
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

NÍCOLAS CASAGRANDE DURANTI

A Non-Admissible Heuristic Function
Based on Synchronized Abstract Plans

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. André Grahl Pereira
Co-advisor: Augusto B. Corrêa

Porto Alegre
April 2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ABSTRACT

Classical Planning is a traditional Artificial Intelligence problem that consists of finding a

sequence of actions, called a plan, to achieve some desired goal given an initial state. We

say that the plan cost is the sum of the costs of performing each action that composes the

plan. A classical planning task is a compact description of a planning problem. It induces

a transition system: a graph where the vertices represent the possible states and the edges

represent the actions that transform the states. To solve the planning problem, one has to

determine a path from the initial state to a goal state in the transition system.

Search algorithms combined with domain-independent heuristic functions are the most

popular method for solving classical planning tasks. Heuristics estimate how far a state

is from the goal, indicating which state should be evaluated next. An approach taken

by some heuristics is to use abstractions: a mapping of the concrete states into abstract

states that results in the so-called abstract transition system, which is typically smaller

than the original transition system. The cost of a plan in the abstract transition system is

an estimate for the concrete plan cost.

This work introduces a new non-admissible heuristic for satisficing planning (where the

goal is to find any plan, not necessarily the cheaper one). The main idea is: given an

ordered list of abstract transition systems, compute the cheapest path from the source

state to a goal state for each graph, considering the actions that compose previous paths

as credit for the following ones. More precisely, an action can be used in a new path for

free (with cost zero) up to the number of times it appears on the already determined path

that uses it the most. In the end, the heuristic value is the sum of the cost of all paths

found.

We evaluate the proposed heuristic with the Fast Downward planning system. We com-

pare our heuristic with FF and Post-Hoc Optimization heuristics on the IPC11’s bench-

mark suite. The results show that the new heuristic increases the coverage by 12% com-

pared to the FF heuristic, while expanding fewer states on most domains.

Keywords: Artificial Intelligence, Heuristic Search, Classical Planning, Abstraction-

based Heuristic Functions, Non-admissible Heuristic Functions.

Uma Heurística Não Admissível Baseada em Planos Abstratos Sincronizados

RESUMO

Planejamento clássico é um tradicional problema de Inteligência Artificial que consiste

em encontrar uma sequência de ações, denominada de plano, para atingir um desejado

objetivo dado um estado inicial. Dizemos que o custo do plano é a soma dos custos

de realizar cada ação que compõem o plano. Uma tarefa de planejamento clássico é uma

descrição compacta de um problema de planejamento. Ela induz um sistema de transição:

um grafo onde os vértices representam os possíveis estados e as arestas representam as

ações que transformam os estados. Para resolver o problema de planejamento, é preciso

determinar um caminho do estado inicial para um estado objetivo no sistema de transição.

Algoritmos de busca combinados com funções heurísticas independentes de domínio são

o método mais popular para resolução de tarefas de planejamento clássico. Heurísticas

estimam quão longe um estado está do objetivo, indicando qual estado deve ser avaliado

a seguir. Uma abordagem adotada por algumas heurísticas é utilizar uma abstração: um

mapeamento dos estados concretos em estados abstratos que resulta no chamado sistema

de transição abstrato, que é tipicamente menor que o sistema de transição original. O

custo de um plano no sistema de transição abstrato é uma estimativa do custo do plano

concreto.

Este trabalho introduz uma nova heurística não admissível para "satisficing planning"

(onde o objetivo é encontrar qualquer plano, não necessariamente o mais barato). A ideia

principal é: dado uma lista ordenada de sistemas de transição abstratos, calcular o cami-

nho mais barato do estado inicial até um estado objetivo para cada grafo, considerando

as ações que compõem os caminhos anteriores como crédito para os seguintes. Mais pre-

cisamente, uma ação pode ser utilizada em um novo caminho gratuitamente (com custo

zero) até a quantidade de vezes que aparece no caminho já encontrado que mais a utiliza.

No final, o valor da heurística é a soma do custo de todos os caminhos encontrados.

Nós avaliamos a heurística proposta com o sistema de planejamento Fast Downward.

Comparamos nossa heurística com as heurísticas FF e Post-Hoc Optimization no con-

junto de benchmarks da IPC11. Os resultados mostram que a nova heurística aumenta a

cobertura em 12% em comparação com a heurística FF, enquanto expande menos estados

na maioria dos domínios.

Palavras-chave: Inteligência Artificial, Busca Heurística, Planejamento Clássico, Fun-

ções Heurísticas Baseadas em Abstração, Funções Heurísticas Não Admissíveis..

LIST OF FIGURES

Figure 3.1 Example transition systems for hPhOG
C21

Figure 3.2 Example transition systems for hGP ..22
Figure 3.3 Abstract transition systems of the logistics task induced by Sys1 patterns. .26

Figure 4.1 Scatter plots of expansions: hGP
Sys2 (y-axis) vs. other heuristics.....................29

Figure 4.2 Scatter plots of expansions per second: hGP
Sys2 (y-axis) vs. other heuristics. .30

Figure 4.3 Number of tasks solved (individually) in a determined amount of time31
Figure 4.4 Scatter plots of plan cost: hGP

Sys2 (y-axis) vs. other heuristics.32
Figure 4.5 Illustration of the 5x5 VisitAll task...33
Figure 4.6 Operators whose effect mark cell-3x4 as visited. ..34
Figure 4.7 Operators in the credit ...34

LIST OF TABLES

Table 4.1 Domain-wise coverage for all evaluated methods...28
Table 4.2 Domain-wise coverage of variation shuffling operators lists.36
Table 4.3 Domain-wise coverage for variation sorting graphs.36

LIST OF ABBREVIATIONS AND ACRONYMS

IP Integer Program

IPC11 International Planning Competition 2011

LP Linear Program

PDB Pattern Database

PhO Post-Hoc Optimization

CONTENTS

1 INTRODUCTION...10
2 BACKGROUND..13
2.1 Classical Planning ...13
2.2 Heuristics ...14
2.2.1 FF Heuristic ...14
2.2.2 Abstractions ...16
2.2.2.1 Systematic Pattern Generation..17
2.2.3 Post-Hoc Optimization Heuristic...17
2.2.4 Satisficing Post-Hoc Optimization with a Greedy Constructive Algorithm..........18
3 SATISFICING GREEDY CONSTRUCTIVE HEURISTIC BASED ON AB-

STRACT TRANSITION SYSTEMS ..20
3.1 Satisficing Heuristic Function based on Synchronized Plan Costs on Ab-

stract Transition Systems Is Not Admissible ..25
4 EXPERIMENTS ...27
4.1 Parallel Operators...31
4.2 Unit-Cost Operators ...37
4.3 Partial Expansion..37
5 FAILED IDEAS...38
5.1 Bucket Queue ..38
5.2 Using PDBs ..39
5.2.1 Using PDBs to Guide Dijkstra...39
5.2.2 Using PDBs to Early Stop Dijkstra..40
6 CONCLUSION ...41
REFERENCES...42
REFERENCES...42

10

1 INTRODUCTION

Classical planning (Hoffmann, 2011) is an area of Artificial Intelligence focused

on determining a sequence of actions, or a plan, that transforms an initial state into a

goal state. It can be applied, for example, in the problem of solving the Rubik’s Cube

puzzle or deciding routes that each truck in a fleet can take to transport packages between

different places. In the first scenario, the initial state can be any shuffled arrangement of

the cube, the goal is to make every face contain only one color and the actions are all

possible rotations over the cube. In turn, the trucks’ logistics task starts with each vehicle

and package in a specific location and the goal is to have all packages delivered to their

destinations through the actions of loading and unloading the cargo and moving the truck.

Each action has a cost associated with it. The cost of a plan is the sum of the costs of

all actions in it. Finding a plan with the lowest cost possible is an optimization problem,

while just finding any valid plan is a satisficing problem.

A classical planning task induces a transition system. A transition system is a

directed weighted labeled graph whose vertices represent the possible world’s states and

the edges represent the actions (or operators). In this context, finding a plan is the same

as determining a path in the graph from the vertex associated with the initial state to any

vertex associated with the goal states. However, in most problems, the transition system of

a task is considerably large, even for simple scenarios. Therefore, constructing the entire

transition system of a task to solve it is intractable, and using brute-force approaches to

find a plan is unfeasible in terms of time and memory.

The most efficient and common approach for solving planning tasks is heuristic

search. A heuristic (Bonet & Geffner, 2001; Pommerening, Röger, & Helmert, 2013) is a

function that maps a state s to the estimated distance between s and the closest goal state.

The general approach taken by heuristics is to simplify the original task, solve (ideally

optimally) this simplified task and use the solution cost as the estimate. Search algorithms

use heuristics to guide the exploration through the state space. Given a state s, the search

algorithm applies the operators whose preconditions are satisfied by s and identifies all

states that can be reached from s. Then, the heuristic function computes the heuristic

value of every generated state, indicating to the search algorithm which state is more

promising to achieve the goal. The more accurate or informed a heuristic is, the more

efficient the planning will be. However, good heuristics usually take considerable time to

be computed, which makes the process of obtaining a heuristic that is both informed and

11

fast to compute a challenge.

A particular class of heuristic functions is the abstraction heuristics (Edelkamp,

2001). An abstraction of a transition system is a mapping that merges several states into

one. The resulting state space (typically smaller than the original) is called an abstract

transition system. The heuristic value of an abstraction heuristic is usually the cost of an

optimal plan in the abstract transition system.

Abstraction heuristics are commonly used for optimal planning. They apply sev-

eral relaxations to the problem they want to solve. This makes such heuristics less in-

formed, but ensures admissibility, which is essential for optimal planning - search al-

gorithms like A* (Hart, Nilsson, & Raphael, 1968) find optimal solutions when using

admissible heuristics. Meanwhile, abstraction heuristics have not been used for satis-

ficing planning, where heuristics based on delete relaxation are commonly used due to

their speed and efficiency. In this work, we want to bridge the gap between abstraction

heuristics and satisficing planning. Since our aim is to find solutions fast, we renounce

admissibility to have a more informed heuristic.

Hence, we propose a new non-admissible heuristic for satisficing planning. Given

an ordered list of abstract transition systems, our heuristic finds an abstract plan for each

of them, considering the usage of an operator in one abstract transition system as credit

(cost zero) for the next ones. For instance, if an operator is used twice in an abstract plan

found, it can be used up to two times in the next abstract plans without incurring its cost

to the plan. To compute the heuristic value, we simply sum the costs of all abstract plans

found. Since abstract transition systems are smaller than the original transition systems,

they are faster to solve, but do not carry all the information of the task. This approach

can produce an estimate in a reasonable time while combining the information covered by

each abstract transition system and minimizing the over-counting of redundant operators.

To evaluate the heuristic proposed, we compare it with the FF heuristic and Post-

Hoc Optimization heuristic on benchmark tasks from the International Planning Compe-

tition 2011 (IPC11). We run the experiments with the Greedy Best-First Search (Doran

& Michie, 1966) algorithm in the Fast Downward planner (Helmert, 2006).

The results show that our heuristic can solve more tasks than FF and Post-Hoc

Optimization heuristics. Furthermore, it expands fewer states than the other heuristics

for most domains, while the costs of the solutions found are very close between them.

Nevertheless, the heuristic proposed usually makes fewer expansions per second than the

other two heuristics.

12

This work is organized as follows. Chapter 2 presents some background informa-

tion, like the formal definition of tasks, transition systems and heuristic functions refer-

enced along the text. Chapter 3 comprises the proposed heuristic explanation, an example

of its behavior and the algorithm to compute it. Chapter 4 contains the outcomes of the

experiments. It compares the metrics of coverage, expansions, expansions per second and

plan cost obtained by our heuristic and some baseline heuristics. In Chapter 5 we discuss

some ideas that we tested aiming to improve the heuristic performance, which results

were not as expected. Finally, Chapter 6 closes with the conclusion and future works.

13

2 BACKGROUND

2.1 Classical Planning

We define a planning task as a tuple Π = ⟨V, I, O, γ, c⟩. V is a set of state variables

v, each with a finite domain dom(v). Given a subset of variables V ′ ⊆ V , a partial state

is an assignment of each variable v ∈ V ′ to a value in its respective domain. A state is a

complete variable assignment over V . I is the task’s initial state and γ is a partial state

that describes the task’s goal. O is a set of operators o = ⟨pre, eff⟩, where pre and eff

are partial states. pre is the precondition for applying the operator and eff is the operator

effect. An operator o is applicable in a state s if all variables in pre are in s with the same

respective value. Applying o in s generates the state s′, which is the result of updating s

with the values in eff. s is called the predecessor of s′ and s′ is called the successor of s.

The function c : O → R+
0 gives a cost to each operator. A plan is a sequence of operators

that leads I to a goal state (where γ is satisfied) and the plan cost is the sum of the cost

of every operator in the sequence. A plan is an optimal plan when there is no other plan

with a lower cost.

For example, consider the following logistics task where one truck can load and

unload one package and move between three locations:

V = {truck-at, package-at}

dom(truck-at) = {A, B, C}

dom(package-at) = {A, B, C, truck}

I = {truck-at = A, package-at = B}

γ = {package-at = C}

c(o) = 1 for all o ∈ O

O = {move(src, tgt), load(loc), unload(loc)

| src, tgt, loc ∈ {A, B, C}, src ̸= tgt}

where

move(src, tgt) = ⟨truck-at = src; truck-at = tgt⟩

load(loc) = ⟨truck-at = loc, package-at = loc; package-at=truck⟩

unload(loc) = ⟨truck-at = loc, package-at = truck; package-at = loc⟩

14

The variables are the truck location and the package location. The truck can be at

location A, B or C and the package can be in one of these locations or inside the truck.

In the initial state, the truck is at A and the package is at B. The goal is to have the

package at C. The operator move updates the truck position to tgt since it is at src. load

has the precondition of having the truck and the package at the same location and the

effect of changing the package location variable value to truck, while unload assigns the

current truck location to the variable package-at if the truck was carrying the package. All

operators have a unitary cost.

A task Π induces a transition system, also called state space. A transition system

T = ⟨S, T, s0, S∗⟩ is a weighted, labeled and directed graph where S is a set of states,

s0 ∈ S is the initial state, S∗ ⊆ S is the set of goal states and T ⊆ S × S is a set of

transitions. For every operator o ∈ O that is applicable in a state s and results in a state s′,

there’s a transition t ∈ T from s to s′ with weight equal to c(o) and label "o". The states

in S and the transitions in T are, respectively, the vertices and edges of the graph.

2.2 Heuristics

A heuristic is a function h : S → R+
0 ∪ {∞} that estimates the cost of an optimal

plan from a given state s ∈ S to a goal. We define h(s) as the heuristic value for the state

s, and h(s) = ∞ means that there is no possible way to reach a goal from s. h∗ is the

representation for a perfect heuristic, which maps any state to the optimal solution cost

for it. We say that a heuristic is admissible when h(s) ≤ h∗(s) for all states s ∈ S.

Search algorithms use heuristics to guide the exploration of the state space in the

process of finding a plan. A search algorithm usually expands a state, identifying its

successor states, and has to decide which state to expand next. The heuristic value of

each state indicates how close it is to the goal. Thus, the algorithm can select the most

promising state already reached to continue the search.

2.2.1 FF Heuristic

Consider a planning task Π′ where all variables in V are facts, i.e. dom(v) = {true,

false} for all v ∈ V , and the goal is a logical formula composed only by non-negated

propositions. In this context, we say that a variable is added or deleted when an operator’s

15

effect changes its value to true or false, respectively. Any task Π can be transformed into

a task like Π′ in polynomial time and its benefit is that, since all variables in the goal have

value true, delete effects can be considered as bad effects.

Given a task with the characteristics of Π′, it’s possible to derive a delete-relaxed

planning task Π+, which is identical to the original task but all assignments of variables to

false (deletions) are removed from the operators’ effects. We call a plan in Π+ a relaxed

plan and it can be used as a heuristic for Π′, where the heuristic value of a state s is the

cost of a relaxed plan starting from s. An easy way to determine a relaxed plan is the

greedy strategy: identify the applicable operators in the initial state, select one of them

randomly and apply it, repeating these steps until all variables in the goal are set to true.

However, although simple and easy to compute, this approach can be very inaccurate. To

get a more informed heuristic, the function could calculate the cost of the optimal relaxed

plan. We define the h+ heuristic as the perfect heuristic h∗(s) of a state s in the delete-

relaxed task Π+. Unlike the greedy method, finding a relaxed optimal plan is NP-hard.

Therefore, h+ cannot be computed efficiently.

Since the two approaches presented so far contain limitations, Bonet and Geffner

(2001) introduce the hadd heuristic, based on estimating plans for each variable in the

goal independently and summing them up. In other words, it computes the minimal cost

to make each proposition in the goal of the relaxed task true, with the calculation of one

subgoal not influencing the other. Formally, the heuristic function is defined as

hadd(s) =
∑
v∈G

f(v, s)

where G is the set of variables mentioned in the goal and

f(v, s) =

0 if v = true in s

argmin
o∈A(v)

cost(o) +
∑

p∈Pre(o)

f(p, s) otherwise

where A(v) is the set of operators that adds v and Pre(o) is the set of variables in the

precondition of operator o.

hadd is more accurate than the greedy heuristic and can be computed more effi-

ciently than h+, but it still has a downside: if an operator is used to reach more than

one subgoal, its cost will be counted multiple times, making the heuristic overestimates

the real plan cost. To deal with this, Hoffmann and Nebel (2001) proposes the relaxed

plan heuristic, denoted hFF . It finds plans to achieve each subgoal separately like hadd,

but keeps track of the operators occurring on each plan to ensure that their cost will be

16

considered only once. This results in a non-admissible heuristic that can be computed in

polynomial time.

2.2.2 Abstractions

An abstraction is a relaxation of the planning task that joins different states, gener-

ating a new and (typically) smaller transition system. Given the original transition system

T , the abstraction is a function that maps the states s of T into abstract states α(s), re-

sulting in the abstract transition system Tα. If s is a goal state in T , then α(s) is also a

goal state in Tα. A transition from s1 to s2 in T is replicated as a transition from α(s1)

to α(s2) in Tα. We call a plan in Tα an abstract plan. A special case of abstraction is

the projection, where only a subset of the state variables, called pattern, is kept while the

others are ignored. All original states that have identical values for the variables in the

pattern became the same abstract state.

With patterns small enough, plans in the abstract transition system can be found

very quickly and the cost of such a plan can be used as a heuristic for the original task.

The pattern database (PDB) heuristic (Edelkamp, 2001), written hP , returns the cost of

the cheapest path to the goal in the abstract transition system resulting from projecting the

task with the pattern P .

For example, consider the following planning task (from Pommerening et al.,

2013):

V = {A, B, C}

dom(v) = {0, 1, 2, 3, 4} for all v ∈ V

I = {A=0, B=0, C=0}

γ = {A=3, B=3, C=3}

c(o) = 1 for all o ∈ O

O = {incvx, jumpv | v ∈ V, x ∈ {1, 2, 3, 4}}

where

incvx = ⟨v = x; v = x+ 1⟩

jumpv = ⟨v′ = 4 for all v′ ̸= v; v = 3⟩

It contains three variables that can assume numbers between zero and four. In the

17

initial state, all variables are assigned to the value 0, and in the goal state, all variables are

assigned to the value 3. The operator inc increments the value of a variable by one and

the jump operator assigns the number 3 to a variable under the precondition that all other

variables have the value 4. Both operators have a unitary cost, which means that the goal

can be optimally achieved with a cost of nine, by using the inc operator three times for

each variable.

For this example task, any pattern with just one variable results in the PDB heuris-

tic estimating the cost of one for the initial state, since all other variables are ignored and

the jump operator can be applied with no restrictions. If using the patterns with two vari-

ables, the function gives an estimate of six, considering the actions of incrementing the

variables.

2.2.2.1 Systematic Pattern Generation

A simple method to obtain patterns is the Systematic Pattern Generation approach.

It generates all possible combinations containing up to a determined number of variables.

We define SysX as the set of patterns with size between one and X (inclusive). Given

the example task from the previous section, the systematic sets are:

Sys1 = {{A}, {B}, {C}}

Sys2 = Sys1 ∪ {{A, B}, {A, C}, {B, C}}

Sys3 = Sys2 ∪ {{A, B, C}}

2.2.3 Post-Hoc Optimization Heuristic

PDB heuristics take into account only some aspects of the problem (variables in

the pattern) while completely ignoring others. This inspired the study of approaches that

combine the information covered by different patterns with the aim of getting a more

informed function. Consider the example task shown in the previous section and a pattern

collection composed of the three possible patterns with two variables. Given that hA,B

= 6 for the initial state and that all operators have unitary cost, it’s possible to conclude

that any solution for this task must contain at least six actions that modify the variable A

or the variable B. The same is valid for hA,C and hB,C and the variables A, C and B, C,

respectively. From the combination of these three constraints, we can induce that at least

18

nine operators are required in any plan.

This strategy can be generalized with an integer program (IP) with one variable

Xo for each operator o ∈ O, representing the total cost of the usages of the operator o. In

other words, Xo is equal to the operator’s cost times the number of times it appears in the

estimated plan.

The IP’s objective is to minimize ∑
o∈O

Xo

subject to the constraints∑
o∈OP

Xo ≥ hP (s) for all patterns P in the patter collection

Xo ≥ 0 for all o ∈ O

where OP is the set of operators that cause a state change in the abstract transition system

induced by P . The objective value of the IP presented above is an admissible heuristic.

However, using an IP solver is intractable. Therefore, an LP-relaxation is used instead:

the Post-Hoc Optimization heuristic (hPhO
C), introduced by Pommerening et al. (2013), is

defined as the objective value of the LP presented above solved with the pattern collection

C. hPhO
C is also admissible.

2.2.4 Satisficing Post-Hoc Optimization with a Greedy Constructive Algorithm

Satisficing Post-Hoc Optimization with a Greedy Constructive Algorithm (hPhOG
C)

is a work in progress of the Master’s student Daniel Matheus Doebber based on the Post-

Hoc Optimization heuristic. Its main idea is to generate the group of constraints exactly

as hPhO
C does but, instead of running an LP solver, it uses a greedy strategy to determine

the value of each variable. Such method is simple: for each constraint, go through the

variables in sequence incrementing their value by one until the expression is satisfied.

Once all constraints are satisfied, the heuristic value is the sum of all variables.

To illustrate the heuristic computation, consider the constraints derived from the

two-size patterns of the example task presented in section 2.2.2:

incA1 + incA2 + incA3 + incA4 + jumpA + incB1 + incB2 + incB3 + incB4 + jumpB ≥ 6

incA1 + incA2 + incA3 + incA4 + jumpA + incC1 + incC2 + incC3 + incC4 + jumpC ≥ 6

incB1 + incB2 + incB3 + incB4 + jumpB + incC1 + incC2 + incC3 + incC4 + jumpC ≥ 6

Starting with the first constraint, the six leading variables will be incremented

19

once, satisfying the expression. For the second constraint, all variables related to “A”

already have value one, making it necessary only one more operator to achieve the re-

quirement. Thus, incA1 is increased again. Next, the third constraint still requires five

more operators to fulfill the expression, since only incB1 is not zero. Therefore, the first

five variables are incremented. This results in incA1 = incB1 = 2 and incA2 = incA3 =

incA4 = jumpA = incB2 = incB3 = incB4 = jumpB = 1, what makes the estimate for this

task to be 12. As this prediction is higher than the optimal plan cost (nine), we can con-

clude that hPhOG
C is not admissible. Nevertheless, being simple and fast to compute, this

heuristic has demonstrated the potential to solve satisficing planning tasks very quickly.

20

3 SATISFICING GREEDY CONSTRUCTIVE HEURISTIC BASED ON ABSTRACT

TRANSITION SYSTEMS

To compute the Post-Hoc Optimization heuristic with an LP solver can consume

a considerable time. Besides the fact that finding an optimal solution for the LP is not

trivial, the heuristic also has the overhead of communicating with the solver, which is

a separate application. Therefore, the hPhOG
C heuristic (presented in section 2.2.4) pro-

poses to satisfy the constraints in a more efficient (but inadmissible) way, using a greedy

strategy. Nevertheless, the LP used by hPhOG
C is a relaxation of the real problem: an

assignment that satisfies the constraints for a given abstract transition system might not

be an abstract plan for it. In other words, the operators selected by hPhOG
C just solve the

LP problem numerically. Thus, we do not know whether these operators are important

to reach the goal or not. The consequence of selecting operators that are not important

is overestimating the plan cost, losing information. In contrast, selecting important op-

erators reduces the heuristic value (making it closer to the optimal plan cost), since such

operators probably are part of abstract plans for several abstract transition systems.

For example, consider the abstract transition systems in Figure 3.1. The con-

straints derived from them for the initial state are:

o1 + o2 + o3 ≥ 2

o2 + o3 ≥ 2

To satisfy the first constraint, hPhOG
C assigns the value one to o1 and o2. To satisfy the

second constraint, hPhOG
C increments o2 again, which now is assigned to the value two.

Therefore, the heuristic value for this example is three. Note that the operators selected

are not a plan for both abstract transition systems. Choosing the operator o1 does not help

to achieve the goal, but in hPhOG
C such information was relaxed and ignored. Therefore,

the heuristic overestimates the optimal abstract plan cost (two).

In this work, we consider this information ignored by hPhOG
C . We achieve this

by computing synchronized plans over the set of abstract transition systems. We find

an optimal abstract plan for the first abstract transition system. Hence, we know that

the operators in this plan are (probably) important to solve the task. Then, we consider

this information to find an abstract plan in the next abstract transition system: transitions

related to the operators already used do not incur a cost to the abstract plan up to the times

21

Figure 3.1 – Example transition systems. Triangles indicate the initial states, double circles are
goal states and edge labels are the operators’ names followed by the edge cost. Edges that are

self-loops are not represented for simplicity.

they appear in previous plans. This is done iteratively for all abstract transition systems

in the set. Ideally, we find a solution that minimizes the over-counting of operators and is

closer to the task’s optimal solution.

The main idea of our heuristic is described by the following steps, given an ordered

list of abstract transition systems L as input and a state s:

• compute an optimal abstract plan for s in the first abstract transition system of L;

• collect the operators in this plan and save them, generating what we call the credit;

• compute an abstract plan for s in the next abstract transition system, but now tran-

sitions related to operators present in the credit can be used for free up to the times

they appear in the credit;

• collect the operators from the new abstract plan that were not used for free and

insert them in the credit;

• repeat the last two steps for all remaining abstract transition systems in L.

The heuristic value hGP
L (s) is the sum of the costs of all operators in the final credit.

For example, consider the graphs in Figure 3.2 as a list of abstract transition sys-

tems of a task, where the cost of each operator (o1 to o5) is one, and that the evaluation

order is from the top to the bottom. The only possible abstract plan in the first abstract

transition system has cost two and is composed of o1 and o2. Therefore, these two oper-

ators are saved as credit. For the second abstract transition system, the cheapest way to

achieve the goal is through operators o1 and o4. Even though the alternative plan (o3 and

o4) contains the same amount of transitions, operator o1 can be used for free because it

22

Figure 3.2 – Example transition systems. Triangles indicate the initial states, double circles are
goal states and edge labels are the operators’ names followed by the edge cost. Edges that are

self-loops are not represented for simplicity.

appears in the preceding abstract plan, resulting in an abstract plan with cost one. Since

o4 was not used for free, it is added to the credit. The last abstract transition system also

has a single plan, which costs two since one of the applications of the operator o1 comes

as credit from the previous usage. The third transition is still counted because none of the

other abstract plans found had more than one occurrence of o1 in the same plan. Operators

o1 and o5 are included in the credit, resulting in the final credit that is formed by o1, o2,

o4, o5 and o1. Therefore, the heuristic gives the value five as an estimate for the concrete

task plan.

Algorithm 1 shows the heuristic pseudocode. We use a function based on the

Dijkstra algorithm (Dijkstra, 1959) to determine the cheapest path in a graph (lines 1-26).

The main function compute_heuristic (lines 28-43) calls the dijkstra function for each

abstract transition system in the graphs list (lines 30-31). The algorithm represents the

credit as a vector (line 29) that stores at each index the usage count of the operator with

the respective id. dijkstra function initializes a vector to count the operators used in the

paths and insert it with the initial state in the priority queue Q with the value zero (lines

3-5). Lines 6-25 perform the search: line 6 removes the entry with the lower value from

Q; lines 8-10 check if the entry corresponds to a goal state and, if so, return the operators

present in the path found; lines 11-24 expand the state in case it was not expanded yet.

For each outgoing transition of the state, the algorithm increments the usage count of the

operator related to the transition in new_ops_count and checks whether the operator (still)

23

can be used with no cost (lines 15-17). If that is the case, line 18 inserts the successor

state and new_ops_count into Q with the same value as the predecessor state. Otherwise,

line 20 increases the value by the cost of the operator and inserts the successor state and

new_ops_count into Q. Once the dijkstra function returns the operators that compose the

path found, compute_heuristic updates the current credit (line 36). After the algorithm

determines a plan for every abstract transition system, it computes the heuristic value

hGP
L (s) by summing the product of the operators’ count in the final credit times their cost

(lines 39-42).

The code developed for this work follows the pseudocode presented above. Never-

theless, it is worth mentioning some implementation details, which mainly aim at making

the computation faster. The data structure used to represent the graph is an adjacency list,

once it enables better performance to retrieve the outgoing transitions of a specific state to

find its successors. In addition, the vector that stores the operators’ count in the Dijkstra

function only has the capacity for the abstract operators that are not self-loops. Since the

algorithm inserts this vector into the priority queue, new memory is constantly allocated

for it, which demands considerable time. Thus, having a smaller vector significantly re-

duces time consumption. Also, to avoid memory request operations, we declare the vector

expanded only once, with a length equal to the number of states of the abstract transition

system with most states. Then, when the Dijkstra function is called, we just (re)initialize

the structure until the position required by the current abstract transition system, without

being necessary to allocate new space.

It is important to note that, from the second abstract transition system on, our

algorithm does not ensure that we will find an optimal abstract transition system, because

we do not consider the credit when marking a state as expanded. For instance, suppose

that we have only two entries in the priority queue, both related to the same state s and

with the same value (let’s say, 15, which is optimal until here), but one of them (e1) still

can use the operator o for free while the second (e2) cannot. In addition, the only outgoing

transition of s is relative to the operator o, and the successor state of s is a goal state. In

case e1 is removed from the queue, s is marked as expanded and operator o will not incur

its cost to the plan. Therefore, we achieve the goal and the plan cost is 15. However, if e2

is removed from the queue, the cost of o is added to the plan cost, which is not optimal

anymore.

24

Algorithm 1: hGP computation
1 Function dijkstra(graph, initial_state, credit)
2 expanded[v]← False ∀ vertex v ∈ graph.vertices
3 ops_count[o]← 0 ∀ operator o ∈ graph.operators
4

5 Q.push(initial_state, 0, ops_count)
6 while not Q.empty() do
7 entry ← Q.pop()
8 if entry.state is goal then
9 return entry.ops_count

10 end
11 if not expanded[entry.state] then
12 expanded[entry.state]← True
13 foreach edge e from entry.state to t do
14 if not expanded[t] then
15 new_ops_count← entry.ops_count
16 new_ops_count[e.operator] + +
17 if entry.ops_count[e.operator] ≤ credit[e.operator] then
18 Q.push(t, entry.cost, new_ops_count)
19 else
20 Q.push(t, entry.cost+ e.cost, new_ops_count)
21 end
22 end
23 end
24 end
25 end
26 return Null

27

28 Function compute_heuristic(graphs, state)
29 credit← 0 ∀ operator o
30 foreach graph g in graphs do
31 graph_credit← dijkstra(g, state, credit)
32 if graph_ops_count is Null then
33 return INF
34 end
35 foreach operator o in credit do
36 credit[o]← max(credit[o], graph_ops_count[o])
37 end
38 end
39 heuristic_value← 0
40 foreach operator o do
41 heuristic_value← heuristic_value+ credit[o] ∗ cost(o)
42 end
43 return heuristic_value

25

3.1 Satisficing Heuristic Function based on Synchronized Plan Costs on Abstract

Transition Systems Is Not Admissible

Consider the logistics task from section 2.1. For this example, we make one modi-

fication in the task, including in the goal the condition that the truck must be at location C:

γ = { truck-at = C, package-at = C}

The optimal plan for this task is move(A,B), load(B), move(B,C) and unload(C), and

its cost is four. Now, let’s analyze hGP computation for the initial state of this task with

an input list composed of the abstract transition systems induced by Sys2 patterns (Sys1

patterns lead the list). Figure 3.3 illustrates the two abstract transition systems induced

by patterns with only one variable, with the optimal abstract plans highlighted in red.

The optimal abstract plan for the first abstract transition system, which considers only the

variable truck-at, is just move(A,C). Meanwhile, the optimal abstract plan for the second

abstract transition system, which considers only the variable package-at, is load(B) and

unload(C). The last abstract transition system in the input list considers both variables,

modeling the complete task. Given the operators in the credit (move(A,C), load(B) and

unload(C)), there are two optimal abstract plans, both with cost two:

move(A,B), load(B), move(B,C), unload(B)

move(A,C), move(C,B), load(B), move(B,C), unload(B)

Therefore, hGP
Sys2(s0) = 5. Since hGP

Sys2(s0) > h∗(s0), we conclude that hGP is not admis-

sible.

26

Figure 3.3 – Abstract transition systems of the logistics task induced by patterns {truck-at} (left)
and {package-at} (right). Triangles indicate the initial states, double circles are goal states,

identifiers in the vertices are the variable values on each state and edge labels are the operators’
names. The optimal abstract plan is represented in red. Edges that are self-loops are not

represented for simplicity.

27

4 EXPERIMENTS

To evaluate the proposed heuristic, we implemented it in Fast Downward (Helmert,

2006), a domain-independent classical planning system with different search algorithms

and popular heuristic functions available. In addition, we did the experiments with Down-

ward Lab (Seipp, Pommerening, Sievers, & Helmert, 2017), a tool that runs Fast Down-

ward collecting metrics and enables the generation of reports and charts. We performed

all experiments on a machine with Linux OS, 32GB of RAM and 12 cores. Furthermore,

we configured Downward Lab to solve at most five tasks in parallel, with a memory limit

of 4GB and a timeout of 30 minutes for each process.

We used a benchmark set formed by the 280 tasks from 14 domains that composed

the sequential track of the International Planning Competition 2011 (IPC11). For each

task, we ran the experiments using abstract transition systems projected from Sys1 and

Sys2 patterns and, for the second case, graphs induced by one-variable patterns are eval-

uated first by the heuristic. We compare these two variations with hFF , hPhO
Sys2, h

PhO−IP
Sys2

(hPhO treated as an integer problem) and hPhOG
Sys2 . We run all heuristics with the search

algorithm Greedy Best-First Search (Doran & Michie, 1966). The following metrics are

analyzed:

• Coverage: number of tasks solved within time and memory limits;

• Expansion: number of states expanded by the search algorithm until finding a goal

state;

• Plan cost: cost of the plan found;

• Total Time: amount of time taken to run preprocessing and search steps;

• Expansions per Second: number of states evaluated per second (only search time is

considered)

Both tested versions of the heuristic proposed had interesting results. Neverthe-

less, because hGP
Sys2 is more informed than hGP

Sys1 and, thus, has more potential to solve

harder tasks, the results presented in this Chapter are focused on hGP
Sys2.

Figure 4.1 shows the number of expansions done by hGP
Sys2 compared to the other

heuristics for all benchmark domains. It’s possible to see that hGP
Sys2 makes fewer expan-

sions than hPhO
Sys2, hPhO−IP

Sys2 and hGP
Sys1. This can be explained by the fact that hGP

Sys2 (a)

considers the operators sequence (paths in transition systems) and not only the operators

costs like hPhO heuristics and (b) has more and larger patterns than hGP
Sys1. In general,

28

Coverage hPhO
Sys2 hPhO−IP

Sys2 hFF hPhOG
Sys2 hGP

Sys1 hGP
Sys2

barman (20) 0 0 6 20 0 13
elevators (20) 0 0 0 0 0 0
floortile (20) 0 0 8 0 0 0
nomystery (20) 7 5 10 8 14 10
openstacks (20) 0 0 0 0 0 0
parcprinter (20) 16 7 7 15 14 18
parking (20) 3 0 20 20 20 14
pegsol (20) 17 15 20 17 17 20
scanalyzer (20) 13 12 18 20 20 17
sokoban (20) 18 12 18 18 13 16
tidybot (20) 17 12 16 19 19 19
transport (20) 0 0 0 0 12 0
visitall (20) 11 9 3 13 20 5
woodworking (20) 18 3 14 18 5 18

Sum (280) 120 75 140 168 154 150
Table 4.1 – Domain-wise coverage for all evaluated methods. The number of instances in each

domain is shown in parenthesis next to the domain name. The best results over all algorithms are
highlighted in bold.

hGP
Sys2 also expands fewer states than hPhOG

Sys2 , except for the VisitAll, Barman and

Sokoban domains. In contrast, the comparison between hGP
Sys2 and hFF looks more bal-

anced. Considering only the tasks solved by both algorithms, hGP
Sys2 is better in 55 tasks,

while hFF makes fewer expansions in 54 tasks. Nonetheless, the domain-wise results

show a superiority of hGP
Sys2, which expands fewer states in seven of them, while hFF has

lower values only in PegSol, Sokoban and TidyBot.

Figure 4.2 compares the expansions per second for tasks that were solved in more

than one second by both algorithms compared. It demonstrates that hGP
Sys2 is more ex-

pensive than the other heuristics, but hPhO−IP
Sys2 . This is the consequence of performing

the search in multiple transition systems, which is responsible for making the heuristic

informed at the cost of consuming considerable time.

Table 4.1 presents the coverage results on the benchmark suite. hGP
Sys1 and hGP

Sys2

solved, respectively, 154 and 150 tasks. They are only behind hPhOG
Sys2 , which completed

a total of 168 tasks. Furthermore, analyzing domain by domain, hGP
Sys1 is the function

leading the coverage in six cases (three isolated). Moreover, it was the only algorithm

to solve tasks from the Transport domain. Meanwhile, hGP
Sys2 leads the coverage in

four domains. These results reveal that, despite being expensive, hGP accuracy makes

it possible to solve difficult tasks that are not solved by less informed (although faster)

heuristics.

29

101 102 103 104 105 106 107 108

101

102

103

104

105

106

107

108

hPhO
Sys2

h
G
P

S
y
s2

101 102 103 104 105 106 107

101

102

103

104

105

106

107

hPhO−IP
Sys2

h
G
P

S
y
s2

101 102 103 104 105 106 107 108

101

102

103

104

105

106

107

108

hGP
Sys1

h
G
P

S
y
s2

101 102 103 104 105 106 107 108

101

102

103

104

105

106

107

108

hPhOG
Sys2

h
G
P

S
y
s2

101 102 103 104 105 106 107 108

101

102

103

104

105

106

107

108

hFF

h
G
P

S
y
s2

barman
elevators
floortile
nomystery
openstacks
parcprinter
parking
pegsol
scanalyzer
sokoban
tidybot
transport
visitall
woodworking

Figure 4.1 – Scatter plots of expansions: hGP
Sys2 (y-axis) vs. other heuristics. Unsolved tasks are

plotted at 108.

30

10−1 100 101 102 103 104 105
10−1

100

101

102

103

104

105

hPhO
Sys2

h
G
P

S
y
s2

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

hPhO−IP
Sys2

h
G
P

S
y
s2

10−1 100 101 102 103 104 105 106
10−1

100

101

102

103

104

105

106

hGP
Sys1

h
G
P

S
y
s2

10−1 100 101 102 103 104 105 106
10−1

100

101

102

103

104

105

106

hPhOG
Sys2

h
G
P

S
y
s2

10−1 100 101 102 103 104 105
10−1

100

101

102

103

104

105

hFF

h
G
P

S
y
s2

barman
elevators
floortile
nomystery
openstacks
parcprinter
parking
pegsol
scanalyzer
sokoban
tidybot
transport
visitall
woodworking

Figure 4.2 – Scatter plots of expansions per second: hGP
Sys2 (y-axis) vs. other heuristics. Unsolved

tasks are plotted at the lower edge (10−1 or 10−2).

31

20 40 60 80 100 120 140 160 180
100

101

102

103

Coverage

Ti
m

e
lim

it
in

se
co

nd
s

hFF

hGP
Sys1

hGP
Sys2

hPhOG
Sys2

hPhO
Sys2

hPhO−IP
Sys2

Figure 4.3 – Number of tasks solved (individually) in a determined amount of time

Figure 4.3 shows a cactus plot with the coverage of each heuristic until a deter-

mined computation time. It demonstrates that, when tasks need to be solved in a short

period of time, hGP
Sys1 and hFF are a better choice over hGP

Sys2, as they are faster to solve

easier tasks. However, with more time available, hGP
Sys2 performs better, as it overcomes

hFF coverage after 300 seconds and seems to also surpass hGP
Sys1 as the distance between

the curves is decreasing as time increases.

The cost of the plan found by the planner with each heuristic is compared in Figure

4.4. It shows that the admissible heuristics hPhO
Sys2 and hPhO−IP

Sys2 were able to find cheaper

plans more times than hGP
Sys2. In contrast, hGP

Sys2 leads to better plans than hFF . Considering

only tasks solved by both heuristics, hGP
Sys2 solves 56 instances finding cheaper plans,

while hFF performs better in 24 tasks. Nevertheless, the costs of the plans are very close

between all heuristics, making it not possible to state that one has a clear advantage over

another.

In the next sections, we present some modifications in the heuristic computation

(and their respective outcomes) that we tested during the development of this work.

4.1 Parallel Operators

While running the experiments, we observed that when more than one operator

can be used to move between two abstract states (what we call parallel operators or

parallel transitions) with the same cost, choosing one operator or another to compose the

32

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

hPhO
Sys2 (lower for 34 tasks)

h
G
P

S
y
s2

(l
ow

er
fo

r2
7

ta
sk

s)

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

hPhO−IP
Sys2 (lower for 25 tasks)

h
G
P

S
y
s2

(l
ow

er
fo

r7
ta

sk
s)

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

hGP
Sys1(lower for 35 tasks)

h
G
P

S
y
s2

(l
ow

er
fo

r4
9

ta
sk

s)

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

hPhOG
Sys2 (lower for 41 tasks)

h
G
P

S
y
s2

(l
ow

er
fo

r4
1

ta
sk

s)

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

hFF (lower for 24 tasks)

h
G
P

S
y
s2

(l
ow

er
fo

r5
6

ta
sk

s)

barman
elevators
floortile
nomystery
openstacks
parcprinter
parking
pegsol
scanalyzer
sokoban
tidybot
transport
visitall
woodworking

Figure 4.4 – Scatter plots of plan cost: hGP
Sys2 (y-axis) vs. other heuristics. Unsolved tasks are

plotted at 108.

33

Figure 4.5 – Illustration of the 5x5 VisitAll task. Arrows represent all possible operators.

path can result in a significant difference in the heuristic value. One domain affected by

this is VisitAll, which models tasks where an agent is in the middle of a square grid

with size NxN and can move between adjacent cells with the goal of visiting all cells.

The variables are the agent’s current position and whether a cell was already visited or

not (one variable for each cell). Also, there is one unitary-cost operator for every possible

move. The precondition for applying the operators is that the agent is in the respective

cell and the effect is to update its position and mark the target cell as visited.

As an example, consider the 5x5 VisitAll task represented in Figure 4.5, which

illustrates the grid and all the operations that the agent can perform (arrows). Formally, we

define the task’s variables as follows (we refer to the cell at line l and row r as cell-lxr):

V = {agent-at} ∪ {visited-lxr | l, r ∈ {1, 2, 3, 4, 5}}

dom(agent-at) = {cell-lxr | l, r ∈ {1, 2, 3, 4, 5}}

dom(visited-lxr) = {true, false} | l, r ∈ {1, 2, 3, 4, 5}}

In addition, consider the abstract transition system induced by the pattern that only con-

tains the variable visited-3x4. This abstract transition system has two states, the initial

and the goal states, where the variable value is false and true, respectively. Operators that

make the variable true connect the two states: the four (parallel) operators which have

cell-3x4 as the target, as illustrated in Figure 4.6. All remaining transitions are self-loops

that do not provoke a state change.

34

Figure 4.6 – Operators whose effect mark cell-3x4 as visited.

Figure 4.7 – Operators in the credit after all transition systems induced by Sys1 are evaluated.

In the code developed for the experiments, we store parallel transitions in a list

and the tiebreak condition is selecting the first operator with the lower cost. For the

abstract transition system example above, the order of the operators in the list is: arriving

from left, arriving from down, arriving from right and arriving from up. Therefore, as all

operators have the same cost, the transition relative to the first operator is chosen. The

list of operators is ordered following this same sequence (when looking for the movement

direction) for all abstract transition systems induced by Sys1 patterns. Thus, when hGP

finds an abstract plan for all abstract transition systems induced by Sys1 patterns, the

result is a credit composed by the operators shown in Figure 4.7.

The next step is to find abstract plans for the abstract transition systems induced

by patterns with two variables. Some of these patterns will be composed by the variable

35

agent-at plus one of the “cell was visited” variables. For such pattern, since the agent

position is relevant, the resulting transition system models the complete grid and all moves

cause a state change. Now, let’s analyze the operators required to achieve the goal when

the pattern is composed by agent-at plus (a) visited-4x5 and (b) visited-2x1. In the first

case, since the agent starts at cell-3x3, any path has to include at least two moves right

and one move up. As the operators that move to the right are in the credit, the optimal

abstract plan cost is one, corresponding to the movement upwards. On the other hand,

to achieve cell-2x1, the agent has to move left twice and down once. However, none of

these actions are in the credit, resulting in an abstract plan with cost three and adding

three new operators to the credit. Hence, the credit contains more than one operator that

arrives at the same cell. This happens with several cells on the left side of the grid, which

incurs an unnecessary extra cost and makes the estimate less accurate. In some domains,

this behavior can have an even worse consequence, while in others it can be opportunely

good.

Aiming to mitigate this issue, we evaluated two modifications in the algorithm.

The first one is to shuffle the lists of operators in the graph. This change adds random-

ness to the transition choice and makes the heuristic less sensitive to biases caused by

predefined operator orders. Table 4.2 shows the results of the experiment using three

distinct seeds. It illustrates that each domain is differently affected by the shuffle. For in-

stance, the change is very beneficial for VisitAll and Sokoban domains, which had

their coverage increased with the three seeds. In contrast, for the Barman domain, the

heuristic can perform better or worse depending on the final arrangement of the operators.

Nevertheless, the total coverage of 159 tasks from the experiment with seed 202 makes

this an interesting variant to test when dealing with new domains.

The second approach tested to reduce the influence of the order of the operators is

motivated by one of the causes of the issue: the necessity of choosing a transition. If one

of the parallel operators is in the credit, it can be used for free and will not affect the plan

cost. Thus, we modified the algorithm to sort the input list of abstract transition systems

based on the amount of times that there’s more than one edge with the same direction

between two vertices. As a consequence, the credit may contain more operators when the

abstract transition systems that require choices are evaluated, decreasing the chances of

selecting unnecessary operators. Coverage results in table 4.3 shows the gain of seven

new tasks solved by this variation over the original algorithm.

36

Shuffle

Coverage Original seed=48 seed=202 seed=500

barman (20) 13 9 18 13
elevators (20) 0 0 0 0
floortile (20) 0 0 0 0
nomystery (20) 10 10 10 10
openstacks (20) 0 0 0 0
parcprinter (20) 18 17 17 18
parking (20) 14 14 14 14
pegsol (20) 20 20 20 20
scanalyzer (20) 17 16 17 17
sokoban (20) 16 18 18 18
tidybot (20) 19 19 19 19
transport (20) 0 0 0 0
visitall (20) 5 8 8 8
woodworking (20) 18 18 18 18

Sum (280) 150 149 159 155
Table 4.2 – Domain-wise coverage for initial hGP

Sys2 propose and the variation shuffling operators
lists with three different random seeds. The number of instances in each domain is shown in

parenthesis next to the domain name. The best results over all algorithms are highlighted in bold.

Coverage Original Sorting

barman (20) 13 13
elevators (20) 0 0
floortile (20) 0 0
nomystery (20) 10 13
openstacks (20) 0 0
parcprinter (20) 18 18
parking (20) 14 14
pegsol (20) 20 20
scanalyzer (20) 17 17
sokoban (20) 16 18
tidybot (20) 19 19
transport (20) 0 0
visitall (20) 5 7
woodworking (20) 18 18

Sum (280) 150 157
Table 4.3 – Domain-wise coverage for initial hGP

Sys2 propose and the variation sorting graphs by
the amount of pair of nodes connected by multiple edges. The number of instances in each

domain is shown in parenthesis next to the domain name. The best results over all algorithms are
highlighted in bold.

37

4.2 Unit-Cost Operators

Analyzing the results, we observed that the heuristic value of hGP for the initial

state of every task from the OpenStacks domain is zero. OpenStacks has only one

operator with a non-zero cost, which does not affect the variables referenced in the goal.

Therefore, we tested transforming all tasks of the benchmark set to make every operator

have cost one (including operators that originally have cost zero). The results demon-

strated an increase in coverage. However, this change does not have a specific impact on

hGP computation. Transforming the tasks tends to always increase the coverage of heuris-

tics that do not perform well in domains with several cost-zero operators. Thus, we have

this section to document this finding, but we do not focus on the experiment’s results.

4.3 Partial Expansion

Memory allocation is one of the operations that consumes considerable time in the

heuristic computation. It is mainly done when inserting new entries in the priority queue

of the Dijkstra algorithm. Therefore, the more we can avoid these insertions, the faster

the heuristic will be. The intuition for this modification is that (a) operators in the credit

are more likely to compose good abstract plans since they were already used in previous

graphs and (b) paths that contain operators in the credit probably are cheaper than others.

With this in mind, the idea is to not completely expand states that have both (a)

transitions referent to operators that are in the credit and (b) referent to operators that are

not. Instead, we only insert directly in the queue successors achieved for free, while the

predecessor state is reinserted in the queue with the cost of its cheaper non-free successor.

When the reinserted entry is removed from the queue again, the algorithm inserts into

the queue the successor states that were not inserted before. Thus, all successor states

that incur a cost increase will be only added to the queue if the predecessor is expanded

again. However, if the algorithm achieves a goal state before the second expansion, those

insertions will be saved.

The experiments with this modification show a slight improvement in the total

time for most domains and the coverage stayed unchanged for all of them. Nevertheless,

there was a significant reduction in the time required to solve tasks from Parking and

Scanalyzer domains, with some tasks having up to 50% decrease in the total time.

38

5 FAILED IDEAS

During the development of this work we had several “good” ideas to improve

the heuristic performance. Unfortunately, many of them did not produce the expected

outcomes, and we don’t currently know exactly why. In this Chapter, we present the most

promising of these ideas that we tried to implement.

Even though the approaches discussed here did not lead to significant results, we

still believe they are worth mentioning. Besides documenting what was already tried, they

can be inspirations for related works.

Most of the ideas tested are related to the priority queue in the Dijkstra algorithm.

Our aim was to reduce the number of insertions in the queue, make the search faster and/or

improve the performance of operations made in the data structure. In addition, we also

made experiments transforming the costs of the operators in the tasks.

5.1 Bucket Queue

In the initial version of the heuristic implementation, we use the standard priority

queue from the C++ language (std.priority_queue) in the Dijkstra algorithm computation.

The complexity of inserting an entry in this queue is logarithmic in relation to the number

of elements in it. Therefore, aiming to improve the performance, we tested replacing the

standard queue with a bucket queue: a data structure where the complexity of inserting a

new entry is constant.

Our custom-implemented bucket queue is a dictionary that maps an integer (the

priority) to a deck (entries with the respective priority). To insert a new entry in the

queue, we simply add it to the end of the respective deck, which is retrieved with constant

complexity from the dictionary.

Despite the theoretical advantage of the bucket queue, the results of the experiment

using it did not show improvements in the average computation time. With the bucket

queue, considering all solved tasks, the geometric mean of the total time metric is 11.72

seconds, while with the standard queue, the geometric mean is 10.82 seconds. Only in

one domain the average total time was better using the bucket queue.

39

5.2 Using PDBs

The code we use to create the graphs (abstract transition systems) is from the

Fast Downward package that computes the PDB heuristic. Once the PDB algorithm has

to go through the complete abstract transition system to calculate the heuristic value of

each state, we simply modified the code to also store the graph and make it available

to the hGP computation. Therefore, we can use the PDB heuristic without harming the

execution time. In this section, we present two ideas that incorporate the PDB heuristic in

our algorithm, with the intention of making the search in the abstract transition systems

faster.

5.2.1 Using PDBs to Guide Dijkstra

Once the PDB heuristic is available, we can transform the Dijkstra algorithm into

the A* algorithm (Hart et al., 1968), adding the heuristic value of a state to the cost

required to achieve it when inserting the state into the queue. This aims to make the

search more informed, which (ideally) enables the algorithm to find the abstract plans

expanding fewer abstract states.

However, the PDB estimate does not consider the existence of the credit, which

can reduce the remaining cost until the goal. To include this information, we subtract

the sum of the cost of all operators still in the credit from the PDB estimate. Thus, the

function to calculate the state’s values f(s) is

f(s) = g(s) +max(hP (s)− cost(C), 0)

where g(s) is the path cost and C is the credit.

The results of the experiment with this modification did not show improvements in

most domains. On average, the new approach expanded the same or slightly fewer states

than the original algorithm. However, the total time increased. This probably indicates

that the gain of having the more informed search does not compensate for the extra cost

added to execute this strategy.

40

5.2.2 Using PDBs to Early Stop Dijkstra

We observed that, when the Dijkstra algorithm already used all operators in the

credit to achieve a determined state, we can simply stop the expansion of this state. Since

the PDB heuristic already finds the cheaper paths from every state to a goal, it is possible

to just save these plans and reuse them in hGP computation when the credit is completely

consumed.

Therefore, we extended the code to (a) store the optimal abstract plans identified

by PDB heuristic computation and (b) check the credit before expanding a state s in

the Dijkstra algorithm. If the credit is empty (considering only operators that affect the

abstract transition system), s is reinserted in the priority queue with its value plus hP (s).

In case this entry is removed from the queue again, we recover the optimal plan from s to

the closest goal from the PDB computation and finish the Dijkstra search.

Although promising, the experiments with this modification also did not show

improvements compared to the original algorithm. For almost all tasks, the total time

increased.

41

6 CONCLUSION

This work introduced a new heuristic to satisficing planning that uses a greedy

strategy to combine multiple abstract transition systems. We also presented some varia-

tions and improvement ideas that can be explored to increase the heuristic performance.

The empirical evaluation of the heuristic demonstrated that both versions (hGP
Sys1 and

hGP
Sys2) have the potential to compete with traditional heuristic functions such as hFF .

Our heuristic function synchronizes abstract plans for abstract transition systems

in an ordered list. It starts by finding an optimal abstract plan for the first abstract transi-

tion system. The operators in this plan are now a credit: since they are already used in a

plan, they can be used again for free. Considering this credit, the heuristic function finds

an abstract plan for the next abstract transition system. The operators in this new plan that

incurs a cost to it are also included in the credit list. Following this approach, we find an

abstract plan for every abstract transition system in the list. The heuristic value is the sum

of the costs of each operator in the final credit.

The main advantage of this heuristic is that it expands fewer states when compared

with hFF and hPhOG
C in most domains. hGP

Sys2 is a good alternative when dealing with

difficult tasks that require minutes (or more) to be solved. The Sys2 patterns require

more time to be explored but provide more information, compensating in the long term.

In contrast, hGP
Sys1 is a good alternative especially when the time available is limited since

the heuristic is able to expand more states per second with small patterns.

The high computation time of the heuristic is one of its big disadvantages. Even

using small patterns, the list of abstract transition systems and their size can be consider-

ably large, and finding abstract plans for each of them is costly. Therefore, future works

can investigate strategies to make the heuristic faster. For instance, we could try to use

different (and smaller) pattern collections, possibly obtained with pattern selection ap-

proaches that intend to generate reduced pattern collection without losing information.

Furthermore, the variations presented in Chapter 5 are another possible starting point,

since there is space to continue investigating and experimenting with them. We could try

to understand the reason why they do not work as expected and, possibly, improve the

strategy or even combine the variations with each other looking for better results.

42

REFERENCES

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,

129(1), 5–33.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1, 269–271.

Doran, J. E., & Michie, D. (1966). Experiments with the graph traverser program. Pro-

ceedings of the Royal Society A, 294, 235–259.

Edelkamp, S. (2001). Planning with pattern databases. In Cesta, A., & Borrajo, D. (Eds.),

Proceedings of the Sixth European Conference on Planning (ECP 2001), pp. 84–90.

AAAI Press.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic de-

termination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2), 100–107.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelli-

gence Research, 26, 191–246.

Hoffmann, J. (2011). Everything you always wanted to know about planning (but were

afraid to ask). In Bach, J., & Edelkamp, S. (Eds.), Proceedings of the 34th Annual

German Conference on Artificial Intelligence (KI 2011), Vol. 7006 of Lecture Notes

in Artificial Intelligence, pp. 1–13. Springer-Verlag.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through

heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Pommerening, F., Röger, G., & Helmert, M. (2013). Getting the most out of pattern

databases for classical planning. In Rossi, F. (Ed.), Proceedings of the 23rd Inter-

national Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 2357–2364.

AAAI Press.

Seipp, J., Pommerening, F., Sievers, S., & Helmert, M. (2017). Downward Lab. https:

//doi.org/10.5281/zenodo.790461.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Classical Planning
	2.2 Heuristics
	2.2.1 FF Heuristic
	2.2.2 Abstractions
	2.2.2.1 Systematic Pattern Generation

	2.2.3 Post-Hoc Optimization Heuristic
	2.2.4 Satisficing Post-Hoc Optimization with a Greedy Constructive Algorithm

	3 Satisficing Greedy Constructive Heuristic based on Abstract Transition Systems
	3.1 Satisficing Heuristic Function based on Synchronized Plan Costs on Abstract Transition Systems Is Not Admissible

	4 Experiments
	4.1 Parallel Operators
	4.2 Unit-Cost Operators
	4.3 Partial Expansion

	5 Failed Ideas
	5.1 Bucket Queue
	5.2 Using PDBs
	5.2.1 Using PDBs to Guide Dijkstra
	5.2.2 Using PDBs to Early Stop Dijkstra

	6 Conclusion
	References
	References

