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Abstract. The current work shows the fonnulation and implementation of an algorithm for 

the solution of convex rnixed-integer nonlinear programming (MINLP) problems. The proposed 

algorithm does not folJow the traditional sequence o f solutions o f nonlinear programming (NLP) 

subproblems and master mixed-integer linear programming (M~P) problems. lnstead, the mas ter 

problem is defined dynamically during the tree search to reduce the number of nodes that need 

to be enumerated. A branch and bound search is perfonned to predict lower bound by solving 

linear programrning (LP) subproblems until feasible integer solutions are found. For these nades, 

noolinear programming subproblems are olved, providing upper bounds and new linear approx­

imations, which are used to tighten the linear representation of the open nodes in the search tree. 

Numerical results for convex and nonconvex test problems are analyzed, comparing the efficiency 

of the proposed algorithm and the general algebraic modeling system (GAMS). 

Mathematical subject classification: 90C30, 65KlO, 49M37. 

Key words: optimization, mixed-integer nonlinear programming, branch and bound search. 

1 Introduction 

Process system engineering IS a rich area in optimization problems. Many 

problems o f process design and process operation can be formulated as 1 in­

ear programming (LP), quadratic programming (QP), nonlinear programming 
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(NLP), mixed-integer linear programming (MILP), or mixed-integer nonlinear 

programming (MINLP). Am.ong these formulations, the mixed-integer nonlinear 

programming consists the largest subset o f the mathematical programming field, 

especially in examples of chemical engineering that involve heat exchanger net­

work synthesis ([2], [5], [12], [20]), synthesis of process fiowsheets ([18], [22]), 

and project of distillation colurnns ([9], [16]). The mathematical models of 

process engineering frequently involve discrete variables. Certain decisions are 

naturally discrete, for example, the number of trays in a distillation column. 

Optimization problems that involve discrete variables are formulated as mixed­

integer linear and nonlinear programming [9]. 

Most of the numeric methods for the solution of MINLP problems are li:mited 

to the determination of a local minimum. Many of the process engineering 

applications lead to nonconvex MINLPs with multiples localminima. There exist 

numeric algorithms tbat, somehow, try to locate the global optimum of MINLP 

problems, as the outer approximation (OA) algoritbm [6] and its extensions 

with the equality constraint relaxation (OAIER) [14] and augmented penalty 

function (OAIER/AP) [23]. Others important deterministic methods to solve 

MINLP problems include tbe spatial branch and bound [17], generalized Benders 

decomposition (GBD) ([1], [10]), generalized outer approximation (GOA) [8], 

and generalized cross decomposition (GCD) [13]. 

A common aspect of this class ofMINLP problems is the nonconvex:ity, making 

difficult tbe determination of an optiroal global solution with the use of most 

techniques of roathematical programming. On tbe other hand, it is important 

as a first step the development of enhanced metbods for convex problems [19], 

that can be useful for the development of methods for the solution of nonconvex 

problems. 

Due to the mentioned reasons, associated to economic and environmental fac­

tors, there has been a growing interest in developing and investigating new tech­

niques for resolution of MINLP problems. 

This work proposes a numeric algorithm to solve convex mixed-integer non­

linear problems. The numeric results of the convex and nonconvex examples 

obtained from experiments through the proposed algorithm and from the corn­

mercial software GAMS are compared. 
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2 Motivation for new algorithm 

The methods o f resolution o f the MINLP problems can be classified in three main 

categories: Branch and Bound, Generalized Benders Decomposition (GBD) and 

Outer Approximation (OA). 

The GBD and OA algorithms have the limitation that the size of the master 

problems (MILP) increases as the iterations proceed, being this a major drawback 

when the original MINLP has a large number of integer variables. The tim.e used 

to solve the master problem increases as the iterations proceed, while the time 

for the NLP subproblems remains in the same order of magnitude. 

An algorithm that avoids the above problems was developed by [19], improv­

ing the efficiency of the solution of convex MINLP problems and reducing the 

computational work demanded to solve the MILP master problems. The algo­

rithm consists of a tree search over the space of the binary variables. The MILP 

master problem is defined dynamically during tbe tree search to reduce the num­

ber of nodes that need to be enumerated. A branch and bound search is carried 

out to determine lower bound in the solution of LP subproblems to find feasible 

integer solutions. For these nodes, NLP subproblems are resolved, determining 

upper bound and new linear approximations, which are used to extend the linear 

representation o f th~ open nodes in the search tree. Tbese linear approximations · .. 
can be made in severa! ways. 

The algorithm proposed in this work is based on the algodthm o f [ 19] with 

modifications in the introduction of the linear approximations. 

3 Detailed description of the algorithm 

To describe tbe proposed algorithm, in detail, the following convex MINLP 

problem is considered. 

subject to 

Z = minx ,y CT Y + f (x ) 

By+ g (x )<O 

X E X= {x lx E R n, x 1 <X < x u} 

Y E Y = {y IY E {0, l}m, Ay < a} 
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For implementation of the algorithm, in the solution of (1), the following steps 

are followed: 

Step 1- Initial guesses for the binary variables y and continuous variables x are 

arbitrated. There is the option to let the algorithm chooses these values when 

they are not given. 

Step 2 - Fixing y = y0 , the problem (1) becomes a NLP subproblem, that is: 

z = minx cT Yo + f (x) 

subject to 

By0 + g(x ) <O 

xEX 

(2) 

The problem (2) is solved, finding a solution (xo, y0), which corresponds to a 

certain value ' 'z' ' of the objective function. The value zu = z is considered as 

the upper bound for the optimal solution of the MINLP problem (1 ). 

If tbe constraint violation goes larger than Ec , where Ec is the tolerance of 

constraint violation, then makes zu = oo, which means that this first NLP is 

considered infeasible. 

In the implementation, when Yo is not given, there is an altemative to solve 

a NLP with the integrality conditions over the binary variables relaxed, finding 

a solution (xo, yo). If the obtained Yo is not integer, then it is rounded, and the 

problem (2) is solved. 

Step 3- The nonlinear functions of the problem (1) are linearized, using the 

optimal solution x0 of the NLP subproblem (2), resulting in the following MILP 

problem. 

subject to 

. 
z =mina 

a > cr y + f (xo) + \1 f(xo)r (x- xo) 

By + g(xo) + \1 g(xo)T (x - xo) < O 

a E R, x E X , y E Y 

(3) 

Step 4-The problem (3) becomes a LP problem when the integrality conditions 

on the binary variables are relaxed. The solution of this LP is considered as a 
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lower bound zl for the optimal solution of the problem (1). If Zt + Ez > zu, 
where Ez is a tolerance for the objective function, then this problem is removed 

from the tree. If zl < zu, this first LP problem. is stored as the first node of the 

search tree and if the solution of this LP for the binary variables y is integer, go 

to step 8. 

Step 5 - If there is no more LPs to be solved, that is, any opened node in the 

tree, then the current upper bound "zu" is the optimal solution of the problem 

(1) and terminates the algorithm. 

Step 6- If the solution of the LP for the binary variables is not integer, then there 

will be a branching in the search tree with the creation of two child nodes, that 

is, two LP problems. The creation of these LPs will be made in the following 

way: in the solution of the last L P/, where j is the number o f the node and k the 

number of the parent node, the Yi whose fractional value is the most distant from 

the extremes O and 1 is selected. The constraints y; =O and y; = 1 are added to 
. . 

the subproblems LPj+1 and LPj+2, respectively. The problem is substituted by 

the two child subproblems in the list of LPs. 

Step 7- If at the end ofthe list ofLPs there are two child prob1ems to be resolved 

that have the same parent problem, then makes the following: 

• Solve LPf+2. If the value of the objective function Zj+2 + Ez > zu, this 

problem is removed from the tree. In case o f z j + 2 be an integer solution, 

go to step 8; 

• Solve LP}+t . If the value of the objective function Zj+J + Ez > zu, this 

problem is removed from the tree. In case Zj+l be an integer solution, go 

to step 8; 

• If Zj+2 > Zj+l switch LPj+2 with LPj+l, in the list of LPs. 

Otherwise (that is, there is only a child problem), solve the LPj and if Zj + Ez > 

zu, this problem is removed from the tree, else if Zj is an integer solution, go to 

step 8. 

Go to step 5. 
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Step 8-A NLP subproblem is solved fixing the binary variables y of the solution 

of the LP problem for the levei of the node where the LP problem is located. If 

ZNLP < z~, makes zu = ZNLP· If ZNLP > zu, then the previous upper bound is 

kept. 

Step 9 - The solution of the NLP is used to generate additional constraints, tbat 

is, after a NLP subproblem is solved, this solution is added as constraint for the 

solution of the next LP subproblem, and so forth. These additional constraints 

can be made in several ways as it is commented afterwards. All the nodes of 

L Pj which z j > zu are removed from the tree and go to step 5 . 

The proposed algorithm was implemented in MATLAB for the versions 4.2 

or superior. For the solution of the NLP subproblems the sequential quadratic 

programming (SQP) was used with the BFGS formula to update the estimate 

of the Hessian matrix ([3], [7], [11], [21]). For tbe solution of the problems of 

linear programming the simplex algorithm was used [ 4]. 

4 Alternatives of ap.proximate constraints 

The additional constraints, commented in the step 9 of the algorithm, based on 

the solution of the NLP subproblems, can be added for the open nodes in tbe 

search tree in several ways, such as outer approximation (OA) [6] and generalized 

Benders decomposition (GBD) [10] . 

The ou ter approximation has the advantage o f providing tighter representation 

of the feasible region. However, it has the limitation that the number of columns 

o f the LPs problems resolved for the nodes may beco me very large. Also in many 

cases, a new linearization does not necessarily result into a new approximation 

of the nonlinear feasible region. To avoid this problem, the Benders cut planes 

may be used, but in general, they do not provide strong cuts. 

The approximate constraints proposed by [ 19], and discussed in the next sec­

tion, has as basic idea to join the linearizations of nonlinear functions, keeping 

the linear constraints in order to strengthen the cuts. 
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4.1 Approximate constraints proposed by [ 19] 

From the MINLP original problem (1), consider the partition of the continuous 

variables into the subsets of linear variables, w, and nonlinear variables, v, so 

that the constraints are divided into linear and nonJinear constraints. 

where 

subject to 

C y + D w + t (v) < O 

E y + Fw + G v < b 

y E Y, w E W, v E v 

f(x) = aT w + r (v), g(x) = [Dw + t (v) Fw + G v ]T, 

B = [C E]T and X = W x V . 

(4) 

The problem ( 4) is reformulated by the addition o f two continuous variables 

(a , fJ ) to represent the linear and nonlinear parts of the objective function. After 

the realization of the outer approximation in (4) at the point (wk, vk) generated 

by the k-NLP subproblem, considering the Kuhn-Tucker [9] conditions of the 

k-NLP subproblem in (4) for the nonlinear variables v, and after mathematical 

simplifications, the following MILP is obtained: 

subject to 

. 
z =nuna 

fJ > r (vk) + (Àk)T (Cy + D w + t (vk)) 

- (J.tk)T G (v- vk) k = 1, 2, .. . K NLPs 

Ey + F w + G v < b 

cTy +aTw+fJ - a = O 

x E X , y E Y, a E R 

(5) 

Observe that using the linear approximations above only the first inequality is 

modified for the open nodes in the search tree when an integer solution of a LP 

is obtained. 
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4.2 Proposed approximate constraints 

Considering the original MINLP problem modeled as 

z = minx,y cr y + f(x) + J.I-U 

subject to 

By+g(x)<u 

x E X = {x lx E R" , x 1 < x < xu} 

y E Y = {yly E {0, 1}"\ Ay <a} 

(6) 

where u > O. If u > O then the corresponding constraint was violated, leaving 

to an unfeasible solution, and the term J.I-U is a penalization introduced in the 

objective function. 

Making an outer approx.imation in (6) for the point xo, which was generated 

by the first NLP subproblem, the following MlLP is obtained: 

subject to 

. 
z =nuna 

a > cry + f(x 0) +V f(x0)T (x- x 0) + J.I-U 

By + g(x0 ) + g(x0)r (x- x 0 ) < u 

x E X , y E Y, a E R 

(7) 

From the relaxation of the binary variables in (7), j-LPs are solved until find­

ing an integer solution. When this solution is found, a k-NLP subproblem is 

solved and, based on this solution, a new inequality constraint is added to ali the 

open nodes in the search tree. lf there is no constraint violation, then the ou ter 

approxirnation is applied, else the Benders cut plane is used. 

Thus, the resulting MILP will have the following form: 

subject to 

• z = nun a 

a > cTy + f(x 0) +V f(x 0)T (x- x 0) + JLU 

B y + g(x0) + g(x0) r (x - x 0) < u 

a > cry + f(xk) +V f(x k)T (x- xk) + J.i-U 

k = 1, 2, ... K f easibleN LPs 

a > CT y + f(x k) + (Ãk)T (By + g(xk)- u) + J.I-U 

k = 1, 2, · · .Kunf eas ibleN LPs 

x E X, y E Y, a E R, u E R 

Comp. Appl. Math., Vol. 20. N. 3, 2001 

(8) 

Matena com dire1tos autora1s 



E. C. PEREIRA and A. R. SECCHI 349 

where k jeasibleN L Ps are all feasible points obtained by NLP, and k unfeas ibleN LPs 

are all unfeasible points obtained by NLP. 

The advantage ofusing the OA for feasible NLPs (when there is no constraint 

violation) is that the feasible region is reduced, by adding the new linearization, 

since the cuts are stronger. On the other hand, dueto the fact that GBD provides 

weak.er cuts, it is used for problerns where there is constraint violation. 

5 Results 

The obtained results, with the sarne accuracy, sarne initials guesses for the con­

tinuous and binary variables, and using relaxed initial NLP, of the proposed 

algorithm and GAMS (h ttp://www.gams.corn) were compared. The GAMS is a 

systern of algebraic modeling of high levellanguage for problems of mathemat­

ical programming. It is especially designed for modeling and solving mixed­

integer linear and nonlinear problems. To solve the MINLP problems below 

using GAMS it was chosen the DICOPT solver [23], based on the outer approx­

imation algorithrn with equality constraint relaxation and augmented penalty 

function (OA/ER/AP), and the CONOPT solver [24] , a generalized reduced gra­

dient algorithm with feasible path approach to solve NLP problems. 

The algorithm proposed by [19] , (named here Modified GBD, for short), was 

implemented in this work with the Benders cut planes without the partition of 

the continuous variables into linear and nonlinear subsets. The partition was not 

implemented because it is not straightforward to automate for general MINLP 

problems, and it could also be done in the proposed algorithm. Moreover, as the 

proposed algorithm has the sarne scaling properties of the Modified GBD, the 

problem size is not a necessary pararneter to compare these two algorithms. Th.is 

kind of performance would be appropriate when comparing these algorithms 

with the software GAMS. However, as GAMS has a higher overhead to build 

the optimization problem, due to its nice user interface, the comparison would 

not be fair. 

When comparing the Modified GBD with the proposed algorithrn, the CPU 

time is directly related to the number of LPs and NLPs to be solved, because the 

number of operations to solve each LP and NLP is the same for both algorith.ms. 
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For the software GAMS the comments for the CPU time are similar to the problem 

size. Therefore, only the number of LPs and NLPs were taken into account in 
the comparisons. 

5.1 Convex example 1 

Proposed by [9], where the MINLP is modeled as: 

subject to 

. 5 ? 
Z = mrn.x,y Yt + Y2 + Y3 + x-

3x - Yt- Y2 <O 

-x + O.ly2 + 0.25y3 <O 

Yt + Y2 + Y3 > 2 

Yt + Y2 + 2(y3 - 1) > O 
0.2 < X < 1, y E {0, 1 }3 

The optimal solution of (9) is found for 

z =2.2 with x=0.2 and y=(l,1,0). 

(9) 

Table 1 shows the statistics of the proposed algoritbm and GAMS related to the 

number of NLPs and LPs. 

xo Yo Proposed Algorithm GAMS 

NLPs LPs NLPs LPs 

(1,0,0) 2 2 3 7 

(1,1,1) 2 2 3 7 

(1,0,1) 2 4 3 7 

0.3 (0,0,0) 2 2 3 7 

(0, 1,0) 1 1 3 7 

(0,1,1) 1 1 3 7 

(0,0,1) 2 4 1 o 

Table 1. Comparison of proposed algorithm and GAMS, convex example 1. 
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5.2 Convex example 2 

MINLP problem given by [9] modeled as: 

Z = minx,y - y +4e- x +x 

subject to 

-2e-x +X + y < O 
(lO) 

0.5 <X < 1.4, y E {0, 1} 

The algorithm finds the optimal solution o f the problem ( 1 O) for x = O. 853 and 

y = O, being z = 2.558. Table 2 shows the comparison of proposed algorithm 

andGAMS. 

xo Yo Proposed Algorithm GAMS 

NLPs LPs NLPs LPs 

o 2 4 3 4 

0.6 1 2 4 3 4 

Table 2. Comparision of proposed algorithm and GAMS, convex example 2. 

5.3 Convex example 3 

Considering the problem proposed by [ 14] defining the best configuration for 

the given processes according to Figure 1. 

A2 Process 2 B2 

Process 1 

Process 3 
A3 B3 

Figure 1 - Superstructure for the convex ex~ple 3. 
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The formulation of the MINLP model is given by: 

subject to 

z = min - [llC -7Bl- B2- 1.283 

+ 1.8(A2 + A3) - 3.5y t - Y2 - l.Sy3) 

C= 0.9B 

B2 = log(l + A2) 

B3 = 1.2log( l + A3) 

B=B1+B2+B3 

C< Yt 

B2 < IOy2 

83 < 10y3 

Y2 + Y3 < 1 

Y 1 , Y2 , Y3 E { 0, 1 } 
C, Bl, 82, B3 , A2, A3 >O 

(11) 

The variables Y1, y2, and y3 define the existence or not of the processes 1, 2, 
and 3, respectively. 

For implementation, tbe equality constraints of the problem (11) were elimi­

nated, resulting in the following continuous variables: A2 = xl, A3 = x2, aod 

B 1 = x 3. Thus, the problem (11) can be rewritten in the following way: 

subject to 

z = min.t ,y - 2.9x3 - 8.9log(l + Xt) 

- 10.44log(l + x2) + 1.8xt. + 1.8xz 

+ 3.5yt + Y2 + l.Sy3 

-y1 + 0.9log(l + Xt) + 1.08log(l + x2) + 0.9x3 :S O 
·--

- 10y2 + log(l + x1) < O 

- 10y3 + 1.2log(l + x2) < O 

Y2 + Y3 - 1 < O 

(12) 

This example, using the initial values for the binary variables y0 = (0, 1, 0) 

and for continuous variables xo = (0 , O, 1), a search is conducted by evaluating 

nodes 1 and 2, according to Figure 2. The initi.al NLP results in an upper bound, 

zu = 1.0, and the first node results in a lower bound, zl = - 4.333, for tbe 

optimal solution of the MINLP. 
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Z=-3 
NewNLP 

-------~ Y=(l.O,l ) ----t•~ 
Z=-1.923 

bound NLP = 1.0 

First iteration 

Z=-1.092 

CD NewNLP 
-------~ Y=(l,l ,0)----1•~ 

Z=-1.72 

bound NLP = -1.923 
Z=-4.278 

Second iteration 

Z=-1.593 

bound NLP = -1 .923 

z_-o 

Third iteration 

353 

Figure 2 - Branch aod bound search of the master problem MILP, convex example 3. 

Node 2 yields the integer solution y = (1, O, 1) with a lower bound zl = - 3 

(see Figure 2). At this configuration, a second NLP subproblem is solved and it 

yields an uppe.r bound zu = -1.923. 

The upper bound, to prune nodes in the tree, is provided by the solutions o f the 

NLPs subproblems. Then feasible nodes that are below to this bound are kept 

opened. With the resolution of the second NLP subproblem, new linearizations 

are added to these open nodes, tightening the linear representation of the feasible 

region. As the node 2 has not been branched, it is updated by adding the new 

approximate constraints (see node 3 in Figure 2). This node can be pruned 

beca use the solution is zl = - 1 . 092, being this lower bound larger than the 
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current upper bound. Going back to the node 1, which was already branched, 

then it is not modified, and a new node, 4, is created. A new integer solution is 

found in the sequence, y = (1 , 1, 0) and the corresponding NLP subproblem is 

solved giving a higher upper bound, zu = -1.72. Consequently, zu = -1.923 

is a better upper bound. 

Again, new ou ter approximation are added to the open nodes 6 and 7, but the 

solutions of the respective LPs exceed the current upper bound (see Figure 2). 

Consequently the search atthis pointcan be fi:nished, confirming thatz = -1.923 

is the optimal solution ofthe MINLP, being x = (0, 1.524, O) and y = (1, O, 1). 

Note that with the modified GBD and the proposed method, the search finishes 

after examining 7 nodes, where 3 NLP subproblems are resolved. 

Table 3 shows the results of tbe number of LPs for each NLP solved in the 

implementation of the standard GBD, the algorithm proposed by [19] (named 

Modified GBD), and the proposed algorithm in this work. 

NLP Number of LPs 

Standard GBD Modified GBD Proposed Algorithm 

1 5 2 2 

2 3 3 3 

3 5 2 2 

Table 3. Number of LPs and NLPs for the convex example 3. 

U sing the same example, a test was taken for initial guesses o f binary and con­

tinuous variables, Yo = (1, O, 1) and xo = (0, O, 1), respectively. The proposed 

algorithm finds the optimal solution after examining 5 nodes in the branch and 

bound search, being solved 2 NLP. 

Table 4 shows the comparison of tbis metbod with the standard GBD and the 

modified GBD. 

Table 5 shows the results for LPs and NLPs of the proposed algorithm and 

GAMS for severa! initial guess for the binary variables. 

In spite of the algorithm be developed for convex examples, it was verified its 

behavior for the following nonconvex examples. 
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NLP Number of LPs 

Standard GBD Modified GBD Proposed Algorithm 

1 4 4 4 

2 1 1 1 

3 1 1 -
4 1 2 -

5 2 - -

Table 4. Number of LPs and NLPs for the convex example 3 with anotber initial guess. 

xo Yo Proposed Algorithm GAMS 

NLPs LPs NLPs LPs 

(0,1,0) 3 6 3 28 
(1,0,1) 3 6 3 27 
(1,1,1) 3 6 3 28 

(0,0,0) (0,0,0) 3 6 3 27 
(1,0,0) 3 6 3 28 
{0,1,1) 3 6 3 27 
(1,1 ,0) 3 6 3 27 
{0,0,1) 3 6 3 27 

Table 5. Comparision of proposed algorithm and GAMS, convex example 3. 

5.4 Nonconvex example 1 

Considering the problem proposed by [15], modeled as: 

subject to 

z = minx,y 2x + y 

1.25 - x 2 - y < O 

X+ y < 1.6 

0 < X < 1.6, y E {0, 1} 

(13) 

where the nonlinear inequality constraint contains a nonconvex term for the 

continuous variable x. 

The global optimum of the problem is located at x = 0.5 and y = 1, where 
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the value of the objective function is z = 2. Table 6 shows the comparison of 

proposed algorithm and GAMS. 

xo Yo Proposed Algorithm GAMS 

NLPs LPs NLPs LPs 

o 1 1 1 o 
0.1 1 1 1 1 o 

Table 6. Comparision of proposed algorithm and GAMS, nonconvex example 1. 

5.5 Nonconvex example 2 

The example of the MINLP problem proposed by [23] is modeled as: 

subject to 

Z = minx,y - 0.7y + 5(x- 0.5)2 + 0.8 

exp(x- 0.2) + 1.1y + 1 < O 

X - 1.2y - 0.2 < Ü 

0 < X < 1, y E {0, 1} 

(14) 

The optimal solution of the problem (14) is given by z = 1.076, where x = 
0.942 and y = 1. Table 7 shows the number of LPs and NLPs, wohere it can be 

observed for the initial guess of the binary variable y0 = O, the GAMS did not 

find a solution. 

xo Yo Proposed Algorithm GAMS 

NLPs LPs NLPs LPs 

o 2 3 - -

0.1 1 2 3 3 3 

Table 7. Comparision of proposed algorithm and GAMS, nonconvex example 2. 

5.6 Nonconvex example 3 

Figure 3 represents a superstructure for a selection problem among two candidate 

reactors to minimize the production cost of a desired product, proposed by [15]. 
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Yl Vl 
Xl 

Reactor Zl 

X 

Y2 V2 

Reactor 
X 2 Z2 

Figure 3 - Superstructure for the nonconvex example 3. 

The forrnulation of the MINLP of this problem is given as: 

subject to 

cost = min 7.5y t + 5.5y2 + ?v1 + 6v2 + 5x 

Z 1 = 0 .9(1- exp(-0.5v1))x1 

Z2 = 0.8(1 - exp(-OAv2))x2 

X J + X 2 - X= 0 

ZJ + Z2 = 10 

v1 < IOy1 

V2 < 1Qy2 

XJ < 2ÜyJ 

X2 < 20y2 

Y1 + Y2 > 1 

X I , X 2 , Z l , Z 2, V 1 , V2 > 0, Y 1 , Y2 E { 0 1 } 2 

357 

10 

(15) 

The binary variables y 1 and y2 denote the existence or nonexistence of the 

reactors 1 and 2, respectively. In the objective function, the values 7.5 and 5 .5 

represent the capacity of the reactors 1 and 2, respectively· v 1 represent the 

volume of the reactor 1, v2 , the volume of the reactor 2, and x is the amount of 

the raw material. The two nonlinear equations are input-output relations for the 

reactors which define the output fl.ows of exit z 1 and z2 in terms o f the input flows 

x 1 and x2 and the reactors volumes. The raw material x is split in to the reactor 

input flows x 1 and x2 , and the total demand o f 1 O units should be met by the 

output flows. The next four inequalities are Jogical constraints which insure that 

if a given reactor does not exist (for example y 1 = 0), then the corresponding 
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volume and feed stream are zero. The last constrain.t requires that either reactor 

1 or 2 be selected. 

Due to implementation reasons, the equality constraints were transfonned in 

inequality constraints, then the MINLP is rewritten as: 

subject to 

Z1 = 0.9(1 - exp( -0.5v1))x1 

Z2 = 0.8(1 - exp( -0.4v2))x2 

Zt+z2>lO 

Zt + Z2 < 10 

Vt < lOyl 

V2 < 10y2 

X J < 20yl 

X2 < 20y2 

Yt + Y2 > 1 

Xt , x2, ZJ , Z2 , v1, v2 > O, YJ, Y2 E {0, 1}2 

(16) 

Table 8 shows the number of LPs and NLPs of the problem for the proposed 

algorithm and GAMS, where xo = (x 1 , x 2, v 1, v2). The proposed algorithm 

always finds the optimal solution of cost = 99.24 for x = (13.428, O) and 

v = (3.514, 0). In case of GAMS, for initial guess of y0 = (0, 1), it solves a 

NLP subproblem and no LP problem but finds a sub-optimal solution of 

cost = 107.376 , where x = (0, 15) and v = (0, 4.479). 

xo Yo Proposed Algorithm GAMS 

NLPs LPs NLPs LPs 

(1,0) 1 3 3 10 

(1,1,0,0) (0,1) 1 3 1 o 

Table 8. Comparision of proposed algorithm and GAMS, nonconvex example 3. 
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6 Conclusions 

This work presented a branch and bound method for convex MlNLP problems 

that is based on the solution of LPs problems and NLPs subproblems. The 

method avoids the solution of sequential NLPs subproblems and MILP master 

problems that is demanded in the implementatiQn of standard GBD and OA 

algorithms. The obtained results of the convex problems and nonconvex tests 

showed that the algorithm is efficient, reducing the number of nodes that need 

to be examined when compared with the standard GBD and, at least, obtaining 

the same results when compared with the modified GBD. When compared with 

GAMS, satisfactory results were also obtained in favor of the proposed algorithm, 

for convex and nonconvex examples, in spite of the algorithm be designed for 

convex problems. 
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