UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

HIDROGEOLOGIA E HIDROGEOQUÍMICA DO AQUÍFERO URBANO FRATURADO NA REGIÃO METROPOLITANA DE FLORIANÓPOLIS - SC

CRYSTHIAN ZORZO BERNARDI

ORIENTADOR – Ari Roisenberg CO-ORIENTADOR – Antonio Pedro Viero

Governador Celso Ramos, 2021

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

HIDROGEOLOGIA E HIDROGEOQUÍMICA DO AQUÍFERO URBANO FRATURADO NA REGIÃO METROPOLITANA DE FLORIANÓPOLIS - SC

CRYSTHIAN ZORZO BERNARDI

ORIENTADOR – Ari Roisenberg CO-ORIENTADOR – Antonio Pedro Viero

BANCA EXAMINADORA

- Prof. Dra. Maria Paula Casagrande Marimon Universidade do Estado de Santa Catarina - UDESC
- Prof. Dr. José Luiz Silvério da Silva Universidade Federal de Santa Maria - UFSM
- Prof. Pós-Dr. Tiago de Vargas Centro Universitário da Serra Gaúcha – FSG / SAMAE – Caxias do Sul

Dissertação de mestrado apresentada como requisito parcial para a obtenção do Título de Mestre em Geociências.

Governador Celso Ramos, 2021

CIP - Catalogação na Publicação

Bernardi, Crysthian Zorzo Hidrogeologia e Hidrogeoquímica do Aquífero Urbano Fraturado na Região Metropolitana de Florianópolis -SC / Crysthian Zorzo Bernardi. -- 2021. 174 f. Orientador: Ari Roisenberg.
Coorientador: Antonio Pedro Viero. Dissertação (Mestrado) -- Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Programa de Pós-Graduação em Geociências, Porto Alegre, BR-RS, 2021.
1. Hidrogeologia. 2. Hidrogeoquímica. 3. Aquífero Fraturado. 4. Região Metropolitana de Florianópolis.
I. Roisenberg, Ari, orient. II. Viero, Antonio Pedro, coorient. III. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os dados fornecidos pelo(a) autor(a).

AGRADECIMENTOS

Agradeço a todos que fizeram com que esse trabalho fosse possível. À Deus, pois acho que sua presença influencia de alguma maneira em nossas atitudes, à minha família por todo suporte e apoio em todos os momentos, em especial a minha mãe, Marla, e minha vó, Felicita, as quais me ensinaram que o conhecimento é sempre o melhor caminho.

Aos meus orientadores, Ari Roisenberg e Antonio Pedro Viero, que sempre solícitos, me auxiliaram para esclarecer quaisquer dúvidas em relação à dissertação e demais assuntos.

Agradeço também à UFRGS, por toda sua estrutura e corpo docente altamente qualificado. À CPRM, pelo compartilhamento de informações colaborando, dessa forma, para a expansão do conhecimento e a produção científica. A Casan, pelo fornecimento de material auxiliar à pesquisa.

A todos que, de uma maneira geral, sempre estiveram me apoiando, amigos e familiares, meu muito obrigado!

RESUMO

Florianópolis e região metropolitana estão inseridas no Escudo Catarinense, o qual na área de estudo, engloba rochas ígneas e metamórficas relacionadas ao domínio interno do Cinturão Dom Feliciano. Através de 40 poços tubulares registrados no Sistema de Informações de Águas Subterrâneas (SIAGAS) da Companhia de Pesquisa de Recursos Minerais (CPRM) foram realizadas interpretações acerca da caracterização e classificação das águas subterrâneas bem como da produtividade dos aquíferos fraturados. Através de imagens de satélite Alos Palsar e Landsat-8 foram identificados lineamentos com duas direções principais: NE-SW e NW-SE. A média das vazões e das capacidades específicas dos poços demonstram valores de 13,1 m³/h e 0,59 m³/h/m, respectivamente. As estruturas lineares de orientação NW-SE se mostram mais produtivas em relação as de orientação NE-SW, contudo os maiores valores de vazões e a maior média (15,6 m³/h) são referentes às captações influenciadas pelas duas direções simultaneamente. O granito Serra do Tabuleiro é a litologia com maior potencial produtivo da região, seguido do Granito São Pedro de Alcântara e do Complexo Granito-Gnaissico-Migmatítico Águas Mornas. Os dois principais grupos hidroquímicos, segundo Diagrama de Piper, são representados por águas sódicas-bicarbonatadas e cálcicas-bicarbonatadas, sendo a hidrólise de carbonato de cálcio preenchendo as fraturas das rochas como a principal fonte responsável pela alcalinidade da água. A proporção catiônica é definida por Na⁺ > $Ca^{2+} > Mq^{2+} > K^+$. Em dois poços ocorre maior quantidade de Sólidos Totais Dissolvidos (STD), possivelmente relacionados à contribuição de íons provenientes dos sedimentos Quaternários, os quais foram depositados sobre regime oceânico ou a uma leve influência marinha em suas águas.

Palavras chave: Água subterrânea. Aquífero fraturado. Hidrogeologia. Hidrogeoquímica.

ABSTRACT

The crystalline rocks of Florianópolis and metropolitan region are inserted in the Catarinense Shield, encompassing igneous and metamorphic lithologies related to the internal domain of the Dom Feliciano Belt. The work was carried out through information recorded in 40 tubular wells registered in the Sistema de Informações de Águas Subterrâneas (SIAGAS) of the Companhia de Pesquisa de Recursos Minerais (CPRM), producing interpretations about the characterization and classification of groundwater as well as productivity of fractured aguifers. The two main directions of lineaments found through satellite images Alos Palsar and Landsat-8 have NE-SW and NW-SE orientation. The average discharges and specific capacities of the wells show values of 13.1 m³/h and 0.59 m³/h/m respectively. NW-SE linear structures are more productive than NE-SW, however the highest discharge values and the highest average (15.6 m³/h) are related to abstractions influenced by both directions simultaneously. Serra do Tabuleiro Granite is the lithology with the greatest productive potential in the region, followed by São Pedro de Alcântara Granite and the Águas Mornas Granite-Gneiss-Migmatitic Complex. Sodium bicarbonate and calcium bicarbonate waters are the two main hydrochemical groups that occur in the region according to Piper Diagram, with the hydrolysis of calcium carbonate filling the fractures of the rocks as the main source responsible for the alkalinity of the water. The cationic proportion is defined by $Na^+ > Ca^{2+} > Mg^{2+} > K^+$. In two wells, there is a greater amount of Total Dissolved Solids (TDS), possibly related to the contribution of ions from Quaternary sediments, which were deposited under the ocean regime or a slight marine influence in their waters.

Key words: Groundwater. Fractured Aquifer. Hydrogeology. Hydrogeochemistry.

LISTA DE FIGURAS

FIGURA 1 - DISTRIBUIÇÃO DOS USOS DA ÁGUA SUBTERRÂNEA NO BRASIL. FONTE: CPRM APUD INSTITUTO	
TRATA BRASIL E CEPAS/USP (2019)	11
FIGURA 2 - MAPA DE LOCALIZAÇÃO DA ÁREA DE ESTUDO. FONTE: ELABORADO PELO AUTOR	13
FIGURA 3 - DIVISÃO TECTÔNICA DO CINTURÃO DOM FELICIANO NO ESCUDO CATARINENSE. FONTE: BASEI	
(1985)	14
FIGURA 4 - TERRENOS TECTÔNICOS DO ESCUDO CATARINENSE. FONTE: CPRM (2014).	15
FIGURA 5 - MAPA GEOLÓGICO DA ÁREA DE ESTUDO. FONTE: MODIFICADO DE CPRM (2014)	16
FIGURA 6 - SOLOS DA ÁREA DE ESTUDO. FONTE: MODIFICADO DO ALTAS DE SANTA CATARINA (2015)	24
FIGURA 7 - FISSURA ELEMENTAR EM BLOCO DE ROCHA E NO DETALHE SUA RUGOSIDADE. FONTE: CPRM	
(2008)	27
FIGURA 8 - MODELOS DE RUGOSIDADE DE FISSURAS. FONTE: CPRM (2008)	28
FIGURA 9 - RELAÇÃO DO SISTEMA CO2 – HCO3 CO32- COM O PH. FONTE: CPRM (2008).	35
FIGURA 10 - FLUXO DE ÁGUA DOCE CONTINENTAL EM DIREÇÃO AO MAR E ZONA DE MISTURA/INTERFACE	
(PONTILHADO) ENTRE ÁGUA DOCE E SALGADA. FONTE: CPRM (2008)	43
FIGURA 11 - ESQUEMA SIMPLIFICADO DE AQUÍFERO COSTEIRO LIVRE; A = POÇO BOMBEANDO ÁGUA PRÓXIMO	ЛА
CUNHA SALINA; B = FLUXO OCEÂNICO; C = FORMAÇÃO DE CONE DEVIDO AO BOMBEAMENTO DE ÁGUA DO	0
AQUÍFERO PRÓXIMO À ZONA DE INTERFACE ENTRE ÁGUA DOCE E SALGADA; D = ZONA DE RECIRCULAÇÃ	0
DA ÁGUA DO MAR SUPERFICIALMENTE; E = AFLORAMENTO DO LENÇOL FREÁTICO. FONTE: OLIVEIRA	
(2016)	44
FIGURA 12 - MAPA HIDROGEOLÓGICO DA ILHA DE FLORIANÓPOLIS. FONTE: GUEDES JR. (1999).	45
FIGURA 13 - LOCALIZAÇÃO DOS POÇOS NA ÁREA DE ESTUDO	50
FIGURA 14 - IMAGEM RGB GERADA ATRAVÉS DAS BANDAS PANCROMÁTICAS "5", "7" E "2", NESSA ORDEM	51
FIGURA 15 - MDT DA ÁREA DE ESTUDO. ILUMINAÇÃO PROVENIENTE DO AZIMUTE 45º	52
FIGURA 16 - MDT DA ÁREA DE ESTUDO. ILUMINAÇÃO PROVENIENTE DO AZIMUTE 135º	53
FIGURA 17 - MDT DA ÁREA DE ESTUDO. ILUMINAÇÃO PROVENIENTE DO AZIMUTE 225º	53
FIGURA 18 - MDT DA ÁREA DE ESTUDO. ILUMINAÇÃO PROVENIENTE DO AZIMUTE 315º	54

LISTA DE TABELAS

TABELA 1 - DADOS DO SATÉLITE LANDSAT-8	29
TABELA 2 - DADOS DO SATÉLITE ALOS.	30
TABELA 3 - CLASSIFICAÇÃO DA ÁGUA CONFORME STD. FONTE: MESTRINHO (2013).	31
TABELA 4 - ESTIMATIVA MÉDIA DA OCORRÊNCIA DOS ELEMENTOS QUÍMICOS E ÍONS INORGÂNICOS EM ÁGUA	
SUBTERRÂNEA. FONTE: MESTRINHO (2013).	32
TABELA 5 - CLASSIFICAÇÃO DAS DUREZAS. FONTE: MESTRINHO (2013).	40
TABELA 6 - NUMERAÇÃO DOS POÇOS NO SIAGAS E RESPECTIVA NUMERAÇÃO NA DISSERTAÇÃO	49

SUMÁRIO

Capítulo 1. Introdução	
1.1 Objetivos	12
Capítulo 2. Contextualização da área de estudo	13
2.1 Localização	13
2.2 Geologia	14
2.2.1 Geologia Regional	14
2.2.2 Geologia Local	15
2.2.2.1 Batólito Florianópolis	17
2.2.2.2 Metassedimentales	22 22
2.2.2.4 Cobertura Sedimentar	23
2.3 Pedologia	23
2.4 Aspectos hidrogeológicos	25
Capítulo 3. Revisão conceitual e bibliográfica	27
3.1 Aquíferos fraturados	27
3.2 Estruturas lineares e imagens de satélite	28
3.3 Características físico-químicas das águas subterrâneas	30
3.3.1 Parâmetros físicos	30
3.3.2 Parâmetros químicos	32
3.4 Água subterrânea em ambientes costeiros	43
3.5 Trabalhos anteriores na região de estudo	44
Capítulo 4. Métodos empregados	48
4.1 Revisão bibliográfica	48
4.2 Seleção de poços	48
4.2.1 Denominação dos poços	49
4.3 Análise das estruturas lineares	51
4.4 Análise hidrogeológica, hidrogeoquímica e processamento dos dados	54
Capítulo 5. Artigo submetido	62
Capítulo 6. Anexos	83
Anexo I Dados hidrogeológicos	83
Anexo II Parâmetros físico-químicos	86
Anexo III Análise química enviada pela Casan	93
Anexo IV Dados gerais, perfis construtivos dos poços e perfis litológicos dos locais	de perfuração
	95

Estrutura da dissertação

Esta dissertação de mestrado está estruturada na forma de artigo científico submetido à revista Environmental Earth Sciences (*Qualis* Capes A3). Sua organização compreende os seguintes capítulos:

Capítulo 1. Abordagem inicial sobre o tema da dissertação por meio da introdução, sendo apresentadas as justificativas e, posteriormente, os objetivos do estudo.

Capítulo 2. Refere-se à contextualização da área de pesquisa, englobando localização, geologia, pedologia e aspectos hidrogeológicos.

Capítulo 3. Destinado às revisões conceituais e bibliográficas.

Capítulo 4. Demonstração dos métodos empregados para elaboração do estudo.

Capítulo 5. Artigo submetido

Capítulo 6. Anexos

Capítulo 1

Introdução

A água subterrânea, constituinte do ciclo hidrológico, é considerada de extrema importância para a humanidade destacando-se por seu suprimento hídrico nos setores doméstico, agrícola e industrial a depender da sua classificação com base na norma 396/2008 do CONAMA. Sua demanda vem aumentando por tornar-se alternativa em áreas com recursos hídricos superficiais escassos podendo, também, representar economia e qualidade (Bernardi, 2017). De toda água presente na Terra, 97,5% é constituída pelos oceanos, mares, lagos e aquíferos de água salgada, os 2,5% restantes são águas doces, das quais 68,7% encontram-se em glaciares, tornando-se de difícil acesso, 30,1% correspondem as águas subterrâneas e 1,2% as águas superficiais e atmosférica (Shiklomanov, 1993 apud Bernardi, 2017). Dados estes que enfatizam a relevância com que devem ser tratados os recursos hídricos, uma vez que as águas doces de mais fácil obtenção correspondem a pequena fração da água total da Terra. As informações analíticas e hidrogeológicas em conjunto de suas interpretações e classificações são de extrema importância quando se busca uma melhor gestão das águas subterrâneas.

Segundo a CPRM apud Instituto Trata Brasil e Cepas/USP (2019), no Brasil, 30% da água subterrânea é usada para uso doméstico, 24% para a atividade agropecuária, 18% é destinada ao abastecimento público urbano, 14% está relacionada ao uso múltiplo, 10% abastece a atividade industrial e os 4% restantes são utilizados para outras aplicações (lazer, etc.) conforme demonstra a figura 1.

Figura 1 - Distribuição dos usos da água subterrânea no Brasil. Fonte: CPRM apud Instituto Trata Brasil e Cepas/USP (2019).

De todos os municípios brasileiros (5.570), 36% são totalmente abastecidos por água subterrânea e 16% são parcialmente abastecidos (ANA, 2010).

Dessa forma, o aprofundamento no conhecimento em relação às águas subterrâneas é imprescindível, visto que através da sua correta e consciente utilização, torna-se uma forma extremamente viável de disponibilidade hídrica para os diversos usos da população.

Uma vez que não ocorrem trabalhos destacando a hidrogeoquímica e a hidrogeologia, esta última sob o ponto de vista produtivo, em relação aos aquíferos fraturados de Florianópolis e região metropolitana, o presente estudo se apresenta como uma forma de suprir tal lacuna com informações que contribuem para um maior conhecimento e auxiliam para que ocorra uma melhor gestão dos mananciais subterrâneos.

Há a hipótese de que possa prevalecer nos aquíferos fraturados da região águas com tendência alcalina devido a hidrólise de carbonato de cálcio preenchendo fraturas e que, localmente, possa ocorrer variância considerável na concentração de alguns íons devido à fatores como proximidade com o oceano, diferença litológica e preenchimento mineral em fraturas.

1.1 Objetivos

Como objetivo geral do estudo está a caracterização hidrogeoquímica e hidrogeológica dos aquíferos cristalinos da região metropolitana de Florianópolis. Estruturando o objetivo geral tem-se os seguintes objetivos específicos:

- Classificar geoquimicamente as águas subterrâneas dos aquíferos fraturados da região estudada;
- Relacionar o conteúdo químico presente na água subterrânea com as litologias presentes na região;
- Estabelecer os fatores e reações principais que originam a química presente nas águas subterrâneas dos aquíferos cristalinos;
- Analisar o potencial hídrico da área junto às direções das estruturas lineares rúpteis;
- Determinar as litologias com maior produtividade;
- Reconhecer as áreas com maior potencial hídrico;

Capítulo 2

Contextualização da área de estudo

2.1 Localização

A região que compreende os aquíferos estudados situa-se na parte Leste do Estado de Santa Catarina, abrangendo a capital Florianópolis e os municípios de Palhoça, Santo Amaro da Imperatriz, Águas Mornas, São José, São Pedro de Alcântara, Antônio Carlos, Biguaçu e Governador Celso Ramos (Fig. 2). As principais vias de acesso são a BR-101, pelos limites sul e norte, e as rodovias SC-281 e BR-282, pela divisa oeste.

Figura 2 - Mapa de localização da área de estudo. Fonte: elaborado pelo autor.

2.2 Geologia

2.2.1 Geologia Regional

As rochas cristalinas do local estão situadas na parte meridional da Província da Mantiqueira (Almeida *et al.*, 1977), caracterizada como um orógeno Neoproterozoico originário a partir do amalgamento do Paleocontinente Gondwana Ocidental relacionado ao Ciclo Brasiliano/Pan Africano. Compõem a Província da Mantiqueira os cinturões Araçuaí, Ribeira e Dom Feliciano. A evolução deste último envolveu subducção de crosta oceânica devido ao fechamento do antigo Oceano Charrua, com posterior colisão de arcos magmáticos (770 – 680 Ma), seguido de fechamento do paleoceano Adamastor e colisão entre a Microplaca Nico Perez e os Crátons Rio de la Plata e Kalahari no final do Neoproterozoico (Chemale Jr. *et al.*, 2016).

O Cinturão Dom Feliciano em Santa Catarina, segundo Basei (1985), é uma das duas grandes unidades geotectônicas do Escudo Catarinense, sendo dividido em domínio externo, intermediário e interno separados por duas zonas de cisalhamento regionais (Itajaí-Perimbó e Major Gercino) conforme demonstra a figura 3. Os aquíferos estudados são relativos às rochas pertencentes ao domínio interno.

Figura 3 - Divisão tectônica do Cinturão Dom Feliciano no Escudo Catarinense. Fonte: Basei (1985).

A CPRM (2014) divide o Escudo Catarinense em quatro terrenos tectônicos (Paranaguá, Luís Alves, Tijucas e Florianópolis) separados por três zonas de Cisalhamento (Palmital, Itajaí-Perimbó e Major Gercino) conforme a figura 4. As rochas que compõe os aquíferos cristalinos objeto de estudo da dissertação localizamse no Terreno Florianópolis compreendendo as rochas ígneas relacionadas ao Batólito Florianópolis, as metassedimentares da Formação Queçaba e as metamórficas da Unidade Granito-Gnaissica-Migmatítica Águas Mornas (Fig. 5).

Todas as descrições litológicas e mineralógicas abaixo, bem como as séries composicionais, posicionamentos tectônicos e contatos entre as rochas da área de estudo foram realizados por CPRM (1997, 2014).

Figura 5 - Mapa geológico da área de estudo. Fonte: Modificado de CPRM (2014).

2.2.2.1 Batólito Florianópolis

Suíte Intrusiva Maruim/Litologias Pré a Sin-colisionais/Álcali-cálcicas

Tonalito Forquilha

Predominantemente tonalitos, com quartzo-dioritos e quartzo-monzodioritos ocorrendo na borda do batólito. Apresenta textura equigranular com granulação fina a grossa e sutil lineamento de fluxo ígneo. Possui fácies com cristais bem desenvolvidos de hornblenda (em média 0,5 cm, chegando a 2,0 cm) e xenólitos anfibolíticos fluidais com 5 a 10 cm de comprimento. Ao microscópio demonstram ocasionalmente pórfiros de plagioclásio e/ou hornblenda de até 8 mm.

A zonação do plagioclásio varia de andesina no centro a oligoclásio nas bordas, não raro apresentando alterações para epidoto e sericita. Também são comuns inclusões poiquilíticas de biotita e hornblenda. O anfibólio apresenta-se frequentemente maclado com inclusões de apatita. A biotita, em geral, está intercrescida com a hornblenda e, quando poiquilítica pode estar cloritizada. Quando presente, o k-feldspato é intersticial. Os minerais acessórios compreendem apatita, esfênio, zircão e opacos. Como produtos de alteração incluem-se as cloritas, carbonatos, muscovita e argilominerais.

O principal ponto de exposição do Tonalito Forquilha é na borda sudoeste da área de estudo. Ocorre nos municípios de Palhoça, Santo Amaro da Imperatriz, Antônio Carlos, São Pedro de Alcântara e, principalmente, Águas Mornas.

Granodiorito do Alto da Varginha

Predominantemente granodioritos, com quartzo-monzodiorito, quartzomonzogranito e monzogranito subordinados. Normalmente leucocráticos, sendo mesocráticos em contato com rochas diatexíticas do embasamento. São equigranulares com granulação fina a média contendo eventual estrutura de fluxo magmático marcada através de minerais máficos.

A mineralogia essencial apresenta plagioclásio, k-feldspato e quartzo. Biotita e anfibólio são varietais, enquanto apatita, zircão, esfêno e opacos são acessórios. Clorita, sericita, epidoto e carbonatos aparecem como minerais de alteração. Existe

variação composicional na unidade entre redução de máficos e plagioclásio e aumento de k-feldspato e quartzo.

Em muitas áreas o Granodiorito do Alto da Varginha aparece contornando o Tonalito Forquilha em contato transicional. Na divisa entre os municípios de São José e Biguaçu é intrusivo no Complexo Águas Mornas. Em relação ao Granito São Pedro de Alcântara demonstra contato normal e intrusivo.

Granito Rio das Antas

Sienogranitos e monzogranitos com quartzo-monzonitos e quartzo-sienitos ocorrendo subordinamente. Rochas leucocráticas de coloração cinza clara marcadas por textura porfirítica com fenocristais de feldspato imersos em matriz de granulação média.

A mineralogia principal demonstra quartzo, feldspato alcalino, plagioclásio e biotita. Os minerais acessórios compreendem esfêno, apatita, zircão e opacos, já os secundários são compostos por muscovita, sericita, clorita, epidoto e óxidos de ferro.

Ocorre nas divisas entre os municípios de Santo Amaro da Imperatriz, Águas Mornas e São Pedro de Alcântara.

Granito São Pedro de Alcântara

Dominantemente monzogranitos com menor ocorrência de sienogranitos e quartzo-monzonitos. Possuem coloração cinza-escuro e granulação grosseira com pórfiros esbranquiçados de feldspato alcalino (1,0 a 1,5 cm). Das unidades da Suíte Maruim é a de maior distribuição. Engloba, por vezes, enclaves do Granodiorito do Alto da Varginha e do Tonalito Forquilha.

É constituído em sua mineralogia principal por feldspato alcalino, quartzo, plagioclásio, biotita e, em menor quantidade, opacos, anfibólios e muscovita. Como minerais acessórios compreende zircão, esfênio, allanita, e apatita enquanto os produtos de alteração são representados por clorita, sericita, epidoto, carbonato e esfênio. Tem ocorrência em Florianópolis, na parte sul da ilha, Paulo Lopes, Palhoça e Santo Amaro da Imperatriz.

Suíte Pedras Grandes/Litologias tardi a pós-colisionais/Alcalinos

Granito Ilha

Biotita monzogranitos e leucossienogranitos subordinados de coloração cinza a rósea e textura equigranular com granulação média a grossa. Isótropos ou com eventual estrutura de fluxo ígneo. Apresenta-se intrusivo no Complexo Águas Mornas e nas rochas da Suíte Intrusiva Maruim já que demonstra xenólitos dessas unidades em seu interior. Por outro lado, é cortado por diques riolíticos e apófises graníticas pertencentes a Suíte Plutono-Vulcanica Cambirela, assim como por diques de diabásio relacionados ao Evento Serra Geral.

Os dois litotipos da unidade ocorrem devido a uma diferenciação demonstrada através da mineralogia que é marcada por:

 Diminuição de máficos até o desaparecimento do anfibólio e, na rocha leucocrática, da biotita;

- Diminuição de plagioclásios tanto em quantidade como em dimensão;

Aumento do tamanho dos cristais de k-feldspato bem como de albita intercristalina;
Aumento de quartzo tanto em quantidade como em dimensão;

Apresenta como mineralogia essencial plagioclásio (oligoclásio sódico), kfeldspato, quartzo e biotita e anfibólio. Os minerais acessórios são compostos por zircão, allanita, apatita e opacos. Dentre os minerais secundários estão epidoto, clorita, sericita/muscovita, titanita, carbonatos e fluorita.

Ocorre em grande parte da ilha de Florianópolis, ilhas oceânicas próximas dessa região, aflorando também em cidades vizinhas como Palhoça, São José, Biguaçu, Governador Celso Ramos e Tijucas.

Granito Serra do Tabuleiro

Predominantemente biotita sienogranitos e leucossienogranitos (83% das amostras analisadas), sendo o restante classificados como quartzomonzonitos/quartzo-sienitos (9%) e monzogranitos (8%). Apresentam coloração rosada, cristais equigranulares médios a grossos, sendo homogêneos e isótropos. Com as litologias mais antigas apresenta contato tectônico. É cortado por diques de riolito da Suíte Plutono-Vulcânica Cambirela e, em sua borda, apresenta cobertura por tufos riolíticos relacionados a essa mesma unidade.

A mineralogia principal dos biotita sienogranitos consiste em feldspato alcalino, quartzo e plagioclásio, possuindo como acessórios biotita/clorita, zircão, apatita e allanita. Os minerais de alteração são clorita, sericita, epidoto, carbonatos, argilominerais, mica branca, opacos, esfênio e fluorita.

Os leucossienogranitos, em termos mineralógicos, são mais ricos em quartzo e possuem menos plagioclásio e máficos, sendo inexpressiva a presença da biotita e, em 50% das lâminas, demontrando o acessório fluorita. Texturalmente diferem dos biotita sienogranitos por apresentarem, mais raramente, textura heterogranular média a fina, podendo ser porfirítica.

Ocorre como batólito na parte sul da área de estudo de forma aproximadamente circular com um diâmetro em torno de 27 km. Aflora em Paulo Lopes, São Bonifácio, Santo Amaro da Imperatriz, Águas Mornas e Palhoça.

Granito Angelina

Biotita sienogranitos equigranulares, leucossienogranitos porfiríticos e monzogranitos. Com coloração cinza-rosado, apresenta textura rapakiwi localmente e demonstra granulação média a grossa equigranular a porfirítica. Os pórfiros podem ser de k-feldspato, quartzo e, raramente, de plagioclásio.

A mineralogia principal é marcada por quartzo, feldspato potássico e plagioclásio, enquanto os acessórios são representados por biotita, muscovita, zircão, epidoto e fluorita. Dentro da área de estudo, aflora em uma pequena faixa de orientação NE-SW na cidade de Antônio Carlos.

Suíte Plutono-Vulcânica Cambirela/Tardi a pós-colisonais/Alcalinos

Granito Itacorumbi

Sienogranito com monzogranito subordinado. Possui coloração cinza-claro com tonalidades esverdeadas e avermelhadas. Os cristais apresentam granulação fina a média, em partes variado a porfirítica com fenocristais de k-feldspato apresentando

tamanho entre 2,0 a 4,0 cm envoltos por matriz fina. Diques aplíticos e de microgranito são relacionados a essa litologia.

O contato com o Granito Ilha se dá através de falhamentos com associação à diques de riolito. Tem área de exposição somente na parte centro-leste da Ilha de Florianópolis onde engloba xenólitos riolíticos da Suíte Plutono-Vulcânica Cambirela e do Granito Ilha.

Riolito Cambirela

Rochas vulcanogênicas caracterizadas por derrames de riolitos predominantemente e, em menor proporção, de riodacitos, dacitos, tufos riolíticos e ignimbríticos, além de diques riolíticos e riodacíticos.

É dividida em duas facies:

I) Riolitos e riodacitos

II) Tufos ignimbríticos

Os derrames e diques, apresentam cor cinza-escuro na matriz afanítica a muito fina com pórfiros de quartzo e k-feldspatos (5-11 mm) brancos ou rosas. Podem apresentar estruturas de fluxo e shards e fiammes estirados devido ao fluxo.

Os riolitos são compostos por quartzo, k-feldspato e plagioclásios em maior quantidade contendo biotita, zircão, epidoto e allanita como minerais acessórios. A alteração intempérica dá origem a clorita, sericita e carbonato. Ocorrem veios contendo quartzo, clorita, carbonato e epidoto.

Nos riodacitos, os fenocristais ocorrem com predomínio de plagioclásios e, subordinamente, de quartzo.

Os dacitos demonstram fenocristais de plagioclásio, k-feldspato e quartzo com matriz microcristalina de quartzo, feldspato, biotita, anfibólio, opacos e epidoto.

Os tufos, por sua vez, possuem coloração acinzentada, apresentando algumas manchas verdes em formas alongadas com escala centimétrica, originadas por devitrificação de shards de vidro o que ressalta a textura fluidal.

Essa unidade engloba xenólitos do Granito Serra do Tabuleiro e está associada, geneticamente e temporalmente, com o Granito Itacorumbi.

As maiores exposições encontram-se bordejando o flanco leste da Serra do Tabuleiro e ao sul da Ilha de Florianópolis.

2.2.2.2 Metassedimentares

Formação Queçaba

Formada por quartzitos, micaxistos, quartzo-xistos e filitos. Os quartzitos apresentam 90% de quartzo e traços de muscovita, clorita, turmalina, zircão e opacos. Os xistos são compostos por quartzo, biotita, muscovita, clorita, turmalina, epidoto, zircão e opacos. A mineralogia dos filitos demonstra quartzo, muscovita, clorita, turmalina, zircão, esfênio e rara biotita. Estes últimos, por vezes, grafitosos. O metamorfismo da Formação Queçaba é de xisto-verde inferior. É aflorante no sul da cidade de Águas Mornas.

2.2.2.3 Complexo Granito-Gnaissico-Migmatítico

Complexo Águas Mornas

Compreende uma associação de ortognaisses polifásicos com paleossoma de natureza básica a intermediária (ortoanfibolitos, metagabros, metabasitos e metadioritos) e gnaisses quartzo-dioríticos e granodioríticos. As principais áreas de exposição são à noroeste e sudoeste na área de estudo, ocorrendo também na borda leste do continente nos municípios de São José e Biguaçu.

É dividida em três unidades litológicas:

 A primeira e mais antiga, evidenciada através de enclaves básicos, é composta por dominantemente biotita-anfibólio tonalitos, anfibólio-biotita tonalitos e quartzo dioritos. As texturas predominantes são heterogranulares fina à media com orientação dos máficos resultando em bandamento gnáissico.

Esses litotipos demonstram como mineralogia essencial quartzo, k-feldspato, plagioclásio, biotita e hornblenda. A mineralogia acessória é composta por titanita, opacos, allanita e os produtos de alteração compreendem clorita, sericita, epidoto e actinolita.

II) A segunda unidade é derivada da fusão parcial da primeira originando ortognaisses quartzo-monzoníticos, que apresentam em sua mineralogia principal quartzo, kfeldspato, plagioclásio (andesina), biotita e, menos comumente, anfibólio (hornblenda verde). Os minerais acessórios são representados por titatina, zircão, opacos e allanita e os secundários por clorita, sericita, epidoto e carbonato. As texturas são principalmente heterogranulares fina à média com alguns locais demonstrando arranjos intergranulares subofíticos.

III) A terceira e última unidade é caracterizada por uma massa neossomática monzogranítica com abundância de enclaves dos componentes anteriores. É constituída, principalmente, por quartzo, k-feldspato, plagioclásio e biotita, apresentando como acessórios titanita, zircão, opacos e resquícios de hornblenda verde. A mineralogia secundária é composta por clorita, sericita, epidoto, óxido de ferro e carbonato. Texturas heterogranulares fina à média são preponderantes.

2.2.2.4 Cobertura Sedimentar

Os depósitos sedimentares que compreendem a área de estudo possuem idade Holocênica. Há presença de Depósitos de Feixes de Restinga, Depósitos Flúvio-Deltaicos Marinhos, Depósitos de Planície de maré, Depósitos Eólicos, Depósitos de Planície Lagunar, Depósitos Colúvio-Aluvionares, Depósitos Praiais Atuais e Depósitos Aluvionares.

2.3 Pedologia

Os solos constituintes da região são derivados das rochas sedimentares, ígneas e metamórficas, sendo também compostos por sedimentos inconsolidados de origem aluvial, coluvial e eólica.

Os tipos pedológicos são formados por Cambissolos Húmicos ou Háplicos, Argilossolos Vermelhos-Amarelos, Gleissolos Melânicos ou Háplicos, Neossolos Litólicos ou Regolíticos, Organossolos Háplicos, Neossolos Quartzarênicos e Solos Indiscriminados de Mangue (Atlas de Santa Catarina, 2015) conforme demonstra a figura 6.

Figura 6 - Solos da área de estudo. Fonte: Modificado do Altas de Santa Catarina (2015).

Os Cambissolos possuem baixo grau de desenvolvimento pedogenético com constituição mineral e horizonte B incipiente geralmente pouco espesso.

Os Argilossolos são comuns em regiões tropicais e subtropicais onde o intemperismo é acentuado. Demonstram material mineral e, normalmente, podem apresentar diferença nas cores do horizonte A e B devido ao acúmulo de argila no horizonte B.

Os Gleissolos são compostos por material mineral com horizonte glei. Ocorrem, normalmente, em terrenos planos com acúmulo de água, resultando em um ambiente redutor devido a saturação de água (Lepsch, 2011). Os Neossolos demonstram pequena evolução pedogenética. O subgrupo Regolítico possui similaridade com o subgrupo Litólico e apresentam horizonte A sobre o horizonte C que, geralmente, ocorre misturado a granulometrias maiores chegando a matacões. O subgrupo Quartzarênicos possuem textura arenosa sem ocorrência de horizonte B. O conteúdo de areia, normalmente, é maior que 90%.

Os Organossolos são pouco evoluídos e apresentam perfil mais escurecido devido a ocorrência de material orgânico resultante do acúmulo de restos vegetais. Possuem ambientes mal drenados ou úmidos e frios de altitude elevada (Embrapa, 2013).

Os Solos Indiscrimados de Mangue são halomórficos, pouco desenvolvidos, bastante argilosos e com altos teores de sais devido ao contato com água oceânica.

2.4 Aspectos hidrogeológicos

A CPRM (2013) descreve 17 unidades hidroestratigráficas em Santa Catarina: Embasamento Cristalino, Campo Alegre, Itajaí, Mafra, Rio do Sul, Rio Bonito, Palermo, Irati, Serra Alta, Teresina, Rio do Rastro, Piramboia, Botucatu, Serra Geral, Alcalinas, Sedimentos Cenozoicos e o Sistema Aquífero Guarani (SAG), que corresponde ao sistema Botucatu/Piramboia.

Os aquíferos estudados na presente dissertação pertencem a unidade Embasamento Cristalino, condizentes com o Escudo Catarinense, o qual aflora em uma área de aproximadamente 20.000 km², percorrendo de maneira praticamente paralela quase toda faixa atlântica do estado em uma largura variável em torno de 40 a 80 km, limitando-se ao norte com o estado do Paraná e ao sul com a região carbonífera.

Em termos litológicos, essa unidade engloba diversos tipos de rochas cristalinas com idades e gêneses diferentes. O fato de todas estarem agrupadas em uma única unidade se faz por possuírem características hidrogeológicas semelhantes (CPRM, 2013). Geralmente, apresentam um pequeno manto de alteração superficial e níveis d'água rasos em locais aplainados, variando de aflorante à aproximadamente 3 metros, enquanto em relevos mais acentuados, excepcionalmente, ultrapassa 6 metros. A profundidade média dos poços de captação é de 100 metros, raramente alcançando 300 metros. Apresenta vazões variáveis entre 0,5 a 20 m³/h (CPRM, 2013). As principais direções de lineamento são NNE-SSW, ENE-WSW e NW-SE. Dentre essas, a que possui maior capacidade de armazenamento e produção de água

são as estruturas NW-SE. Tais estruturas, com idade pré-cambriana, foram reativadas mais vezes e por possuírem tectonismo distensivo, tornando-as mais abertas, refletem em um aumento do poder de acumulo e circulação de água e, consequentemente, em uma maior produção hídrica. Os lineamentos NNE-SSW são originários de tectonismo compressivo, resultando em uma menor competência para concentração de água subterrânea sendo, dessa forma, menos interessantes do ponto de vista rentável a sua extração, apesar das suas grandes extensões. As características das estruturas ENE-WSW, antigas falhas reativadas relacionadas aos movimentos de alçamento da Serra do Mar, também não se mostram atraentes do ponto de vista produtivo (CPRM, 2013).

Ao sul do estado é possível encontrar águas termominerais dos tipos oligomineral, mesotermais e radioativas na fonte. As estruturas que as condicionam são as mesmas que também controlam as mineralizações de fluorita e diques de diabásio. As vazões das águas termais ultrapassam 35 m³/h (CPRM, 2013).

Capítulo 3

Revisão conceitual e bibliográfica

3.1 Aquíferos fraturados

Os meios fissurados que armazenam água subterrânea possuem como característica a anisotropia e a heterogeneidade ou fraca homogeneidade, sendo representados pelas rochas ígneas e metamórficas, chamadas de cristalinas. Nesse tipo de aquífero, a água estará contida nas descontinuidades da rocha, simbolizadas por juntas, diaclases, xistosidades e, principalmente, fissuras, que compreendem as falhas e fraturas contidas no material rochoso derivadas de esforços tensionais relacionados a deformações rúpteis. Em casos específicos, a água também pode ocorrer em vesículas derivadas de material dissolvido (CPRM, 2008).

A representação de uma única fissura dentro do maciço rochoso é chamada de fissura elementar (Fig. 7), enquanto o meio fissurado constitui um conjunto de fissuras elementares.

As características da fissura elementar que influenciam na capacidade hidrodinâmica do aquífero fraturado são a abertura, a rugosidade das paredes (Fig. 8) e o material de preenchimento (CPRM, 2008). Já o meio fissurado depende, também, da densidade e conectividade entre as fraturas bem como da distância para áreas de recarga e do grau de confinamento do aquífero.

Alguns aspectos irão influenciar na dimensão da abertura de uma fissura e, consequentemente, em uma maior capacidade de armazenamento de água, são eles: a quantidade e a orientação dos esforços tectônicos atuantes assim como a característica compressiva ou distensiva dos mesmos.

Figura 7 - Fissura elementar em bloco de rocha e no detalhe sua rugosidade. Fonte: CPRM (2008).

Figura 8 - Modelos de rugosidade de fissuras. Fonte: CPRM (2008).

Segundo Costa (1986), os materiais podem preencher total ou parcialmente uma fratura sendo derivados da própria rocha, normalmente fragmentos resultantes de zonas de cisalhamento, ou provenientes de outras fontes como em recristalizações de sais, soluções mineralizantes ou detritos superficiais que, em meio aquoso, decantam no interior das fissuras.

3.2 Estruturas lineares e imagens de satélite

A CPRM define lineamento como:

Uma feição isolada ou conjunto de feições de topografia, de drenagem ou de variação de tonalidade em imagem (foto aérea, satélite) e mapa topográfico que se apresenta como um alinhamento e que reflete elementos de estrutura geológica, como direções de camadas, de xistosidade, de falha, de cinturão de cisalhamento e de sistemas de fraturas.

Diante do exposto, os lineamentos são feições estruturais que refletem, geomorfológicamente, o meio fissurado. Uma das maneiras amplamente utilizada e eficaz de reconhecimento de tais estruturas é por meio das imagens de satélite.

Uma vez que os as estruturas lineares são extremamente importantes quanto ao armazenamento de água e a hidrodinâmica do aquífero, a presente dissertação utiliza imagens dos satélites Landsat-8 e ALOS para destacar os lineamentos e relacioná-los, através das suas orientações, com a capacidade produtiva dos poços.

O programa Landsat é resultado de uma cooperação entre o United State Geological Servey (USGS) e a National Aeronautics and Space Administration (NASA) que, em 1972, projetou ao espaço o primeiro satélite da série. O Landsat-8 teve seu lançamento efetuado em fevereiro de 2013 e opera com dois sensores (OLI/TIRS) que juntos geram 11 tipos de bandas espectrais conforme demonstra a tabela 1.

Sensor	Banda Espectral	Resolução Espacial (m)
	B1 – Azul costeiro	30
	B2 – Azul	30
	B3 – Verde	30
OLI (Operational Land Imager)	B4 – Vermelho	30
	B5 – Infravermelho próximo	30
	B6 – Infravermelho médio	30
	B7 – Infravermelho médio	30
	B8 – Pancromática	15
	B9 – Cirrus	30
TIRS (Termal Infrared	B10 – Infravermelho termal	100
Sensor)	B11 – Infravermelho termal	100

Tabela 1 - Dados do satélite Landsat-8.

O satélite ALOS (Advanced Land Observing Satellite) foi lançado em janeiro de 2006 pela Japan Aerospace and Exploration Agency (JAXA), ficando em operação até maio de 2011. O ALOS foi produzido com intuito de fomentar pesquisas científicas de sensoriamento remoto ligadas as áreas de desenvolvimento sustentável e monitoramento de desastres naturais e recursos naturais (Embrapa). O satélite operava com três sensores a bordo: PRISM (Panchromatic Remote-Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer-type 2) e PALSAR (Phased Array type L-band Synthetic Aperture Radar) produzindo, ao total, 9 canais/bandas espectrais como demonstrado na tabela 2.

Sensor	Canais/bandas espectrais	s Resolução espacial (m)	
PRISM	Pancromática	2,5	
AVNIR-2	1	10	
	2	10	
	3	10	
	4	10	
PALSAR	Fine – single	7-44	
	Fine – dual	14-88	
	ScanSar	100	
	Polarimetric	24-89	

Tabela 2 - Dados do satélite Alos.

3.3 Características físico-químicas das águas subterrâneas

3.3.1 Parâmetros físicos

Turbidez

Representa a dificuldade da passagem de luz pela água por meio dos sólidos em suspensão (silte, argila, matéria orgânica e inorgânica). Os valores de turbidez são analisados mediante turbidímetro ou nefelômetro sendo expressos em FTU (Formazin Turbidity Unit) ou em Unidade Nefelométrica de Turbidez (UNT).

Cor

É o resultado das partículas dissolvidas ou em suspensão na água sendo obtida com a remoção da turbidez. Como exemplo de cores, pode demonstrar coloração arroxeada com a presença significativa de ferro, negra quando rica em manganês e amarelada através de ácidos húmicos (CPRM, 2008).

Temperatura

Interfere, principalmente, na velocidade das reações e na solubilidade dos gases. O grau geotérmico aumenta com a profundidade, em média, 1º/30 metros, à exceção de casos envolvendo gêisers, vulcanismo, plutonísmo, etc. Segundo a CPRM (2008) as variações térmicas sazonais impostas aos aquíferos em partes mais

profundas, normalmente, são baixas (1 a 2ºC), sendo os aquíferos freáticos os que mais sofrem interferência da temperatura de superfície.

Sólidos Totais Dissolvidos (STD)

Esse parâmetro representa a concentração de todo material dissolvido na água (substâncias orgânicas e inorgânicas). Indica o peso total dos constituintes minerais por unidade de volume. Nas águas subterrâneas naturais, é possível obter uma estimativa dos sólidos totais dissolvidos através da multiplicação da condutividade por um fator variável entre 0,54 e 0,96, visto que a concentração de STD é proporcional à condutividade em µMhos (Mestrinho, 2013) como demonstrado abaixo:

STD (mg/L) = (0,54-0,96) x condutividade (µMhos) Condutividade (µMhos) = soma dos cátions (meq/L) x 100

A água é classificada através dos sólidos totais dissolvidos conforme a tabela 1.

Classificação	STD (mg/L)
Doce	<1000
Ligeiramente salobra	1.000 a 3.000
Moderadamente salobra	3.000 a 10.000
Salgada	10.000 a 100.000
Salmoura	>100.000

Tabela 3 - Classificação da água conforme STD. Fonte: Mestrinho (2013).

Odor e sabor

Fazem referência as características organolépticas da água. A quantidade de sais pode interferir no sabor, contudo em alguns tipos de água não ocorre relação entre os STD e o sabor, pois irá depender do tipo de sal. O odor está relacionado ao sabor.

Condutividade elétrica (C.E)

O aumento da temperatura eleva também a condutividade elétrica sendo necessário observação em relação a temperatura da amostra de água para uma

medida mais precisa da C.E. Os valores encontrados em águas doces naturais geralmente variam entre 5 e 50 μ S/cm, já em águas oceânicas podem alcançar 50.000 μ S/cm. A condutividade também se relaciona ao material em contato com a água. Calcários e basaltos podem apresentar condutividade mais elevada, enquanto granitos e quartzitos tendem a possuir condutividade mais baixa (Mestrinho, 2013).

Salinidade

Representa a quantidade total de espécies dissolvidas em um determinado volume de água e que podem precipitar como sais (CPRM, 2008).

3.3.2 Parâmetros químicos

Os elementos químicos podem ser divididos em constituintes maiores ou principais, menores e traços conforme sua quantificação média em águas subterrâneas (Tab. 4). As descrições dos parâmetros químicos foram realizadas considerando-se os mais relevantes à dissertação ou que, de alguma forma, foram citados nas interpretações.

Constituintes maiores	Constituintes menores	Traços
<u>> 5 mg/∟</u>		
Cloreto	Ferro	Arsenio
Sulfato	Carbonato	Cromo
Bicarbonato	Potássio	Cobre
Sódio	Nitrato	Níquel
Cálcio	Nitrito	Zinco
Magnésio	Flúor	Bário
	Fosfato	Cádmio
	Sulfeto	Mercúrio
	Manganês	Antimônio
	Alumínio	
	Estrôncio	
	Bromo	
	Boro	
	lodo	
	Amônia	

Tabela 4 - Estimativa média da ocorrência dos elementos químicos e íons inorgânicos em água subterrânea. Fonte: Mestrinho (2013).

Sódio (Na⁺)

O sódio é um dos elementos mais abundantes da crosta terrestre estando presente em diversos minerais. Em rochas cristalinas ocorre em plagioclásios, feldspatoides (nefelina e sodalita), micas, anfibólios e piroxênios. Nas rochas sedimentares está presente em grande quantidade em pelitos - devido à adsorção por minerais de argila, em carbonatos de sódios e em depósitos de sais altamente solúveis, como nitrato de sódio, sulfato de sódio e halita, esta última podendo também ser encontrada como conteúdo cimentante em rochas detríticas.

Na água do mar, o sódio apresenta alta concentração devido a não ocorrência da precipitação de minerais de sódio em ambiente aquoso e a limitada adsorção por parte dos minerais de argila. Segundo Deutsch (1997), em aquíferos, a concentração de sódio tende a aumentar a partir de áreas de recarga em direção a áreas mais profundas e de descarga por motivos de preferência de adsorção dos cátions (Al>Ca>Mg>K>Na).

Os teores de sódio em águas naturais variam, em média, entre 0,1 a 100 mg/L, podendo chegar a 11.000 mg/L nos oceanos e a 100.000 mg/L em salmouras naturais.

O excesso de sódio no organismo pode provocar aumento na pressão arterial, sendo também prejudicial às plantas, devido à redução da permeabilidade no solo.

Cálcio (Ca²⁺)

O Cálcio é o quinto elemento mais abundante na crosta terrestre (Press *et al.*, 2006), estando presente em diversos minerais de rochas ígneas e metamórficas como feldspatos, anfibólios, piroxênios, granadas, epidoto, zoisita, wollastonita, apatita, fluorita, etc. Nas rochas sedimentares o cálcio se destaca como constituinte nas rochas carbonáticas, principalmente através dos minerais calcita, aragonita e dolomita. Os sulfatos de cálcio hidratado (gipso) e anidro (anidrita), também contribuem significativamente nas composições de cálcio nos sedimentos (Hem, 1985 apud Goffermann *et al.*, 2015). Importante destacar que o cálcio também participa da constituição de biocarapaças, que podem ser agregadas às rochas sedimentares.

A solubilidade dos sais de cálcio varia de moderada a alta e a contribuição mais significativa para os teores elevados de cálcio nas águas subterrâneas é devido as rochas carbonáticas. O Ca²⁺ também é um dos cátions que classifica a dureza da

água. Em água subterrânea, suas concentrações variam normalmente entre 10 a 100mg/L.

Como nutriente para o organismo participa, principalmente, da constituição de ossos e dentes.

Magnésio (Mg²⁺)

Oitavo elemento em abundância na crosta terrestre (Press *et al.*, 2006), o magnésio está presente, no que diz respeito a mineralogia, principalmente na estrutura de minerais máficos como olivina, anfibólios e piroxênios em rochas básicas e ultrabásicas, além de outros minerais como biotita, granada, cloritas, serpentinas e esmectitas. Em rochas sedimentares, o magnésio está contido, sobretudo, nas carbonáticas, através da dolomita.

Junto com o cálcio, é um dos principais cátions relativos à dureza da água. Em alguns aspectos os dois elementos se assemelham, como em ligações com o bicarbonato e sulfato, no entanto é mais solúvel que o cálcio e não precipita tão facilmente, com tendência a permanecer em solução, o que explica sua concentração elevada em águas oceânicas (CPRM, 2008), que podem demonstrar valores de 1400 mg/L (Mizuno, 2012). Águas meteóricas possuem valores aproximados de 0,4 a 1,6 mg/L de magnésio, enquanto as águas subterrâneas apresentam, em média, teores entre 1 e 40 mg/L.

Bicarbonato (HCO₃⁻), Carbonato (CO₃²⁻) e Dióxido de Carbono (CO₂)

A concentração de CO₂ em água meteórica é pequena (≈ 350mg/L), portanto, sua origem em água subterrânea tem como principais fontes a matéria orgânica disponível no solo, a dissolução de carbonatos e os fenômenos de origem magmática de águas juvenis (CPRM, 2008).

O CO₂ em contato com a água, produz ácido carbônico (Reação 1), que se dissocia dando origem a íons hidróxidos e bicarbonato (Reação 2). O bicarbonato, por sua vez, se dissolve em íons hidróxidos e carbonato (Reação 3).

 $CO_{2} + H_{2}O \leftrightarrow H_{2}CO_{3} (1)$ $H_{2}CO_{3} \leftrightarrow H^{+} + HCO_{3}^{-} (2)$ $HCO_{3}^{-} \leftrightarrow H^{+} + CO_{3}^{2-} (3)$

As reações acima, de equilíbrio do $CO_2 - HCO_3^{-} - CO_3^{2-}$, em contato com a água causam um efeito tampão no pH enquanto existir bicarbonato e/ou carbonato, não ocorrendo variação significativa do pH dessa forma e, por isso, a maioria das águas subterrâneas apresenta pH entre 5,5 e 8,5 (Migliorini; da Silva, 2014), raramente variando entre 3 e 11 (CPRM, 2008), consequentemente, o íon bicarbonato é predominante nesse meio. A maior presença de CO2 indica águas ácidas, enquanto a predominância de CO_3^{2-} remete a águas mais alcalinas. A figura 9 demonstra a distribuição das espécies do sistema carbonático conforme o pH.

Figura 9 - Relação do sistema CO2 - HCO3- - CO32- com o pH. Fonte: CPRM (2008).

A presença de bicarbonato e carbonato na água aumenta a solubilidade de CO₂, que em altos teores auxiliam a dissolver carbonatos em ordem decrescente de solubilidade: magnesita, aragonita, calcita, dolomita, siderita e rodocrosita (CPRM, 2008).

A reação geral da dissolução do CO₂ (Reação 4) depende da temperatura, pressão e atividade do CO₂, sendo expressa como:

$$CaCO_3 + CO_{2(aq)} + H_2O \leftrightarrow Ca^{2+} + 2HCO_3^{-}(4)$$

Sulfato (SO₄²⁻)

Os sulfatos são sais com solubilidade moderada a alta, com exceção dos sulfatos de bário e de estrôncio (CPRM, 2008). As principais fontes de sulfato derivam da oxidação do enxofre existente nas rochas, do ácido sulfídrico proveniente das erupções vulcânicas, da decomposição da matéria orgânica e da dissolução de gipsita e anidrita. Antropicamente, pode haver contribuição de sulfato por meio do SO₂, de gases industriais e de fertilizantes (Balke, 1994).

As águas subterrâneas apresentam teores de sulfato, normalmente, menores que 100 mg/L na forma de SO₄²⁻ e HSO₄⁻. Altas concentrações nesse meio podem indicar efluentes industriais ou domésticos e intrusão salina. As águas oceânicas possuem valores em torno de 3.000 mg/L, enquanto salmouras, acompanhando magnésio e sódio, podem apresentar 200.000 mg/L (Custodio; Llamas, 1983).

Cloreto (Cl⁻)

O cloreto é um ânion bastante solúvel, com tendência a se manter estável em solução sendo, portanto, de difícil precipitação (Mizuno, 2012). Sua concentração em rochas ígneas é baixa, porém os minerais ferromagnesianos são relevantes em matéria de fornecimento de cloretos diante do intemperismo químico. Nas rochas sedimentares, uma importante fonte desse íon são os evaporitos, principalmente através da halita, silvita e carnalita, além de pelitos que mantiveram contato prolongado com águas salinas, por meio do cloreto de sódio (Roisenberg, 2001). A atividade vulcânica é outra maneira que auxilia na contribuição de cloretos.

As águas naturais doces normalmente apresentam teores entre 10 a 250 mg/L de cloretos, as águas subterrâneas geralmente demonstram valores menores que 100 mg/L e as águas oceânicas, onde o íon é predominante, as concentrações situam-se entre 18.000 a 21.000 mg/L, podendo alcançar até 220.000 mg/L (CPRM, 2008).

Altas concentrações de Cl⁻ em águas subterrâneas podem indicar contaminação provocada por aterros sanitários/lixões ou intrusão de cunha salina.

Potássio (K⁺)

O potássio, elemento que também ocorre em abundância na crosta terrestre, nas rochas cristalinas está presente em maior quantidade no k-feldspato, na leucita e em micas. Em rochas sedimentares, além de grãos derivados do intemperismo, ocorre na estrutura dos argilo-minerais e pode integrar o conteúdo cimentante. Os principais sais contendo potássio são a silvita, a carnalita, a cainita e o salitre. Em águas subterrâneas, tende a ocorrer em teores menores que 10 mg/L pelo fato de, quando em solução, ser facilmente adsorvido pelos argilo-minerais ou auxiliar na formação de novos minerais, além de ser altamente consumido pelos vegetais. São frequentes, nessas condições, valores entre 1 a 5 mg/L. Em águas oceânicas, o potássio pode
apresentar valores mais elevados, como no Oceano Atlântico em que as concentrações em média demonstram 400 mg/L (Roisenberg, 2001).

Silício (Si)

O silício é o segundo elemento mais abundante em rochas ígneas (Clarke 285000 ppm) e na crosta terrestre (27,7%), contudo não ocorre significativamente em águas subterrâneas. Com mobilidade geoquímica baixa, aparece dissolvido, sob forma iônica (SiO₄H₃⁻) ou, mais frequentemente, em forma de partículas coloidais (H₄SiO₄). Junto com o oxigênio, forma a sílica (SiO₂), que pode ter origem, principalmente, a partir do intemperismo de feldspatos e minerais de argila. O quartzo, mesmo possuindo composição química formada por SiO₂, não costuma contribuir de maneira expressiva para o aumento da sílica em solução por ser um mineral altamente resistente as intempéries.

Segundo Roisenberg (2001), a solubilidade da sílica aumenta com a temperatura e o pH. Em uma fonte térmica do Monte Shasta (USA), foi encontrada concentração de 3.970 mg/L de SiO₂ com um pH de 11,6. Os valores normais em água subterrânea, no entanto, variam entre 15 e 75 mg/L em rochas cristalinas graníticas (Hem *et al.*, 1963).

Fluoreto (F⁻)

O flúor tem presença comum em água subterrânea, ocorrendo dissolvido como ânion fluoreto ou como íons complexos de alumínio, ferro férrico, magnésio, cálcio e boro, além de complexos orgânicos (Nordstrom; Jenne, 1976). Sua concentração, normalmente, varia entre 0,1 e 1,5 mg/L nas águas naturais, alcançando, raramente, 50 mg/L em águas muito sódicas com pouco cálcio (CPRM, 2008). O cálcio limita a concentração de flúor pois em combinação os dois íons dão origem a fluorita (CaF₂), conforme demonstra a reação 5:

$$CaF_2 \leftrightarrow Ca^{2+} + 2F^{-}(5)$$

A presença de CO₃²⁻ e SO₄²⁻ em água, no entanto, diminui a atividade de ligação de Ca²⁺ e F⁻ pela ocorrência da complexação desses ânions com o Ca²⁺ acarretando, dessa forma, em uma concentração maior de flúor dissolvido no aquífero. Minerais

como micas e apatita contém flúor em sua estrutura, porém a principal forma natural da presença de flúor em água subterrânea é a dissolução da fluorita (Hem, 1985). De forma antrópica, o flúor pode ser inserido em águas subterrânea através de pesticidas, fertilizantes fosfatados contendo flúor e por meio da deposição de partículas e gases emanados por indústrias químicas, de cerâmica e de fundição de alumínio (Goffermann *et al.*; 2015).

Em concentrações baixas (0,5 mg/L), o flúor é benéfico a saúde, principalmente na prevenção de cáries dentárias (WHO, 2012). No entanto, a ingestão de teores elevados de flúor, corriqueiramente, pode acarretar fluorose dental e esquelética, significando desde manchas a perda dos dentes e deformação nos ossos. Dosagens excessivas podem levar à morte.

Ferro (Fe)

O ferro é um elemento bastante frequente em rochas ígneas, aparecendo em diversos minerais como piroxênios, anfibólios, pirita, magnetita, hematita, granadas, olivinas, etc. Nas rochas sedimentares, os hidróxidos, óxidos e carbonatos de ferro podem ocorrer como material cimentante. Em minerais primários como, por exemplo, a biotita, anfibólios e piroxênios, o ferro encontra-se no estado ferroso (Fe²⁺), transformando-se em ferro férrico (Fe³⁺) quando entra em solução em condições aeróbicas. Nesse formato, pode precipitar originando minerais secundários como a goethita, hematita e limonita. Condições anaeróbicas transformam o Fe³⁺ em Fe²⁺. Em água subterrânea, normalmente ocorrem concentrações abaixo de 0,3 mg/L, sendo o pH um parâmetro de grande influência na concentração do ferro em solução, visto que meios mais ácidos e redutores o tornam mais solúvel (Brookins, 1988), chegando a alcançar 100 mg/L em casos mais extremos (Custodio; Llamas, 1983). A corrosão do filtro ou do revestimento do poço de água subterrânea pode gerar valores mais elevados de ferro na água bombeada.

Manganês (Mn)

O manganês não ocorre livremente, sendo encontrado, principalmente, na pirolusita (MnO₂), braunita (Mn₂O₃), manganita (Mn₂O₃H₂O), rodocresita (MnCO₃) ou em minerais que contenham ferro como a biotita e a hornblenda substituindo íons de configuração iônica e tamanho semelhantes. Nas águas naturais, ocorre

principalmente como Mn²⁺, podendo também estar nas formas Mn³⁺ e Mn⁴⁺. Possui baixa mobilidade geoquímica (Roisenberg, 2001) e semelhança com o ferro nas águas subterrâneas sendo solúvel em ambiente redutor. Sob forma Mn²⁺, por ser muito instável, oxida (MnO₂) facilmente na presença de ar. Normalmente, em água subterrânea, as concentrações são menores que 0,2 mg/L podendo ocorrer teores mais elevados em águas mais ácidas.

Nitrato (NO_3^-)

O NO₃⁻ faz parte do ciclo do nitrogênio (N₂), o qual é principalmente biofixado por meio de bactérias e cianobactérias no solo dando origem a gás amônia (NH₃) e sais de amônio (NH₄⁺). Estes então serão oxidados a nitrito (NO₂⁻) e posteriormente nitrato. Formado de maneira natural, o NO₃⁻ ocorre em pequenas concentrações no solo e na água. O limite de concentração permitido para consumo humano, segundo Portaria 2.914/11, é de 44,3 mg/L. O íon é altamente solúvel e móvel o que pode acarretar à contaminação de áreas extensas. As ocorrências naturais de nitrato estão ligadas à precipitação pluviométrica, a oxidação da matéria orgânica e a dissolução de minerais como a nitratina (NaNO₃) e o nitro/salitre (KNO₃). Já os principais fatores antrópicos que contribuem para o aumento de NO₃⁻ no solo e na água são a utilização de fertilizantes agrícolas, o manejo do solo para plantação, a atividade industrial, efluentes domésticos e defeitos nos sistemas e/ou tubulações de tratamento de esgoto (Bernardi, 2017).

Potencial Hidrogeniônico (pH)

O pH expressa a medida de concentração hidrogeniônica em uma solução aquosa resultante do equilíbrio químico das reações. Possui escala logarítmica variando de 1 a 14, sendo o valor 7 classificado como neutro, abaixo disso, ácido e, acima, alcalino. O pH interfere na precipitação de muitos metais e na capacidade de ataque químico da água (Mestrinho, 2013).

Para águas subterrâneas, o pH pode ser medido no local de coleta da amostra com um medidor chamado de Phmetro, o qual gera um valor mais preciso, ou através de colorimetria, podendo haver variação maior no resultado.

Alcalinidade

A alcalinidade é a capacidade das substâncias presentes na água de neutralizar ácidos. Os principais componentes da alcalinidade são os bicarbonatos, carbonatos e os hidróxidos. Existem outros sais que conferem alcalinidade à agua, como sais de boratos, silicatos, fosfatos, de ácido húmico e de ácido acético, porém não interferem significativamente sendo, dessa forma, normalmente desconsiderados (PHA, USP).

Dureza

Dureza é a capacidade da água de neutralizar o sabão através do cálcio, magnésio ou outros elementos como Fe, Mn, Cu, Ba, etc, ligados, principalmente, aos ânions carbonato (sobretudo bicarbonato por ser mais solúvel) e sulfato, e nos demais casos, aos ânions nitrato, silicato e cloreto, sendo os compostos mais relevantes o bicarbonato de cálcio, o bicarbonato de magnésio, o sulfato de cálcio e o sulfato de magnésio (CPRM, 2008; USP, PHA). A tabela 5 caracteriza os tipos de dureza.

Tabela 5 - Classificação das durezas. Fonte: Mestrinho (2013).

Dureza	Concentração (mg/L)
Mole ou branda	< 50
Moderada	50 a 150
Dura	150 a 300
Muito dura	> 300

A dissolução da rocha calcária por meio de água contendo gás carbônico (Reações 6 e 7) é o principal método natural que confere dureza à agua (USP, PHA).

 $H_2CO_3 + CaCO_3 \leftrightarrow Ca (HCO_3)_2$ (6) $H_2CO_3 + MgCO_3 \leftrightarrow Mg (HCO_3)_2$ (7)

A dureza, também pode ter origem antropogênica, através do lançamento de efluentes industriais (FUNASA, 2014). A portaria nº 2.914/2011, do Ministério da Saúde, traz como limite máximo para água potável 500 mg/L de CaCO₃.

Águas com dureza excessiva podem causar precipitação de carbonatos acarretando incrustações em chuveiros, tubulações, etc, à casos mais graves como explosões de caldeiras em indústrias pelo fato da elevação da temperatura da água deslocar o equilíbrio no sentido da formação do carbonato (USP, PHA).

Tipos de dureza:

 Dureza temporária: íons de Ca²⁺ e Mg²⁺ estão associados a carbonatos ou bicarbonatos, sendo removível através de fervura da água.

 Dureza permanente: íons de Ca²⁺ e Mg²⁺ associados a sulfato, cloreto, nitrato, etc, persistindo com a fervura da água.

- Dureza total: soma das durezas temporária e permanente.

Alumínio (Al³⁺)

O alumínio é o terceiro elemento, em peso, na crosta terrestre (Press *et al.*, 2006) ocorrendo, nas rochas ígneas, em diversos silicatos como feldspatos, micas, anfibólios e argilo-minerais além de óxidos e hidróxidos de alumínio (Roisenberg, 2001). Na água, é influenciado pelo pH, temperatura e presença de fluoretos, sulfatos, matéria orgânica e outros ligantes (CETESB, 2015).

As concentrações em águas subterrâneas, comumente, variam entre 0,001 a 0,03 mg/L com pH neutro, em águas ácidas podem chegar a 1 mg/L e extremamente ácidas, como por exemplo em rejeitos de mineração, os teores podem alcançar 90 mg/L (Davis; DeWiest, 1966).

Aos vegetais o alumínio pode ser extremamente tóxico e, em relação ao consumo humano, ocorrem estudos relacionando o alumínio à processos neurofisiológicos que causam degenerações características da Doença de Alzheimer.

Cobre (Cu²⁺)

Os principais minerais que contém cobre em sua estrutura são a calcopirita, malaquita, azurita, calcosita e covelita (CPRM, 2008). Como características, em água, apresenta baixa solubilidade e elevada persistência, enquanto nos solos fica retido por meio de troca iônica e adsorção. Em água subterrânea, normalmente, ocorre com teores menores que 1 mg/L. Altas concentrações podem estar ligadas à mineração de cobre, chegando a apresentar 300 mg/L (Hem, 1985). Em baixas concentrações não apresenta risco à saúde, no entanto em dosagens mais elevadas se torna tóxico.

Cromo (Cr)

Segundo a CPRM (2008), o cromo é um metal que ocorre de maneira relativamente rara na crosta terrestre ($\approx 0,03\%$), não sendo encontrado de maneira livre, mas, normalmente, associado ao ferro e ao chumbo. O principal mineral de cromo é a cromita. As águas superficiais, comumente, contêm entre 1 e 10 µg/L de cromo enquanto as águas subterrâneas demonstram concentração menor que 1 µg/L. Na forma trivalente, o cromo é necessário ao organismo, podendo acarretar doenças devido a sua falta, porém na forma hexavalente, é tóxico e cancerígeno (CETESB, 2014). A Portaria 2.914/11 estabelece como valor máximo permitido para consumo, em função do cromo hexavalente, 0,05 mg/L.

Chumbo (Pb)

O chumbo possui baixa mobilidade geoquímica e ocorre em concentrações baixas em águas naturais. Segundo Matthess & Harvey (1982) as águas subterrâneas apresentam concentrações de aproximadamente 20 µg/L. A galena (sulfeto de chumbo) constitui o principal mineral contendo o elemento em sua composição. No ciclo hidroquímico, boa parte do chumbo deriva da poluição antropogênica através de gases industriais, descargas de carros e depósitos de indústria metalúrgica (Roisenberg, 2001). Concentrações acima do limite de 0,01 mg/L (Portaria 2.914/11) podem provocar intoxicações que irão variam conforme quantidade acumulada no organismo.

Zinco (Zn²⁺)

Dentre os metais pesados, o zinco é o mais solúvel, sendo seus sais os mais persistentes em água. Apresenta concentrações em água subterrânea, geralmente, menor que 10 µg/L (Matthess & Harvey, 1982). Com pH mais elevado é adsorvido por argilo-minerais, carbonatos ou hidróxidos. Faz parte da composição de minerais como a Blenda (ZnS) ou aparece substituindo o ferro e o magnésio nos silicatos (Roisenberg, 2001). O zinco, em baixas concentrações, é essencial ao organismo, porém em altas concentrações se torna tóxico, sendo permitido consumo de até 5 mg/L segundo Portaria 2.914/11.

3.4 Água subterrânea em ambientes costeiros

Visto que o mar é o grande exutório que recebe as águas continentais, em estado natural, ocorre um gradiente hidráulico que direciona o fluxo de água doce para o oceano (Fig. 10). A água do mar, com maior densidade forma uma cunha penetrante na parte inferior do aquífero de água doce (Fig. 11). Na divisão entre os dois tipos de água ocorre uma zona transitória ou de mistura com densidade variável.

Figura 10 - Fluxo de água doce continental em direção ao mar e zona de mistura/interface (pontilhado) entre água doce e salgada. Fonte: CPRM (2008).

A pressão exercida pela água doce por meio do fluxo em direção ao oceano mantém a cunha salina em equilíbrio de maneira que, com bombeamento excessivo, ocorre modificação da zona de mistura que pode adentrar mais em direção ao continente.

A intrusão salina em aquíferos continentais é um grande problema, uma vez que não existe tratamento ou recuperação do aquífero. A maneira mais eficaz de se evitar que ocorra penetração da cunha salina em águas continentais é evitando o bombeamento intensivo de água por poços tubulares aliado ao acompanhamento da zona de interface através de poços de monitoramento ou, em alguns casos, por meio de estudos geofísicos.

Figura 11 - Esquema simplificado de aquífero costeiro livre; a = poço bombeando água próximo a cunha salina; b = fluxo oceânico; c = formação de cone devido ao bombeamento de água do aquífero próximo à zona de interface entre água doce e salgada; d = zona de recirculação da água do mar superficialmente; e = afloramento do lençol freático. Fonte: Oliveira (2016).

3.5 Trabalhos anteriores na região de estudo

Em Florianópolis, Guedes Jr. (1999) elaborou, por meio de geoprocessamento, o mapa hidrogeológico dos aquíferos da ilha da capital (Fig. 12). Basicamente, o autor definiu dois tipos de aquíferos: Sistema Aquífero Cristalino-Fraturado e Sistema Aquífero Sedimentos Inconsolidados. O primeiro, é composto pelo Aquífero Ilha (rochas graníticas, metamórficas e diabásios) e pelo Aquífero Cambirela (riolitos).

O Aquífero Ilha, segundo Guedes Jr., é intensamente fraturado, o que possibilita a ocorrência de boas vazões levando-se em consideração se tratar de rochas cristalinas. As fraturas regionais de direção N-S e NE-SW apresentam, comumente, intrusões de diques e veios de quartzo, não sendo as orientações mais indicadas para prospecção de água subterrânea. Porém, à época a escassez de poços perfurados ou mesmo de dados relativos às vazões nesse aquífero fizeram com que não fosse possível precisar com maior detalhe tal fato. Não há demonstração sobre quantos poços foram analisados e quais seus locais de perfuração, no entanto Guedes Jr. menciona que os valores médios das vazões situam-se entre 4 a 6 m³/h. O Aquífero Cambirela, segundo este mesmo autor, também apresenta grande quantidade de fraturas facilitando boas vazões, contudo não são mencionados valores. É informado que este aquífero possui pequena área de abrangência e se localiza próximo ao mar, sendo um local de descarga do aquífero. O Sistema Aquífero Sedimentos Inconsolidados, formado pelos sedimentos de idade Quaternária, devido não ser o tipo composicional de aquífero no qual a dissertação está baseada, não será entrado em maiores detalhes sobre suas subdivisões, bem como formações geológicas e valores de vazões.

Figura 12 - Mapa hidrogeológico da ilha de Florianópolis. Fonte: Guedes Jr. (1999).

Em uma visão regional, Coitinho (2000), fez uma abordagem hidroquímica das águas minerais do Estado de Santa Catarina. Todas as águas minerais localizadas na área de estudo da presente dissertação foram classificadas como bicarbonatadas sódicas. Os poços tubulares no qual Coitinho baseou seu trabalho não demonstram a exata a localização visto que fora utilizada para as interpretações do estudo as poligonais das áreas de lavra onde os mesmos estavam situados.

Machado et al. (2017) elaboraram considerações sobre a hidrogeologia da Sub-Bacia 84, a qual estende-se do nordeste do Rio Grande do Sul até a cidade de Itajái, em Santa Catarina, em uma faixa litoral com variações, aproximadas, entre 40 a 100 km de largura. No mapa hidrogeológico produzido, foram diferenciadas duas Unidades Aquíferas (Granular e Fraturada), subdivididas em duas fraturadas e quatro granulares, conforme suas produtividades.

Os aquíferos fraturados utilizados no estudo da presente dissertação estão localizados no norte da área da Sub-Bacia 84, sendo classificados, levando-se em consideração uma visão regional e comparativa com a Unidade Granular, como possuindo, de maneira geral, produtividade baixa, com exceções locais.

Os principais tópicos referentes à metade norte da Sub-Bacia 84 são listados a seguir:

- Composto por associações de rochas graníticas e metamórficas e poucas áreas de sedimentos, as quais estão localizadas mais próximas ao litoral. Esses sedimentos formam aquíferos, em geral, mais produtivos, porém com dimensões reduzidas.
- Encontra-se coberto por um manto de intemperismo com espessura variando entre 5 a 20 metros, originando características locais confinantes a semiconfinantes.
- A profundidade dos poços é, em média, de 120 metros.
- Não oferece condições favoráveis ao armazenamento de grandes volumes de água, embora ocorram exceções locais onde é possível encontrar vazões excepcionais de 100 m³/h.
- As vazões apresentam média de 8 m³/h.
- As capacidades específicas são variáveis demonstrando a grande heterogeneidade desse sistema aquífero.
- As águas, em geral, são de boa qualidade e baixa mineralização.
- Pode ocorrer alto teor de flúor associado aos granitos.
- Demonstra média de 140 mg/L de STD.

A CPRM (2013) produziu o mapa hidrogeológico do estado de Santa Catarina. Como resultado final também foi formulado um documento textual contendo as descrições dos aspectos metodológicos e das unidades hidrogeológicas. Os detalhes sobre as características hidrogeológicas da Unidade Embasamento Cristalino, na qual está situada a área de estudo da dissertação estão descritas no subcapítulo 2.4 (Aspectos hidrogeológicos).

Capítulo 4

Métodos empregados

4.1 Revisão bibliográfica

A primeira etapa do trabalho consistiu na realização do levantamento bibliográfico referente ao tema da dissertação e compilação de informações e dados existentes na área de estudo. A pesquisa em relação ao assunto foi exercida em livros, artigos, monografias, dissertações, teses e plataformas digitais.

4.2 Seleção de poços

O prosseguimento do estudo se deu com o selecionamento dos poços registrados na plataforma on-line SIAGAS da CPRM. O SIAGAS compõe um registro de poços de água subterrânea existentes no Brasil com intuito de facilitar o intercâmbio de informações entre os sistemas do governo e à população. Nele estão contidos dados construtivos, geológicos, hidrogeológicos, testes de bombeamento, análises químicas, bem como a localização e os proprietários dos poços tubulares. Importante destacar que nem todos os poços existentes no Brasil estão cadastrados na plataforma SIAGAS.

Diante do objetivo da dissertação, foram descartados os poços locados em formações sedimentares, sendo utilizados aqueles cuja captação de água está relacionada à rochas cristalinas e contendo informações de análises químicas resultando em um total de 40 poços. Houve colaboração, por parte da Companhia Catarinense de Águas e Saneamento (Casan), com o envio da análise química de um dos poços da dissertação como complementação de dados.

Cabe frisar que, devido a elaboração da dissertação ter sido realizada em época de pandemia relativa à propagação do vírus SARS-CoV-2 (Corona Vírus), a tentativa de coleta de amostras de água se mostrou comprometida em razão não só da recomendação por parte da Organização Mundial da Saúde (OMS) de isolamento social, mas também pelo fato de nos primeiros meses da ocorrência de alerta na região de estudo ter-se sucedido paralisação geral em diversas esferas públicas e privadas (menos serviços essenciais como saúde, alimentação e segurança), destacando-se no setor privado os laboratórios que fazem análise de amostra de água e os proprietários de poços. Estes últimos podendo também ser referentes à entes públicos ou pessoas físicas.

4.2.1 Denominação dos poços

Cada poço cadastrado no SIAGAS possui um número de registro no sistema da plataforma para identificação. Para facilitar na formulação das interpretações realizadas ao longo do trabalho os poços selecionados foram renumerados de 1 a 40 (Fig. 13) conforme a tabela 6.

SIAGAS	Dissertação
19557	1
19560	2
19564	3
19565	4
19572	5
19573	6
19575	7
22439	8
26763	9
27036	10
19079	11
19815	12
19820	13
19822	14
19859	15
22331	16
26665	17
26667	18
26668	19
26669	20
19075	21
19082	22
19085	23
19086	24
19182	25
26495	26
26660	27
19054	28
19080	29
19088	30
19089	31

Tabela 6 - Numeração dos poços no SIAGAS e respectiva numeração na dissertação.

19768	32
19773	33
27108	34
19074	35
19081	36
19072	37
19067	38
19087	39
19137	40

Figura 13 - Localização dos poços na área de estudo.

4.3 Análise das estruturas lineares

Com o objetivo de relacionar a capacidade produtiva dos poços à orientação dos lineamentos foram traçadas as estruturas lineares localizadas em um raio de 1,5 km ao redor de cada poço por meio de sensoriamento remoto. Através de imagens de satélite foram geradas uma composição colorida RGB (Red, Green, Blue) e MDT's (Modelos Digitais de Terreno) através dos softwares Qgis 3.4 e Arcgis 10.5. Os produtos finais destacam a geomorfologia da região e, consequentemente, as feições estruturais.

A composição colorida foi produzida por meio das bandas multiespectrais "7", "5" e "2" (Fig. 14), nessa ordem, do satélite Landsat-8, fornecidas pela empresa Austríaca EOX, que disponibiliza dados geoespaciais.

Figura 14 - Imagem RGB gerada através das bandas pancromáticas "5", "7" e "2", nessa ordem.

Os MDT's foram criados a partir de imagens em formato *.tiff* contendo informações de altitude produzida pelo satélite ALOS. As imagens *.tiff* foram obtidas a partir do domínio on-line de propriedade da Alaska Satellite Facility (ASF), um departamento do Geophysical Institute da University of Alaska Fairbanks. Para

visualização das estruturas que não ficaram apresentáveis devido à sombra gerada pelo sentido de emissão da luz, foram produzidos quatro MDT's, cada qual com uma orientação de iluminação diferente (45°, 135°, 225° e 315°) e todos com incidência da luz de 45° a partir da superfície terrestre (Fig. 15, 16, 17 e 18).

Figura 15 - MDT da área de estudo. Iluminação proveniente do azimute 45º.

Figura 16 - MDT da área de estudo. Iluminação proveniente do azimute 135º.

Figura 17 - MDT da área de estudo. Iluminação proveniente do azimute 225º.

Figura 18 - MDT da área de estudo. Iluminação proveniente do azimute 315º.

A partir da ferramenta computacional AzimuthFinder, acrescentada ao Arcgis, foi possível obter a quantidade de lineamentos e as suas orientações. Com o software Stereo32 foi produzido o diagrama de roseta.

4.4 Análise hidrogeológica, hidrogeoquímica e processamento dos dados

A partir das informações contidas no SIAGAS de nível estático (N.E), nível dinâmico (N.D), vazão, capacidade específica, locais de entrada de água, perfis construtivos e perfis geológicos do local de perfuração de cada poço, foi possível, junto às imagens de satélite, formular a análise hidrogeológica. Já com os parâmetros físico-químicos, localização espacial dos poços, estruturas lineares e com os perfis litológicos foi possível elaborar o estudo hidrogeoquímico da região.

Para ambas as análises houve utilização dos softwares Qgis 3.4 e Arcgis 10.5 como meio de visualização espacial relacionando simultaneamente: local dos poços, geologia, estruturas lineares, relevo, hidrografia, urbanização, presença de cobertura vegetal e uso do solo.

Por meio do programa Excel foram elaboradas planilhas com o conjunto dos dados, realização dos cálculos e formulação dos gráficos. Os grupos hidroquímicos das amostras de água dos poços foram obtidos através do software Qualigraf (v 1.17).

Referências

Almeida, F.F.M. de, Hasui, Y., Neves, B.B de B. & Fuck, R.A. 1977. Províncias Estruturais Brasileiras. *In*: SIMPÓSIO DE GEOLOGIA DO NORDESTE, 8., 1977, Campina Grande. *Anais...* Campina Grande, SBG, p. 363-391.

ANA. Agência Nacional de Águas. 2010. *Atlas Brasil: abastecimento urbano de água.* Panorama Nacional. Vol. 1. 72p. Disponível em: <http://atlas.ana.gov.br/Atlas/downloads/atlas/Resumo%20Executivo/Atlas%20Brasil %20-%20Volume%201%20-%20Panorama%20Nacional.pdf>

ASF. Alaska Satellite Facility. 2020. Geophysical Institute, University of Alaska Fairbanks. Disponível em:

Balke, K.D. 1994. *Hidrogeologia aplicada: hidroquimica aplicada.* Salta, Universidad Nacional de Salta, 56p.

Basei, M.A.S. 1985. *O Cinturão Dom Feliciano em Santa Catarina*. São Paulo, 185 p. Tese de Doutorado, Instituto de Geociências, Universidade de São Paulo.

Bernardi, C.Z. 2017. Variação do nitrato conforme pluviosidade nas águas subterrâneas de Porto Alegre, RS. Porto Alegre, 54p. Monografia de Conclusão de Curso, Curso de Graduação em Geologia, Instituto Geociências, Universidade Federal do Rio Grande do Sul.

Brasil. Portaria nº 2.914, de 12 de dezembro de 2011, Ministério da Saúde. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Diário Oficial da União, Brasília, DF, seção 1, p. 39, 14 dez. 2011.

Brasil. Resolução CONAMA nº 396, de 3 de abril de 2008. Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas subterrâneas e dá outras providências. Diário Oficial da União, Brasília, DF, seção 1, p. 64-68, 9 abr. 2008.

Brookins, D.G. 1988. *Eh-pH diagrams for geochemistry*. London, Springer-Verlag, 176p.

CETESB. Companhia Ambiental do Estado de São Paulo. 2014. Significado Ambiental e Sanitário das Variáveis de Qualidade. São Paulo, 48p.

Chemale Jr., F., Philipp, R.P. & Pimentel, M.M. 2016. Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: Geological relationships and U-Pb geochronology. *Brazilian Journal of Geology*, 46(Supl 1): 83-104.

Coitinho, J.B.L. 2000. Águas Minerais de Santa Catarina. Florianópolis, 235p. Dissertação de Mestrado, Centro Tecnológico, Universidade Federal de Santa Catarina.

Costa, W.D. 1986. Análise dos fatores que atuam no aquífero fissural: área piloto dos Estados da Paraíba e Rio Grande do Norte. São Paulo, 225p. Tese de doutorado, Instituto de Geociências, Universidade de São Paulo.

CPRM. Companhia de Pesquisa de Recursos Minerais. 1997. *Programa levantamentos geológicos básicos do Brasil, Florianópolis (folha SG.22-Z-D-V) e Lagoa (folha SG.22-Z-D-VI)*. Brasília, Ministério de Minas e Energia, Secretaria de Minas e Metalurgia, escala 1:100.000, CPRM (Superintendência Regional de Porto Alegre), 241p.

CPRM. Companhia de Pesquisa de Recursos Minerais. 2008. *Hidrogeologia – Conceitos e aplicações.* 3a. ed. Rio de Janeiro, 835p.

CPRM. Companhia de Pesquisa de Recursos Minerais. 2013. *Mapa hidrogeológico do Estado de Santa Catarina.* Porto Alegre, escala 1:500.000

CPRM. Companhia de Pesquisa de Recursos Minerais. 2014. *Mapa geológico do Estado de Santa Catarina.* Porto Alegre, escala 1:500.000

CPRM. Companhia de Pesquisa de Recursos Minerais. SIAGAS (Sistema de Informações de Água Subterrânea). Disponível em: <http://siagasweb.cprm.gov.br/layout/pesquisa_complexa.php>

Custodio, E. & Llamas, M.R. 1983. Hidrologia subterrânea. Barcelona, Omega, 2359p.

Deutsch, W.J. 1997. *Groundwater Geochemistry: fundamentals and applications to contamination.* New York, Lewis, 221p.

Embrapa. Empresa Brasileira de Pesquisa Agropecuária. 2013. Sistema Brasileiro de Classificação de Solos. 3a. ed., Brasília, Embrapa, 353p.

Embrapa. Empresa Brasileira de Pesquisa Agropecuária. 2020. Disponível em: < https://www.embrapa.br/satelites-de-monitoramento/missoes/alos>

EOX IT Services GmbH. 2020. EOX Catalog. Áustria. Disponível em: http://aws-catalog.eox.at/

ESRI. 2017. [S.I]: ArcGIS 10.5

FUNASA. Fundação Nacional de Saúde. 2014. *Manual de controle de qualidade da água para técnicos que trabalham em ETAS.* Brasília, Ministério da Saúde, 116p.

FUNCEME. Fundação Cearense de Meteorologia e Recursos Hídricos. 2020. [S.I]: Qualigraf v.1.17.

Goffermann, M., da Silva, E. B. & Viero, A. P. 2015. Caracterização hidrogeológica e hidroquímica das águas subterrâneas da região de São Gabriel, RS. *Pesquisas em Geociências*, 42 (3): 239-261.

Governo de Santa Catarina. SPG. 2015. *Altas de Santa Catarina.* Fascículo 2, Capítulo 7 (Solos). Florianópolis, SPG, 15p.

Guedes Jr., A. 1999. *Mapeamento hidrogeológico da ilha de Santa Catarina utilizando geoprocessamento*. Florianópolis, 127p. Dissertação de Mestrado, Centro Tecnológico, Universidade Federal de Santa Catarina.

Hem, J.D., Waring, G.S. & White, D.E. 1963. *Date of geochemistry: chemical composition of subsurface waters.* Washington, Geological Survey Professional Paper 440-F, 63p.

Hem, J.D. 1985. *Study and interpretation of chemical characteristics of natural water.* Washington, U.S Geological Survey Water-Supply Paper 2254.

Instituto Trata Brasil. 2019. A revolução silenciosa das águas subterrâneas no Brasil: uma análise da importância do recurso e os riscos pela falta de saneamento. São Paulo, ITB, 19p. Disponível em: <http://www.tratabrasil.org.br/images/estudos/itb/aguas-subterraneas-e-saneamentobasico/Estudo_aguas_subterraneas_FINAL.pdf>

Lepsch, I.F. 2011. 19 lições de pedologia. São Paulo, Oficina de textos, 456p.

Machado, J.L.F., Marcuzzo, F.F.N. & Senhorinho, E.M. 2017. Características Hidrogeológicas dos aquíferos da Sub-Bacia 84 – Região Sul e Sudeste de Santa Catarina. *In:* XXII SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 2017, Florianópolis. *Anais...* Florianópolis, ABRH.

Magliorini, R.B. & da Silva, J.J.F. 2014. Caracterização das águas subterrâneas do Aquífero Furnas na Região Sul do Estado do Mato Grosso. *Geociências*, v. 33, n. 2, 261-277.

Matthess, G. & Harvey, J.C. 1982. *The Properties of Groundwater.* New York, John Wiley & Sons, 406p.

Mestrinho, S.S.P. 2013. Qualidade e classificação das águas subterrâneas. *In:* Giampá, C.E.Q & Gonçales, V.G. (Ed. 2). Águas subterrâneas e poços tubulares profundos. São Paulo, Oficina de Textos, p. 109-144.

Microsoft. 2013. Pacote office [S.I]: Excel 2013.

Mizuno, M.G.M. 2012. *Hidroquímica das Águas Subterrâneas do Distrito Federal.* Brasília, 135p. Dissertação de Mestrado, Instituto de Geociências, Universidade de Brasília.

Nordstrom, D.K & Jenne, E.A. 1976. Fluorite solubility equilibria in selected geothermal waters. *Geochimica et Cosmochimica Acta*, vol. 41: 175-188.

Oliveira, A.M. 2016. *Modelagem do avanço da cunha salina em sistema aquífero costeiro*. Maceió, 74p. Dissertação de Mestrado, Programa de Pós-Graduação em Recursos Hídricos e Saneamento, Centro de Tecnologia, Universidade Federal de Alagoas.

OSGeo. Open Source Geospatial Foundation. 2019. [S.I]: Qgis 3.4

Piper, A.M. 1944. A graphic procedure in the geochemical interpretation of water analyses. *Transactions of the American Geophysical Union*, 25: 914-923.

Press, F., Grotzinger, J., Jordan, T. H. & Siever, R. 2006. *Para entender a terra (4ed.)* Porto Alegre, Bookman, 656p.

Queiroz, G.L, Salamuni, E. & Nascimento, E.R. 2014. AzimuthFinder: ferramenta para a extração de dados e apoio na análise estrutural. Série Científica, v. 14, n.1: 69-80. Ramage, L. & Zanatta, L. C. 2016. Monitoramento da intrusão salina no Aquífero dos Ingleses – Florianópolis, SC. *In:* XIX CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS, 2016, Campinas. *Anais...* Campinas, ABAS.

Roisenberg, C. 2001. *Hidrogeoquímica do Sistema Aquífero Fraturado Pré-Cambriano e Qualidade das Águas Subterrâneas do Município de Porto Alegre, RS.* Porto Alegre, 174p. Dissertação de Mestrado, Curso de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.

Roller, K. & Trepmann, C.A. 2003. Stereo32 1.0.3. Bochum: Institut für Geologie, Ruhr Universität Bochum.

Shiklomanov, I. 1993. World fresh water resources. *In:* Gleick P. H. (Ed.). *Water in crises: a guide to the world's fresh water resources.* New York, Oxford University Press, p. 13-24.

USGS. United State Geological Servey. 2020. Earth explorer. Disponível em: https://earthexplorer.usgs.gov/

USP. Universidade de São Paulo. *Características químicas das águas: pH, acidez, alcalinidade e dureza.* Escola politécnica da USP, Departamento de Engenharia hidráulica e ambiental (PHA). Disponível em: http://www.pha.poli.usp.br/LeArq.aspx?id_arq=1801

WHO. World Health Organization. 2012. *Environmental Health Criteria.* Geneva, WHO, 180p.

5 ... Your submission entitled "Hydrogeochemistry and hydrogeology of a fractured urban aquifer in the metropolitan region of Florianópolis, Southern Brazil" has been received by (þ 4 公 09:51 (há 4 minutos) ENGE-D-21-00268 - Submission Confirmation - [EMID:ad74acff3adde8c1] Caixa de entrada x Environmental Earth Sciences (ENGE) <em@editorialmanager.com> 💦 para mim 👻 Dear Bernardi,

Please refer to this number in any future correspondence. The submission id is: ENGE-D-21-00268 Environmental Earth Sciences

Environmental Earth Sciences has continued to grow and now publishes 24 issues a year. Please be advised that the average number of days between the initial submission and the first decision may be up to 90 days.

Thank you for submitting your work to Environmental Earth Sciences. We look forward to the opportunity to publish your article.

Please note that there is no authorship change possible after submission.

Kind regards,

Springer Journals Editorial Office Environmental Earth Sciences

Capítulo 5

Artigo submetido

Hydrogeochemistry and hydrogeology of a fractured urban aquifer in the metropolitan region of Florianópolis, Southern Brazil

Crysthian Zorzo Bernardi¹, Antonio Pedro Viero¹, Ari Roisenberg¹

¹Institute of Geosciences, Federal University of Rio Grande do Sul, Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil. Corresponding authors: crysthian.bernardi@ufrgs.br

Abstract

This paper was carried out through database of hydrogeological information of tubular wells based on the Groundwater Information System (SIAGAS) from the Geological Survey of Brazil (CPRM). The geology of the study area shows two main domains, a complex Crystalline Precambrian Shield partially covered by Quaternary sediments. Two main regional directions of tectonic lineaments were defined using satellite images with NE-SW and NW-SE orientations. The average discharges and specific capacities of the wells show values of 13.1 m³/h and 0.59 m³/h/m respectively. NW-SE linear structures were more productive than NE-SW, however the highest discharge values and the highest average (15.6 m³/h) are related to abstractions influenced by both directions simultaneously. Serra do Tabuleiro Granite is the lithology with the greatest productive potential in the region, followed by São Pedro de Alcântara Granite and the Granite-Gneiss-Migmatitic Complex. Sodium bicarbonate and calcium bicarbonate waters are the two main hydrochemical groups that occur in the region. The dissolution of calcium carbonate filling the fractures of the rocks is the main source responsible for the alkalinity of the water. The cationic proportion is defined by $Na^+ > Ca^{2+} > Mq^{2+} >$ K⁺. In some wells, the increasing of Total Dissolved Solids (TDS) is probably related to the contribution of adjacent Quaternary porous aquifers deposited under marine influence.

Key words: Fractured Aquifer. Urban aquifer. Hydrogeology. Hydrogeochemistry. Florianopolis. Brazil.

Introduction

The hydrogeological and hydrogeochemical studies of the fractured aquifer in the metropolitan region of Florianopolis are scarce. The region has as main economic activities that benefit from the use of groundwater agriculture, industrial and tourism (hotel). Aquifers are also an alternative to rural areas where there is no water supply through public or private companies responsible for water distribution and basic sanitation.

Due to the heterogeneity and anisotropy of crystalline aquifers, hydrogeological studies help with the best locations for drilling tubular wells, while hydrochemical analyzes are essential for evaluations regarding water potability.

Some coastal municipalities, in consequence of the expressive increase of the population in times of high season and/or periods of drought, sometimes suffer scarcity of water for domestic supply since are dependent from watercourses do the catchment. Therefore, knowledge about fractured aquifers is important for the long-term management of groundwater reserves and obtaining sources of water alternative to supplying the population.

Consequently, the present paper aims to discuss the hydrogeology and hydrogeochemical characterization of this urban and fractured aquifer in the metropolitan region of Florianópolis exposing the main reactions that give rise to water chemistry, relating the chemical content to the lithologies present in the region, establishing links between groundwater potential with linear structures and recognizing lithologies and conditions for higher productivity.

Study area and geological setting

Location

The study region is located at the coastal area of the Santa Catarina State, Southern Brazil and includes the municipalities of Florianópolis, Palhoça, Santo Amaro da Imperatriz, Águas Mornas, São José, São Pedro de Alcântara, Antônio Carlos, Biguaçu e Governador Celso Ramos (Fig. 1), covering an area about 2.745 km² with a total population of 1.398.698 people. The average temperature in the region is of about 19°C and the annual precipitation of approximately 1900 mm (CPRM, 2011). The crystalline lithologies in this area are located in the Santa Catarina Shield. CPRM (2014) divides this geotectonic unit into four tectonic terrains: Paranaguá, Luís Alves, Tijucas and Florianopolis. The Florianopolis Terrain comprises igneous lithologies related to the Florianopolis Batholith, metasediments of the Queçaba Formation and the metamorphic rocks of the Granite-Gneiss-Migmatitic Unit Águas Mornas. Figure 2 demonstrate the geology of the region and the locations of the wells used to carry out this study.

The Florianopolis Batholith in the region study is composed by eight different igneous lithologies, as shown in the Figure 2: Forquilha Tonalite (ft), Alto da Varginha Granodiorite (avg), Rio das Antas Granite (rag), Angelina Granite (ag), Itacorumbi Granite (itg), São Pedro de Alcântara Granite (spag), Ilha Granite (ig) and Serra do Tabuleiro Granite (stg). The three last ones with larger surface exposures in the area.

The Cambirela Rhyolite (cr) represent a volcanogenic sequence that occur in the Southern portion of the study area, in addition to the metasedimentary sequence. The Águas Mornas Complex (amc) comprises a Granite-Gneiss-Migmatitic association that occupies a large surface area in the West portion inland. The metasedimentary sequence is represented by the Queçaba Formation (qf), that contains quartzites, mica schists, quartz-schists and phyllites. The Agua Mornas Complex constitutes a Granite-Gneiss-Migmatitic Complex, an association of polyphasic orthogneisses with paleosomes of basic to intermediate nature (orthoamphibolites, metagabbros, metabasites and metadiorites), quartz-diorites and granodiorites gneisses.

Quaternary deposits of Holocene age occur in restinga bundles fluvio-deltaic marine deposits, tidal flats deposits, eolian deposits, lagoon deposits, colluvium-alluvial deposits, mainly along the coastal area.

Figure 1 - Location and municipalities in the study area.

Figure 2 - Geology of study area (after CPRM, 2014) and location of tubular wells.

Materials and Methods

The well information used to carry out the paper was static water level (SWL), pumping water level (PWL), discharge, specific capacity, drilling logs and physicalchemical parameters.

Elements for structural analysis were produced using Alos Palsar and Landsat-8 satellite images and the software's Qgis 3.4 and Arcgis 10.5, resulting in Digital Terrain Models (DTM) and a colored RGB composition. The lineaments that intercept the 1.5 km radius around the wells were mapped at the 1:20.000 and 1:40.000 scales in order to find relationships between directions of linear structures and the well's productivity. From the computational tool AzimuthFinder, added to Arcgis, it was possible to obtain the number of lineaments and their orientations. The rose diagram was produced using the Stereo32 software.

The hydrogeological and hydrogeochemical interpretations were conducted using the well's information combined with the two Gis-software for spatial visualization. Through the Excel program, spreadsheets were elaborated with the data sets, perform calculations and graph formulation. The hydrochemical groups in the wells were obtained by means of the Qualigraf software (v 1.17).

Results and discussion

Hydrogeological Characterization

Most tubular wells have depths between 50 to 100 meters (42.5%), while 35% are 100 to 150 meters deep (Tab. 1).

Table 1 - Hydrogeological data with percentage distribution in relation to the parameters analyzed in the tubular wells. The analysis of the depth of water entries interval demonstrates the amount of wells that contain that range and is greater than the total number of wells analyzed since it is possible to occur more than one interval in a well. The other lithologies that show the occurrence of wells were not obtained discharge averages due to the location of only one well, as shown in figure 3

Parameters			Results			Total wells analyzed
Well depth (m)	0 to 50 (10%)	50 to 100 (42.5%)	100 to 150 (35%)	150 to 200 (0%)	> 200 (12.5%)	40
Number of water entries	1 (37.04%)	2 (22.22%)	3 (18.52%)	> 3 (22.22%)		27
Depth of water entries (m)	0 to 20 4 wells	20 to 50 19 wells	50 to 100 11 wells	> 100 2 wells		27
SWL (m)	1 to 5 (64.1%)	5 to 10 (23.07%)	10 to 20 (2.56%)	> 20 (10.25%)		39
PWL (m)	1 to 20 (20.5%)	20 to 40 (33.33%)	40 to 60 (28.2%)	> 60 (17.94%)		39
Drawdown (m)	1 to 20 (33.33%)	20 to 40 (30.76%)	40 to 60 (20.51%)	> 60 (15.38%)		39
Discharge (m³/h)	0 to 5 (35.89%)	5 to 10 (12.82%)	10 to 20 (33.33%)	> 20 (17.94%)		39
Specific capacity (m³/h/m)	0 to 0.3 (62.16%)	0.3 to 0.5 (8.1%)	0.5 to 1.0 (13.51%)	> 1.0 (16.21%)		37
Average discharges by lithologies	ig 7,5 m³/h	stg 18,4 m³/h	spag 17,8 m³/h	amc 17 m³/h		39

Twenty-seven wells demonstrate information about the water entry in drilling logs. Regarding the quantity of water entries, there is a predominance of only one (1) water entry and, concerning to their depth, there is predominance of water entries in the depth range 20 to 50 meters.

The discharges have a water volume between 1 and 51.2 m³/h, with an average of 13.1 m³/h. In most wells the discharge values are between 0 to 5 m³/h (35.89%), followed by a second group with discharges between 10 to 20 m³/h (33.33%), as shown in Table 1 and Figure 3.

In most cases higher discharge values occur in wells with greater amounts of fractures in the lithological profile, but this fact is not considered as a rule, because other factors can interfere in the results, such as spacing of the fractures, degree of fracturing, the connection between fractures and aquifer confinement. These conditions have a direct impact on the hydraulic conductivity, storage capacity and groundwater renewal.

The lithologies do not show uniformity in relation direct relationships to the discharges (Fig. 3), despite the averages having approximate values in three of them (Tab. 1). Well 16, with the highest discharge (51.2 m³/h), is located in the spag, close to seven other wells (11, 15, 17, 18, 19, 20 and 32) within a radius of 6 km. This region is extensively explored from the hydrogeological point of view and demonstrates satisfactory productivity in general.

From the productivity point of view, the northern regions of Palhoça Municipality, and the central West of the municipalities of Santo Amaro da Imperatriz and Águas Mornas were defined as areas with the highest potential for groundwater extraction.

Figure 3 - Discharges from wells by lithology. Pink: Ilha Granite; Blue: Águas Mornas Complex; Red: Serra do Tabuleiro Granite; Green: São Pedro de Alcântara Granite; Yellow: Plutonic-Vulcanic Cambirela Suite; Orange: Rio das Antas Granite/Forquilha Tonalite Purple: Itacomrubi Granite.

Structural analysis

Analyzing in the satellite images a uniform distance of 1.5 km around each well, 396 linear structures were identified. The main directions of lineaments were N30°-60°E and N20°-60°W with prevalence of the last ones (Fig. 4).

Figure 4 - Rose diagram of the lineaments found around the wells in a 1.5 km radius showing predominance of NE-SW structures.

Figure 5 shows that when the lineation had only one main direction around the well, the discharges are higher along the NW-SE direction (average 13.6 m³/h) than in the NE-SW direction (average 8.6 m³/h). Nevertheless, some structures NE-SW also present a relatively high discharge (wells 2, 15, 32 and 39). The two most productive wells in the region (well 16 and 24) receive water from both orientations.

Figure 5 - Main orientation of the linear structure from which the well captures water and discharge from the respective well. Blue = NE; Red: NW; Green: NE and NW.

Major ion chemistry and source of solutes

Table 2 demonstrate the minimum, average and maximum concentrations of the main physical-chemical parameters according to the lithologies.

Table 2 - Minimum, maximum and average concentrations referring to physicochemical parameters used in the hydrogeochemical study. Lithologies with only one result for each parameter contain only one well. E.C – Electric Conductivity; TDS = Total Dissolved Solids; ND = Not detected; Asterisk = No data.

Parameters/lithology		ig	Itg	amc	stg	cr	spag	rag/ft
Na⁺ (mg/L)	Min.	2	*	5.61	3.35	176	2.9	7.63
	Max.	71.6		42.5	31		33.8	
	Ave.	17.47		21.56	10.04		9.72	
	Min.	1,4		0.5	1.95	3,7	0.08	1.5
K ²⁺ (mg/L)	Max.	4.12	*	2.2	5.4		2.15	
	Ave.	2.36		1.28	3.49		1.19	
	Min.	0.18	*	3.82	0.25	34,87	4.8	7.03
Ca ²⁺ (mg/L)	Max.	44.64		30.4	14.51		29.99	
	Ave.	13.32		15.84	5.35		13.17	
	Min.	0.48	*	1.98	0.16	10,45	1.5	2.32
Mg ²⁺ (mg/L)	Max.	30.99		14.88	1.6		13.55	
	Ave.	4.9		5.65	0.85		4.15	
	Min.	20.58	*	31.2	15	193,74	39.8	*
HCO₃ ⁻ (mg/L)	Max.	285.72		143	109.8		73	
	Ave.	74.58		87.24	56.16		49.06	
SO4 ²⁻ (mg/L)	Min.	1	*	1.1	0.01	33,09	1.2	1.1
	Max.	25.34		24	2.1		18.7	
	Ave.	4.75		5.91	1.10		5.2	

Parameters/lit	hology	ig	ltg	amc	stg	cr	spag	rag/ft
	Min.	4.4		3.5	1.77		3.84	
Cl ⁻ (mg/L)	Max.	80.27	24.94	20	5.18	282,95	132.72	3
	Ave.	24.77		9.78	3.47	-	28.88	
	Min.	0.0008		0.01	0.002		0.01	
Fe [⊤] (mg/L)	Max.	2.04	4.5	0.2	0.21	0,36	0.34	0.01
	Ave.	0.36		0.06	0.03		0.08	
	Min.	ND		ND	ND		0.001	
Mn (mg/L)	Max.	0.15	0.957	0.13	0.01	*	0.22	0.001
	Ave.	0.03		0.08	0.0029		0.04	
	Min.	0.01		0.12	0.1		0.07	
F⁻ (mg/L)	Max.	2.06	*	0.99	2.8	6	1.84	0.14
	Ave.	0.57		0.35	0.8		0.46	
	Min.	ND	*	ND	0.27		ND	0.9
NO₃⁻ (mg/L)	Max.	13.26		15.29	1.8	ND	4.87	
	Ave.	2.35		7.03	0.86		1.63	
	Min.	1.28		7.34	7.44	34.99	10.32	8.98
Silica (mg/L)	Max.	93.8	*	25.6	45.9		67.64	
	Ave.	32.27		15.46	24.82		42.72	
	Min.	16	79.32	79	15	158,8	43.16	*
Alkalinity	Max.	234.2		143	90		152	
(IIIg/L)	Ave.	59.6		111	54.17		87.01	
	Min.	70.6		86.6	41	1107	18.54	131
E.C (μS/cm)	Max.	717	*	196.9	620		604.2	
	Ave.	231.63		163.69	209.18		220.28	
TDS (mg/L)	Min.	40	182.4	98.47	22.44	805	89	
	Max.	178		128.29	142		362	*
	Ave.	113.05		113.38	72.48		159	
	Min.	4.9	6.28	5.5	4.65	7,88	6.25	6.22
рН	Max.	7.48		7.74	7.83		7.5	
	Ave.	6.26		6.71	6.22		6.72	

Table 2 – Continuation.

Sodium, Chloride and Sulfate

Regarding sodium, three wells (2, 14 and 38) show concentrations with relatively high values above the average in the region (18.79 mg/L). Among this three, well 14 has the highest content with 176 mg/L, which is not usual for fractured aquifers. This well is located close to the sea (\approx 1.9 km) in the Southern part of the city Palhoça, where there are superficial layers of lagoon sediments, which were deposited under shallow marine influence.

Sodium analyses combined with other parameters of well 14, such as chloride (282 mg/L), sulfate (33.09 mg/L) and the electrical conductivity (1.107 μ S/cm) reveals higher concentrations of salts in the water when compared to the averages of these ions in the study area respectively 25.67 mg/L, 5.02 mg/L and 232.77 μ s/cm. Given
the above, the groundwater in this well probably reflect the interaction with Quaternary sediments.

The well 2 has a similar condition, with 71.6 mg/L of sodium. Again, analysis together with other parameters of this well such as chloride (80.27 mg/L), sulfate (25.34 mg/L), and EC (717 μ s/cm) shows that water also contains high salt content. In this case, it must be considered that the well is located through a regional linear structure that connects directly to the Praia Brava beach, in the Northern sector of the Florianopolis island. The enterprise that operates the well uses a great volume to maintain a water park, causing water table dropdown by pumping and a probable saline intrusion of marine water. This condition is reinforced by the positive correlation between sodium and chloride in the two mentioned wells (Fig. 6a).

According to Davies & DeWiest (1966), normally groundwater that percolates through crystalline rocks has low content of chloride, often below 30 mg/L. The wells under analysis are mostly correlated with this statement, excepting the wells 2, 14 and the 16.

The waters of well 16 acquire chloride ions through the silt-clay and sand sediments of the Lagoon Deposit, since the concentration of 132.72 mg/L of Cl⁻ is not common in percolating waters in granitic aquifers, the most frequent in the region.

Figure 6b shows the positive correlation of sulfate with chloride with the exception of well 27. Given that granite and similar rocks do not have high Cl⁻ and SO₄²⁻ contents, it is possible to state that most sulfate concentrations have their sources related to chloride sources. As it is a rural area with soil management for agriculture, the use of sulfated fertilizers such as ammonium sulfate and magnesium sulfate, widely used in agriculture, increases the ion content in the well water. Fact corroborated by the greater amount of magnesium in that location: 14.88 mg/L.

Figure 6 - a) Positive correlation between sodium and chloride in wells 2 and 14 demonstrating that in these wells there is a contribution of ions from the quaternary sediments or a slight mixture with ocean waters; b) Positive correlation of sulfate with chloride with the exception of well 27.

Calcium, magnesium and bicarbonate

Figure 7a and 7b shows the positive correlation between calcium, magnesium and bicarbonate, therefore, the source for calcium and magnesium content in the study region is the hydrolysis of calcium carbonate with minor dolomitic fraction that fills the fractures of the aquifer according to reaction 1.

$$CaCO_3 + H_2O \leftrightarrow Ca^{2+} + HCO_3^- + OH^- (1)$$

Magnesium are in relatively low concentrations in water, excepting in well 2, where achieves de maximum values (30, 99 mg/L). Such a well is drilled in a gabbroic or dolerite rock intruded in the Ilha Granite. In this case, hydrolysis of mafic minerals (olivine, pyroxenes and amphiboles) in the soil horizons can liberate magnesium to water.

Carbonates also occur as alteration minerals in some lithologies where the highest concentrations of calcium in water are observed (Ilha Granite, São Pedro de Alcântara Granite, Alto da Varginha Granodiorite). Silicic minerals containing calcium

(plagioclases, pyroxenes and amphiboles), can also contribute to increase calcium content in the water, however, within the crystalline aquifers the contribution is less important, since the rate of hydrolysis is slow (Hem, 1985).

Among the three main anions used to classify groundwater (HCO_3^- , SO_4^{2-} and CI^-), bicarbonate is predominant in the study area. Igneous rocks normally present this characteristic because they have low content of CI^- and SO_4^{2-} (Appelo; Postma, 2005).

Figure 7 - a) positive correlation between calcium and bicarbonate; b) positive correlation between calcium and magnesium.

Potassium and silica

The concentration of potassium in the water samples are relatively low (maximum = 5.4 mg/L), resulting from resistance of K-feldspar to hydrolysis in the granitic aquifers. It must be emphasized the intense participation of potassium in ion exchange processes, being easily adsorbed by clay minerals and hardly removed by hydrolysis from its structure.

Silica is a minor compound in groundwater, being liberated to water during hydrolysis of silicate minerals contained in the granitic aquifer. According to Hem et al. (1963), the groundwater that percolates in granitic rocks, usually presents silica concentrations between 15 and 75 mg/L.

Fluoride

The fluoride contents in water range from 0.01 to 2.8 mg/L in most cases, excepting in well 14 (6,0 mg/L). High concentrations of fluoride is a common potability restriction for water, considering the maximum value establish by the WHO (1.5 mg/L). The main source for fluoride in the aquifers is fluorite, a common accessory mineral in granites, but also frequent as veins cutting the host granitic or gneissic rock. The dissolution process of fluorite follows the reaction 2:

$$CaF_2 \leftrightarrow Ca^{2+} + 2F^{-}(2)$$

In the specific case of well 14, the geological profile shows a thick dolerite intrusion in contact with the granite, favoring hydrothermal alteration processes.

Iron and manganese

Iron concentrations in general are relatively low (0.01 to 4.5 mg/L), as usually occurs in granitic aquifers, considering that mafic minerals are accessories in the lithologies. When mafic bodies appear as intrusions of dolerite in the granitic rock, iron content in water can increase. The normally neutral or slightly alkaline pH in the aquifer breaks the iron dissolution and transport. This statement is in accord to CPRM (2013) regional mapping, when confirms that higher levels of iron may occur only locally. It must be emphasized the inexistence of a positive correlation between iron and sulfate, indicating that oxidation of pyrite is not the main source for iron. The average concentration of iron in the study area is 0.31 mg/L, and without the two higher values (2.04 and 4.5 mg/L), it comes to 0.063 mg/L.

Manganese follow the iron in most cases, having a total low concentration in the water. In some wells with greater concentrations of iron, an increase in the content manganese also occurs, as in well 16 (Fe = 0.34 mg/L; Mn = 0.22 mg/L), well 10 (Fe = 0.2 mg/L; Mn = 0.15 mg/L) and well 9 (Fe = 4.5 mg/L; Mn = 0.956 mg/L). The average manganese in the study area is 0.071 mg/L and without its highest value (0.956 mg/L), it drops to 0.035 mg/L.

Nitrate

The probable sources for nitrate are linked to external factors, such as domestic effluents and agriculture. All the water samples showed concentrations below the national potability limits (44.3 mg/L). The highest contents are related to wells 1, 26 and 37 (13.26 mg/L, 15.29 mg/L and 14.99 mg/L, respectively). In the well 1, the location suggests domestic effluents influence, in counterpart to wells 26 and 37 were agriculture activity is predominant in the area. The results also demonstrate that samples up to 2 mg/L of nitrate have direct influence of rainfall and organic matter decomposition.

Environmental ionic ration indicators

The relationship between certain ions helps to provide information regarding the aquifer hydrogeochemistry, being useful to emphasize similarities between water and the lithologies that make up the aquifer. According to Schoeller (1963), the interval between 0.09 - 0.6 for rK⁺/Na⁺ is consistent with water circulating in granitic rocks and values < 1 are indicative of intense potassium fixation by clays and/or consumption by vegetables reflecting, in this way, in a more sodium water. The results of the study area are in accordance with these statements, since the highest value found, for well 22, is 0.440 mEq/L (Tab. 3).

Hem (1985) also estimates for rocks of granitic composition values between 0.25 - 0.33 referring to the Mg²⁺/Ca²⁺ ratio. In the study area, granitic lithotypes occur predominantly, sometimes varying from syenites and monzonites, being natural, therefore, that the ratios demonstrate values consistent with or close to Hem statements. Some Mg²⁺/Ca²⁺ ratios are higher, approaching 1 and sometimes exceeding this value, however this is not due to high concentrations of magnesium (except for well 2), but to low concentrations of calcium, raising the ratio.

The Cl⁻/HCO₃⁻ ratio provides inputs on climatic conditions, rainfall regime, evaporation and presence of marine water. For the present study, the ratios were used in order to verify the mixture of continental groundwater with marine waters. Todd (2006) states that the average value of the Cl⁻/HCO₃⁻ ratio for waters that circulate in crystalline rocks without interference from sea water is 0.5. Therefore, a considerable increase in this value, combined with the proximity to the ocean, may be indicative of a saline intrusion in the continental aquifer.

There is a predominance of bicarbonate waters in the study area as demonstrated by low Cl⁻/HCO₃⁻ ratios. According to Todd (2006), waters with initial salinization show results > 1.3 and, with advanced salinization, > 6.6. Wells 1 and 3 show ratio values $1 < Cl^-/HCO_3^- < 1.3$, corresponding to continental waters. However, in well 14 the Cl⁻/HCO₃⁻ ratio is much higher (2,545) suggesting marine waters. Sediments deposited under the ocean regime (lagoon deposit) and/or marine waters influence this local, as previously discussed.

Well	rK⁺/Na⁺	rMg ²⁺ /Ca ²⁺	rCl⁻/HCO₃⁻
1	0,128	0,922	1,443
2	0,023	1,289	0,489
3	0,205	2,105	1,031
4	0,049	0,533	0,738
5	0,166	1,685	0,206
6	0,113	0,225	*
7	0,128	0,374	0,390
8	*	*	*
9	*	*	*
10	N.D	0,180	0,296
11	0,044	0,960	0,117
12	0,383	0,361	0,178
13	0,353	0,105	*
14	0,012	0,499	2,545
15	0,003	1,391	*
16	0,008	0,615	*
17	N.D	N.D	0,390
18	N.D	N.D	0,965
19	N.D	N.D	*
20	N.D	N.D	*
21	0,402	0,359	0,111
22	0,440	0,666	0,205
23	0,173	1,066	*
24	0,042	0,417	*
25	0,040	0,181	0,064
26	0,073	N.D	0,338
27	*	0,815	0,042
28	*	*	0,686
29	*	*	*
30	0,088	0,439	*
31	0,110	0,863	0,368
32	0,569	0,569	*
33	*	*	*
34	0,181	N.D	0,958
35	0,115	0,550	*
36	0,155	0,587	0,184

Table $3 - \text{Ionic rations indicators (mEq/L) for the studied wells. Asterisk = No data.$

Table 3 – Continuation.

Well	rK⁺/Na⁺	rMg²+/Ca²+	rCl⁻/HCO₃⁻
37	*	*	0,294
38	0,019	0,4	*
39	0,036	0,752	*
40	0,102	0,520	0,168

Groundwater chemical classification

For a better understanding the chemical characteristics of groundwater in the Florianopolis metropolitan region the chemical compositions were plotted in a Piper trilinear diagram. Considering that not all the samples have a complete set of chemical analysis, 26 wells were plotted in the diagram. Alkalinity was used as a parameter in 5 wells, since the pH range in these wells is 6.2 to 6.74.

In the study area, there is a clear predominance of sodium bicarbonate waters, while calcium bicarbonate waters are less frequent, followed in addition to mixed bicarbonate, mixed chloride, sodium chloride, calcium chloride, sodium mixed and calcium mixed (Fig. 8).

Figure 8 - Groundwater classification of 26 according to Piper Diagram.

The predominance of bicarbonate waters is due to the hydrolysis of calcium carbonate that fills fractures in the crystalline rocks of the study region. The sodium

and calcium terms, which are also dominant in the classification, show a geochemical signature consistent with granitic aquifers. Calcium-magnesium terms are restricted referring to some basic rocks as protoliths of the Águas Mornas Complex.

The hydrochemical groups are distributed randomly in the study area, without correlation with any spatial distribution. However, in a strip located from the north of the municipality of Palhoça to the west of the municipality of Águas Mornas, passing through Santo Amaro da Imperatriz, there is a predominance of sodium bicarbonate waters. The group of chloride waters also does not occur exclusive to any geographical sector. However, all of them are closer to the ocean.

Conclusions

Hydrogeological assessments show that fractured aquifers in the region, depending on the need for use and structural knowledge of the site, can be a viable alternative for obtaining water of good quality.

Wells located close to or on the intersection between lineaments proved to be more productive. Concerning the linear structures that occur in the area, the NW-SE orientation lineaments, in general, have greater water potential than the lineaments of NE-SW direction. However, this fact is not a rule due to the geological and structural complexity that can occur in fractured aquifers.

The area with the greatest productive potential in the study region are located in the north of the municipality of Palhoça, following a strip that includes the municipalities of Santo Amaro da Imperatriz and Águas Mornas. Regarding the lithologies, three of them (Serra do Tabuleiro Granite, São Pedro de Alcântara Granite and Águas Mornas Complex) stand out with greater water potential, showing average discharges higher than 17 m³/h.

The hydrochemical characteristics of the region demonstrate, among the anions, bicarbonate is dominant and its presence is directly linked to the hydrolysis of calcium carbonate filling the fractures of the rocks. Cations appear in the proportion of Na⁺ > Ca²⁺ > Mg²⁺ > K⁺, which reflects the weathering in granitic rocks, which occur widely distributed in the region.

The hydrochemical groups, in general, appear randomly distributed in the study area. However, occur one NE-SW direction strip that extends from the north of the municipality of Palhoça until west of Águas Mornas, where there is a predominance of sodium bicarbonate waters. Wells that contain chloride water are characteristic of being close to the ocean.

Water samples from wells with higher dissolved salts content are probably under influence of Quaternary marine sediments that cover the area or by direct impact due to marine intrusion, in conditions of overpumping.

References

Appelo CAJ, Postma D (2005) Geochemistry, Groundwater and Pollution (2ed.). Balkema, Rotterdam

Companhia de Pesquisa de Recursos Minerais (1997) Programa levantamentos geológicos básicos do Brasil, Florianópolis (folha SG.22-Z-D-V) e Lagoa (folha SG.22-Z-D-VI).

http://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/8736/Florianopolis_Lagoa.pdf?se quence=1&isAllowed=y. Accessed 27 January 2021

Companhia de Pesquisa de Recursos Minerais (2011) Projeto Atlas Pluviométrico do Brasil.

https://www.cprm.gov.br/publique/media/hidrologia/mapas_publicacoes/atlas_pluvio metrico_brasil/isoietas_totais_anuais_1977_2006.pdf Acessed 27 January 2021

Companhia de Pesquisa de Recursos Minerais (2013) Mapa hidrogeológico do Estado de Santa Catarina. http://www.cprm.gov.br/publique/media/hidrologia/mapas_publicacoes/rel_mapa_hid _sc.pdf. Accessed 27 January 2021

Companhia de Pesquisa de Recursos Minerais (2014) Mapa geológico do Estado de Santa Catarina. http://rigeo.cprm.gov.br/xmlui/bitstream/handle/doc/17996/mapa_geologico_santa_ca tarina.pdf?sequence=5&isAllowed=y. Accessed 27 January 2021

Davis SN, DeWiest RJM (1966) Hydrogeology. John Wiley & Sons, New York

Hem JD, Waring GS, White DE (1963) Date of geochemistry: chemical composition of subsurface waters. Geological Survey Professional Paper, Washington

Hem JD (1985) Study and interpretation of chemical characteristics of natural water. U.S Geological Survey Water-Supply Paper, Washington

Schoeller M (1962) Les Eaux Souterrains. Masson & C. Editeurs, Paris

Todd DK (2006) Groundwater, hydrology. John Wiley, New York

WHO (2012) Environmental Health Criteria. World Health Organization, Geneva

Anexos

Anexo I Dados hidrogeológicos

Poço	N.E (m)	N.D (m)	Vazão (m³/h)	Capacidade específica (m ³ /h/m)	Profundidade (m)	Entrada d'água no perfil (m)	Condição
1	3	24,5	1,1	0,053	240	*	Confinado
2	5	90	18	0,212	142	*	Confinado
3	7	47	13,2	0,33	100	*	Confinado
4	32	160	3,6	0,028	300	*	Confinado
5	*	*	*	*	222	*	Confinado
6	4,51	58,29	6,2	0,115	70	22 e 32	Confinado
7	8	24,38	2,4	0,151	210	*	Confinado
8	14,5	48	3,4	0,103	80	*	Confinado
9	6	25	2	0,105	35	31	Confinado
10	21,1	60	15,5	0,399	90	*	Livre
11	2,55	18,51	37,7	2,363	72	24,1	Confinado
12	3,16	4,73	27,9	17,797	41	*	Confinado
13	0,5	48,7	8,1	0,17	120	*	Confinado
14	6,1	33,2	2,6	0,097	74	*	Confinado
15	1,32	38,91	19,8	0,527	78	12, 28 e 42	Confinado
16	1,1	58,48	51,2	0,893	120	*	Confinado
17	0,92	13,67	25,6	2,008	120	30	Livre
18	25 <i>,</i> 95	48,45	13	0,578	60	25 e 34	Confinado
19	2,99	34,21	4,4	0,141	145	50, 70 e 85	Confinado
20	0,83	24,51	4,7	0,198	30	27	Confinado
21	2,49	12,85	20,3	1,959	100	35, 41, 68 e 71	Confinado
22	3	22	20	1,053	120	42, 47, 54, 57, 66 e 67	Confinado
23	4,04	21,5	4,1	0,239	100	26, 32, 33 e 50	Confinado
24	8	24	40	2,5	112	29, 49, 69, 79 e 80	Confinado
25	3	96	8,8	0,095	320	*	Confinado
26	2,6	49,1	2,4	0,054	102	39	Livre
27	1,75	82,82	18	0,222	120	93, 97 e 111	Livre
28	6	10,35	17,6	4,046	100	16	Confinado
29	1,54	48,73	9,1	0,193	90	54 e 79	Confinado

Tabela 6 – Dados hidrogeológicos dos poços tubulares.

Poço	N.E (m)	N.D (m)	Vazão (m ³ /h)	Capacidade específica (m ³ /h/m)	Profundidade (m)	Entrada d'água no perfil (m)	Condição
30	5,1	45,5	10,1	0,251	72	21, 23,5, 46,5 e 64	Confinado
31	2,63	31,43	24,3	0,844	42	38	Confinado
32	8,02	97,15	19,3	0,217	123.7	29, 42 e 86	Confinado
33	40	90	1,2	0,024	150	67	Confinado
34	5,8	36	2,1	0,071	84	22 e 32	Livre
35	3,2	17	7,8	0,565	125	17	Confinado
36	1,83	18,36	18	1,089	54	17 e 20	Confinado
37	5	72	2,8	0,042	93	50	Confinado
38	2,5	19,16	1	0,06	102	66, 72, 84 e 96	Confinado
39	0,8	57,77	12	0,211	120	90 e 110	Confinado
40	5	29,6	10,2	0,415	100	32, 42 e 44	Confinado

Asterisco = Sem dado.

Anexo II Parâmetros físico-químicos

Poço	Na⁺ (mg/L)	K⁺ (mg/L)	Ca ²⁺ (mg/L)	Mg ²⁺ (mg/L)	HCO_3^{-} (mg/L)	Cl ⁻ (mg/L)	SO4 ² (mg/L)	CO_{3}^{2-} (mg/L)	Dureza (mg/L)	Alcalinidade (mg/L)
1	16,1	3,5	6,54	3,62	21,65	17,93	6,03	VND	31,63	17,75
2	71,6	2,9	40,04	30,99	285,72	80,27	25,34	VND	227,3	234,2
3	9,2	3,2	1,52	1,92	20,58	12,18	5,06	VND	*	16,87
4	19,7	1,65	6	1,92	44,69	18,93	1	VND	*	16,63
5	10,6	3	6,97	7,05	61,96	7,35	1	VND	41,69	50,78
6	2	*	24,8	3,36	*	48,7	2,027	*	78	16
7	7,3	1,4	2,27	0,51	31,88	7,15	1	VND	7,79	26,14
8	*	*	*	VND	*	42,6	*	VND	76	*
9	*	*	*	*	*	24,94	*	*	82,2	79,32
10	11,3	VND	44,64	4,84	125,73	21,4	VND	VND	135,6	125,73
11	29	2,2	10	5,76	79	5,32	VND	VND	49	79
12	8,3	5,4	4,43	0,96	42,56	4,36	2,1	VND	18	*
13	9	5,4	6,46	0,41		5,18	1	VND	17,8	33,7
14	176	3,7	34,87	10,45	193,74	282,95	33,09	VND	130	158,8
15	2,9	0,083	5,99	5	*	12,93	*	*	23,54	54,08
16	15,9	0,083	25,68	9,49	*	132,72	18,7	*	111,28	115,44
17	5,7	VND	7,7	VND	73	16,34	3,48	VND	34,24	72,8
18	3,8	VND	5,14	VND	43	23,82	2,84	VND	22,47	43,16
19	4,2	VND	8,99	VND	*	16,34	3,17	VND	37,45	93,6
20	4	VND	8,56	VND	*	15,65	3,83	VND	37,45	78
21	13	4,1	7,41	1,6	57,31	3,67	1,53	VND	25,42	*
22	6	2,5	1,2	0,48	15	1,77	0,01	VND	5	15
23	3,35	1,95	0,25	0,16	*	3	1	VND	*	*
24	6,34	2,24	3,19	0,8	*	2,3	1	VND	*	*
25	31	2,9	14,51	1,58	109,8	4,06	*	VND	42,38	90
26	42,5	0,7	19,16	VND	103	20	1,49	*	64,41	*
27	5,61	0,5	30,4	14,88	143	3,5	24	*	138	143
28	*	*	*	*	*	12,78	*	*	25,6	29
29	14	*	*	*	*	18,5	4	*	35,4	*

Tabela 7 – Dados físico-químicos dos poços tubulares.

Poço	Na⁺ (mg/L)	K⁺ (mg/L)	Ca ²⁺ (mg/L)	Mg ²⁺ (mg/L)	HCO ₃ ⁻ (mg/L)	Cl ⁻ (mg/L)	SO ₄ ² (mg/L)	CO_3^{2-} (mg/L)	Dureza (mg/L)	Alcalinidade (mg/L)
30	10,23	1,53	5,23	1,38	32,43	7,86	3,1	*	24	*
31	9,16	1,72	3,82	1,98	31,2	6,59	1,1	*	19,5	*
32	*	*	29,26	9,99	*	30	*	*	114,81	152
33	*	*	*	*	*	35,45	*	*	140	86
34	13,4	4,12	0,18	VND	34	18,7	VND	VND	*	34
35	7,63	1,5	7,03	2,32	*	3	1,1	VND	*	*
36	8,14	2,15	5,59	1,97	40,44	4,28	1,2	VND	24	*
37	*	*	*	*	80	13,5	3	VND	65,74	*
38	*	3	2	0,48	*	4,4	*	*	*	54
39	33,8	2,072	29,998	13,55	*	32,89	7,34	*	160	*
40	9,1	1,58	4,8	1,5	39,8	3,84	1,4	*	22,5	*

 SiO_2 (mg/L) F^- (mg/L) Fe (mg/L) Mn (mg/L) NO₃⁻ (mg/L) PO_4^{3-} (mg/L) Al^{3+} (mg/L) Cu²⁺ (mg/L) Poço 0,5 0,05 * * * 1 32,8 2,04 13,26 * * * * 2 93,8 0,94 0,34 0,01 * * * * 36,2 1,02 3 0,01 0,47 4 45,4 0,6 0,01 * 0,93 * * * 1,6 * * * * 5 24,4 0,4 0,04 6 * 0,88 0,188 * * * 0,17 0,014 7 0,01 0,69 * 0,18 * * * 28,9 * * * * * 8 0,21 VND * * * * * 9 4,5 0,956 VND * 10 2,06 0,2 0,15 VND VND VND 1,28 11 7,34 0,26 0,064 VND 0,14 VND VND VND * 12 35,67 0,95 0 0,7 VND VND VND 45,9 0,96 0,21 * 0,35 * * 13 0,1 14 34,99 6 0,36 * VND 0,05 * * * 57,24 0,25 0,01 4,02 * * 15 0,04 * 16 0,34 0,22 * * 50,19 0,44 4,87 * * 17 67,64 0,38 0,18 0,03 2,08 0,41 18 47,44 0,07 VND 0,04 VND 0,2 * * * * 0,62 19 58,64 0,32 VND 0,04 VND * * 61,74 0,45 0,07 0,05 VND 0,44 20 21 34,16 1,53 0,003 0,0005 1,3 * 0,03 0,016 * 0,01 22 12,2 0,01 0,66 0,21 0,01 0,01 * 23 7,44 0,1 0,002 0,001 1 0,1 0,01 * 24 13,57 0,19 0,005 0,003 1,8 0,1 0,01 * * 25 * 2,8 0,01 0,27 * * * 26 16,28 VND VND 0,13 15,29 VND VND * * * 25,6 0,99 0,2 0,084 0,5 27 * * * * * * * * 28 29 * * * * 0,0008 0,0007 4,01 0,002

Tabela 7 – continuação.

Poço	SiO ₂ (mg/L)	F ⁻ (mg/L)	Fe (mg/L)	Mn (mg/L)	NO₃ ⁻ (mg/L)	PO₄ ³⁻ (mg/L)	Al ³⁺ (mg/L)	Cu ²⁺ (mg/L)
30	16,25	0,15	0,002	0,001	2,1	*	0,1	0,01
31	12,62	0,12	0,01	0,001	4,4	*	0,1	0,01
32	*	1,8	0,25	*	*	*	*	*
33	*	*	*	*	*	*	*	*
34	16,13	VND	0,2	VND	1,8	0,21	*	*
35	8,98	0,14	0,014	0,001	0,9	*	0,1	0,01
36	13,18	0,21	0,015	0,001	1,6	*	0,1	0,01
37	75	0,6	*	*	14,99	*	*	*
38	19,7	0,92	0,18	0,03	0,2	*	*	*
39	10,32	1,84	0,015	0,007	0,47	*	0,003	0,002
40	18,13	0,17	0,012	0,001	*	*	0,2	*

 Zn^{2+} (mg/L) Cr (mg/L) | Pb (mg/L) C.E (μ S/cm) STD (mg/L) Temperatura (^oC) Data da coleta Poço pН * * * 134,5 6,12 22,5 29/06/2007 1 116 * * * * 717 7,48 22 13/06/2001 2 * * 23 3 * 5,84 27/02/2002 71,3 49 * * * 140,8 122 6,17 22 26/09/2003 4 * * * * 20/03/2003 5 123,4 74 6,68 0,004 * * 284 6,2 22 28/02/2008 6 160 7 * * * 70,6 43 6,95 22 19/03/2003 * 22 * * * 360 22/08/2009 8 6,28 * * * * * 26/04/2016 9 182,4 6,28 * * * 355 178 7,19 22 31/08/2017 10 11 VND VND 189 128,29 5,5 21 22/06/2009 VND 33 12 VND 0,007 87 * 6,4 20/07/2009 VND 13 * * * 6,64 * 01/11/2001 88,1 53 14 * * * 1107 805 7,88 * 29/06/1999 15 * * * 103,92 89 6,25 * 26/10/2015 16 * * * 604,2 362 6,65 * 16/11/2015 17 * * * * 26/10/2015 140,8 6,5 117 18 * * * 18,54 107 6,45 * 26/10/2015 * * * * 6,67 26/10/2015 19 146,1 120 * * * * 6,74 * 20 144,6 26/10/2015 21 0,004 0,02 0,004 123 * 6,84 22 11/12/1996 23 22 0,01 0,01 0,01 41 22,44 4,65 24/06/2009 * * * 23 5,5 0,02 0,005 0,174 13/11/2001 * 24 0,02 0,005 0,001 620 5,7 22,5 30/10/2201 25 * * * * * 7,83 19 21/07/2009 * * 26 VND 182,28 6,65 04/08/2015 VND VND 27 * * * * 196,9 7,74 21/10/2015 98,47 28 * * * 117 5,06 22 20/07/2009 40 29 0,002 176 148 4,9 22 22/06/2009

Tabela 7 – continuação.

Poço	Cr (mg/L)	Pb (mg/L)	Zn ²⁺ (mg/L)	C.E (µS/cm)	STD (mg/L)	рН	Temperatura (ºC)	Data da coleta
30	0,02	0,005	0,005	95		6,58	*	14/10/2003
31	0,02	0,005	0,005	86,6	*	6,27	*	18/09/2006
32	*	*	*	344,25	*	7,5	*	22/09/1986
33	*	*	*	346	*	6,03	22	04/12/2009
34	*	*	*	*	164,5		*	09/03/2015
35	0,02	0,002	0,046	131	*	6,22	20	21/05/2009
36	0,02	0,005	0,021	87	*	6,8	22	19/04/2006
37	*	*	*	186,44	*	7,4	*	02/03/1976
38	*	*	*	144	110	6,6	18,5	24/07/2009
39	0,003	0,01	0,02	424	*	7,36	*	27/04/2009
40	*	*	0,064	84	*	6,3	21	24/07/2009

VND = Valor Não Detectável. Asterisco = Sem dado.

Anexo III

Análise química enviada pela Casan

CASAN COMPANIE	A CATARINEN A DE OPERAÇÃ	SE DE ÁGUAS Des – Laborat A N Á L I S E	E SANEAMENTO ÓRIO S DE ÁGU	48.2. A	IC 1
Interessado	Departam	ento de Pro	jetos	Obs.:	POÇO
Município	Antônio	Carlos		ANTO	NIO CARLOS
Tipo de água	Poco		Tratamento	Não	
Local da coleta	Bomba -	durante bon	ibeamento		
Data e hora da coleta	02-03-76		Data de entr. no lab.	04-03-	76
Chuvas nas ultimas 24 hs.	Sim		Temperatura da água	°C	ar °c
Aspecto	Cristali	na	Cloro residual (mg/l)	1 million of the	
Odor	Inodora	and the second second second			
Receivers Profus	ndidade do	Poco 93.00	m.Agua bombea	da dos 50	.00 m.
	ANÁLISE	FÍSICO - QU	ÍMICA	Nº.	146
pH	7.4		Turbidez	0,0	J. T. U.
Alcalinidade HO-	0,0	mg/l em CaCO3	Cor	0,0	mg Pt/I
Alcalinidade CO3 -	0,0	mg/l em CaCO3	Cond esp. a 25°c	186,44	us/cm
Alcalinidade HCO3 -	80.0	mg/I em CaCO3	Residuo Total		mg/l 、
Gás Carbônico Livre (graf.)	7.92	mg/l em CO ₂	Residuo Fixo		mg/l
Dureza Total	65.74	mg/l em CaCO3	Oxigênio Consumido	0,3	mg/1 em O ₂
Dureza Cálcio		mg/l em CaCO ₃	Ferro		mg/l em Fe
Dureza Magnésio		mg/l em CaCO3	Cálcio	· · · ·	mg I em Ca
Nitrogênio Albuminóide		mg/ em N	Magnésio		mg/l em Mg
Nitrogênio Amoniacal		mg/l em N	Manganês		mg/l em Mn
Nitrogênio Nitrito	0,007	mg/l em N	Solidos Totais a 105°c		mg/l
Nitrogênio Nitrato	14,993	mg/I em N	Cloreto	19,06	mg/l em CaCO3
Fosfato		mg/l em P	Cloreto	22,27	mg/l em NaCl
Cloreto	13,5	mg/l em Cl	Sódio		mg/l em Na
Fluoreto	0,6	mg/l em F	Potássio		mg/I em K
Sulfato	3,0	mg/l em SO₄			
Silica	75,0	mg/I em SiO ₂			
	EXAME B	BACTERIOLÓGICO)	Nº.	
1 - Contagem padrão em pl	acas - nº de colôni	as/ml - agar padrão	h; 35°c		
2 - Colimetria - ensaio:			And the second second		
3 - Nº mais provável (NMP) de coliformes tot	ais, por 100 ml:			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
4 - Nº mais provável (NMP) de coliformes fec	ais, por 100 ml:			
				1 1	
Bactérias identificadas:					
Nota: Métodos do "Standard	methods for the	examination of water a	and wastewater" 13º ed.		
Conclusão			Gia. Catarinanse de Anu	Iss a Sanaamant	
			Laboratéric Central	de Análises	
		and the second second	MILON	In the MAN	1
Elezionénelia] 2 / 03	176		Biog. Ivone Gu	limarães	
Florianópolis,12 / 03	1_76		Biog. Ivone Gu	limarães	

Anexo IV

Dados gerais, perfis construtivos dos poços e perfis litológicos dos locais de perfuração

Perfil Construtivo	Gerais	Gerais						
Toniconordano	Dados Ge	erais:						
	Proprietá	rio :			Primave	era Garden Center		
	Natureza	do Ponto	:		Poço tu	bular		
0 5 7++++	Uso da ág	jua :			Irrigação			
	Cota do T			52.00				
	-							
	Localizaç	ão: Floria	anópoli	s				
	Localidad	le :			Rod. SC	: 401 - Km 4		
	UTM (Nor	te/Sul):			6950745			
++++++	UTM (Les	te/Oeste)	:		746811			
	Latitude (GGMMSS	i):		273240			
60 + + + + + + +	Longitude	e (GGMMS	SS) :		483002	10		
++++++					1941			
	Situação:							
80 + + + + + +	Data :				25/08/20	09		
	Situação :				Bombeando			
	Geológicos							
	Feição Ge	eomorfoló	igica:					
++++++	Descrição	b :	Vale a	berto				
			-					
	Dados Lit	tológicos:						
++++++	De (m):	Até (m): L	itologia:	Observações:			
	0	240	G	iranito	Granito			
	100	114	G	iranito	Rocha gr	anítica levemente fraturada		
160 + + + + + +	114	162	G	iranito	Rocha gr	anítica sem fraturas		
	162	192	G	iranito	Rocha gr	anítica fraturada		
+++++	192	204	G	iranito	Rocha gr	anítica sem fraturas		
	204	210	G	iranito	Rocha gr	anítica fraturada		
+++++	210	240	G	iranito	Rocha gr	anítica sem fraturas		
	÷.					0		
200 + + + + + +	Constr	utivos						
+++++	Perfuraçã	io:						
++++++	Data:		Profu	ndidade Ini	icial(m)	Profundidade Final(m)		
220 + + + + + -	22/06/200	7	0.00			240.00		
++++++	Perfurado	or		Métode	0			
240 + + + + + -	Hidropel	1		Rotop	neumático			
	maroper							

Diâmetro:							
De (m):	Até (m):	Polegadas	Milímetros				
0.00	10.50	9	228.6000				
10.50	100.00	6	152.4000				
10.50	240.00	6	152.4000				

Revestimento:							
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)			
0.00	10.50	Plástico geomecânico	6	152.4000			

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	10.50	Cimentação	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
22/06/2007	0.85	6	152.4000	

Dados Gerais:	
Proprietário :	Parque Aquático Água Show
Natureza do Ponto :	Poço tubular
Uso da água :	Outros (lazer,etc.)
Cota do Terreno :	27.00

Rod. SC 403, 3868		
6961676		
755019		
272640		
482512		
	Rod. SC 403, 3868 6961676 755019 272640 482512	

Situação:	
Data : 25/08/2009	
Situação :	Bombeando

Geológicos		
Feição Geomo	fológica:	
Descrição:	Encosta	

Dados Lit	Dados Litológicos:				
De (m):	Até (m):	Litologia:	Observações:		
0	142	Gabro	Gabro		
18	42	Gabro	Gabro com fraturamento incipiente		
42	48	Gabro	Gabro com fraturamento intenso		
48	54	Gabro	Gabro sem fraturamento		
54	60	Gabro	Gabro com fraturamento incipiente		
60	96	Gabro	Gabro com fraturamento intenso		
96	120	Gabro	Gabro com fraturamento moderado		
120	142	Gabro	Gabro sem fraturamento		

Construtivo	os			
Perfuração:				
Data:	Profun	didade Inicial(m)	Profundidade Final(m)	
01/06/2001	0.00		142.00	
Perfurador	-	Método		
Hidropel		Rotopneumático	12	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	6.00	10	254.0000	
6.00	142.00	6	152.4000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	6.00	Aço galvanizado com rosca e luva	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	6.00	Cimentação	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
01/06/2001	0.36	6	152.4000	

Gerais	
Dados Gerais:	
Proprietário :	Condomínio Marina Del Rey III
Natureza do Ponto :	Poço tubular
Uso da água :	Abastecimento doméstico
Cota do Terreno :	13.00
Localização: Elorianónolis	
Localização: Florianópolis	
Localidade :	Rua Haroldo Soares Glavan, 3820
UTM (Norte/Sul) :	6951890
UTM (Leste/Oeste) :	744484
Latitude (GGMMSS) :	273205
Longitude (GGMMSS) :	483128
Situação:	
Data :	26/08/2009
Situação :	Bombeando

Geologicos	Geologicos				
Feição Geomo	Feição Geomorfológica:				
Descrição:	Encosta	- 8 - 9			

Dados Lit	Dados Litológicos:				
De (m):	Até (m):	Litologia:	Observações:		
0	100	Granito	Granito		
6	12	Granito	Granito moderadamente fraturado		
12	18	Granito	Veio de quartzo moderadamente fraturado		
18	24	Granito	Granito muito fraturado		
24	100	Granito	Granito pouco fraturado		

Construtivos				
Perfuração:				
Data: Profundidade Inicial(m) Profundidade Final(m)				
24/02/2002	0.00 100.00			
Perfurador		Método		
Hidropel		Rotopneumático		

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	60.00	10	254.0000		
60.00	100.00	6	152.4000		

Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	36.00	Aço galvanizado com rosca e luva	6	152.4000	
38.00	52.00	Aço galvanizado com rosca e luva	6	152.4000	

Filtro:						
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)		
36.00	38.00	Aço galvanizado com rosca e luva	6	152.4000		
52.00	54.00	Aço galvanizado com rosca e luva	6	152.4000		

Espaço Anular:					
De (m):	Até (m):	Material			
0.00	12.00	Cimentação			
12.00	60.00	Pré-filtro			

Boca do Tubo:					
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)		
24/02/2002	0.39	6	152.4000		

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	186.00	10	254.0000		
186.00	300.00	6	152.4000		

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	158.00	Aço galvanizado com rosca e luva	6	152.4000
164.00	174.00	Aço galvanizado com rosca e luva	6	152.4000
180.00	186.00	Aço galvanizado com rosca e luva	6	152.4000

Filtro:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
158.00	164.00	Nold galvanizado	6	152.4000	
174.00	180.00	Nold galvanizado	6	152.4000	

Espaço Anula	ar:		
De (m):	Até (m):	Material	
0.00	40.00	Cimentação	
40.00	186.00	Pré-filtro	

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
24/09/2003	0.35	6	152.4000

	Perfil Construtivo	Gerais						
	Temi constructio	Dados Ge	rais:					
e		Proprietá	rio :			Renato	Wolf	_
		Natureza	do Ponto	:		Poço tul	bular	-
0		Uso da ág	jua :			Industria	al	
		Cota do T	erreno :			16.00		
	+++++	10 15				- 10		
20 -	+++++	Localizaç	ão: Flori	anópolis				
		Localidad	e:			SC 401 -	Km 6	
	+ ++ + +	UTM (Nor	te/Sul):	-		6952023		
40 -	+ ++ + +	UTM (Les	te/Oeste)	:		745872		
	+ ++ + +	Latitude (GGMMSS	5):		273159		
	+ ++ + +	Longitude	e (GGMM	SS) :		483038		
60 -	+++++							
	+++++	Situação:	5					
	+++++	Data :				27/08/20	09	
80 -	+++++	Situação	:			Seco		
	+ ++ + +							
	+ ++ + +	Geológ	icos					
100 -		Feição Ge	eomorfold	ógica:				
	+ + + + +	Descrição):	Encosta				
	+ ++ + +	L		15				
120 -	+++++	Dados Lit	tológicos	:				
	+ ++ + +	De (m):	Até (n	n): Lite	ologia:	Observag	;ões:	
		0	12	Sol	0	Regolito		
140 -	+ ++ + +	12	222	Gra	anito	Granito i	nalterado	
		24	168	Gn	aisses	Migmatit	o inalterado	
	+ ++ + +	168	180	Gn	aisses	Migmatit	o muito pouco fraturado	
160 -	+ ++ + +	180	222	Gn	aisses	Migmatit	o inalterado	
	+ ++ + +		8.					_
	+++++	Constr	utivos	2				
180 -	+++++	Perfuraçã	io:					
	+ ++ + +	Data:		Profund	lidade Ini	icial(m)	Profundidade Final(m)	
	+ ++ + +	13/03/200	3	0.00			222.00	
200 -	+ ++ +	Perfurado	or	100000	Métod	0		
	(+ ++ + +	Hidropel			Rotop	neumático		
	+++++	maroper			Listop			
220 -								
100								

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	24.00	10	254.0000	
24.00	222.00	6	152.4000	

Revestime	nto:		16	
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	24.00	Plástico geomecânico	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	24.00	Cimentação	

Boca do Tub	00:	12	
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
*	*	6	152.4000

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	12.00	10	254.0000	
12.00	70.00	6	152.4000	

Revestim	Revestimento:			
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	18.00	Plástico geomecânico	4	101.6000
42.00	70.00	Plástico geomecânico	4	101.6000

De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
18.00	42.00	Plástico geomecânico	4	101.6000

Espaço Anula	ır:		
De (m):	Até (m):	Material	
0.00	12.00	Cimentação	
12.00	70.00	Pré-filtro	

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
30/07/2004	0.50	4	101.6000

<u>Perfil Construtivo</u>		Gerais						
		Dados Gerais:						
		Proprietário :				Manoel Lauro V. Castilho		
		Natureza do Ponto :				Poço tubular		
		Uso da água :				Irrigação		
		Cota do Terreno :				*		
	+++++							
20 -	+++++	Localização: Florianópolis						
		Localidade :				Rod. Haroldo Soares Glavan, 4280		
	¥++++	UTM (Norte/Sul) :				6952360		
40 —	++++++	UTM (Leste/Oeste) :				744644		
	+++++	Latitude (GGMMSS) :				273149		
	+++++	Longitude (GGMMSS) :				483123		
60 —	++++++							
		Situação:						
		Data :				28/08/2009		
80 —		Situação :			Bombea	Bombeando		
	+++++	+ + + + + -						
		Geológicos						
100 -	+++++	Feição Geomorfológica:						
	++++++	Descrição: Encosta						
120 -	+++++	Dados Litológicos:						
		De (m):	Até (m): Lite	ologia:	Observaçã	ões:	
	+++++	0	12	So	0	Solo		
140 -	++++++	12	210	Gra	anito	Granito		
140		54	109	Gra	anito	Granito al	terado sem fraturamento	
	+++++	109	132	Gra	anito	Granito po	ouco alterado sem fraturamento	
1.00		132	138	Gra	anito	Granito se	em fraturamento intenso	
160 -	++++++	138	210	Gra	anito	Granito in	alterado sem fraturamento	
		Construtivos						
180 -	+++++	- Perfuração:						
		Data: Profundidade			didade Ir	icial(m) Profundidade Final(m)		
	++++++	18/03/2003	1	0.00			210.00	
200 -	+++++	Perfurador	r		Métode			
		Hidropel			Rotop	Rotopneumático		
Diâmetro:								
-----------	----------	-----------	------------	--	--			
De (m):	Até (m):	Polegadas	Milímetros					
0.00	36.00	10	254.0000					
36.00	210.00	6	152.4000					

Revestimento:						
De (m): Até (m): Material Diâmetro (pol) Diâmetro (m						
0.00	18.00	Aço galvanizado com rosca e luva	6	152.4000		
27.00	36.00	Plástico geomecânico	6	152.4000		

Filtro:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
18.00	27.00	Plástico geomecânico	6	152.4000	

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	10.00	Cimentação		
10.00	36.00	Pré-filtro		

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
18/03/2003	0.78	6	152.4000	

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	5.00	12	304.8000		
5.00	80.00	8	203.2000		

Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	5.00	Plástico geomecânico	6	152.4000	

Espaço Anula	Espaço Anular:				
De (m):	Até (m):	Material			
0.00	5.00	Cimentação			

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
22/08/2009	0.00	8	203.2000	

Perfil Construtivo	Gerais						
<u>I SHI SSHUUTU</u>	Dados Ger	rais:					
	Proprietári	io :			João Lu	iz Damian	8
	Natureza do Ponto :			1	Poço tub	ular	0
0	Uso da água :				Abasteci	mento ind	ustrial
	Cota do Terreno :			6	15.00		
	Localidad		nopons		C 117 A 12 1 00		
s	LITM (Nort	o/Sul\ ·			5011670	Antonio	Jacques, ov
	UTM (Lost	e/Sul).			749686		
		CMMSS)			272555		
			s) .		482813		
	Longitude	(0000003	3).	12	402015		
	Situação:						
	Data :				03/06/201	6	
	Situação :				Desativa	do	
15	Geológicos						
	Feição Ge	omorfológ	gica:				
	Descrição	:	Planície	flúvio-lag	gunar		
	2						
	Dados Lite	ológicos:					
20 +++++	De (m):	Até (m)	: Lito	logia:			
	0	7	Arg	la			
	7	14	Seix	os			
	14	18	Arei	a			
	18	35	Gra	nito			
	Entrada d	'água:					
	Profundid	ade:					
	31.00						
30) +++++	-						
	Constru	ltivos					
	Perfuraçã	Perfuração:					
	Data:		Profundi	dade Inici	al(m)	Profundi	dade Final(m)
	01/01/2001	1	0.00			35.00	
32] 4++++	Perfurado	r		Método		_	
	Délio Per	furações		*			

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	20.00	8	203.2000		
20.00	35.00	6	152.4000		

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	20.00	Cimentação		

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
*	*	6	152.4000	

Gerais	
Dados Gerais:	
Proprietário :	Giorgini Augusto Venturieri
Natureza do Ponto :	Poço tubular
Uso da água :	Abastecimento doméstico/irrig.
Cota do Terreno :	35.00

Localização: Florianópolis		
Localidade :	Servidão das Gralhas, 154	2
UTM (Norte/Sul) :	6957321	
UTM (Leste/Oeste) :	753118	1
Latitude (GGMMSS) :	272903	
Longitude (GGMMSS) :	482618	2

Situação:		
Data :	25/09/2017	
Situação :	Bombeando	

Geológicos	Geológicos		
Feição Geomo	rfológica:		
Descrição:	Fundo de vale		

Dados Litológicos:

De (m):	Até (m):	Litologia:	Descrição Litológica:	
0	7.5	Solo	Solo argilo-arenoso	
7.5	90	Granito	Granito fraturado	

Construtivos				
Perfuração:				
Data:	Profundidad	le Inicial(m)	Profundidade F	inal(m)
01/08/2017	0.00		90.00	
Perfurador		Método		
Leão Poços A	Leão Poços Artesianos LTDA		ático	

Diâmetro:			
De (m):	Até (m):	Polegadas	Milímetros
0.00	8.00	10	254.0000
8.00	10.00	8	203.2000
10.00	90.00	6	152.4000

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	10.00	Plástico geomecânico	6	152.4000

Espaço Anula	ar:		
De (m):	Até (m):	Material	
0.00	8.00	Cimentação	
0.00	10.00	Cimentação	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
*	*	6	152.4000	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	24.00	12	304.8000	
24.00	72.00	6	254.0000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	20.00	Plástico geomecânico	6	152.4000

Filtro:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
20.00	24.00	Plástico geomecânico	6	152.4000

Espaço Anula	ar:	
De (m):	Até (m):	Material
0.00	20.00	Cimentação
20.00	24.00	Areia quartzosa de 1,00 a 3,00 mm

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
22/06/2009	1.08	6	152.4000	

Gerais	
Dados Gerais:	
Proprietário :	Fonte Santa Catarina de Alexandria
Natureza do Ponto :	Poço tubular
Uso da água :	Abastecimento industrial
Cota do Terreno :	11.00
Localização: Palhoça	
Localidade :	Rua Jacob Villain Filho - Guarda do Cubatão
UTM (Norte/Sul) :	6933424
UTM (Leste/Oeste) :	728592
Latitude (GGMMSS) :	274214
Longitude (GGMMSS) :	484054
Situação:	
Data :	20/07/2009
Situação :	Bombeando

Coologicoc	•
Feição Geomo	fológica:
Descrição:	Vale aberto

Dados Litológicos:

De (m):	Até (m):	Litologia:	Observações:
0	6	Solo	Regolito
6	18	Granito	Granito alterado fraturado
18	30	Granito	Granito alterado pouco fraturado
30	41	Granito	Granito alterado pouco fraturado

Construtivo	Construtivos					
Perfuração:						
Data:	Profun	didade Inicial(m)	Profundida	ide Final(m)		
03/09/2002	0.00		41.00			
Perfurador		Método				
Hidropel		Rotopneumático				

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	24.00	12	304.8000	
24.00	41.00	10	254.0000	

Revestim	Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	32.00	Plástico geomecânico	6	152.4000	
40.00	41.00	Plástico geomecânico	6	152.4000	

Filtro:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
32.00	40.00	Plástico geomecânico	6	152.4000

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	24.00	Cimentação		
24.00	41.00	Pre-filtro		

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
20/07/2009	0.60	6	152.4000

Perfil Construtivo	Gerais					
Tomoonuario	Dados Gera	ais:				
	Proprietário	o:			Fonte Sa	nta Catarina de Alexandria
	Natureza d	o Ponto	:		Poço tub	ular
0	Uso da águ	ıa:			Industria	al
	Cota do Te	rreno :			8.00	
	97 					
10	Localizaçã	o: Palho	oça			
	Localidade	:			Rua Jaco	b Villain Filho - Guarda do Cubatão
20 +++++	UTM (Norte	e/Sul):			6933428	
	UTM (Leste	e/Oeste)	:		728597	
	Latitude (G	GMMSS):		274214	
30 + + + + +	Longitude	(GGMMS	SS) :		484054	0
	Situação:					
40	Data :				25/09/200	9
	Situação :				Colmata	lo
+++++						
50 + + + + + + +	Geológi	cos				
	Feicão Geo	morfoló	aica.			
	Descrição:	Alloriolo	Vale ab	erto		
00	Dooonyaon		T ulo ul			
	Dadaa Lita	lágioogu	2			
	Daulos Lito	Ató (m	<u>.</u>	itologia:	Observe	
+++++	De (III).	Ale (II	<u>1.</u>	intorogra.	Solo silti	o aronoso
	6	19		ranito	Docha in	tomporizada o docomposta
80 + + + + + + + + + + + + + + + + + + +	18	36		ranito	Granito i	nalterado
	30	36		ranito	Granito	noderadamente fraturado
	36	120		ranito	Granito i	naltorado
90	36	120		ranito	Granito	noderadamente fraturado
		120		anto	Granito i	
	Constant	41				
	Constru	tivos				
	Perfuração	:				
	Data:		Profun	didade Inio	cial(m)	Profundidade Final(m)
++++++	23/10/2001	ł .	0.00	20		120.00
	Perfurador			Método	•	
120 + + + + + + + + + + + + + + + + + + +	Hidropel			Rotopn	eumático	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	42.00	10	254.0000	
42.00	120.00	6	152.4000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	42.00	Aço galvanizado com rosca e luva	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	42.00	Cimentação	

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
25/09/2009	0.00	6	152.4000

Gerais	
Dados Gerais:	
Proprietário :	Meris Tadeu Buratto
Natureza do Ponto :	Poço tubular
Uso da água :	Abastecimento doméstico/irrig.
Cota do Terreno :	13.00

Localização: Palhoça		
Localidade :	Rancho Brisa do Mar	
UTM (Norte/Sul) :	6919124	
UTM (Leste/Oeste) :	731838	
Latitude (GGMMSS) :	274957	
Longitude (GGMMSS) :	483846	

Situação:		
Data :	26/09/2009	
Situação :	Parado	

Geológicos

Feição Geomor	fológica:	
Descrição:	Encosta	

Dados Lit	ológicos:	
De (m):	Até (m):	Litologia:
0	8	Solo arenoso
8	18	Argila
18	36	Granito
36	74	Diabásio

Construtivo)S			
Perfuração:			194	
Data:	Profundidade Inicial(m)		Profundidade Final(m	
09/05/1999	0.00		74.00	
Perfurador		Método		
Hidropel		Rotopneumático		

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	24.00	10	254.0000		
24.00	74.00	6	152.4000		

Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	24.00	Aço galvanizado com rosca e luva	6	152.4000	

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	24.00	Cimentação		

Boca do Tubo:					
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)		
26/09/2009	0.82	6	152.4000		

Perfil Construtivo	Gerais	Gerais					
	Dados Ger	rais:					
	Proprietár	io :			Pedra Br	anca LTD	A
	Natureza do Ponto :			Poço tubular			
	Uso da água :		Abastecimento industrial				
	Cota do Te	erreno :		Ĩ	25.00		
	Localizaçã	ăo: Palho	oça				
10 + + + + + +	Localidade	e:			Rua dos	Sabias - I	Poço 1
	UTM (Nort	e/Sul):			6941618		
+++++	UTM (Lest	e/Oeste)	:		728108		
	Latitude (0	GGMMSS):		273749		
	Longitude	(GGMMS	SS) :		484118		~
+++++							
	Situação:	1					
	Data :				19/06/200	9	
	Situação :				Parado		
30 + + + + + -							
	Geológicos						
	Feição Geomorfológica:						
	Descrição	:	Vale aberto				
40	<i>9</i> 1				24		
	Dados Lite	ológicos:	2]		
	De (m):	Até (m): Litolog	ia:]		
	0	3	Solo si	toso]		
50	3	58	Granito	Ē.]		
	58	78	Granito]		
	Entrada d	'água:					
	Profundid	lade:					
	12.00						
+++++	28.00						
	42.00						
 + + + + +	-						
70 ++++++	Constr	utivos					
+++++	Porfuraçã	io:					
+++++	++++ +++ Data: Drafundidada Inicial/m) Drafundidada Fic		dade Final(m)				
	15/06/200	5	0.00		a(iii)	78.00	
	Perfurade	yr	0.00		Método	10.00	
	Schneide	r Santo	e o Zamboni		Rotonno	umático	•
	Schneider, Santos e Zamboni L1			LIDA	notopile	annuaco	

124

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	8.00	8	203.2000		
8.00	78.00	6	152.4000		

Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	8.00	Plastico geomecanico	6	152.4000	

Espaço Anular:					
De (m):	Até (m):	Material			
0.00	8.00	Cimentação			

Boca do Tubo:					
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)		
19/06/2009	0.32	6	152.4000		

Situação :

Gerais		
Dados Gerais:		
Proprietário :	Pedra Branca LTDA	
Natureza do Ponto :	Poço tubular	
Uso da água :	Abastecimento industrial	
Cota do Terreno :	9.00	
Localização: Palhoça Localidade :	Rua Boulevard do parque	
UTM (Norte/Sul) :	6942677	
UTM (Leste/Oeste) :	728969	
Latitude (GGMMSS) :	273714	
Longitude (GGMMSS) : 484047		
Situação:		
Data :	30/08/2005	

Geológicos					
Feição Geomo	fológica:				
Descrição:	Planície flúvio-lagunar				

Bombeando

Dados Litológicos:				
De (m):	Até (m):	Litologia:	Observações:	
0	6	Areia argilosa	Areia argilosa	
6	18	Argila arenosa	Argila arenosa	
18	24	Granito	Granito fraturado	
24	60	Granito	Granito fraturado	
60	72	Granito	Granito maciço	
72	120	Granito	Granito muito fraturado até 80 m	

Construtivo	Construtivos			
Perfuração:				
Data:	Profundidade Inic	ial(m)	Profundidade	Final(m)
25/11/2003	0.00		120.00	
Perfurador		Método		
Hidroinnga Po	ços Artesianos LTDA	Rotopne	umático	

Diâmetro:			
De (m):	Até (m):	Polegadas	Milímetros
0.00	20.00	17	431.8000
20.00	66.00	14	355.6000
66.00	120.00	8	203.2000

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	34.00	Aço inox com rosca e luva	6	152.4000
66.00	120.00	Plástico geomecânico	6	152.4000

Filtro:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
34.00	62.00	Espiralado perfil redondo inox	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	18.00	Cimentação	
18.00	120.00	Pré-filtro	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
25/11/2003	0.50	*	*	

Perfil Construtivo	Gerai	s				
Teni constativo	Dados	Gerais:				
—	Proprie	etário :		15	Pedra Branca LT	DA
	Naturez	za do Ponto	:	8	Poço tubular	
	Uso da	água :			Abastecimento un	bano
	Cota de	o Terreno :			19.00	
	Localiz	ação: Palho	oça			
	Localid	lade :			Cidade Universit	ária Pedra Branca
20	UTM (N	lorte/Sul) :			6943311	
	UTM (L	.este/Oeste)	:		728072	
	Latitud	e (GGMMSS):		273654	
30	+ + + Longitu	ude (GGMMS	SS) :	19	484120	
	+++	2				
	+ + - Situaçã	io:			_	
	+ + + Data:	2			21/06/2016	
	+ + - Situaçã	io:			Bombeando	
50	+ + + + Geold	ódicos				
	+++	Commental	-1			
	+ + + + Feição	Geomorroio	gica:			
60 +++	+++	,au:	vale abe	110		75
	++- Dados	Litológicos:	2			2
70 ++++	+ + + + De (m)	Até (m): Lito	ogia:	Observações:	
	++++ 0	26	Solo	argiloso	Solo argiloso	1
	+++ 26	34	Grau	nito	Granito alterado	
80	+++ - 34	120	Grau	nito	Granito macico	
	+++		Siu			
	+ + + + Entrad	a d'água:				
	+ + + Profun	didade:				
	+++ 30.00					
	+ + +					
+++++++++++++++++++++++++++++++++++++++	+++ Cons	strutivos				
	+ + - Perfur	ação:				
	+ + - Data:		Profund	idade Inici	al(m) Profund	didade Final(m)
	+++	2001	0.00		120.00	
120 + + +	+ + - Perfur	ador		Método		
+++	***					

Diâmetro:			
De (m):	Até (m):	Polegadas	Milímetros
0.00	26.00	12	304.8000
26.00	38.00	10	254.0000
38.00	120.00	6	152.4000

Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	26.00	Plástico geomecânico	6	152.4000	

Filtro:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
26.00	38.00	Plástico geomecânico	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	26.00	Cimentação	
26.00	38.00	Pré-filtro	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
*	*	6	152.4000	

Gerais			
Dados Gerais:			
Proprietário :	Pedra Branca LTDA		
Natureza do Ponto :	Poço tubular		
Uso da água :	Abastecimento urbano		
Cota do Terreno :	32.00		

Localização: Palhoça		
Localidade :	Faculdade Pedra Branca	
UTM (Norte/Sul) :	6941191	
UTM (Leste/Oeste) :	727840	
Latitude (GGMMSS) :	273803	
Longitude (GGMMSS) :	484127	

Situação:	
Data :	21/06/2016
Situação :	Bombeando

Geológicos	Geológicos	
Feição Geomo	Feição Geomorfológica:	
Descrição:	Colina	

Dados Litolo	ógicos:
--------------	---------

De (m):	Até (m):	Litologia:	Observações:	
0	10	Areia argilosa	Areia argilosa	
10	18	Areia siltosa	Areia siltosa	
18	40	Granito	Granito fraturado	
40	60	Granito	Granito maciço	

Entrada	a d'água:
Profun	didade:
25.00	
34.00	

Construtive	os			
Perfuração:				
Data:	Profund	lidade Inicial(m)	Profund	lidade Final(m)
01/01/2001	0.00		60.00	
Perfurador		Método		
*		*		1

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	23.00	10	254.0000	
23.00	60.00	6	152.4000	

Revestimento:				
De (m): Até (m): Material Diâmetro (pol) Diâmetro (mm)				
0.00	23.00	Plastico geomecanico	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	23.00	Cimentação	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
*	*	6	152.4000	

Construtivo	os		
Perfuração:			
Data:	Profun	didade Inicial(m)	Profundidade Final(m
01/01/2001	0.00		145.00
Perfurador		Método	
*		*	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	43.00	12	304.8000	
43.00	145.00	6	152.4000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	43.00	Plástico geomecânico	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	43.00	Cimentação	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
*	*	6	152.4000	

Gerais			
Dados Ge	rais:		
Proprietá	io :		Pedra Branca LTDA
Natureza	do Ponto	:	Poço tubular
Uso da ág	ua:		Abastecimento urbano
Cota do T	erreno :		17.00
Localizaç	ão: Palho	ça	
Localidad	e:		Faculdade Pedra Branca
UTM (Nor	te/Sul):		6943245
UTM (Les	te/Oeste)	:	728317
Latitude (GGMMSS):	273656
Longitude	(GGMMS	is) :	484111
		- 532	
Situação:	2		
Data :			21/06/2016
Situação :			Bombeando
Geológ	icos		
Feição Ge	eomorfoló	gica:	
Descrição	:	Vale aberto	
Dados Lit	ológicos:		
De (m):	Até (m): Litologia:	Observações:
0	10	Solo	Solo argiloso
10	28	Granito	Granito fraturado
28	30	Granito	Granito macico

Entrada d'água: Profundidade: 27.00

Construtivo	os		
Perfuração:			
Data:	Profund	didade Inicial(m)	Profundidade Final(m)
01/01/2001	0.00		30.00
Perfurador		Método	
*		*	

Gerais		
Dados Gerais:		
Proprietário :	Baden Baden Hotéis e Turismo LTDA	
Natureza do Ponto :	Poço tubular	
Uso da água :	Atividade de prestação de serviços hoteleiros	
Cota do Terreno :	164.00	

Localização: Santo Amaro da Imperatriz		
Termas do Tabuleiro Residence Resort SPA		
6932310		
711239		
274301		
485127		

Situação:		
Data :	26/05/2009	
Situação :	Não instalado	

Geológicos

Feição Geomor	fológica:
Descrição:	Vale aberto

Dados Litológicos:

De (m):	Até (m):	Litologia:
0	10	Rochas Intemperizadas e Decompostas
10	100	Granito

Ent	rada d'água:
Pro	ofundidade:
35.	00
41.	00
68.	00
71.	00

Construtivo	os			
Perfuração:				
Data:	Profundidade Inicial(m)		Profundidade Final(m	
18/07/1995	0.00		100.00	
Perfurador	5.5	Método		
Tecno Poços L	TDA	Rotopneumático		

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	31.00	12	304.8000	
31.00	100.00	6	152.4000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	31.00	Plástico geomecânico	8	203.2000
0.00	31.00	Plástico geomecânico	8	203.2000

Espaço Anular:			
De (m): Até (m): Material			
0.00	31.00	Cimentação	

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
26/05/2009	0.50	6	152.4000

Gerais	
Dados Gerais:	
Proprietário :	Sociedade Hoteleira Itatiaia S/A
Natureza do Ponto :	Poço tubular
Uso da água :	Abastecimento doméstico
Cota do Terreno :	220.00

Localização: Santo Amaro da Imperatriz		
Localidade :	Rua Princesa Leopoldina, 3355	į
UTM (Norte/Sul) :	6930494	
UTM (Leste/Oeste) :	715824	
Latitude (GGMMSS) :	274357	
Longitude (GGMMSS) :	484838	Î

Situação:		
Data : 24/06/2009		
Situação :	Bombeando	

Geológicos

Feição Geomor	fológica:
Descrição:	Encosta

Dados Litológicos:		
De (m):	Até (m):	Litologia:
0	30	Solo areno-argiloso

Granito

120

E	ntrada d'água:
P	rofundidade:
42	2.00
47	7.00
54	1.00
57	7.00
66	5.00
67	7.00

30

Construtivos			
Perfuração:			
Data:	Profun	didade Inicial(m)	Profundidade Final(n
24/04/2006	0.00		120.00
Perfurador		Método	
Água Santa		Percussão	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	40.00	10	254.0000	
40.00	120.00	6	152.4000	

Revestim	Revestimento:			
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	23.00	Aço galvanizado com rosca e luva	6	152.4000
0.00	42.00	Plástico geomecânico	4	101.6000

Filtro:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
42.00	120.00	Plástico geomecânico	4	101.6000

Espaço Anula	ar:	
De (m):	Até (m):	Material
0.00	40.00	Cimentação
40.00	120.00	Areia quartzosa de 1,00 a 3,00 mm

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
24/06/2009	0.20	4	101.6000

Gerais		
Dados Gerais:		
Proprietário :	Água Mineral Imperatriz	
Natureza do Ponto :	Poço tubular	
Uso da água :	Industrial	
Cota do Terreno :	185.00	

Localização: Santo Amaro da Imperatriz		
Localidade :	Rua Trinta, Vargem Grande	ļ
UTM (Norte/Sul) :	6932001	
UTM (Leste/Oeste) :	710920	2
Latitude (GGMMSS) :	274311	20

Situação:		
Data :	ata: 25/06/2009	
Situação :	Bombeando	

Geológicos

Feição Geomorfold	igica:
Descrição:	Encosta

Dados Litológicos:		
De (m):	Até (m):	Litologia:
0	15	Areia argilosa
15	100	Granito

En	trada d'água:
Pr	ofundidade:
26	.00
32	.00
33	.00
50	.00

Construtive	os			
Perfuração:				
Data:	Profun	didade Inicial(m)	Profundidade Fi	inal(m)
30/06/2001	0.00		100.00	
Perfurador		Método		
Impagross		Rotopneumático		

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	17.00	12	304.8000	
17.00	100.00	6	101.6000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	17.00	Aço galvanizado com rosca e luva	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	17.00	Cimentação	

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
25/06/2009	0.00	6	152.4000

Gerais		
Dados Gerais:		
Proprietário :	Água Mineral Imperatriz	
Natureza do Ponto :	Poço tubular	
Uso da água :	Comercial	
Cota do Terreno :	182.00	

Localização: Santo Amaro da	Imperatriz	
Localidade :	Rua Trinta, Vargem Grande	
UTM (Norte/Sul) :	6932047	
UTM (Leste/Oeste) :	710854	1
Latitude (GGMMSS) :	274309	
Longitude (GGMMSS) :	485141	

Situação:	······	
Data :	25/06/2009	
Situação :	Bombeando	

Geológicos

Feição Geomor	fológica:
Descrição:	Encosta

Dados Lit	ológicos:	
De (m):	Até (m):	Litologia:
0	23	Solo areno-argiloso
23	112	Granito

Entrada	a d'água:
Profun	didade:
29.00	
49.00	
69.00	
79.00	
80.00	

Construtivo	os			
Perfuração:				
Data:	Profun	didade Inicial(m)	Profundidade Fi	nal(m)
26/01/2000	0.00		112.00	
Perfurador		Método		
Impagross		Rotopneumático		

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	23.00	12	304.8000		
23.00	112.00	4	101.6000		

Revestimento:						
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)		
0.00	23.00	Aço galvanizado com rosca e luva	6	152.4000		

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	23.00	Cimentação		

Boca do Tubo:					
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)		
25/06/2009	0.00	6	152.4000		

Perfil Construtivo		Gerais					
		Dados Gerais:					
1		Proprietári	io :			Madil M	ercado Administrativo
		Natureza do Ponto :				Poço tubular	
		Uso da água :				Abasteci	mento doméstico
-1			Cota do Terreno :			15.00	
	+ + + + + + + + + + + + + + + + + + + +	<u>2</u>					2
-	++++++	Localização: Santo Amaro da Imperatriz					
_	++++++	Localidade :				Sítio Matiju - Braço São João	
50	+++++	UTM (Nort	e/Sul):			6932181	
	++++++	UTM (Lest	e/Oeste)	:		726455	
<u> </u>	+++++	Latitude (C	GGMMSS	5):		274256	
-	+++++	Longitude	(GGMMS	SS) :		484211	
	+++++	59					
100		Situação:					
	+++++	Data :				21/07/2009	
	++++++	Situação :		Bombeando			
	+++++						
	+++++	Geológi	cos				
150	++++++	Feição Ge	omorfoló	ógica:	:		
	++++++	Descrição	Descrição: Encosta				
	+++++						
	++++++	Dados Lite	ológicos:	:			
		De (m):	Até (m	n):	Litologia:	Observaçõ	es:
200 ——	+ + + + + +	0	6		Granito	Granito alto	erado medianamente fraturado
		6	12		Granito	Granito po	uco alterado e maciço
		12	24		Granito	Granito ina	lterado medianamente fraturado
		24	30		Granito	Granito ina	lterado muito fraturado
		30	36		Granito	Granito inalterado e maciço	
250		36	42		Granito	Granito ina	alterado pouco fraturado
200		42	66		Granito	Granito inalterado e maciço	
			72		Granito	Granito inalterado muito fraturado	
		72	204		Granito	Granito ina	alterado pouco fraturado
300		Construtivos					
		Perfuração:					
		Data:		Prof	fundidade Ir	nicial(m)	Profundidade Final(m)
2		06/03/2002 0.00			00		320.00

Método

Rotopneumático

Perfurador

Hidropel

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	12.00	10	254.0000		
12.00	37.00	8	152.4000		
37.00	320.00	6	152.4000		

Revestimento:						
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)		
0.00	37.00	Aço galvanizado com rosca e luva	6	152.4000		

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	12.00	Cimentação		
0.00	12.00	Cimentação		

Boca do Tubo:					
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)		
21/07/2009	1.10	6	152.4000		

Gerais		
Dados Gerais:		
Proprietário :	Janice Assing	
Natureza do Ponto :	Poço tubular	
Uso da água :	Irrigação	
Cota do Terreno :	365.00	

Estrada Geral São Miguel	
6931793	
700235	
274324	
485808	
	Estrada Geral São Miguel 6931793 700235 274324 485808

Situação:		
Data :	12/12/2016	
Situação :	Bombeando	

Geológicos Feição Geomorfológica:		

Dados Litológicos:		
Até (m):	Litologia:	
9	Argila	
24	Argila	
39	Rochas Intemperizadas e Decompostas	
102	Granito	
	ológicos: Até (m): 9 24 39 102	

Entrada d'água	•
Profundidade:	
39.00	

Construtivos			
Perfuração:			
Data:	Profundidad	le Inicial(m)	Profundidade Final(m)
17/07/2015	0.00		102.00
Perfurador		Método	
Leão Poços A	rtesianos LTDA	Rotopneum	ático

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	37.00	12	305.0000	
37.00	66.50	9	228.6000	
66.50	102.00	6	152.0000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	37.00	Plástico geomecânico	6	152.0000

Filtro:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
37.00	66.50	Plástico geomecânico	6	152.0000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	32.00	Cimentação	
0.00	37.00	Material da formação	
32.00	66.50	Pré-filtro	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
17/07/2015	0.50	6	152.0000	

111.00

Gerais				
Dados Ge	rais:			
Proprietá	rio :		Associação dos moradores do Sítio do Rio das Antinhas	
Natureza	do Ponto		Poço tubular	
Uso da ág	jua :		Abastecimento doméstico	
Cota do T	erreno :		435.00	
Localizaç	ão: Água	as Mornas		
Localidad	e:		Sítio Rio das Antinhas	
UTM (Nor	te/Sul):		6932835	
UTM (Les	te/Oeste)	:	700343	
Latitude (GGMMSS	5):	274250	
Longitude	e (GGMM	SS) :	485805	
Situação:	ä.			
Data :			13/07/2016	
Situação	8		Bombeando	
Geológ	icos			
Feicão Ge	omorfol	ógica:		
Descrição):	Morro		
Dados Lit	ológicos	:		
De (m): Até (m): Litologia:		n): Litologia:		
0	13 Areia fina			
13 120 Granito		Granito		
Entrada d	'água:			
Profundic	lade:			
93.00				
97.00				

Construtivo	os			
Perfuração:				
Data:	Profundidade Ini	cial(m)	Profundidade Final(n	
20/10/2015	0.00		120.00	
Perfurador		Método		
Água Azul Po	ços Artesianos LTDA	*		

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	20.00	10	254.0000	
20.00	120.00	6	152.4000	

Revestimento:				
De (m): Até (m): Material Diâmetro (pol) Diâmetro (mm)				
0.00	20.00	Plastico geomecanico	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	20.00	Cimentação	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
*	*	6	152.4000	

<u>Perfil Co</u>	Perfil Construtivo		
•=	0		
10	8.077		
20			
30	+ + + + + + + + + + + + + + + + + + +		
40			
50			
60			
70	++++++		
80			
90			
100	+ + + + + + + + + + + + + + + + + + + +		

Gerais	
Dados Gerais:	
Proprietário :	Protenph Pré-fabricados LTDA
Natureza do Ponto :	Poço tubular
Uso da água :	Abastecimento industrial
Cota do Terreno :	12.00
Localização: São José	
Localidade :	Rua Frederico Afonso, 3500
UTM (Norte/Sul) :	6941899
UTM (Leste/Oeste) :	733110
Latitude (GGMMSS) :	273736
Longitude (GGMMSS) :	483815
Situação:	
Data :	20/07/2009
Situação : Bombeando	
Geológicos	
Feição Geomorfológica:	

Descrição: Vale aberto

Dados	Litológicos:

Dados Lit	ologicoo.		
De (m):	Até (m):	Litologia:	Observações:
0	3	Solo	Regolito
3	12	Rochas Intemperizadas e Decompostas	Granito alterado
12	60	Granito	Granito fraturado
60	66	Quartzito	Quartzito
66	100	Granito	Granito fraturado

Entrada d'água:	
Profundidade:	
16.00	

Construtivo	os		
Perfuração:			
Data:	a: Profundida		Profundidade Final(m)
28/05/2002	0.00		100.00
Perfurador		Método	
Leão Poços Ai	rtesianos LTDA	Rotopneumá	tico

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	12.00	8	203.2000		
12.00	100.00	6	152.4000		

Revestimento:						
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)		
0.00	12.00	Aço galvanizado com rosca e luva	6	152.4000		

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	12.00	Cimentação		

Boca do Tubo:						
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)			
28/05/2002	0.37	6	152.4000			

Perfil Construtivo	Gerais						
Tom Constructo	Dados Ger	Dados Gerais:					
	Proprietári	io :			Intelbrás	S/A	
	Natureza d	lo Ponto			Poço tub	ular	8
	Uso da águ	ua:			Abasteci	mento doméstico	
	Cota do Te	erreno :			6.00		2 2
10	Localizaçã	io: São J	osé				
	Localidade	e:			BR 101 -	Km 210 - Área indus	trial
	UTM (Norte	e/Sul):			6942788		
	UTM (Leste	e/Oeste)		35	731728		
20 + + + + +	Latitude (G	GGMMSS):		273708		
	Longitude	(GGMMS	is) :		483906		
+++++							
	Situação:						
30 + + + + + + + + + + + + + + + + + + +	Data :				22/06/200	9	
	Situação :				Bombear	ndo	
40 + + + + + +	Geológi	cos					
40 +++++	Feição Ge	omorfoló	gica:				
	Descrição	:	Vale aberto				
i + + + + +			1				10
50	Dados Lito	ológicos:					
	De (m):	Até (m): Litologi	a:			
+ + + + + + + + + + + + + + + + +	0	12	Solo				
	12	90	Granito				
60	·						
	Entrada d'	água:					
	Profundida	ade:					_
	54.00						
	79.00						
	Constru	itivos					
80 + + + + +							
	Perturação	D:	Desfer 111			Destantia L EL Y	- >
+++++	Data:		Profundidade	e inicia	u(m)	Protundidade Final(r	n)
90 +++++	01/04/2002		0.00		Marrie	90.00	
30 F++++4	Perturado	r		TDA	Metodo		
	Schneide	r, Santos	s e Zamboni L	.IDA	Percus	sao	5

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	15.00	8	203.2000		
15.00	90.00	6	152.4000		

Revestimento:						
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)		
0.00	15.00	Plástico geomecânico	6	152.4000		

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	15.00	Cimentação		

Boca do Tubo:						
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)			
22/06/2009	0.57	6	152.4000			

Gerais				
Dados Gerais:				
Proprietário :	Vicente Gomes	5		
Natureza do Ponto :	Poço tubular	5		
Uso da água :	Industrial			
Cota do Terreno :	14.00	5		

Localização: São José			
Localidade :	Fonte Pedra da Luz - Picada do Sul		
UTM (Norte/Sul) :	6943553		
UTM (Leste/Oeste) :	731679		
Latitude (GGMMSS) :	273644		
Longitude (GGMMSS) :	483909		

Situação:			
Data :	26/06/2009		
Situação :	Parado		

Geológicos

reição deomonologica.		
Descrição:	Encosta	

Dados Lit	ológicos:	
De (m):	Até (m):	Litologia:
0	12	Areia argilosa
12	72	Granito

Entrada d'água:	
Profundidade:	
21.00	
23.50	
46.50	
64.00	

Construtivo	os		
Perfuração:			
Data:	Profund	didade Inicial(m)	Profundidade Final(m)
28/02/2003	0.00		72.00
Perfurador		Método	
Impagross		Percussão	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	16.00	12	304.8000	
16.00	72.00	8	203.2000	

Revestim	Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	20.70	Plástico geomecânico	4	101.6000	
28.70	44.70	Plástico geomecânico	4	101.6000	
52.70	60.70	Plástico geomecânico	4	101.6000	
68.70	70.70	Plástico geomecânico	4	101.6000	

Filtro:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
20.70	28.70	Plástico geomecânico	4	101.6000
44.70	52.70	Plástico geomecânico	4	101.6000
60.70	68.70	Plástico geomecânico	4	101.6000

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	13.00	Cimentação		
0.00	72.00	Areia quartzosa de 1,00 a 3,00 mm		

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
26/06/2009	0.85	4	101.6000

Gerais		
Dados Gerais:		
Proprietário :	Avelino Prando	
Natureza do Ponto :	Poço tubular	
Uso da água :	*	
Cota do Terreno :	25.00	

Localização: São José	
Localidade :	Fonte Prando - Rua Arcelino Pereira
UTM (Norte/Sul) :	6950993
UTM (Leste/Oeste) :	730913
Latitude (GGMMSS) :	273242
Longitude (GGMMSS) :	483942

Situação:		
Data :	26/06/2009	
Situação :	Parado	

Geológicos

Feição Geomorfológica: Descrição: Encosta

Dados Li	tológicos:	
De (m):	Até (m):	Litologia
0	20	Arolo ora

0	28	Areia argilosa
28	42	Granito
		-

Entrada d agua:	
Profundidade:	
38.00	

Construtivos				
Perfuração:				
Data:	Profundida	de Inicial(m)	Profundidade Fin	ial(m)
30/04/2004	0.00		42.00	
Perfurador	-04	Método		
Aqualife Poço	s Artesianos	*		

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	29.00	10	254.0000	
29.00	42.00	6	152.4000	

Revestime	nto:			14
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	29.00	Aço galvanizado com rosca e luva	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	29.00	Cimentação	

Boca do Tubo:			
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)
26/06/2009	1.00	6	152.4000

Gerais	
Dados Gerais:	
Proprietário :	Centrais Elétricas do Sul do Brasil
Natureza do Ponto :	Poço tubular
Uso da água :	Industrial
Cota do Terreno :	13.00

Localização: São José		
Localidade :	Rod. SC 407 - Km 4	
UTM (Norte/Sul) :	6944063	
UTM (Leste/Oeste) :	728908	
Latitude (GGMMSS) :	273629	

Situação:	
Data :	02/12/2009
Situação :	Abandonado

Geológicos

Feição Geomo	orfológica:
Descrição:	Curso d'água ou canal

Dados Lit	ológicos:	
De (m):	Até (m):	Litologia:
0	12	Argila
12	123.7	Granito

En	trada d'água:
Pre	ofundidade:
29	.00
42	.00
86.	.00

Construtivo	s			
Perfuração:				
Data:	Profun	didade Inicial(m)	Profundidade Final(m	
12/08/1986	0.00		123.70	
Perfurador		Método		
Hidroperfurad	ora Lapa	Percussão		

Diâmetro:			
De (m):	Até (m):	Polegadas	Milímetros
0.00	12.00	12	304.8000
12.00	13.00	8	203.2000
13.00	123.70	6	152.4000

Revestimento:						
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)		
0.00	13.00	Aço galvanizado com rosca e luva	6	152.4000		

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	13.00	Cimentação		

Boca do Tubo:					
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)		
02/12/2009	0.58	6	152.4000		

Perfil Construtivo	Gerais	Gerais				
<u>rem construtivo</u>	Dados Ger	ais:				
	Proprietári	o :			Condor	mínio Loteamento Monte Líbano
	Natureza d	Natureza do Ponto :			Poço tubular	
0 0	Uso da águ	Uso da água :			Abastecimento doméstico	
	Cota do Te	rreno :		20	90.00	
	80				2	
	Localizaçã	o: São J	losé			
20 + + + + + +	Localidade):		54 54	Condor	nínio Loteamento Monte Líbano
	UTM (Norte	e/Sul):		10- 10-	694314	9
	UTM (Leste	e/Oeste)	:		733507	
	Latitude (G	GMMSS):	88 63	273655	
	Longitude	(GGMMS	6S) :	3. 0	483802	
40 + + + + + + +						
	Situação:					
+ + + + + +	Data :			22 01	04/12/2	009
	Situação :			Ĵ.	Bombea	ando
60						
	Geológi	cos				
++++++	Feicão Geo	omorfoló	aica.			
	Descrição:		Morro	,		
	Leconyact					÷.
80	Dados Lito	lógicos	2			
	De (m):	Até (m	<u>a.</u>	Litologia:		
+++++	0	12	<i>y.</i>	Argila arenos	a	
	12	150		Granito	-	
100		100		Grunito		
	Entrada d'	águar				
	Drofundide	agua.				
	67.00	aue.				
	01.00	1.0				
	0					
	Constru	tivos				
+++++	Perfuração	o:				
	Data:		Profu	ndidade Inicia	al(m)	Profundidade Final(m)
140 + + + + + +	15/03/2002		0.00			150.00
	Perfurador	1		Método		
	Leão Poç	os		Rotopnet	umático	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	13.00	10	254.0000	
13.00	150.00	6	152.4000	

Revestim	Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)		
0.00	13.00	Aço galvanizado com rosca e luva	6	152.4000		

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	13.00	Cimentação		

Boca do Tubo:					
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)		
04/12/2009	0.50	6	152.4000		

Gerais	
Dados Gerais:	
Proprietário :	Distribuidora de medicamentos Santa Cruz
Natureza do Ponto :	Poço tubular
Uso da água :	Abastecimento industrial
Cota do Terreno :	32.00

Localização: São José		
Localidade :	BR 101 - Km 210 - 1500	
UTM (Norte/Sul) :	6943407	
UTM (Leste/Oeste) :	732944	
Latitude (GGMMSS) :	273647	1
Longitude (GGMMSS) :	483823	
- ·		

Situação:		- 9
Data :	19/08/2015	
Situação :	Bombeando	

Geológicos	
Feição Geomor	fológica:
Descrição:	Planície Flúvio-marinha

Dados Litológicos:		
De (m):	Até (m):	Litologia:
0	16	Solo areno-argiloso
16	30	Granito
30	84	Granito

Entrada d'á	gua:
Profundidad	le:
22.00	
32.00	

Construtive	os		
Perfuração:			
Data:	Profundidad	le Inicial(m)	Profundidade Final(m
09/03/2010	0.00		84.00
Perfurador		Método	
Leão Poços A	rtesianos LTDA	Rotopneuma	ático

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	18.00	10	254.0000	
18.00	84.00	6	152.4000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	18.00	Plástico geomecânico	6	152.4000
0.00	18.00	Plástico geomecânico	6	152.4000
22.00	26.00	Plástico geomecânico	6	152.4000
22.00	26.00	Plástico geomecânico	6	152.4000
30.00	34.00	Plástico geomecânico	6	152.4000
30.00	34.00	Plástico geomecânico	6	152.4000
38.00	42.00	Plástico geomecânico	6	152.4000
38.00	42.00	Plástico geomecânico	6	152.4000

Filtro:				
Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
22.00	Plástico geomecânico	6	152.4000	
22.00	Plástico geomecânico	6	152.4000	
30.00	Plástico geomecânico	6	152.4000	
30.00	Plástico geomecânico	6	152.4000	
38.00	Plástico geomecânico	6	152.4000	
38.00	Plástico geomecânico	6	152.4000	
	Até (m): 22.00 22.00 30.00 30.00 38.00 38.00	Até (m):Material22.00Plástico geomecânico22.00Plástico geomecânico30.00Plástico geomecânico30.00Plástico geomecânico38.00Plástico geomecânico38.00Plástico geomecânico	Até (m):MaterialDiâmetro (pol)22.00Plástico geomecânico622.00Plástico geomecânico630.00Plástico geomecânico630.00Plástico geomecânico630.00Plástico geomecânico638.00Plástico geomecânico638.00Plástico geomecânico6	

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	18.00	Cimentação	
0.00	84.00	Pré-filtro	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
09/03/2010	1.00	6	152.4000	

Gerais	
Dados Gerais:	
Proprietário :	Hotel Fazenda Pousada do Monte
Natureza do Ponto :	Poço tubular
Uso da água :	Prestação de serviços hoteleiros
Cota do Terreno :	308.00
Localização: São Pedro de A	308.00
Localização. São Feuro de A	
Localidade :	Est. Vereador Vandelino Miguel Pauli

Localidade :	Est. Vereador Vandelino Miguel Pauli
UTM (Norte/Sul) :	6946650
UTM (Leste/Oeste) :	712474
Latitude (GGMMSS) :	273514
Longitude (GGMMSS) :	485051

Situação:		
Data :	21/05/2009	
Situação :	Parado	

Geológicos

Feição Geomor	fológica:
Descrição:	Vale aberto

Dados Litológicos:

De (m):	Até (m):	Litologia:
0	16	Solo areno-argiloso
16	125	Granito

En	trada d'água:
Pr	ofundidade:
21	.00
22	.00
70	.00
71	.00

Construtive	os			
Perfuração:				
Data:	Profundidade Inicial(m)		Profundidade Final(m	
10/03/2000	0.00		125.00	
Perfurador		Método		
Leão Poços A	rtesianos LTDA	Rotopneur	nático	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	17.00	10	254.0000	
17.00	125.00	6	152.4000	

Revestime	ento:		4c	
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	17.00	Plástico geomecânico	6	152.4000

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	17.00	Cimentação	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
21/05/2009	0.45	6	152.4000	

Gerais	
Dados Gerais:	
Proprietário :	Acquavale e aproveitamento de recursos minerais LTDA
Natureza do Ponto :	Poço tubular
Uso da água :	*
Cota do Terreno :	188.00

Localização: São Pedro de Alcântara		
Localidade :	Fonte Acquavale	
UTM (Norte/Sul) :	6949470	ŝ
UTM (Leste/Oeste) :	722094	
Latitude (GGMMSS) :	273337	
Longitude (GGMMSS) :	484502	

Situação:	
Data :	24/06/2009
Situação :	Bombeando

Geológicos	Geológicos	
Feição Geomo	rfológica:	
Descrição:	Vale aberto	

Dados Litológicos:		
De (m):	Até (m):	Litologia:
0	12	Areia argilosa
12	54	Granito

Entrada d'água	1:
Profundidade:	1
17.00	

Construtivo)S			
Perfuração:				
Data:	Profund	didade Inicial(m)	Profundidade Final(m)
15/07/2003	0.00		54.00	
Perfurador	5/1	Método		
Hidroinga		Rotopneumático	o	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	20.00	10	254.0000	
20.00	54.00	6	152.4000	

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	14.00	Plástico geomecânico	6	152.4000
16.00	20.00	Plástico geomecânico	6	152.4000

Filtro:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	Ranhura
14.00	16.00	Plástico geomecânico	6	152.4000	0.75

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	10.00	Cimentação		
10.00	20.00	Areia quartzosa de 1,00 a 3,00 mm		

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
24/06/2009	0.82	6	152.4000	

Gerais		
Dados Gerais:		
Proprietário :	Casan	
Natureza do Ponto :	Poço tubular	
Uso da água :	*	
Cota do Terreno :	24.00	

Localização: Antônio Carlos		
Localidade :	Estrada Geral - Bairro Usina	
UTM (Norte/Sul) :	6953849	Ĩ
UTM (Leste/Oeste) :	717228	ij
Latitude (GGMMSS) :	273118	- į
Longitude (GGMMSS) :	484802	

Situação:		
Data :	20/05/2009	
Situação :	Abandonado	

Geológicos

Feição Geomorfológica:				
Descrição:	Vale aberto			

Dados Lit	ológicos:	
De (m):	Até (m):	Litologia:
0	5	Solo areno-argiloso
5	15	Rochas Intemperizadas e Decompostas
15	93	Gnaisses

Entrada d'água: Profundidade: 50.00

Construtivo)S			
Perfuração:				
Data:	Profund	didade Inicial(m)	Profundio	dade Final(m)
08/03/1976	0.00		93.00	
Perfurador	3/3	Método		
T Janer		Percussão		

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	9.00	14	355.6000		
9.00	25.50	8	203.2000		
25.50	93.00	6	152.4000		

Revestimento:				
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)
0.00	16.49	Aço galvanizado com rosca e luva	6	152.4000
19.99	21.72	Aço galvanizado com rosca e luva	6	152.4000

Filtro:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	Ranhura
16.49	19.99	Nold galvanizado	6	152.4000	150.00

Espaço Anular:			
De (m):	Até (m):	Material	
0.00	9.00	Cimentação	

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
08/03/1976	0.90	6	152.4000	

Gerais		
Dados Gerais:		
Proprietário :	Comunidade terapêutica Gem Julia Feijó	
Natureza do Ponto :	Poço tubular	
Uso da água :	Abastecimento doméstico	
Cota do Terreno :	14.00	

Localização: Biguaçu		
Localidade :	Estrada Geral da Estiva	
UTM (Norte/Sul) :	6971417	
UTM (Leste/Oeste) :	732130	
Latitude (GGMMSS) :	272138	
Longitude (GGMMSS) :	483911	

Situação:	
Data :	24/07/2009
Situação :	Bombeando

Geológicos	Geológicos			
Feição Geomo	fológica:			
Descrição:	Vale aberto			

Dados Litológicos:					
De (m):	Até (m):	Litologia:	Observações:		
0	6	Solo argiloso	Solo argiloso		
6	18	Rocha cristalina não identificada	Rocha fraturada		
18	30	Granito	Granito pouco fraturado		
30	42	Granito	Granito levemente fraturado		
42	102	Granito	Granito fraturado		

En	trada d'água:
Pr	ofundidade:
66	.00
72	.00
84	.00
96	.00

Construtivo	os			
Perfuração:				
Data:	Profundidade	Inicial(m)	Profundidade Fina	al(m)
30/03/2008	0.00		102.00	
Perfurador	34 	Método		
Leão Poços A	rtesianos LTDA	Rotopneu	umático	

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	23.50	10	254.0000	
23.50	102.00	6	152.4000	

Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	17.50	Plástico geomecânico	6	152.4000	
21.50	23.50	Plástico geomecânico	6	152.4000	

and the second s	Filtro:					
De (m): Até (m): Material	Diâmetro (pol)	Diâmetro (mm)			
17.50 21.50	Plástico geomecânico	6	152.4000			

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	7.00	Cimentação		
7.00	23.50	Pré-filtro		

Boca do Tubo:					
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)		
30/03/2008	0.71	6	152.4000		

Perfil Construtivo	Gera	Gerais					
<u>rom constructivo</u>	Dados	Dados Gerais:					
	Propri	etário :		1	L.A laticínios e água mineral LTDA		
	Nature	Natureza do Ponto :			Poço tubular		
	Uso d	a água :		1	Abastecimento industrial		
	Cota d	lo Terreno :	3		18.00		
	10720			S (7)			
	Locali	zação: Big	uaçu				
	Locali	dade :		1	Fazenda Pesqueiro Sorocaba		
20	UTM (Norte/Sul):		(6967652		
	UTM (Leste/Oeste	e) :	1	728267		
	Latitu	de (GGMMS	SS):	1	272343		
30	Longi	ude (GGM	NSS) :	4	484129		
	+++						
	+ + + + Situag	ão:					
40 +++	+ + + - Data :			1	26/06/2009		
	Situaç	ão :		1	Parado		
	+ + + +						
50	++++ ++++ Geol	óaicos					
	++++						
	++++ Perça	Geomorio	Nogica:	abarta			
60 +++	++++	çao:	vale	aberto			
+ + +	+++						
20 + + +	+++ Dados	Litologico	is:		-		
	+++): Até ((m):	Litologia:	_		
		30		Areia argilosa			
	+ + + +	120		Granito			
	+++		1				
	++++ Entra	la d'água:					
90	Profu	ndidade:					
	+ + + - 90.00						
)					
00 + + -	+ + + +		and.				
	+++ Con	strutivos	3				
	++++ Perfu	ração:					
10	+++ - Data:		Prof	undidade Inicial	I(m) Profundidade Final(m)		
+++	+++ 22/12	2004	0.00		120.00		
20 + + +	+++ ++++ Perfu	rador		Método			
20 +++	+ + + -						

Diâmetro:				
De (m):	Até (m):	Polegadas	Milímetros	
0.00	33.00	10	254.0000	
33.00	120.00	6	152.4000	

Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	33.00	Aço inox com rosca e luva	8	203.2000	

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	33.00	Cimentação		

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
22/12/2004	1.13	8	203.2000	

Diâmetro:					
De (m):	Até (m):	Polegadas	Milímetros		
0.00	25.00	12	304.8000		
25.00	27.60	8	203.2000		
27.60	100.00	6	152.4000		

Revestimento:					
De (m):	Até (m):	Material	Diâmetro (pol)	Diâmetro (mm)	
0.00	27.60	Plastico geomecanico	6	152.4000	

Espaço Anular:				
De (m):	Até (m):	Material		
0.00	27.60	Cimentação		

Boca do Tubo:				
Data:	Altura(m):	Diâmetro (pol)	Diâmetro (mm)	
02/07/2001	0.41	6	152.4000	

ANEXO I		
Título da Dissertação	/Tese:	
"Hidrogeologia e hidrogeoquímica do aquíf metropolitana de Florian	ero urbano fratura ópolis, SC"	do na região
Área de Concentração: Geoquímica		
Autor: Crysthian Zorzo Bernardi		
Orientador: Prof. Dr. Arí Roisenberg		
Examinador: Prof. Dr. Tiago de Vargas		
Data: 04/03/2021		
Conceito: A		

PARECER: O trabalho intitulado acima apresenta interessante abordagem científica para ampliação do conhecimento sobre a prospecção e caracterização hidrogeoquímica dos aquíferos fraturados na região metropolitana de Florianópolis – SC. No corpo da dissertação é observado o correto delineamento do assunto, apresentando a contextualização do tema e caracterização do problema, bem como os objetivos que devem ser atingidos com o estudo. O estado da arte está dem construído, demonstrando de forma satisfatória a história geológica, tectônica e hidrogeológica da área, assim como expõem adequadamente estudos com abordagens científicas relacionadas a proposta dessa dissertação. A metodologia, de forma geral, foi bem descrita, mostrando um apropriado embasamento teórico. Porém, faltou a descrição da metodologia de correlação entre variáveis e informar se foi, ou não. realizado o Erro Prático e Teórico das análises químicas utilizadas. Por outro lado, essa dissertação possui estrutura adequada, boa gramática e apropriada formatação. É possível verificar que esse estudo contribui de forma efetiva ao conhecimento sobre a prospecção e características hidrogeoquímicas da água subterrânea. Também, mostrou rigor científico apropriado para o nível acadêmico de mestrado, porém seguem algumas observações ao mestrando.

No corpo da Dissertação:

- Não ficou claro, no resumo, o objetivo da pesquisa e a metodologia usada para caracterização hidroquímica.
- 2) Não utilizar o Apud com frequência, mas buscar as fontes originais para as citações.
- No mapa de localização (figura 2) é necessário informar o Fuso (por ser UTM) e o Datum, inclusive no artigo submetido.
- 4) No texto é citada a Portaria 2.914/2011, já existe uma Portaria do Ministério da Saúde atualizada, que é a Nº5 de 2017, Anexo XX. Seria interessante citar a Portaria mais recente.
- 5) No capítulo da metodologia faltou inserir a escala em que os lineamentos geológicos foram identificados. Além disso, acredito que deveria ter verificado o Erro Prático e Teórico das amostras químicas utilizadas na

classificação hidrogeoquímica (Ex: Custodio & Llamas, 1983; Logan, 1965). Também, acredito que uma breve descrição do método de correlação seja importante, demonstrando os intervalos de classificação dessa metodologia, já que a pesquisa apresenta resultados aplicando a correlação de variáveis químicas (no artigo também).

No artigo submetido:

- 1) Faltou o objetivo no abstract.
- 2) Faltou informar a origem dos dados (SIAGAS), na metodologia.
- Sugiro pesquisar em periódicos se o termo técnico hidrogeológico para entrada de água, em inglês (water entreis), está correto. Esse termo técnico (em inglês) não parece muito usual em estudos de aquíferos fraturados.
- 4) Seria interessante referenciar o terceiro parágrafo da página 69.
- 5) Acredito que seja necessário referenciar com algum estudo da área a afirmação: "As it is a rural area with soil management for agriculture, the use of sulfated fertilizers such as ammonium sulfate and magnesium sulfate, widely used in agriculture, increases the ion content in the well water." Último parágrafo da página 73.

Assinatura:	Siggobella	Data: 04/03/2021
Ciente do C	Drientadør:	\mathcal{O}^{+}
Ciente do A	luno:	
8		

ANEXO I

Título da Dissertação/Tese:

"Hidrogeologia e hidrogeoquímica do aquífero urbano fraturado na região metropolitana de Florianópolis, SC"

Área de Concentração: Geoquímica

Autor: Crysthian Zorzo Bernardi

Orientador: Prof. Dr. Arí Roisenberg

Examinador: Profa. Dra. Maria Paula Casagrande Marimon

Data: 09 de março de 2021

Conceito: B (BOM)

PARECER:

A dissertação de mestrado ora em análise trata de assunto de relevante importância ao analisar e agregar conhecimentos geológicos e hidrogeoquímicos que prontamente podem ser utilizados na prospecção de poços de águas subterrâneas com melhor produtividade e qualidade.

Quanto a forma da apresentação do trabalho. Eu particularmente considero que esse formato adotado pelo programa introduz uma perda de qualidade ao trabalho acadêmico A leitura dos conteúdos fica muito atravessada, seja em utilizar duas línguas, quando os conteúdos importantes à análise aparecem em português, e as vezes em inglês. Como também favorece a compactação dos conteúdos, parecendo tratar-se de um grande resumo.

Depois desse desabafo, considero que a dissertação é possível de análise apesar de seu formato. Faz falta uma tabela de abreviaturas, logo no início do trabalho. Quanto ao conteúdo. A estrutura do trabalho está consistente com a temática tratada. No item de contextualização da área estudada, quando os aspectos geológicos são descritos estes deveriam seguir o formato geocronológico tradicional, das rochas mais antigas para as mais recentes. Observa-se por exemplo, que o Complexo Águas Mornas aparece somente antes da cobertura sedimentar recente. Essa questão se repete no artigo em inglês.

Chama atenção que nenhuma referência é feita as importantes ocorrências de águas termais da região estudada, como nos municípios de Santa Amaro da Imperatriz e de Águas Mornas, todos com balneários atendidos por poços de águas subterrâneas.

O registro do mineral acessório esfeno, aparece também várias vezes com a grafia de esfênio. O mineral rodocrosita aparece com grafia errada na página 38. Na página 24, que apresenta o mapa de pedologia, a referência a obra está incorreta, pois o Atlas de Santa Catarina tem autoria nos seus diferentes capítulos. A revisão conceitual e bibliográfica aparece de maneira bem resumida. Na página 29, a frase a seguir deveria ser melhor explicada dada a importância para o trabalho e o uso das imagens de satélite. "Diante do exposto, os lineamentos são feições estruturais que refletem, geomorfológicamente, o meio fissurado."

Na mesma página, no último parágrafo, aparece uma Embrapa solta no meio do

texto.

Na página 45, no título da figura 12, a ilha se chama de Santa Catarina e não Florianópolis.

No capítulo sobre os Métodos Empregados, na página 48, sobre a seleção dos poços, no último parágrafo fica a dúvida sobre as estratégias da pesquisa, se estaria prevista a realização de amostragem e análises das águas dos poços. Esta questão só aparece aqui neste ponto do trabalho e não fica completamente esclarecida.

Na página 58 das referências bibliográficas, está registrado: "Governo de Santa Catarina. SPG. 2015. Altas de Santa Catarina. Fascículo 2, Capítulo 7 (Solos). Florianópolis, SPG, 15p." e deveria aparecer da seguinte forma: Heberle, D. A.; Almeida, J.A. Solos – Capítulo 7, p. 141 – 155, *In*: Santa Catarina, <u>Atlas Geográfico de Santa Catarina: diversidade da natureza</u> – Fascículo 2. Santa Catarina, Secretaria de Estado do Planejamento, Diretoria de Estatística e Cartografia; Isa de Oliveira Rocha (org.) – Florianópolis: Ed. UDESC, 2014.

No artigo, a partir da página 62, o inglês precisaria de uma revisão, mas a revista deve apresentar esse requisito em seu parecer quando da avaliação do artigo. As tabelas 1 e 2 (table 1 e 2) devem conter nas legendas as siglas e abreviaturas utilizadas por extenso.

Os dados geoquímicos apresentados em diagramas de distribuição ficariam mais claros para análise num gráfico do tipo box plot, que agregam os dados estatísticos da mediana (Q1, Q2 e Q3) além dos valores máximos e mínimos e os outliers. As observações acima podem ser incorporadas numa revisão posterior do texto, mas não interferem na avaliação da dissertação.

Assinatura:

Data: 09/03/2021.

Ciente do Orientador:

Ciente do Aluno: