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ABSTRACT
There is a growing demand for studies related to geometallurgical variables, their spatial
prediction in a block model, and their use in mine planning. This thesis aims to clarify
important characteristics of these variables and the data obtained from the measurement of
geometallurgical properties, which influence the application of spatial estimation method-
ologies and should also be considered for mine planning. Geometallurgical properties can
be classified into intrinsic rock or response properties. Given the complexity of measuring
the response properties (e.g., cost, the volume required for testing, equipment accuracy),
a geometallurgical database tends to be smaller than a geological exploration database,
resulting in sparse data with different support and missing values. In addition to these
data-related particularities, geometallurgical variables generally average nonlinearly and
exhibit complex multivariate behavior. These specificities require special treatment for
spatial estimation. Two methodologies are employed in this thesis: one approach by multi-
variate geostatistical modeling and the other by machine learning. An analysis is made of
their differences and when to use each method. The first is suggested when it is possible
to infer all variables’ variograms and the joint uncertainty is important; the second is
most suitable when the inference of variograms is not possible and when there are high
correlations between the variables. The impact of the complexities of geometallurgical
variables extends to mine planning. The nonlinear blending averaging is related to the
transformation from the estimated value in the mining block to the value of the material
that feeds the processing plant. Considering that there is an intrinsic blending during
mining and mineral processing, the estimated values in the blocks are not realized when
processed, as no block is fed alone but together in a mixture with other blocks. Therefore,
the estimated value in a block must consider the values of the other blocks with which
it mixes. Mine planning must be scheduled to form the best mixtures concerning the
response of the processing plant. A mixture model is necessary so that mine planning can
optimize block sequencing. When there is a synergistic blending, the optimal sequencing
will be the one that mixes different materials. When there is antagonist blending, it is
better to extract similar blocks in sequence. In any case, better mine planning is possible
when considering ore blending and nonlinear variables.

Key-words: Geometallurgy. Nonlinear variables. Spatial modeling. Mine schedule opti-
mization. Blending.



CONSIDERAÇÕES SOBRE MODELAGEM ESPACIAL, SEQUENCIAMENTO DE
LAVRA E MISTURAS A RESPEITO DAS VARIÁVEIS GEOMETALÚRGICAS

RESUMO
Existe uma demanda crescente por estudos relacionados a variáveis geometalúrgicas, sua
previsão espacial em um modelo de blocos e seu uso no planejamento de lavra. Esta tese
visa esclarecer características importantes dessas variáveis e os dados obtidos a partir da
medição de propriedades geometalúrgicas, que influenciam a aplicação de metodologias de
estimativa espacial e também devem ser consideradas para o planejamento de lavra. As
propriedades geometalúrgicas podem ser classificadas em propriedades intrínsecas da rocha
ou propriedades de resposta. Dada a complexidade de medir as propriedades de resposta
(por exemplo, custo, volume necessário para testes, precisão dos equipamentos), um banco
de dados geometalúrgico tende a ser menor do que um banco de dados de exploração
geológica, resultando em dados esparsos com diferentes suportes e valores faltantes. Além
dessas particularidades relacionadas aos dados, as variáveis geometalúrgicas geralmente
têm uma média não linear e exibem um comportamento multivariado complexo. Essas
especificidades requerem tratamento especial para a estimativa espacial. Duas metodologias
são empregadas nesta tese: uma abordagem por modelagem geoestatística multivariada
e outra por aprendizado de máquina. É feita uma análise de suas diferenças e quando
usar cada método. A primeira é sugerida quando é possível inferir os variogramas de
todas as variáveis e a incerteza conjunta é importante; a segunda é mais indicada quando
a inferência de variogramas não é possível e quando existem altas correlações entre
as variáveis. O impacto das complexidades das variáveis geometalúrgicas se estende ao
planejamento da lavra. A média não linear de uma mistura está relacionada à transformação
do valor estimado no bloco de lavra para o valor do material que alimenta a usina de
beneficiamento. Considerando que há uma mistura durante a lavra e o beneficiamento
mineral, os valores estimados nos blocos não se concretizam quando processados, pois
nenhum bloco é alimentado sozinho e sim em conjunto com outros blocos em uma mistura.
Portanto, o valor estimado em um bloco deve considerar os valores dos outros blocos com
os quais ele se mistura. O planejamento da lavra deve ser programado para formar as
melhores misturas em relação à resposta da planta de beneficiamento. Um modelo de
mistura é necessário para que o planejamento da lavra possa otimizar o sequenciamento de
blocos. Quando há uma mistura sinérgica, o sequenciamento ótimo será aquele que mistura
materiais diferentes. Quando há mistura antagonista, é melhor extrair blocos semelhantes
em sequência. De qualquer forma, um melhor planejamento de lavra é possível quando se
considera a mistura de minério e variáveis não lineares.



Palavras-chaves: Geometalurgia. Variáveis não lineares. Modelagem espacial. Otimização
do sequenciamento de lavra. Misturas.
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1 INTRODUCTION

1.1 Problem setting
The computational representation of mineral deposits is currently conceived through

the use of a block model (SINCLAIR; BLACKWELL, 2006), a set of three-dimensional
blocks, regular or not, on which the process of estimating the geological variables is
carried out. Geological properties such as the content of elements (of economic interest
or contaminants), density, lithology, and degree of alteration of the rocks are some of
the information of interest to estimate. These properties are intrinsic to the rock, also
termed primary variables, under the Primary-Response Framework (COWARD et al.,
2009). Primary variables are usually additive. Additive properties are those in which the
averaged quantity is equal to the average of the quantities (CARRASCO et al., 2008). As
they are additive, primary variables can be predicted spatially through linear geostatistical
methods without the risk of introducing bias in the estimates.

After estimating primary geological information into the block model, technical
aspects of mining, processing, and metallurgy are also considered for the evaluation
of mineral reserves, as well as economic, infrastructure, legal, environmental, social,
and governmental factors (HUSTRULID et al., 2013). Mine planning engineers develop
production schedules, defining the order in which each block will be mined to achieve a
certain objective. In long-term planning, the objective is usually related to maximizing the
economic value of the project, commonly measured by the Net Present Value (NPV). In the
short-term, scheduling also considers the ore characteristics that impact the operational
performance of the processing plant. Ore blending is a strategy commonly used in mining,
whose purpose is to provide a uniform feed to the processing plant, balancing high-grade
and low-grade ore (LIU et al., 2021). Further down the mineral chain, ore processing is
responsible for adapting the mined ore, the Run-Of-Mine (ROM), for the subsequent phase.
Grain size reduction, classification, and mineral concentration operations are routine. The
ore response to mineral processes is represented by a response variable, under the Primary-
Response Framework (COWARD et al., 2009). In this sense, metallurgical recovery is the
response variable of the ore to the concentration operations to which it is submitted. The
metallurgical response of a rock is a function of its mineralogy, grade, texture, and process
conditions (DOMINY et al., 2018). Due to this multivariate nature, response variables are
mostly nonadditive, unlike primary variables.

While classical geometallurgy emerged as a collaboration between the areas of
geology and mineral processing in providing information for a better understanding of
the ore deposit and its characteristics, modern geometallurgy, on the other hand, aims to
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integrate geological, mineralogical, physical, and chemical properties with metallurgical
processes through a single spatial model, called the geometallurgical model (LISHCHUK
et al., 2020; COWARD et al., 2009; DOWD et al., 2016; DOMINY et al., 2018). The
end product of this model is the creation of integrated-spatial estimates for primary
(geological) and response (metallurgical) variables, such as metallurgical recovery and the
comminution energy of the ore, like the Work Index (WI), providing a basis for mine and
plant optimization (LISHCHUK et al., 2020; DOWD et al., 2016; DUNHAM; VANN, 2007).
Environmental, geotechnical, and economic information can also be included, aiming at
best sustainable practices and decision-making (DOMINY et al., 2018; WALTERS, 2011).

The successful integration of several geometalurgical pieces of information in one
single spatial model demands carefulness. The amount of geometallurgy data has increased
in recent years, but the prediction procedures of these variables still cause confusion among
practitioners. Bad practices can lead to errors with a high potential impact on the success
of a project (DUNHAM; VANN, 2007). Therefore, each geometallurgical variable must be
studied and well understood, as each has its own characteristics and may be supported by
data from different sources. Issues like additivity/linearity, scale/support, and sampling
play an important role in how the data should be measured, treated, and used for spatial
modeling, which, in turn, is used for mine planning purposes.

For example, it is not correct to use linear functions, such as kriging, to spatially
estimate nonadditive geometallurgical variables. One of the solutions to this problem is to
use a modern multivariate geostatistical approach to estimate all the additive variables
in the desired location and scale, and then obtain the nonadditive variables through
nonlinear regressions, which are methods for predictive modeling in machine learning.
Nonlinear geometallurgical variables such as recovery and throughput can be estimated
from whatever linear high-correlated variables are available, such as grade (DUNHAM;
VANN, 2007; WALTERS, 2011). A similar approach is to use a function to transform the
nonadditive variable into one or more linear variables that could be kriged and then back
transform to obtain the original variable of interest (ADELI et al., 2021; CARRASCO et
al., 2008; PERONI, 2002).

Another solution for predictions in three-dimensional models of nonadditive vari-
ables is to work with stochastic approaches, as they allow joint modeling of variables
and their uncertainties (BARNETT, 2016; BOISVERT et al., 2013). Modern multivariate
simulation may require the imputation of missing values and variable transformations.
The importance of knowing the uncertainty to deal with nonadditive variables is evident
in cases where the behavior of the variable is controlled by extreme values and not by
its mean. Dunham and Vann (2007) present an example: in a talc-sensitive flotation, a
smoothed-kriging estimate in a three-dimensional model may indicate material within
specifications, when, in fact, there is a small part of it highly contaminated and that
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compromises the entire operation efficiency.

Although the nonadditivity aspect of the geometallurgical variables is already
recognized, in current practice this particularity is only considered in the spatial prediction
workflows (BARNETT, 2016; BOISVERT et al., 2013; DEUTSCH, 2015; ADELI et
al., 2021; GARRIDO et al., 2020). In all scale (also known in geostatistics as support)
transformations, geometallurgical variables are simplified as being linear, which occurs when
upscaling the value from the (point) data scale to the resource block scale. Mine planning
and all downstream processes are also affected by this simplification. Scale transformation
is inevitable between the resource estimated model and the mineral processing prediction
model. Just as a block consists of the mixture of several estimated points, the processing
plant receives volumes that consist of the mixture of several blocks. The optimal dimensions
of the blocks for a geometallurgical model may correspond to the production volume of one
working shift (LISHCHUK, 2016). This volume is called feed volume in this thesis. As the
geometallurgical variables are usually nonadditive, the average value in the feed volume is
different from the average of the blocks that compose it. In this context, transforming the
predicted value from one support to the other is challenging. For these transformations
to be carried out, it is necessary to understand and model the nonlinear behavior of the
variable. Direct experimentation of different mixtures on different scales is necessary for
such modeling (DEUTSCH, 2015).

Some studies consider geometallurgical information and their uncertainties in mine
planning (BYE, 2011; CASTILLO; DIMITRAKOPOULOS, 2016; MORALES et al., 2019;
KUMAR; DIMITRAKOPOULOS, 2019; NAVARRA et al., 2018; SEPÚLVEDA et al.,
2018), but they implicitly assume scale linearity. Moreover, the main limitation of these
studies is that they assign a value of the geometallurgical variable to each individual block.
Assigning a deterministic value of the geometallurgical variable to each block is currently
common practice. Two methodologies for estimating the value of metallurgical recovery
are more common; in the first, an average and fixed value is assigned to all blocks within a
given geological-weathering domain; in the second, the value is estimated from a function
of the primary variables of each block. Nevertheless, this practice implicitly assumes that
each block is processed individually, neglecting the effect that the blending of the blocks
has on the metallurgical response of interest. The volume of material processed in the plant
is equal to the volume of several mining blocks. Plant feed typically represents a mixture
of ores from various mining faces and locations (WAMBEKE et al., 2018). The mixture
of blocks begins to be formed in the blasting/excavation and loading of the material and
can increase if the ore is intentionally blended and homogenized in piles. Even when the
ore is fed into the plant in batches, the properties of the blended material dictate the
process responses more than the properties of any other individual block (DEUTSCH,
2015; ROSSI; DEUTSCH, 2014). The ore mixtures formed are a consequence of the
scheduling of the blocks and/or the blending and homogenization process, if any. Each set
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of blocks that are mixed and processed together is termed a blending unit in this thesis.
In cases where the sequencing is done to maximize the NPV, this problem is recursive.
The order of sequencing each block depends on its economic value, which is a function
of its metallurgical recovery. However, the metallurgical recovery of a block depends on
how the blocks will be mixed during the processing. And this mixture depends on the
mine scheduling/blending. The use of linear techniques in spatial modeling and support
transformation of nonadditive variables may cause, among other reasons, discrepancies
between estimated values and those observed in reality.

1.2 Geometallurgy-related studies
Studies from the last fifteen years in the area of geometallurgy are highlighted next.

Dunham and Vann (2007) demonstrated that any grade-recovery regression curve
is scale-dependent, that is, is valid only for the scale of the data used for modeling the
regression. They also presented an example in which the consideration of metallurgical
recovery and throughput in the block model impacts production scheduling. They demon-
strated that, with two blocks with the same grade, it may be better to mine the block
with the lowest metallurgical recovery but higher throughput first than the other with
higher metallurgical recovery but lower throughput, in the case of NPV maximization
optimization.

David (2007) discussed how a geometallurgical model should be developed through-
out the phases of the industrial plant design so that, when put into operation, the plant
works as expected. He also mentioned the importance of defining metallurgical domains,
which may or may not be related to geological domains, as well as the identification of rock
properties that are predictive of the metallurgical response of interest. He also presented a
table with examples of critical properties that affect each type of process circuit. In the
case of iron ore, these are the lump/fine ratio and the contaminant contents. In the case of
sulfide copper, critical properties are the mineralogy, degree of alteration, and impurities.

Carrasco et al. (2008) presented a work on the characteristics of nonadditive
variables and the problems when they are estimated by linear techniques. Through two
experiments, they showed that the consideration or not of additivity can impact the
results, depending on the scale of interest and the variability of the variable. Finally, they
pointed out that, whenever possible, it is better to make spatial estimates with additive
variables and then obtain the nonadditive variable through regression, rather than to try
to spatially estimate the nonadditive variables. To obtain the nonadditive metallurgical
recovery variable, they worked with three additive variables: feed grade, mass recovery,
and in situ recovered metal.

Coward et al. (2009) presented a framework for classifying geometallurgical variables
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into primary and response, helping to understand the most appropriate methodology for
sampling and spatial modeling of each type. They suggested that, whenever possible,
response variables should be reduced to additive variables, given their advantages for
modeling and scale change. Furthermore, they warned about the care in applying fixed
adjustment factors in reconciliation.

Tonder et al. (2010) demonstrated experimentally that blends of platinum ores
display nonlinear behaviors when there are large differences in metallurgical properties
between the ore types. The study was focused on grinding, flotation grade, and flotation
recovery properties. They end up speculating some reasons why such behavior occurs.

Walters (2011) discussed the AMIRA P843 GeMIII, a research project focused
on geometallurgy, with the objectives of understanding the intrinsic variables of the rock
that impact metallurgical performance, developing tools and methodologies for rapid
and low-cost testing of rock characteristics, applying technology and methods with high
automation potential, defining metallurgical spatial domains, and understanding the
geological controls on process performance behavior. He stated that the prediction of the
metallurgical performance of mixtures is a challenge.

Newton and Graham (2011) presented a study in which performance indices such
as recovery, throughput, and specific power are estimated directly in the block model
through the use of regression models and additive variables. They used this approach
to obtain the bias of the alternative methodology, in which the variables are discretized
into classes to be spatially estimated by kriging indicators, and subsequently estimated in
blocks.

Bye (2011) recognized that any linear support change technique should only be
applied to additive variables. According to him, the solution to accommodate the nonlinear
relationship between the different scales is the creation of a mixture response model.
He also showed case studies with different methods of incorporating geometallurgical
attributes into numerical spatial models of the mineral deposit. Finally, he advocated that
reserve modifying factors should be replaced by indicated, probable, or proven spatial
geometallurgical attributes.

Cornah (2013) used the same approach explained by Carrasco et al. (2008) to
quantify the bias resulting from the linear estimation of a nonadditive iron ore attribute.
He concluded that the bias was more significant locally than globally, and greater in
the estimation of higher-variability areas, which is related to lower-grade ore for iron ore
deposits.

Boisvert et al. (2013) spatially modeled six geometallurgical variables from their
correlation with 204 more extensively-sampled variables. The methodology consisted of
variable reduction, quantile-to-quantile univariate transformation to a Gaussian distribu-
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tion, aggregation of variables into four super-secondary variables, multivariate regression,
back-transformation, and geostatistical simulation. The predictive model with correlations
to the plant performance variables ranged from 0.65 to 0.90. The spatial models of the six
variables had the same scale as the samples.

Deutsch (2015) proposed an integrated geostatistical approach for the spatial
modeling of nonadditive metallurgical variables to solve the problems of i) prediction and
modeling of nonlinear behavior and mixing laws of metallurgical variables; ii) downscaling
metallurgical variables; iii) spatial modeling of these variables; iv) selection of appropriate
multivariate techniques for the uncertainty assessment workflow of such variables.

Dowd et al. (2016) stated that one of the greatest current challenges of strategic
mine planning is the integration of geometallurgical variables in spatial block models. This
challenge is justified by the nonadditive behavior of the response variables, the limited
data available on such variables, and the difficulty in finding primary variables correlated
with them. They presented an example of production sequencing based on the integrated
optimization of the mining system, considering geometallurgical information.

Lishchuk (2016) developed a two-dimensional system for classifying geometallurgical
programs for benchmarking. He also made a framework for planning and creating a
geometallurgical model through a synthetic model so that it was possible to assess the
economic impact of a geometallurgical model on a mineral project. He believes that
the optimal dimensions of the block for a geometallurgical model correspond to the
production volume of a shift, which is the equivalent of ten to thirty hours of production.
Questions related to the number of samples suitable for geometallurgical modeling, types
of appropriate tests, and the importance of mineralogical analysis over chemical analysis
were answered.

Barnett (2016) stated that as processing performance is a multivariate problem,
multivariate relationships must be properly modeled. Some multivariate complexities are
heteroscedasticity, nonlinearity, and constraints. Transformations such as Normal Score
(NS), Principal Component Analysis (PCA), and Min./max Auto-correlation Factors
(MAF) do not remove these complexities. The solution he proposed is the application of
techniques for the multiGaussian variable transformation, such as the Projection Pursuit
Multivariate Transform (PPMT) for independent simulation of each uncorrelated variable,
with subsequent back-transformation. Finally, he presented a case study, in which four
correlated variables were modeled through PPMT and simulation.

Dominy et al. (2018) presented a historical review of the development of geometal-
lurgy up to the year in question and future trends.

Wambeke et al. (2018) developed an algorithm based on real-time plant recon-
ciliation for continuous calibration of the WI variable in the estimated geometallurgical
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block model. Each metallurgical response observation in the plant was compared with the
estimate of the set of blocks fed, and adjustments were made both in the mined and the
neighboring blocks simultaneously. The algorithm is based on Monte Carlo simulation and
automatically handles the support issue and measurement errors.

Lishchuk et al. (2020) critically reviews current practices and trends in geometal-
lurgy programs. They also show different definitions of geometallurgy proposed in several
publications.

Niquini (2020) developed an algorithm based on neural networks capable of pre-
dicting the mass and metallurgical recovery of products and waste of a processing plant
from ROM data in a phosphate mine.

Adeli et al. (2021) performed the spatial modeling of the metal mass contained in
the concentrate (obtained from laboratory tests) and metal mass contained in the feed (by
chemical analysis of drilling), both additive, through cokriging. After the proper modeling
and proper support transformation, the metallurgical recovery is obtained by dividing
these two variables.

Hoffimann et al. (2022) proposed a new methodology combining Bayesian models
with Kriging in Hilbert spaces to quantify the spatial uncertainty of geometallurgical
variables. They applied the methodology to a real copper deposit.

1.3 Thesis statement
The evolution of geometallurgical modeling in recent years has been noted, with

the focus being on defining the most relevant geometallurgical variables, discovering the
best tools for their measurements, defining methodologies for their spatial estimation, or
developing mine sequencing that considers the geometallurgical characteristics attributed
to the blocks. However, the author of this thesis faced a shortage of studies that identify how
to combine estimation and mine planning of nonadditive variables, more specifically, how
the upscaling from mining blocks to the processing plant feed volume and, consequently,
the mixing of mining blocks, impact the prediction of these variables.

The goal proposed for this thesis is to investigate how nonadditive geometallurgical
variables must be estimated in the block model and used in mine planning. The thesis
statement is:

A nonlinear geometallurgical variable value of an individual block depends on the
set of blocks that are blended with it (blending unit) when processed. It is possible to model
the nonlinear blending behavior of a variable and use it to optimize mine scheduling when
nonadditive geometallurgical variables are of interest.
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The specific objectives are:

1. Understand particularities related to geometallurgical data and variables;

2. Review different spatial modeling approaches for geometallurgical variables;

3. Demonstrate that the current practice of estimating individual and independent
values of a geometallurgical variable for each block is conceptually incorrect;

4. Propose a blending model that can be used to effectively estimate process responses
for the blending unit volume;

5. Propose a methodology for estimating the geometallurgical variables in each block
that takes into account the blending of the blocks;

6. Develop a production schedule that identifies the best combinations of blocks to
form each blending unit.

The workflow with the proposed methodology to consider the blending of nonlinear
variables in mine scheduling is illustrated in Figure 1. With the data and performing
all the required procedures, spatial models for all variables are estimated. There are
two main methodologies to spatially estimate geometallurgical variables: the multivariate
geostatistical approach and the machine learning approach. They are explained and applied
further in this thesis. The spatial model is used together with a blending model as inputs
to the algorithm that optimizes block scheduling based on the blending units.
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Figure 1 – Illustration of the thesis statement. The proposed methodology is to estimate
geometallurgical variables at the block support from the multivariate geostatis-
tical approach or the machine learning approach. An optimization algorithm
that considers the blending of nonlinear variables is developed and applied to
optimize block scheduling.

1.4 Thesis relevance
The relevance of this thesis is related to providing a methodology that indicates

the best approach to spatially model nonadditive geometallurgical variables in the block
support and how to use this multivariate model to optimize mine planning, considering
that blending is nonlinear.

Geometallurgical models allow the early prediction of production possibilities
and their results, contributing to the increase of mineral resources and reserves, the
improvement of mining and process operations, mining planning strategies, ore blending,
and quality predictions (COWARD et al., 2009; DEUTSCH, 2015; DOMINY et al., 2018;
DUNHAM; VANN, 2007).
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1.5 Thesis outline
This thesis is outlined as follows: Chapter 2 reviews the methodologies concerning

conventional geostatistical modeling, the modern approach for multivariate and proba-
bilistic geostatistics, machine learning modeling, and suggested workflows when dealing
with geometallurgical variables. Production scheduling, and ore blending practices are also
recalled. Chapter 3 clarifies some aspects regarding geometallurgical data, sampling, and
variables. A statistical analysis of a lab bench test database is compared against a plant
database of a real mine. Chapter 4 is related to how a variable behaves when there is
blending. Neutral blending, synergistic blending, and antagonistic blending are explained.
A flexible mathematical blending model is proposed and applied to an example, where
a sensitivity analysis is also performed. Chapter 5 presents how ore scheduling can be
optimized when dealing with nonadditive variables and blending. A simulated annealing
algorithm is developed and applied in a synthetic demonstration study. The developed
workflow is written in Python and made available to the reader through a Jupyter Note-
book in the following GitHub link: https://github.com/phacampos/PhD-thesis. Chapter 6
shows the application of the whole methodology - data analysis, spatial modeling, and
mine scheduling optimization considering a blending model - on real data from an existing
mine. Guidelines and suggested workflows when dealing with geometallurgical variables
are provided. Conclusions and future work are addressed in Chapter 7.

https://github.com/phacampos/PhD-thesis
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2 METHODOLOGY OVERVIEW

This chapter overviews the existing methodologies for resource modeling prediction
and mine planning. First, conventional geostatistical modeling workflow is reviewed.
Variogram calculation, kriging, and simulation are addressed. Then the focus turns to
modern geostatistical modeling, a preferred approach when dealing with multivariate and
complex relationships, such as those in a geometallurgical database. Machine learning
regressors are also an option for geometallurgical variables. The differences between the
last two approaches are highlighted, and best practices are presented. At last, the usual
procedures for mine scheduling and blending are recalled.

2.1 Conventional geoestatistical modeling
Geostatistics is an approach and toolkit that applies statistical and numerical

analysis to the spatial modeling of a regionalized variable (ReV) (DEUTSCH, 2021). A
ReV Z is a variable distributed in space, related to natural phenomena, that possesses two
apparently contradictory characteristics: i) an erratic local behavior and ii) a structured,
general behavior. The solution to represent the spatial variability considering this double
aspect of randomness and structure, inherent to ore deposits, is through probabilistic
interpretations such that the set of values z(ui), i = 1, ..., N , of a regionalized variable over
a domain A are interpreted as particular realizations of the random function {Z(u), u ∈ A}
(JOURNEL; HUIJBREGTS, 1978).

This interpretation is only possible because of spatial homogeneity assumptions
or hypothesis of stationarity. Strict stationarity occurs when a random function’s entire
probability distribution, consequently its spatial law, is invariant under translation. Second-
order stationarity occurs when the stationarity is limited to the first two moments of the
random function, that is: i) the mathematical expectation E{Z(u)} exist and does not
depend on the location u (Equation 2.1):

E{Z(u)} = m, ∀u ∈ A (2.1)

and ii) the covariance for each pair Z(u) and Z(u + h) exists and depends on the vector h

only (Equation 2.2):

C(h) = E{Z(u + h)Z(u)} − m2, ∀u ∈ A (2.2)

A weaker assumption of stationarity is the intrinsic hypothesis, also known as the
stationarity of the variogram. It occurs when i) the mathematical expectation E{Z(u)}
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exist and does not depend on the location u (Equation 2.1), and ii) the increment
[Z(u + h) − Z(u)] has a finite variance that does not depend on the location u:

V ar{Z(u + h) − Z(u)} = E{[Z(u + h) − Z(u)]2}, ∀u ∈ A (2.3)

Preferential sampling, common in mining, leads to the inference of unrepresentative
probability distributions. Their adjustment is possible through declustering techniques,
which consist of assigning different weights to different samples. The closer a sample is
to other data, the smaller its weight. One of the existing declustering methods is cell
declustering (DEUTSCH, 1989). It works by creating grid cells along the interest region
and weighting each data by 1

nd·noc
, nd being the number of data falling in the same cell, and

noc being the number of cells occupied by at least one sample. As the weights depend on
the cell size and the grid’s origin, cell declustering is an iterative procedure. The optimal
cell size is found based on the diagnostic plot and is often associated with the spacing in
the sparsely sampled areas (DEUTSCH, 2015).

2.1.1 Variogram

Geostatistics relies on the spatial variability of a regionalized variable. A value
at the location u, z(u), is spatially correlated to a value at the location u + h, z(u + h),
h being a vector that separates the two points (JOURNEL; HUIJBREGTS, 1978). The
spatial variability of a regionalized variable is associated with the process which originated
the phenomenon. Therefore, in mining, spatial variability is the consequence of the genesis
of the deposit and can be modeled considering the correlations between the samples taken
at different locations along the deposit.

The variogram function 2γ(h) measures the variability of a given vector h, with
magnitude and direction, by taking the average of the squared differences between all the
available data that are separated between this vector h apart (Equation 2.4). The exact
locations of these points do not matter because the intrinsic hypothesis is assumed, which
means that the variability between two points separated by the vector h is constant and
depends only on the separation h.

2γ(h) = 1
N(h)

N∑
i=1

[z(ui) − z(ui + h)]2 (2.4)

Intuitively, two points close to each other are more likely to be similar than two
points far from each other in space. Therefore, the correlation between Z(u) and Z(u + h)
generally decreases with the increase of the magnitude of h. Conversely, the variability, or
the variogram value, increases with the increase in h. Under the assumption of second-order
stationarity, the variogram and covariance are related by the variance σ2 (Equation 2.5).
In practice, after a large distance, the correlation between samples disappears, and their
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variogram value stabilizes. This distance is known as range, and the plateau reached is
called the sill. Different directions of the vector h analyzed may have different ranges or
sills; in that cases, the phenomenon is anisotropic.

γ(h) = σ2 − C(h) (2.5)

Fitting the experimental variogram points with a function is necessary for estimation
and simulation since they require a variogram/covariance value for all possible directions
and distances. Because the covariance values must lead to a positive definite kriging matrix,
a few parametric functions are usually used to fit the experimental values: the spherical,
the exponential, the gaussian, and power-law models. A positive definite function ensures
the kriging equations have a unique solution and that the kriging variance is positive.

2.1.2 Kriging

Kriging is a family of best linear unbiased estimators. It is linear because it is a linear
combination of each data value z(ui) times their weight ωi, i = 1, ..., N (Equation 2.6), it
is unbiased because the expectation of the error (the difference between the real value Z

and the estimated value Z∗) is zero (Equation 2.7), and is considered to be best because
provides the minimum estimation variance (Equation 2.8).

z∗(u) =
N∑

i=1
ωi · z(ui) (2.6)

E{Z − Z∗} = 0 (2.7)

Min E{[Z − Z∗]2} (2.8)

Ordinary Kriging (OK) requires the assumption of the intrinsic hypothesis, where
no prior inference about the mean is made, and variograms with or without sills can be used.
Conversely, Simple Kriging (SK) requires the hypothesis of the second-order stationarity,
where the mean is known, and only variograms with sills are accepted, since the covariance
for each pair Z(u) and Z(u + h) exists. It follows from the definition of kriging and the
stationarity hypothesis that the weights for OK can be obtained by Equation 2.9.


∑N

i=1 ωi · C(ui, uj) − µ = C(ui, u0) ∀i = 1, ..., N∑N
i=1 ωi = 1

(2.9)



Chapter 2. Methodology Overview 28

where C(ui, uj) is the covariance between data i and j, C(ui, u0) is the covariance between
data i and the estimated location, and µ is the Lagrange parameter added so that there is
only one possible solution to the system.

Kriging on larger support than the data support is generically called block kriging.
In this case, the estimate is given by Equation 2.10:

z∗
V (u) =

N∑
i=1

ωi,V · z(ui) (2.10)

where z∗
V (u) is the estimated value at the block V , and ωi,V is the weight for each datum

i. The equations for block kriging are similar to those in Equation 2.9 but with the
replacement of C(ui, u0) for the average covariance between data and points within the
block C(ui, V0).

In practice, given that the estimation process is linear, the average value of a block
z∗

V (u) is approximately equal to the average of the estimated values at the N points within
the block (Equation 2.11) (GOOVAERTS, 1997).

z∗
V (u) ≈ 1

N

N∑
j=1

z(u∗
j) (2.11)

By minimizing the estimation variance, kriging smoothes the true dispersion of the
variable. Limitations of linear geostatistical techniques are, among others: the prediction
of only a single value for each unsampled location, extreme values strongly impact them,
kriged model does not reproduce the spatial continuity of the data, and they are inadequate
for estimating nonlinear variables.

Nonlinear geostatistical techniques are an alternative for predicting a variable. They
provide the expected value but also the conditional distribution. Doing so provides reliable
measures of uncertainty, as opposed to the kriging variance. These estimates are indicated
when the variable presents high asymmetry caused by extreme values that impact the
analysis of the spatial variability, when the sample spacing is large in relation to the size
of the block to be estimated, and when the variable is not sufficiently represented only
by the mathematical expectation. However, these nonlinear methods are more complex
and are based on more restrictive assumptions. Yet, these estimators are still aimed at
variables that average linearly (DEUTSCH, 2015).

2.1.3 Simulation

Simulation consists of generating several equiprobable realizations of the ReV so that
all of them reproduce the spatial variability of the data and their probability distribution,
and meet the experimental values at the actual data locations. The realizations are called
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conditional simulations since they are conditioned by the experimental data. Conditional
simulations are spatially consistent Monte Carlo simulations (CHILES; DELFINER, 2009).
The objective of the simulation is not to provide an estimation as close as possible to the
true value but to provide an accurate and precise dispersion of the predicted variable.

The great advantage of simulation over nonlinear estimates is that, in addition to
understanding the uncertainty of a location, it evaluates the uncertainty between multiple
locations, enabling the transfer of uncertainty of the estimated resources for the risk
analysis in later stages, as in the mine design, mine planning, and its economic evaluation,
through the application of transfer functions in conditional simulation models (ROSSI;
DEUTSCH, 2014).

The resolution of the simulations must be fine grids, compatible with the support
of the data. Simulation makes no averaging assumption. The only averaging occurs when
upscaling the model to the desired block size, which is why it should be deferred to the
last moment possible.

There are several methods for conditional simulation. The Sequential Gaussian
Simulation (SGS) relies on a multiGaussian random function model assumption. It is
one of the most frequently used methods in mining applications given its convenient
properties, easy implementation, and reasonable representation of spatial distributions
(ROSSI; DEUTSCH, 2014). The workflow to perform SGS follows (ROSSI; DEUTSCH,
2014):

i. Complete an Exploratory Data Analysis (EDA) of the original data, including
variogram and domain definition;

ii. Analyse if the data needs to be de-trended, and simulation run on the residuals;

iii. Transform the variable to be Gaussian;

iv. Obtain the Gaussian variogram models;

v. Define a random path of nodes on the grid to be simulated;

vi. Estimate the conditional distribution for each node to be simulated in the Gaussian
space. The mean and its variance are given by the SK mean and variance. If simulating
on the residuals, the mean of the conditional distribution is zero;

vii. Draw a simulated value randomly from the previously obtained conditional distribu-
tion;

viii. Incorporate the simulated value drawn as conditioning data for nodes simulated
later. This process ensures variogram reproduction;

ix. Repeat step 6 to 8 for all nodes;
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x. Check histogram and variogram reproduction is Gaussian space;

xi. Back-transform the Gaussian simulated values to original variables space;

xii. Add back trend if the simulation was performed on the residuals;

xiii. Check histogram and variogram reproduction in original data space;

xiv. Verify that the model presents a reasonable spatial distribution.

2.2 Modern multivariate geostatistical modeling
Conventional geostatistics faces obstacles when dealing with large multivariate data.

Cokriging workflows require the covariance of each variable and their cross-covariance, that
is, K2 functions considering K variables 1. The inference becomes demanding in terms of
data, and modeling the linear model of corregionalization is very troublesome and tedious.

The modern approach for multivariate prediction is to apply transformations to
the variables in order to decorrelate and turn them into multiGaussian factors that
can be independently kriged/simulated. After the spatial modeling of each factor, back-
transformations are applied to return the variables to their original space and reestablish
their original correlations.

A method that simultaneously decorrelates and achieves multiGaussianity is the
PPMT. This factorization algorithm requires the data to be Gaussian and sampled at all
locations. The former is accomplished by NS transformation, and Multiple Imputation
(MI) solves the latter requirement.

2.2.1 Normal Score (NS) transformation

NS is a transformation of a univariate distribution to standard Gaussian units,
with a mean equal to zero and a variance of one. The probability density function of a
Gaussian distribution is fully parametrized by its mean (m) and standard deviation (σ),
given by Equation 2.12:

g(z) = 1
σ

√
2π

exp
[

−1
2

(
z − m

σ

)2
]

(2.12)

The NS is a direct quantile-to-quantile transformation from the original distribution
F (z) to the Gaussian distribution G(y), such that the correspondent value of a z value is
the y value (Figure 2).
1 considering that CXY (h) 6= CY X(h)
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Figure 2 – Illustration of the Normal Score transformation. The zi value in the original
distribution F (z) is transformed to a yi value in the Gaussian G(y) distribution.
Source: Rossi and Deutsch (2014).

The NS is a rank-preserving and reversible transformation. Spikes of constant
values are troublesome to the transformation; therefore, if they exist, the ties must be
broken through despiking. Despiking can be made i) at random, ii) using a neighborhood
averaging, or iii) using a combination of both (ROSSI; DEUTSCH, 2014; DEUTSCH;
JOURNEL, 1997).

2.2.2 Multiple Imputation (MI)

The transformations applied to the multivariate modeling require that all variables
are sampled at all data locations. Unfortunately, in mining, it is uncommon to have such
a situation. The removal of incomplete observations (to keep a homotopic subset of data)
leads to a loss of information. It can introduce bias depending on the cause of the missing
values (RUBIN, 1976; ZACCHÉ, 2018). An alternative is MI, a framework that imputes
(simulates) missing values of regionalized variables, reproducing multivariate and spatial
features of the data (BARNETT; DEUTSCH, 2013).

The basic idea of MI is to create multiple realizations of the data, where sampled
values are constant and imputed values are variable. The imputed values are drawn with
Monte Carlo simulation from the conditional distributions of the variable. The conditional
distributions must integrate spatial correlation between samples and the correlation between
variables at the same locations, such that the spatial continuity and the multivariate
distributions of the data realizations reproduce that of the sampled values.

Silva and Deutsch (2015) proposed a methodology that uses Bayesian Updating to
derive the required non-parametric conditional distribution. The likelihood is calculated
from a Gaussian Mixture Model (GMM) fitted to the multivariate data set. The use of
GMM improves the algorithm’s speed and reproduces the existing multivariate complexities
well.

The steps for the imputation using GMM are (SILVA; DEUTSCH, 2015):
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i. Transformation of each variable to be Gaussian;

ii. Fit the GMM with n components to the transformed data, defining the estimated
multivariate density function;

iii. Definition of the Prior distribution;

iv. Definition of the Likelihood distribution;

v. Combining the Prior and the Likelihood distribution into an Updated Distribution
through Bayesian Updating;

vi. Sample the Updated Distribution through Monte Carlo simulation, generating the
data realizations.

2.2.3 PPMT

Conventional cosimulation techniques require the data to be multivariate Gaussian
(multiGaussian). In practice, this is rarely the case for geological variables. The common
approach to overcoming the problem is to apply transformations like NS, PCA, and
MAF to obtain univariate Gaussian distributions and assume multiGaussianity. However,
this assumption is risky for complex data that present nonlinearity, heteroscedasticity,
and constraint features. Barnett (2016) showed a case where the cosimulation of two
univariate-Gaussian-distributed variables did not reproduce their bivariate correlation nor
the complex features (Figure 3).
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Figure 3 – Cosimulation with complex multivariate data. On the top left, a cross-plot
between two variables in the original space (red). After the Normal Score
transformation, the variables become univariate Gaussian, but not multiGaus-
sian (top right). Cosimulation generates multiGaussian realizations (blue) that
match the correlation of the data, but not the distribution (bottom right).
The original data distribution is not reproduced after the back transformation
(bottom left). Source: Barnett (2016).

A solution to this problem is to ensure that the variables are multiGaussian through
transformations like the Stepwise Conditional Transformation (SCT) (LEUANGTHONG;
DEUTSCH, 2003), or the PPMT (BARNETT et al., 2014). According to Barnett (2016),
PPMT is the current standard for transforming complex data to a multiGaussian distribu-
tion because it is more applicable to data with more variables and/or fewer observations.

The PPMT algorithm applies two preprocessing transformations to all variables,
aiming to simplify and improve the results of the PPMT itself:

• NS: standardize each variable to be Gaussian;

• Data sphering: a linear rotation that yields uncorrelated variables of unit variance.

With the preprocessed data, PPMT finds the most non-Gaussian projection of
this data and transforms it to be Gaussian. Some iterations of this procedure in other
projections ensure the data is multiGaussian (Figure 4). The transformed variables are
called PPMT factors.
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Figure 4 – Illustration of the PPMT process. The data become more multiGaussian after
each iteration. Source: Barnett (2016).

MultiGaussian-distributed data means that all the variables are uncorrelated and
independent, allowing each variable to be simulated independently. Semivariograms of the
PPMT factors are required, but not the cross-variograms. After simulating the PPMT
factor in the nodes of a grid, variables in the original space are obtained by applying a
back transformation, that is, the inverse of the forward transformation realized.

The reproducibility of the univariate distribution, correlations, and semivariograms
should be checked. Figure 5 shows that the complex relationships between variables are
reproduced through this workflow.
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Figure 5 – Simulation of PPMT factors with complex multivariate data. On the top left,
a cross-plot between two variables in the original space (red). After the PPMT
transformation, the variables become bivariate Gaussian and uncorrelated
(top right). Independent simulations generate realizations (blue) that match
the correlation and the transformed data distribution (bottom right). Back
transformation of the realizations reintroduces the original complexity and
correlation (bottom left). Source: Barnett (2016).

2.3 Machine learning modeling
Machine learning algorithms have been increasingly used in the analysis of spatial

data for the past few years, whether in i) predicting a label to a categorical data, ii)
predicting a numerical value to continuous data, and iii) predicting a probability density
function for a stochastic process (IACO et al., 2022). In this thesis, Linear Regression (LR),
K-Nearest Neighbors (KNN), Decision Trees (DT), and Random Forest (RF) were the
machine learning regressors used to estimate nonlinear variables through their relationships
with linear variables. Some of the usual steps required for machine learning modeling are
reviewed next.

2.3.1 Data preprocessing

Data preprocessing is an important step before the modeling. It consists of extracting
the features in a dataset, cleaning it of inconsistencies, selecting the best features, and
transforming them into a space suitable for prediction.

Feature extraction is the process of deriving meaningful features from multiple
data sources, according to the objective of the modeling. It is often performed parallel
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with data cleaning (AGGARWAL, 2015).

Data cleaning is the phase where the extracted features are integrated into one
single unified database. Missing values are estimated, and erroneous entries are corrected.
Some data may be removed.

Feature selection is the process of reducing the number of features or input vari-
ables used for a prediction. This procedure reduces the computational cost of modeling
and, sometimes, improves the model’s performance. Selecting a feature is based on its
relationship with the target variable and the assessment of its importance in predicting the
target. A variable may be removed if it is irrelevant to the target variable, or redundant
with other features. Some machine learning algorithms (e.g., RF) contain built-in feature
selection, meaning that the model will only include predictors that help maximize accuracy
(KUHN et al., 2013).

Data transformation is sometimes required to adjust the features to a new space
that is adequate for analysis. Some regression algorithms require scaling and normalization
of the features so that the weighting is not affected by the different scales of each variable.

2.3.2 Regression

Regression modeling predicts a numerical value of the target variable from one
or more input variables. Multiple output regressors can predict more than one variable
simultaneously. The regressors used in this thesis, LR, KNN, DT, and RF are multiple
output regressors.

2.3.2.1 Linear Regression (LR)

The LR model finds the best linear fit to the data. It assumes that the target
variable f(X) is linearly estimated by Equation 2.13, where β0 is the intercept, also known
as the bias in machine learning, and β1 is the slope - the average increase in f(X) associated
with a one-unit increase in X. β0 and β1 are model coefficients that minimize the Residual
Sum of Squares (RSS) (JAMES et al., 2013). The RSS is given in Equation 2.14, where yi

are the observed values of the data i = 1, ..., N and f(xi) are their predicted values.

f(X) = β0 + β1X (2.13)

RSS =
N∑

i=1
(yi − f(xi))2 (2.14)

Linear regression is an example of a parametric approach. Parametric approaches are
easy to fit, the coefficients have simple interpretations, and tests of statistical significance
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can be easily performed. However, it is a strong assumption that the form of f(X) is linear.
The prediction accuracy can be very inferior if the relationships between predictors and
target variables are far from linear (JAMES et al., 2013).

The equations and demonstrations for the multiple linear regression case can be
found in Hastie et al. (2009).

2.3.2.2 K-Nearest Neighbors (KNN)

KNN is a non-parametric regression that averages the responses yi of the K closest
input observations xi in the neighborhood Nk(x) to predict the target f(X) (Equation 2.15).
Closest implies a metric of distance, which usually is the Euclidian distance.

f(X) = 1
k

∑
xi∈Nk(x)

yi (2.15)

KNN does not rely on any assumption about the form of the data and is very
flexible in any situation. In general, the choice of K depends on the bias-variance trade-off.
The smaller the K, the lower the bias and the greater the variance. In contrast, larger
values of K provide a smooth and less variable fit while creating bias by masking some of
the structure of f(X) (HASTIE et al., 2009; JAMES et al., 2013).

2.3.2.3 Decision Trees (DT)

DT are a non-parametric regressor and classifier algorithm that uses a set of
splitting rules to segment the predictor space into several simple regions. The algorithm
finds the best splitting variables and points given the number of branches in the tree. A tree
can be seen as a piecewise constant approximation. The corresponding regression model
predicts f(X) with a constant value cm for each partition of feature space Rm, m = 1, ..., M

(JAMES et al., 2013):

f(X) =
M∑

m=1
cm · 1(X∈Rm) (2.16)

The decision of the size of the tree is not simple, as a large tree may overfit the data, while
a small tree may not accurately model the structure.

Some of the advantages and disadvantages of decision trees include, among others
(SCIKITLEARN, 2022a): Decision trees are easy to interpret and understand, as their
regression results can be visualized. They can work with numerical and categorical data, and
no normalization is required. They can handle multi-output problems. As disadvantages,
they are prone to overfitting, not good at extrapolation, and very unstable to small
variations in the data. This problem can be overcome by using an ensemble of trees.
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2.3.2.4 Random Forest (RF)

RF is an ensemble of decorrelated trees, where the prediction of the ensemble is
given as the averaged prediction of the individual trees. The principle of RF is that tree
splits are chosen randomly from m candidate predictors out of the full set of p predictors.
The purpose of this randomness is to reduce the variance of the forest estimator by
averaging many noisy but approximately unbiased models (JAMES et al., 2013; HASTIE
et al., 2009; SCIKITLEARN, 2022b).

2.3.3 Model evaluation

The answer to which model is better depends on the problem. LR will likely work
well when the relationships between features and target variables are approximately linear.
When the relationships do not show any specific form that a parametric function can
approximate, then non-parametric methods are better.

The relative performances of each model can be evaluated and are important for
deciding what model to use. The best approach for selecting and assessing a model is to
divide the dataset into three parts: a training set, a validation set, and a testing set. The
training set is used to fit the candidate model; the validation set is used to estimate the
error of one candidate model and compare it against the other candidate’s errors; the
test set is used to assess the error of the final chosen model (HASTIE et al., 2009). This
procedure helps avoiding data leakage and, consequently, overfitting.

A typical split might be 50% for training, 25% for validation, and 25% for testing-
set (HASTIE et al., 2009). However, depending on the size of the database, splitting it
considerably reduces the number of samples used for learning the model, and the results
can depend on a particular random choice for the pair of (train, validation) sets. A solution
to this problem is to apply cross-validation techniques.

One approach of cross-validation is the k-fold. In k-fold, the dataset is split into
train and test databases, not requiring a validation set. The train set is then split into k

smaller sets, where the model is trained with k − 1 folds, and the model is validated with
the remaining fold of the data. This procedure is repeated for each of the k folds. The
performance is measured by averaging the results in the loop. The test set is used as usual.

2.4 Geometallurgical workflows
The increasing recognition of the importance of geometallurgy in understanding the

behavior of ores and predicting their responses when subjected to the mineral process led
to the need for spatial modeling of geometallurgical variables. WI, throughput, recovery,
and reagent consumption are often the response variables of interest to be predicted. The
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study of the characteristics related to geometallurgical data and variables is extremely
valuable and guides the methodologies used for geometallurgical modeling.

Spatial estimation through kriging is not advisable for geometallurgical variables,
as these variables average nonlinearly and result in biased kriged estimates. Nonlinear geo-
statistical estimators such as indicator kriging also require an assumption that the variable
averages linearly. Other not common multivariate complexities such as heteroscedastic-
ity and constraint features may also exist. Moreover, geometallurgical data may often
present particularities. They are often undersampled relative to exploratory geological
data, and their measurements are often performed over different volume support than
other properties.

There are two main approaches to geometallurgical spatial modeling. The first is
through modern multivariate geostatistical modeling, where all the variables, regardless of
their nature, are spatially simulated with geostatistics. The second is through machine
learning, where a regression model is fitted between geological (primary) and metallurgical
(response) variables. Geostatistics is used to spatially model geological variables, but the
metallurgical ones are spatially predicted through the regression model.

2.4.1 Geometallurgical modeling through modern geostatistics

Deutsch (2013) reviews all the concerns related to geometallurgical spatial modeling.
He advocates for the use of simulation rather than estimation for several reasons: i)
simulation is the only practical way to avoid bias in nonlinear-variable estimates, ii) it is
the way that realistically represents short-scale variability, and iii) it is the way to transfer
local uncertainty to uncertainty in volumes relevant to decision-making.

Simulated realizations of a nonlinear variable are not biased. Kriging used in
simulation does not introduce a bias; it is for deriving conditional distributions or for
conditioning unconditional realizations (DEUTSCH, 2013).

The general workflow of spatial geometallurgical modeling starts with defining the
objective. The second step is to screen and assemble the variables to be spatially modeled.
The third and last step consists of the joint modeling of the variables and post-processing
to meet the purpose of the study.

There is no fixed workflow for geometallurgical spatial modeling, as the objective
and the characteristics of the geometallurgical data may vary. Deutsch (2013) presents
some existing techniques that may be useful. The modeler needs to understand from the
problem posed which methods are required to solve and apply them in a hierarchical
workflow. For the problem shown in chapter 6, the workflow includes data imputation,
variable transformation and decorrelation through NS and PPMT, multivariate simulations,
and back transformations.
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The geostatistical modeling of geometallurgical variables may be preferred in cases
where there is abundant geometallurgical data and a poorly defined regression model
between geological and metallurgical variables.

2.4.2 Geometallurgical modeling through machine learning

In this approach, multivariate simulations are performed only for the geological
variables. Therefore, the previous process is partially executed. The difference is that the
metallurgical variables are predicted last, using the predicted geological values at the
required locations as inputs to a regression model previously established between geological
and metallurgical variables from the geometallurgical data.

High correlations between target (metallurgical) variables and predictor (geological)
variables are required. Poorly correlated variables (|ρ| < 0.2) may be removed or combined
to improve the prediction power. If data quantity is a concern, it is reasonable to pull data
together from subsets larger than the geostatistical domains (DEUTSCH, 2013).

This approach may be preferred in cases where there is a shortage of metallurgical
information on the geometallurgical dataset, such that variogram inference may be compli-
cated, and when the regression model between geological and metallurgical variables is
well established.

2.5 Mine scheduling and ore blending
Production planning is based on scheduling the mining blocks or Selective Mining

Units (SMU). The SMUs have dimensions compatible with mining operations, generally
different than the blocks used for calculating mineral resources, in which the dimensions
are related to the spacing of the sampling (VANN; GUIBAL, 1998). The dimensions of the
estimated blocks are generally reduced by incorporating additional pre-production and
grade-control drillings.

In mine planning, engineers classify mine blocks into different categories of ore
or waste, commonly by the grade of one or more valuable minerals. However, in more
complex situations, other attributes affect the quality of the processed material and must
be considered. Contaminant grades and mineralogical/geometallurgical properties are
increasingly becoming essential and useful in the understanding and prediction of ore
behavior when subject to processing.

Scheduling may have different objectives. In long-term planning, scheduling aims
to maximize the project’s NPV. To obtain the NPV, it is necessary to calculate the block
economic value (BEV) (Equation 2.17). The BEV is based on geological estimates of ore
grade (g) and ore mass (M), process estimates such as metallurgical recovery (Rm), and
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economic estimates of ore price (P ), mining costs (Cm ) and processing costs (Cp) per unit
of mass, according to whether the block is classified as ore or waste.

BEV =

[P · g · Rm − (Cm + Cp)] · M, if block is ore

−Cm · M, if block is waste
(2.17)

As the NPV is a financial value discounted over time, the intention is to mine
the blocks with the highest BEV before those with the lowest value (HUSTRULID et
al., 2013). The optimization algorithms applied to long-term mine planning define the
order of extracting each block to maximize the NPV, subject to the geotechnical and a
few operational constraints. Block precedence restrictions, and minimum mining width
are some examples.

The scheduling that provides the best NPV is not necessarily the best for the
processing plant, as the fluctuation in the feed properties impairs its performance. Therefore,
short-term mine planners are interested in sequencing blocks so that the material sent to
the plant is within the specific characteristics of the operation, with as little variability as
possible. Blending and homogenizing strategies are widely used to achieve this objective.
Other aspects considered in the short-term planning are the movement of equipment and
other performance indicators. Therefore, algorithms applied to short-term mine planning
have additional constraints to be met, such as mining and processing capacities, the
existence of multiple ore destinations, equipment displacement, and ore quality restrictions,
among others.

Mathematical formulations for solving the production planning problem through
linear, mixed integer, integer, and dynamic programming are available in Osanloo et al.
(2008). Due to the complexities involving the high number of combinations of constraints,
associated with the large number of blocks needed to represent the mineral deposit,
mathematical programming-based methods may have difficulty generating solutions in
adequate computational time. Metaheuristic algorithms are alternatives that can provide
almost optimal solutions. They consist of iterative processes that manipulate a solution at
each iteration. Some examples of metaheuristics include Tabu search, Ant systems, Greedy
Randomized Adaptive Search, Variable Neighborhood Search, Genetic Algorithms, Scatter
Search, Neural Networks, and Simulated Annealing.

Within the scope of short-term mine planning, heuristic algorithms aim at solving
problems of selection of mining faces, equipment allocation, truck dispatch systems, and
consistent and homogeneous material feeding in the plant, among others. Optimization
objectives include: minimization of operating costs, displacement of equipment, deviations
between produced and expected quality, deviation from the long-term plan, maximization of
revenues, and equipment utilization (BLOM et al., 2019). The set of important constraints
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and objectives varies according to the operation of each mine. Modeling a short-term
planning optimization problem is very case-specific.

The reader is referred to Lambert et al. (2014), Newman et al. (2010), Osanloo et
al. (2008) if interested in the long-term mine planning optimization problems and to Blom
et al. (2019) if a review of short-term optimization is desired.
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3 DATA AND VARIABLE CONCERNS

In the process of studying geometallurgical properties, data are obtained from
different sources, with different sampling devices and procedures of quality control, in
different time periods, with different objectives, and with the supervision of distinct
personnel. As a consequence, a geometallurgical database may be very heterogeneous
regarding sample spacing, support, and data reliability. Along with that, several variables
may be of interest in a geometallurgical study; each one of them has its own characteristics
and complexities. Understanding the variables and the data is vital for any decision-making
in data treatment and preprocessing, data analysis, spatial modeling, and mine planning.
In this chapter, general concepts about data and variables are reviewed. Some concerns
about specificities found in geometallurgical sampling, data, and variables when compared
to exploratory-geological sampling are raised and discussed. Finally, a lab bench test
database and a plant database from a phosphate mine are compared through EDA.

3.1 General concepts about data and variables

3.1.1 Data types

In geostatistics, data types are related to the reliability of the data. Hard data
are considered to have high accuracy and precision, while soft data present a lower
accuracy and precision. Usually, in mining, this classification is related to the methods of
sampling and analysis of the data, as well as compliance with good practices established
by Quality Assurance/Quality Control procedures (QA/QC). Data from direct sampling
and measurement of the rock properties, such as density or grade obtained from Diamond
Drill Hole cores (DDH), are examples considered to be hard data. Data from indirect
measurements of the variable of interest, such as those obtained by sensors, or inferred
through their relationship with other variables, are examples of soft data. Different data
types may refer to the same variable of interest, but should not be merged. Grade, when
measured in DDH core, is hard data; when measured in drilling powder is soft data. The
identification of the data type is very relevant and determines the methodology of their
use in spatial modeling.

3.1.2 Data scale

Data scale or support refers to the size (volume/mass/length) of the material in
which the data is sampled and/or measured. A measurement of an element grade taken
in a DDH core sample has its scale associated with the core’s volume. In petroleum, it
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is not unusual to have seismic data with some meters of resolution scale. Likewise, the
measurement of metal recovery in a pilot plant has a scale equal to the bulk-sample
volume fed into the plant. The differences in scale between data must be considered
when integrating all the data and building spatial models. One well-known approach to
considering data with different scales is to do compositing. Compositing is a homogenizing-
support procedure, where the minor-scale data values are averaged into greater support
so a constant support for all data is obtained. Greater-scale data have lower variability
than small-scale data as demonstrated by the volume-variance relationship (ISAAKS;
SRIVASTAVA, 1989; JOURNEL; HUIJBREGTS, 1978). All transformation involving a
change of support, whether data or estimate, is known as scaling (up/down).

3.1.3 Data sampling

Data sampling is related to the frequency, spacing, or location of the samples.
Heterotopic sampling occurs when two or more types of data are unequally sampled in the
region of study, that is, are not sampled at the same locations. Completely heterotopic
sampling occurs when different data do not share any location, whereas partial heterotopic
occurs when some locations are shared, but not all. When different data are sampled at
the same locations, sampling is called completely equally data sampling (or homotopic
sampling). The most common situation in mining is heterotopic sampling, where data is
obtained through several different sources: DDH drilling, reverse circulation drilling, blast
hole drilling, and chip and channel samples, among others. In such cases, the covariance
between the data is accounted for in cokriging/cosimulation workflows.

3.1.4 Variable types

In statistics, variables are classified as quantitative or qualitative. Quantitative
variables are those that can be measured numerically, in which numbers have a meaning
of intensity. Quantitative variables can be classified into discrete or continuous variables.
Discrete variables are those that can assume a finite number of values, previously established.
Usually, they are used to represent quantities in integer values. Examples in mining are
the quantity of samples or the number of geological domains. Continuous variables are
those represented by a range of infinite values, where any rational value within that range
can be assigned to the variable. Examples are ore grade, ore tonnage, density, or metal
recovery. Conversely, qualitative variables are those that can be classified into categories
not quantified by numbers. Categories may be defined by an order relationship, in which
case the variable is called ordinal variable; or may not have any relational order, in which
case the variable is called nominal variable. Examples of the first are the weathering
intensity of a rock or the classifications of resources into measured, indicated, and inferred.
Examples of the latter are mineralogy classification and rock lithology. It is important to
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mention that category labels can be represented by a number, although the number itself
does not have any meaning of intensity.

Another classification of variables is given under the Primary-Response Framework
(COWARD et al., 2009), where a geometallurgical variable is classified into ’Primary’ if it
is related to an intrinsic property of the rock, or ’Response’ if it is related to a response to
energy or process applied to the rock. Primary variables may be measured directly, but
most have to be measured indirectly. Cornah (2013) gives iron ore grade as one example:
grades are generally measured through X-ray fluorescence, which is itself a response to a
process, but the measurement is interpreted to represent a concentration per unit mass of
the rock sample. Other examples of primary variables are density, lithology, weathering,
and mineralogy. Most of the primary variables are geological variables, while most of the
response variables are metallurgical variables. Response variable examples are throughput,
metal recovery, and Bond Work Index (BWI). Cornah (2013) gives as one example the
lump-to-fine ratio. While strongly influenced by the inherent properties of the rock, the
product yields derive from the blasting, mining, and processing energies applied to the
rock. Primary variables are generally additive, while response variables are not.

3.1.5 Linearity and additivity

In mathematics, a linear function f(x) is a function that satisfies two properties:
additivity and homogeneity. Additivity is the property that ensures the additive operation
is preserved, such that f(a + b) = f(a) + f(b). Homogeneity ensures that a function
undergoing a transformation in its variables results in a function that is proportional to
the original, that is, f(xb) = xf(b) (HOGBEN, 2013). A linear function preserves the
linear combination between the components, such that f(xa + yb) = xf(a) + yf(b). All
variables that respect these two properties average linearly; they are referred to as linear
variables. In geometallurgical-related publications, linearity and additivity are employed
with the same meaning. Carrasco et al. (2008) explained the additivity concept as the
averaged quantity of a variable being the same as the average of the quantities.

Let us give some numerical examples to illustrate the concept:

• The property mass is additive because when we add 1 t of material A with 1 t of
material B, then we have 2 t of a mixture of materials AB.

• The property grade is a ratio between mass properties. When we add 1 t of material
A at 1.0 g/t of gold with 1 t of material B at 2.0 g/t of gold, then we have a mixture
AB with 2 t in mass and 3.0 g of gold. The grade of the mixture is 1.5 g/t, which is
the same as the linear average of components A and B; therefore, grade is linear.

• The property volume, however, may be additive or not. Consider that 1 cm3 of
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material A is added to 1 cm3 of material B. If A and B are the same substance (e.g.,
water), the resulting volume is 2 cm3. Nevertheless, in case they are not the same
substance and they react molecularly with each other, the resulting volume can
be different. This is what occurs when water and ethanol are mixed; the resulting
volume is less than the sum of the individual volumes.

• The property density is a ratio between mass and volume. If volume is considered
to be nonadditive, then density is also nonadditive. In solid mixtures, the possibility
of molecular reaction between different substances when mixed is reduced since
molecules in this physical state have less movement. Therefore, it is reasonable to
consider volume and density of solid materials as being additive. In that sense, one
cubic centimeter of solid material A with density of 1.0 g/cm3, when mixed, without
any chemical reaction, with a cubic centimeter of solid material B with density of 2.0
g/cm3, results in a mixture with an average density of 1.5 g/cm3, which is exactly
the linear average of the densities.

The identification of the (non)linearity of a geometallurgical variable is important because
linearity is often assumed in change of support (e.g., compositing), in spatial interpolation
(e.g., kriging), and in the conventional calculation of the average property of a mixture.

3.1.6 Multivariate complexities

In mining, it is often required the modeling of multiple variables simultaneously.
Relationships between variables can be very complex. One complexity occurs when the
relationship between variables must respect a defined constraint. The composition con-
straint in chemical assays is an example, where the summation of all the chemical elements
in a sample must be equal to one. Another complexity is the heteroscedasticity of a
variable about another, that is, the variance of one variable is conditioned to the value of
a second variable. A nonlinear relationship between variables is also a complexity. These
multivariate features are usually present in geometallurgical variables and they prevent
the use of cosimulation techniques that requires the data to be multivariate Gaussian
(multiGaussian). To address this issue, some techniques may be considered for transforming
variables to be multiGaussian (BARNETT; DEUTSCH, 2015). After multiGaussianity
is achieved, the variables can be decorrelated and simulated independently in a modern
geostatistics multivariate workflow.
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3.2 Differences between geological and geometallurgical sampling,
data, and variables
There are significant differences between geological and geometallurgical sampling,

data, and variables. The first source of direct-measured geological data usually comes from
exploration sampling, where sampling is widely spaced through the region of interest by
drill cutting or cores. This sampling aims to intersect the deposit and is mostly interested
in determining the in-situ grades, thickness, density, and lithology. The procedures for
analyzing the variables are very well-established and controlled. The second source of
direct-measured geological data occurs with the grade control sampling in the exploitation
phase. Sampling is much more intense, although procedures are not so well-controlled.
The objectives consist of better defining the mineralization contours and classifying the
material between ore types (oxides, sulfides) or between ore and waste. The vast majority
of the geological variables are additive, which allows linear compositing 2 and interpolation
to be done without the risk of introducing bias in the process.

Geometallurgical sampling is aimed at understanding the characteristics of the ore
at the processing plant. Geometallurgical data are obtained through geometallurgical tests,
in which ore processing properties (response variables), are measured and correlated to
intrinsic rock properties (primary variables) (LISHCHUK et al., 2020; COWARD et al.,
2009). Geometallurgical sample selection, test work, and predictive modeling are guided
by a geometallurgical program. Lishchuk et al. (2020) presents in detail all the stages of a
geometallurgical program and how it can be planned and developed. The execution starts
with the geological variability study, aiming at defining domains. A minimum number of
samples for each domain is required and characterization of the metallurgical responses is
performed under metallurgical tests. Test work consists of i) laboratory-scale metallurgical
tests using composited samples; ii) variability tests using a large number of samples; iii)
pilot plant tests; and iv) plant observations (LISHCHUK et al., 2020).

For geometallurgical purposes, where test work is carried out to understand only the
influence of the primary variables on the response variables, it is ideal to fix the operational
settings of the bench-scale testing, such that a default setting is established (e.g., the same
amount of collector dosage, or the same period of time for grinding each sample). Other
objectives of test work are to preview plant processing results on a smaller scale and/or to
test different settings for its operation. If they are carried out in a controlled environment,
following standardized and consolidated practices, and meeting all the required QA/QC
protocols, bench tests can be considered to provide accurate and reliable data. The input of
2 it is usual to composite drill holes by a constant length. For the variable grade, which is based on

mass, this procedure implicitly assumes that the density of each composite is the same. If this is not
the case, compositing should consider the density as a weighting factor to correct the unbalanced mass
of each composite.
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the tests may be either a composited sample from several drill holes, a composited sample
formed from samples with minimum spatial separation, or an individual sample collected
at a specific location (also called variability sample) (DOMINY et al., 2019). Composited
samples are useful to understand the behavior of blends in the mill. However, variability
samples are preferred for spatial 3D modeling of the variables of interest and for assessing
the variability. One of the main issues of geometallurgical sampling is its low availability
and the requirement for large sample volumes (DOMINY et al., 2019; DEUTSCH, 2015).
While resource estimation collects more than 5000 samples, only 25 to 50 samples are
usually collected for geometallurgical testing (DOMINY et al., 2018). The characterization
of the ore allows the linking of the process responses to the primary properties of the
samples. Carefulness should be taken because the regression of the variables is valid only
for the scale of the measurements. Application of this regression in different scales may
lead to bias (COWARD et al., 2009; DUNHAM; VANN, 2007).

Another sampling occurs in the plant, often conducted with regular extractions
taken at small fractions of material, usually in a conveyor belt or in a pile before feeding
the plant and after the processing stages, in the concentrates and tailings. The objectives
are to evaluate the plant performance, confirm geological and metallurgical test work, and
investigate scale-up and metallurgical responses (DOMINY et al., 2019). The relationship
between laboratory-scale test work and plant-scale metallurgical performance is unclear
(CORNAH, 2013). Because of the complexities that happen in a big-scale processing
operation such as material recirculation, real-time adjustments of operational settings,
blending of material, and so on, reconciliation with the bench-scale data may be challenging.
In section 3.3, a comparison between real bench test and plant dataset is presented.

In summary, metallurgical responses can be spatially predicted through regressions
with the spatial estimates of the primary variables as predictors, but the scale of the spatial
estimates should approximate the scale of the test work measurements. Most metallurgical
variables are found to average nonlinearly. Some examples are metallurgical recovery and
BWI. When mixing a ton of material A with a BWI of 10.0 kWh/t with one ton of material
B with a BWI of 12.0 kWh/t, the linear average of 11.0 kWh/t does not represent the
average value of the mixture. The same reasoning applies to metallurgical recovery. If two
similar blocks have recoveries R1 and R2, respectively, and are combined into a superblock,
the value of recovery of this superblock may not match the linear average of R1 and R2
(CARRASCO et al., 2008).

3.3 Bench test and plant dataset consistency
A bench test database and a plant database from a phosphate mine were compared.

EDA was conducted on both of them individually and they were compared in terms of
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univariate and bivariate statistics.

3.3.1 Bench test dataset

The geometallurgical bench test database consists of 16,095 samples. Most of the
samples have sample identification and geological, assay, and metallurgical information
(Table 1). The term metallurgical recovery is used to refer to P2O5 recovery. Mass recovery
and metallurgical recovery are calculated variables. Measurements of other variables were
also available, but omitted since they were not relevant to this study. The location of the
16,095 samples is shown in Figure 6.

Table 1 – Bench test database - Summary

Type of information Variable

Sample information

BHID
Origin/Type

Local
X
Y
Z

Length

Geological information Lithology
Weathering

Assay information (ROM)

P2O5
P2O5AP (apatite)

Fe2O3
Al2O3
MgO
SiO2
CaO
BaO

Nb2O5
TiO2

RCP (Ratio: CaO/P2O5)

Metallurgical information
Quantity of collector (g/t of ROM)

Metallurgical recovery
Mass recovery
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Figure 6 – Bench test database - Sample locations. Colorbar refers to P2O5 grade. XZ and
YZ planes present vertical exxageration.

In the EDA phase, the first variable analyzed in the dataset is the sample support.
Figure 7 shows the samples length distribution. It can be seen that the length ranges from
one to 15 m, but most of the data are 5 meters long (78%). Five meters is enough to
provide material for the metallurgical tests without the need for compositing samples.

Figure 7 – Bench test database - Sample length distribution.

Another variable related to data consistency is the origin/type of data. In the
overall dataset, data are almost divided 51% - 49% - 0% from DDH, drilling powder, or
trenches/channels samples, respectively (Figure 8).
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Figure 8 – Bench test database - Sample type quantity. DH refers to diamond drilling. PP
refers to drilling powder samples. TC refers to trench and channel samples.

Regarding the categorical variables, there is information about the lithology, weath-
ering, and region/location of the samples. The samples of the database are restricted to the
isalterite weathering profile, which is the profile considered to be ore, given the leaching of
calcium, magnesium, and high concentration of apatite. ISAOX is the oxidized isalterite,
and ISAMC is the micaceous isalterite. The lithology refers to the mineral composition of
the samples, mostly carbonatite (CBN), phoscorite (FCR), and bebedorites (BEB). The
local variable brings information about the region in the deposit where the samples are
from. Note that many samples do not have a registry for lithology and/or weathering,
being assigned with the symbol ‘ - ’ (Figure 9). This is mostly related to operational
problems during the identification.

Figure 9 – Bench test database - Categorical variables. In lithology, most data are classified
into carbonatite (CBN), phoscorite (FCR), bebedorite (BEB), or phlogopitite
(FLO). In weathering, most data are from isalterite profiles, ISAOX and ISAMC.

Before the assay information is analyzed, some data filtering is performed. A
decision to keep only the DDH samples was made, as they are considered to be more
accurate than the other data types. In addition, only DDH data with a 5-meter core length
are used, as they provide enough material mass for the metallurgical test work, avoiding
the need to composite samples. These procedures remove bias and increase the precision
of the database. Regarding the categories, no relevant statistical differences in assay and
metallurgical information were found to justify the separation of the data in the different
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lithology/weathering domains. Probably, this occurred because of the operational problems
in the classification, which resulted in the assignment of the ‘ - ’ symbol for many samples.
Moreover, dividing the data into the various possibilities of lithology or local classification
would result in few data for each domain analysis, which is not desirable. After applying
the filter, 4,862 data samples were kept. Assay information of the ROM can be visualized
in the histograms of Figure 10. Note that some variables are under-sampled in relation to
others. The least sampled variable is TiO2, almost 15% less.

The variable P2O5AP is a calculated variable from P2O5_ROM and CaO_ROM ,
depending on the RCP value. RCP is used to determine the percentage of P2O5 associated
with apatite, such that if RCP ≥ 1.35, P2O5AP = P2O5; if RCP < 1.35, P2O5AP =
CaO/1.35. As P2O5AP is not a measured variable, and to reduce the number of variables
analyzed, P2O5AP is excluded from the analysis from now on. If necessary, it can be
calculated in any model from P2O5_ROM and CaO_ROM estimated values.
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Figure 10 – Bench test database - Histograms for oxides and RCP.

After analyzing the geological data and how they were treated, it is important to
understand how the metallurgical test work was performed and its outputs. Bench tests
are designed to reproduce what happens to the ore inside the processing plant. Each ROM
sample provides approximately five kilograms (5 kg) of material, which is first grounded
in a mill. According to what would happen in the plant, the material is forwarded to
magnetic separation, except for fines, which go to tailings. The non-magnetic material is
quartered until sample aliquots of five hundred grams (500 g) of mass each are reached.
The number of aliquots ranges between one to three for each sample of non-magnetic
material. These procedures are preparation stages for the flotation tests. One flotation
test is performed with each aliquot, varying the collector dosage. Therefore, for each ROM
sample input, different dosages of collector are applied and results of metallurgical and
mass recovery are obtained. This procedure allowed the increase of the database. Also,
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it allowed the understanding of the importance of the variable collector dosage to the
results, as discussed later. However, there were still problems with missing values for
some variables. To understand the relationship between primary and response variables
fairly, it was decided to use just the homotopic sampling, that is, only the data containing
information on all the variables. 5,188 samples comply with this decision.

The recoveries refer to the whole process. Metallurgical recovery is calculated
by multiplying the recovery of the preparation stage by the recovery of the flotation
(Equation 3.1). The metallurgical recovery of each stage is calculated through Equation 3.2.

Met.recovery = Met.recovery(prep.) · Met.recovery(flot.) (3.1)

Met.recovery(stage) = c · C

f · F
(3.2)

where c is the P2O5AP concentrate grade of the stage, C is the concentrate mass of the
stage, f is the P2O5AP feed grade of the stage, and F is the mass feed of the stage. The
mass recovery is calculated through Equation 3.3.

Mass recovery = Met.recovery · f

c
(3.3)

where c is the P2O5AP concentrate grade of the whole process, and f is the P2O5AP feed
grade of the whole process.

Metallurgical and mass recovery histograms are shown in Figure 11. The histogram
for the collector quantity in grams per ton of ROM is shown in Figure 12.

Figure 11 – Bench test database - Metallurgical and mass recovery histograms.
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Figure 12 – Bench test database - Collector dosage histogram.

The location plot of the homotopic sampling is shown in Figure 13. Note that
homotopic sampling is more representative of the center and south regions.

Figure 13 – Bench test database - Location plot of the homotopic sampling. Colorbar refers
to metallurgical recovery (%). XZ and YZ planes present vertical exxageration.

Bivariate relationships are shown through the correlation (ρ) matrix in Figure 14.
In the bivariate analysis, bench test data results show that mass recovery has a high (0.7
or greater) correlation with P2O5 (0.73) and CaO (0.72); and an intermediate correlation
with collector dosage (0.69) and SiO2 (-0.47). Conversely, metallurgical recovery is not well
correlated with any ROM variable, only intermediately with the collector dosage (0.46).
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Figure 14 – Bench test database - Coefficient correlation matrix.

Another way to analyze a database and the relationship between its variables is
through regression. A random forest regressor was developed and applied to the database,
with the aim to predict the two metallurgical variables - metallurgical recovery and mass
recovery - given the other measured variables P2O5, Fe2O3, Al2O3, MgO, SiO2, CaO,
BaO, Nb2O5, TiO2, RCP, and collector dosage. The 5,188 geometallurgical samples were
randomly split into a current dataset (80% of the samples) and a future set (20% of the
samples). The current dataset was used to train and test the random forest regressor and
to allow the better tuning of its hyperparameters. The training and testing datasets were
generated through the ten-fold splitting of the current dataset, where nine folds were
used to fit the regressor and one fold was used to test it. To avoid bias, this procedure is
iterative, such that each fold has the opportunity to test the fitting of the regressor trained
by the other nine folds. The future set mimicked new data and was used to evaluate the
regressor. The correlation coefficient of the predicted vs. the true values in the future set
reached up to 0.77% for metallurgical recovery and 0.90% for mass recovery (Figure 15).
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In addition, the Random Forest regressor provided a ranking with the most important
predictors, which is shown in Table 2.

Figure 15 – Bench test database - Scatter-plot of predicted vs. true values in the future
set. Left: Metallurgical recovery. Right: Mass recovery.

Table 2 – Bench test database - Ranking of the most important predictors

Predictor variable Importance (%)
Collector dosage g/t 0.38

P2O5 0.12
RCP 0.10
CaO 0.05

Fe2O3 0.05
Al2O3 0.05
MgO 0.05
SiO2 0.05
BaO 0.05
TiO2 0.05

Nb2O5 0.05

Aiming to have a model that could be compared against the model using the plant
dataset, another model was developed without the variable collector dosage (Figure 16),
as the collector dosage information is unavailable in the plant database. Note the drop in
the prediction of both variables.
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Figure 16 – Bench test database - Scatter-plot of predicted vs. true values in the future
set without considering the variable collector. Left: Metallurgical recovery.
Right: Mass recovery.

3.3.2 Plant dataset

The plant dataset consists of almost regular daily records of chemical assay of the
material feeding the plant (ROM) and their associated metallurgical and mass recover-
ies. Categorical variables like lithology, weathering, and local are not available, as this
information is lost when the material goes to a homogenization pile, where the material is
mixed and then reclaimed. There are 1,018 measured data over three years (2019-2021).
No data preprocessing were performed. Table 3 shows all the measured variables at the
plant. Note that two assay variable measured at the plant are not measured in the bench
test, SrO and F . Another difference between bench test data and plant data is the absence
of measurement of the collector in the plant. The histograms of the variables are seen in
Figure 17 and the results of metallurgical and mass recoveries are in Figure 18. Similarly
to the bench test database, the variable P2O5AP is considered redundant and is excluded
from further analysis.
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Table 3 – Plant database - Summary

Type of information Variable

Assay information (ROM)

P2O5
P2O5AP

Fe2O3
Al2O3
MgO
SiO2
CaO
BaO

Nb2O5
TiO2

RCP (Ratio: CaO/P2O5)
SrO

F

Metallurgical information Metallurgical recovery
Mass recovery
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Figure 17 – Plant database - Histograms for the chemical elements.

Figure 18 – Plant database - Metallurgical and mass recovery histograms.

Bivariate relationships are shown through the correlation matrix in Figure 19. Plant
data do not show high correlations between ROM variables and mass or metallurgical
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recovery. The higher correlation for mass recovery is with CaO, F , and RCP (0.4, 0.4,
and 0.38, respectively) and for metallurgical recovery is with SiO2 and Fe2O3 (-0.29 and
0.27, respectively). No information about the collector dosage is available in the plant
database; hence, no correlation is obtained.

Figure 19 – Plant database - Coefficient correlation matrix.

The same RF regression procedure was applied to the plant database. Predictor
variables were P2O5, Fe2O3, Al2O3, MgO, SiO2, CaO, BaO, Nb2O5, TiO2, RCP , SrO,
F . The correlation coefficient of the predicted vs. the true values reached up to 0.44% for
metallurgical recovery and 0.45% for mass recovery (Figure 20). The drop in prediction
power when applying the machine learning model in the plant database, compared to
the application on the bench test database, even when the collector dosage was ignored
(Figure 16), is one indication of the plant data complexity. More explanatory variables,
related to operational settings, is probably required to increase the prediction power. The
ranking with the most important predictors is shown in Table 4.
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Figure 20 – Plant database - Scatter-plot of predicted vs. true values in the future set.
Left: Metallurgical recovery. Right: Mass recovery.

Table 4 – Plant database - Ranking of the most important predictors

Predictor variable Importance (%)
SiO2 0.13
RCP 0.12

Fe2O3 0.11
SrO 0.11
P2O5 0.09
MgO 0.08
BaO 0.08
TiO2 0.07
Al2O3 0.07
Nb2O5 0.06
CaO 0.05

F 0.03

3.3.3 Bench test - plant data comparison

Checking consistency between the databases consists in comparing univariate and
bivariate relationships in both databases. The box-plots for bench test and plant datasets
are plotted one below the other, for each variable, in Figure 21. In general, variables in the
plant database have fewer outliers and lower variability than the variables in the bench
test database. There are also differences in the median and mean (represented by the black
x) between both databases for some variables.
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Figure 21 – Box-plots of each variable for each database. Each variable is plotted in a
color. The top box-plot refers to the bench test database, while the bottom
refers to the plant database. From left to right:P2O5 in light blue; Fe2O3 in
dark blue; Al2O3 in light green; MgO in dark green; SiO2 in light red; CaO
in dark red; BaO in light orange; Nb2O5 in dark orange; TiO2 in light purple;
RCP in dark purple; metallurgical recovery in yellow; mass recovery in brown.

The difference in quantity and intensity of high correlations between the databases
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becomes more clear with Figure 22, where a scatterplot of the correlation matrices of both
datasets is plotted. For obvious reasons, only those variables available in both datasets are
used.

Figure 22 – Scatter-plot of bivariate correlations between plant (X-axis) and bench test
(Y-axis) databases.

3.4 Discussion
The bench test database (5,188 samples) can be considered large in comparison

to what other mines usually have for metallurgical test work. The existing differences in
the data type, the data scale, and the availability of the measurement of the variables
indicate that more than one sampling and testing in different time periods were performed
during the mine life. These differences justify data filtering, aiming at improving accuracy
and precision. From the location plot in Figure 13, one can see that this data is more
representative of the center-south region. Considering that this database comes from



Chapter 3. Data and variable concerns 65

controlled test work, the data is very reliable.

The plant database is small compared to the bench test. Each one of the 1,018 sam-
ples represents the material fed and processed daily by the plant. There is no (x,y,z) spatial
location for each sample, as they were formed by blending material in a homogenization
pile; but it is possible to track the origin of the material fed to the plant. Each datum has
the assay information and the metallurgical response. While the assay information comes
from the plant feed, the metallurgical responses are calculated after concentration. As
concentration stages take some time after the feeding of the material into the plant, there
is difficulty in exactly matching the output results of the process with the right input in
the feed plant (processing time delay). Another issue with the plant dataset is the absence
of the variable collector dosage. As indicated by the bench test data, the collector is the
most correlated variable to metallurgical recovery.

Comparing the univariate statistics of both databases, there are fewer outliers and
lower variability in all variables in the plant database. This is expected because of: i) the
greater data support of the material sampled, and ii) the existence of homogenization
piles. Both reasons contribute to the blending of the material, where extreme values are
diluted. When comparing the centres of the distributions, the median of both databases
are close for some variables (P2O5, Al2O3, CaO, Nb2O5, RCP, Met.recovery and Mass
recovery) but they are not for others (Fe2O3, MgO, SiO2, BaO, TiO2).

Comparing the bivariate statistics of both databases, we observe some high good
conformity between bivariate relationships, but some discrepancies in Figure 22. Bench
test correlations between the variables are more intense than plant data correlations, as
there are four high correlations in the bench test database (P2O5/CaO, P2O5/Massrec.,
CaO/Massrec. and Met.rec/Massrec.), but three in the plant dataset (CaO/RCP ,
P2O5/CaO and Met.rec/Massrec.). A strange behavior occurs in the relationships
P2O5/Massrec. and CaO/Massrec., which are highly positively correlated in the bench
test dataset (0.73 and 0.72, respectively) but are low-intermediately correlated in the
plant database (0.21 and 0.4, respectively). Most of the correlations reasonably follow
the 45-degree line, meaning that the bivariate relationship is approximately the same in
both databases. Attention must be given to the correlations that change signs between
the databases, highlighting the P2O5/SiO2 relationship, with no correlation in the plant
data, but with an intermediate negative correlation in the bench test database (-0.55) and
Fe2O3/RCP correlation (-0.39 in bench test, and 0.21 in plant database).

When comparing the regression based on each dataset, it is clear that the metal-
lurgical responses are more accurately predicted using the bench test dataset. The most
important variable for predicting them is the collector dosage, which is missing information
on the plant dataset. However, even if we disconsider the collector dosage as a variable,
the prediction using the bench test dataset is still better than using the plant test.
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The reasoning for the discrepancies in both uni- and bivariate relationships could
be related to material representativeness: the material fed into the plant is not the same
as the material analyzed in the bench test. The consideration of only the bench samples
that are on the same time horizon as the plant data, that is, the samples that were within
the period from 2019 to 2021 or at least close to that, is a fairer comparison and could
improve the adherence between the databases. Other explanations are related to sampling
bias in the plant, given the existing complexities in this environment, and/or related
to upscaling, as the particle dynamics in an industrial plant are very different from the
existing dynamics in a bench test/pilot plant. These differences corroborate the difficulty
in doing reconciliation. Just as an illustration, when the Random Forest regressor was
used to learn from the bench database and was used to predict the plant database, the
correlation coefficient of the predicted vs. the true values was only 0.11% for metallurgical
recovery and 0.25% for mass recovery.

Although theoretically the plant database should be used to obtain the correlations
between geological and metallurgical variables, as it is consistent with the plant scale,
it presents complexities that mask the true impacts of the geological variables over the
metallurgical ones. Therefore, for a better understanding of their relationships, the bench
database is more suitable.

3.5 Summary
Geometallurgy studies should benefit from the existence of the various sources of

data available. However, it must be recognized that data may differ in terms of support,
accuracy and precision, scale, availability, and representativeness. These factors can impact
the variables obtained in each sampling process, resulting in different characteristics de-
pending on the type of data. This study shows these differences with real data, highlighting
the existing complexities when it comes to geometallurgy and the integration of data in
decision-making at the mine and at the plant. If the objective of the geometallurgical
study is to differentiate the ore and its intrinsic properties when subject to a metallurgical
process, it is a good idea to fix the required sampling procedure and support, as well as
the operational settings of the bench test. The establishment of a default setting helps
avoid bias and precision problems. Variability samples allow the identification in the 3D
space of high and low areas concerning the metallurgical response of interest. Composited
samples have a place when the objective is to understand the behavior of blends in the
mill. Spatial interpolation of the response variable is possible, but with caution, since they
probably average nonlinearly (see chapter 4). The complexity of reconciling plant data
with pre-production data is evident, whether because they are affected by the complex
processes existing in the mine and the mineral plant, because of the difficulty in sampling,
or because of material traceability problems.
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4 PREDICTING GEOMETALLURGICAL RE-
SPONSE OF ORE BLENDING

Blending is the mixing of different ores. Depending on its benefit, it can be planned
or deliberately avoided, if deemed (in-)appropriate. Intentional blending is the direct
operation of blending the ore through homogenization piles. However, ores may also mix
naturally during mining and mineral process operations. One type of natural blending is
when waste is mixed with ore, usually referred to as dilution. Ore dilution occurs indirectly
in the blasting of the ore, in its loading into the trucks, in its dumping into a pile or a
crusher, and in all stages of a processing plant. Estimating the blended ore properties is
usually a straightforward task where the weighted average of the attribute is considered.
However, this approach is not correct if the attribute of interest averages nonlinearly.
Nonlinearity also affects scaling. Depending on the property mixing and scaling behaviors,
the blended property over a material volume V can be higher or lower than the linear
average of its N components, each one with volume V

N
. This difference can be significant

enough to modify decisions in mine planning and mine/process operations. This chapter
deals with averaging behaviors. Terms such as blending neutral, blending synergistic, and
blending antagonistic are explained. A flexible nonlinear mathematical function is proposed
to model the blending and scaling of variables. At last, the proposed model is applied to
an example case, and a sensitivity analysis is performed.

4.1 Blending in mining
The representation of the orebody through a block model is convenient for ore

modeling, spatial estimation, and mine planning. The mining blocks have dimensions
according to the selectivity of the mining operations. However, this representation is an
approximation, as shovels do not extract cubes or prismoids (ROSSI; DEUTSCH, 2014;
DOWD et al., 2016). In all mining and ore processing operations, there is some natural
mixing of the material handled. This type of blending is most known as operational
dilution, and its intensity degree can be higher or smaller depending on the geological
body features, the mining method, the mining operational procedures and equipment, and
the plant flow system.

Operational dilution starts to occur in the blasting and excavation operations, is
present during the material handling, and goes on until the material is processed in a
plant. A simulation study by Deutsch (2015) demonstrated that even when the ore is fed
in batches, a large amount of mixing occurs within the mill.
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The other type of blending is intentional blending, where homogenization piles are
used. The main objectives are i) feed material with uniform and low-variability properties
to the plant, allowing an optimum and steady operation, and ii) blend small quantities of
poor-quality ore into high-quality ore, maximizing ore reserves.

Understanding and modeling the blending behavior of mixtures are central for
optimum decisions in mine planning. There is a need to spatially model and use geometal-
lurgical variables in mine planning, as well as understand how their averaging is related
to blending and change of scale, given their importance and impacts on the downstream
process and the project’s economical value.

4.2 Averaging behavior
When blending occurs, it is often assumed that the blended material’s average

property, termed as effective property, is the mass or volume-weighted average of each
component property. This is correct when dealing with variables that average linearly,
such as grades. Equation 4.1 shows the formula to calculate the effective grade geff, which
is the linear average grade g from N materials that are mixed, where mi and gi are the
mass and grade, respectively, of each component i = 1, ..., N in the mixture.

geff = g =
∑N

i=1 mi · gi∑N
i=1 mi

(4.1)

Some rock properties, however, average nonlinearly; hence, the denomination
nonlinear variables. The averaging behavior of nonlinear variables may be very different
from the usual-assumed weighted linear average model. The nonlinearity may be explained
by one material’s greater influence over the other. For example, a 50/50 mixture of two
materials with different BWI values does not result in a mixed material with the mean
BWI. Its effective BWI is closer to the material with higher BWI, as there is often an
accumulation of the hardest component in the mill (TAVARES; KALLEMBACK, 2013;
YAN; EATON, 1994; CAMPOS et al., 2019). In special circumstances, it is even possible
that the effective property value is beyond the value range established by mixing the
two materials. Another nonlinear averaging behavior is seen in the percolation of fluids
through porous materials, where a threshold value divides two very different behaviors
of the effective property (DEUTSCH, 2020). The three nonlinear behaviors commented
above are classified here as Type I, Type II, and Type III, respectively, and are illustrated,
as well as a linear behavior, through a binary mixture of white rock and black rock in
Figure 23. The X-axis represents the percentage of black rock in the mixture, starting
from 0% black rock, that is, 100% white rock on the left end, and ending with 100% black
rock, that is, 0% white rock, on the right end. The Y-axis represents the effective property
of the mixture, where the lower end represents the effective property of a pure-white rock,
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and the upper end represents the effective property of a pure-black rock. Any mixture of
black and white rock has an effective property, which is an average, not necessarily linear,
of the properties of each individual rock.

Figure 23 – Different nonlinear behaviors. On the X-axis, the proportion of black rock in a
black-and-white rock mixture. On the Y-axis, the effective property, where the
lower value corresponds to the property of a pure-white rock, and the higher
value corresponds to the property of a pure-black rock. Source: Modified from
Deutsch (2020).

The nonlinear behavior may be a function of the blending of different proportions
of rock mixtures, as shown in Figure 24, where the effective BWI is estimated, and in
Figure 25, where the effective flotation grade is estimated; or be a function of other primary
variables. A common nonlinear averaging is found when metallurgical recovery is estimated
as a function of the ore head grade, which is displayed by the grade-recovery regression.
Figure 26 shows examples where copper and gold recovery depend on the copper and gold
head grades and the processing facility.
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Figure 24 – Bond mill work index for a binary blend. Source: Modified from Yan and
Eaton (1994).

Figure 25 – Flotation grade for a binary blend. Source: Modified from Tonder et al. (2010).
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Figure 26 – Grade-recovery regression plot. On the left: Copper recovery as a function of
copper head grade. On the right: Gold recovery as a function of gold head
grade. Source: Castillo and Dimitrakopoulos (2016).

Similar to blending, scaling may average nonlinearly. Several change-of-scale op-
erations are performed during the process of resource modeling, mine planning, mineral
processing production modeling, and reconciliation. Just as a mining block consists of a
mixture of several estimated point values, the processing plant receives volumes consisting
of several blocks. In practice, all scale regularization procedures implicitly assume linearity,
which may not be correct. Newton and Graham (2011) showed an example of the nonlinear
behavior of the Zn Recovery, measured at the plant, in relation to the same variable mea-
sured at the laboratory scale (Figure 27). This nonlinearity prevents using a single-scale
factor for changing the scale from a bench test or a pilot plant to an industrial plant, a
common procedure in the industry for reconciliation purposes. A metallurgical recovery in
the plant of 85% corresponds to almost 75% obtained in the laboratory. The ratio between
them is the scale factor, which in this case is 1.13. However, this scale factor is not suitable
if the metallurgical recovery of zinc measured in the laboratory is, for example, 70% or
80%, where the most suitable scaling factors would be 1.16 and 1.08 respectively. As the
slope of the behavior curve of the metallurgical recovery varies with each recovery, the
scale factor also varies.
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Figure 27 – Nonlinear behavior in upscaling. Modified from Newton and Graham (2011).

No theoretical mixing and scaling laws exist for geometallurgical variables, given
the complex physical and chemical interactions between geological/mineralogical properties
and processing parameters. Ideally, to accurately model the effective geometallurgical
property of a blended mixture, one needs to understand the phenomenon that occurs
when ore mixtures are processed. For example, in a flotation test, mixing finer material
together with coarser material generates slime coating in the ore particles, reducing the
flotation performance. Therefore, it is essential that each mine site do its own experimental
tests for each variable of interest, with different combinations of quantity and component
proportions in a mixture. These experimental tests must be done according to the best
QA/QC protocols in order to minimize the errors associated with them. Campos et al.
(2019) used triplicates for BWI blend testing. Tonder et al. (2010) stated that these
blending studies should be conducted using statistical mixtures designs, intended to
rigorously test the hypothesis that the blend performance is an additive combination of
the individual component performances or not.

4.3 Nonlinear blending and scaling impacts
Campos et al. (2022) demonstrated how blending and scaling nonlinearity affect

the prediction of metallurgical recovery. They used a regression curve to predict the
metallurgical recovery of the material processed at the industrial plant, which is a blended
material of several blocks (the feed volume). In their case, data were representative of the
plant operation. We replicate this demonstration here.

In a mine, eight ore blocks are free to be mined in the short-term mine plan. Each
of these blocks has a copper grade value estimated by geostatistical techniques. For the
sake of simplification, let us assume that each block has the same mass. Metallurgical
studies for this ore identified that the metallurgical recovery at the plant can be accurately
estimated from the copper grade of the feed (Figure 28).
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Figure 28 – Blocks with estimated copper grade and copper-recovery regression curve.
Source: Modified from Campos et al. (2022)

A common practice would be to assign a copper recovery value for each block
through the application of the regression curve. In this situation, the average recovery
after processing all blocks is 79.42%. However, the regression curve is only representative
of the support of the samples used for its determination, which in this case is the feeding
volume. Thus, it must be applied to the grade of each feed volume. If we consider that
four blocks compose the feed volume, then different sequences of the blocks form different
feed volume mixtures. A schedule that mines the highest grades first, similar to an NPV
optimization scheduling results in one mixture with 0.9% and another with 0.45% copper
grade. The global recovery, in this case, is 79.86%. However, contrary to what would be
expected at first, alternative scheduling, which forms two mixtures of grades of 0.67%,
would result in an overall recovery of 80.16%, better than the previous one (Figure 29).

Figure 29 – Blending and scaling effect on the estimation of the copper recovery. Source:
Campos et al. (2022).

Nonlinear scaling behavior results in biased predictions if the difference in scale
(support) is ignored. When there is nonlinear averaging in blending, the bias can be even
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greater. Understanding the scaling behavior helps us to predict accurately. Understanding
the blending behavior helps us to build optimal mining plans.

4.4 Blending behaviors
From the perspective of blending, the effective property models can be summarized

by three possible behaviors: blending neutral, blending synergistic, and blending antago-
nistic. In the blending neutral case, the decision to blend does not affect the average value,
that is, it occurs when the effective property (peff) of a blended material is the same as
the weighted linear average of its components (p). By definition, all linear variables have a
blending neutral behavior. Grade, as shown in Equation 4.1, is an example.

Attention should be given to how to calculate the linear average of the variable.
For example, metal recovery linear average is not calculated through Equation 4.1, with
recovery replacing the grade, but weighted by mass mi and grade gi of each component
i = 1, ..., N . Therefore, the metallurgical recovery is blended neutral when the effective
metallurgical recovery (reff) is equal to the linear average (r), as shown in Equation 4.2.

reff = r =
∑N

i=1 mi · gi · ri∑N
i=1 mi · gi

(4.2)

Blending synergistic behavior occurs when the blended material has an effective
property value greater than the weighted linear average of its components. In such cases,
the higher-value component has more influence on the mixture property than the lower-
value component. The opposite happens for the antagonistic behavior, when the low-value
component has more impact on the effective property value, bringing it down to be smaller
than the weighted linear average. Figure 30 illustrates this concept, where there are N=6
material components, each one having a different property value p. Their weighted linear
average is 0.77. When the components are blended, the effective property value depends
on the blending behavior. When the effective property is assigned to a blended mixture
with a scale greater than its individual components, as the case in Figure 30, the scaling
averaging is already implicitly considered.
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Figure 30 – Illustration of blending cases.

The lack of a theoretical mixing/scaling model should not prevent us from as-
suming any type of nonlinear behavior. Supported by the nonlinear averaging shown in
several studies (DUNHAM; VANN, 2007; NEWTON; GRAHAM, 2011; CASTILLO; DIM-
ITRAKOPOULOS, 2016; XU, 2013; SPLAINE et al., 1982; TAVARES; KALLEMBACK,
2013), it is clear that the averaging of BWI and metallurgical recovery follows more closely
the Type I curve, where the effective property value is within the maximum and minimum
component values and does not change abruptly according to a threshold. The convexity
of the curve can be up or down, depending on whether the low- or high-value component
is the most influential on the behavior of the mixture.

4.5 Blending model proposal
Given the difficulty and complexity of modeling the experimental blending and

scaling behavior of ores, we propose a flexible and easy-to-use model which allows the
setting of all possibilities of blending behavior - neutral, synergistic, or antagonistic -
and complies with the Type-I-nonlinear-behavior property of estimating the effective
property value within the minimum and maximum values of the components. The scale of
the effective property estimation corresponds to the feed volume scale, that is, the scale
of the prediction is not based on block support, but on the volume of blocks that are
blended/processed together.

Modeling a blending neutral case is straightforward, as it is calculated as the linear
weighted average. The complexity arises when modeling the intensity of the increase/de-
crease in value for synergistic/antagonistic cases. The large range of possibilities in defining
how much influence one component of the mixture may have over the other justifies the
use of power-law functions. Power laws describe relationships between two variables such
that a relative change in one (x) results in a proportional relative change in the other
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(f(x)). Power functions have already been used for the inference of effective permeability
(KOZHEVNIKOV et al., 2021; DEUTSCH et al., 2002). The general mathematical formula
of a power-law function is given by Equation 4.3.

f(x) = a · xw (4.3)

where w is the power-law exponent and a is a constant and refers to the conversion factor
between xw and f(x). Constraint by the interval 0 ≤ x ≤ 1, the power law is equal to a
linear function when w = 1. When 0 < w < 1 the function steep is the greatest at the
minimum x, and it decreases as x becomes higher. The smaller the value of w, the more
accentuated this behavior is. When w > 1 the opposite happens, as the steep begins small
and it increases as x becomes higher. The greater the value of w, the more accentuated
this behavior is (Figure 31).

Figure 31 – Illustration of power-law functions constrained by 0 ≤ x ≤ 1. Each curve is a
power-law function with different exponential.

Using the general power-law function (Equation 4.3) as a base model, a blending
model can be developed with some adjustments, such that the shape of the power-law is
maintained, but it is bounded by the minimum and maximum component values in each
mixture. Besides the minimum and maximum, it is reasonable to consider the influence of
the other component values in the effective property by the linear average.
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The proposed blending model takes these three values - minimum, maximum, and
linear average - as parameters of the mixture. As a parameter of the blending behavior,
the power w is required. Equation 4.4 shows the mathematical function for calculating
the effective recovery (reff) given the minimum (rmin) and maximum (rmax) recovery of
the components and their linear weighted average (r). Synergistic blending is modeled
by using 0 < w < 1. The smaller the w, the greater the influence of the component with
the highest property value. Antagonistic blending is modeled with w > 1. The greater the
w, the greater the influence of the component with the smallest property value. Blending
neutral is achieved by w = 1. In a particular case where all components have the same
property value, there is no reason to believe that the effective property would be different.

reff =


r, if ri = r ∀ i = 1, ..., N

rmin + (rmax − rmin) ·
[

r − rmin

rmax − rmin

]w

, otherwise
(4.4)

4.6 Implementation and sensitivity analysis
As an example, consider the variable given in Figure 30 is metal recovery. Blocks

with individual values of 0.63, 0.69, 0.73, 0.82, 0.85, and 0.90 are fed to a plant. Figure 32
shows the application of Equation 4.4 using different powers w to predict the effective
metallurgical recovery of this feed volume. In the X-axis, just the minimum, maximum,
and linear average of the values are plotted.
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Figure 32 – Effective metallurgical recovery values in function of the w value.

For a blending neutral model, w equals 1 and Equation 4.4 gives reff = r = 0.77.
If the user desires to reproduce a blending synergistic case, then the effective recovery
is calculated using w < 1, and the reff is greater than r. For example, using w = 0.5,
w = 0.25 or w = 0.125 results in reff = 0.82, reff = 0.86, and reff = 0.88, respectively. On
the opposite side, if the desire is to reproduce an antagonistic case, the user should input
a w value greater than 1.0. The greater the value w, the more influence the low value
has on the effective property. In the example, for w = 2.0, w = 4.0 or w = 8.0 results in
reff = 0.70, reff = 0.65 and reff = 0.63, respectively. Figure 32 exemplifies a case where
the dispersion of the metallurgical recovery values in the X-axis is symmetrical about the
average. This case (case I) is representative of situations where two or more mining faces
are mined simultaneously and blended with similar proportions.

For sensitivity analysis purposes, let us now consider a second case in which
the dispersion is not symmetrical. A low-value outlier is mixed with other high-value
components. This may reproduce situations where waste is misclassified and sent to the
plant together with ore, or where a tiny portion of the mine behaves badly when processed
whereas the major part of the mine has good recovery. For case II, consider the components’
recovery values are 0.40, 0.81, 0.82, 0.83, 0.86, and 0.90, such that the linear average is
yet 0.77. Figure 33 shows how the effective recovery value could be estimated by varying
the power w for case II. Note that, the lesser the power w, the little the difference in the
effective property value between cases I and II. For example, using w = 0.5 yields an
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effective recovery of 0.82 in case I, and 0.83 in case II; using w = 8.0 yields an effective
recovery of 0.63 in case I, and 0.44 in case II. That is, the low-value outlier has a big
impact on the mixture for high w values (antagonistic blending behavior), but not so much
for the synergistic blending behavior.

Figure 33 – Effective metallurgical recovery values in function of the w value. Case II.

The reasoning is valid in the opposite way when a high-value outlier is mixed with
other low-value components. For case III, consider the components’ recovery values are
0.63, 0.73, 0.74, 0.76, 0.77, and 0.99, such that the linear average is yet 0.77 (Figure 34).
The high-value outlier impacts the mixture for synergistic blending behavior. It is now the
antagonistic blending behaviors that are not influenced by the outlier.
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Figure 34 – Effective metallurgical recovery values in function of the w value. Case III.

4.7 Discussion
Models for estimating the blended BWI usually takes as input the proportion of

each component in the mixture and their individual BWI values to estimate a regression
function. Based on this idea, we propose a model that estimates the blended metallurgical
recovery using each component’s metallurgical recovery estimated values. It is important
to highlight that the metallurgical recovery estimation of a mining block should consider
its geological characteristics and the expected mill parameters, which would act on it when
processed. Therefore, primary variables are implicitly embedded in the estimation. The
proposed model only adjusts the estimation of a block to the estimated value of a feed
volume, which considers both blending and scaling nonlinearity.

Some properties of the proposed model are:

• The flexibility of changing the model behavior: from the synergistic (w < 1) to the
antagonistic (w > 1) to the linear model (w = 1);

• The capability of the model to tune the influence of the lower and upper component
values over the mixture average by progressively increasing or decreasing the factor
w;
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• The effective property is limited by the lower and upper component values of each
mixture;

• When the components of the mixture all have the same value property, then the
mixture property is also characterized by that value.

The sensitivity analysis section showed that, in specific cases, a mixture of compo-
nents that have a symmetrical distribution of values may have the same effective property
as an asymmetrical distribution mixture, if both have the same linear average. This
happens when the asymmetrical distribution is caused by a low-value outlier and the
model is blending synergistic, or the asymmetrical distribution is caused by a high-value
outlier and the model is blending antagonistic. In such cases, when the outlier should have
an additional impact on the effective property, the user should input a different factor w

than the one used when mixtures are formed without outliers.

The exponent w is ideally obtained experimentally through the testing of different
proportions of components in a mixture and component values, such that the properties of
possible mixtures are characterized. In a less ideal context, where there are no experimental
tests, experience and tacit knowledge of the plant engineers are useful in defining the w

value.

There is no presumption of faithfully modeling the behavior of ore mixtures or
claiming that the proposed model is the best. The author recognizes that this is more
indicated to mineral process engineers. The chapter aim is to raise the importance of
modeling the nonlinear behavior of blending and scaling such that the model could be
used further down in the mine planning phase.

4.8 Summary
Block models are constructed at a scale relevant for mining but not for mineral

processing. During the mining and mineral processing stages, blocks are blended, whether
intentionally or not. The blended ore properties are often assumed to be the linear
weighted average of its components. For nonlinear properties, this assumption is incorrect.
Understanding and modeling the nonlinear behavior of a geometallurgical variable is
necessary for scaling up and blending, allowing accurate predictions and optimal decisions.

Two usual models to estimate a geometallurgical property are: using the proportion
of each component in the mixture and their geometallurgical property values; or through
other primary variables of the components of the mixture. The proposed model uses
the estimated metallurgical recovery at the block scale as an input to predict the same
property but at the feed volume. By doing so, blending and scaling are being considered
simultaneously.
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The objective of the mathematical model proposed is to provide the user with a
tool that estimates nonlinear properties when blending occurs. This model is easy to use,
and its flexibility allows a better tuning of each mixture property, given the characteristics
of its components. The integration of this tool with mine planning can lead to optimized
mine plans.
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5 SHORT-TERM MINE PLANNING WITH
BLENDING

Mine planning is often based on predictions at the block scale and determines
whether it should be extracted or not. In a positive case, decisions should be made
regarding when the block is to be mined and its destination, whether plant, stockpile,
or waste pile. These decisions are based on several variables’ estimated values. Typical
variables of interest in a metallic project are ore grade, density, and metallurgical recovery.
With the increasing knowledge about geometallurgy, metallurgical recovery and other
metallurgical responses are better understood and progressively being considered important
to mine planning. As discussed in chapter 4, metallurgical variables often present nonlinear
blending and scaling behavior, which impact their prediction at different scales. Estimation
of metallurgical recovery at a block scale cannot be achieved as the block will not be
processed alone. Therefore, traditional mine planning procedures are performed under
biased predictions regarding expected metallurgical recovery. This chapter shows that
mine planning decisions should be based on the feed volume scale, that is, the volume of
material processed together in the plant. Some authors refer to this as the "processing
block" scale. The feed volume is composed of several mining blocks that are blended in the
mine and processing operations, and its properties are a (linear or nonlinear) average of the
blocks’ properties. Different schedules result in different mixtures, named here as blending
units. This chapter presents a simulated-annealing-based schedule in a short-term mining
face optimization problem, with the objective of maximizing the nonlinear metal recovered.
The optimized schedule shows improvements in blending synergistic and antagonistic cases
when compared to a conventional schedule.

5.1 Problem framework
The problem tackled is the short-term scheduling optimization problem. Consider

the usual discretization of a mining face in regularly-shaped parcels, each one with an
estimated grade. The term parcel is used as a synonym for block. A 2D representation of
a mining face is shown in Figure 35. The parcels have positions along the x-axis (Easting)
and the y-axis (Northing), but their coordinates can also be represented by the ix, iy

index, starting from left to right and south to north directions.
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Figure 35 – Mining face with parcel grades.

The mined ore parcels are sent to the processing plant in the order of their extraction.
Considering that there is a natural blending during the operations of excavation, haulage,
and at the processing plant, the process response is a function of the blended material
properties. In this case, metallurgical recovery is the process response of interest. The
problem consists of scheduling the parcels in a way that the best mixtures are formed,
that is, the global metallurgical recovery is maximized. Global metallurgical recovery
refers to the total metal recovered after processing all the parcels. It is, therefore, a global
optimization problem. Mixtures are composed of parcels formed according to the time
period in which each one is extracted. Each blended mixture is identified by a blending
unit (b), a discrete variable that reflects the plant feeding order, such that b = 1, ..., B,
where B is the total number of blending units. Therefore, all parcels assigned to b = 1 are
to be mined at the first time period and be blended. The blending unit mass is composed
of the sum of the masses of its composing parcels, and its effective recovery depends on its
composing parcels’ recoveries as modeled by the blending model.

Any blending model can be used for estimating the effective recovery. The blending
model considered here is based on the model developed in chapter 4. In summary, the
blending model calculates the effective recovery of a blending unit (reff) based on its
parcel-components’ minimum, maximum, and linear average recovery values (rmin, rmax

and r, respectively) and on an exponential parameter w of the power-law function. Refer
back to Equation 4.4. Then, the estimated value of reff can be assigned to each parcel that
composes that blending unit, substituting the prior recovery values.

The constraints to the scheduling relate to i) operational accessibility to ore parcel
and ii) shovel movement. The first constraint is a fixed hard constraint represented by
a "free face" precedence, in which to mine a parcel in a (ix, iy) index, the three parcels
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below it, that is, the parcels in the indexes (ix − 1, iy − 1), (ix, iy − 1), and (ix + 1, iy − 1)
must have been mined in a previous or equal time period, considering that the direction
of mining is from south to north. The shovel movement constraint is a soft constraint, in
which the sum of the distances between the parcels composing the same blending unit
penalizes the objective function.

Thus, the problem objective function (OF) can be mathematically modeled as:

OF : Max
B∑

b=1

P∑
p=1

gp,bmp,br
eff
p,b − PF

B∑
b=1

P −1∑
p=1

dp,p+1,b (5.1)

The first term relates to the summation of the quantity of metal recovered in each blending
unit, where gp,b is the grade of a parcel p in the blending unit b, mp,b is the parcel mass,
and reff

p,b is the effective recovery of p given its blending unit b. The second term relates to
the penalty factor that multiplies the total distance the shovel needs to move to extract the
scheduled parcels for each blend unit, where dp,p+1,b is the distance between two consecutive
mined parcels p and p + 1 in the same blending unit b, and PF is a constant penalty factor.

The "free face" precedence is modeled through three equations, all of which should
be met:

bix,iy − bix−1,iy−1 ≥ 0 ∀b, ∀ix, iy (5.2)

bix,iy − bix,iy−1 ≥ 0 ∀b, ∀ix, iy (5.3)

bix,iy − bix+1,iy−1 ≥ 0 ∀b, ∀ix, iy (5.4)

where bix,iy is the blending unit b of the parcel p at the (ix, iy) index and bix−1,iy−1, bix,iy−1,
and bix+1,iy−1 are the blending unit b of the parcel p at the (ix − 1, iy − 1), (ix, iy − 1),
and (ix + 1, iy − 1) indexes, respectively. That is, a parcel must have a greater or equal
blending unit than the nearest three parcels in the lower iy index. Figure 36 illustrates
the hard constraint concept.
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Figure 36 – Illustration of the hard constraint. The blending unit of a parcel at the index
(x, y), bx,y, must be equal or greater than the blending unit of all the parcels
below it, bx−1,y−1, bx,y−1 and bx+1,y−1

Solving this global optimization problem through linear or mixed integer program-
ming is not practical, given the recursive and nonlinear averaging characteristics of the
blending of the ores. An iterative procedure appropriate for nonlinear objective functions
is necessary. The proposed approach is to use Simulated Annealing.

5.2 Proposed methodology using simulated annealing
Simulated Annealing is a stochastic search metaheuristic for approximating the

global optimum of a problem. The idea of the algorithm comes from the annealing process
in metallurgy, where a metallic alloy is heated so the molecules can move freely. The cooling
process is controlled, allowing the molecules to reorder themselves into a lower energy
entropy. As the swapping of the molecules is known to follow the Boltzmann distribution,
sometimes molecules swapping positions lead to a higher energy state, but the occurrence
of this diminishes as the temperature drops.

In the simulated annealing algorithm, a feasible and simple solution must be given
to the system and evaluated through the objective function. This first solution represents
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the heating process. The objective function is analogous to the free energy in metallurgy.
A mechanism randomly perturbs the current solution, creating a candidate solution, which
is evaluated. This reproduces the analogy of the swapping of the molecules in the cooling
process. If the candidate solution has lower energy, that is, it is better with respect to the
objective function than the current one, then the perturbation is accepted and the candidate
solution becomes the current solution. Conversely, if the candidate has greater energy
than the current solution, the perturbation may or may not be accepted, according to the
probability distribution. This is an iterative process, in which the parameter temperature
is set for a high value at the initial solution and decreases gradually. The likelihood of
accepting worse solutions starts high because of the high temperature, but decreases with
the iterations and the lowering temperature, allowing the algorithm to escape local optima
and find the optimum solution. This algorithm is appropriate for nonlinear objective
functions given its randomness is part of its perturbation mechanism.

For this short-term scheduling optimization problem, the initial and feasible solution
is a default schedule. According to this schedule and how many parcels compose a mixture,
parcels are grouped into blending units, which are evaluated through the objective function
given by Equation 5.1. The perturbation mechanism is reproduced by swapping two parcels’
blending units. The requirements for a successful swapping are i) the blending units of
the parcels to be swapped are different, and ii) the blending unit of a parcel must be
smaller or equal to the blending unit of the posterior parcel in the direction of mining.
The first requirement prevents the unnecessary situation of swapping two parcels that
composes the same blend unit, as this will not change the objective function. The second
requirement represents the "free face" precedence, where the prior parcel must be mined
before the posterior one. After each perturbation, the objective function of the solution
is evaluated and accepted or not according to the acceptance probability distribution
(Equation 5.5). The parameter temperature (t) is a function of the initial temperature (T0)
and the iteration number (i) as shown in Equation 5.6. After a large number of iterations,
the solution converges to the global optimum.

P (accept) =


1 , if OFcand ≥ OFcurr

e

(
OFcand − OFcurr

t

)
, otherwise

(5.5)

t = T0

i
(5.6)
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5.3 Implementation
The current algorithm developed has some flexibilities and requisites. A mining

face must be 2D, composed of rectangular-shaped parcels in an (x,y) array. It is allowed to
mine one or two mining faces simultaneously. The mining faces do not need to be equal in
quantity and (x,y) arrangement of the parcels, and there is no limitation on the number of
parcels in each. Parcels in a mining face can be set to have been already mined or set to be
prohibited to mine. The user must input the number of parcels making up a blending unit.
If considering two mining faces, the ratio of extraction between them is also required. The
number of parcels to be mined in each mining face should be a multiple of the proportion
of parcels of that face composing a blending unit and the number of blending units in
both mining faces must be the same.

5.3.1 Demonstration Example

Consider two 2D mining faces being mined simultaneously. Mining face A has 160
parcels, distributed along the x and y axis in a 10x16 grid. Mining face B is composed of
80 parcels, in a 16x5 grid. Each parcel has an estimated metal grade gp, metal recovery rp,
and mass mp. The metal grade and recovery histograms for each mining face are shown in
Figure 37. For simplification purposes, mass is considered to be constant for all parcels
and equal to one unit of mass; therefore, there are 240 units of ore mass in both mining
faces.
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Figure 37 – Metal grade (top) and recovery (bottom) histograms for mining face A (left)
and B (right).

Figure 38 shows the parcels’ values for total recoverable metal (obtained by mul-
tiplying gp by rp). Note that the direction of the highest spatial continuity follows the
45-degree azimuth. The sum of these parcels’ values is the total metal recovered, which
is equal to 3.566 units of mass. This means that, of 240 units of ore mass, 3.566 units
are metal and can be recovered. However, this value is based on the recovery of each
parcel individually and does not consider the blending effect, which can be synergistic and
increase it, or antagonistic and decrease it.

A default schedule was given as the first solution for the simulated annealing
algorithm. For both mining faces, the schedule started with the parcel in the left bottom
corner and then mined the parcel on its right until there were no more parcels in the first Y
row. It advanced to the next parcel on the second Y row, and mined the parcels in the left
direction, until all the parcels were mined. This mining direction went on making zigzag
until all the parcels were mined. According to the setting of how many parcels composed a
mixture, and the rate of mining in each mining face, the parcels were grouped into blending
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units. For this example, it was considered that 24 parcels made up a blending unit, and
the rate of mining in mining face A was twice the rate of mining face B. Therefore, after
mining all the parcels, 10 blending units were formed, each one composed of 16 parcels
from mining face A and 8 parcels from mining face B. The default schedule is illustrated
in Figure 39.

Figure 38 – Mining faces A and B with the total recoverable metal (%).

Figure 39 – Default schedule of mining faces A and B and the generated blending units.
Blending units go from 1 (dark blue) to 10 (yellow).
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5.3.1.1 Synergistic case

Considering that the blending was synergistic, modeled by a power function with
w = 0.8, the default schedule returned 3.625 mass units of metal recovered; that is, only
by considering nonlinear synergistic blending rather than linear neutral blending, the total
metal recoverable increased from 3.566 to 3.625. Then, the simulated annealing algorithm
was run, resulting in the optimal scheduling seen in Figure 40. Observe that the "free face"
constraint was respected. There is a reasonable distance between parcels within the same
blending unit in mining face B, which is explained by not considering any penalty factor
in the shovel movement constraint. It is clearly visible in mining face A a tendency that
parcels composing the same blending unit are displaced along the NW-SE direction, that
is, perpendicular to the recoverable metal’s major direction of continuity.

Figure 40 – Optimal scheduling considering the synergistic schedule. Blending units go
from 1 (dark blue) to 10 (yellow).

In general, when the blending model is synergistic, the solution converges to
grouping the most different parcels together as possible in the same blending unit, such
that the heterogeneity of the parcels within the blending unit is high, but heterogeneity
between blending units is low. Figure 41 shows several box plots representing the variability
in metal recovery within each blending unit, measured from the parcels composing each
one; and the variability between the blending units, represented by the line connecting
the mean recovery of each blending unit. Note the high variability within blending units
represented by the long whisker plot in each box plot.
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Figure 41 – Variability in metal recovered within blend units and between them - syner-
gistic case.

The optimal schedule returned 3.636 mass units of metal recovered, that is, a 0.32%
increase in total metal recovered when compared to the default schedule. This result was
achieved after 20,000 iterations. Figure 42 shows the convergence stabilization.
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Figure 42 – Iteration convergence - synergistic case.

5.3.1.2 Antagonistic case

Considering that the blending is antagonistic, modeled by a power function with
w = 2.0, the default schedule returned 3.319 mass units of metal recovered; that is, only
by considering nonlinear antagonistic blending, rather than linear neutral blending, the
total metal recoverable decreased from 3.566 to 3.319. Figure 43 shows the scheduling
for this case. When the blending model is antagonistic, the schedule groups the most
similar parcels together as possible in the same blending unit. As a consequence, while
the variability within each blending unit is low (short whisker plot in each box plot),
the variability among blending units is high (greater difference in the mean recovery for
each blending unit) (Figure 44). The optimal schedule returned 3.411 mass units of metal
recovered, that is, a 2.77% increase in total metal recovered when compared to the default
schedule. This result was achieved after 20,000 iterations but it stabilized after 4,000
iterations (Figure 45).
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Figure 43 – Optimal scheduling considering the antagonistic schedule. Blending units go
from 1 (dark blue) to 10 (yellow).

Figure 44 – Variability in recovery within blend units and between them - antagonistic
case.
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Figure 45 – Iteration convergence - antagonistic case.

5.4 Discussion
The demonstration example showed that the consideration of the blending behavior

of the variable affects the expected total metal recovered of any given schedule. The
default schedule provided an estimation of metal recovered units of 3.319, 3.566, and
3.625, for considering blending antagonistic, neutral, or synergistic behavior, respectively.
Disregarding this behavior leads to a biased expected value. In addition, the consideration
of the nonlinear behavior allows the optimization of the schedule. A simulated annealing
algorithm was developed to schedule parcels and cluster them into the best blending units
possible. When blending is antagonistic, the "best blending unit" concept is related to
small variability among the parcels within the blending unit, whereas the concept is the
opposite in synergistic blending. This variability is related to the variables that impact
the metallurgical response. In this study, the effective metallurgical recovery is a function
of each parcel’s metallurgical recovery and grade. Therefore, antagonistic blending clusters
parcels with similar grade and metallurgical recovery; synergistic blending clusters parcels
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with distinct grade and metallurgical recovery.

For the specific case shown in the implementation section, the simulated-annealing
optimization provided a schedule with a 2.77% and a 0.32 % increase compared to the
default schedule for the antagonistic and synergistic blending, respectively. These values
should not be used as a reference, as they should be different according to the blending
model, optimization parameters, and data. The blending model used here was developed
in chapter 4 with an exponential w. The closer the value of w is to one, that is, a linear
model or very close to that, the less is the potential of the schedule to return a high
increase in the quantity of metal recovered. The optimization parameter is related to
the number of iterations and the temperature set in the simulated annealing. A higher
temperature value increases the probability of not getting stuck in local minima. The data
parameters are related to the property variability in the data. The greater the variability,
the more difference between an optimized and a default schedule. Although the values
obtained in the example should not be used as a reference, they prove mathematically
that the schedule optimization can do better when nonlinear variables are important to
the problem.

A small gain in metallurgical recovery can reflect a large increase in the project’s
economic value. In the study presented by Campos et al. (2022), an increase of 1.17
percentage points in metal recovery meant an increase of 8% in economic value.

5.5 Summary
In the methodology shown here, the nonlinear variable of interest is assessed at the

blending unit scale, rather than considering the property at the individual parcel scale.
This acknowledges that parcels are not fed individually to the processing plant, but a
material mixture of them, in which the effective property of the mixture influences the
result more than any individual parcel property. Most metallurgical variables are nonlinear,
so the blended average value is not just a simple linear weighted average. It should be
assessed experimentally and represented through a blending behavior model, allowing the
optimization of such variables. A simulated annealing heuristic is developed and applied
to a small and well-constrained short-term mine planning problem, demonstrating the
gain of this proposed approach. Depending on the blending behavior of a variable, the
schedule may group parcels that are very similar to one another or group parcels that are
very different. The aim is to form mixtures with the best effective property possible. The
recovery effective value is only assigned to parcels after the objective function is evaluated.
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6 ILLUSTRATION CASE: A REALISTIC
DEMONSTRATION

This chapter uses real data to demonstrate how geological and metallurgical
properties can be integrated into a spatial geometallurgical model, considering their
particular characteristics. Geometallurgical data have specificities related to sampling,
scale, change of support, and nonlinearity that are generally not found in geological
data. Geological data obtained through exploration or grade-control drilling are often
characterized by a large amount of samples spaced in the region of interest. The sample
scales are as low as centimeters to a few meters, being considered ’point-scale’ samples;
regularization of samples and estimations in larger supports are possible through linear
upscaling, as geological variables are usually linear. Conversely, geometallurgical data are
often characterized by few sparse samples with relatively high cost. The mass of material
required for metallurgical test work and the need for sample regularization and estimations
in different support makes the whole process troublesome, as metallurgical variables are
usually nonlinear.

Given the data and variables differences, EDA and preprocessing must be done
before any modeling. Two main methodologies to spatially estimate metallurgical variables
are: a modern multivariate geostatistical modeling approach and a machine learning
modeling approach. Both of them are shown. The software GSLib (DEUTSCH; JOURNEL,
1997) was used to perform all the geostatistical procedures, while scikit-learn packages were
used for machine learning. At last, mine planning considering the blending of nonlinear
variables was applied to an estimated spatial model.

6.1 Data introduction
The data analyzed are from a phosphate mine of igneous origin located in Brazil.

The mine is located in a carbonatite alkaline dome, consisting of phlogopite, pyroxenite,
dunite, phoscorite, and carbonatites. The apatite concentration is related to the weathering
mantle developed over these alkaline rocks. The weathering profile is defined, from bottom
to top, as follows (RIBEIRO, 2008):

• Fresh rock: composed of phlogopitites, cut by numerous veins of carbonatites;

• Altered rock: in which fresh rock structures are preserved;

• Isalteritic Saprolite: horizon about 25m thick where the texture and structure of the
pre-existing rock are preserved;
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• Alloteric Saprolite: is due to the evolution of weathering, in which the original
structures can no longer be identified;

• Overburden: composed of soil with a high content of Al and Fe, and absence of Ca

and Mg.

The apatite mineralized horizon is the isalteritic horizon, in which there is a low
MgO and SiO2 content and a high CaO and P2O5 content. The study’s database consists
of samples from this horizon only.

6.2 Data preprocessing
The data collected from a source, as it is, is known as raw data. Any raw data require

preprocessing, which consists of data cleaning, integration, reduction, and transformation
procedures aiming to adjust the data so that they can be used for spatial modeling,
prediction, or any other decision-making purpose. It is essential to understand the raw
data acquisition processes and their characteristics as they will guide the preprocessing
stage. The raw data analysis presented in chapter 3 is recalled here. The raw data consist
of 16,095 geometallurgical samples, most of them with sample identification, geological
information, chemical assay, and metallurgical variables. Approximately half of the data is
obtained from DDH drilling, and the other half is from drilling powder. Sample support
ranges between one to 15 meters, but almost 80% is five meters long. Because of accuracy
and precision issues, decisions were taken to keep only the DDH data, and those whose
support length is 5 m. Four thousand eight hundred sixty-two data complies with both
constraints. Some of the variables measured were not considered reliable and/or relevant
for this study’s purpose. This consideration was supported by understanding the data
acquisition and/or statistical analysis.

In chapter 3, there were up to 3 aliquot measurements of metallurgical recovery
for each ROM sample. That made it possible to increase the database and analyze the
importance of the variable collector dosage. This time, the decision was to only work with
one recovery value for each ROM sample since it is impossible to have different values of a
variable at the same spatial location for spatial modeling. This chosen value was the one
that resulted in the P2O5 grade in the concentrate closest to 36%, as this is the aim of
the product sold by the company. The cleaned database was subjected to data analysis as
part of the modeling process.
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6.3 Data analysis
The cleaned database consists of the following information: Easting (X), Nor-

thing (Y), Elevation (Z), P2O5, Fe2O3, Al2O3, MgO, SiO2, CaO, BaO, Nb2O5, TiO2,
CaO/P2O5 ratio (RCP ), Metal recovery and Mass recovery. The term metal recovery is
used throughout the text to refer to the recovery of P2O5. Not all information is available
in all 4.862 samples, such that the data are unequally sampled. Most of the metallurgical
recovery information is south or centered located (refer back to Figure 13). The number of
missing values in this data can be evaluated in Table 5. Note that the Metal and Mass
recovery are undersampled.

Table 5 – Quantity of missing values per variable

Variable # Missing values
Al2O3_ROM 1
SiO2_ROM 2
BaO_ROM 87

Nb2O5_ROM 243
TiO2_ROM 699

Metal recovery 2761
Mass recovery 2761

Few and widely spaced metallurgical data in the northern region make it impossible
to spatially estimate this portion without considerable risk of being inaccurate. Also, the
large areal extension determined by the data contributes to increasing the computational
complexity involved in the modeling. Constraining the study area to a smaller and more
densely sampled region does not prejudice the aim of this chapter, which is to demonstrate
how to obtain an estimated geometallurgical spatial model and do mine planning with
geometallurgical data. Therefore, the study was constrained within the specific region
highlighted in the black square in Figure 46. The region was chosen because it is abundant
in samples for all the variables of interest.
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Figure 46 – Constrained region and the samples within it. Left: XY, XZ, and YZ planes
crossing the total area sampled and the constrained area of the study high-
lighted by the black rectangle. Right: XY, XZ, and YZ planes showing only the
samples inside the constrained area of study. Colorbar refers to metallurgical
recovery.

The constrained region encompasses 717 samples spaced approximately 100 m
along the X and Y axis, although there are samples spaced 50 m and 25 m apart also.
Along the Z axis, samples are taken every 5 m. The variables Nb2O5, Metal, and Mass
recovery have some missing values. Figure 47 shows the histograms for each variable. Note
that the Nb2O5 histogram has spikes, which occur when a large proportion of the data has
the same values. This may come from a detection limit or a round-off. A combination of a
local average considering the nearest eight data and random despiking is applied to the
Nb2O5 variable. Failure to break the ties can generate problems when further transforming
the original distribution to normal score values, which is required for simulation purposes.
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Figure 47 – Histograms for each variable.

After despiking, the linear correlations between the variables are evaluated (Fig-
ure 48). There are strong (0.7 or greater) positive correlations between P2O5 and CaO,
P2O5 and Mass recovery, and CaO and Mass recovery. There are no strong negative
correlations. Bivariate relationships depicted in Figure 48 are similar to those established
in Figure 14, which means that the relationships within the constrained region are ap-
proximately the same as in the whole sampled area. Figure 49 displays the scatter-plot
between each pair of variables, along with the number of data, the Pearson, and the
Spearman correlation. This plot is interesting for understanding nonlinear complexities
between variables. While Pearson refers to linear correlation, Spearman refers to mono-
tonic correlation. Almost all the plots show approximate numbers for the two correlations.
The most significant differences were found between Al2O3 − MgO and Al2O3 − TiO2

correlations. In Al2O3 − MgO, there is an intermediate Pearson correlation but a null
Spearman correlation. In Al2O3 − TiO2, the Spearman correlation is greater than the
Pearson correlation.
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Figure 48 – Linear correlation matrix of the variables.
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Figure 49 – Scatter-plot of the variables with Pearson and Spearman correlations.

As the data samples are not regularly spaced in the delimited region (Figure 46),
declustering was performed using cell declustering (DEUTSCH, 1989). Figure 50 shows a
diagnostic plot where the minimum declustered mean corresponds to the cell size of 100 m.
This cell size seems reasonable, as this corresponds to the spacing in the sparsely sampled
areas. Therefore, this value of cell size was used for cell declustering.
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Figure 50 – Declustering diagnostic plot.

6.4 Spatial modelling
There are two main approaches to spatially modeling geometallurgical variables.

The first is the modern geostatistical approach, where each variable is decorrelated
from each other, simulated, and then back-transformed to original units. This approach is
applied to both linear and nonlinear variables and requires enough spatial sampling of the
variables such that each variogram can be inferred. Unlike kriging, the simulation does not
take averages, and its use is theoretically correct when working with nonlinear variables.
If predictions are necessary in larger support, upscaling is deferred to the last moment
possible. This is the only step where the consideration of linearity is assumed.

The second approach is to work with machine learning models. These models learn
the relationship between the less sampled variables (often the metallurgical ones) and the
more sampled (often the geological variables) through the homotopic samples. Geological
variables are spatially estimated in a grid through geostatistics and the machine learning
model is applied, providing the estimates of the metallurgical variables at the same grid
locations. As the metallurgical variables are expected to be nonlinear, it is reasonable
to use a nonlinear regression model. For this study, both approaches were performed to
highlight their differences.

6.5 Modern geostatistical approach
The workflow for this approach is illustrated in Figure 51. The modern geostatistical

approach for multivariate modeling is to decorrelate the variables such that simulation
can be done for each variable independently. We need homotopic data to decorrelate with
PPMT. Rather than using just the samples that possess reading for all the variables, data
imputation was the alternative chosen. Multiple Imputation uses the incomplete dataset to
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generate complete data realizations, such that each imputed data realization is used for a
simulation realization in subsequent analysis. The first step was to normal score all twelve
variables. For imputation, it is required the definition of a Mixture Model. The mixture
model chosen was a Gaussian Mixture Model, obtained with the Expectation-Maximization
(EM) Algorithm and 14 fitted components from the normal scored data. This number of
fitted components was chosen based on the Likelihood Ratio Test (LRT) (GOMES et al.,
2022), where increasing the number of Gaussian components did not significantly improve
the likelihood estimate (Figure 52). The number of iterations for the EM algorithm was
set to 500.

Figure 51 – Applied workflow for the modern geostatistical approach.
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Figure 52 – Estimation of the GMM number of components based on the LRT.

Besides the mixture model, imputation also requires the normal score variograms
and configurations regarding search radii and maximum previously simulated nodes to be
used. The parameters used are shown in Table 6.

Table 6 – Imputation parameters

Parameter # Value
Data realizations 20

maximum data/previously simulated nodes 50
maximum search radii (hmax,hmin,vert) 500, 500, 50

With each of the twenty data realizations, PPMT was performed to decorrelate the
variables, and Sequential Gaussian Simulation was done for each PPMT factor individually.
Each simulated realization was done with each data realization, one by one. Table 7 shows
the simulation parameters.

Table 7 – Simulation parameters

Parameter # Value
Simulation realizations 20

maximum data/previously simulated nodes 50
maximum search radii (hmax,hmin,vert) 500, 500, 50

Checking the simulation was done by comparing the variogram reproduction of the
simulations and of each PPMT factor (Figure 53). PPMT back-transformation returned the
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variables’ realizations to their original values. Figure 54 shows the histogram reproduction
between declustered original data (in red) and back-transformed realizations (in grey).
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Figure 53 – Variogram reproduction for each PPMT factor. In red is the variogram model.
In grey are the variograms of the realizations. Each row is a PPMT factor.
From top to bottom: PPMT P2O5, PPMT Fe2O3, PPMT Al2O3, PPMT
MgO, PPMT SiO2, PPMT CaO, PPMT BaO, PPMT Nb2O5, PPMT TiO2,
PPMT CaO/P2O5 ratio (RCP ), PPMT Metal recovery and PPMT Mass
recovery. Columns represent the direction of the variogram. From left to right
(azimuth/dip): 0◦/0◦, 45◦/0◦, 90◦/0◦, 135◦/0◦, and downhole direction (0◦/90◦)
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Figure 54 – Histogram reproduction in original units for each variable. In red is the
histogram of the data. In grey are the histograms of the realizations.

Another check was performed comparing the bivariate relationship of the simulation
results with the relationship of the samples. The relationships shown in Figure 55 adhere
to those in Figure 48.
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Figure 55 – Correlation of variables after simulation.

For illustration purposes, Figure 56 and Figure 57 show three slices (XY, XZ, and
YZ) of the first realization of P2O5 and metal recovery, respectively, in original units.

Figure 56 – One realization of P2O5 variable.
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Figure 57 – One realization of metal recovery variable.

Note that histogram and variogram reproductions are good. The bivariate rela-
tionships in simulation do honor those in the data. One other option for validating a
simulation is through the accuracy plot. The accuracy plot needs the data to be split into
train and test sets. In this case, the data were randomly split into 70% (train), and 30%
(test), and all the variogram and simulation parameters used were the same as the ones
obtained with all the data. The accuracy plot in Figure 58 shows that the simulation was
both accurate and precise.
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Figure 58 – Accuracy plot for metal recovery variable.

6.6 Machine learning approach
The machine learning approach consists of two parallel streams. The first stream is

to spatially estimate only the geological variables. The procedure for this estimation can
be the modern geostatistical approach mentioned previously. The second stream models
a machine-learning regression between geological and metallurgical variables based on
the data. The regression model is then applied to the spatial estimates of the geological
variables obtained through the first stream to get estimates of the metallurgical variables
at the same locations. The workflow of this approach is illustrated in Figure 59.

As the first stream has already been explained in the previous section, let us explain
the second stream. The data need to be homotopic. However, the use of data imputation
is not justified. The samples containing information on all the variables were used, which
is 705 data, more than 98% of all the data. All the homotopic data were used to obtain
a machine-learning model that uses the geological variables as features to predict the
dependent metallurgical variables.
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Figure 59 – Applied workflow for the machine learning approach.

To assess the accuracy of the model, the database was randomly divided into
working (80%) and future (20%) datasets. The future set mimics data obtained in the
future and is used to analyze the future prediction performance of the model. The working
dataset is used for the modeling and is further split into ten consecutive folds, such that
each fold is used once as a testing/validation set, which is used to analyze the performance
of the prediction, while the nine remaining folds form the training set, used to train the
model for the prediction

The objective was to simultaneously predict metal and mass recovery, both nonlinear
variables. Four multiple outputs regressors were tested: LR, KNN, DT, and RF. KNN
regressor requires the data to be standardized so that the features with higher values do
not dominate the learning process. The ‘StadardScaler’ method on Scikit Learn was used.
All the other regressors used do not require the standardization of the variables since they
are not sensitive to the magnitude of variables.

The testing set was used to identify the best regressor. The scatter-plots between
the predicted and the true values for each ML model - LR, KNN, DT, and RF - are
shown in Figure 60, Figure 61, Figure 62, and Figure 63, respectively. RF regressor yielded
the greatest Pearson correlations, 0.45 and 0.84 for metal recovery and mass recovery,
respectively, and also resulted in the greater R2 mean: 0.44.



Chapter 6. Illustration case: a realistic demonstration 114

Figure 60 – Scatter-plot of LR-predicted and true values in the working database

Figure 61 – Scatter-plot of KNN-predicted and true values in the working database

Figure 62 – Scatter-plot of DT-predicted and true values in the working database
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Figure 63 – Scatter-plot of RF-predicted and true values in the working database

RF was the only model applied in the future set. In this case, the Pearson correlations
were 0.44 and 0.85 (Figure 64). The proximity between the values in the working test
dataset and the future dataset is indicative that the model is neither over nor under-fitted.

Figure 64 – Scatter-plot of RF-predicted and true values in the future database

It makes sense that RF was the better model because of its robustness and
applicability to nonlinear variables. RF gives a list of the most important variables for
the prediction (Table 8). As one can see, P2O5 is the first one, given the high correlation
with mass recovery. CaO is redundant with P2O5 and therefore does not gain too much
weight. A technique of grid search was used to tune the hyperparameters of RF better.
Still, it did not significantly increase the results, as it returned a predicted-true Pearson
correlation for the metallurgical and mass recovery of 0.45 and 0.85, respectively.
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Table 8 – Variable importance

Variable Importance
P2O5 0.24

Fe2O3 0.11
SiO2 0.11
TiO2 0.10
CaO 0.09

Nb2O5 0.08
RCP 0.08
BaO 0.07
MgO 0.06
Al2O3 0.05

Of all regressors, RF was the best one. However, the R2 and the predicted-true
Pearson correlation for the metal recovery are still low. That is because the predictor’s
variables are not very explicative of the metal recovery response, as discussed in chapter 3.
Considering the variable ‘Collector’ as an input feature would probably increase the
prediction power of the model. As this variable is related to process input, its spatial
estimation is not straightforward and, therefore, was not chosen as a predictor of recovery.

The RF model was applied to the geological variables’ twenty realizations to predict
metallurgical and mass recovery. The spatial estimation for the metal recovery variable
on the first realization of the geological variables is shown in XY, XZ, and YZ slices in
Figure 57.
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Figure 65 – RF prediction for metal recovery variable. Left: XY slice. Right: XZ slice
(above) and YZ slice (below)

6.7 Comparison between geostatistical and machine learning ap-
proaches
By comparing the spatial estimates for the metal recovery from the modern

geostatistical approach (Figure 57) and the ML approach (Figure 65), it is clear that the
latter provided a smoother spatial model. This is also shown in Figure 66 by comparing the
distributions of the metallurgical data in red, the distributions of the twenty realizations
of the metallurgical variables from the modern geostatistical approach in grey, and the
distributions of the twenty realizations of the metallurgical variables from the machine
learning approach in blue.

Figure 66 – Metal and mass recovery histogram reproduction. Data histogram in red.
Simulated realizations in grey. RF realizations in blue.
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Least squares regression models cannot reproduce the extremes of the variable
predicted, just like kriging. Figure 67 compares the histograms of the true data against
the predicted values for each machine learning model applied to the working database
(true data in grey, RF model in red, DT model in yellow, LR model in blue, KNN model
in green). The DT model is the only model that reproduces the data variability. The mass
recovery histogram seems to be more reproduced by the machine learning models than
the metal recovery histogram. The stronger correlations between the geological variables
and the mass recovery explain this. The weaker the correlations between features and the
variable predicted, the smoother the prediction is.

Figure 67 – Metal (left) and mass (right) recovery histogram reproduction of the true data
for each machine learning model. In grey is the histogram of the true data in
the working database. In red is the RF-model histogram. DT-model histogram
in yellow, LR-model histogram in blue, and KNN-model histogram in green.

In summary, the approach to spatially model metallurgical variables depends on
the data availability and the study’s objective. In the case of few spatial data, such
that variograms of the variables are impossible to infer, the machine learning approach is
applicable. It is desirable to have features with high correlations with the predicted variable.
Otherwise, the consequence is smoothed predictions with underestimated variability. In case
there is enough data for variogram inference, the modeling of each variable independently
and simultaneously can be done using a multivariate technique such as the combination of
PPMT and simulation. The histogram variability is reproduced. The probabilistic model
provides a reliable measure of uncertainty.

6.8 Short-term ore scheduling and blending
The use of multiple simulation realizations in mine planning is a topic of great

discussion in research and a challenge faced in the mining industry. The optimization of a
decision should ideally be done using multiple realizations simultaneously. However, this
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consideration would go beyond the scope of this thesis, which is to demonstrate how to
make better conventional-deterministic mine planning considering metallurgical variables.

The assessment of a better decision value is only realistic through a process that
simulates reality. In reality, we sample a truth, which is unknown, and make decisions
based on the small knowledge we have from the sampling. By random chance, a better
decision could lead to a worse outcome in reality, but in expected value, a better decision
should lead to a better outcome.

Short-term scheduling is often performed after grade-control (GC) sampling. We
simulated a GC drilling in a small region of the already constrained area to mimic a
mining face that will be mined soon (Figure 68). GC drilling was at 20 x 20 x 5m and
only the geological variables are measured. Estimation was performed for all the variables
simultaneously, following the same decorrelation procedure explained previously. For this
study purpose, the first realization of the simulation is considered to be the unknown
truth.

Figure 68 – Delimitation of a GC drilling area. At the top: mining face area for GC drilling
with the unknown truth. At the bottom: GC drilling spacing on XY and XZ
slices. The color bar refers to P2O5.

The geological variables are kriged in a 5 x 5 x 5 m grid, considered to be the
parcel’s volume. Since the parcel and the data have similar support, the kriged values of
the geological variables can be used as predictors in the machine learning model for the
recovery variables estimations at the same grid. Figure 69 shows the kriged estimation of
P2O5 on the left and the RF estimation of metal recovery on the right.
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Figure 69 – Kriged P2O5 grade (left) and RF-estimated metal recovery (right).

With all the geological and metallurgical variables estimations, this model is now
used to support the scheduling. An optimization schedule based on Simulated Annealing
developed and explained in chapter 5 is applied to the model. This schedule considers
how ore parcels are blended during mining and processing operations and how this
process affects the mixture properties. In the real operation, the ore is sent to 110,000 t
homogenization piles, before feeding the plant. Therefore, the capacity of the pile is the
tonnage of the mixture. Using the estimated grid volume and a mean ore density of 1.8
t/m3, approximately 500 parcels are blended in a pile. The short-term mining face mass
is equivalent to five piles. Regarding blending, it is assumed that the blending of ores
with different recoveries is beneficial, such that the blending behavior can be reasonably
modeled by a power-law function described by a w factor of 0.8 (refer back to chapter 4).

A default schedule is performed on the mining face. The default schedule mining
occurs from south to north in a zigzag, from left to the right, right to left, and so on. Each
parcel, according to the period of its extraction, is assigned to a pile/blend unit through
an indicator number. Parcels designated to pile one are mined before those set to pile 2,
which are mined before those assigned to pile 3, and so on. Figure 70 shows on the left
how each parcel would be categorized in each of the five piles. The optimization algorithm
yields another schedule (Figure 70, right).

Based on the estimated model, the increase in metal recovered in the optimized
scenario is 0.04%. Two main reasons justify the little difference. The first is related to the
optimization being supported by a smoothed kriged/RF estimated model of the truth. If
the truth and its real variability could be known, applying the optimal-defined schedule
increases metal recovered by 0.1%. This value could be smaller or even negative as the
variability of the truth could be enough to make the optimal schedule wrong. Applying
the optimization algorithm to simulated realizations, which have more variability than
any estimated model, would result in more significant differences between the optimal and
the default schedule. The second reason for the low difference is related to the use of the
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homogenization pile. The pile diminishes the impact of optimal parcel scheduling, as many
of them are mixed in huge piles. In a situation where the mine does not use homogenization
piles, the mixtures of parcels would be formed by mining and processing operations in one
shift, for example. Considering the mass of material fed to a plant in a shift is 6,000 t,
twenty-five parcels would be blended. Running the optimization on that same kriged/RF
estimated model, but using blending units of 25 parcels, the optimized result is 0.58%
better than the default schedule. Without a homogenization pile, the scheduling of the
parcels is more relevant. This shows that this methodology can be additionally used to
evaluate the need for homogenization piles better.

Figure 70 – Scheduling of the parcels in the mining face. Left: default schedule. Right:
Optimal schedule

6.9 Summary
Rock and metallurgical properties should be spatially modeled and used in mine

planning. One of the main issues with metallurgical variables is nonlinearity, which prevents
using kriging or any other linear estimate. Simulation is an alternative as long as there are
enough samples for variogram inference. For multivariate simulation, Multiple Imputation
and decorrelation may be necessary. The product of simulation is N equiprobable models
that have the same statistical features as the sample data used to generate them. If mine
planning works only with one model, and since kriging is not an option, nonlinear machine
learning techniques combined with simulation are the solution. Good regression techniques
naturally smooth the prediction.

Mine planning can take advantage of the spatial geometallurgical model when
scheduling the ore parcels. By recognizing and understanding how ores are naturally
blended during mine and process operations, mine scheduling can be done to optimize
the formation of the ore mixtures globally (maximizing metal recovery, minimizing BWI,
maximizing profit, etc).

For the application example, even after some data cleaning and preprocessing,



Chapter 6. Illustration case: a realistic demonstration 122

enough data allow the spatial modeling of all the variables by multivariate simulation,
which is the best approach indicated. However, as for the time this thesis is written, mine
planning is based on only one deterministic model. In that case, the best approach is to
krige the linear variables and estimate the nonlinear ones by machine learning regressions.
After having one model with estimates for all variables, a simulated-annealing-based
algorithm was applied to the model to provide an optimum mine scheduling regarding
the total metal recovered. The increase in comparison to a default schedule was 0.04%.
This value is insignificant because the spatial model is smoothed and the mine uses
homogenization piles to blend the ore. In case there was no pile, the optimal schedule
could result in an increase of 0.58% in comparison to a default schedule. If the spatial
model had more variability and depending on how beneficial blending is, the increased
value would be even greater.
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7 CONCLUSIONS AND FUTURE WORK

This thesis aimed to investigate how nonadditive geometallurgical variables must
be estimated in the block model and used in mine planning. This thesis’ workflow included
understanding geometallurgical data and variables, possible solutions for spatial modeling,
and using a nonlinear blending model along with spatial estimation to proceed with mine
planning. Recall the objectives presented in chapter 1:

1. Understand particularities related to geometallurgical data and variables;

2. Review different spatial modeling approaches for geometallurgical variables;

3. Demonstrate that the current practice of estimating individual and independent
values of a geometallurgical variable for each block is conceptually incorrect;

4. Propose a blending model that can be used to estimate process responses for the
blending unit volume effectively;

5. Propose a methodology for estimating the geometallurgical variables in each block
that considers the blending of the blocks;

6. Develop a production schedule that identifies the best combinations of blocks to
form each blending unit.

The first objective was addressed in chapter 3 and the main topics and conclusions
are provided in section 7.1. The second objective was accomplished in chapter 2, with
applications shown in chapter 6. The main points and conclusion related to geometallurgical
spatial modeling are reviewed in section 7.2. The third and fourth objectives were addressed
in chapter 4, whereas the fifth and sixth objectives were met in chapter 5. The conclusion
of these objectives is provided in section 7.3.

7.1 Geometallurgical data and variables
This thesis highlighted the importance of understanding the specificities related to

geometallurgical data and variables. While some geometallurgical variables are intrinsic rock
properties (primary variables), others are a response to a specific process. A metallurgical
variable is a response variable to a processing operation. In that sense, metallurgical
recovery is the response of the ore to the concentration, whilst BWI is the ore’s response
to ball mill grinding. Response variables often present characteristics that are unusual
to primary variables. They usually average nonlinearly, respect defined constraints, and
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they have multivariate complex relationships. Challenges of geometallurgical modeling are
related to the complexities in the variables and also in the data. Missing data, heterotopic
and sparse sampling, and differences in the data support are common characteristics of a
geometallurgical database that must be analyzed before any decision on spatial modeling.
This type of analysis is often carried out during Exploratory Data Analysis. At this
stage, one also understands the univariate distributions of each important variable and
their multivariate relationships. Preprocessing is a stage done along with EDA, which is
responsible for extracting the features from the raw data, selecting the important ones,
and cleaning the database. Important features are the target variables for spatial modeling
and their highly-correlated variables. Redundant features may be dropped for convenience;
they demand more computational power, and they can decrease prediction performance.
Errors and missing values are treated in the cleaning phase, by correcting or deleting the
data.

A real mine bench test and plant databases were compared with EDA analysis in
Chapter 3. In a bench test, there is more control over the tests, the inputs, the outputs,
and the whole process. One can understand the impacts on the output caused by variations
in input. The analysis showed that the metallurgical recovery has just one reasonable
correlation with the variable collector. Conversely, mass recovery has high correlations
with P2O5, CaO, and intermediate correlations with SiO2 and collector. A Random Forest
regressor was applied to predict these two target variables. The high correlations with the
primary variables collaborate to an accurate and precise prediction of mass recovery. The
prediction of metallurgical recovery is accurate but not precise, because of the inexistence
of high correlations. Nevertheless, Random Forest still performs fairly.

In a plant, the process dynamic is complex. There may be more than one stream
of material feed, each with different characteristics; the processing conditions (e.g., air
flow rate, agitation) can change; sampling a continuous feed and matching it to the
correspondent concentrate is complicated. In addition, in this specific case, the material is
homogenized in piles before feeding the plant, resulting in material feed with low variability.
All of those reasons contribute to the poor understanding of the impacts of the input on
the output. The consequence is that the data collected in the plant do not show high
bivariate correlations. Any regressor performs poorly when input variables do not explain
the target variables. This problem is amplified when the variable collector, shown by the
bench test data as the most important predictor variable to the metallurgical response, is
not measured in the plant. The result is that it is challenging to predict the results in the
plant with precision.

This obstacle should not prevent us from using geometallurgical data to perform
spatial estimations of metallurgical response and using these estimations in mine planning.
Bench tests are well-controlled procedures and provide reliable data. Reliable data combined



Chapter 7. Conclusions and Future Work 125

with the right spatial modeling technique results in accurate models. These models can be
used to enhance mine planning.

7.2 Geometallurgical spatial modeling
The combination of variables and data complexities turns geometallurgical spatial

modeling bewildering. It is good practice to avoid kriging or any other linear estimation
technique as they would result in biased estimations. The amount of bias, however, may
be small enough not to compromise the objective of the estimation. This may be the case
if the variable presents a "small degree of nonlinearity".

At the time of this thesis, two methodologies stood out for the spatial modeling of
nonlinear variables. One well-established approach is to use modern multivariate modeling.
In this approach, techniques such as Normal Score Transformation, Multiple Imputation,
and the Projection Pursuit Multivariate Transformation are required steps to decorrelate all
the multivariate relationships and turn them into multiGaussian factors. The multiGaussian
factors can be independently simulated in all nodes of the grid. Then, back transformations
return each factor to the original variable. The second approach to geometallurgical
modeling applies machine learning to predict the target variables. Modern multivariate
modeling is still applied in this approach, but only for the geological variables. The geological
estimates in all nodes of the grid were used as features to predict the metallurgical variables
using a Random Forest regressor. The latter was trained and tested with the samples that
contained information on all (geological and metallurgical) variables.

Both approaches were applied in chapter 6 in an illustration case with real data.
The comparison of the two methods showed that while the modern multivariate modeling
approach reproduced the uni and bi-variate relationships and the spatial continuity of all
the variables, the prediction by machine learning was smooth and did not reproduce the
statistics of the response variables. By comparing the reproduction of the metallurgical
and mass recovery histograms, it is clear that the latter was fairly reproduced, given some
high correlations with the features. However, the metallurgical recovery histogram was
poorly reproduced, given the absence of high correlations. The conclusion is that: the
workflow selection depends on the objective of the modeling, the spacing of the samples,
and the explanatory power of the geological variables over the metallurgical ones. If the
aim consists in obtaining a single estimated model, then the machine learning approach is
applicable when there are reasonable correlations between features and target variables.
Suppose the objective consists in having multiple equal-probable models, and there are
enough samples that variogram modeling is possible for the metallurgical variables. In
that case, the modern multivariate approach is a good option. The machine learning
method can be applied with multiple realizations of the geological variables, but it may
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not reproduce the variability of the response variables.

7.3 Mine planning with nonlinear blending
Planning a mine using multivariate spatial models is the ultimate goal of a ge-

ometallurgical program. The plan will not just consider one geological variable but all the
geological, metallurgical, and other variables that impact the project’s value. However,
mine planning is usually supported by estimations in a block model, which is convenient
for mineral resource evaluation but is not for predicting plant processing performance. The
volume of material that goes into a plant (the feed volume) is greater than the volume
of a block. The feed volume properties depend on the blending and upscaling behavior
of the blocks. If the blending and upscaling behaviors are linear, no problem arises with
this traditional procedure of estimating block properties. However, if the blending and
upscaling are nonlinear, as is often the case with metallurgical variables, this standard
procedure provides biased results. The correct approach is to estimate the feed volume
properties through nonlinear blending and scaling models. These behaviors are explained
in chapter 4, along with a proposal of a simple, flexible, and easy-to-use mathematical
blending model. The purpose of this proposal is not to provide an accurate blending model.
This can only be accomplished by processing engineers with several testing of different
blends of the ore. However, we needed a blending model as input to mine planning to
show how the blending behavior can change the mine plan.

A short-term mine planning considering a nonlinear blending behavior was shown
in chapter 5. The usual approach of optimizing mine scheduling based on the individual
block properties cannot be applied because the properties of a block depend on the feed
volume that it will compose (the blending unit). Therefore, it is a recursive problem. The
proposed solution is to optimize through simulated annealing, where several possibilities
of blending units are tried and the algorithm keeps the best solution. The algorithm
groups heterogeneous blocks in the same blending unit when blending is synergistic. When
blending is antagonist, the algorithm groups homogeneous blocks in the same blending unit.
For a small demonstration study consisting of 160 blocks, four thousand iterations were
enough to reach convergence and increase the recovered metal. For the specified synergistic
case, there was a 0.32% increase. For the specified antagonistic case, the increase was
2.77%. These numbers should not be evaluated quantitatively, as it is a consequence of a
particular example. The purpose is to demonstrate that we can plan better considering the
nonlinear blending of metallurgical variables. This small increase in metallurgical recovery
can result in significant raise in the project’s value.

The simulated annealing algorithm was applied to the multivariate spatial models
in chapter 7. When simulating the mine operation, where the ore is homogenized in piles,
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the optimization did not increase the result much. However, when simulating a scenario
without piles, the algorithm significantly increased the result. The conclusion is that this
algorithm can provide the best plan considering nonlinear blending and can also be used
to evaluate the need for homogenization piles.

7.4 Future Work
Some topics of future work related to this thesis are:

• A better understanding of the data obtained in the processing plant and how they
relate to bench-test data through an upscaling law. Ore reconciliation problems are
intrinsically linked to the difficulty in sampling and analyzing all the complexities in
a plant;

• A well-defined evaluation of the circumstances under which a nonlinear variable can
be kriged without harming the estimation;

• The development of a model that predicts the effective metal recovery from multi-
variate functions, related to chemical, lithological, and mineralogical variables; and
its use as an input to the proposed scheduling algorithm;

• The application of the proposed methodology of scheduling blocks based on blending
units to long-term mine planning. The impacts may be seen in the life-of-mine
and the project’s economic value. Blocks considered waste could be blended with
ore blocks in the case of synergistic blending. In the case of antagonistic blending,
different processing routes could be planned for different types of ore.

• Evaluation of the trade-off between using homogenization piles or using the proposed
scheduling algorithm to take advantage of the natural blending. Homogenization
piles have considerable costs that could be avoided by scheduling blocks considering
the natural mixture that occurs during the mining and processing operations. The
question is whether this natural blending is enough to meet the plant’s specifications
for the material feed.

• The improvement of this study by considering ore feeding and ore mixtures in a
continuous flow and not in batches. This study used the simplification that the plant
feed can be discretized in defined feed volumes, when the most realistic would be to
consider that the plant feed changes gradually, being better represented through a
continuous flow.
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7.5 Final comment
Recall the thesis statement: A nonlinear geometallurgical variable value of an

individual block depends on the set of blocks that are blended with it (blending unit) when
processed. It is possible to model the nonlinear blending behavior of a variable and use it
to optimize mine scheduling when nonadditive geometallurgical variables are of interest.

This thesis showed that estimating the value of variables to an individual block
can introduce bias if the blending and upscaling behaviors are nonlinear and disregarded.
The nonlinear blending behavior must be inferred or modeled experimentally and used to
estimate the effective properties of the blended mixture of blocks. As the individual block’s
value depends on the mixture, the scheduling of the blocks can be optimized, leading to
better results.
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