.

Proposition 3.8. For a function H ∈ C0,1
c and ` ∈ R fixed, the following inequality holds:

lim
ε↓0

lim
n→∞

1
n logPδηn

[
EH(πn ∗ ιε) ≥ `

]
≤ −`+ cα,β .

Corollary 3.9. For k ∈ N, for functions {Hj}1≤j≤k in C1
c , and ` ∈ R fixed, we have

lim
ε↓0

lim
n→∞

1
n logPδηn

[
max

1≤j≤k
EHj
(
πn ∗ ιε

)
≥ `

]
≤ −`+ cα,β .
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4. Perturbed Process

In order to derive a large deviations principle, it is natural to start with a class of perturbations
of the original process, which leads the system to converge in the hydrodynamic limit to any given
profile, or at least to any profile in a dense set.

A priori, it is not clear what is the natural set of perturbations of the system that one has to
consider. For this reason, it makes sense to study at first a quite general set of perturbations.
We will decide a posteriori which one is the correct set of perturbations based on the following
criterion: the Radon-Nikodym derivative should be (close to) a function of the empirical measure
and the elliptic equation associated to the perturbed process must have a solution. This will be
made clear along the text. Of course, we could have started from the correct set of perturbations,
but we chose not doing so for the sake of clarity.

Fix two functions H and G. The general perturbed process we consider is the weakly asym-
metric exclusion process with slow boundary (WAEPSB), which we define through the generator
LH,Gn,t = LH,tn,0 + n−θLG,tn,b acting on functions f : Ωn → R as:

(LH,tn,0f)(η) =
n−2∑
x=1

e(η(x)−η(x+1))
(
Ht(

x+1
n

)−Ht( xn )
)(
f(ηx,x+1)− f(η)

)
, (4.1)

(LG,tn,bf)(η) =
∑

x∈{1,n−1}

[
eGt(

x
n

)rx(1− η(x)) + e−Gt(
x
n

)(1− rx) η(x)
](
f(ηx)− f(η)

)
, (4.2)

where ηx,x+1 was defined in (2.3), r1 = α, rn−1 = β and ηx was defined in (2.4). The role of the
functions H and G is to introduce weak asymmetries at the bulk and at the boundary, respectively.
We assume here that H ∈ C1,2 and that G is C1 in time.

1 2 x n−1

α

nθ
eGt
(

1
n

)

(1− α)

nθ
e−Gt

(
1
n

)

e
1
n∇

+
nHt(

x
n

)

β

nθ
eGt
(
n−1
n

)

(1− β)

nθ
e−Gt

(
n−1
n

)

e−
1
n∇

+
nHt(

x
n

)

Figure 4.3. Illustration of jump rates for the perturbed process.

The general formula for the Radon-Nikodym derivative between two time inhomogeneous Markov
processes P and P can be found in equation (A.6) of Bertini et al. (2002), and it is given by

dP
dP

∣∣∣∣∣
Ft

= exp

{
−
(∫ t

0

[
λs(Xs)− λs(Xs)

]
ds−

∑
s≤t

log
λs(Xs−)ps(Xs− , Xs))

λs(Xs−)ps(Xs− , Xs)

)}
, (4.3)

where λs and λs are the waiting times and ps(·, ·) and ps(·, ·) are the transition probabilities of P
and P, respectively. Above Ft stands for the natural filtration. In what follows we compute the
Radon-Nikodym derivative

dPδηn
dPH,Gδηn

∣∣∣
Ft
, where:

• The measure Pδηn is induced by the Markov process with infinitesimal generator Ln = Ln,0 +

n−θLn,b, see (2.1) and (2.2), starting from the configuration ηn.
• The measure PH,Gηn is induced by the Markov process with infinitesimal generator LH,Gn,t

= LH,tn,0 + n−θLG,tn,b , see (4.1) and (4.2), starting from the configuration ηn.
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Having the expression (4.3) for the Radon-Nikodym derivative between two processes, we first
deal with the sum

−
∑
s≤t

log
λs(Xs−)ps(Xs− , Xs)

λs(Xs−)ps(Xs− , Xs)
. (4.4)

Evaluating the parameters λs, λ̄s, ps, p̄s for our model, (4.4) becomes equal to∑
s≤t

[
Gs(

1
n)
{
1{ηs− (1)=0,ηs(1)=1,ηs− (2)=ηs(2)} − 1{ηs− (1)=1,ηs(1)=0,ηs− (2)=ηs(2)}

}
+Gs(

n−1
n )
{
1{ηs− (n−1)=0,ηs(n−1)=1,ηs− (n−2)=ηs(n−2)} − 1{ηs− (n−1)=1,ηs(n−1)=0,ηs− (n−2)=ηs(n−2)}

}
+
n−2∑
x=1

1
n∇

+
nHs(

x
n)
{
1{ηs− (x)=1,ηs(x)=0,ηs− (x+1)=0,ηs(x+1)=1}

− 1{ηs− (x)=0,ηs(x)=1,ηs− (x+1)=1,ηs(x+1)=0}

}]
, (4.5)

where ∇+
n is the discrete derivative defined in (2.8). To shorten the expression above, we define now

some currents.
For x ∈ {1, . . . , n− 2}, denote by Jnx,x+1(t), the current through the edge {x, x+ 1}, that is, the

total number of particles that have jumped from x to x+1 minus the total number of particles that
have jumped from x+ 1 to x up to time t. The quantity Jn0,1(t) denotes the current at site 1, that
is, the total number of particles created at the site 1 minus the total number of particles destroyed
at the site 1 up to time t, while Jnn−1,n(t) denotes the current at site n−1, that is, the total number
of particles destroyed at the site n− 1 minus the total number of particles created at the site n− 1
up to time t. These notions allow to rewrite the expression (4.5) simply as∫ t

0

{
Gs(

1
n)∂sJ

n
0,1(s)−Gs(n−1

n )∂sJ
n
n−1,n(s) +

n−2∑
x=1

1
n∇

+
nHs(

x
n)∂sJ

n
x,x+1(s)

}
ds . (4.6)

From an integration by parts in time, a summation by parts in space and the conservation law
ηt(x)− η0(x) = Jnx−1,x(t)− Jnx,x+1(t), we infer that (4.6) is the same as

n

{
〈πnt , Ht〉 − 〈πn0 , H0〉 −

∫ t

0
〈πns , ∂sHs〉 ds

+
(
Gt(

1
n)−Ht(

1
n)
)

1
nJ

n
0,1(t)−

∫ t

0
(∂sGs(

1
n)− ∂sHs(

1
n)) 1

nJ
n
0,1(s) ds

+
(
Ht(

n−1
n )−Gt(n−1

n )
)

1
nJ

n
n−1,n(t)−

∫ t

0
(∂sHs(

n−1
n )− ∂sGs(n−1

n )) 1
nJ

n
n−1,n(s) ds

}
.

(4.7)

On the other hand, the integral term on the Radon-Nikodym derivative (4.3) is given by∫ t

0

[
λs(Xs)− λs(Xs)

]
ds = n

{
−
∫ t

0
〈πns ,∆nHs〉 ds−

∫ t

0
〈χns , (∇+

nHs)
2〉ds

+

∫ t

0

[
ηs(n− 1)∇−nHs(

n−1
n )− ηs(1)∇+

nHs(
1
n)
]
ds+OH( 1

n)

+
∑

x∈{1,n−1}

n1−θ
∫ t

0

[
rx(1− eGs(

x
n

))(1− ηs(x)) + (1− rx)(1− e−Gs(
x
n

))ηs(x)
]
ds

}
,
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where the discrete derivatives ∇+
nH and ∇−nH and the discrete Laplacian ∆nH have been defined

in (2.8) and (2.9) and

χns (du) =
1

2n

n−2∑
x=1

(
ηs(x)− ηs(x+ 1)

)2
δ x
n

(du) . (4.8)

Putting all together, the Radon-Nikodym derivative is given by

dPδηn
dPH,Gδηn

∣∣∣∣∣
Ft

= exp

{
− n

[
〈πnt , Ht〉 − 〈πn0 , H0〉 −

∫ t

0
〈πns , (∂s + ∆n)Hs〉 ds

−
∫ t

0
〈χns , (∇+

nHs)
2〉ds+

∫ t

0

[
ηs(n− 1)∇−nHs(

n−1
n )− ηs(1)∇+

nHs(
1
n)
]
ds+OH( 1

n)

−
∑

x∈{1,n−1}

n1−θ
∫ t

0

[
rx(eGs(

x
n

) − 1)(1− ηs(x)) + (1− rx)(e−Gs(
x
n

) − 1)ηs(x)
]
ds

+
(
Gt(

1
n)−Ht(

1
n)
)

1
nJ

n
0,1(t)−

∫ t

0
(∂sGs(

1
n)− ∂sHs(

1
n)) 1

nJ
n
0,1(s) ds

+
(
Ht(

n−1
n )−Gt(n−1

n )
)
) 1
nJ

n
n−1,n(t)−

∫ t

0
(∂sHs(

n−1
n )− ∂sGs(n−1

n )) 1
nJ

n
n−1,n(s) ds

] }
.

(4.9)

At this point we impose that G = H, that is, we pick G as G( 1
n) = H( 1

n) and G(n−1
n ) = H(n−1

n ).
The reason for such a choice is explained below.

For θ ∈ (0, 1), as shown in Proposition 3.7 (see also (3.9) for θ ∈ (0, 1)), the time integral of the
occupation variables ηs(1) and ηs(n − 1) can be replaced by α and β, respectively. This situation
lies in the same scenario of Farfan et al. (2011) for θ = 0 and no perturbation over the current is
required.

For θ ∈ (1,+∞), we need a spoiler: Lemma 5.2 will assure that the normalized currents 1
nJ

n
n−1,n

and 1
nJ

n
0,1 are super-exponentially small. Hence, no perturbation at the boundary would contribute

in the limit, and the choice G = H takes place for sake of simplicity.
Finally, we justify why we did not start a priori with the choice G = H. First, for pedagogical

reasons: the most natural form of the Radon-Nikodym derivative is given by (4.9), including the
current at the boundary. Second, but not less important, to be sure that only one perturbation is
enough.

Now, as usual, we replace the discrete Laplacian by the continuous Laplacian, the discrete deriv-
ative by the continuous derivative and the values of H at 1/n and (n− 1)/n by the values of H at
0 and 1, respectively. These changes can be done by paying a price of order o(1), because H ∈ C1,2

and we are working on a compact space. Because of the choice G = H, the Radon-Nikodym
derivative (4.9) can be rewritten as

dPδηn
dPHδηn

∣∣∣∣
Ft

= exp

{
− n

[
〈πnt , Ht〉 − 〈πn0 , H0〉 −

∫ t

0
〈πns , (∂s + ∆)Hs〉 ds

−
∫ t

0
〈χns , (∂uHs)

2〉ds+

∫ t

0

[
ηs(n− 1)∂uHs(1)− ηs(1)∂uHs(0)

]
ds+ oH( 1

n)

−
∑

x∈{1,n−1}

n1−θ
∫ t

0

[
rx(eHs(ux) − 1)(1− ηs(x)) + (1− rx)(e−Hs(ux) − 1)ηs(x)

]
ds

] }
,

(4.10)

where u1 = 0 and un−1 = 1.
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Note that for θ ∈ (0, 1), the last sum in (4.10) above may explode, motivating us to additionally
assume Hs(0) = Hs(1) = 0 for all s ∈ [0, T ], also in agreement with Farfan et al. (2011). In Section 5
this Radon-Nikodym derivative will be further studied.

4.1. Hydrodynamic limit for the perturbed process. Recall the definition of the empirical measure
from (2.5). Let µn be a measure in Ωn associated to a measurable profile γ(·). Denote by PHµn the
measure on D([0, T ],M) induced by the Markov process with infinitesimal generator n2LH,tn and the
initial measure µn and denote by QH

µn the probability on D([0, T ],M) induced by {πnt ; t ∈ [0, T ]}
and the initial measure µn. Recall the definition (2.7) for Cθ and keep in mind that we additionally
assume Hs(0) = Hs(1) = 0 for all s ∈ [0, T ], when θ ∈ (0, 1).

Theorem 4.1. Suppose that the sequence {µn}n∈N is associated with a measurable profile γ(·) in
the sense of (2.10). Then, for each t ∈ [0, T ], for any δ > 0 and any function f ∈ C0,

lim
n→+∞

PHµn
[
η· :

∣∣∣〈πnt , f〉 − 〈ρHt , f〉 ∣∣∣ > δ
]

= 0 ,

where ρH ∈ L2(0, T ;H1) and

• If θ ∈ (0, 1), then ρH is the unique solution of the integral equation

FDir(t, f, ρ
H) := 〈ρHt , ft〉 − 〈γ, f0〉 −

∫ t

0
〈ρHs , (∂s + ∆)fs〉 ds

+

∫ t

0

[
β ∂ufs(1)− α∂ufs(0)

]
ds− 2

∫ t

0
〈χ(ρHs ) ∂uHs, ∂ufs〉 ds = 0 ,

(4.11)

for all t ≥ 0 and for all f ∈ Cθ.

• If θ ∈ (1,∞), then ρH is the unique solution of the integral equation

FNeu(t, f, ρH) := 〈ρHt , ft〉 − 〈γ, f0〉 −
∫ t

0
〈ρHs , (∂s + ∆)fs〉 ds

+

∫ t

0

[
ρHs (1)∂ufs(1)− ρHs (0)∂ufs(0)

]
ds− 2

∫ t

0
〈χ(ρHs ) ∂uHs, ∂ufs〉 ds = 0 ,

(4.12)

for all t ≥ 0 and f ∈ Cθ.

The classical counterpart of (4.11) is the partial differential equation
∂tρ = ∆ρ− 2 ∂u

(
χ(ρ)∂uH

)
ρt(0) = α , ∀ t ∈ (0, T ]
ρt(1) = β , ∀ t ∈ (0, T ]
ρ(0, ·) = γ(·)

(4.13)

while the classical counterpart of (4.12) is
∂tρ = ∆ρ− 2 ∂u

(
χ(ρ)∂uH

)
∂uρt(0) = 2χ

(
ρt(0)

)
∂uHt(0) , ∀ t ∈ (0, T ]

∂uρt(1) = 2χ
(
ρt(1)

)
∂uHt(1) , ∀ t ∈ (0, T ]

ρ(0, ·) = γ(·)

(4.14)

that is, ρH in each case is a weak solution of the respective PDE above.

Remark 4.2. As the reader can observe, the PDE (4.13) has Dirichlet boundary conditions, while
the PDE (4.14) has Robin boundary conditions. At a first glance, the fact that the PDE (4.14) has
Robin boundary conditions may look as a contradiction, since the corresponding PDE (2.12) in the
symmetric case has boundary conditions. This apparent contradiction is due to the fact that such
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PDE is not the heat equation, but the heat equation with a non linear drift. By taking f ≡ 1 in
(4.12) we can see that the total mass of the solution ρ of (4.14) is time-invariant, which characterizes
it as very close to the symmetric case with Neumann boundary conditions.

The outline of the proof of Theorem 4.1 goes as follows. As usual, the proof is split into tightness
of the sequence {QH

µn}n≥1 and the characterization of limit points of this sequence. Let us denote
such a limit point by QH . By Prohorov’s Theorem, the two last results imply the convergence of
{QH

µn}n≥1 to QH as n→∞.
In Subsection 4.2 we deal with the tightness, while in Subsection 4.4 we characterize the limit point

QH being supported on trajectories of measures with a density ρHt (·) which is a weak solution of the
corresponding hydrodynamic equation. By the uniqueness of weak solutions of the hydrodynamic
equations proved in Subsection 4.5, we conclude that {Qµn}n≥1 has a unique limit point Q, which
yields the convergence of the whole sequence to QH .

4.2. Tightness. In this section we show that the sequence of probability measures
{QH

µn}n≥1 is tight in the Skorohod space DM. By Kipnis and Landim (1999, Proposition 1.7,
Chapter 4) it is enough to show that for every test function f in a dense subset of C0 with respect
to the uniform topology, the sequence of measures that corresponds to the real processes 〈πnt , f〉 is
tight. The prove this last claim, we will use the Aldous’ Criterion, see Aldous (1978).

Lemma 4.3 (Aldous’ Criterion). Let (S, d) be a Polish metric space. A sequence {Pn}n≥1 of
probability measures defined on a Skorohod space DS is tight if the two conditions below hold:
(a) For every t ∈ [0, T ] and every ε > 0, there exists a compact set Kt

ε ⊂M such that

sup
n≥1

Pn

(
ζt /∈ Kt

ε

)
≤ ε .

(b) For every ε > 0,

lim
γ↓0

lim
n→∞

sup
τ∈TT
θ≤γ

Pn

(
d(ζ(τ+θ)∧T , ζτ ) > ε

)
= 0 ,

where TT denotes the set of stopping times with respect to the canonical filtration, bounded by T ,
and ζt denotes the value of ζ ∈ DS at time t.

The condition (a) above in our setting can be translated into

lim
A→+∞

lim
n→+∞

PHµn
(
|〈πnt , f〉| > A

)
= 0

which follows from Chebychev’s inequality and the fact there is at most one particle per site. Now
we show condition (b), which in this context, asks that for all ε > 0 and any function f in a dense
subset of C0, with respect to the uniform topology,

lim
δ↓0

lim
n→∞

sup
τ∈TT ,r≤δ

PHµn
(
η· :

∣∣〈πnτ+r, f〉 − 〈πnτ , f〉
∣∣ > ε

)
= 0 . (4.15)

The verification of condition (b) in our setting requires two different dense sets with respect to
C0. Namely, the space C2

c (0, 1) for θ < 1 and the space C2 for θ ∈ (1,+∞). These approximations
are in L1 for θ < 1 and in the uniform topology for θ ∈ (1,+∞).

Given f : Ωn → R, we know by Dynkin’s formula (see Lemma A1.5.1 of Kipnis and Landim,
1999) that

Mn,H
t (f) = 〈πnt , f〉 − 〈πn0 , f〉 −

∫ t

0
n2LH,sn 〈πns , f〉 ds (4.16)
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is a martingale with respect to the natural filtration {Ft}t≥0 = {σ(ηs) : s ≤ t}t≥0. By a simple
computation, for η ∈ Ωn, for x ∈ Σn and for s ∈ [0, t], we have that LH,sn ηs(x) = jHsx−1,x(ηs) −
jHsx,x+1(ηs), where the instantaneous current jHsx,x+1(ηs) is given, for x ∈ {1, . . . , n− 2}, by

jHsx,x+1(ηs) = e(ηs(x)−ηs(x+1)) 1
n
∇+
nHs(

x
n

)
(
ηs(x)− ηs(x+ 1)

)
(4.17)

and by

jHs0,1(ηs) =
1

nθ
(
eHs(

1
n

)α(1− ηs(1))− e−Hs(
1
n

)(1− α)ηs(1)
)
, (4.18)

jHsn−1,n(ηs) =
1

nθ
(
− eHs(

n−1
n

)β(1− ηs(n− 1)) + e−Hs(
n−1
n

)(1− β)ηs(n− 1)
)
. (4.19)

at the boundary. Moreover, the martingale Mn,H
t (f) can be rewritten as

〈πnt , f〉−〈πn0 , f〉−
∫ t

0

n−2∑
x=1

∇+
n f(xn)jHsx,x+1(ηs)ds−

∫ t

0

[
nf( 1

n)jHs0,1(ηs)−nf(n−1
n )jHsn−1,n(ηs)

]
ds . (4.20)

We start with the case θ ∈ (1,+∞) and prove (4.15) directly for functions f ∈ C2. By the
triangular inequality and an union bound, the probability in (4.15) is equal or less than

PHµn
(
η· :

∣∣∣Mn,H
τ (f)−Mn,H

τ+r (f)
∣∣∣ > ε

2

)
+ PHµn

(
η· :

∣∣∣ ∫ τ+r

τ
n2LH,sn 〈πns , f〉 ds

∣∣∣ > ε

2

)
.

Applying Chebychev’s inequality in the term on the left-hand side of last display and Markov’s
inequality in the term on the right-hand side of last display, the proof ends as long as we show that

lim
δ↓0

lim
n→∞

sup
τ∈TT ,r≤δ

EHµn
[∣∣∣ ∫ τ+r

τ
n2LH,sn 〈πns , f〉ds

∣∣∣] = 0 (4.21)

and
lim
δ↓0

lim
n→∞

sup
τ∈TT ,r≤δ

EHµn
[(
Mn,H
τ (f)−Mn,H

τ+r (f)
)2]

= 0 (4.22)

where EHµn denotes the expectation with respect to PHµn . Now we prove (4.21) and for that purpose
recall (4.16), which is equal to (4.20) as mentioned above. A computation, based on the Taylor
expansion of the exponential function and the fact that H ∈ C1,2, permits to rewrite

n−2∑
x=1

∇+
n f(xn)jHsx,x+1(ηs) (4.23)

as

∇+
n f(0)ηs(1)−∇−n f(1)ηs(n− 1) +

1

n

n−1∑
x=1

∆nf(xn)ηs(x)

plus terms of order Of (1). Since f ∈ C2 and due to the fact that the number of particles per site
is at most one, the last expression is also of order Of (1).

Now we analyze the boundary terms in (4.20). Since f ∈ C2, these terms are of order O(n1−θ).
Since θ ∈ (1,+∞) we conclude that n2LHn (〈πns , f〉) is bounded by a constant. Note that for θ ∈ (0, 1),
since we consider f ∈ C2

c , all the boundary terms that appear in the expression for n2LH,sn 〈πns , f〉
vanish and the previous bound also shows (4.21) for the case θ ∈ (0, 1), provided the test functions
are in C2

c .
Now we prove (4.22). The quadratic variation of the martingale Mn,H

t is given by

〈Mn,H(f)〉t =

∫ t

0

[
n2LH,sn 〈πns , fs〉2 − 2〈πns , fs〉n2LH,sn 〈πns , fs〉

]
ds .
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Some computations show that the contribution from the bulk dynamics in the previous expression
writes as∫ t

0

1

n2

n−1∑
x=1

(
∇+
n f(xn)

)2(
e

1
n
∇+
nHs(

x
n )ηs(x)(1− ηs(x+ 1)) + e−

1
n
∇+
nHs(

x
n )ηs(x+ 1)(1− ηs(x))

)
ds

(4.24)

while the contribution from the boundary dynamics writes as∫ t

0

1

nθ

∑
x∈{1,n−1}

f2(xn)
[
eHs(

x
n

)rx(1− η(x)) + e−Hs(
x
n

)(1− rx) η(x)
]
ds . (4.25)

Since H ∈ C1,2, f ∈ C2 and due to the fact that there is at most one particle per site, we conclude
that the quadratic variation of the martingale Mn,H

t (f) is of order O( 1
n + 1

nθ
), which vanishes as

n → +∞. Since C2 is a dense subset of C, with respect to the uniform topology, the proof of
tightness in the case θ ∈ (1,+∞) ends. Now let us go back to the case θ ∈ (0, 1). Recall that
we have already seen above that for test functions in C2

c the limit in (4.21) is true. It remains to
show (4.22). But as in the case θ ∈ (1,+∞) we can conclude that the quadratic variation of the
corresponding martingale is of order O( 1

n) and again it vanishes as n → +∞. This ends the proof
of tightness.

4.3. Replacement lemmas and energy estimates. In this section we state the replacement lemmas
that we need in order to recognize the density profile as a weak solution of the corresponding
hydrodynamic equation. At the end of this section we prove that the profile belongs to the Sobolev
space given in Definition 2.1. We start with a replacement lemma which suits all cases of θ. Recall
(3.8) and (3.9). In what follows ϕ ∈ C0,0.

Lemma 4.4. For any t ∈ [0, T ], for any θ and for x = 0, 1, n− 1 we have that

lim
ε↓0

lim
n→∞

Eµn
[∣∣∣ ∫ t

0
V θ,ϕn

ε,x (ηs, s) ds
∣∣∣] = 0 .

From the super-exponential replacement lemma stated in Proposition 3.7 together with the fact
that the Radon-Nikodym derivative is bounded and an entropy estimate (needed in order to change
measures), we obtain all the replacement lemmas stated above. For this reason we omit their proofs
and leave the gaps to the reader. Finally, we note that the density ρHt (u) belongs to L2(0, T ;H1),
see Definition 2.1. For that purpose, let us define the linear functional `ρH on C0,1

c by

`ρH (f) = 〈〈∂uf, ρH〉〉 =

∫ T

0

∫ 1

0
∂ufs(u)πHs (du)ds .

Lemma 4.5. The following inequality holds:

EQH

[
sup
f∈C0,1

c

{
`ρH (f)− 2‖f‖2L2(0,T ;(0,1))

}]
. 1 .

From the last result it follows that `ρH is QH almost surely continuous, so that this linear
functional can be extended to L2([0, T ] × (0, 1)). Then, by the Riesz’s Representation Theorem,
we can find ζ ∈ L2([0, T ] × (0, 1)) such that `ρH (f) = −〈〈f, ζ〉〉 for all f ∈ C0,1

c , which implies
ρH ∈ L2(0, T ;H1).
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4.4. Characterization of limit points. Since we allow at most one particle per site, any limit point of
the sequence {QH

µn}n≥1 is concentrated on trajectories of measures that are absolutely continuous
with respect to the Lebesgue measure. That is, any limit point QH of the sequence sequence
{QH

n }n≥1 is concentrated on trajectories of measures πt(du) such that πt(du) = ρt(u)du, see Kipnis
and Landim (1999, Chapter 4).

Since the initial measure is associated to the profile γ(·) we also know that all limit points QH

of the sequence {QH
µn}n≥1 are concentrated on the initial measure π0(du) = γ(u)du. Now we prove

that all limit points are concentrated on trajectories of measures of the form ρt(u)du, where ρt(·) is
a weak solution of the corresponding hydrodynamic equation. For that purpose, let QH be a limit
point of the sequence {QH

µn}n≥1 and assume, without loss of generality that {QH
µn}n≥1 converges

weakly to QH as n→ +∞.

Proposition 4.6. If QH is a limit point of {QH
µn}n∈N, then

QH
(
π ∈ DM : πt(du) = ρt(u)du and Fθ(t, f, ρ) = 0,∀t ∈ [0, T ] , ∀f ∈ Cθ

)
= 1 ,

where Cθ has been defined in (2.7), and

Fθ(t, f, ρ) :=

{
FDir(t, f, ρ), if θ ∈ (0, 1),

FNeu(t, f, ρ), if θ ∈ (1,+∞),

with FDir and FNeu defined in (4.11) and (4.12).

Proof : Let us start with the case θ ∈ (1,+∞). It is enough to check that, for any δ > 0 and any
f ∈ Cθ = C1,2,

QH

(
π ∈ DM : sup

0≤t≤T
|FNeu(t, f, ρ)| > δ

)
= 0 . (4.26)

For u ∈ [0, 1] and ε > 0, let ιε(u) : [0, 1]→ R be an approximation of the identity defined as

ιε(u)(v) :=

{
ε−1 1(u,u+ε)(v), if u ∈ [0, 1− ε),
ε−1 1(u−ε,u)(v), if u ∈ (1− ε, 1].

(4.27)

Note that ηεns (x) = πns ∗ ιε(xn) and

πs ∗ ιε(u) :=

{
1
ε

∫ u+ε
u ρHs (v)dv, if u ∈ [0, 1− ε),

1
ε

∫ u
u−ε ρ

H
s (v)dv, if u ∈ (1− ε, 1],

(4.28)

since QH is concentrated on trajectories of measures that are absolutely continuous with respect to
the Lebesgue measure, that is, πt(du) = ρt(u)du. By adding and subtracting πs ∗ ιε(0) and πs ∗ ιε(1)
to ρs(0) and to ρs(1), respectively, by adding and subtracting χ(πs∗ιε(u)) to χ(ρs(u)), and applying
the triangular inequality, we can now bound the probability in (4.26) by the sum of the following
probabilities:

QH

(
πt(du) = ρt(u)du : sup

0≤t≤T

∣∣∣〈ρt, ft〉 − 〈γ, f0〉 −
∫ t

0
〈ρs, (∂s + ∆)fs〉 ds (4.29)

−
∫ t

0
2〈χ(πs ∗ ιε) ∂uHs, ∂ufs〉 ds+

∫ t

0

[
πs ∗ ιε(1)∂ufs(1)− πs ∗ ιε(0)∂ufs(0)

]
ds
∣∣∣ > δ

3

)
,

QH

(
πt(du) = ρt(u)du; :

∣∣∣ ∫ t

0
2〈(χ(ρs)− χ(πs ∗ ιε)) ∂uHs, ∂ufs〉 ds

∣∣∣ > δ

3

)
, (4.30)

QH

(
πt(du)=ρt(u)du : sup

0≤t≤T

∫ t

0

[
(ρs(1)−πs ∗ ιε(1))∂ufs(1)− (ρs(0)−πs ∗ ιε(0))∂ufs(0)

]
ds
∣∣∣ > δ

3

)
.

(4.31)
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Now to control (4.30), observe that, by the triangular inequality and the fact that ρs(·) ≤ 1 for all
s ∈ [0, T ], we have that ∣∣∣χ(ρs(u))− χ(πs ∗ ιε)(u)

∣∣∣ ≤ C|ρs(u)− πs ∗ ιε(u)| (4.32)

and from Lebesgue’s differentiation theorem last expression vanishes as ε → 0, for a.e. u ∈ [0, 1].
In a similar way, in order to control (4.31), we just need to use the fact that ρ ∈ L2(0, T ;H1), to
show that, for j ∈ {0, 1}

lim
ε→0

∣∣∣ρs(j)− (πs ∗ ιε)(j)
∣∣∣ = 0 . (4.33)

Since QH is the weak limit of {QH
µn}n∈N, we would like to apply Portmanteau’s Theorem to

deal with (4.29). However, the function ιε is not continuous, so this is, in principle, not possible.
However, as in Franco et al. (2013, Proposition A.3), by approximating ιε by a continuous function,
in such a way that the error vanishes as ε→ 0, we can bound (4.29) from above by

lim
n→+∞

QH
µn

(
πt(du) = ρt(u)du : sup

0≤t≤T

∣∣∣〈ρt, ft〉 − 〈γ, f0〉 −
∫ t

0
〈ρs, (∂s + ∆)fs〉 ds

−
∫ t

0
2〈χ(πs ∗ ιε) ∂uHs, ∂ufs〉 ds ds+

∫ t

0

[
πs ∗ ιε(1)∂ufs(1)− πs ∗ ιε(0)∂ufs(0)

]
ds
∣∣∣ > δ

3

)
,

(4.34)

plus a term that vanishes as ε→ 0. Now we make use of the martingale (4.16). Recal that QH
µn is

induced by PHµn and the empirical measure π, that is, QH
µn = PHµn ◦ π

−1. By adding and subtracting∫ t
0 n

2LH,sn 〈πns , fs〉ds to the term inside last probability, we can bound (4.34) from above by the sum
of

lim
n→∞

PHµn

(
sup

0≤t≤T

∣∣∣Mn,H
t (f)

∣∣∣ > δ

6

)
, (4.35)

and

lim
n→∞

PHµn

(
sup

0≤t≤T

∣∣∣ ∫ t

0
n2LH,sn 〈πns , fs〉 ds−

∫ t

0
〈ρs,∆fs〉 ds

−
∫ t

0
2〈χ(πs ∗ ιε) ∂uHs, ∂ufs〉 ds+

∫ t

0

[
ηεns (n− 1)∂ufs(1)− ηεns (1)∂ufs(0)

]
ds
∣∣∣ > δ

6

)
.

(4.36)

By using Doob’s inequality together with (4.24) and (4.25), it is easy to show that (4.35) vanishes
as n→∞. Now, (4.36) can be rewritten as

lim
n→∞

PHµn

(
sup

0≤t≤T

∣∣∣ ∫ t

0
n2LH,sn 〈πns , fs〉 ds−

∫ t

0
〈πns ,∆fs〉 ds

−
∫ t

0
2〈χ(πns ∗ ιε) ∂uHs, ∂ufs〉 ds+

∫ t

0

[
ηεns (n− 1)∂ufs(1)− ηεns (1)∂ufs(0)

]
ds
∣∣∣ > δ

6

)
.

(4.37)

From the computations right below (4.16), we have that

n2LH,sn 〈πns , fs〉 = −nfs( 1
n)jHs0,1 + nfs(

n−1
n )jHsn−1,n +

n−2∑
x=1

∇+
n fs(

x
n)jHsx,x+1(ηs). (4.38)
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Recall (4.17). By doing a Taylor expansion on the exponential in jHsx,x+1, the term on the right-hand
side of last expression is equal to

n−2∑
x=1

∇+
n fs(

x
n)(ηs(x)− ηs(x+ 1)) +

1

n

n−2∑
x=1

∇+
n fs(

x
n)(ηs(x)− ηs(x+ 1))2∇+

nH(xn)

plus a term of order OH( 1
n). A summation by parts shows that the term on the right-hand side of

last expression can be written as

∇+
n fs(0)ηs(1)−∇+fs(

n−1
n )ηs(n− 1) +

1

n

n−1∑
x=1

∆nfs(
x
n)ηs(x) .

Then, we can bound from above the probability in (4.36) by the sum of the following terms

PHµn

(
sup

0≤t≤T

∣∣∣ ∫ t

0

( 1

n

n−1∑
x=1

∆nfs(
x
n)ηs(x)− 〈πns ,∆fs〉

)
ds
∣∣∣ > δ

24

)
, (4.39)

PHµn
(

sup
0≤t≤T

∣∣∣∫ t

0

( 1

n

n−2∑
x=1

∇+
n fs(

x
n)(ηs(x)−ηs(x+ 1))2∇+

nHs(
x
n)− 2〈χ(πns ∗ ιε) ∂uHs, ∂ufs〉

)
ds
∣∣∣ > δ

24

)
,

(4.40)

PHµn

(
sup

0≤t≤T

∣∣∣ ∫ t

0

(
∇+
n fs(0)ηs(1)− ηεns (1)∂ufs(0)

)
ds
∣∣∣ > δ

24

)
, (4.41)

plus terms which are very similar to the previous one but related to the action of the right boundary
dynamics, plus other terms that vanish as n→ +∞ due to the fact that f ∈ C1,2. Now, the proof
ends by doing the following arguments. From a Taylor expansion on fs we easily treat the probability
in (4.39). From a Taylor expansion on both fs and Hs, together with Markov’s inequality and
Lemma 4.4 for the case x = 0, for ϕn = ∂ufs∂uHs and ux = x/n we are able to treat the probability
in (4.40). Finally, to treat the probability in (4.41), we just need to apply Taylor expansion to fs,
together with Markov’s inequality and Lemma 4.4 for the case θ ∈ (1,+∞), x = 1, for ϕn = ∂ufs
and ux = 0. We leave the details to the reader.

Now we do the sketch of the characterization of limit points in the case θ ∈ (0, 1). In this case
f ∈ C1,2

0 and FDir was defined in (4.11). Since FDir and FNeu have a very similar expression, the
only difference in the proof now is that the boundary term in (4.31) is replaced by

QH

(
sup

0≤t≤T

∫ t

0

[
(β − πs ∗ ιε(1))∂ufs(1)− (α− πs ∗ ιε(0))∂ufs(0)

]
ds
∣∣∣ > δ

3

)
. (4.42)

All the other terms can be treated exactly as we did in the case θ ∈ (1,+∞). Now, in order to
control the last probability we just need to apply Markov’s inequality and Lemma 4.4 for the case
θ ∈ (0, 1), x = 1, for ϕn = ∂ufs and ux = 0. We leave the details to the reader. �

4.5. Uniqueness of weak solutions. In this subsection we prove uniqueness of weak solutions of
equations (4.11) and (4.12). These proofs are based on the fact that the eigenfunctions of the
Laplacian with Neumann (and with Dirichlet) boundary conditions form an orthonormal basis.
Recall that if {Ψk}k is an orthonormal basis of L2(0, 1), then for all f ∈ L2,∫

f2 du =
∑
k≥0

〈f,Ψk〉2 . (4.43)
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4.5.1. The Neumann case: θ ∈ (1,+∞). Let ρ1 and ρ2 be weak solutions of (4.12) such that
ρ1

0 = γ = ρ2
0. Denote ρ = ρ1 − ρ2 and consider the set {ψk}k≥0 of eigenfunctions of Laplacian with

Neumann boundary conditions, i.e., ψk(u) =
√

2 cos(kπu) for k ≥ 1 and ψ0(u) = 1, which is, in
fact, an orthonormal basis of L2(0, 1). Now, define

R(t) =
∑
k≥0

1

2ck
〈ρt, ψk〉2 ,

where ck = (kπ)2 + 1. Our goal here is to show that

R′(t) . R(t) . (4.44)

In fact from last inequality together with Gronwall’s inequality we conclude that R′(t) ≤ 0, which
in turn implies that ρ1 = ρ2 a.e. Since ρ is bounded and 〈ρt, ψk〉 is differentiable in time (by the
definition of weak solution), we may compute the derivative of R, which is given by

R′(t) =
∑
k≥0

1

ck
〈ρt, ψk〉

d

dt
〈ρt, ψk〉 . (4.45)

Using the integral equation (4.12), the expression d
dt〈ρt, ψk〉 in the last display above is equal to

〈ρ̄t,∆ψk〉 + 2 〈χ∂uHt, ∂uψk〉 ,

where χ = χ(ρ1
t )− χ(ρ2

t ). Note that 〈ρt,∆ψk〉 = −(kπ)2〈ρt, ψk〉. Plugging this into (4.45), we get

R′(t) = −
∑
k≥0

(kπ)2

ck
〈ρt, ψk〉2 +

∑
k≥0

2

ck
〈ρt, ψk〉〈χ∂uHt, ∂uψk〉 . (4.46)

Now, Young’s inequality allows to bound the previous expression by

1

A

∑
k≥0

1

ck
〈ρt, ψk〉2 +A

∑
k≥0

1

ck
〈χ∂uHt, ∂uψk〉2 , (4.47)

where the specific value A > 0 will be chosen later. Now, observe that ∂uψk(u) = −kπ ϕk(u) with
ϕk(u) =

√
2 sin(kπu) for k ≥ 1 and ϕ0(u) = 1. Therefore we can bound the second sum in the

display by ∑
k≥0

(kπ)2

ck
〈χ∂uHt, ϕk〉2 ≤

∑
k≥0

〈χ∂uHt, ϕk〉2 ,

because ck = (kπ)2 + 1. Since {ϕk}k≥0 is an orthonormal basis of L2(0, 1), it is possible to use
(4.43) to write the last sum as

∫ 1
0

(
χ∂uHt

)2
du. Using the definition of χ and the fact that χ is a

Lipschitz function, we have
∫ 1

0

(
χ∂uHt

)2
du ≤ CH

∫ 1
0

(
ρt
)2
du. Then using again (4.43) to rewrite∫ (

ρt
)2
du as

∑
k≥0〈ρt, ψk〉2, we get that

R′(t) ≤
∑
k≥0

(
− (kπ)2

ck
+

1

Ack
+ CHA

)
〈ρt, ψk〉2 .

Now choosing A = 1
CH

we finally get (4.44).

4.5.2. The Dirichlet case: θ ∈ (0, 1). This proof in this case is similar to the one above, consider-
ing the set {ψk}k≥0 of eigenfunctions of the Laplacian with Dirichlet boundary conditions, where
ψk(u) =

√
2 sin(kπu). Details are omitted here.
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5. Large deviations upper bound

In this section we establish the large deviations uper bound, first for compact sets, then to closed
sets. To do so, the following notion is relevant. We say a family of sets {Γλ}λ is super-exponentially
small whenever

lim
λ

1

λ
logP

[
Γλ
]

= −∞

where the limsup in λ (or more parameters) depends on the context.
Let us describe the line of ideas for the proof of the upper bound. From the perturbed model

presented in Section 4, we have that, for any measurable set C of trajectories,

Pδηn
[
{πn ∈ C} ∩ G

]
= EHδηn

[
1{πn∈C}∩G ·

dPδηn
dPHδηn

∣∣∣∣
FT

]
,

where the Radon-Nikodym derivative above has been computed in (4.10) and the good set G, to be
defined in (5.10), is a set such that its complement is super-exponentially small. In Subsection 5.2
we consider this Radon-Nikodym derivative restricted to the good set G, obtaining the expression
of the large deviations rate functional. Finally, in Subsection 5.3 we prove the upper bound for
compact sets, and in Subsection 5.4 we extend it to closed sets by a standard argument based on
exponential tightness.

5.1. Super-exponentially small sets. Define the set

BH,θ
ε,δ :=

{
η. ∈ DΩn :

∣∣∣ ∫ T

0
V H,θ
ε,x (ηs, s) ds

∣∣∣ ≤ δ, x = 0, 1, n− 1
}
, (5.1)

where V H,θ
ε,x (ηs, s), as defined in (3.8) and (3.9), is taken under the particular choice

ϕns (ux) = ∂uHs(
x
n). By Proposition 3.7, we know that

lim
ε↓0

lim
n→∞

1
n logPδηn

[(
BH,θ
ε,δ

){]
= −∞ (5.2)

for all δ, θ > 0 and H ∈ Cθ. Before introducing the next super-exponential small set, which is
somewhat technical, let us discuss its rather simple motivation. Keep in mind that our objective is
to asymptotically deal with the Radon-Nikodym derivative, which will lead us to the large deviations
rate functional.

Recall that ηεns (x) = πns ∗ιε(xn), where the approximation of the identity ιε(u)(v) has been defined
in (4.27). Although important, the extra regularity given by this convolution is not enough to handle
limits at the boundaries, since, in general, π ∗ ιε is not a continuous function. To overcome this, we
shall (super-exponentially) replace πN ∗ ιε by (πN ∗ ιsτ ) ∗ ιε, where ιsτ is a smooth approximation of
the identity that is defined as follows.

Fix f : [0, 1]→ R+ a continuous function with support contained in [1
4 ,

3
4 ], 0 ≤ f ≤ 4, f(0) > 0,∫

fdλ = 1 and symmetric around 1/2, that is, satisfying f(u) = f(1 − u) for all u ∈ [0, 1]. Define
the continuous approximation of the identity ιsτ by ιsτ (u) = 1

τ f(uτ ). As in Lemmas 5.1, 5.2 and
5.3 of Franco and Neumann (2017), changing πn ∗ ιε by (πn ∗ ιε) ∗ ιsτ inside the expression of the
Radon-Nikodym derivative has a cost of order OH(ε) +OH( τε ).

Recall the notions of E and EH in Definition 2.4. Since the rate functional is equal to infinity on
trajectories π ∈ DM such that E(π) =∞, another important remark about the double convolution
is that E((π ∗ ιsτ ) ∗ ιε) <∞ for all π ∈ DM.

The next set what we introduce is the set that handles with trajectories with finite energy, that is,
the set {π ∈ DM ; E(π) < ∞}. Since this set is not closed with respect to the Skorohod topology
of DM, this is an obstacle to apply the Minimax Lemma (see Kipnis and Landim, 1999, page
364, Lemma 3.3), which is an important device in the proof of the large deviations’ upper bound.
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To overcome this difficulty, we introduce the following sets. Let Ak,l and Aζ,τk,l be the subsets of
trajectories given by

Ak,l = {π ∈ DM : max
1≤j≤k

EHj (π) ≤ l} ,

Aζ,τk,l = {π ∈ DM : (π ∗ ιsτ ) ∗ ιζ ∈ Ak,l} ,
(5.3)

where {Hj}j∈N is a dense set of continuous functions in the supremum norm. It is worth to emphasize
that ιζ is the approximation of the identity defined in (4.27), where the letter ε has been replaced
by ζ for aesthetic reasons. For fixed ζ, τ, k, l, the set Aζ,τk,l is closed because the function π 7→
EH((π ∗ ιsτ )∗ ιζ) is continuous in the Skorohod topology. Indeed, it follows from the definition of EH ,
in (2.4) using the facts that H is fixed and (π ∗ ιsτ ) ∗ ιζ has a density with respect to the Lebesgue
measure. We claim that, for fixed k and l,

lim
ζ↓0

lim
τ↓0

lim
n→∞

1
n logPδηn

[
πn ∈ (Aζ,τk,l )

{
]
≤ −l . (5.4)

This is a consequence of Corollary 3.9 and the fact that (πn ∗ ιsτ ) ∗ ιζ − πn ∗ ιζ = O( τζ ), see
Proposition 5.9 in Franco and Neumann (2017) for details.

Another technical problem that arises in this setting is the fact that the empirical measure does
not have a density with respect to the Lebesgue measure. An extra family of sets is then defined to
circumvent this issue. Fix a sequence {Fi}i≥1 of smooth non-negative functions dense, with respect
to the uniform topology, in the subset of non-negative continuous functions. For m ≥ 1 and j ≥ 1,
define the set

Ejm =
{
π ∈ DM ; 0 ≤ 〈πt, Fi〉 ≤

∫ 1

0
Fi(u) du+ 1

j ‖F
′
i‖∞, 0 ≤ t ≤ T, i = 1, . . . ,m

}
. (5.5)

It is a simple task to check that DM0 = ∩j≥1 ∩m≥1 E
j
m. Given m ≥ 1 and j ≥ 1, the following

limsup holds:

lim
n→∞

1
n logPδηn

[
πn ∈ (Ejm){

]
= −∞ . (5.6)

This result is very similar to the one in Farfan et al. (2011, Subsection 6.3) and Franco and Neumann
(2017), thus its proofs is omitted. For the case θ ∈ (1,+∞), we also need to assure that trajectories
that do not conserve mass are negligible. We thus introduce one more set. For λ > 0, let

Fθλ =

{ {
π ∈ DM : |〈πt, 1〉 − 〈π0, 1〉| ≤ λ, 0 ≤ t ≤ T

}
, if θ ∈ (1,+∞) ,

DM , if θ ∈ (0, 1) .
(5.7)

This is a closed set and below we prove that it is super-exponentially small.

Lemma 5.1. For all θ ∈ (1,+∞) and all λ > 0, it holds

lim
n→∞

1
n logPδηn

[
πn ∈ (Fθλ){

]
= −∞ . (5.8)

Proof : Let us appeal to the Harris graphical construction of the process. Let N+,1
t and N−,1t be

the Poisson processes associated to the site x = 1, whose parameters are αn2−θ and (1 − α)n2−θ,
respectively. At an arrival of the Poisson process N+,1

t , if there is no particle at the site 1, a new
particle is dropped there. And at an arrival of the Poisson process N−,1t , if there is a particle at the
site 1, it leaves the system. Analogously, let N+,n−1

t and N−,n−1
t be the Poisson processes associated

to the right site x = n−1, whose parameters are βn2−θ and (1−β)n2−θ, respectively, with the same
action of creation and destruction of particles at the site x = n− 1. Since each particle contributes
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with a mass 1/n to the empirical measure, we get that[
πn ∈ (Fθλ){

]
⊂

⋃
i∈{+,−}

⋃
j∈{1,n−1}

[
∃ t ∈ [0, T ] : N i,j

t ≥ λn
]

⊂
⋃

i∈{+,−}

⋃
j∈{1,n−1}

[
N i,j
T ≥ λn

]
.

By (3.10), in order to prove (5.8), it is enough to prove that

lim
n→∞

1
n logPδηn

[
N i,j
T ≥ λn

]
= −∞

for i ∈ {+,−} and j ∈ {1, n− 1}.
Let us prove that limn→∞

1
n logP

[
X ≥ λn

]
= −∞ for any λ > 0, where X ∼ Poisson(cN2−θ)

with θ > 1 and c > 0, which will finish the proof. By applying the exponential Tchebyshev
inequality, we have that, for any t > 0,

1
n logP[X ≥ λn] ≤ 1

N log

[
E[etX ]

etλN

]
= N1−θ(et − 1)− tλ .

Taking the lim sup in N and recalling that t > 0 is arbitrary, the proof ends.
�

Lemma 5.2. For all θ ∈ (1,+∞) and all λ > 0, it holds

lim
n→∞

1
n logPδηn

[
1
nJ

n
0,1(t) > λ

]
= lim

n→∞
1
n logPδηn

[
1
nJ

n
n−1,n(t) > λ

]
= −∞ . (5.9)

Proof : The current Jn0,1(t) of particles through the left boundary is stochastically dominated by a
Poisson random variable N i,j

T of parameter cn2−θ for some c > 0. Then

1

n
logPδηn

[
1
nJ

n
0,1(t) ≥ λ

]
≤ 1

n
logPδηn

[
1
nN

i,j
T ≥ λ

]
leading to (5.9) because of the argument in the proof of the previous lemma. The reasoning for
Jnn−1,n(t) is the same. �

To conclude this subsection, define the set

Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε := {πn ∈ Aζ,τk,l ∩ E
j
m ∩ Fθλ} ∩BH

δ,ε ⊂ DΩn , (5.10)

where the sets Aζ,τk,l , E
j
m, Fθλ and BH

δ,ε were defined in (5.3), (5.5), (5.7) and (5.1), respectively. Since

lim
n→∞

1
n logPδηn

[(
Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

){]

≤ max

{
lim
n→∞

1
n logPδηn

[
πn ∈ (Aζ,τk,l )

{
]
, lim
n→∞

1
n logPδηn

[
πn ∈ (Ejm){

]
,

lim
n→∞

1
n logPδηn

[
πn ∈ (Fθλ){

]
, lim
n→∞

1
n logPδηn

[
(BH

δ,ε)
{
]}

and due to (5.2), (5.4), (5.6) and (5.8), we deduce that

lim
ε↓0

lim
ζ↓0

lim
τ↓0

lim
n→∞

1
n logPδηn

[(
Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

){]
≤ − l . (5.11)
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5.2. Radon-Nikodym derivative (continuation). In order to write the Radon-Nikodym derivative in
a proper way we start by introducing some notations. Having in mind that E((π ∗ ιsτ ) ∗ ιε) <∞ for
all π ∈ DM, we define the functional

Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) =

{
`θH
(
(π ∗ ιsτ ) ∗ ιε|γ

)
− ΦH

(
(π ∗ ιsτ ) ∗ ιε

)
, if π ∈ Aζ,τk,l ∩ E

j
m ∩ Fθλ ,

+∞, otherwise .
(5.12)

The next result establishes the connection between Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) and the functional JθH(π|γ) defined
in (2.14).

Proposition 5.3. For all π ∈ DM,

lim
ε↓0

lim
l→∞

lim
k→∞

lim
ζ↓0

lim
τ↓0

lim
λ↓0

lim
j→∞

lim
m→∞

Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) ≥ JθH(π|γ) .

Proof : The proof of this proposition is very similar to the proof of Proposition 5.12 of Franco and
Neumann (2017), except by the presence of an extra limsup as λ ↓ 0. For π ∈ DM, if π /∈ DM0 then
there exist m and j such that π /∈ Ejm. Therefore,

lim
j→∞

lim
m→∞

Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) =

{
`θH
(
(π ∗ ιsτ ) ∗ ιε|γ

)
− ΦH

(
(π ∗ ιsτ ) ∗ ιε

)
, if π ∈ Aζ,τk,l ∩ DM0 ∩ Fθλ,

+∞, otherwise.

Recall in (5.7) the definition of Fθλ and recall in (2.15) the definition of Fθ. Taking the limsup as
λ ↓ 0 we obtain that

lim
λ↓0

lim
j→∞

lim
m→∞

Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) ≥

{
`θH
(
(π ∗ ιsτ ) ∗ ιε|γ

)
− ΦH

(
(π ∗ ιsτ ) ∗ ιε

)
, if π ∈ Aζ,τk,l ∩ DM0 ∩ Fθ,

+∞, otherwise.

Recall (5.3). Taking the limsup as τ ↓ 0 and then as ζ ↓ 0,

lim
ζ↓0

lim
τ↓0

lim
λ↓0

lim
j→∞

lim
m→∞

Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) ≥

{
`θH
(
π ∗ ιε|γ

)
− ΦH

(
π ∗ ιε

)
, if π ∈ Ak,l+2 ∩ DM0 ∩ Fθ ,

+∞, otherwise ,

see Franco and Neumann (2017) for details on this step. Since {π : E(π) ≤ l + 2} ⊂ DM0 , taking
now the limsup as k →∞ we obtain that

lim
k→∞

lim
ζ↓0

lim
τ↓0

lim
λ↓0

lim
j→∞

lim
m→∞

Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) ≥

{
`θH
(
π ∗ ιε|γ

)
−ΦH

(
π ∗ ιε

)
, if π∈Fθ and E(π) ≤ l+2,

+∞ , otherwise.

Taking now the limsup as l→∞, we get

lim
l→∞

lim
k→∞

lim
ζ↓0

lim
τ↓0

lim
λ↓0

lim
j→∞

lim
m→∞

Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) ≥

{
`θH
(
π∗ιε|γ

)
−ΦH

(
π∗ιε

)
, if π∈Fθ and E(π)<∞,

+∞ , otherwise.

For π such that E(π) < ∞ it holds that πt(du) = ρt(u)du, where ρ has well-defined limits at the
boundary. Thus, taking the limsup as ε ↓ 0, we obtain

lim
ε↓0

lim
l→∞

lim
k→∞

lim
ζ↓0

lim
τ↓0

lim
λ↓0

lim
j→∞

lim
m→∞

Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) ≥ JθH(π|γ) ,

concluding the proof. �

One ingredient in the proof of large deviations is to restrict the Radon-Nikodym derivative given in
(4.10) to the set Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε defined in (5.10), which encodes all the sets introduced in Subsection 5.1
and then to show that this “restricted Radon-Nikodym derivative” is close to an exponential of
minus n times a functional of the empirical measure, that is, we must assure that

dPδηn
dPHδηn

∣∣∣∣∣
FT

· 1Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε
= 1Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

· exp

{
− n

[
Jθ,k,l,m,jH,ζ,τ,λ,ε(π

n|γ) + errθH,γ(n, τ, ε, δ)
]}

, (5.13)
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with
lim
δ↓0

lim
ε↓0

lim
τ↓0

lim
n→∞

∣∣errθH,γ(n, τ, ε, δ)
∣∣ = 0, (5.14)

for all θ > 0, H ∈ Cθ, where the dependence on T has been omitted. Here we do not present
the derivation of (5.13) because it is very similar to what is done in Franco and Neumann (2017,
Subsection 5.1). We only advertise that the order of the limits above can not be exchanged. For
example, one term of errθH,γ(n, τ, ε, δ) is of order τ

ε . The expression (5.13) is the appropriate form
for the Radon-Nikodym derivative to be used in the next subsection. Although the relationship
between Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ) and JθH(π|γ) was presented in Proposition 5.3, we will use Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ)

instead of JθH(π|γ) to allow the application of the Minimax Lemma.

5.3. Upper bound for compact sets. To reach the upper bound for compact sets we have to recall
the Minimax Lemma, see Kipnis and Landim (1999, page 373, Lemma 3.3). We start with the
upper bound for open sets. Let O ⊆ DM be an open set and fix a function H ∈ Cθ. By a similar
computation presented at the beginning of Section 5, we have, for all θ > 0, H ∈ Cθ , λ > 0, δ > 0,
k, l,m, j ∈ N, ζ, τ, ε > 0, that

lim
n→∞

1
n logQδηn [O] = lim

n→∞
1
n logPδηn [πn ∈ O]

≤ max

{
lim
n→∞

1
n logPδηn

[
{πn ∈ O} ∩ Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

]
, lim
n→∞

1
n logPδηn

[(
Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

){]}
, (5.15)

where

lim
l→∞

lim
ε↓0

lim
τ↓0

lim
ζ↓0

lim
n→∞

1
n logPδηn

[(
Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

){]
= −∞ , (5.16)

due to (5.11). Now, we use the expression (5.13) of the Radon-Nikodym derivative to estimate the
first probability in (5.15), that is:

Pδηn
[
{πn ∈ O} ∩ Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

]
= EHδηn

[
dPδηn
dPHδηn

∣∣∣∣∣
FT

· 1Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε
· 1{πn∈O}

]

= EHδηn

[
1Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

· exp
{
− n

[
Jθ,k,l,m,jH,ζ,τ,λ,ε(π

n|γ) + errθH,γ(n, τ, ε, δ)
]}
· 1{πn∈O}

]
.

Therefore,

1
n logPδηn

[
{πn ∈ O} ∩ Gθ,n,k,l,m,jH,ζ,τ,λ,δ,ε

]
≤ sup

π∈O

{
− Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ)− errθH,γ(n, τ, ε, δ)

}
.

Optimizing over all the parameters τ, ε, ζ, δ, λ, k, l,m, j,H, it yields

lim
n→∞

1
n logQδηn [O ] ≤ inf

τ,ε,ζ,δ,λ,
k,l,m,j,H

sup
π∈O

max
{
− Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ)− errθH,γ(n, τ, ε, δ) , Rθ,k,l,m,jH,λ,δ (ζ, τ, ε)

}
.

(5.17)

To interchange the supremum and the infimum above, we start by observing that for fixed parameters
τ, ε, ζ, δ, λ, k, l,m, j,H, the functional

π 7→ max
{
− Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ)− errθH,γ(n, τ, ε, δ) , Rθ,k,l,m,jH,λ,δ (ζ, τ, ε)

}
is upper semi-continuous in DM. The proof of this result is similar to the proof of Proposition 5.11
in Franco and Neumann (2017). Thus, we can apply the Minimax Lemma, see Kipnis and Landim
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(1999, page 373, Lemma 3.3), hence interchanging the supremum with the infimum in (5.17), and
passing the bound to compacts sets. Then, for all K ⊂ DM compact,

lim
n→∞

1
n logQδηn [K ] ≤ sup

π∈K
inf

τ,ε,ζ,δ,λ,
k,l,m,j,H

max
{[
− Jθ,k,l,m,jH,ζ,τ,λ,ε(π|γ)− errθH,γ(n, τ, ε, δ)

]
, Rθ,k,l,m,jH,λ,δ (ζ, τ, ε)

}
.

Putting together Proposition 5.3, (5.16) and (5.14), we deduce:

Proposition 5.4 (Upper bound for compact sets). For every K compact subset of DM,

lim
n→∞

1
n logQδηn [K] ≤ − inf

π∈K
IθT (π|γ) .

5.4. Upper bound for closed sets. In Subsection 5.3, we already have the large deviations upper
bound for closed sets. The extension to closed sets is a standard routine based on exponential
tightness. The exponential tightness is defined as the existence of compact sets K` ⊂ DM such that

lim sup
n→∞

1
n logQδηn

[
K{`
]
≤ −` , ∀ ` ∈ N . (5.18)

Let C ⊂ DM be a closed set. Assuming exponential tightness, we have that

lim sup
N→∞

1
n logQδηn

[
C
]
≤ max

{
lim sup
n→∞

1
n logQδηn

[
C ∩K`

]
, lim sup

n→∞
1
n logQδηn

[
K{`
]}

≤ max

{
lim sup
n→∞

1
n logQδηn

[
C ∩K`

]
, −`

}
.

Hence, since the set C ∩K` is compact and ` is arbitrary, the upper bound for closed sets will follow
from the upper bound for compact sets.

The proof of the exponential tightness (5.18) is somewhat technical and follows the same steps
of Franco and Neumann (2017, Section 5.3)1. For this reason, we discuss only what needs to be
checked for our model. With respect to Franco and Neumann (2017, Section 5.3), the only and
somewhat crucial point to be adapted is to find a positive mean one martingale with respect to the
natural filtration,

Ma,H
t := exp

{
an
[
〈πnt , H〉 − 〈πn0 , H〉 −

∫ t

0
Uan(H, s, ηs) ds

]}
,

where |Uan(H, s, ηs)| is uniformly bounded in n ∈ N. This claim is a consequence of the general
fact that the Radon-Nikodym derivative between two Markov processes is a positive mean one
martingale with respect to the natural filtration, together with formula (4.10) choosing aH in lieu
of H. In resume, we have therefore achieved:

Proposition 5.5 (Upper bound for closed sets). For every C closed subset of DM,

lim sup
n→∞

1
n logQδηn

[
C
]
≤ − inf

π∈C
IθT (π|γ) .

6. Large deviations lower bound

The proof of the lower bound in the case θ ∈ (0, 1) is quite similar to Bertini et al. (2009) or
Farfan et al. (2011) (in dimension d = 1), which correspond to θ = 0 in our setting. We henceforth
study in detail the case θ ∈ (1,+∞) following the more recent approach of Landim and Tsunoda
(2018). Due to the presence of large deviations from the initial measure we are not allowed to
apply Jona-Lasinio et al. (1993, Theorem 2.4) and an IθT -density argument is required here as in
the framework of Landim and Tsunoda (2018).

1In its hand, Franco and Neumann (2017, Section 5.3) is essentially a detailed version of Kipnis and Landim (1999,
pp. 271–273).
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6.1. Lower bound for smooth profiles. The next two propositions are immediate consequences of the
definition of JθG and show that solutions of the perturbed partial differential equations (4.13) or
(4.14) depending on whether θ ∈ (0, 1) or θ ∈ (1,+∞) lead to a simpler representation of the rate
function.

Proposition 6.1. Consider θ ∈ (0, 1) or θ ∈ (1,+∞) and recall the definition of Cθ. Given
H ∈ Cθ, let ρH be the unique weak solution of (4.13) if θ ∈ (0, 1) or the unique weak solution
of (4.14) if θ ∈ (1,+∞). Then

sup
G∈Cθ

JθG(ρH |γ) = sup
G∈Cθ

{
`θG(ρH |γ)− ΦG(ρH)

}
= sup

G∈Cθ

{
2

∫ t

0
〈χ(ρHs ) ∂uHs, ∂uGs〉 ds−

∫ T

0
〈χ(ρHs ), (∂uHs)

2〉 ds

}

=

∫ T

0
〈χ(ρHs ), (∂uHs)

2〉 ds .

Proposition 6.1 motivates the next definition.

Definition 6.2. Denote by Π the subspace of DM0 consisting of all paths πt(du) = ρt(u) du for
which there exists some H ∈ Cθ such that ρ = ρH is the unique weak solution of (4.13) if θ ∈ (0, 1)
or the unique weak solution of (4.14) if θ ∈ (1,+∞).

The next two propositions provide conditions to assure that a profile ρ is a solution of the corre-
sponding hydrodynamic equation (according to each regime of θ) for some H. That is, conditions
to assure that ρ ∈ Π. Proposition 6.3 is well known in the literature and it is included here for sake
of completeness.

Proposition 6.3. Let θ ∈ (0, 1). Let ρ ∈ C1,2 such that 0 < ε ≤ ρ ≤ 1− ε for some ε > 0. Then,
there exists an unique (strong) solution H of the elliptic equation

∂2
uHt(u) +

∂u
(
χ(ρt(u))

)
χ(ρt(u))

∂uHt(u) =
∆ρt(u) − ∂tρt(u)

2χ(ρt(u))
, ∀u ∈ (0, 1) (6.1)

Ht(0) = 0 (6.2)
Ht(1) = 0 (6.3)

Proof : Fix t ∈ [0, T ]. Since (6.1) is a linear ODE of second order on H, we solve it, getting

Ht(u) = Ht(0) +
(
2χ(ρt(0))∂uHt(0)− ∂uρt(0)

) ∫ u

0

1

2χ(ρt(v))
dv

+

∫ u

0

∂uρt(v)− ∂t
∫ v

0 ρt(w) dw

2χ(ρt(v))
dv .

(6.4)

Taking u = 1 and then applying the boundary conditions (6.2) and (6.3) in the equality (6.4) above,
we get

∂uHt(0) =
1

2χ(ρt(0))

{
∂uρt(0)− It

It

}
, (6.5)

where

It :=

∫ 1

0

1

2χ(ρt(v))
dv and It :=

∫ 1

0

∂uρt(v)− ∂t
∫ v

0 ρt(w) dw

2χ(ρt(v))
dv . (6.6)

In other words, (6.5) is the right guess for ∂uHt(0) in order to achieve the solution of the elliptic
PDE in the statement of the proposition. Coming back to (6.4), we then apply (6.2) and (6.5),
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which leads us to

Ht(u) =

∫ u

0

−It
It

+ ∂uρt(v)− ∂t
∫ v

0 ρt(w) dw

2χ(ρt(v))
dv

= − It
It

∫ u

0

1

2χ(ρt(v))
dv +

∫ u

0

∂uρt(v)− ∂t
∫ v

0 ρt(w) dw

2χ(ρt(v))
dv ,

and it is straightforward to check that this is the required solution of the elliptic PDE. �

Proposition 6.4. Let θ ∈ (1,+∞). Consider ρ ∈ C1,2 such that 0 < ε ≤ ρ ≤ 1− ε for some ε > 0

and ∂t
∫ 1

0 ρt(z) dz = 0. Then, up to an additive constant, there exists an unique (strong) solution H
of the elliptic equation

∂2
uHt(u) +

∂u
(
χ(ρt(u))

)
χ(ρt(u)) ∂uHt(u) = ∆ρt(u)− ∂tρt(u)

2χ(ρt(u)) , ∀u ∈ (0, 1) (6.7)

∂uHt(0) = 1
2χ(ρt(0))∂uρt(0) (6.8)

∂uHt(1) = 1
2χ(ρt(1))∂uρt(1) (6.9)

Proof : Fix t ∈ [0, T ]. Solving the linear ODE of second order (6.7), we get

Ht(u) := Ht(0) +

∫ u

0

2χ(ρt(0))∂uHt(0)− ∂uρt(0) + ∂uρt(v)− ∂t
∫ v

0 ρt(w) dw

2χ(ρt(v))
dv .

The boundary condition (6.8) then leads us to

Ht(u) = Ht(0) +

∫ u

0

∂uρt(v)− ∂t
∫ v

0 ρt(w) dw

2χ(ρt(v))
dv .

Keeping in mind that ∂t
∫ 1

0 ρt(z) dz = 0 it is straightforward to check that the expression on the
right-hand side of the above expression satisfies (6.9) regardless of the chosen value for Ht(0). �

Proposition 6.5. Let O be an open set of DM. Then

lim
n→∞

1

n
logQδηn

[
O
]
≥ − inf

π∈O∩Π
IθT (π|γ) .

The proof of the inequality above relies on the hydrodynamic limit for the perturbed process and
Proposition 6.1. It follows the same lines of Kipnis and Landim (1999, Chapter 10) or Franco and
Neumann (2017). Let

H
(
PHδηn |Pδηn

)
:= EHδηn

[
log

dPHδηn
dPνn

γ(·)

]
= −EHδηn

[
log

dPδηn
dPHδηn

]
(6.10)

be the so-called relative entropy of PHδηn with respect to Pδηn .

Lemma 6.6. Let H ∈ Cθ. Then

lim
n→∞

1

n
H
(
PHδηn |Pδηn

)
= IθT (ρH |γ) ,

where ρH is the unique weak solution of (4.13) if θ ∈ (0, 1), or the unique weak solution of (4.14)
if θ ∈ (1,+∞).

Proof : Recall the definition of BH,θ
ε,δ in (5.1), which is super-exponentially small, see (5.2). On the

BH,θ
ε,δ , the Radon-Nikodym derivative

dPHδηn
dPνn

γ(·)
is equal to

exp
{
n
[
JθH

(
(πn ∗ ιsτ ) ∗ ιε|γ

)
+OH,T,ε,γ( 1

n) +O(δ) +OH(ε) +OH(γε )
]}

. (6.11)
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The proof of the above assertion is technical and follows the same steps of Franco and Neumann
(2017). In view of (6.10) for the relative entropy,

1

n
H
(
PHδηn |Pδηn

)
=

1

n
EHδηn

[
log

dPHδηn
dPνn

γ(·)

1
BH,θε,δ

]
+

1

n
EHδηn

[
log

dPHδηn
dPνn

γ(·)

1
(BH,θε,δ ){

]
, (6.12)

where the BH,θ
ε,δ has been defined in (5.10). By (5.11), the complement of this set is super-

exponentially small with respect to Pνn
γ(·)

. We claim now that the complement is super-exponentially
small also with respect to PHδηn . Indeed, by (4.10) there exists a constant C(H,T ) > 0 such that

PHδηn
[
(BH,θ

ε,δ ){
]

= Eνn
γ(·)

[ dPHδηn
dPνn

γ(·)

1
(BH,θε,δ ){

]
≤ eC(H,T )nPνn

γ(·)

[
(BH,θ

ε,δ ){
]

and by (5.2) we get

lim
ε↓0

lim
n→∞

1
n logPHδηn

[(
BH,θ
ε,δ

){]
= −∞

concluding the proof of the claim. By the previous limit and since 1
n log

dPHδηn
dPνn

γ(·)
is bounded, the

right-hand side of (6.12) can be written as

1

n
EHδηn

[
log

dPHδηn
dPνn

γ(·)

1
BH,θε,δ

]
+ on(1) . (6.13)

By Theorem 4.1, under PHδηn the probability concentrates on ρH . Since the functional JθH((πn ∗ ιsτ )∗
ιε|γ) is continuous in the Skohorod topology, recalling (6.11) the proof ends. �

6.2. The IθT -density. In the previous subsection we have achieved the lower bound for smooth pro-
files. Our task now consists on extending it to any profile. We start with the definition of IθT -density.

Definition 6.7. Let A be a subset of DM. The set A is said to be IθT (·|γ)-dense if for any π ∈ DM
such that IθT (π|γ) <∞ there exists a sequence {πn : n ≥ 1} in A such that

πn → π in DM and IθT (πn|γ)→ IθT (π|γ) .

Recall Definition 6.2. The main result to be proved now is:

Theorem 6.8. The set Π is IθT -dense.

The statement above does not involve probability: it is a purely analytical result. Thus, since
the IθT functional for θ ∈ (0, 1) coincides with the rate functional of Bertini et al. (2009) under the
assumption that the external field there considered is null, we thus may apply Bertini et al. (2009,
Theorem 5.1) in this case.

From this point on we will deal only with the case θ ∈ (1,+∞), where the proof of Theorem 6.8
is split into intermediate lemmas. We start with a key technical result, in whose proof is developed
by mixing ideas from Farfan et al. (2011) and Landim and Tsunoda (2018).

Proposition 6.9. Let θ ∈ (1,+∞). There exists a constant C̃0 > 0 such that, for any ρ ∈ DM, it
holds ∫ T

0

∫ 1

0

(∂uρt(u)
)2

χ(ρt(u))
dudt ≤ C̃0

(
IθT (ρ|γ) + 1

)
. (6.14)



Large Deviations for the SSEP with slow boundary 391

Proof : In what follows, assume π ∈ DM to be such that IθT (π|γ) < ∞, otherwise (6.14) is trivial.
Since IθT (π|γ) < ∞, then π(t, du) = ρ(t, u)du with ρ ∈ L2(0, T ;H1) and from an integration by
parts we have that

IθT (π|γ) = sup
H∈Cθ

JθH(ρ|γ) = sup
H∈Cθ

{
LH(ρ|γ) +BH(ρ)

}
,

where

LH(ρ|γ) = 〈ρT , HT 〉 − 〈γ,H0〉 −
∫ T

0
〈ρs, ∂sHs〉ds and

BH(ρ) =

∫ T

0
〈∂uρs, ∂uHs〉ds−

∫ T

0
〈χ
(
ρs
)
,
(
∂uHs

)2〉 ds .
For a ∈ (0, 1), let ha : [0, 1]→ R be the function defined by

ha(x) = (x+ a) log(x+ a) + (1− x+ a) log(1− x+ a)

whose first and second derivatives are, respectively,

h′a(x) = log

(
x+ a

1− x+ a

)
and h′′a(x) =

1 + 2a

(x+ a)(1− x+ a)
.

It is elementary to check that − log 2 ≤ ha(x) ≤ log 4 for all x ∈ (0, 1). Let

Hρ := h′a(ρ) .

Since the space integrals above are with respect to the Lebesgue measure, we can see the integrated
functions as functions defined on the continuous torus T = [0, 1) rather than on the interval [0, 1].
Moreover, we extend (on the time parameter) the functions above from [0, T ] to some open interval
(c, d) containing [0, T ] by imposing that the extension is constant on (c, 0] and [T, d), that is, given
f : [c, d]× T→ R, its extension f : [c, d]× T→ R will be defined by

f(t, u) =


f(t, u) , if (t, u) ∈ [0, T ]× T ,
f(0, u) , if (t, u) ∈ (c, 0)× T ,
f(T, u) , if (t, u) ∈ (T, d)× T .

Abusing of notation, let ιδ and ιε be smooth approximations of the identity on T and (c, d), re-
spectively. Let Hρε,δ := h′a(ρ

ε,δ), where ρε,δ is a convolution in space and in time (on the parameters
ε and δ, respectively) of the function ρ, that is,

ρε,δ(u, t) :=
(
ρ ∗ ιε ∗ ιδ

)
(u, t) =

∫
(c,d)

∫
T
ρ(s, v)ιε(u− v)ιδ(t− s)dvds .

Note now that

sup
H∈Cθ

{
LH(ρ) +BH(ρ)

}
≥ LH

ρε,δ
(ρ|γ) +BH

ρε,δ
(ρ)

= LH
ρε,δ

(ρε,δ|γ) +
{
LH

ρε,δ
(ρ|γ)− LH

ρε,δ
(ρε,δ|γ)

}
+BH

ρε,δ
(ρ) .

At this point we must handle each one of the parcels above. By the chain rule and Fubini’s Theorem,

LH
ρε,δ

(ρε,δ|γ) =

∫ T

0
〈∂sρε,δ, Hρε,δ〉ds =

∫ T

0

∫
T
∂sρ

ε,δ
s (u)h′a

(
ρε,δs (u)

)
duds

=

∫
T

∫ T

0
∂s

(
ha
(
ρε,δs (u)

))
dsdu =

∫
T

{
ha
(
ρε,δT (u)

)
− ha

(
γε,δ(u)

)}
du

and from − log 2 ≤ ha(·) ≤ log 4 we infer that

LH
ρε,δ

(ρε,δ|γ) ≥ −(log 2 + log 4) = −3 log 2 . (6.15)
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By the same arguments of Landim and Tsunoda (2018, Lemma 4.4), for any fixed ε > 0,

lim
δ↘0

{
LH

ρε,δ
(ρ|γ)− LH

ρε,δ
(ρε,δ|γ)

}
= 0 . (6.16)

Finally, BH
ρε,δ

(ρ) converges, as ε and δ decrease to zero, to

BHρ(ρ) =

∫ T

0

〈
∂uρ, ∂uh

′
a(ρ)

〉
ds−

∫ T

0

〈
χ(ρ),

(
∂uh

′
a(ρ)

)2〉
ds

≥
∫ T

0

〈
∂uρ,

(1 + 2a)∂uρ

(ρ+ a)(1− ρ+ a)

〉
ds−

∫ T

0

〈1

4
,

(1 + 2a)2(∂uρ)2

(ρ+ a)2(1− ρ+ a)2

〉
ds .

Taking the lim inf as a ↘ 0, applying Fatou’s Lemma and recalling (6.15) and (6.16), we are lead
to

IθT (π|γ) ≥ −3 log 2 +
3

4

∫ T

0

∫ 1

0

(∂uρt(u)
)2

χ(ρt(u))
dudt

finishing the proof. �

Lemma 6.10. The density ρ of a trajectory π ∈ DM0 is the weak solution of hydrodynamic equation
(2.12) with initial condition γ if, and only if, IθT (π|γ) = 0. Moreover, in such case we have that∫ T

0

∫ 1

0

(∂uρt(u)
)2

χ(ρt(u))
dudt < ∞ . (6.17)

Proof : Suppose that the density ρ of a trajectory π ∈ DM0 is the weak solution of hydrodynamic
equation (2.12) with initial condition γ. Then, for H ∈ C1,2,

JH(ρ|γ) = −
∫ T

0
〈χ(ρs), (∂uHs)

2〉 ds ≤ 0 .

Moreover, since ρ is the weak solution of (2.12), it is easy to check that the total mass of πt(du) =
ρt(u)du is conserved in time, that is, π ∈ Fθ, see (2.15). This implies that IθT (π|γ) = 0.

Suppose now that IθT (π|γ) = 0. Therefore JεH(ρ) ≤ 0 for any H ∈ C1,2 , which in its turn implies
that the derivative of JεH(ρ) ≤ 0 with respect to ε is zero at ε = 0. This permits to conclude that
the density ρ is the weak solution of hydrodynamic equation (2.12) with initial condition γ.

Finally, if IθT (π|γ) <∞, then (6.17) holds by Proposition 6.9. �

Let Π1 be the set of all paths πt(du) = ρt(u)du in DM0 whose density ρ is a weak solution of the
Cauchy problem (2.2) on some time interval [0, δ], with δ > 0.

Lemma 6.11. The set Π1 is IθT -dense.

Proof : The proof here follows the same steps of Landim and Tsunoda (2018, Lemma 5.3). Fix
πt = ρ(t, u)du ∈ DM0 such that IθT (π|γ) <∞. Let λ be the solution of the hydrodynamic equation
(2.12). For δ > 0, let πδt (du) = ρδt (u)du where ρδ evolves as λ on the time interval [0, δ], then evolves
as λ reversed in time on [δ, 2δ] and then evolves as ρ in the remaining time interval, that is,

ρδ(t, u) =


λ(t, u) if t ∈ [0, δ] ,

λ(2δ − t, u) if t ∈ [δ, 2δ] ,

ρ(t− 2δ, u) if t ∈ [2δ, T ] .

(6.18)

Since πδ converges to π in DM as δ ↓ 0 and πδ ∈ Π1, it only remains to show that IθT (πδ|γ)

converges to IθT (π|γ) as δ ↓ 0. By the lower semi-continuity of the rate function, we have IθT (π|γ) ≤
lim infδ→0 I

θ
T (πδ|γ) hence it is missing to assure that

IθT (π|γ) ≥ lim sup
δ→0

IθT (πδ|γ) . (6.19)
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To do so, note that

EH(πδ) ≤ 2EH(λ) + EH(π) < ∞ ,

where the last inequality above is due to the assumption IθT (π|γ) <∞ and Lemma 6.10. Using this
and the fact the profile ρδ conserves the total mass we can infer that IθT (πδ|γ) <∞ for any δ.

By linearity of integrals, we will analyze separately the contributions on IθT (πδ|γ) from the three
time intervals of (6.18). The contribution of [0, δ] is zero by Lemma 6.10.

Since the Neumann boundary conditions are invariant by a time inversion, the profile ρδ is a weak
solution on the time interval [δ, 2δ] of{

∂tρ(t, u) = −∂2
uρ(t, u)

∂uρ(t, 0) = ∂uρ(t, 1) = 0

which allows to conclude that the second contribution is given by

sup
H∈C1,2

{∫ δ

0

(
2〈∂uλt, ∂uH〉 − 〈χ(λt), (∂uH)2〉

)
dt

}
. (6.20)

Multiplying and diving the leftmost term inside parenthesis of last expression by
√
χ(λt) and ap-

plying Young’s inequality ab ≤ a2/2 + b2/2, we can bound the previous expression from above
by ∫ δ

0

∫ 1

0

(∂uλt(u)
)2

χ(λt(u))
dudt

which goes to zero as δ ↘ 0 by Lemma 6.10 and Dominated Convergence Theorem.
Finally, the third contribution is bounded above by IθT (π|γ) since πδ on this interval is a time

translation of π. Putting all these things together, we are lead to (6.19) and hence we finish the
proof.

�

Next, we present the sets Π2, Π3 and Π4. Let Π2 be the set of all paths πt(du) = ρt(u)du in
Π1 with the property that for every δ > 0 there exists ε > 0 such that ε ≤ ρt(u) ≤ 1 − ε for all
(t, u) ∈ [δ, T ]× [0, 1]. Let Π3 be the set of all paths πt(du) = ρt(u)du in Π2 whose density ρ(t, u) du
belongs to the space C∞[0, 1] for any t ∈ [0, T ]. Let Π4 be the set of all paths πt(du) = ρt(u)du in
Π3 whose density ρt(u) du belongs to the space C∞,∞([0, T ]× [0, 1]).

Lemma 6.12. The sets Π2, Π3 and Π4 are IθT -dense.

The proof of the Lemma 6.12 can be promptly adapted from Landim and Tsunoda (2018, Lemmas
5.4, 5.5 and 5.6), and for this reason it is omitted. We thus conclude the proof of the IθT -density,
that is, the proof of Theorem 6.8.
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