
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA
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ABSTRACT

In the past several years, grid computing has emerged as a way to harness com-
puting resources geographically distributed across multiple organizations. Due to
its inherently largely distributed and heterogeneous nature, grid computing has en-
larged the importance of specific requirements, such as scalability, performance and
the need of an adequate programming model. Several programming models have
been proposed for grid programming. Nonetheless, so far, none of them met all the
requirements. Differently, in the field of high performance cluster computing, the
message passing model became a true standard with a large number of libraries and
legacy applications.

This work proposes a hybrid framework that combines the high performance and
high acceptability of the MPI standard boosted with intuitive extensions to enable
developers to design grid applications or ”gridify” existing ones with the flexibility
of a component-based runtime modeling resources hierarchy and offering support
to inter-cluster communication. The proposed solution relies on the addition of
new MPI communicators and a related API, which may offer a support well-suited
to programmers used to MPI in order to reflect a hierarchical topology within the
deployed application.

The experiments with some applications with different characteristics (Monte-
Carlo Simulation, a Mergesort and a Poissond3D solver) have shown that the ”grid-
ification” of applications improve application performance on grid environments.
Even if the goal is not to compete against existing MPI distributions, the perfor-
mance of the solution is comparable with MPI performance, even better in some
cases. From the results obtained in the evaluation of this prototype, we conclude
that the overhead introduced by the components is not negligible, but inside of the
expected. However, we can expect the benefits to grid applications to bypass the
generated overhead. Besides, the extended interface may offer users the adequate
abstractions to design parallel algorithms in a hierarchical way addressing grid en-
vironments.

Keywords: Parallel programming, component-oriented programming, program-
ming model, grid programming, messsage passing, MPI, parallel programming,
component-oriented programming, programming model, grid programming.





RESUMO

Passagem de Mensagem Hierárquica Através de um Runtime Baseado
em ProActive/GCM

Nos útlimos anos, computação em grade tem emergido como uma forma de uti-
lização de recursos geograficamente distribúıdos em múltiplas organizações. Devido
ao fato de grids serem altamente distribúıdos e compostos por recursos heterogêneos,
a computação em grade tem dado importância à requisitos espećıficos, como esca-
labilidade, desempenho e a necessidade de um modelo de programação adequado.
Vários modelos de programação já foram propostos para a computação em grade.
Entretanto, até agora, nenhum deles supriu todos os requisitos. Diferentemente, na
área de alto desempenho em clusters, o modelo de passagem de mensagens se tornou
um verdadeiro padrão com um grande número de bibliotecas e applicações legadas.

Este trabalho propõe um framework h́ıbrido que combina os altos desempenho
e aceitação do padrão MPI, melhorado com extensões intuitivas para permitir aos
desenvolvedores o projeto e desenvolvimento de aplicações em grade ou a gridi-
ficação de aplicações já existentes, com a flexibilidade de um runtime baseado em
componentes, modelando uma hierarquia de recursos e suportando a comunicação
entre clusters. A solução proposta se baseia na adição de comunicadores MPI e
uma API relacionada, a qual oferece um supporte ao desenvolvimento de aplicações
que levam em conta a topologia hierárquica de grades computacionais, adequado à
desenvolvedores habituados à MPI.

Experimentos realizados com um grupo de applicações com diferentes carac-
teŕısticas (Simulação Baseada no Algoritmo de Monte Carlo, Mergesort e um solver
Poisson3D) mostraram que a gridificação pode melhorar consideravelmente o desem-
penho dessas aplicações em ambientes de grade. Ainda que o objetivo deste trabalho
não seja competir com distribuições MPI existentes, o desempenho da solução pro-
posta é comparável ao desempenho de MPI, sendo melhor em alguns casos. A partir
dos resultados obtidos com o protótipo apresentado, é posśıvel concluir que o custo
adicionado pela utilização de componentes não é despreźıvel, mas dentro do espe-
rado. Entretanto, espera-se que os benef́ıcios para aplicacões de grade devem superar
os custos adicionais. Além disso, as extensões à interface MPI oferecem à usuários
as abstrações necessárias ao projeto de algoŕıtmos paralelos de forma hierárquica,
visando ambientes de grade.

Palavras-chave: parallel programming, component-oriented programming, pro-
gramming model, grid programming, message passing, MPI.
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1 INTRODUCTION

In the past several years, grid computing has emerged as a way to harness com-
puting resources geographically distributed across multiple organizations. Due to
its inherently largely distributed and heterogeneous nature, grid computing has en-
larged the importance of specific requirements (see section 2.1.3), that are subject
of many research projects nowadays.

Initially, research efforts in grid computing focused on providing access to phys-
ical resources, including the development of tools for the construction of virtual
organizations (VOs), access and allocation of resources. The second step is to offer
adequate programming models and execution environments (also referred as frame-
works on this document). A new research area therefore emerged, which focused
on programming models and tools for programming applications which could be ef-
ficiently deployed on grids.

1.1 Problematics

Several programming models have been proposed for Grid programming. Nonethe-
less, so far, none of them met all the requirements, namely dynamicity, scalability
and performance. As already mentioned in (FOSTER; KESSELMAN, 1999),

Grid environments will require a rethinking of existing programming
models and, most likely, new thinking about novel models more suitable
for specific characteristics of Grid applications and environments.

Differently, in the field of high performance cluster computing, the message pass-
ing model became a true standard with a large number of libraries and legacy appli-
cations. For this reason, the usage of the well known and accepted MPI to develop
grid applications have always been investigated in research and industry.

While not a high level programming model by any means, the message passing
model lacks in dynamicity and abstractions to program grid applications. Indeed,
the MPI standard addresses cluster environments, not having primitives adapted
to program multi-site grid environments (PEZZI et al., 2007), that are inherently
hierarchical. Contrary to message-passing, a component-based model encompasses
most of the programming models proposed to grid programming (MOREL, 2006)
(message passing, distributed objects, skeleton-based programming, service-oriented
and workflow models) as it provides most of the features presented by other models
and, in addition, the capability of encapsulating code. Thus, it should be more
adequate to develop grid middlewares.
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1.2 Objectives and Contribution

In order to address the problematic of the lack of mechanisms to develop high-
performance grid-aware applications, this work proposes a hybrid framework that
combines:

• the high performance and high acceptability of the MPI standard boosted
with intuitive extensions to enable developers to design grid applications or
”gridify” existing ones

• with the flexibility of a component-based runtime modeling resources hierarchy
and offering support to inter-cluster communication

This approach meets grid programming requirements, offering MPI programmers
a straightforward way to execute unmodified MPI applications or develop/adapt
their applications/algorithms in a grid-aware hierarchical manner, yet taking profit
of legacy high-performance codes.

In practice, the proposed solution relies on the addition of new MPI commu-
nicators as an abstraction to deal with the hierarchical structure of multi-site grid
environments and a related API, that may offer a support well-suited to program-
mers used to MPI in order to reflect a hierarchical topology within the deployed
application. Moreover, grid related issues are considered in the implementation of
the primitives and runtime, in a transparent way for programmers.

The implementation of the prototype is based on standard MPI and the ProAc-
tive platform, which offers the adequate support to deploy and execute MPI applica-
tions and also offers the reference implementation of the CoreGRID (COREGRID
NETWORK OF EXCELLENCE, 2007) Grid Component Model (GCM) (GRID
COMPONENT MODEL SPECIFICATION, 2007).

The main contributions of this work include:

1. the definition of intuitive extensions to the MPI standard, addressing hierar-
chical communication;

2. a support to easily deploy and control the execution of MPI applications in
multi-cluster grids;

3. a component-based message passing framework that expresses an overlay struc-
ture to support inter-cluster communication;

4. some test applications gridified by the used of the proposed extension

The goal of the work is neither compete against existing MPI distributions nor
replace the MPI standard, but rather offer an alternative more adapted to the devel-
opment of grid-aware applications and a runtime supporting the introduced features.

1.3 Document Organization

The reminder of this document is organized as follows:

• Chapter 2 presents some important concepts and important considerations
regarding the usage of the MPI standard in grid computing;
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• the chapter 3 analyzes some related research projects and tools that are com-
pared later, in the chapter 7, to the work developed;

• the chapter 4 presents the theoretical foundations, principle and specification
of this work;

• the chapter 5 shows the main development resources that were used in the
development of the prototype;

• the chapter 6 describes the development of the prototype that implements
the specification provided in the section 4, taking into account the principles
defined on this same chapter.

• the chapter 7 presents the evaluation of this work, which consists in bench-
marks, three applications and a qualitative analysis in comparison to related
tools

• the chapter 8 presents the conclusion of the work along with some research
perspectives created by this work.
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2 IMPORTANT CONCEPTS AND POSITIONING

This chapter presents some important concepts related to grid computing and
the positioning of this work in relation to the grid definition, characteristics and
issues. In order to understand the approach of using message passing in grid en-
vironments, we also analyze the main programming models for the development of
grid middlewares and applications. After, the MPI standard and its applicability to
grid computing is discussed.

2.1 Grid Computing

2.1.1 Definition

Having a complete grid definition is considered important to determine exactly
whether a given technology can be considered to be a grid or not (FOSTER, 2002).
Since the term grid was created, a great number of definitions has been proposed,
even by the same authors. One of the widely adopted, proposed by Foster defines a
computational grids as a system that coordinated distributed resources using stan-
dard, open, general purpose protocols and interfaces to deliver nontrivial qualities
of service (FOSTER; KESSELMAN, 2003).

The key elements of this definition are the following:

• Coordinated distributed resources. A grid integrates and coordinates resources
and users that live within different domains, each one regulated by their own
usage policies.

• Using standard, open, general purpose protocols and interfaces that address
fundamental issues as authentication, resource discovery and access. Other-
wise, it is an application-specific system.

• For deliver non-trivial qualities of service, related for example to response
times, throughput, availability and security, and/or co-allocation of multiple
types of resources in order to meet complex user demands, so that the utility
of the combined system is significantly greater than the sums of its parts.

Some authors consider this definition slightly abstract and use a more specific
definition (BAKER; BUYYA; LAFORENZA, 2002). According to this definition, a
grid is also defined by the points listed before; however, instead of considering any
kind of resource, just clusters are focused. This kind of infrastructure is also called
by some authors multi-cluster or cluster-of-clusters. On this work, we refer to grid
as a multi-cluster infrastructure geographically distributed in multiple sites.
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2.1.2 Characteristics

Although there exists several different definitions, a set of characteristics are
common (BOTE-LORENZO; DIMITRIADIS; GOMEZ-SANCHEZ, 2004) and im-
portant in the context of this work:

• Large scale: a grid middleware must be able to deal with a number of resources
ranging from just a few to thousands. This raises the need of scalable solutions
to avoid potential performance degradation as the grid size increases;

• Geographical distribution: grid resources may be located at distant places.
This characteristic raises the problem of dealing with different network char-
acteristics (latency, bandwidth) and the resultant impact in performance;

• Heterogeneity: a grid hosts both software and hardware resources that can be
heterogeneous: data, files, software, hardware configuration and networks;

• Resource sharing: grid resources usually belong to many different organiza-
tions that allow users to access them. For that reason, the collection of
resources can be seen as a great shared resource. This assumption lead to
necessity of applications to adapt to available resources;

• Multiple administrative domains: each organization may establish different
security and administrative policies under which their owned resources can
be accessed and used. As a result, the already challenging network security
problem is complicated even more with the need to cope with different policies.

2.1.3 Grid Programming Issues

Due to the inherent characteristics discussed in the previous section, grid envi-
ronments increases greatly the emphasis on some issues (BERMAN; FOX; HEY,
2003), namely: portability, interoperability, security, fault tolerance, the need of an
adequate programming model and performance.

2.1.3.1 Portability, Interoperability and Adaptivity

Current high-level languages allow code to be processor-independent. Consid-
ering that grids are potentially heterogeneous, grid programming tools should also
enable the applications to have the same portability (BERMAN; FOX; HEY, 2003).
This can means architecture independence in the sense of languages interpreted by
virtual machines (e.g. Java), but it also can mean the ability to use different services
at different locations with equivalent functionality. Such portability is necessary to
cope with heterogeneous resource configurations.

Another important point is the idea of interoperability, that stands in the notion
of the capability of two or more components or implementations to interact. In
grid environments, interoperability have a close relation with the notion of an open
and extensible grid architecture implies a distributed environment that may sup-
port protocols, services and application programming interfaces (APIs) (FOSTER;
KESSELMAN, 2003).

Related to portability and interoperability, another important issue is adaptivity,
as the capability of a grid application to adapt itself to different configurations,
depending on the resources. This could occur at start time or at run time due to
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changes on the application requirements, resources availability or fault recovery, for
example.

2.1.3.2 Security

Grid applications usually run across multiple administrative domains. When
resources are shared across organization boundaries, security is an important issue
because it permits a domain to be accessed by other domains, and this may be ex-
ploited by malicious users. Also, the security in application level plays an important
role.

Security requirements within grid environments are driven by the need to support
scalable, dynamic, distributed virtual organizations (VOs) (FOSTER; KESSEL-
MAN, 2003), that potentially can be composed by several domains. The VO works
as a policy overlay which coordinates the outsourced policy in a consistent manner
to allow the resource sharing and use.

2.1.3.3 Fault Tolerance

Naturally, as the numbers of resources involved increases, so does the probability
that some host or link will fail during the computation. For that reason, grid
applications may have the possibility to check run-time faults in communication
and/or computing resources and provide actions to recover or react to these fails.

At the same time, some grid environments are composed by shared resources,
that may arrive and leave at any instant. For this reason, fault tolerance should be
an integral part of grid programming.

2.1.3.4 Performance

One of the the many usages for grid environments has been high performance
computing (e.g. scientific applications and simulations) and data storage. In these
applications, performance is usually one of the strongest needs.

A second issue related to performance is scalability, as the degree to which a sys-
tem or application can handle increasing or decreasing amount of resources, without
significant performance degradation. To keep scalability in heterogeneous and dy-
namic environments is a real challenge. Indeed, the need of a reliable performance
for some application may prevent the use of grid environments for depending on the
purpose.

2.1.3.5 Programming Models

Besides of an infrastructure that provides access to resources, authentication
and security, grid programming tools also must support programming models and
abstractions to simplify the production of applications.

An adequate programming model must be flexible, so that the programmers
could easily express their algorithms, easy to use and understand and also cope
with the grid characteristic. If possible, this model must also be compliant with
existing technologies, in a sense that legacy software could be useful to develop grid
applications.

To find a program model that fits in all these requirements has been proved to
be another great challenge (FOSTER; KESSELMAN, 2003) and, for this reason,
many programming models have been proposed and adapted last years. The follow-



24

ing section presents some of the programming models that have been proposed by
research and industry.

2.1.4 Candidates Programming Models for Grid Computing

As previously referred, the large number of requirements and characteristics,
makes the development of grid applications a difficult task. So, many programming
models have been proposed to ease this process. The following subsections present
an overview of the main programming models that are being used to develop to grid
solutions and applications. Some of the concepts presents on these subsections are
important on the definition of the approach to develop the proposed work.

2.1.4.1 Message Passing

The message-passing paradigm is one of the most popular programming models,
especially in high-performance computing and for scientific applications. The main
goal is provide user with low-level primitives and abstractions for point-to-point,
collectives communication and synchronization.

This paradigm is very close to operating system mechanisms. So, it does not
provide the high-level abstractions of the other models presented on the next sec-
tions. For this reason, it is said that it has a more complex usage (FOX, 2002).
However, the model offers a more accurate control of the communication process,
that is considered one of the main critical performance issues.

On the other side, the lack of high-level abstractions to address issues like hier-
archical topology, dynamicity and heterogeneity inhibits the direct usage of message
passing in grid environments. However, the high acceptance of this model by the
developer communities and the large amount of legacy applications have created a
great interest on the application of this model to grid computing. Some research
efforts (PEZZI et al., 2007; CERA et al., 2007) have indeed tackled issues like hier-
archy and dynamicity.

Most of projects that aims at the usage of explicit message-passing in grids
adopted the MPI as the programming interface. This choice relies in the spread
usage of this standard, clear interface and high performance of its implementations.
The section 2.2.2 and 2.2.3 present, respectively, the main benefits and drawbacks
of the usage of message passing in grids.

Some projects that take this approach are PACX-MPI (GABRIEL et al., 1998),
MPICH-Madeleine (AUMAGE; MERCIER; NAMYST, 2001; AUMAGE; MERCIER,
2003), MPICH-G2 (KARONIS; TOONEN; FOSTER, 2003) and H2O MPI. More
details about these projects can be found in the section 3.

2.1.4.2 Remote Procedure Call (RPC)

The concept of Remote Procedure Call (RPC) has been widely used in dis-
tributed computing for many years. It also support process interaction in a dis-
tributed environment by extending the notion of a procedure call to operate across
the network. Also called one-sided message-passing, the RPC model offers a higher
abstraction level that not requires an explicit receive operations.

In addition to distribution, RPC implementations also address heterogeneity
by using neutral interface description languages. However, these models assume
the knowledge about the name/identifier, address, and the existence of the end-
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points. Also, the syntax and semantics of the interface are known at compile-time.
Considering the dynamic nature of grid environments, the assumption of a complete
previous knowledge of address may not be present as well as the existence of end-
points. For that reason, the need of extra mechanisms to address such issues arises.

Some examples of RPC middlewares for grid computing are GridRPC and Om-
niRPC. GridRPC is an RPC model and API for grids that uses Globus Toolkit to
offer dynamic resource discovery and scheduling, security and fault tolerance. Om-
niRPC is a thread-safe RPC facility on top of Ninf to broke remote procedures,
associating them with remote stub interface information at run-time.

Worthy to notice that the related tools do not use exclusively a RPC approach
to address grid programming requirements, being necessary the usage of others tools
(Globus, Ninf) to deal with such issues. Besides, RPC is more adapted to client-
server interactions, while more complex interactions are usually required to develop
tightly coupled applications.

2.1.4.3 Distributed Object Model

Thanks to its high-level and programming concepts, the object-oriented paradigm
is currently a widely used programming approach. Distributed communications be-
tween objects are easily done through remote method invocations, either through a
standardized extension of the language (such as Java RMI) or through a tier mid-
dleware layer (CORBA). Also, the portability of some object-oriented languages ,
such as Java, ease the development of distributed objects middlewares

Some examples of middlewares that adopt distributed objects as the model to
develop grid applications are GridGain, Satin and ProActive. Satin extends the Java
language for providing parallel execution of method invocations, it targets divide-
and-conquer programs by offering dedicated constructs (spawn and sync) and au-
tomatically load-balances the invocations. Satin uses an optimized communication
layer called Ibis. ProActive (BADUEL et al., 2006), is a grid middleware for par-
allel, distributed, and concurrent computing based in the idea of active objects ,
that also features mobility and security in a uniform framework. More about the
ProActive middleware is presented in the section 5.1.

2.1.4.4 Skeleton Model

Skeletons are high-level and parametrized algorithmic patterns, introduced by
Cole et. al (COLE, 1989). Complex applications can be designed with highly struc-
tured interactions due to the composition of basic skeletons such as farm, pipe, map,
etc. Skeleton facilitates a top-down design approach, where a partially-functional
system with complete high-level structures is designed and coded.

Several frameworks offer skeleton programming facilities for grid computing. AS-
SIST (acronym for Software development System based upon Integrated Skeleton
Technology) (ALDINUCCI et al., 2004) provides a high-level language with a com-
piler, as well as a runtime support. ASSIST also provides interoperability with
CORBA and plans interoperability with Globus for accessing grid services. HOC-
SA (DUNNWEBER; GORLATCH, 2004) is another skeleton framework that offers
interoperability with grid services through Globus by using higher-order components
(HOC) to emphasize the possibility of composing skeletons.

Current work around skeletons for Grid computing focus on structured and op-
timized distributed and parallel programming in order to achieve high performance.
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Grid computing offers a wider diversity of programming challenges and the latest
developments in grid skeletons programming seem to converge with another pro-
gramming model: component-based programming (section 2.1.4.6) (MOREL, 2006).

2.1.4.5 Service-Oriented and Workflow Models

Service based frameworks intend to provide interoperability, on-demand access
and loose-coupling, as a way to achieve scalability. Also, services are seen as a way
to simplify design, enable code reuse, and facilitate integration of tier products and
collaboration among companies.

Services, by themselves can be defined as means to access the grid infrastruc-
ture (FOSTER; KESSELMAN, 1999). Nonetheless, the orchestration of services
into workflows requires the usage of an adequate workflow language, and a workflow
engine to coordinate the participating entities at runtime.

Many workflow languages are available for grid computing (YU; BUYYA, 2005),
but a de facto standard does not exist yet. However, some industrially established
workflow standards such as BPEL are extensible enough to suit the needs of grid
computing.

Workflow composing (either automatically from a program or by graphical com-
position) is said to be simpler and better suited than lower-level coding and assembly
for scientists or other grid applications designers who are not expert programmers.
However, grid services are not suitable for tightly synchronized applications, because
of the communication overhead of XML/SOAP mechanisms.

In the last few years, a big effort has been out on the standardization of services
for grids, mainly in the context of the Open Grid Services Architecture (OGSA).

2.1.4.6 Component-Based Models

Component-based programming is another programming model used for grid
computing. One of the most accepted definitions describes a software component as
an unit of composition with contractually specified interfaces and explicit context
dependencies only. Besides, a software component can be deployed independently
and be subject to composition by third parties (SZYPERSKI; PFIZER, 1996).

The idea behind using a component-based approach is that this model addresses
increasing software complexity and changing requirements by enabling the construc-
tion of systems as an assembly of reusable components. Because of the modularity
and extensibility, the usage of such approach may fit well actual grid systems and
their many issues (2.1.3). Current component models for grid Computing include
the Corba Components Model (CCM), Common Component Architecture (CCA)
and Grid Component Model (GCM) .

CCM is defined by the Object Management Group and extends the CORBA
distributed object model, providing a similar support to distribution, heterogeneity
and security. It also supports dynamic instantiation and runtime customization of
components. However, CCM inherits some of the limitations of CORBA, like the
requirement of a previous knowledge about interfaces and interactions. CCA, that
is currently coordinated by the CCA Forum defines a component model especially
for scientific applications. The model primarily addresses the heterogeneity and the
separation of concerns. The CCA component model does not address failure or
security and assumes all components are trusted. GCM, defined by the CoreGrid
project defines a lightweight component model for the design, implementation and
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execution of grid applications. The reference implementation of the model is named
ProActive/GCM and addresses programmability, interoperability, code reuse and
efficiency by means of a component framework. More information about ProAc-
tive/GCM is presented in section 5.4.

2.2 MPI and Grid Computing

The relation between the MPI standard and grids as an infrastructure to execute
high performance applications has never been straightforward. Created to ease the
development of applications to parallel machines (such as MPPs and clusters), the
MPI standard has always focused in performance and not so much in characteristics
like portability, fault tolerance, etc. However, at some extent, MPI includes some
characteristics and primitives that might fit some of the requirements of grid appli-
cations, but not all. This section presents the two versions of the MPI standard (1.2
and 2.0) and a discussion about the main benefits of using the MPI standard in grid
environments in contrast with the main constraints that prevent an unrestricted
usage of MPI in actual grid infrastructures.

2.2.1 The MPI Standardization

The MPI standardization effort (MPI Forum, 1994), initiated in 1992, involved
about 60 people from 40 organizations, mainly from the United States and Europe.
Most of the major vendors of concurrent computers were involved in MPI, along
with researchers from universities, government laboratories, and industry.

Before MPI, PVM (SUNDERAM, 1990) was the reference on message passing
environment, but with a stronger focus on resources/process management, dynam-
icity, the idea of a virtual parallel machine and transparency. On the other side,
MPI focus in performance, a clear interface featuring a more powerful support to
collective communication and different parallel machine architectures, from shared-
memory multiprocessor machines to clusters. Also, the support to fast interconnec-
tion networks has being one of the main keystones.

2.2.1.1 MPI 1.0 and 1.2

The version 1.2 of the MPI standard, launched in 1997 present just some small
modifications to the 1.0 and 1.1 version of the standard. In fact, just the errata of the
previous version and some clarifications about intercommunicators were included.

The main features of the MPI standard includes (MPI Forum, 1994):

• Point-to-point communication: are the base of the communication processes,
having different modes (synchronous/blocking, buffered/unbuffered) so that
the user could explicitly specify the communication process in order to obtain
a better performance on the communication process;

• Collective operations: the strong support to collective communication is in the
core of the MPI functionalities. Many modes of collective communication and
barriers are supported;

• Process groups: the MPI processes are grouped through the communicator
abstraction. Besides of pre-defined communicators, the user has the possibility
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of creating new communicators and perform operations (merge, split, ...) on
them;

• Communication contexts: besides of groups of process, the standard defines
communication contexts, that are an abstraction associated with communica-
tors, where optimizations like support to high performance networks can be
useful;

• Process topologies: the standard defines a set of primitives that enable the cre-
ation of communicators and assignment of process ranks according to specific
topologies. Some of these topologies are pre-defined like cartesian, torus, etc.
But it is also possible to define new topologies by means of processes graph;

In order to limit the scope of the standard, there is a explicit mention that the
standard does not include:

• shared-memory operations;

• operating-system related functionalities, for example, interrupt-driven receives,
remote execution, or active messages;

• debugging facilities;

• explicit support to threads;

• support for task management

• I/O functions.

2.2.1.2 MPI 2.0

Since the creation of the MPI standard, some important features are known to be
missing: use of dynamic resources, co-existence with thread programming (thread-
safety) and memory management (MPI Forum, 1997). Besides, the evolution of
parallel systems from static and homogeneous systems (i.e. clusters) to dynamic,
heterogeneous and multi-domain systems (i.e. grids and it many definitions) have
shifted the need on some of these functionalities.

For this reason, together with the creation of the version 1.2 of the standard
(1997), the version 2 was proposed. The main advances included by the version 2.0
to the MPI interface includes:

• one-sided communication: the new version of the standard includes support to
Remote Memory Access (RMA) via one-sided communications (put and get
operations), somehow relaxing the idea of need of a matching receive to a send
operation;

• dynamic process creation and management: MPI applications are now ca-
pable of creating and managing new MPI processes, but the abstraction of
static communicators is still valid and once a communicator is built it be-
haves as specified in MPI-1. Indeed, the new standard creates the possibility
of creating new bindings between processes other than those created at the
beginning of the application or creation of new process. This is done through
publish/connect primitives;
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• parallel I/O: useful functionalities were included offering primitives to deal
with transparent parallel access to data and files, leveraging the issues related
to file sharing;

• thread support: the standard now defines some minimal requirements for
thread-compliance so that MPI process could interoperate more easily with
thread libraries in a safe and controlled way;

• extended collective communication operations: besides of the existing oper-
ations, the MPI-2 includes new operations over communicators like cloning
and linking communicators. Besides, the idea of intercommunicators became
useful to support the communication with process created dynamically.

Even if ten years have passed, just a few stable MPI distributions include a
complete support to this version, such as LAM-MPI, NEC, MPICH2 and OpenMPI.
Some others, like FT-MPI and SGI implements just some parts of the specification.

The following sections discusses in more details some of these features and their
applicability on grid environments.

2.2.2 Benefits of the MPI Standard for Grid Computing

Many aspects have motivated the usage of the MPI standard to develop grid
applications. The idea is that the concepts and characteristics that made MPI a
standard for cluster computing might be used or adapted to grid computing. Some
of these aspects are presented in the next subsections.

2.2.2.1 MPI is a de-facto standard

Since MPI was launched, it superseded the current standards on high perfor-
mance computing (notably PVM), becoming one of the strongest standards to de-
velop parallel applications. At a moment of software crisis in parallel computing,
with many interfaces being offered by different vendors, its clear yet powerful in-
terface have motivated many academic projects (like the MPICH, LAM, etc.) and
the industry (Intel, SCI, Cisco, etc) to develop and maintain implementations of the
standard as well as numerical libraries and tools (WILKINSON; ALLEN, 1999).

For this reason, a large number of legacy MPI applications exist nowadays, an
many of them consumed years of work to be done. Indeed, the community of users is
very large and stills growing up. Thus, the idea of taking profit of all the knowledge
and work done encouraged the usage of the standard in grid computing.

2.2.2.2 Support to heterogeneous environments

As previously referred in the section 2.1.2, one of the main characteristics of grid
environments is the heterogeneity of resources (computers architecture, network,
softwares, etc.). In this sense, portable solutions are highly desirable for the use of
a grid as an unified resource.

The MPI standard defines minimal portability requirements. However, in native
implementations of the interface (in opposition of Java implementations, such as
MPIJava, JMPI, etc.), such property is not acquired automatically, and depends, at
least, on the compilation of specific versions for each of architectures involved. By
doing so, MPI processes running on heterogeneous resources should be capable of
interoperate as they were in an homogeneous system.
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At the core of the MPI implementation, some abstractions like the MPI datatypes
and packaging primitives are offered to ensure portability. Besides, MPI stands on
the top of a library that implements this interface accordingly to the specification.
However, the interoperability between different vendor implementations of the stan-
dard is not the rule.

2.2.2.3 Dynamic process creation and management features

The MPI-2 standard (MPI Forum, 1997) brought many new features to reduce
the gap between the MPI standard and dynamic, heterogeneous environments such
as grids. However, there is not an clearly intention to support grid programming in
the standard.

One of the main improvements introduced in the version 2.0 of the interface is
the support to dynamic process management. Due to this newly introduced feature,
it became possible to include dynamically resources and manage (create, change)
bindings between MPI processes.

Despite of the usefulness of these features, this solution in not enough do deal
with dynamic environments. We discuss better this point in the section 2.2.3.

2.2.2.4 High performance and stable implementations

Many stable implementations of the MPI standard exist today. While some of
them offer a complete implementation of the standard (version 1.2 or 2.0), others
focus on specific features. Some known examples are the FT-MPI that focus on
fault-tolerance and ROMIO, that focus on I/O performance. Some other are vendor
specific and intend to exploit hardware capabilities at most.

In this sense, an important remark is that multi-site grid infrastructures are
a coupling of a few (or many) clusters geographically distributed and that, usu-
ally, such resources are internally connected with special network connections (e.g.
Myrinet, SCI, FiberChannel, etc.) for the sake of better performance. Many MPI
implementations offer support to these networks, so we can expect an improvement
of the performance of the communication process.

2.2.3 Limitations of the MPI Standard for Grid Programming

If on one side many characteristics and features of MPI make message passing
an interesting programming model to develop grid applications, on the other side,
there are a number of other characteristics and limitations that prevent the direct
usage of MPI over computational grids. These limitations are addressed by some
projects (Chapter 3) and analyzed in more details in the following subsections.

2.2.3.1 MPI is too static in design

One of the main characteristic of grid environments is the dynamic offer of re-
sources. In order to cope with this characteristic, applications must adapt themselves
to changes in the environment, even if changes might be defined in reservation time.
Thus, the tools used to develop and execute grid applications should be capable of
expressing this dynamic behavior.

This is not the case of the MPI standard. First, because the entire commu-
nication process is based on the idea of communicators that are static structures
which cannot be changed after they were created. Actually, MPI includes just a few
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primitives to create, merge and split existing communicators, but it does not offer
an adequate support to support changes in the environment.

Another strong aspect that shows the static design of MPI is the semantic of
the message passing, where both sides of the communication process must explicitly
call primitives for sending and receiving messages. Indeed, these primitives must,
in general, identify the source and destination through identifiers.

The version 2.0 of the standard includes primitives to perform dynamic cre-
ation (MPI Comm Spawn) and control of processes and one-sided communication
(MPI Put and MPI Get, etc.). However, the usage of resources included on-the-fly
depend on the creation of a communicator, that is itself a static entity.

2.2.3.2 MPI is a low-level interface

Different from most of the tools created recently for distributed computing, MPI
provides a low level interface. This means that users must take care of many issues
others than the application itself: memory management, buffers, communication
modes, management of communicators, etc.

If, on one side, a low-level interface may improve performance and expressiveness,
on the other side, it is more error prone and usually difficult to debug. When running
on a real grid infrastructure, composed by a large number of heterogeneous and
dynamic resources these problems tend to increase.

Also, modularity, encapsulation and code reuse are not emphasized, as SPMD is
the main approach to build MPI applications

2.2.3.3 MPI does not cope with some grid issues

Because of the geographical distribution and differences on the network charac-
teristics (latency/bandwidth), from LANs to WANs, a straightforward way to model
a multi-site grid is through a hierarchical composition. MPI, on the other way, sup-
pose flat environments. Besides, MPI presupposes direct all-to-all node access, while
grid infrastructures with limited connectivity are commonplace.

Grid environments have a lot of other specific needs, like resources access/allocation
and fault tolerance. As the standard does not have anything related to these aspects,
they must be addressed by third parties tools.

In fact, there is no complete solution to develop MPI grid-aware applications, and
solution to many of these requirements already exists in grid middlewares. However,
an additional integration is needed to make MPI run according to those mechanisms:
deploy MPI processes in multiple domains, support failure in nodes and communi-
cation between nodes that don’t have access to each-other.

2.3 Chapter Conclusion

This chapter presented some important concepts related to grid computing and
different programming models. Due to the many existing grid definitions, the con-
cept that describes grids as geographically distributed clusters is considered in the
remainder of this document. On this context, the characteristics of being a large
scale environment, geographically distributed, inherently heterogeneous and com-
posed by shared resources are focused on this work.

The main grid programming requirements presented on the section 2.1.3, ad-
dresses by this work are:
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• Portability, Interoperability and Adaptability: in general, it is difficult to know
in advance the resources available for the execution of a given application.
Besides, it is important to an application to be able to run efficiently on
a different set of resources, scaling as much as possible. By providing an
specific API, we expect to make programmers capable to take into account
available resources on the deployed applications. On this work, portability is
not considered a constraint because we suppose resources are homogeneous
in software. However, the solution provides interoperability among multiple
MPI distributions as a manner to take profit of different hardware and network
profiles.

• Performance: performance is always a constraint in distributed systems and
this problem is tackled from different perspectives:

– offer an API adapted to the development of grid-aware applications;

– usage of native MPI on inner-cluster communication, to avoid crosscut-
ting software layers and take profit of MPI optimizations;

– optimizations on the inter-cluster communication process.

• Programming Model: In the development of this work we consider different
programming models for the application level and framework. For the inter-
face with the environment (API) we decided to follow the MPI approach for all
the reasons explained in the section 2.2.2, but an advanced support to hierar-
chical communication tend to solve some of the current limitations of MPI for
grid computing. Differently, for the runtime, we opted by a component-based
infrastructure, for the following reasons:

– components offer a clear separation of concerns, which makes easier to
experiment different solutions and optimizations

– components can provide an easy encapsulation of MPI codes

– the ProActive/GCM implementation has a reasonable performance and
may come up with some important features, such as interoperability with
grid tools, deployment, file transfer, tunneling of messages through ssh
and built-in collective interfaces.

A deeper explanation of these principles and choices will be presented in the
chapters 4 and 6.
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3 RELATED RESEARCH PROJECTS AND TOOLS

Many of the reasons that motivate this work, also motivated several research
projects: the spread usage of the MPI standard, clear interface and high performance
of its implementations. Even with completely different approaches, the related works
intend to address grid issues in order to make MPI an interface to develop grid
applications.

The following sections present some of these projects and their approach to
enable MPI over computational grids.

3.1 PACX-MPI

The PACX-MPI (KELLER et al., 2003), developed in the High Performance
Computing Center of Stuttgart (HLRS), is an implementation of the MPI standard,
based in MPICH, which aims at supporting the coupling of high performance systems
(clusters) distributed in a grid environment.

The PACX-MPI project defines three major design goals (BEISEL; GABRIEL;
RESCH, 1997):

• Provide the user with a single virtual machine. No changes to the code are
necessary at all;

• Use highly tuned MPI for internal communication on each MPP;

• If possible, to use fast communication for external communication.

The main idea behind these goals stands in the fact that vendor MPI imple-
mentations should provides optimal performance and, for that reason, they must be
used as much as possible. Just in the case of impossibility of using it or for handling
external communication (e.g. between MPPs), the PACX-MPI communication layer
is used.

So far, MPI-1.2 standard is fully supported as well as some parts of the MPI-2.
However, useful features of the MPI-2 standard, like dynamic creation and man-
agement of process, parallel I/O and the extensions to the group communication
(intercommunicators, management of groups) still missing.

The project does not define any extensions to the MPI standard. Thus, legacy
applications can be executed in a grid as an unified computational resource. On the
other side, one can expect a decrease in the communication performance, as there
is no way of defining beforehand the physical location of the process. The access to
resources, its allocation and management are also not on the scope of the project.
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The following subsections will present more information about the PACX-MPI
architecture as well as its main features.

3.1.1 Architecture

PACX-MPI is implemented as a library that stands between the application and
a local MPI implementation. When the application call MPI functions, they are
intercepted into PACX-MPI, that verifies the need for contacting the outside world.
If yes, the communication is made through TCP sockets. On the other side, the
library passes the calls unchanged to the local system.

For doing so, the PACX-MPI includes daemons on each MPP. These daemons
are responsible for forwarding messages from inside to outside of MPPs and vice-
versa. The nodes responsible for receiving the daemons are previously defined and
must be configured in order to meet cross-firewall configurations. The PACX-MPI
infrastructure is organized as presented in fig. 3.1. We can see one daemon by
MPP and the PACX-MPI library in each of the process so that messages could be
forwarded to PACX-MPI daemons.

Figure 3.1: PACX-MPI Architecture

3.1.2 The Main Features

3.1.2.0.1 Private Network and Tunneling Support

By using daemons, PACX-MPI offers the possibility of coupling resources en-
closed on private networks or behind firewalls.

Through the communication forwarded by the daemons, PACX provides to the
users the idea of a global MPI communicator composed by all process. As a conse-
quence, these process have, at the same time, a local rank and a global one.

The PACX library decides automatically when to use the local ranks or global
ranks depending on the topology and resources used on the application. The figure
A.1 shows how the global and local ranks are organized.

As previously referred, this feature depends on the user configuration of tunnels
between gateway hosts.

3.1.2.0.2 Optimization of Global Communication

For the obtention of a better performance on collective operations, two algo-
rithms are used within PACX-MPI (KELLER et al., 2003):

• Linear algorithm: In this algorithm, the root receives from each node its parts
of the message in a linear order.
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Figure 3.2: PACX-MPI Rank Scheme

• Host-based algorithm: This algorithm is split into two parts: a local part
where the root node collects data from all other nodes on its machine and a
global part where the global root node collects data from local root nodes.

For short messages, the host-based algorithm is faster than the linear one, since
it minimizes the number of messages over the slower link between the machines.
On the other side, with the increasing of the message size, the linear algorithm
will be faster than the host-based algorithm, since it avoids the additional internal
communication steps (which are not negligible)

3.2 MPICH-G2

The MPICH-G2 (KARONIS; TOONEN; FOSTER, 2003), developed in the
Computer Science Department of the Northern Illinois University, together with the
Argonne National Laboratory, is a complete grid-enabled version of MPICH that
uses services provided by the Globus Toolkit to enable MPI for grid environments.

The idea behind the MPICH-G2 is to hide heterogeneity using Globus services
for purposes like authentication, authorization, process creation, process monitoring
and control, communication, redirection of IO and remote file access. As a result of
this integration, users can run MPI programs across multiple sites, using the same
primitives and even the same commands that could be used on a parallel computer,
like a cluster.

The following subsections present the MPICH-G2 building blocks, its architec-
ture and also the main features offered by this tool.

3.2.1 Building Blocks

The MPICH-G2 implementation has two main building blocks: the MPICH
implementation of the MPI-1.2 standard and the Globus Toolkit for grid computing.

3.2.1.0.3 MPICH

MPICH (GROPP et al., 1996) is one of the most popular implementation of
the MPI standard, developed as a collaborative effort between Argonne National
Laboratory and Mississippi State University. It implements the MPI-1.2 standard
and parallel I/O functionality defined in the MPI-2 standard having a special focus
on a high performance and portability. Since the version 2, the MPI-2.0 standard is
supported. Nonetheless, the MPICH-G2 is based in an older version.
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MPICH derives its portability from its interfaces and layered architecture. The
top layer consists of the standard MPI interface. Beneath this interface, there is the
MPICH layer that implements the MPI interface independent of the network devices
or process management system. The lower layer, that treats the network communi-
cation and process control, is defined through an Abstract Device Interface (ADI).
Actually, an implementation for a particular platform is, in fact, an implementation
of the ADI, that is much simpler than MPI.

3.2.1.0.4 Globus

The Globus Toolkit is a collection of software components designed to support
the development of applications for high-performance distributed environments, or
grids (FOSTER; KESSELMAN, 2003). The toolkit comprises a set of protocols
for interacting with remote resources, APIs to invoke these protocols, higher level
libraries, services and tools for management of the grid environment.

The toolkit addresses issues of security, information discovery, resource and data
management, communication, fault detection, and portability. Through the use of
such features, MPICH-G2 enables the transparent execution of MPI application in
grid environments.

The current Globus version (GT4) is mostly based in web services for the sake of
having a better interoperability. Differently, MPICH-G2 is based in the GT2 that
is mainly composed by native modules and have a better performance.

For the MPICH-G2 implementation, the following components of the Globus
Toolkit have major importance:

• Resources Specification Language (RSL): Specification language for describing
resources and specifying requirements of applications.

• Grid Security Interface (GSI): Interface that is responsible for the management
of credentials that are used to authenticate the user on each site.

• Dynamically-Updated Request Online Coalocator (DUROC): responsible for
scheduling processes across specified computers. This service interacts with
several job schedulers (PBS, OAR, LSF, etc.)

• Grid Resource Allocation Management (GRAM): a set of APIs and proto-
cols that makes possible to start and subsequently manage a set of sub-
computations, one for each computer, previously allocated by the DUROC
service.

• GlobusIO: a set of APIs for tunneling communication with mechanisms of
tunneling and data conversion (Globus DC), useful in firewalled and hetero-
geneous grid environments.

3.2.2 Architecture

MPICH-G2 has a layered architecture composed by Globus services, MPICH and
a implementation of a virtual device called globus2, as shown in fig. A.2.

The lower layer is composed by Globus services that are responsible for resource
allocation (GRAM), authentication (GSI) and communication when native commu-
nication is not possible (GlobusIO). On the top of this service, there is the MPICH
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implementation and its Abstract Device Interface (ADI) that is implemented using
of various Globus APIs. As explained above, on the top of the MPICH layer there
is the MPI standard and also extensions included by the MPICH-G2.

MPICH-G2, in fact, consists of an implementation of the ADI by means of a
virtual device known as globus2 and also some MPI attributes that are used for
acquiring topology information.

The architecture is shown in fig. A.2.

Figure 3.3: MPICH-G2 Architecture

3.2.3 The Main Features

3.2.3.0.5 Startup and Management of Heterogeneous Environments

MPICH-G2 uses a range of Globus Toolkit services to address various issues
that arise in heterogeneous, multi-site grid environments, such as cross-site authen-
tication, the need to deal with multiple schedulers with different characteristics,
coordinated process creation, heterogeneous communication structures and I/O.

Prior to startup, it is necessary to create a RSL script that defines the resources
to be used and the GSI interface is responsible for the authentication through the
credentials previously issued by grid authorities. Once authenticated, the user can
use an mpirun command to request the creation of the MPI processes.

From the side of MPICH-G2, the DUROC library is used to contact the GRAM
server that initiate MPI processes on the assigned hosts. If necessary, GRAM also
uses GASS services to stage execution and redirect I/O, in order to hide aspects
related to location.

Once the application has started, MPICH-G2 also selects the most efficient com-
munication method available, using either native MPI communication or globus
communication (GlobusIO), that includes mechanisms for data conversion (Globus
DC).

The figure 3.4 shows a scheme of this mechanism.

3.2.4 High Performance Heterogeneous Communication

Different from its previous implementation (MPICH-G (FOSTER; KARONIS,
1998)), that have all the communication made by the nexus library (FOSTER;
KESSELMAN; TUECKE, 1996), the MPICH-G2 handles itself all the communi-
cation directly. According to (KARONIS; TOONEN; FOSTER, 2003), this has
increased greatly the bandwidth usage because of the reduction of intermediary
copies. Also, a reduction on the latency became possible due to an adaptive pooling



38

Figure 3.4: Startup of MPICH-G2 showing the various Globus components involved
to hide and manage heterogeneity, ”OAR” and ”PBS” are different local schedulers
that may be involved

protocol, i.e. instead of trying to use different protocols (TCP, vendor MPI, ...),
the new implementation uses information provided by the source/destination of the
messages in order to know which means of communication to use.

Besides of the point-to-point heterogeneous communication, MPICH-G2 offers
topology aware collective operations through the use of topology discovery mecha-
nism, that will be explained better in the next subsection.

3.2.4.0.6 Application-level Management of Heterogeneity

Although the heterogeneity aspects are hidden to the programmer, it is important
to know about it in order to get a better performance. Once the MPI application has
started, the process are just distinguished by their ranks. Although it is desirable
from a programming viewpoint, this makes difficult to write programs that exploit
aspects of the underlying physical topology, like avoiding expensive inter-cluster
communications. For that reason MPICH-G2 associates to the attributes of the
MPI communicators information about topology.

These attributes can be used to adapt the application to the underlying topology
at execution time. However this is not a trivial work.

3.3 MPICH/Madeleine

MPICH/Madelaine (AUMAGE; MERCIER, 2003), developed in the Bordeaux
unity of the Institut National de Recherche en Informatique et en Automatique
(INRIA) have the same approach adopted by MPICH-G2 (section 3.2), developing
a device called ch mad that implements the MPICH Abstract Device Interface (ADI).

Instead of using a grid middleware for leveraging grid issues, MPICH/Madeleine
intends to provide an implementation that supports high performance communica-
tion protocols (Myrinet, Giganet, SCI, etc.) by the use of a library called Madeleine.

Actually, just the MPI-1.2 standard is supported. Support to the MPI-2 standard
depends on newer MPICH version that provide such features.

Access and allocation of resources, creation and management of process are put
aside and must be treated by other tools. Some scripts might ease this process, but
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just for specific cases.
The following subsections present the main MPICH/Madeleine building blocks,

its architecture and also the main features included in this tool.

3.3.1 Building Blocks

Two main building blocks compose MPICH/Madelaine: the MPICH implemen-
tation of the MPI-1.2 standard and the Madeleine communication library.

3.3.1.0.7 MPICH

As presented in the section 3.2.1.0.3, a grid-aware implementation of the ADI
is capable of enabling unmodified MPI application to run on top of grids.

MPICH/Madeleine approach intends not only to allow to run applications on top
of heterogeneous architectures (such as clusters of clusters) but also allow application
to access all the communication facilities available between each pair of hosts. For
that reason, when the ADI is requested to send a message, the appropriate device
is selected and after that, the most suited exchange protocol is chosen.

Different from current ADI implementations that are not capable of using two
different networks (e.g. Myrinet and SCI) together, the MPICH/Madeleine project
did not subscribe to the MPICH philosophy of building a multi-device implemen-
tation. Instead, what is provided is a single-device implementation of MPICH on
top of a multi-protocol interface called Madeleine, that is presented in the next
subsection.

More information about the MPICH structure and implementation can be seen
in the section 3.2.1.0.3.

3.3.1.0.8 Madeleine

The Madeleine programming interface (AUMAGE; MERCIER; NAMYST, 2001)
provides a small set of primitives to build RPC-like communication schemes. Ba-
sically, this interface provides primitives to send and receive messages, and several
packing/unpacking primitives that allow the user specify how data should be inserted
and extracted from messages. These primitives intend to provide communication,
within heterogeneous environments, in a transparent way.

Madeleine also aims at enabling an efficient and exhaustive use of underlying
communication software and hardware functionalities. It is able to deal with several
network protocols within the same session and to manage multiple network adapters
for each of these protocols. The library can dynamically switch from one protocol
to another, according to its communication needs in order to meet the network high
performance capabilities.

3.3.2 Architecture

The MPICH/Madeleine architecture is mainly based on the MPICH layered im-
plementation, as described in the section 3.3.1.0.7. In the MPICH structure, just
the lower communication layer (ADI) is re-implemented by MPICH/Madelaine.

Three different MPICH devices are concurrently used to handle communication,
each one dedicated to a different type of communication that takes place within a
cluster of cluster (grid) composition:

• ch self device: responsible for handling intra-process communication
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• smp plug device: responsible for handling intra-node communication (for SMP
nodes)

• ch mad device: responsible for handling any inter-node communication

The Madeleine library is capable of choosing the best device to use and exchange
as needed.

The ch self and smp plug devices are parts of the SMP implementation of MPI-
BIP (GEOFFRAY; PRYLLI; TOURANCHEAU, 1999) and are used to provide a
better performance when compared to the original operating system inter-process
communication mechanism.

All the issues related to network heterogeneity are hidden by the Madeleine
software layer as shown in the architecture presented in the figure 3.5.

Figure 3.5: MPICH/Madeleine Architecture

3.3.3 Main Features

3.3.3.0.9 Multi-protocol Communication

The multi-protocol communication features included by the MPICH/Madeleine
enables the communication involving two different protocols, for instance when com-
municating two processes in different cluster. A set of high performance networks
interconnection like Myrinet, Giganet, SCI, Fibre Channel and others are available.

One of the main benefits of the multi-protocol capabilities is the possibility of
using high performance networks on collective operations, even when all the process
are not capable of using the same protocol.

3.3.3.0.10 Automatic Forwarding Mechanism

In order to enable communication between nodes that do not have a direct
connection, an automatic forwarding mechanism is offered in the version 3 of the
MPICH/Madeleine tool (AUMAGE; MERCIER, 2003). This mechanism creates
the possibility of communication between nodes that does not have a direct physical
link.

This mechanism depends on a manual configuration file defining the topology, the
available protocols and forwarding nodes. Also the advantages of the multi-protocol
communication may be present, depending on the availability and configuration.
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The forwarders are special nodes located in gateways, that don’t have an acces-
sible rank and just serve the purpose of forwarding messages.

3.4 H2O MPI

The H2O MPI (KURZYNIEC; HWANG; SUNDERAM, 2005), developed in
the Distributed Computer Lab of the Emory University intends to facilitate and
simplify the execution of MPI programs across multidomain clusters. It leverages the
H2O distributed computing framework to route MPI messages across heterogeneous
clusters located in different administrative or network domains.

Its approach involves the instantiation of customizable agents (pluglets in the
H2O taxonomy) at selected locations. These pluglets serve as proxies that relay
messages between individual domains as appropriate, transparently performing ad-
dress and other translations that may be necessary.

This project follows two main guidelines:

• develop a comprehensive support to heterogeneous machines (hardware and
operating system) and interconnection network, offering operation across fire-
walls and failure resilience;

• leverage the component architecture of H2O to provide value added features
like dynamic staging, updating of proxy modules and selective, streamlined
functionality as appropriate to the given situation.

H2O MPI intends to provide a smooth transition for cluster applications to be
executed in grid environments. For this reason no significant modifications to al-
ready existing MPI codes are necessary. Resources allocation and management,
deployment and security are out of the scope of the project and must me treated
apart.

The following subsections present the main H2O MPI building blocks, its archi-
tecture and also the main features included on this tool.

3.4.1 Building Blocks

The H2O MPI is built on the top of the FT-MPI (FAGG; BUKOVSKY; DON-
GARRA, 2001) and with the support of the H2O framework on crossing-firewall
configurations.

3.4.1.0.11 The FT-MPI

The H2O MPI (KURZYNIEC; HWANG; SUNDERAM, 2005) is originally im-
plemented on top of MPICH, because it is one of the most widespread machine-
independent implementation. But the support to the FT-MPI (also based in the
MPICH implementation) is considered of importance to deal with resources failures
and dynamic offer of resources.

Different of the MPICH/Madeleine and the MPICH-G2, the H2O is also not
an implementation of the ADI, but an infrastructure that stands on top of MPI.
According to the user needs, the fault tolerance mechanisms can be enabled, so
offering a more reliable environment; obviously, at the cost of a degradation on the
performance that according to the authors is really small.
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3.4.1.0.12 The H2O framework

Also developed in the Emory University, H2O is a middleware platform for build-
ing and deploying distributed applications. Conceptually, H2O is a distributed com-
ponent Java-based framework, developed according to the CCA (Commom Compo-
nent Architecture).

The main difference between H2O and other component frameworks, such as
J2EE or Globus GTK, is that it removes the static binding between service deployer
and resource provider. That is, H2O allows not just container owners but any
authorized third parties or clients themselves to deploy services into the container.An
usage scenario to this concept are MPI applications that can take profit of it to
deploy forwarders in specific points of a grid infrastructure. Hence, resource sharing
can be automatically achieved.

H2O also features a simple APIs for remote component deployment and man-
agement, and inter-component communication. H2O components can communicate
via remote method invocations (both synchronous and asynchronous), and through
a publisher-subscriber distributed event model. The communication layer offers a
selection of messaging protocols (including JRMP, SOAP, RPC) and customizable
transport stacks (SSL, compressed sockets, JXTA sockets, single-port tunneling, in-
process sockets, all of which can be mixed in many combinations). These protocols
can be configured so that multi domain firewalled environments could be used to
execute large MPI applications.

3.4.2 Architecture

The architecture presented by the H2O MPI is made of pluglets within specific
H2O kernels, located in strategic points of the infrastructure (e.g. frontends) and
H2O proxy pluglets in each of the resources involved in the computation. The
figure 3.6 depicts these two main elements and their connection in a point-to-point
communication between two resources with a firewall between them.

Figure 3.6: H2O MPI Architecture: simple example

According to (KURZYNIEC; HWANG; SUNDERAM, 2005), some optimiza-
tions related to the communication between pluglets were in progress. These en-
hancements would guarantee a better performance not just in point-to-point com-
munication but also in collective communication. However, more information about
these enhancements were not provided yet.
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3.4.3 Main Features

3.4.3.0.13 Message Tunneling

Due to the fact that H2O uses well-known port numbers and that is capable of
tunneling communication via HTTP, it is possible to configure firewalls appropri-
ately to allow forwarding.

Tunnels are dynamically created and used as needed, being completely trans-
parent to MPI applications. The cross-firewall communication is accomplished by
means of some modifications introduced in the MPICH2 library. Because of these
modifications, all messages are re-routed through an H2O pluglet rather than directly
to the remote MPI process. By doing so, the pluglet takes control of the commu-
nication and creates properly the best channel to connect two ranks (eventually a
direct connection between MPI deamons).

3.4.3.0.14 Asynchrony on communication process

As performance is of crucial importance in most MPI applications, any proxy-
based solution must incur as little overhead as possible. Some degradation of per-
formance is inevitable because communication must be forwarded by the pluglets.

Some mechanisms are included in order to reduce the impact of this indirec-
tion: the existence of additional threads responsible for message transition and
pre-configuration of channels and tunnels are some of them. As a result, according
to (KURZYNIEC; HWANG; SUNDERAM, 2005) , the overhead can be greatly
reduced.

3.5 Chapter Conclusion

This chapter presented some of the main tools which aim at enabling the usage
of MPI in computational grids. As discussed in this chapter, these tools are based
on a variety of approaches, from solutions that implement a multi-protocol com-
munication layer (PACX-MPI and MPICH-Madeleine) to solutions entirely based
on grid middlewares such as Globus (MPICH-G2) and message forwarding mech-
anisms (H2O). However, they share a common goal: to support unmodified MPI
applications.

In general, this approach can be considered appropriate to cope with legacy ap-
plications. However, it lacks of mechanisms to adapt existing applications, usually
conceived to clusters, to a different environments. The result of experiments (present
in the section 7.3.2) as well as previous works (KELLER et al., 2003) have proved
that this is an step indispensable to maintain application performance and scala-
bility. Besides, in general, traditional MPI applications are quite static in design
and this issue must be treated either on application level or through a middleware
capable of taking changes on the environment into account.

In next section, we present our approach that intends not just to offer support
to unmodified applications but also a specific API to adapt existing applications to
a hierarchical environment. The evaluation also shows the clear advantage that a
hierarchical implementation can offer in relation to flat algorithms. A more direct
comparison among these tools and the presented work is presented in the section 7.4.
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4 PROPOSAL FOR GRID-AWARE HIERARCHICAL
PROGRAMMING

This chapter presents one of the main contribution of this work: a proposal for
grid-aware hierarchical programming. The goal of this chapter is to present the
specification of the work, completely independent of the underlying support and im-
plementation details. Even if some of the decisions are motivated by the availability
of some tools, this proposal intends to present the user interface exempted from the
underlying support, so that these mechanisms could be implemented differently or
extended on different contexts.

To begin, we expose the main reasons that lead us to take this approach. After,
we present a simplified API specification as well as some pertaining implementation
issues and details. This Chapter also discusses a practical way to design hierarchical
applications or adapt existing ones by using the proposed API to take into account
available resources.

4.1 Rationale

When talking about high performance computing, communication has ever been
the most expensive (in terms of time-consumption) part of applications, followed by
memory access. With the constant improvement of processors performance (Moore’s
law), the gap between processor and network speeds is increasing even more.

We consider in this work that grids are hierarchical by nature: i.e. a grid can
be considered as a set of multi-core nodes regrouped on multi-processors PCs, orga-
nized within clusters, then interconnected through wide-area networks. Considering
that this hierarchical network organization also leads to different network perfor-
mances (latency/bandwidth), programmers must be encouraged to give preference
to communications between MPI processes that are neighbors in the cluster instead
of communications between MPI processes lying onto different clusters of the grid.
Worthy of notice that this has been proved to be a good approach to improve ap-
plications performance (DONG; KARONIS; KARNIADAKIS, 2006).

As seen in the section 2.2, MPI became a standard in high performance com-
puting, and for this reason, the usage of this interface to grid programming is an
interesting research nowadays. Even if cluster-based grids have a hierarchical organi-
zation, the idea of hierarchical communication does not exists at all in the standard.
For this reason, we believe that an extension to the standard would enable it to grid
computing and, at same time, facilitate grid platforms to be used for the execution
of high performance applications.
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More precisely, achieving our objective requires: an intuitive abstraction to deal
with a hierarchical infrastructure, a framework capable of deploying the application
on a grid infrastructure, an API to access such features and provide programmers
with topology information and, obviously, a support for inter-cluster communica-
tion and process management. Next sections present in more details each of these
requirements.

4.2 Specification

As previously presented, we intend to keep as much, as possible, the MPI pro-
gramming style. In order to do so, we propose some extensions to already existing
MPI abstractions, such as communicators and process rankings, to include support
for hierarchical communication and topology discovery, having the grid complexities
hidden by the framework.

4.2.1 New MPI communicators

Ideally, we consider a grid as a layered architecture:

• the first and lowest level (L1, for simplicity) is characterized by each processing
unity of architecture of a node: single versus multiple-processor systems, single
versus multiple-core systems and memory structure (SMP, NUMA, etc.).

• the second level (L2) is the representation of a computing node which poten-
tially include multiple L1 entities;

• the third level (L3) consists of the set of processing nodes defining a cluster.
Each grid node aggregated a number of processing nodes between a few dozens
to a thousand nodes, usually interconnected with a fast network;

• the fourth level (L4) consists of the set of clusters defining a grid node. These
clusters are typically interconnected by fast links. The main characteristic
here is that resources are geographically close to each other (in relation to
other resources on the grid);

• the fifth level (L5) represents the grid, which consists of a small number (<
10) of geographical sites (grid nodes). These grid nodes are interconnected by
a wide area network (WAN), and so, we can expect majors delays and limited
bandwidth on the interconnection;

As the operating system already addresses the first level and the standard MPI
the second level, we introduce two new communicators to deal with the fourth and
fifth levels:

• MPI COMM SITE communicator: contains references to all the allocated nodes
within a given site of the grid;

• MPI COMM GRID communicator: contains references to all the nodes in the whole
grid.

From now on, we refer to these two communicators as synthetic communica-
tors in comparison to natural communicators. In the first prototype, the high-level
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communicators are static structures offered as an runtime abstraction. For this
reason, there is no support to operations over communicators like MPI Comm Split,
MPI Comm Merge and MPI Comm Dup. For now, MPI topologies are also not supported
at site and grid levels.

L4: Grid-Level Ranking (Global Ranking)

L2: Cluster-Level Ranking (Standard MPI)
L3: Site-Level Ranking (Site Ranking)
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Figure 4.1: Hierarchical Communicators and Ranks

The figure A.3 shows how the ranks are organized in each of the communicators.
This is a pretty simple and adequate way of giving ranks to MPI processes in a
hierarchical environment. Simple because it can be easily done during the startup of
the environment, so having an unified global view. Adequate as it enables an easy
and non-error prone way to identify processes, indeed keeping the communicator
abstraction.

4.2.2 New primitives

In addition to the abstraction of hierarchical communicators, we include a set of
primitives, mainly addressing topology discovery. Just to cite some examples:

• the MPI ClusterInfo and MPI SiteInfo data structures contain information
pertaining to a given cluster or site respectively, the primitives
MPI Comm getMyClusterInfo (MPI Comm comm, MPI ClusterInfo *) and
MPI Comm getMySiteInfo (MPI Comm comm, MPI SiteInfo *) are used to get
the information of the cluster and site of the process that calls these primitives,
and MPI Comm getAllClusterInfo(...) and MPI Comm getAllSiteInfo(...),
that returns information about the entire topology;

• MPI COMM SITE GATEWAYS and MPI COMM GRID GATEWAYS are special communi-
cator that aggregates one node (usually the rank 0) of each cluster and site
within a site. The intention of this communicator is to offer an abstraction
to induce an explicit hierarchical programming, and can be used in order to
reduce the many indirections (and performance degradation) of global com-
munications.

• MPI Comm getNeighborhood (int rank1, int rank2, MPI Comm) that can
be used to retrieve the neighborhood relationship between two processes of a
given communicator, i.e. how many hops we can expect for a message from
the rank1 process to reach the rank2 process of a given communicator, given
the current resources organization;
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• MPI Comm translate(int in rank, MPI Comm comm in, int* out rank,

MPI Comm comm out): as we introduced new communicators, it may happen
that a given process has different ranks depending on the communicator con-
text considered (see an example on the table 6.1). So, this primitives enable
users to translate ranks between communicators.

Some other standard MPI primitives still functional with the new communica-
tors, such as MPI Comm rank and MPI Comm size . However, at least in the first
specification, the intention is not provide full support to all the already existing
primitives, when used with the new communicators. In fact, just a minimum set
of the most used original primitives must be initially supported. For the commu-
nication process, the supported primitives are: MPI Send, MPI ISend, MPI Recv,
MPI IRecv, MPI Bcast, MPI Barrier MPI Scatter, MPI Scatterv, MPI Gather and
MPI Gatherv.

4.2.3 Communication Semantics

A valid MPI implementation guarantees certain general properties:

• Order of point-to-point messages are non-overtaking: If a sender sends two
messages in succession to the same destination, and both match the same
receive, then this operation cannot receive the second message if the first one
is still pending. If a receiver posts two receives in succession, and both match
the same message, then the second receive operation cannot be satisfied by
this message, if the first one is still pending. This requirement facilitates
matching of sends to receives at the application level. It guarantees that
message-passing code is deterministic, if processes are single-threaded and the
wildcard MPI ANY SOURCE is not used in receives.

• Collective operations always happen on a communicator context: All the MPI
collective operations happen in the context of a communicator and all the
process of the given communicator must participate, independing on the the
nature of the communication. Obviously, depending on the collective commu-
nication either all the process perform the same operation (e.g MPI Barrier)
or the primitive implies on a different behavior of a coordinator (e.g the root
of an MPI Bcast operation).

• Collective operations on a given context are FIFO ordered and isolated from
each-other (no interleaving): the implementation must also take care to avoid
a false match between similar operations on different contexts, for instance
if a set of process perform an MPI Gather on MPI COMM SITE, followed by an
MPI Gather on MPI COMM GRID. Even if this property is not defined on the MPI
standard, it is a necessary condition to avoid deadlocks.

These properties must be taken into account on the implementation of the com-
munication operations, and this may imply on the creation of message queues ded-
icated for each new synthetic communicator context.

4.3 Support to unmodified applications

In previous sections, we have discussed the need of hierarchical structuring of
parallel applications to keep scalability by taking into account grid resources topol-
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ogy. This need is specially important for highly communicating application as per-
formance degradation is closely related to differences in performance from local to
distant networks.

Differently, some applications, such as embarrassingly parallel ones, do not re-
quire a big amount of communications among process. In general, these application
scale well and take profit of grid resources, even with a flat organization. Consider-
ing that a hierarchical solution implies in a more complex development, sometimes
it makes perfect sense to run unmodified applications on grid resources. Besides,
some users might be interested on running their applications without the pain of
adapting the data distribution and communication process.

For such cases, a C macro (#UNMODIFIED) is defined. This macro can be
added to any MPI source codes and when it is present, the natural communicator
MPI COMM WORLD will have the same behavior than the synthetic MPI COMM GRID.

4.4 Chapter Conclusion

This chapter presented a proposal for hierarchical grid-aware communications
along with an API that extends the MPI standard to offer programmers a way
to express grid-aware algorithms from scratch or through modifications in existing
applications. These definitions were made to be general, so that they could be
implemented through different technologies. In the section 6, we present an im-
plementation based on components, but a pure MPI implementation could be also
easily conceived.

These extensions follow the MPI standard so that developers used to the MPI
standard could easily use them. Besides, some new primitives intend to offer infor-
mation about the executing environment, which is an important feature to develop
applications adaptable to different environments. As we will see later, in the sec-
tion 7, this might not an easy task. Nonetheless, applications can really benefit of
grid resources and scale more if they follow a hierarchical approach.

The idea of extending the MPI standard is neither compete with the standard or
replace it, but rather offer an alternative approach that completes the MPI standard
offering some simple abstractions to fulfill grid requirements, addressing the main
issues. This is an ambitious goal that depends not just of the extensions, but also
of their implementation and runtime. The section 6 presents a first prototype that
implements this interface. Some code examples and a qualitative evaluation of this
proposal can be seen in the chapter 7.
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5 DEVELOPMENT RESOURCES

This chapter presents the software resources that were used on the development
of the proposal described in the previous chapter. We also present, in this chap-
ter, some important concepts that may help to understand the development of the
runtime (Chapter 6), namely the deployment and component model.

Initially, we present the ProActive grid middleware (BADUEL et al., 2006). So,
we present the ProActive deployment framework, the already existing integration
between Java and native code (MPI). The last section brings the Grid Component
Model (GCM) and the main concepts and features that were used to develop this
work.

5.1 The ProActive Grid Middleware

The ProActive middleware (BADUEL et al., 2006) is a 100% Java middleware,
which aims to achieve seamless programming for concurrent, parallel, distributed
and mobile computing. The base model is a uniform active object programming
model. Each active object has its own thread of control and is granted the ability
to decide in which order to serve the incoming method calls. Active objects are
remotely accessible via asynchronous method invocation. This is provided by au-
tomatic future objects as a result of remote methods calls, and synchronization is
handled by a mechanism known as wait-by-necessity.

Besides of its own programming model, ProActive features: group communica-
tion with dynamic group management, an object oriented SPMD model (OOSPMD),
fault tolerance with checkpointing, a powerful deployment model based on XML
descriptors that offer support to numerous network protocols, cluster resource man-
agers and grid tools as well as a grid component programming model (GCM) based
on the Fractal specification (BRUNETON; COUPAYE; STEFANI, 2004).

Specially relevant to this work are: the deployment framework, the reference
implementation of the ProActive/GCM and the MPI Code Wrapping Mechanism.
The next subsections present these features in more details.

5.2 ProActive Deployment Framework

The ProActive middleware includes a powerful deployment model and framework
(BADUEL et al., 2006). A first principle is to fully eliminate from the source
code the following elements: machine names, creation protocols and registry/lookup
protocols. The goal is providing users with the capability to deploy any application
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anywhere, without changing the source code. For instance, one must be able to
deploy grid MPI applications using various protocols, rsh, ssh, Globus, LSF, etc., for
the creation of the JVMs needed by the runtime or the MPI applications themselves.
In the same manner, the discovery of existing resources can be done with various
protocols such as RMIRegistry, Jini, Globus, LDAP, UDDI, etc. Therefore, the
creation, registration and discovery of resources is done externally to the application.

A second key principle is the capability to abstractly describe an application, or
part of it, in terms of its conceptual activities. The description should indicate the
various parallel or distributed entities in the program or in the component.

These two main principles rely on the notion of Processes and Virtual Nodes
(VNs). Processes are defined by the protocol or set of protocols necessary to allocate
resources and launch an application as well as all the configuration needed on this
process (logins, passwords, keys, resources requirements, entry points, etc.). After
using the right protocols, the resources can be acquired through the abstraction of
Virtual Nodes, which are potentially composed by many Nodes.

The VNs are described in XML descriptors and defined by three different aspects:
the mapping of VNs to Nodes and to JVMs, and the process to launch these VNs, i.e.
the way to create or to acquire JVMs and how to register or to lookup VNs. After
the activation of a VN, the underlying infrastructure is launched and the application
can use the resources through references, called Nodes.

Some other aspects can be defined in the deployment, such as security, tunneling
of communications and fault tolerance. Also, the support to file transfer mechanism
plays an important role as it is responsible for transferring binaries and input data
to the resources that will run the MPI application.

The usage of the ProActive deployment, as well as the transfer of files (binaries
and input/output data) is explained in details on the section 6.3.

5.3 ProActive MPI Code Wrapping

The Code Wrapping Mechanism, recently introduced in the ProActive middle-
ware proposes a simple wrapping method designed to easily launch MPI applications
on clusters or desktop grids. Besides, an API enables the coupling of several codes,
MPI and/or Java.

Two kinds of applications may be interested by the code wrapping mechanism:
first, unmodified legacy MPI applications that intends to run onto a single cluster
and second, the development of conventional stand-alone Java applications using
pieces of MPI legacy codes.

The main features of the wrapping mechanism include:

• Transparent wrapping and deployment of MPI applications: consists in wrap-
ping MPI processes within ProActive active objects, adding capabilities for
deployment, control and communication. Due to the use of the ProActive de-
ployment descriptors, a MPI application can be deployed using a large number
of protocols and schedulers. In addition, the ProActive file transfer mechanism
enables the transfer of application binaries and input data;

• Support for ”MPI to/from Java” point-to-point communication: a set of MPI-
like C functions and Java classes permit the point-to-point exchange of mes-
sages between the two worlds. Furthermore, this feature can be useful to
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enable the communicating between two MPI processes potentially located at
different domains under firewalls or even private IPs, through a ProActive
layer;

• Control of MPI processes: through the use of the code wrapping, it is possible
trigger job execution, to kill MPI processes and retrieve execution status and
results from the native MPI processes;

5.4 The Grid Component Model (GCM) and the ProAc-
tive/GCM Reference Implementation

The Grid Component Model (GCM) (GRID COMPONENT MODEL SPECIFI-
CATION, 2007), defined by the Institute on programming models of the EU Core-
GRID project, defines a lightweight component model (the GCM) for the design,
implementation and execution of grid applications. The key problematic addressed
by the GCM are programmability, interoperability, code reuse and efficiency.

This model relies on the Fractal component model as a basis for its specification.
In fact, GCM can be considered an extension to the Fractal specification, addressing
grid requirements like deployment and collective communication. In this sense,
the ProActive/GCM (MOREL, 2006) is a reference implementation of the GCM
which provides a component framework that aims at fulfilling the needs of grid
programming.

Our research investigates how to use a component model (in this case the GCM),
to support MPI over a grid. This choice is motivated by some of the characteris-
tics of the GCM and extensions that are available thanks to its implementation in
ProActive. Some of them are:

• Hierarchical structure and adaptable composition: grids are inherently hier-
archical and, in general, composed by a large set of heterogeneous resources.
As the GCM enables the composition of components in a hierarchical way
through the encapsulation of primitive components within composites, it of-
fers a straightforward way to model a grid infrastructure into a component
framework. Besides, the capability of creating and re-arranging bindings on-
the-fly can be very useful to express in the component level the interactions
of distributed environments, such as MPI.

• Separation of concerns: the concept of separation of functional aspects and
non-functional ones is very interesting for any distributed systems, as it helps
to separate the control of resources and binding from the communication that
happens in the application level. so, from a developer point-of-view, the intrin-
sic characteristics of the environment and topology, that reflect into component
bindings, can be completely hidden.

• Encapsulation of code: components provide built-in capability of encapsulat-
ing both, native and Java code. So, we can provide a common component
interface to MPI processes running in heterogeneous resources, possibly in dif-
ferent domains. By wrapping code, we can aim at obtaining a performance as
good as native MPI implementations in intra-cluster communication.
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• The collective interfaces: GCM collective interfaces are of different natures.
These collective compositions of interfaces enable the externalization, at the
component level, of the parallel nature of the component code, which is the case
if it uses MPI. More precisely, collective interfaces feature built-in possibility
for collective synchronization and more complex communication operation:
multicast, gathercast and an optimized way to combine a gathercast plus a
multicast interfaces for binding two hierarchical components composed of a
different number of similar components, yielding to a MxN collective interface.

These concepts are important at different moments of the conception of the
runtime. Initially, a hierarchical structure permits to create a component model
similar to the topology of available resources. The encapsulation of codes permits
an easy integration of MPI codes and collective interfaces ease the development of a
high-level inter-cluster collective communication process. The idea of separation of
concerns is also very useful, as it permits to handle grid aspects at the non-functional
level.

5.5 Chapter Conclusion

In this chapter, we have presented the tools that were used to develop the pro-
totype that supports the work proposed on this document. In practice, this imple-
mentation can be separated on different functionalities:

• deployment of the component-based runtime and MPI applications, that was
implemented due to some small extensions to the ProActive deployment frame-
work;

• external control of MPI applications and native to/from Java communication
that takes profit of the features presented by the MPI code wrapping mecha-
nism;

• a hierarchical component-based framework implemented thanks to the GCM
components and

• support to inter-cluster and collective communication, offered by the core li-
brary of the ProActive middleware.

The next Chapter explain in details the definition and implementation of each
of these mechanisms.
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6 DESIGN AND IMPLEMENTATION OF THE
COMPONENT-BASED RUNTIME

In the Chapter 4, we have presented some extensions to the MPI standard that
were conceived to ease the development of grid-aware algorithms. The support to
these primitives requires a set of functionalities on the middleware side:

• deployment of applications on a grid infrastructure;

• distribution of input data and binaries on the grid infrastructure;

• support to primitives that offer resources and environment information;

• handling of inter-cluster communications.

Initially, this chapter presents some principles taken into account to the design
and development of the component-based runtime. Then, we present the component-
based infrastructure, how the deployment happens, the mapping of this infrastruc-
ture to grid resources and how inter-cluster communication takes place within this
infrastructure as well as some important optimizations on the communication pro-
cess. The last subsection presents some conclusions around the development of the
prototype.

6.1 Principles

A set of principles have guided the design and implementation of the component-
based runtime. These principles may help understanding some of the choices done
on the design and implementation of the prototype. The next paragraphs depict
each of the general principles.

1. Use native MPI communication whenever possible. Despite of the in-
cluded optimizations, communication between components is slower than the com-
munication between MPI processes. This comes from the fact that component com-
munication relies on asynchronous Java remote method invocations that depend on
the serialization/deserialization of objects and queuing of messages on the JVM.
Besides, the main MPI implementations present support to high performance com-
munication protocols (e.g. InfiniBand, Myrinet, Quadrics, etc.), while Java com-
munication depends on expensive plain TCP/IP messages. For this reason, the
runtime must be able to perform communication through MPI whenever a direct
communication between processes is available.
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2. Use direct communication whenever possible. Due to the usage of com-
ponents to model a hierarchical grid infrastructure, the communication between two
end-points sometimes imply on many indirections, even if a direct physical link be-
tween processes is available. In order to soften the impact of these indirections,
the runtime must be capable of identifying the shortest path between two processes
(and wrapping components) to perform the communication.

3. Hierarchical treatment of collective communications. In general, point-
to-point communication is negatively affected by the hierarchical approach as it
depends on indirections and intermediary copies. Differently, collective communi-
cations may take profit of the hierarchy to improve performance. As this kind of
communication depends on the participation of many entities, when it takes place
on a multi-cluster context, it can be decoupled according to the operation and made
in parallel on each cluster before the communication with other clusters, so reducing
the amount of expensive inter-cluster communication and sequential data treatment.

4. Essential grid issues as hidden from users. As a matter of fact, the main
idea behind grid middlewares is to hide grid complexity from the users, so that
users could concentrate on the development of applications rather than solving grid
issues. The design of this prototype may not be different and all the issues related to
heterogeneity, distribution, communication and execution are handled transparently.
In addition to ease the usage of the framework, the environment must give a better
control of the environment and help improving performance. The separation of
concerns inherent to component oriented programming may help addressing this
principle.

6.2 Software Architecture

The support to the primitives presented in the chapter 4 is based on a layered
architecture organized according to the figure A.4. This stack is a representation of
the software layers present on each computing node.

In the top, we have a grid-aware application, that is interfaced with the en-
tire framework through the MPI standard and the extensions presented in the sec-
tion 4.2. At the interface level happens the control whether the communication will
go through the native MPI implementation (in general, intra-cluster communica-
tion) or through the components and the underlying JVM (in general, inter-cluster
communication). And, at the bottom, there is the operating system (OS) that takes
care of process management and network.

 Grid-Aware Application

MPI Extensions

ProActive/GCM Components

JVM

OS

               

MPI Interface

MPI Runtime

Figure 6.1: Architecture of the Framework
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The gray box delimits what is actually proposed and develop in the context of
this work.

6.3 Runtime Deployment and Data Distributions

The deployment of a gridified MPI application is mainly based in the ProActive
deployment (section 5.2). It encompasses allocation and access to resources, deploy-
ment of the MPI application and component framework. The idea is to hide from
users all the issues related to resources management (principle 4).

As already discussed in the section 5.2, the ProActive deployment mechanism is
based on the concept of processes that are mapped into the virtual nodes abstraction.
However, an extension of this mechanism was necessary to support the deployment
of multiple MPI applications and simultaneously the deployment of the component
infrastructure.

This extension introduces on the ProActive deployment the concept of depen-
dency between processes. The idea behind the deployment dependencies is to enforce
an order of the deployment of applications. In the case of this work, the components
will wrap running MPI processes once they are deployed and, for this reason, they
depend on the successful deployment of MPI applications.

The following XML snippet shows, in practice how a simple dependency looks
like on a deployment descriptor:

<!-- dependent process -->

<processDefinition id="dpsCPI">

<dependentProcessSequence

class=

"org.objectweb.proactive.core.process.DependentListProcess">

<processReference refid="mpiCPI" />

<processReference refid="sshProcessList" />

</dependentProcessSequence>

</processDefinition>

After defining the dependency, it is just a matter of specifying the required
process (an MPI process on this example) and the dependent one (SSH on this
example).

Here, the required process is an MPI process, which launches the binary ”proac-
tive poisson3D cubic”, with the mpi command defined by the variable ${MPIRUN PATH}
on 4 machines, passing a set of parameters ${P3D PARAM} to the application:

<!-- mpi Process -->

<processDefinition id="mpiCPI">

<mpiProcess

class=

"org.objectweb.proactive.core.process.mpi.MPIDependentProcess"

mpiFileName="proactive_poisson3D_cubic"

mpiCommandOptions="\${P3D_PARAM}">

<commandPath value="\${MPIRUN_PATH}" />

<mpiOptions>
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<processNumber>4</processNumber>

<localRelativePath>

<absolutePath value="\${POISSON_3D_FOLDER}"/>

</localRelativePath>

</mpiOptions>

</mpiProcess>

</processDefinition>

And the dependent process defining the deployment of a Virtual Node composed
by 4 nodes, deployed using the SSH protocol.

<!-- ssh process -->

<processDefinition id="sshProcessList">

<processListbyHost

class="org.objectweb.proactive.core.process.ssh.SSHProcessList"

hostlist="node1 node2 node3 node4">

<processReference refid="localjvm" />

</processListbyHost>

</processDefinition>

The appendix B shows XML Schema Definition (XSD) that defines a dependent
process.

In practice, the deployment of a gridified application happens according to the
following steps:

1. Allocation of resources (if needed);

2. Automatic generation of deployment descriptors;

3. Deployment of pure MPI applications, one instance by cluster;

4. Deployment of the component architecture, on the same set of nodes;

5. Begin of handshake between MPI processes and wrapping component with
loading of native libraries and exchange of identifiers;

6. Definition of bindings among the components, accordingly to underlying MPI
infrastructure;

7. End of handshake and start of the application execution.

The handshake phase works as a barrier that synchronizes all the native MPI
processes and components. An important optimization on the component happens
in this phase and is explained in the section 6.6.1. Once the application finishes, a
new handshake takes place to finalize the runtime execution.

Besides of the deployment of the runtime, gridified applications usually have
need of input data, application binaries and libraries. Together with the definition
of the different processes schemes, the ProActive deployment also includes support
to a file-transfer mechanism. For now, the file-transfer must be configured by hand
and includes the transfer of binaries if they are not available on computing nodes.
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(possibly multiple compilations for the different architectures). The file-transfer
mechanism is specially useful when resources does not share a filesystem through
NFS, for instance. Even if most clusters present NFS nowadays, this is not the case
when coupling resources on different clusters/organizations.

6.4 The Component Infrastructure

The utmost goal of the runtime is to offer efficient and transparent inter-cluster
communication. This is achieved by means of an overlay infrastructure of com-
ponents modeling the hierarchy of resources allocated to the execution of a given
application. This infrastructure does not present any central entity coordinating the
global execution and only exists in runtime, with no need of daemons or software
installation other than an MPI distribution.

The next subsections present the main components involved on the development
of this infrastructure, how these components are mapped to reflect resources topol-
ogy as well as their interconnections to provide connectivity of MPI process located
on different clusters.

6.4.1 Definition of Basic Components

Two different mechanisms are necessary to offer inter-cluster communication:
(i) communication between native MPI process and the Java environment and vice
versa and (ii) routing of messages throughout the network. Each of these features
is offered by a different type of component:

• a wrapper component (Figure A.5.a) is the most elementary kind of element
used in the component infrastructure. It wraps an MPI process and is respon-
sible for the MPI to/from Java communication. As such, it is also in charge
of the encapsulation of the MPI messages into objects, including information
useful to route messages within the component infrastructure (section A.11)
and by the serialization/deserialization of messages.

The wrapper component presents just a server (drawn on the left hand side
of a component) Srv interface and a client (drawn on the right hand side
of a component) Clnt interface, that are bound to a clustering component
which represents the cluster where the MPI process (and so the component)
is located.

• a clustering component (Figure A.5.b) is a generic component capable of
clustering lower-level components. In our case, a clustering component at
level 3 (L3) groups L2 (wrapper) components, and the clustering component
at level 4 (i.e. at the level of sites in the grid hierarchy) groups L3 (clustering)
components. The same for a component at level 5 (a grid) that groups L4
components (sites). These components are responsible for communications
between different clusters and sites of the grid.

The clustering components present a Srv server interface that is responsible
for receiving requests coming from both lower-level or higher-level components.
Even if the Srv interface is not a gathercast interface (as defined in (BAUDE
et al., 2005)), it can perform gather operations of the received messages within
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the implementation of the component by the interception and analysis of in-
coming messages.

As client interfaces, the clustering components present 2 multicast interfaces:
one for sending messages to upper level clustering components (GoUP inter-
face) and other for lower-level components (GoDown interface). These multi-
cast interfaces make capable to the clustering components to communicate
with multiple components in parallel and is used, in practice, to implement
most of MPI collective primitives. The semantic adopted by these interfaces
depend on the type of communication and is explained in details in the sec-
tion A.11.

Srv Clnt Srv

GoDown

GoUp

a) b)

Figure 6.2: a) Wrapper component b) Clustering component

The next two sections present how these components and interfaces are assembled
in practice to form a grid infrastructure capable of handling inter-cluster communi-
cation.

6.4.2 Mapping Resources to a Component Infrastructure

As already discussed in previous sections, the component infrastructure is a
model that represents the resources topology using the components described in the
section A.10.1. The idea is to make possible to any process within a given cluster
to send point-to-point and collective messages to any other process or set of process
on the grid.

The definition of the component organization starts by the first phase of the
deployment when nodes are allocated or simply specified by the user. On this
infrastructure, all nodes and corresponding wrapping components receive an unique
identifier, formed at the lowest level of the hierarchy by the identifier of the site,
cluster and rank of the native process within the most embedding communicator in
which it runs, i.e. in the one corresponding to the cluster. The figure A.6 shows
a simple deployment on two sites, with two and one cluster respectively and the
total of 7 computing nodes. Each level defined in the infrastructure imply on the
addition of one more identifier, being the top level composed by a single component
that represents the entire environment and the bottom by processing nodes.

The figure A.7 shows the components responsible for the wrapping and inter-
cluster communication. For clarity, the figure just presents the components deployed
on the left branch of the hypothetical grid deployment ( site ’0’ of the figure A.6).

On this organization, there is one wrapper component (L2, in white) for each of
the launched MPI processes, one L3 clustering component by cluster and one L4
component on the top of the site. In general, clustering components are deployed
on the frontend of the clusters (by default, the node 0 or manually specified at the
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Figure 6.3: Resources/Components identification

deployment stage). If not defined otherwise, all the communication is handled by
Java RMI, but other protocols can be easily defined (rmissh, ibis, http or even soap),
when RMI communication is not allowed.

The figure A.7 shows the initial binding configuration, that obliges the usage of
indirections through clustering components. The section 6.6.2 presents an optimiza-
tion that softens this requirement on point-to-point communications, by following
the principle 2 (section 6.1).

In the basic configuration, all the components have a single server interface (’A’ )
with the same behavior: messages are intercepted on this interface and depending
on the message type, they are directly passed to the wrapped MPI process (point-to-
point messages) or determine the components to wait for more messages (collective
depending on more than once received message). This server interface is capable
of receiving messages from any other component that references it. Besides of the
inbound links on the Srv interface, wrapper components are interfaced with the
external environment through a single client interface (’B’ ), bound to the component
that represents the cluster where the component is deployed in.
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Figure 6.4: Assembly of Components

Clustering components (L3 and L4) are connected simultaneously to upper level
components (interfaces ”C”, connected to L4 and L5 components, respectively) and
to lower level components (interfaces ”D”, connected to L2 and L3 components,
respectively). Even if the GoUp interface are only connected to the clustering com-
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ponents, they are collective interfaces because they are collective interfaces because
these interfaces can be connected directly to interfaces of the same level in order to
crosscut levels in the components hierarchy(section 6.6.2).

6.5 Message Routing over the Grid

After launching the environment, a global view of the topology can be built and
each process creates locally its own view of the topology, through a mapping between
the communicators and unique identifiers. The following table shows an example of
table (in this case, the table stored in the nodes 0:1:0 and 0:1:1 of the figure A.6).

Table 6.1: Mapping of ranks within hierarchical communicators to component iden-
tifiers

Based on this table, the decision regarding whether messages will be sent through
MPI or components can be done in the native process. This decision takes into
account the type of message (point-to-point or collective), the communicator that
gives context to the communication and the destination. The routing process has
two distinct behaviors: that of the point-to-point communication and the one that
happens in the context of collective communication, as explained below.

6.5.1 Point-to-Point Messages

Due to the existence of unique identifiers, the routing of point-to-point messages
in the component hierarchy is straightforward. It just requires the sender process
to get, from the conversion table, the identifier that corresponds to the destination
and try to match the remote identifier with its own.

If the two first values of the identifier (site and cluster identifiers) are the same,
which means the process are located on the same cluster, the sender turns the call
into a simple MPI Send, that is faster than sending messages through the component
infrastructure, because it requires less intermediary copies. Indeed, MPI optimiza-
tions and support to high performance network devices and protocols can be used.
Otherwise, it means that the source and destination are, at least, in different clusters
and so the wrapper component will take care of the communication.

The communication handled by wrappers happens in two steps:

1. Get the recipient reference through its GoUp client interface. Supposing the
source and destination are placed at different sites, this process happens again
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to an upper-level clustering component, that represents a site in the topology.
The section 6.6.1 presents an optimization of this mechanism;

2. After the reference to the destination component is obtained, it is possible
to forward directly the message by triggering a ProActive communication be-
tween the two remote components that wrap the legacy MPI processes (taking
profit of the equality of component and underlying active object references in
the ProActive implementation the GCM model).

We could have preferred to explicit the bindings between wrapper components,
and rely on such bindings for direct forwarding, which would have been much in line
with component-orientation. Nevertheless, we consider this as a useful simplification
for the run-time support, because it does not require to establish and maintain the
bindings between any pair of wrapper components and usually not all pairs of MPI
processes are going to communicate.

In the case of firewalled clusters or sites, where nodes do not have direct access
to each other, instead of getting the reference of the remote component by following
the component hierarchy, the messages themselves are forwarded through it. In this
case, one extra copy for each hop of the path is required. Such feature makes use of
the ProActive hierarchical deployment and forwarders.

In the receiver (in the extended API implementation), it is just necessary to
check, according to the indicated communicator, if the message will come from a
process in the same cluster, and perform a MPI Recv or to expect a message from
the enclosing component.

6.5.2 Collective Messages

As in standard MPI, the collective communication primitives take place within
a given communicator context and all the ranks of this communicator must par-
ticipate. According to the definition presented in the section 4.1, the hierarchical
communicators are an abstract representation of a level in the hierarchy. Thus, the
collective communication using the hierarchical communicators are, in fact, collec-
tive communications within a given level and so must be handled by the correspond-
ing components.

The routing of collective communication is slightly more complex than the point-
to-point. Despite the fact that point-to-point communications can be done directly
between wrapper components, in the case of collective communication within syn-
thetic communicators, it is mandatory to send them through the top-level compo-
nents. The behavior of the communication depends on the kind of the collective
communication, which may involve a root process (coordinator) or not.

For the sake of simplicity, we describe the collective communications done within
a site. In the case of collective communication in the entire grid, the same happens,
but twice, first from the L2 to the L3 clustering components and later from them
to the L4.

• Broadcast: the processes involved in the broadcast of a message have two dis-
tinct behaviors. The one performed by the non-root wrapper components, that
perform a receive as in the point-to-point communication and the behavior of
the broadcaster (the root), that just includes the proper headers to the message
and send it to higher levels by using the GoUp client interfaces, until it reaches
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the right level. On its turn, the top-level representative component forwards
the message to all the destinations through the GoDown client interface. The
process of forwarding the message to multiple recipients is done in parallel due
to the multicast nature of GoDown, bound to all the components in the level
immediately above. The reception of the message at the broadcaster unblocks
it. In scatter primitives, the behavior of the wrapper components is the same
than the broadcast. However, instead of just forwarding the entire message to
the recipients, the top-level components are in change of splitting the message
in multiple ones before sending (in a similar way as MPI would do it).

• Gather: in the gather primitives, the behavior is exactly the opposite of the
scatter. The root node performs a simple receive as in the point-to-point com-
munication and non-root nodes perform a send to the top-level component
of the given branch through the GoUp client interface of upper-level compo-
nents. This top-level component on its turn, blocks until it receives all the
awaited messages on its Recv server interface (one message from each of its
sons). Then, this component is responsible for ordering properly the messages
based on their header and merge them in a single message that is sent down
the right branch of the hierarchy to the recipient. The Reduce primitive fol-
lows the same approach, but, instead of ordering, the clustering components
make an operation over the data.

• Barrier: in the case of the barrier operations, the behavior of the nodes is
that of the broadcast, i.e. send a void message to the higher-level components
through the GoUp interface and wait for an acknowledgment. The higher-level
component behavior is that of a gather to receive the messages and that of a
broadcast to spread a message through the multicast GoDown interface, the
messages that will unblock all the nodes involved in the barrier.

Each clustering component has a queue to store collective messages. The treat-
ment of these messages follows a non-blocking FIFO (first in, first out) order and
this enforces message ordering as done in most of the distributions that implement
MPI standard to ensure correctness. The arrival of the first message of a collec-
tive call that depends on multiple calls (gather, reduce and barriers) creates a new
entry on the queue and once all the needed messages are received the collective
communication can proceed, which characterizes the non-blocking behavior.

6.6 Runtime Optimizations

This section presents three simple optimization in the communication process
that enables to reduce the overhead on the usage of a component infrastructure.
Initially, we analyze the caching mechanism that reduces the time needed to fetch
components reference. Then, we analyze the tensioning technique which helps reduc-
ing indirections on a component infrastructure. The last mechanism in built-in on
the implementation of the collective communications to make them more grid-aware.

6.6.1 Reference Caching and Pre-fetching

In the section A.11.1 we have seeing that the point-to-point communication de-
pends on the obtention of remote references. This optimization is based on the fact
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that process that already communicated with process located on different clusters
are more likely to communicate again in the future.

The caching of references happens in two levels:

• at the wrapper components level: wrapper components keep remote references
once the references are established. This avoids the re-fetching of existing ref-
erences and lookup of remote components. The size of caches can be limited to
reduce the number of opened sockets and memory consumption. By default,
all the references are kept, until the maximum number of opened sockets is
reached (in Unix, the maximum number of opened file descriptors). These
references are stored on a hash, together with a timestamp and once the max-
imum number is exceeded, the oldest references are deleted, according to a
least recently used (LRU) references replacement algorithm.

• at the clustering components level: in the components hierarchy, just the clos-
est clustering component has the reference of wrapper components (in prac-
tice, a ProActive reference given by a URL where the remote object is bound).
clustering components also keep references of all the references that were re-
quested. This is useful because references that were obtained by one wrapper
component can be retrieved by other components without the need of further
indirections.

the pre-fetching of references is a complementary mechanism, which is used by
default on the evaluations of this work (chapter 7), consist in creating a table of
all the references of wrapper components (URL) and dispatch this table to all the
clustering components. By doing this, the reference of a remote wrapper component
can be retrieved with a simple message call.

6.6.2 Tensioning

At deployment time, wrapper components do not know the grid topology, i.e.
they do not know if it is possible or not to communicate directly with other wrapper
components in the grid. Actually, just the communication between the wrapper
component and the lowest clustering component is ensured by the deployment. This
is frequently the case when the deployment happens over multiple sites distributed
geographically, but that offer connection between nodes relying on the same site,
but on different clusters.

The tensioning mechanism is a technique commonly used in component-based
software architectures (MOREL, 2006) that follows the principle 2 (section 6.1). It
consists on a mechanism that remembers the shortest path between two software
entities and establishes a minimal connection between them (direct if possible). The
first invocation determines the shortcut path, then the following invocations will use
this shortcut path.

The definition of the shortest path is, in fact, a try-error technique. Starting from
the wrapper component that tries to contact directly the recipient. If it succeeds, a
shortcut is created. If not, it transfer the control to the clustering component that
tries to do the same. Once a component succeeds to contact the recipient (mandatory
for the last clustering component, that is the father of the recipient component in the
hierarchy), the path is stored on the involved clustering components and transmitted
to the sender, that stores the entire path.
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6.6.3 Hierarchical Collective Communication

In general, collective communication in the context of a given site or on the
entire grid can benefit from the hierarchical approach to parallelize the execution of
the call. Most of the implementations of the MPI standard present optimizations in
the collective communications by means of trees of sockets when the communication
involve more than a certain number of processes. When collective message calls
arrive within a given cluster, they are handled by native MPI and can take profit of
MPI optimizations but a further optimization is possible in some cases.

The following primitives include a specific treatment at the clustering compo-
nents level:

• Broadcast: the optimization is pretty straightforward. It just consists on
sending a single message to the clustering components that will effectively
broadcast the messages internally;

• Scatter: the optimization is also intuitive and data is scattered in phases.
Initially, data is scattered to send to clustering components just data that will
be scattered in their context and this reduces the amount of data to be treated
within a gives subdomain;

• Reduce: the reduce operation, can be done in multiple stages and depends
on the operation. Operations like MAX, MIN, PRODUCT and SUM can be
done locally before transmitted. The same for AVERAGE, MIN LOC and
MAX LOC, but these operations include further information, like the number
of data elements included, the rank where is the minimum and rank where
is the maximum, respectively. User defined operations can also be used, as
the reduction is done at the native side by means of a C function pointer.
However, they cannot depend on extra information.

• All-to-All: instead of centralizing the data at the coordinator, the data is
centralizes in the most external clustering component involved and dispatched
to all process as a broadcast message. This reduces the number of copies and
indirections on message transmission.

6.7 Chapter Conclusion

In this chapter, we have presented a prototype implementation for the proposal
presented in the section 4. This prototype is based on a GCM-based infrastructure
and takes profit of the ProActive deployment with some introduced extensions to
deploy MPI applications and the runtime. Some principles have guided the devel-
opment of this prototype, and were important in two aspects: build an user-friendly
environment, that provides good performance on the execution of point-to-point and
collective communications among processes on the same cluster and externally.

The approach adopted make possible to deploy a gridified MPI application with
a minimum knowledge about resources. The default configuration guarantees a rea-
sonable performance, but optimizations can be configured to improve performance.
Performance was always the focus on the implementation of this prototype, and for
this reason, it includes some important principles, like enforcing the usage of MPI
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communication for inner-cluster communications, reduce indirections at the com-
ponent level and reduce the time needed to perform point-to-point and collective
communications.

The next chapter evaluates this prototype through some microbenchmarks and
experiments.
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7 EVALUATION

This chapter presents the evaluation of the proposed model and prototype. Ini-
tially, we present some simple benchmarks to measure the overhead introduced by
the use of the component support in synchronous and asynchronous point-to-point
and different collective communications. After, we present some experiments based
on some applications developed/executed using our framework, comparing them
with pure MPI versions. This chapter ends with a qualitative comparison between
the developed framework and related tools.

7.1 Experimental Environment

The benchmarks and experiments were conducted in the Grid5000 testbed, on
8 different clusters spread around 4 different sites in France (in Sophia Antipolis,
Rennes, Lyon, and Grenoble), composed by machines of different processor archi-
tectures (Intel Xeon EM64T 3GHz and IA32 2.4GHZ, AMD Opterons 2218, 246
and 248) and memory from 2GB to 4GB by node. Internally, 2 of the clusters
have Myrinet-10G and one of them Myrinet-2000. The interconnection among the
different clusters is done through a dedicated backbone with 2,5Gbit/s links

The native executions make use of the MPICH 1.2.7p library and the ProAc-
tiveMPI ones make use of MPICH v1.2.5, ProActive v3.9 and Java Sun SDK 1.6.0 01.
When we mention cross-cluster communication, it means that the communication
takes place in one site and multiple clusters while cross-site means that the underly-
ing MPI environments were running in multiple clusters, geographically separated.
Also, when running in more than one cluster and/or site, the number of nodes
were divided equally among the clusters, for instance: in the experiments with 60
nodes, the MPI-local configuration consists in 60 nodes placed within a single cluster,
the ProActiveMPI-2clusters configuration has 30 nodes on each cluster and in the
ProActiveMPI-2sites-2clusters 15 nodes on each of the clusters. Remaining nodes
are always deployed on the last cluster

The numerical results are calculated through a simple the average of multiple
executions: a hundred for short executions (a couple of seconds) and ten executions
on long experiments (those that take around couple of minutes or more), for each
configuration and scenario. In the case of the benchmarks executed in multi-cluster
experiments, we also include the standard deviation, due to the fact that the network
that connects the sites of the grid is a shared resource. The speedup is calculated
by the formula speedup = Timesequential/T imeparallel and is useful to verify the
efficiency obtained out of a parallel application.
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7.2 Microbenchmarks

This section presents the benchmarks of the main communication operations
in different scenarios as well as an evaluation of the overhead introduced by the
component layer. In order to have a more realistic view of the performance, we
compare execution times with the same kind of benchmarks with MPI. But it is
important to remember that the goal of the work is not to replace existing MPI
implementations.

Initially, we present an evaluation of performance of synchronous and asyn-
chronous point-to-point communication with and without the proposed optimiza-
tions (section 6.6). Then, we propose a simple classification of the collective com-
munication and some benchmarks with the different classes of collective operations.

7.2.1 Point-to-Point Communication

In the first microbenchmark, we evaluate the point-to-point communication in
different scenarios. But, first, we evaluate the overhead measured in single-site
execution for synchronous and asynchronous operations.

The figure 7.1 shows that despite of the existence of a control to decide how to
handle messages, the overhead on communication that takes place within a single
cluster is negligible. The figure 7.2 shows that the same behavior can be expected
on asynchronous communications that are, in general, faster than blocking ones.
Even if these results were foreseeable, it is important to emphasize that the runtime
does not impact negatively in performance of communication within a single cluster
because this kind of communication is very recurring.
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Figure 7.1: MPI Send - MPI Recv: single
cluster performance
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Figure 7.2: MPI ISend - MPI IRecv: sin-
gle cluster performance

The figure 7.3 shows a performance comparison for the point-to-point communi-
cation between two clusters (located in Sophia-Antipolis) and the figure 7.4, the
performance of the non-blocking point-to-point communication. These graphics
compare the point-to-point communication in three different contexts: (i) pure
MPI, which is possible due to the configuration of the Grid5000 that enables all-to-
all nodes access; (ii) component-based communication, having messages forwarded
through components, that is the behavior if direct communication is not possible
and (iii) component-based version optimized with the tensioning technique. The fig-
ures figure 7.5 and 7.6 show the performance of the point-to-point communication
between two sites (Sophia Antipolis and Grenoble).



71

2^0 2^2 2^4 2^6 2^8 2^10 2^12

Message Size (KB)

2x103

4x103

6x103

8x103

1x104

1.2x104
Ti

m
e 

(m
se

c)
ProActiveMPI
ProActiveMPI+tensioning
MPI

Figure 7.3: MPI Send - MPI Recv: cross-
cluster performance
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Figure 7.4: MPI ISend - MPI IRecv:
cross-cluster performance

In all the four benchmarks, the difference in performance between the versions
that perform direct communication and the version that uses the component infras-
tructure to forward messages is remarkable. This difference comes from the obvious
fact that the communication through components requires the messages to be sent
to the JVM stack, and communicated through network, then from the receiver JVM
to the native process. Even if direct memory access (given by the java.nio package)
enables a zero-copy transfer between C and Java, the messages must be copied from
component to component in the hierarchy.

The difference in performance between ProActveMPI versions justifies the prin-
ciple 2 (section 6.1) of the usage of direct communication whenever possible. It also
emphasizes the usefulness of tensioning optimization technique in component-based
software architectures. Even if ProActiveMPI communication is slightly slower than
pure MPI communication, the usage of tensioning have enabled to perform commu-
nication in a very flexible way, without all the cost of indirections.

The main reasons for the differences in time between cross-cluster and cross-site
communication is the bigger latency and smaller bandwidth in the network between
sites than the link between two clusters.

The vertical error bars represent the average difference of the samplings, in re-
lation to the global average. The bigger this bar is, the bigger was the difference in
communication time from one execution to another. In the case of Grid5000, this
happens specially in cross-cluster communications because they imply on the usage
of a shared backbone. Some bigger error bars are mainly due to transient behaviors
on network performance and happened in less than 3% of the cases.

The peak around 4MB for the point-to-point communication through the com-
ponent is due to the RMI communication mechanism, as already verified in (JA-
GANNADHAM; RAMACHANDRAN; KUMAR, 2007).

7.2.2 Collective Communication

As already discussed in the section A.11.2, the collective operations follow a
completely different mechanism. For this reason, we evaluate the collective com-
munication separately. This section present some benchmarks over the execution of
collective calls on a multi-cluster base grid environment.

In order to avoid redundancy on the benchmarks and discussion of results, we
have classified the collective communication primitives in three different groups,
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Figure 7.5: MPI Send - MPI Recv: cross-
site performance

2^0 2^2 2^4 2^6 2^8 2^10 2^12

Message Size (KB)

2x103

4x103

6x103

8x103

1x104

1.2x104

1.4x104

1.6x104

1.8x104

Ti
m

e(
us

ec
)

ProActiveMPI
ProActiveMPI+tensioning
MPI

Figure 7.6: MPI ISend - MPI IRecv:
cross-site performance

according to the similarity of collective communication mechanism:

1. Broadcast-based: this group include all the collective communications which
have a one-to-many communication. Besides of the Broadcast mechanism, this
groups includes all the Scatter operations. The results regarding this group
will be verified by means of a Broadcast operation.

2. Gather-based: this group includes all the collective communications which
have a many-to-one communication. Besides of the Gathercast mechanism,
this groups includes Reduce operations. The results regarding this group will
be verified by means of a Gathercast operation.

3. Gather-based plus Broadcast-based: this is the case of more complex opera-
tions, which imply on a first step that gathers data and a second step, that
dispatch the results, such as Barriers, All-to-All and AllReduce communica-
tion. The results regarding these collective communications will be verified by
means of an AllReduce operation.

The figures 7.7, 7.8 and 7.9 show the performance of collective operations is
ProActiveMPI and MPI considering different resources configuration: single cluster,
2 and 3 clusters located in different sites. As in the point-to-point communications,
the execution of the three communications primitives on a single cluster, takes about
the same time in both cases(MPI and ProActiveMPI) because in fact they both rely
on the same MPI communication mechanism.

In general, the pure MPI communication involving multiple environments is
slower than ProActiveMPI communication. This happens because the collective
operations in MPICH follow a tree-based algorithm when there are more than 4
process involved. The execution of these operations without taking into account
resources topology usually lead to performance issues because, at some point of the
operation, unnecessary and expensive inter-cluster communication are done.

Differently, the ProActiveMPI takes into account resources topology, reducing
unnecessary inter-cluster communication. For this reason, it performed better in
multi-cluster grid environments. But, the behavior changes depending on the oper-
ation:
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• In the case of the broadcast operation (figure 7.7), the execution in 3 clusters
was faster than in 2 clusters because it increased the amount of operations
happening at the same time;

• On the other side, the gathercast operation (figure 7.2.2) performed better
with 2 clusters because it reduced the need of an extra copy for the execution
of a gather at cluster level, before the propagation;

• In the case of AllReduce (figure 7.9), the ProActiveMPI version performed
even better that the executions in single environment. This occurred because
the reduction operation happened in parallel in each of the clusters before
being propagated to the root of the operation, which also reduced bottlenecks.

As in point-to-point communication, the error bars are bigger when more clus-
ters/sites are involved. This is a natural evidence that communication involving
shared network are more susceptible to transient affectations.

All in all, the collective communication curves have a similar shape. This comes
from the fact that, at the cluster level, the runtime performs a plain MPI communi-
cation that, in general, is the most expensive operation because it involves a bigger
number of process and a centralized entity.
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Figure 7.7: Broadcast: cross-cluster per-
formance
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Figure 7.8: Gathercast: cross-cluster per-
formance
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Figure 7.9: AllReduce: cross-cluster performance
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7.3 Experiments

In order to have a more practical and complete evaluation, we developed some
application, which represent different classes of applications: (1) a monte-carlo simu-
lation to compute Π (3.14159265...), representing the embarrassingly parallel master-
worker applications; (2) a hierarchical parallel mergesort, representing the Divide-
and-Conquer approach to build parallel applications; and (3) the Poisson3D solver
representing non-embarrassingly application based in domain decomposition.

The idea of choosing these applications is that we could expect a similar behavior
in applications that follow the same approach. The following section presents, in
more details, each of the applications and how they were developed along with some
code examples. After, we analyze the obtained results.

7.3.1 Applications

7.3.1.1 (1) Monte-Carlo Simulation

Monte Carlo methods are a class of computational algorithms that rely on re-
peated random sampling to compute their results. Monte Carlo methods are often
used to simulate physical and mathematical systems. Because of their reliance on
repeated computation and random or pseudo-random numbers, Monte Carlo meth-
ods tend to be used when it is infeasible or impossible to compute an exact result
with a deterministic algorithm or equation. As the precision of the computation is
based in the number of iterations, Monte Carlo is a method suited to calculation
using parallel resources like clusters or grids.

In our case, the Monte Carlo method is used in a simple synthetic application
that calculates Π (3.14159265...). It consists on the generation of pseudo-random
numbers between 0 and 1 representing a given point on the figure 7.10 and the
computation of Π is based in the verification whether the points are inside or outside
of the circle.

Figure 7.10: Pi Computation Scheme

The area of a quarter of circle is done by:

A =
1

4
∗ Π ∗ r2 (7.1)

Considering the formula of the distance between 2 points x and y as:

D = (x2 − x1)
2 + (y2 − y1)

2. (7.2)
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Considering that the A = D2 = 1 and Pin the number of points within the given
area and Pout, the points outside, we can statistically compute Π as being:

Π =
r2 ∗ Pin

Pout

1
4
∗ r2

= 4 ∗ Pin

Pout

(7.3)

The implementation of the parallel application follows a master-worker pattern,
on which a master process assigns independent set of tasks to each worker processors
and retrieve partial result, computing the final result as an average of the partial
ones.

This application is a typical CPU-bound application and communication does
not play an important hole on the elapsed time. Nonetheless, in order to have a
fairer comparison among the different applications, we have developed two different
algorithms:

• (i) flat version: this version has a simple master-worker model, on which the
tasks are calculated by the workers and retrieved through a reduce operation.
For comparison effect, we also evaluate a flat pure MPI version. The ap-
pendix C presents a snippet of the source code that shows the communication
scheme.

• (ii) hierarchical version: this version intends to reduce inter-site communica-
tion by introducing one-level hierarchy. The results are first gathered in the
first worker of each site before they are sent to the master. The appendix D
presents a snippet of the source code that shows the communication scheme.

7.3.1.2 (2) Hierarchical Mergesort

Mergesort is a well-known sorting algorithm developed by John von Neumann
(BRON, 1972) and have average and worst case performance of Θ(n log n). Merge-
sort sorts by employing a divide-and-conquer strategy to divide a list into two sub-
lists. The steps are:

1. Divide the unsorted list into two or more sub-lists of about the same size.

2. Divide each of the two sublists recursively until we have list sizes of length 1,
in which case the list itself is returned.

3. Merge the two sorted sublists back into one sorted list.

The figure 7.11 summarizes these steps for a small array.
Due to its divide-and-conquer nature, mergesort can be easily parallelized. Two

different versions of the mergesort were developed:

• (i) flat version: even if merge-sort has a dived-and-conquer organization, this
version follows a master-worker pattern (1 level of tasks) on which the array
of numbers to be ordered is scattered among all the workers in sub-arrays of
equal size. After, the master process waits for all ordered sub-arrays and merge
them as they arrive, by using an insertion sort algorithm. This implementation
does not follow strictly the classical algorithm as the granularity is given by the
number of nodes, rather than dividing data until two elements are to be sorted
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Figure 7.11: Mergesort Example

(trivial sort). The figure 7.12 shows the communication pattern, adapted to
the flat version.

The appendix E presents a skeleton of the application, containing the main
communication primitives. On this applications, we have evaluated the possi-
bility of running unmodified applications

• (ii) hierarchical version: this version implements the mergesort by using a
hierarchical approach (with 3 level of tasks). Initially, the array of numbers is
divided in n sub-arrays, being n the numbers of sites. After, this sub-arrays
are divided again within the site for each cluster and then within the cluster
to the nodes (3 levels of tasks). The main benefit of the hierarchical version
is that the merge process happens in parallel in each of the clusters. The
figure 7.13 depicts the hierarchical algorithm.

Scatter

Gather + Merge

Figure 7.12: Flat Mergesort Scheme

Inter-cluster Scatter

Inter-Cluster Gather+Merge

Intra-cluster Scatter

. . .

Intra-Cluster Gather+Merge

Figure 7.13: Hierarchical Mergesort
Scheme

The appendix F presents a snippet of the source code that shows the commu-
nication scheme. This code may seem clumsy, but intermediary nodes execute
almost the same code and this could be generalized.

7.3.1.3 (3) The Poisson3D Solver

Poisson’s equation is a partial differential equation with broad utility in elec-
trostatics, mechanical engineering and theoretical physics. Different from previous
applications, the Poisson3D algorithm does not have a master-worker organization.
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This means that there is not a process that coordinates the computation by dis-
patching tasks to the others. Instead, each process handles a piece of the entire
matrix and communicate with process that handle neighbor pieces of the matrix.

Our Poisson3D implementation uses an iterative Jacobi method. In general lines,
the idea is to partition an entire mesh (the domain) into several sub-domains, and
a global solution is recovered by a succession of solutions of the independent sub-
domains. It consists on a bulk-synchronous application given by the following steps:

1. Concurrent computation: each process executes the Jacobi method over its
own sub-domain;

2. Reduction of results: each process calculates an error and all the processes
reduce their errors in order to determine the smallest error. A threshold de-
termines the stop criteria (in order to force a deterministic behavior for the
performance evaluation, the stop criteria is given by a fixed number of itera-
tions);

3. Update of sub-domain borders: each process updates its borders with neighbor
processes and proceed to the step 1.

Considering the steps enumerated above, we can clearly identify the main com-
munications involved: in the step 2, we have a global Reduce operation, and in the
step 2 an ’Update’ operation, which consists on a Scatter/Gather among neighbor
processes.

As seen in the section 4.1, intra-cluster communications are faster than inter-
cluster ones, as they take advantage of local high-speed network. For improving
the overall application performance, we investigated different partition and map-
ping schemes according to resources organization (provided by extended API). The
figure 7.14 shows two examples of partition schemes.

After experiments, the best option has proved to be the partition of the mesh
in slices instead of a cubic partition (see Figure 7.14). Thus, with a correct sub-
matrix mapping to resources, we ensure at most two processes per cluster will need
to perform such communication.

Figure 7.14: Poisson 3D Mesh Partition/Mapping Approaches
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Two versions using this algorithm are compared on this experiment: the original
pure MPI version and a gridified version that make use of the defined API to properly
partition the mesh and organize communication hierarchically.

These two versions differ essentially in two points:

• the partition of the ProActiveMPI versions takes into account resources distri-
bution minimizing inter-cluster communication, while the pure MPI one does
not take into account resources position because topology information is not
provided by the runtime;

• the communication layer used in cross-cluster communication is different: the
communication is handled by the runtime while pure MPI is based entirely in
MPI communication (only possible because the Grid5000 allows it);

7.3.2 Experiments Results

This section presents the results and analyze of the experiments described in
the section 7.3.1. The performance obtained in most of the experiments depend on
a large number of variables, from resources location, instantaneous network load,
data partition, modifications/adaptations in algorithms and obviously the underly-
ing framework. Differently from the section 7.2, the discussion of the results pro-
vided here are based on author’s experiences and intuition but could be eventually
interpreted differently.

7.3.2.1 Monte Carlo Results

The Figure 7.15 shows the execution time for the Monte Carlo Simulation execut-
ing 108 iterations in two different implementations and different execution scenarios:
a pure MPI version of the application on a single cluster and an application that
uses the proposed extensions on 2 and 4 clusters. For the sake of simplicity, the
results regarding MPI cross-cluster execution and flat organization were suppressed
as they were very similar to flat executions.

On the figure 7.15, we can notice that all the curves have almost the same shape
and they are pretty close to each other, which means that there is no significant
overhead induced by the component framework during the computation. Later we
will see that this behavior is highly dependent of the application and the design of
the the communication algorithm as well as the amount of communication done.

The difference in execution time between the executions in 2 or 4 clusters are
probably due to larger latencies in the communication with the third and fourth
cluster, that were geographically distant from the other 2. Also, we can notice that
there is one specific configuration (10 nodes in 3 clusters) where the execution with 3
clusters had a performance degradation. This happened because one of the clusters
had 4 processing nodes while the other 2 clusters had just 3. As the processing load
was equally divided through the clusters, the power equivalent to one of the nodes
was wasted, as the execution time is that of the slower cluster.

From the figure 7.16, we can notice that, for this experiment, our framework can
be considered as scalable as the MPI implementation used (MPICH-1.2.7b). Some
empirical experiments have shown that, for the monte carlo simulation, this behavior
stills valid even for hundreds nodes and that the degradation in performance in such
cases was comparable to that of the pure MPI version of the application. The main
aspect that helped to keep a good overall performance, even for the flat version, is
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that the monte carlo application is essentially CPU-bound and does not depends on
the communication of a large amount of data.
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Figure 7.15: Monte Carlo Performance
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Figure 7.16: Monte Carlo Speedup

7.3.2.2 MergeSort Results

The figures 7.17, 7.18 and 7.19 show the execution time for the MergeSort ap-
plication, ordering the same 107 random long numbers (around 38MB of data) in
different contexts: pure MPI execution on a single cluster (flat algorithm) and exe-
cution through multiple sites/clusters of the flat and hierarchical version. In all the
executions, the number of computing nodes was equally distributed on the clusters.
When the number of clusters is mentioned, it means the number of clusters present
on each site and not the global number of clusters. The execution times does not
take into account the time needed to read data from the input file. The results
for multi-cluster executions start from 4 nodes to ensure at least one node on each
cluster.

Unlike the monte carlo application, the experiments conducted with the merge-
sort application showed a bigger degradation in performance when using multiple
clusters. However, we must highlight that we are enabling the coupling of more
than one cluster in a single MPI computation. This means that we can aim at gath-
ering a bigger computational power out of multiple clusters for a single execution.
Nonetheless, the executions in a single cluster is presented together with the other
executions as a parameter.

When comparing the figures 7.17 and 7.18 we can notice the importance of
taking into account the topology on design of the parallel algorithm. In the flat
version, there are some configurations where the ProActiveMPI version takes about
8 times more that the pure MPI version, against 2.5 times in the worst case of the
hierarchical version. This happens because, in the flat version, a large amount of
the communication process happens in a WAN context (so with a greater latency
and smaller bandwidth) and we need ’n’ big messages to spread the data to ’n’
nodes computing and ’n’ messages to gather the ordered arrays back, while in the
hierarchical version, we just need a number of messages equivalent to the number
of sites. Even if the messages are bigger in the hierarchical version, the impact in
performance stills smaller.

Another point that impacts positively on the performance of the hierarchical
version is that the merge process happens in parallel on each cluster, and after on
each site, while in the flat version, this is a centralized process. According to the
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Amdhal’s law, the execution time of an application is given by the sequential part
plus the parallel part and so, the bigger the sequential part is, the less an application
can scale.

The impact on the parallelization of the merge process can be seen more clearly
on he figure 7.19 that compare different executions with the same resources organi-
zation (2 sites, with 2 clusters on each site and nodes from 1 to 16 on each cluster).
From this comparison, we can see that the flat version just have the overall com-
puting time reduced until 32 nodes, and in the hierarchical version, we could have
an improvement on the performance up to 128 nodes and probably even more. For
a small number of nodes, the flat version probably performed better due to the fact
that, in the hierarchical version, the inclusion of multiple levels imply on more time
spent to transmit the data through the levels in the hierarchy.

Yet in the figure 7.19, we can see that the mergesort algorithm does not scale
well in general. This happens because of two main reasons: the communication time
is significant on the overall time and the merge operation is inherently a sequential
operation, that becomes expensive as the number of workers increases, even if it is
softened through the hierarchical version.

Even if we could not keep the good speedup of monte-carlo (figure 7.16) for the
mergesort, it does not means that the developed prototype does not scale well. A
proof of that is that even the pure MPI, that is considered highly scalable, did not
obtained a good speedup. Some other experimental executions have shown that the
speedup can be a little better when ordering a big amount of numbers, because the
computation time encompasses the communication costs. Nonetheless, the merge
process prevents the obtention of a good performance as it is proportional to the
amount of numbers to be ordered.
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Figure 7.17: Flat Msort (i) Times
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Figure 7.18: Hierarchical Msort (ii) Times

7.3.2.3 Poisson3D Results

The figure 7.20 shows the execution time for the P3D application, computing a
regular mesh containing 10243 elements (around 8GB of data) over 100 iterations
on the 8 sites described in the section 7.1, with 2 clusters on each site and nodes
from 2 to 32 on each cluster. The results start from 16 nodes (2 by cluster) to avoid
usage of OS memory swap on computing nodes: some nodes present just 2GB of
memory and 4 cores, so the allocation of 512MB per computing node, requires at
least 16 nodes for the execution of the application.
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Figure 7.19: Comparison between flat and hierarchical ProActiveMPI Msort versions

The results in the figures 7.20 show that, even for a small number of nodes,
the application can profit from the hierarchical approach. This is possible first, by
reducing the data shared and communicated among clusters, but also by the parallel
execution of operations like the global reduce, that is very time consuming (more
about AllReduce performance evaluation in the section A.11.2, figure 7.9).

Comparing the two executions of the flat version (MPI and ProActiveMPI), the
MPI version performed better because it runs without any overhead of the compo-
nent infrastructure, completely in native mode. However, we must call attention to
the fact that most of the grid infrastructures do not allow unrestricted inter-cluster
communication, as it is was possible in the Grid5000.

This execution takes into account a sliced partition, but different partitions
schemes (e.g. cubic partition) lead to important changes in execution times.
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Figure 7.20: Comparison between flat MPI, flat ProActiveMPI and hierarchical
ProActiveMPI versions of the Poisson3D application

7.4 Comparison with existing tools

The main intention of this work is to offer support to hierarchical communication
in grid environments by means of extensions to the MPI standard and a component-
based support. As such, our ”tool” also benefits from a number of other features
required to run applications in grids.

So, besides of the quantitative performance evaluation, it is relevant to do a
qualitative comparison of the work presented in relation with existing related tools
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(Chapter 3).
The table 7.4 summarizes this comparison and the criteria is listed as follows:

1. Support to network and grid protocols/middlewares: protocols and/or mid-
dlewares may differ from one grid platform to another. This criteria also have
relation with requirements presented by some tools, like MPICH-G2 and H2O,
as some of them relies on top of grid middlewares;

2. resources allocation, access and management: by definition, grids are com-
posed by remote shared resources. The usage of these platforms usually de-
pends on the allocation, access and management of resources. Some of the
tools present these features as a built-in functionality, while others relies on
third parties middleware.

3. data management: in general, high performance applications have need of
input data and/or generate output data. At least, the binaries are necessary
to start the computation. Because of this need, some of the tools provide
mechanisms to ease data management. Others, just let users handle this kind
of issues.

4. automatic forwarding/tunneling of messages: by definition, grids can be com-
posed of resources located in different domains, sometimes behind firewalls
or even having private network addresses. While some tools assume all-to-all
accessibility, some others offer the necessary support to automatically forward
messages in the case where the all-to-all access in not possible. Some of them
also offer the possibility of tunneling of messages, so enabling MPI applications
to run in firewalled environments.

5. topology-aware communication: in this work we identified topology-aware
communication as a requirement to obtain high performance in heterogeneous
distributed environments, by avoiding slower network connections. For this
programming pattern to be possible, some of these tools offer topology infor-
mation to help users to program applications in a more topology-aware way,
while some others support topology-aware communication, but by hiding it
from the users in the middleware.

6. API: there are two main approaches to enable MPI to run in grids: either
the tools intend to support unmodified MPI applications by means of the
underlying support that hides from the user grid related issues or they offer
an API to deal explicitly with grid characteristics.

From the comparison table 7.4, we can see that besides of offering abstractions
and primitives to develop hierarchical grid-aware application, our solution copes
with grid requirements and offer most of the features presented in other tools.

7.5 Chapter Conclusion

In this chapter, we have presented the evaluation of the current work from dif-
ferent points of view. This evaluation started with an evaluation of the basic com-
munication mechanism, then some application have shown some empirical results
and finally a qualitative comparison in relation to related works.
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Table 7.1: Comparison of the developed prototype with related tools

The microbenchmarks result have shown that the overhead generated by the
component layer is negligible when considered just one cluster. However, in multi-
cluster infrastructures, they impact in the overall performance of applications. This
fact, this highlighted the importance of optimizations in runtime to enable direct
communication they are possible. The collective communication support has also
proved to cope with grid issues, yet offering a reasonable performance.

The results obtained with the experiments have shown that non-embarrassingly
applications must be gridified in order to really take profit of resources hierarchy
and, as a result, these applications can scale more easily on grid resources.

The qualitative analysis showed that, even with a completely different approach,
our solution came up with most of the features offered by related tools. This re-
veals the general character of the solution, which could be easily used in different
contexts, providing solution to the execution upon different resources specifications
and applications needs.
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8 CONCLUSIONS AND PERSPECTIVE

The inherent distributed, heterogeneous and hierarchical nature of multi-cluster
grid environments shifts the emphasis in many programming issues, namely the need
of an adequate programming model. Because of the wide acceptance of message pass-
ing and MPI as the standard paradigm to develop high performance applications,
the idea of using MPI in grids has always been subject of investigation nowadays.

Up to now, the main approach to deal with MPI and grid computing has been
that of executing unmodified MPI applications. On the other side, parallel algo-
rithms must be adapted to reflect grid topology in order to obtain a good perfor-
mance. Despite of this need, we identified a lack of mechanisms and abstractions
to design and develop grid-aware hierarchical MPI applications. Also, we believe
that the design of MPI is very static to cope with grid characteristics like dynamism
and heterogeneity of resources. Differently, the component-based paradigm offers
the adequate support to address these grid requirements and also the possibility of
encapsulating native legacy codes.

In this context, we proposed a hybrid model through extensions in the MPI stan-
dard to address hierarchical message-passing and a grid component-based framework
supporting the newly introduced features. The developed prototype takes profit of
the ProActive grid middleware that already offers support to grid deployment, native
code wrapping and a reference implementation of the GCM.

From the results obtained in the evaluation of this prototype, we conclude that
the overhead introduced by the components is not negligible, but inside of the ex-
pected. However, we can expect the benefits to grid applications to bypass the
overhead generated. But, in order to profit of resources hierarchy, applications must
be (re)designed in a hierarchical fashion. This is not a simple task by any means,
and the applications developed to evaluate this work have showed this. Depend-
ing on the application approach, a hierarchical work-stealing could be preferred, as
suggested in (PEZZI et al., 2007).

The research that is being developed as the continuation of the present work
(more details in next section) points to a new direction on the development of
parallel SPMD applications and this seems to provide a good solution to the some
issues present on this work, namely the introduction of dynamicity at runtime level
and abstractions to ease development of hierarchical MPI applications.

8.1 Research Perspectives

The main outcome of the presented work was the introduction of high-level com-
municators and a component-based runtime supporting the introduced mechanisms.
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However, we have seen that the design and development of real size applications is a
very complex task. The same need was detected by some other research projects fo-
cused in applied mathematics, more specifically on the design of numerical methods
for the computer simulation of complex physical phenomena related to two appli-
cation domains: computational electromagnetism (CEM) and computational fluid
dynamics (CFD).

As a result, the DiscoGrid Project was started in 2007, funded by the French Na-
tional Research Agency (ANR) for 3 years. The DiscoGrid project aims at studying
and promoting a new paradigm for programming non-embarrassingly parallel sci-
entific computing applications on distributed, heterogeneous, computing platforms.
The target applications require the numerical resolution of systems of partial differ-
ential equations (PDEs) modeling electromagnetic wave propagation and fluid flow
problems. More importantly, the underlying numerical methods share the use of
unstructured meshes and are based on well known finite element and finite volume
formulations.

The main objectives of the DiscoGrid project include:

• the definition of a high-level API to develop domain-decomposition based sim-
ulations that abstract completely the complexity of MPI;

• a runtime capable of suffering adaptations coping with the evolution of a chang-
ing environment, offering inter-cluster communication with high performance;

• a mesh partitioning tool capable of taking into consideration resources topol-
ogy to reduce data shared among processes in different clusters/sites;

• the development of real-size simulation software based on the introduced para-
digm.

The present work already offers the solution to some of these needs and was inves-
tigated as a first prototype having served as the base to develop a simple application
(the Poisson3D). But the abstraction of high-level communicators was not considered
enough to support an easy development of scientific domain-decomposition applica-
tions. Besides, a full solution requires a more advanced component model, capable
of adapting to different resources organizations and optimizations in execution-time.

On this new component model, we are currently exploring the concept of separa-
tion of concerns of component models to define the SPMD programming approach
as a composition activity, rather than strong code coupling within the application
logic. The idea is to see parallelism and group communication mechanism as non-
functional aspects of the applications. By doing so, users take profit of the high-level
abstractions proposed by the DiscoGrid project and let the runtime handle the entire
communication and execution process, that can be entirely defined and optimized
in execution-time through non-functional aspects of components.

Even if the goals of the DiscoGrid project implied on the definition of a different
user interface and the evolution of the presented runtime, some of the concepts
proposed by the current work were adopted by the DiscoGrid project:

• the usage of components as the support to develop the runtime: different
partners have focused on other component models because the only GCM
implementation is based in Java and the communication implemented entirely
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in RMI, which can not be easily integrated with tools developed in other
languages;

• the collective communication mechanisms, implemented at component level;

• the concept of hierarchical identifiers: the DiscoGrid project decided to not
keep the idea of high-level communicators, because the basic concept of com-
municators does not cope with dynamic environments, but processes have the
same identification mechanism proposed in this work;

• the deployment mechanism: the extensions to the ProActive deployment are
being currently used to deploy DiscoGrid applications;

For this reason, we believe that this work brought important contributions and
that it can be seen as a successful first illustration of a new parallel programming
paradigm: the hierarchical message passing. Besides, the prototype can be seen as
a seed for the development of SPMD component-based software.
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APPENDIX A RESUMO DA DISSERTAÇÃO EM POR-
TUGUÊS

Nos últimos anos, a computação em Grades emergiu como uma forma de agre-
gar recursos distribúıdosde múltiplos domı́nios administrativos. Devido a natureza
heterogênea e distribúıda dos recursos, a computação em Grade aumentou a im-
portância dada a requisitos espećıficos da computação distribúıda (como descrito na
seção 2.1.3).

A.1 Problemática

Vários modelos de programação já foram propostos para programação de Grades.
Apesar disso, até agora, nenhum deles responde a todos os requisitos, principal-
mente dinamicidade, escalabilidade e desempenho. Como mencionado em (FOS-
TER; KESSELMAN, 1999),

Ambientes de Grade exigem uma nova percepção dos modelos de pro-
gramação existentes e, provavelmente novos modelos que correspondam
às caracteŕısticas de aplicações e ambientes de Grade.

De uma forma diferente, na área de computação de alto desempenho em car-
acteŕısticas, o modelo de passagem de mensagens se tornou um verdadeiro padrão
com um grande número de bibliotecas e aplicações legadas. Por esse motivo, o uso
de MPI para o desenvolvimento de aplicações para Grades tem sido investigado em
projetos de pesquisa e no meio industrial.

Por não ser um modelo de programação de alto ńıvel, o modelo de passagem
de mensagens carece de mecanismos que permitam o desenvolvimeno de aplicações
para Grades. Além disso, o padrão MPI foi concebido para utilização em ambi-
entes de cluster, não possuindo primitivas adaptadas para programar ambientes
de Grade envolvendo múltiplos domı́nios administrativos, que são inerentemente
hierárquicos (PEZZI et al., 2007). Opostamente ao modelo de passagem de men-
sagens, modelos baseados em componentes são capazes de oferecer funcionalidades
de outros modelos de programação (MOREL, 2006) (p.ex. modelo de passagem
de mensagens, objetos distribúıdos, serviços, workflow, etc.), além de contar com a
capacidade de encapsulamento de código. Então, pode-se argumentar que o mod-
elo de componentes é mais adequado à programação de middlewares para Grades
computacionais.
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A.2 Objetivos e Contribuições

Os principais objetivos desse trabalho de mestrado são:

• obter o alto desempenho, associado à alta aceitabilidade do padrão MPI, mel-
horado com extensões intuitivas que permitam à desenvolvedores projetar e
desenvolver aplicações para grades ou ”gridificar” aplicações existentes;

• com a flexibilidade de um runtime baseado em componentes, modelando a
hierarquia dos recursos dispońıveis e oferecendo suporte à comunicação inter-
cluster.

As principais contribuições desse trabalho incluem:

1. a definição de extensões intuitivas ao padrão MPI para comunicação hierárquica;

2. um suporte simplificado ao lançamento e controle da execução de aplicações
MPI em múltiplos clusters;

3. desenvolvimento de um framework baseado em componentes que ofereça su-
porte ao modelo de passagem de mensagens em ambientes multi-cluster através
de uma camada de software que modele a organização dos recursos;

4. desenvolvimento de aplicações que sirvam de teste e comprovem a utilidade
das extensões introduzidas nesse trabalho.

O principal objetivo desse trabalho não é competir com implementações exis-
tentes do padrão MPI e tampouco substituir o padrão MPI. O objetivo é oferecer
uma alternativa mais adaptada ao desenvolvimento de aplicações para grades e de
oferecer um runtime que suporte essas novas funcionalidades.

A.3 Projetos de pesquisa relacionados e ferramentas

Muitas das razões que motivaram esse trabalho, também motivaram vários pro-
jetos de pesquisa: a grande utilização do padrão MPI, sua interface simplificada
e o alto desempenho das implementações MPI. Mesmo que esses trabalhos tenham
diferentes abordagens, os trabalhos relacionados listado nas subseções seguintes bus-
cam a resolução e problemas relacionados a computação em Grades para permitir
uma utilização eficiente de MPI para desenvolver aplicações para Grades.

A maioria das implementações de MPI para grades são baseadas na imple-
mentação MPICH do padrão devido à sua organização modular. MPICH separa
a interface de programação e a camada de comunicação, a qual é chamada através
da ADL (acrônimo para Abstract Device Interface). Entre essas soluções, podemos
citar PACX-MPI, MPICH-G2 e GridMPI. As próximas subseções apresentam cada
um desses projetos e suas abordagens para permitir a utilização de MPI em grades
computacionais.
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A.3.1 PACX-MPI

PACX-MPI é desenvolvido no High Performance Computing Center of Stuttgart
(HLRS). PACX-MPI inclui daemons em cada cluster, os quais são responsáveis pelo
redirecionamento de mensagens entre os diferentes clusters. Os nós responsáveis
pelo redirecionamento de mensagens são definidos e configurados previamente à
execução para que sejam capazes de comunicar-se apesar de limitações de conexão,
como firewalls.

PACX-MPI é implementado como uma biblioteca que fica entre a aplicação
de usuários e a distribuição MPI instalada localmente nos clusters. Quando as
aplicações enviam mensagens, estas são interceptadas pela biblioteca PACX-MPI
que verifica a necessidade de contactar processos MPI executados em clusters dis-
tantes. Se as mensagens são enviadas no contexto de um cluster elas passam pela
camada de comunicação. Senão, elas são enviadas através dos daemons PACX-MPI.

PACX-MPI definiu um sistema de identificação dos processos MPI no qual cada
processo contém dois identificadores (ranks), um local e um global. A biblioteca
PACX-MPI decide, automaticamente quando utilizar cada um desses identificadores
de acordo com a topologia dos recursos e localização dos processos que se comunicam.
A figura A.1 mostra como esses identificadores são escolhidos.

Figure A.1: Sistema de identificações dos processos PACX-MPI

PACX-MPI não define extensões ao padrão MPI. Portanto, aplicações ditas
legadas podem ser executadas em Grades computacionais sem nenhuma modificação.

A.3.2 MPICH-G2

MPICH-G2 (KARONIS; TOONEN; FOSTER, 2003), desenvolvido no Computer
Science Department of the Northern Illinois University em conjunto com a Ar-
gonne National Laboratory é uma solução completa baseada em MPICH que utiliza
serviços do Globus Toolkit para permitir a execução de MPI em Grades computa-
cionais, baseado no middleware Globus.

A camada mais baixa dessa implementação é composta por serviços Globus re-
sponsáveis pela alocação de recursos (GRAM), autenticação (GSI) e comunicação,
quando a comunicação nativa não é posśıvel (GlobusIO). Acima desses serviços fica
a interface de programação MPICH, que por sua vez, é utilizada nas aplicações de
usuários. A figura A.2 mostra a pilha de softwares envolvidos nesse processo.

As principais funcionalidades oferecidas por MPICH-G2 inclui a gestão de am-
bientes multi-domı́nio e a comunicação de alto desempenho em ambientes het-
erogêneos. MPICH-G2 também inclui, na definição de propriedades dos processos
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Figure A.2: Arquitetura MPICH-G2

MPI, informações sobre a localização de processos na topologia geral de recursos.

A.3.3 GridMPI

GridMPI (MATSUDA; KUDOH; ISHIKAWA, 2003) é outra implementação de
MPI para Grades, desenvolvido pela University of Tokyo e o National Institute of
Advanced Industrial Science and Technology (AIST). GridMPI é projetado para o
desenvolvimento de aplicações de alto desempenho para Grades. GridMPI conecta
múltiplos clusters distribúıdos geograficamente para dar a impressão de um recurso
computacional paralelo único.

Um dos principais objetivos de GridMPI é realizar comunicações globais de
maneira eficiente através de otimizações que levam em conta a existência de conexões
com latência e vazão heterogêneas. Além disso GridMPI esconde detalhes da topolo-
gia de rede envolvida na aplicação. Para tal, GridMPI oferece variações de algorit-
mos que implementam as comunicações coletivas em ambientes heterogêneos.

A respeito de desempenho, de acordo com os usuários de (MATSUDA; KUDOH;
ISHIKAWA, 2003), GridMPI tem se mostrado a mais rápida entre as implementações
do padrão MPI em ambientes heterogêneos.

A.4 Proposta de programação hierárquica orientada a Grids

Antes de mais nada, é importante ressaltar que no contexto desse trabalho,
consideramos a hipótese de Grades computacionais são inerentemente organizadas
hierarquicamente (p.ex. uma grade pode ser considerada um grupo de nós multi-core
agrupados em nós de um cluster, que compões uma Infra-Estrutura de Grade maior
entre múltiplos domı́nios administrativos). Uma conseqüência imediata dessa orga-
nização é que o desempenho da rede conectando os nós não é homogênea, levando a
diferentes desempenhos de rede (latência e banda passante). Programadores são,
então, fortemente aconselhados a priorizar comunicação local em detrimento de
comunicações entre diferentes clusters. É importante citar também que esta es-
tratégia, apesar de simples, é uma boa abordagem para melhorar o desempenho de
aplicações (DONG; KARONIS; KARNIADAKIS, 2006).

Nesta seção, expomos as principais razões que levam à nossa abordagem. Em
seguida, apresentamos uma API simplificada assim como alguns detalhes da nossa
solução.
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A.5 Especificação

Como apresentado previamente, a intenção é manter, ao máximo, o estilo de
programação MPI. Para isso, propomos extensões de abstrações já existentes em
MPI, como comunicadores, rank de processos e o suporte para comunicação e de-
scoberta de topologias de tal forma que a complexidade associadas a Grades fique
transparentes e a biblioteca proposta

A.5.1 Novos comunicadores MPI

Idealmente, consideramos um Grid como uma arquitetura em camadas:

• o primeiro e mais baixo ńıvel (L1 por simplicidade) é caracterizado por cada
processador de um nó;

• o segundo ńıvel (L2) é representado por um nó, que potencialmente possui
vários elementos L1;

• o terceiro ńıvel (L3) consiste em um cluster. Tipicamente, cada cluster possui
entre algumas dezenas e milhares de nós, normalmente interconectados por
uma rede de alta velocidade;

• o quarto ńıvel (L4) consiste de um nó de uma grade computacional, potencial-
mente composto por vários clusters geograficamente próximos. Esses cluster
são tipicamente interconectados por uma rede dedicada de alto desempenho;

• o quinto ńıvel (L5) representa o Grid, que consiste em um pequeno número
de śıtios geográficos L4 (< 50). Esses nós L4 são tipicamente conectados
por uma rede WAN, e portanto apresentam maiores latências e uma banda
passante reduzida.

Como o sistema operacional gerencia recursos nos ńıveis L1 e o padrão MPI no
ńıvel L2, introduzimos dois novos comunicadores para L3 e L4:

• comunicador MPI COMM SITE: contém referências a todos os processos em nós
alocados no contexto de um site da grade;

• comunicador MPI COMM GRID: contém referência a todos processos no contexto
da grade como um todo..

No protótipo desenvolvido no mestrado, não existe suporte a primitivas MPI
como MPI Comm Split, MPI Comm Merge e MPI Comm Dup.

A figura A.3 mostra como os ranks são organizados em cada um desses comuni-
cadores. Esta é uma forma bastante simples, mas adequada de identificar os pro-
cessos MPI. Simples porque pode ser feito no momento de lançamento da aplicação,
fornecendo uma visão global do a,ambiente. Conveniente porque a abstração dos co-
municadores é mantida, o que torna fácil a utilização a programadores acostumados
com o padrão MPI.
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L4: Grid-Level Ranking (Global Ranking)

L2: Cluster-Level Ranking (Standard MPI)
L3: Site-Level Ranking (Site Ranking)

0

1

4
0

5
1

6
21 1

0

2

0

1

0

Site 0 Site 1
Cluster 0Cluster 0

Grid 0

MPI Process

2
20

Cluster 1

3
31

WAN
L
A
N

Figure A.3: Comunicadores Hierárquicos e Ranks

A.5.2 Novas primitivas MPI

Além da abstração dos comunicadores de mais alto ńıvel, inclúımos um grupo
de primitivas principalmente para descoberta da topologia de processos. Para citar
alguns exemplos:

• MPI ClusterInfo e MPI SiteInfo são estruturas de dados que contém in-
formações sobre processos em um cluster ou site, respectivamente;
MPI Comm getMyClusterInfo (MPI Comm comm, MPI ClusterInfo *) e
MPI Comm getMySiteInfo (MPI Comm comm, MPI SiteInfo *) podem ser uti-
lizados para obter as informações em relação aos processos que chamam essas
primitivas;

• MPI COMM SITE GATEWAYS e MPI COMM GRID GATEWAYS são comunicadores es-
peciais que agregam um nó em cada um dos clusters de um site ou dos sites da
grade (normalmente o rank 0). A intenção desses comunicadores ;e de oferecer
abstrações para tornar mais fácil a programação de aplicações hierárquicas;

• MPI Comm getNeighborhood (int rank1, int rank2, MPI Comm) pode ser
utilizada para obter a relação de vizinhança entre dois processos MPI ni con-
texto de um comunicador. Isto é, o numero de indireções necessárias para
enviar uma mensagem entre os dois processos, dada a atual organização da
grade.

• MPI Comm translate(int in rank, MPI Comm comm in, int* out rank,

MPI Comm comm out): cada processo possui diferentes ranks de acordo com
o contexto de comunicação. Essa primitiva permide a tradução de um rank
entre dois contextos diferentes.

Algumas primitivas MPI padrão continua válida com os novos comunicadores,
como MPI Comm rank e MPI Comm size. Entretanto o protótipo atual só suporta
as primitivas de comunicação mais utilizadas: MPI Send, MPI ISend, MPI Recv,
MPI IRecv, MPI Bcast, MPI Barrier MPI Scatter, MPI Scatterv, MPI Gather MPI Gatherv,
MPI Barrier e MPI Gatherv.
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A.6 Suporte a aplicações inalteradas

Algumas aplicações, ditas embarrassingly parallel não necessitam muita co-
municação entre processos. Além disso usuários podem estar interessados em exe-
cutar aplicações sem modificação. Para esses casos, definimos uma macro C (#UN-
MODIFIED). Essa macro pode ser adicionada a qualquer código fonte MPI e o
comunicador MPI COMM WORLD terá o mesmo comportamento de MPI COMM GRID.

A.7 Projeto e implementação do Runtime à Base de Com-
ponentes

Na seção precedente, introduzimos extensões ao padrão MPI para o desenvolvi-
mento de algoritmos adaptados a ambientes de grades computacionais. Para que
estas primitivas sejam efetivas, algumas funcionalidades são necessárias da parte do
runtime:

• lançamento das aplicações em múltiplos clusters;

• suporte às primitivas que oferecem informação sobre a topologia dos recursos;

• suporte à comunicação inter-cluster.

A.8 Prinćıpios

Uma série de prinćıpios guia o projeto e implementação desse runtime. Esses
prinćıpios são importantes para melhor compreender escolhas de projeto e imple-
mentação desse runtime:

1. Usar comunicação nativa MPI o máximo posśıvel;

2. Evitar indireções no processo de comunicação inter-cluster;

3. Tratamento hierárquico, principalmente das comunicações coletivas;

4. Problemas relacionados a utilização de Grades são transparentes para usuários.

A.9 Arquitetura de Software

O suporte às primitivas apresentadas previamente é baseado em uma arquitetura
de software em camadas, organizados como na figura A.4. Esta figura apresenta as
camadas de software presente em cada nó da Grade.

No topo se situa a aplicação final dos usuários, a qual acessa o runtime através
da interface MPI e as extensões propostas. Nesse ńıvel decide-se se a comunicação
vai ser feita utilizando a pilha MPI ou o nosso runtime, o qual é executado por
uma JVM. A camada mais abaixo é o sistema operacional que oferece suporte à
comunicação de baixo ńıvel.ss management and network.

As caixas em cinza indicam quais módulos foram produzidos no contexto desta
dissertação.
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Figure A.4: Arquitetura do framework

A.10 Infra-Estrutura de Componentes

O principal objetivo do runtime é oferecer suporte à comunicação inter-cluster de
maneira eficiente e transparente para usuários. Isso é alcançado através;es de uma
infra-estrutura de componentes que modela uma hierarquia de recursos alocados
para a execução de uma dada aplicação. Essa infra-estrutura é descentralizada e
apenas existe durante a execução de aplicações, sem necessidade de instalação de
software outra que uma distribuição MPI.

A.10.1 Componentes Básicos

Dois mecanismos são necessários à comunicação inter-cluster: (i) comunicação
entre os processos nativos MPI e o ambiente Java e vice-versa e (ii) roteamento de
mensagens através da rede. Cada uma dessas funcionalidades é oferecida por um
componente diferente:

• componente wrapper (Figura A.5.a) é o componente mais elementar. Ele
encapsula o processo MPI e é responsável pela comunicação MPI-Java. Isso
inclui o encapsulamento de mensagens brutas em objetos Java incluindo in-
formação que vai ser utilizada mais tarde no processo de roteamento.

Componentes do tipo wrapper apresentam apenas uma interface servidora
( Srv) e uma interface cliente Clnt, que são conectadas à um componente do
tipo clustering que representa o cluster no qual o processo MPI embalado e
o componente wrapper se encontram

• componente clustering (Figura A.5.b) é um componente genérico capaz de
agrupar componentes de ńıvel mais baixo. Nesse caso um componente clus-
tering no ńıvel 3 (L3) agrupa componentes L2 (componentes wrapper). Um
componente clustering L4 agrupa componentes clustering L3 e assim por
diante até que um componente clustering agrupe todos os componentes da
grade.

Componentes clustering apresentam uma interface servidor Srv que é re-
sponsável por receber requisições vindas de ambos os ńıveis, superior e in-
ferior. Do lado cliente, componentes clustering apresentam duas interfaces
cliente: uma para enviar mensagens ao ńıvel superior (interface GoUP ) e outra
para enviar mensagens ao ńıvel inferior (interface GoDown). Essas interfaces
tornam posśıvel aos componentes clustering de se comunicar com múltiplos
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componentes em paralelo e essa funcionalidade é utilizada na prática para
implementam a maioria das primitivas de comunicação coletiva MPI.

Srv Clnt Srv

GoDown

GoUp

a) b)

Figure A.5: a) Componente Wrapper b) Componente Clustering

Próximas seções mostram como estes componentes são acoplados para formar a
infra-estrutura necessária e como as comunicações inter-cluster acontecem.

A.10.2 Mapeando Recursos como Componentes

Como discutido previamente, a infra-estrutura de componentes é modelada para
refletir a organização de recursos, de tal forma que qualquer processo possa se comu-
nicar com qualquer processo, mesmo que indiretamente. Esse processo acontece em
momento de lançamento da aplicação na qual componentes wrapping são lançados
em cada nó onde um processo MPI vai ser executado e recebem um identificado
único, formado pelo identificador do ńıvel mais baixo da hierarquia e o identificador
MPI (rank) do processo correspondente.

A figura A.6 mostra um deployment simples em dois sites com dois e um cluster
respectivamente e sete nós para processamento. Cada ńıvel recebe um identificador,
que se soma ao identificador do ńıvel superior.

-
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0:10:0

0:0:10:0:0 0:1:10:1:0

1:0

1:0:21:0:11:0:0

Site Level (L4)

Cluster Level (L3) 

Node Level (L2)

Grid Level (L5)

Figure A.6: Identificação dos Recursos e Componentes

A figura A.7 mostra os componentes responsáveis pela encapsulamento e comu-
nicação inter-cluster. Por questões de clareza, apenas os componentes lançados na
parte esquerda do grid hipotético (site ’0’ of the figure A.6) são representados.

Nessa organização, existe um componente wrapper (L2, em branco) para cada
processo MPI, um componente clustering para cada cluster e um componente clus-
tering L4 para todo o site. De maneira geral, componentes clustering são lançados
nos frontends dos clusters (por padrão o nó 0, ou o n;o que é definido manualmente).
Na configuração padrão, a comunicação entre os componentes é feita utilizando o
protocolo RMI, mas outros protocolos podem ser utilizados (rmissh, ibis, http or
even soap), especialmente quando o protocolo RMI não é autorizado.
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Figure A.7: Organização dos Componentes

A.11 Message Routing over the Grid

Depois do lançamento do ambiente, uma visão global pode ser constrúıda e cada
processo possui a visão local da topologia através do mapeamento entre comuni-
cadores e os identificadores únicos. A tabela seguinte mostra no exemplo, a tabela
de identificadores que estaria estocada nos nós 0:1:0 e 0:1:1.

Table A.1: Mapeamento de identificadores de componentes para comunicadores
hierárquicos

Baseado nessa tabela, decisões de roteamento são domadas e as mensagens ou
seguem a comunicação MPI (se estiverem no mesmo cluster), ou a comunicação
através dos componentes.

A.11.1 Mensagens ponto-a-ponto

Devido à existência dos identificadores únicos, o roteamento mensagens ponto-a-
ponto é simples. asta a comparação do identificador destino com o local. Se os sois
valores iniciais são idênticos, a mensagem é enviada através de uma comunicação
simples MPI Send. Senão, o componente wrapper se encarregará da comunicação.

A comunicação por parte de componentes wrappers ocorre em duas etapas:
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1. Obtenção da referência do componente wrapper remoto através da interface
GoUp.

2. Envio de mensagem de forma direta ao componente wrapper equivalente ao
processo de destino.

No caso de impossibilidade de comunicação direta, a mensagem é enviada através
da infra-estrutura de componentes até que ela chega ao seu destino. No processo
receptor, o componente wrapper verifica a origem da mensagem e passa a mesma ao
processo que executa na mesma máquina.

A.11.2 Collective Messages

Da mesma forma que o padrão MPI, primitivas de comunicação coletiva ocor-
rem no contexto de um dado comunicador e todos os processos deste comunicador
devem participar. O roteamento de comunicações coletivas é mais complexo do que
comunicações ponto-a-ponto e depende to tipo de comunicação coletiva.

• Broadcast e Scatter: componentes wrappers correspondentes aos processos en-
volvidos em uma comunicação broadcast tem dois comportamentos distintos.
Componentes não-root apenas esperam pela mensagem e o componente root
inclui na mensagem informações sobre o tipo de operação e seu identificador
e envia aos ńıveis superiores através de sua interface cliente GoUp. Essa men-
sagem é retransmitida até que chegue ao ńıvel correspondente ao comunicador
no qual a comunicação ocorre. Uma vez que a mensagem chega nesse com-
ponente clustering, ele envia a mensagem a todos os processos em paralelo
através de sua interface cliente GoDown. O recebimento da notificação equiv-
alente à essa mensagem no wrapper root da operação desbloqueia o processo
root.

Na comunicação do tipo scatter, o mesmo processo ocorre, mas ao invés de
enviar toda a mensagem a cada ńıvel, somente as partes da mensagem a serem
transmitidas são transmitidas.

• Gather e Reduce: no caso de comunicações do tipo gather, o comportamento e
exatamente o oposto. O componente wrapper do processo root espera simples-
mente por uma mensagem e todos os demais processos (e por conseqüência os
componentes) enviam através da interface cliente GoUp sua parte dos dados.
O componente clustering de mais alto ńıvel do comunicador fica bloqueado
até que todas as mensagens chegam, ordenando as mensagens à medida que as
mesmas chegam, baseado nas meta-informações contidas nas mensagens, que
inclui a origem de cada mensagem. A mensagem completa é, então enviada ao
componente root e uma mensagem de acknowledgement é enviada aos demais
processos para que eles desbloqueiem.

O mesmo ocorre com primitivas do tipo Reduce, mas os componentes clustering
intermediários reduzem os dados, se posśıvel, antes de passarem aos próximos
componentes na cadeia.

• Barrier: no caso de operações do tipo barrier, o comportamento dos nós é sim-
ilar ao broadcast, cada nó envia uma mensagem até o componente clustering
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de mais alto ńıvel e espera por uma confirmação de recebimento. O compor-
tamento do componente clustering é similar ao comportamento de gathering,
uma vez que ele recebe todas as mensagens ele envia a confirmação para des-
bloquear todos os processos do comunicador.

Cada componente do tipo clustering possui uma fila para armazenar mensagens
coletivas. O tratamento de mensagens obedece a um ordenamento FIFO não-
bloqueante de forma que o ordenamento de mensagens definido pelo padrão MPI
seja obedecido. A chegada de uma mensagem relativa a uma chamada coletiva que
depende da recepção de múltiplas mensagens desencadeia a criação de uma entrada
na fila para tratar essa chamada, sendo que quando o total de mensagem é recebida,
a mensagem é despachada, caracterizando o comportamento não-bloqueante.

A.12 Avaliação

Os resultados obtidos na avaliação do runtime desenvolvido no contexto dessa
dissertação mostram que a sobrecarga gerada pela camada de componentes é neg-
liǵıvel. Entretanto, em infra-estruturas multi-cluster, eles impactam o desempenho
geral de aplicações. Este fato aumenta a importância das otimizações do runtime
que garantem uma comunicação direta entre componentes sempre que posśıvel. O
tratamento hierárquico das comunicações coletivas também;em mostrou ganhos sig-
nificativos de desempenho.

Os resultados obtidos em experimentos mostraram que aplicações paralelas do
tipo non-embarrassingly devem ser gridificadas para obter vantagens da utilização
de recursos em múltiplos clusters, de tal forma que possam apresentar uma boa
escalabilidade em recursos de Grade.

Uma análise qualitativa mostrou que, embora com abordagens bastante difer-
entes, nossa solução apresenta a maioria das funcionalidades oferecidas pelos tra-
balhos relacionados. Isto mostra que o caráter geral da nossa solução, a qual pode
ser utilizada em diferentes contextos de grades para o desenvolvimento de diferentes
tipos de aplicações paralelas.

Mais informações sobre a avaliação do trabalho e resultados podem ser encon-
trados no caṕıtulo 7.

A.13 Conclusão

A natureza heterogênea e hierárquica de grades computacionais aumenta a im-
portância de problemas e, principalmente, a necessidade de modelos de programação
adequados. Devido a alta aceitação do modelo de passagem de mensagens e do
padrão MPI como o paradigma padrão para desenvolver aplicações de alto desem-
penho, a idéia de usar MPI em grades computacionais tem sido objeto de pesquisa
atualmente.

Até agora, a principal abordagem para MPI em grades tem sido a utilização de
aplicações não modificadas. De um lado isso pode facilitar a utilização de aplicações
existentes, mas por outro lado, algoritmos paralelos devem refletir a topologia de
recursos para apresentarem um bom desempenho e escalabilidade. Apesar desse
requisito, identificamos uma falta de mecanismos e abstrações que permitissem o
desenvolvimento de aplicações MPI hierárquicas para grids acompanhado de outros
modelos mais apropriados à ambientes de grade, como o de componentes .
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Nesse contexto, propomos um modelo h́ıbrido através de extensões ao padrão
MPI que permitem a utilização do modelo de passagem de mensagens de forma
hierárquica assim como um framework baseado em componentes suportando as
funcionalidades introduzidas. Esse protótipo fez uso do middleware para grades
ProActive e de seu suporte ao lançamento de aplicações em grades, encapsulamento
de código nativo e a implementação de GCM.

Or resultados de desempenho obtidos mostram que a sobrecarga gerada pelo
uso de componentes não é negliǵıvel, mas dentro do esperado. Pode-se, inclusive,
esperar que os benef́ıcios em termos de desempenho para aplicações sejam superiores
à perda de desempenho. Entretanto, aplicações, especialmente non-embarrassingly
devem levar em conta a topologia de recursos.
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APPENDIX B DEPLOYMENT SCHEMA

The following piece of XML Schema (.xsd) defines the dependent process (pre-
sented in the section 6.3)

.........

<!-- mpiProcessType -->

<xs:complexType name="mpiProcessType" mixed="true">

<xs:all>

<xs:element minOccurs="1" ref="commandPath" />

<xs:element minOccurs="1" name="mpiOptions"

type="mpiOptionsType" />

</xs:all>

<xs:attribute

fixed="org.objectweb.proactive.core.process.mpi.MPIDependentProcess"

name="class" type="xs:string" use="required" />

<xs:attribute name="mpiFileName" type="xs:string"

use="required" />

<xs:attribute name="hostsFileName" type="xs:string"

use="optional" />

<xs:attribute name="mpiCommandOptions" type="xs:string"

use="optional" />

</xs:complexType>

<!--mpiOptions-->

<xs:complexType name="mpiOptionsType" mixed="true">

<xs:all>

<xs:element minOccurs="1" name="processNumber"

type="PosintOrVariableType" />

<xs:element minOccurs="0" name="nolocal"

type="TextOrVariableType" />

<xs:element minOccurs="1" name="localRelativePath"

type="FilePathType" />

<xs:element minOccurs="0" name="remoteAbsolutePath"

type="FilePathType" />

</xs:all>

</xs:complexType>

<!-- end mpiOptions-->

<!-- end of mpiProcessType -->
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<!-- dependentProcessSequenceType -->

<xs:complexType name="dependentProcessSequenceType" mixed="true">

<xs:sequence>

<xs:choice minOccurs="1">

<xs:element name="serviceReference"

type="ServiceReferenceType" />

<xs:element ref="processReference" />

</xs:choice>

<xs:element maxOccurs="unbounded" ref="processReference" />

</xs:sequence>

<xs:attribute

fixed="org.objectweb.proactive.core.process.DependentListProcess"

name="class" type="xs:string" use="required" />

</xs:complexType>

<!-- end of dependentProcessSequenceType -->

.........
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APPENDIX C FLAT MONTECARLO CODE SAM-
PLE

...

MPI_Init (&argc, &argv); /* starts MPI */

MPI_Comm_rank (MPI_COMM_GRID, &rank); /* get current process id */

if(rank != 0){

/*pi calculation in all nodes but the coordinator*/

}

/*reduce on node 0 of grid the average of results*/

MPI_Reduce(sendbuff,recvbuff,1,MPI_DOUBLE,MPI_AVG,

0,MPI_COMM_GRID);

MPI_Finalize();

...
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APPENDIX D HIERARCHICAL MONTECARLO CODE
SAMPLE

#include<pampi.h>

...

MPI_Init (&argc, &argv); /* starts MPI */

/* get current process grid_id */

MPI_Comm_rank (MPI_COMM_GRID, &grid_rank);

/* get current process gateway_id */

MPI_Comm_rank (MPI_COMM_GRID_GATEWAYS, &gateway_rank);

...

if(grid_rank != 0 && gateway_rank < 0){

/*pi calculation in all nodes but the coordinators*/

}

/*reduce first on each site, node 0 is also the gateway*/

MPI_Reduce(sendbuff,recvbuff,1,MPI_DOUBLE,

MPI_AVG,0,MPI_COMM_SITE);

/*reduce on node 0 of grid the average of results in sites*/

if(gateway_rank >= 0){

MPI_Reduce(recvbuff,result,1,MPI_DOUBLE,MPI_AVG,

0,MPI_COMM_GRID_GATEWAYS);

}

...

MPI_Finalize();

...
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APPENDIX E FLAT MERGESORT CODE SAMPLE

#include<pampi.h>

...

#define UNMODIFIED 1

...

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&id);

MPI_Comm_size(MPI_COMM_WORLD,&p);

...

if(id==0)

{

/*bradcast buffer size*/

MPI_Bcast(&s,1,MPI_INT,0,MPI_COMM_WORLD);

/*scatter data to all the processes*/

MPI_Scatter(data,s,MPI_INT,chunk,s,MPI_INT,0,MPI_COMM_WORLD);

for(i=0; i<(p-1); i++){

/*receive ordered chunk*/

MPI_Recv(temp_chunk, s, MPI_INT, MPI_ANY_SOURCE,

0, MPI_COMM_WORLD, &stat);

/*merge received chunk on local buffer*/

}

...

}else{

/*Receive buffer size*/

MPI_Bcast(&s,1,MPI_INT,0,MPI_COMM_WORLD);

/**receive data from scatter/

MPI_Scatter(data,s,MPI_INT,chunk,s,MPI_INT,0,MPI_COMM_WORLD);

/*order chunk locally*/

/*send ordered chunk to master*/

MPI_Send(chunk,s,MPI_INT,0,0,MPI_COMM_WORLD);

}
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...

MPI_Finalize();
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APPENDIX F HIERARCHICAL MERGESORT CODE
SAMPLE

#include<pampi.h>

...

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_GRID_GATEWAYS, &grid_gateway_rank);

MPI_Comm_size(MPI_COMM_GRID_GATEWAYS, &site_num);

MPI_Comm_rank(MPI_COMM_SITE_GATEWAYS, &site_gateway_rank);

MPI_Comm_size(MPI_COMM_SITE_GATEWAYS, &cluster_num);

...

/*grid coordinator*/

if(grid_gateway_rank == 0)

{

/*bradcast buffer size to sites*/

MPI_Bcast(&s1,1,MPI_INT,0,MPI_COMM_GRID_GATEWAYS);

/*scatter data to sites*/

MPI_Scatter(data,s1,MPI_INT,chunk,s1,MPI_INT,0,MPI_GRID_GATEWAYS);

/*receive ordered chunk*/

for(i=0; i<(site_num-1); i++){

MPI_Recv(temp_chunk, s, MPI_INT, MPI_ANY_SOURCE,

0, MPI_GRID_GATEWAYS, &stat);

/*merge received chunk on local buffer*/

}

...

}else

/*site coordinator*/

if (grid_gateway_rank >= 0)

{

/*Receive buffer size*/
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MPI_Bcast(&s1,1,MPI_INT,0,MPI_COMM_GRID_GATEWAYS);

/*bradcast buffer size to clusters*/

MPI_Bcast(&s2,1,MPI_INT,0,MPI_COMM_SITE_GATEWAYS);

/*receive data on sites*/

MPI_Scatter(data,s1,MPI_INT,chunk,s1,MPI_INT,0,MPI_GRID_GATEWAYS);

...

/*scatter data to clusters*/

MPI_Scatter(data,s2,MPI_INT,chunk,s2,MPI_INT,0,MPI_SITE_GATEWAYS);

for(i=0; i<(cluster_num-1); i++){

/*receive ordered chunk*/

MPI_Recv(temp_chunk, s2, MPI_INT, MPI_ANY_SOURCE,

0, MPI_SITE_GATEWAYS, &stat);

/*merge received chunk on local buffer*/

}

MPI_Send(chunk,s1,MPI_INT,0,0,MPI_GRID_GATEWAYS);

...

} else

/*cluster coordinator*/

if (cluster_gateway_rank >= 0)

{

/*Receive buffer size*/

MPI_Bcast(&s2,1,MPI_INT,0,MPI_COMM_SITE_GATEWAYS);

/*bradcast buffer size to clusters*/

MPI_Bcast(&s3,1,MPI_INT,0,MPI_COMM_CLUSTER);

/*receive data on sites*/

MPI_Scatter(data,s2,MPI_INT,chunk,s2,MPI_INT,0,MPI_SITE_GATEWAYS);

...

/*scatter data to computing nodes*/

MPI_Scatter(data,s3,MPI_INT,chunk,s3,MPI_INT,0,MPI_COM_CLUSTER);

for(i=0; i<(cluster_num-1); i++){

/*receive ordered chunk*/

MPI_Recv(temp_chunk, s3, MPI_INT, MPI_ANY_SOURCE,

0, MPI_COMM_CLUSTERS, &stat);

/*merge received chunk on local buffer*/

}

MPI_Send(chunk,s2,MPI_INT,0,0,MPI_SITE_GATEWAYS);

...
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}

/*computing nodes*/

else{

/*Receive buffer size*/

MPI_Bcast(&s3,1,MPI_INT,0,MPI_COMM_WORLD);

/**receive data from scatter/

MPI_Scatter(data,s3,MPI_INT,chunk,s3,MPI_INT,0,MPI_COMM_CLUSTER);

/*order chunk locally*/

/*send ordered chunk to master*/

MPI_Send(chunk,s3,MPI_INT,0,0,MPI_COMM_CLUSTER);

}

...

MPI_Finalize();
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