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Abstract 

Streptomyces sp. R18(6) and Streptomyces sp. 6(4) strains were evaluated for their ability to control brown spot 
and common root rot caused by Bipolaris sorokiniana in wheat crops. The antifungal activity of these isolates 
was tested using a double-layer assay and culture pairing at 28 °C. Physiological and enzymatic activity 
performed through siderophore, indole-3-acetic acid, nitrogen fixation and phosphate solubilization tests. The 
biocontrol of the disease and growth-promoting efficiency of wheat seedlings were assessed using in vivo assays 
in a greenhouse. In the culture pairing assays, both strains inhibited B. sorokiniana mycelial growth, while in the 
double-layer only Streptomyces sp. R18(6). Streptomyces sp. 6(4) produced auxin, siderophores, fixed nitrogen 
and solubilized phosphate, whereas R18(6) did not produce siderophores. In the greenhouse assays, strain R18(6) 
showed statistical differences in shoot dry mass and root dry mass compared with those of strain 6(4) in the 
presence of the phytopathogen (P ≤ 0.05), and these results were more evident when the environmental 
temperature was higher. In the absence of the phytopathogen, Streptomyces sp. 6(4) strain increased the root dry 
mass compared with that of the control during the same period. Therefore, these isolates can potentially control 
root rot and brown spotting and may promote the growth of wheat plants. 

Keywords: Actinobacteria, Bipolaris sorokiniana, Triticum aestivum L., biocontrol brown spot, growth 
promoting 

1. Introduction 

Wheat is the second largest cultivated crop in the world (MAPA, 2016) mainly due to its presence in the diets of 
most nations (BNDES, 2016). As such, wheat is of vital importance to the global agricultural economy. The 
cultivation of this cereal is subject to diseases that compromise its production. Among these diseases are those 
caused by the phytopathogenic fungus Bipolaris sorokiniana. 

The fungus Cochliobolus sativus is the teleomorph of B. sorokiniana (anamorph), which is the causal agent of 
brown spot, seed rot, and common root rot in wheat (Reis, 1988; Rashid et al., 2004; Duveiller et al., 2005). 
These diseases cause high losses in the production of this cereal (Reis & Casa, 2005). Bipolaris sorokiniana 
affects wheat and barley crops in various parts of the world, including Brazil, Canada, Australia, Europe, Asia 
and Africa (Diehl et al., 1982; Zillinsky, 1984; Stubbs et al., 1986; Reis, 1988; Tinline et al., 1988; Agrios, 1997).  

The extensive use of fungicides to control diseases in crop plantations has resulted in resistant fungi, which has 
led to the accumulation of compounds potentially dangerous to both humans and the environment and as well 
increases in the costs of crop production. Biological control is an efficient and sustainable alternative for disease 
control in plants. Different non-pathogenic microbial species of Bacillus spp., Pseudomonas spp., Trichoderma 
spp., Streptomyces spp. and Fusarium spp. have been effectively used to control soil-borne phytopathogens 
(Paulitz & Belanger 2001; Haas & Keel, 2003; Jacobsen et al., 2004; Raza et al., 2013).  

The phylum of Actinobacteria presents essential characteristics for biocontrol, including the ability to produce 
antifungal metabolites in the rhizosphere, promote plant growth, fix nitrogen, solubilize phosphates and produce 
siderophores and phytohormones (Patten & Glick, 2002; Tokala et al., 2002; Hamdali et al., 2008a; Chater et al., 
2010). Active metabolites produced by species of Streptomyces compose approximately 60% of the products 
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used in agriculture (Ilic et al., 2007). Different studies have implicated various species of Streptomyces as 
biocontrol agents and plant growth promoters (Shrivastava et al., 2015; Sangdee et al., 2016; Shen et al., 2016; 
Toumatia et al., 2016).  

The goal of this study was to evaluate the potential of two actinobacteria strains for controlling brown spot and 
common root rot in wheat plants and for promoting the growth of these plants under greenhouse conditions. 

2. Materials and methods 

2.1 Isolates 

Fungal isolates Bipolaris sorokiniana 98004 (Cruz Alta - RS), 98012 (Lagoa Vermelha - RS) and 98032 
(Engenheiro Beltrão - PR) were selected based on results obtained in previous pathogenicity tests (Minotto et al., 
2014).  

Two actinobacterial strains were isolated from the roots of healthy tomato plants by Oliveira et al. (2010). These 
isolates were recovered on plates containing starch casein agar (SCA: 10 g of starch, 0.3 g of casein, 2.0 g of 
KNO3, 2.0 g of NaCl, 2 g of K2HPO4, 0.05 g of MgSO4·H2O, 0.02 g of CaCO3, 0.01 g of FeSO4·7H2O, 15 g of 
agar and distilled water up to 1L), incubated at 28 °C for 7 days. A partial 16S rDNA of the two strains were 
sequenced and deposited in the GenBank database under the accession numbers KY549728 (Streptomyces sp. 
strain R18(6)) and KY549799 (Streptomyces sp. strain 6(4)).  

2.2 Production of Fungal Inoculum 

Bipolaris sorokiniana strains were inoculated on plates containing carrot agar (200 g of crushed and ground 
carrot, 200 mL of distilled water and 4 g of agar) and incubated for 10 days at 28±2 °C under a photoperiod of 
12 h (12 h light/12 h dark). After incubation, 5 mL of sterile saline solution (0.9%) containing Tween-20 
surfactant (polyoxyethylene sorbitan monooleate) was added to the colonies and spread with a Drigalski loop. 
The final spore concentration was adjusted to 104 spores/mL by counting conidia using a Neubauer chamber. 

2.3 Antifungal Activity 

The antifungal activity of the actinobacterial isolates was determined using plate diffusion method and a 
double-layer assay as well as by the pairing of cultures. Under aseptic conditions, the Streptomyces sp. strains 
R18(6), and 6(4) were spot-inoculated onto SCA (Starch casein agar) medium and incubated for 7 days at 28 °C. 
After this period, the antagonism between the actinobacteria and B. sorokiniana strains (98004, 98012 and 98032) 
was evaluated using the double-layer agar method. For this procedure, 10 mL of potato dextrose agar (PDA) 
overlay medium was inoculated with 104 spores/mL fungal suspension. The plates were incubated for 4 days at 
28 °C in the absence of light. The antifungal index was determined by the halo/colony ratio, obtained by the ratio 
of the mean of halo diameter by the mean of colony diameter (Rosato et al., 1981).  

For the culture pairing assays, discs 5 mm in diameter containing B. sorokiniana (98004) were transferred to 
plates containing PDA medium at a distance of 1 cm from the edge of the dish. At the same time,  at the 
opposite side of the dish, the actinobacteria was also inoculated. Plates were then incubated at 28 °C for 10 days. 
The inhibition of fungal growth (%) was calculated using the formula (R1 – R2/R1) × 100, where R1 is the 
radial growth of inoculated fungi without exposure to actinobacteria and R2 is the radial growth of fungi 
inoculated with actinobacteria. The assay control consisted of a PDA plate inoculated with the B. sorokiniana 
and a plate for each actinobacteria strain, in the same manner as described before. Culture growth was observed 
every day until it covered the entire surface of the plate. The experiment was carried out in triplicate.  

2.4 Phosphate Solubilization 

Phosphate solubilization assays were performed following the protocol of Nautiyal (1999). Plates containing 
NBRIP medium were inoculated with the actinobacterial isolates and incubated at 28 °C for 21 days. The assay 
was performed in triplicate, and the evaluation determined by the presence or absence of halos under colony 
growth.  

2.5 Siderophore Production 

Siderophore assays were performed by the method proposed by Schwyn and Neilands (1987) modified by 
Silva-Stenico et al. (2005). B. sorokiniana strains were inoculated onto King B medium adapted by Glickmann 
and Dessaux (1995) (1 g of peptone, 0.0575 g of K2HPO4, 0.075 g of MgSO4, 0.75 g of glycerol and 250 mL of 
distilled water [pH 6.8]). One milliliter aliquots were withdrawn every 48 h, placed in microcentrifuge tubes and 
centrifuged at 13,000 rpm for 5 min. Afterward, 500 μL of the supernatant was transferred to new tubes 
containing 500 μL of chromoazurol-S (CAS) dye (To prepare the CAS dye, 60.5 mg of CAS in 50 mL of 
distilled water was added to 10 mL of FeCl3 solution; the solution was then stirred, and a solution of 72.9 mg of 



jas.ccsenet.org Journal of Agricultural Science Vol. 9, No. 12; 2017 

231 

hexadecyltrimethylammonium bromide [CTAB] previously dissolved in 40 mL of water was slowly added, after 
which the solution was autoclaved for 15 min.). A positive reaction was indicated by the change in color from 
blue to orange or yellow during a period of 15-30 min.  

2.6 Auxin Production 

Auxin evaluation was carried out by the method of Gordon and Weber (1951). The isolates were previously 
grown in 10% tryptic soy broth medium supplemented with 5 mM tryptophan and incubated at 28 °C under 
agitation at 115 rpm. Every 48 h for 264 h, 2 mL of the culture was transferred to a microcentrifuge tube and 
centrifuged at 13,000 rpm for 5 min. Auxin production was determined by transferring 500 μL of the supernatant 
to tubes containing 500 μL of Salkowski reagent (2.4 g of FeCl3 and 84.2 mL of H2SO4). The tubes were stored 
in the dark at room temperature for 30 min, and the color intensity was determined spectrophotometrically at λ = 
520 nm. A calibration curve was prepared using different concentrations of auxin (0.2, 5.625, 11.25, 22.55 and 
45 μg/mL). 

2.7 Nitrogen Fixation 

The two actinobacterial strains were cultured in cotton-capped penicillin tubes containing 10 mL of NFb medium 
(Döbereiner et al., 1995) incubated at 28 °C and evaluated after 14 days.  

2.8. Seed Infestation 

Seeds were subjected to surface disinfestation by immersion in 70% ethanol (2 min) and 2.5% sodium 
hypochlorite (2 min) followed by three consecutive washes with sterile distilled water. The fungal strains were 
multiplied in casein starch broth at 28±2 °C under agitation at 115 rpm for 72 h. After this period, 5 mL of the 
suspension was transferred to new flasks containing 50 mL of the same culture medium and then incubated 
under the same conditions as above. Afterward, the concentration of propagules was 108 colony forming units 
(CFU)/mL. Seed infestation was performed by depositing 25 seeds in this suspension and maintaining it under 
stirring for 4 h at 25 °C.  

2.9 In vitro Colonization of Wheat Seedlings by Actinobacteria Strains R18(6) and 6(4) 

To evaluate the ability of the isolates to colonize the wheat plantlet root system, we followed the protocol 
described by Queiroz et al. (2006), with modifications. The seeds of wheat cultivars Tbio Mestre and Marfim 
were disinfested, dried on sterile filter paper and infested with the actinobacteria strains. Afterward, one of the 
seeds was transferred to test tubes containing agar-water culture medium (0.6%). The tubes were incubated for 
germination at 25 °C for 7 days under 12-h photoperiod. The evaluation was carried out by observing the tubes 
for medium turbidity around the root system, which indicates the presence of the bacterial growth. The presence 
of microorganisms colonizing the surface and internal tissues of the roots were observed by cutting the roots into 
small fragments (2-3 cm) and deposited in Petri dishes containing SCA culture medium. The experimental 
design of this assay was completely randomized, involving the two actinobacteria and five replicates. The 
control consisted of disinfected seeds immersed in saline solution. 

2.10 Greenhouse Assay 

The experiment was performed in a greenhouse of the Department of Phytosanitary at Faculty of 
Agronomy/Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil in April to June and 
June to August of 2016. The assays were performed in disposable plastic cups (500 mL) with Green Plus® 
substrate composed of soil and expanded vermiculite (1:1). In each pot, five wheat seeds of the cultivar TBio 
Mestre were sown following the description each treatment. After the germination of the seeds, thinning was 
performed, leaving two seedlings per pot. The experiments were maintained for nine weeks. 

A B. sorokiniana suspension of 104 spores/mL of isolate 98004 was prepared, and infestation was applied in two 
ways: 1) substrate inoculation using the fungal suspension at the sowing groove or 2) spraying of the suspension 
onto the aerial portion of the plant with an atomizer (air compressor model AS 176 [40 psi] and Steula BC64 
pistol) at a distance of 40 cm from the leaves.  

To accomplish this study, seven treatments were designed for each actinobacterium isolate: treatment 1 (growth 
promoter), seeds microbiolized with actinobacteria isolate; treatment 2, seeds microbiolized with 
actinobacteria/B. sorokiniana inoculated in the substrate; treatment 3, seeds microbiolized with actinobacteria/B. 
sorokiniana infestation by aerial spraying; treatment 4, seeds microbiolized with actinobacteria suspension at 
planting/B. sorokiniana infestation by aerial spraying; treatment 5 (control), seeds without actinobacteria; 
treatment 6 (control), seeds infested with B. sorokiniana at planting; and treatment 7 (control), seeds without 
microbiolization of actinobacteria/B. sorokiniana infestation by aerial spraying. 
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Table 2. Average dry weight and root length for each treatment during the periods of April-June and June-August 

Treatment 

April-June June-August 

Dry root weight (mg)  Root lenght (cm) Dry root weight (mg)  Root lenght (cm) 

6(4) R18(6)  6(4) R18(6) 6(4) R18(6)  6(4) R18(6) 

1 370 a 320 a  21.9 ab 22.4 ab 120 a 160 a  27 a 35.2 a 

2 100 c *250 b  19.2 bc 20.9 bc 90 b *120 a  30.8 a 28.1 a 

3 90 c 80 c  19.9 bc 18.3 bc 60 c 60 c  27.7 a 25.2 a 

4 90 c 100 c  27.9 a 20.4 bc 60 c 70 c  28.6 a 30.1 a 

5 250 b  25.5 a  140 a  25.9 a 

6 110 c  16.17 c 90 b  29.2 a 

7 90 c  21.1 bc 50 c  27.6 a 

Note. (1) Seeds infested with R18(6) or (4); (2) seeds infested with R18(6) or 6(4)/B. sorokiniana in the substrate; 
(3) seeds infested with R18(6) or 6(4)/B. sorokiniana infested by aerial spraying; (4) seeds infested with R18(6) 
or 6(4) suspension at planting/B. sorokiniana infested by aerial spraying; (5) seeds without infestation (control); 
(6) seeds infested with B. sorokiniana (control); (7) seeds without infestation/spraying of B. sorokiniana (control). 
* Significant statistical difference between the bacteria by the Bonferroni test (P ≤ 0.05). Means followed by same 
letters in the column do not differ statistically from each other by the Bonferroni test (P ≤ 0.05). 

 

In treatment 1 (absence of phytopathogen), there were statistical differences between Streptomyces strain 6(4) 
and R18(6) compared with the control (P ≤ 0.05) regarding root dry mass (Table 2) and shoot height (Table 1), 
indicating growth promotion.  

Plants infested by spraying the phytopathogen onto the shoot (treatments 3, 4 and 7) were submitted to ImageJ 
software and the injured of leaf area estimated. With the results, it was possible to observe that in the treatments 
where the suspension of Streptomyces sp. 6 (4) was applied in the sowing groove the best result was obtained 
with the smallest area injured by the phytopathogen (Table 3, Figure 4). The treatment without application of the 
antagonist showed a greater severity of the disease in the leaves, comprising from 31.9% to 41.43% of the 
injured area (Table 3). These results indicate that the application of the antagonist to the sowing groove interferes 
with the resistance and protection of the plant against the phytopathogen B. sorokiniana (Figure 5). 

 

Table 3. Porcentage of injure leaf área with Bipolaris sorokiana after inoculation with the Streptomyces sp. atrain 
R18(6) and 6(4) 

Tratamentos 
% of injure leaf area 

1ª evaluation 2ª evaluation 3ª evaluation 

Microbiolized wheat seed Streptomyces strain 6(4) 11.14 11.63 19.61 

Microbiolized wheat seed Streptomyces strain R18(6) 14.31 29.10 43.79 

Inoculation of Streptomyces strain 6(4) in the sowing groove 5.60 6.00 9.69 

Inoculation of Streptomyces strain R18(6) in the sowing groove 9.01 17.16 27.80 

Absence of antagonist microorganism 31.91 38.73 41.43 
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metabolites.  

Lu et al. (2016) reported in their experiment that 24% of actinobacteria isolates inhibited the mycelial growth of 
Fusarium oxysporum f. sp. cucumerium in PDA medium and that 84% of these isolates belonged to the genus 
Streptomyces. Taechowisan et al. (2003) performed a direct comparison of endophytic actinomycetes cultures with 
antifungal activity and reported that most of the isolates also belong to the genus Streptomyces. 

Root colonization and auxin production by the R18(6) and 6(4) strains may have influenced the increase in root dry 
mass in treatment 1, treatment 5 and the control in the assay done in during April to June (Table 2).  

Various Streptomyces species, such as Streptomyces olivaceoviridi, Streptomyces rimosus and Streptomyces rochei, 
isolated from the tomato rhizosphere can produce EIA and improve plant growth by increasing germination, root 
elongation and root dry weight (El-Tarabily, 2008). 

Strain R18(6) influenced the increase of aerial dry mass of wheat plants, even in the presence of the phytopathogen 
(Treatment 2, Table 1-assay April-June). According to studies by Jog et al. (2014), Gopalakrishnan et al. (2013, 
2014) and Palaniyandi et al. (2014), the inoculation of Streptomyces isolates with crops such as rice, wheat, 
sorghum and tomato increases the biomass of these plants. The actinobacterial isolate also exhibited other 
properties associated with biological control agents and plant growth, such as the ability to solubilize phosphates 
and to produce siderophores. Phosphate deficiency is a limiting factor in agricultural production; therefore, 
phosphorus solubilization and mineralization by bacteria are important features of plant growth-promoting 
bacteria (PGPB) (Richardson, 2001; Hamdali et al., 2008b). Actinobacteria such as Streptomyces and 
Micromonospora have been reported to be phosphate solubilizers (Hamdali et al., 2008a). Hamdali et al. (2008a) 
reported that the actinobacterial strain Micromonospora aurantiaca promotes plant growth and fitness in soil 
supplemented with rock phosphate. 

In this sense, the microorganisms selected in the present study may play a beneficial role in plant development, 
since growth-promoting effects are also associated with the production of IAA (Khamna et al., 2009) and 
phosphate solubilization (Hamdali et al., 2008b). Despite its importance, phosphate solubilization has been 
reported in a small number of microorganisms (Hameeda et al., 2008). The production of siderophores by PGPB 
may limit iron uptake by the pathogen decreasing its proliferation capacity (Kloepper et al., 1980; Dowling et al., 
1996). Schippers et al. (1987) suggested that this mechanism is effective because the PGPB produce 
siderophores have much greater affinity for available iron than do fungal pathogens. 

PGPB can trigger a plant-based phenomenon known as systemic induced resistance, which is similar to systemic 
acquired resistance and occurs when plants activate their defense mechanisms in response to infection by a 
pathogen (Pieterse et al., 2009). Inoculation of the antagonist in the period before inoculation of the fungus in the 
soil may have induced systemic plant resistance, resulting in a greater tolerance to the phytopathogen, as observed 
in treatment 2 in the first assay. Moura et al. (1998) verified in their experiment that inoculating actinobacteria in 
tomato seeds before the phytopathogen improved the defense of the plant against Ralstonia solanacearum. Van 
Loon (2007) stated that rhizobacteria could reduce the activity of pathogenic microorganisms not only through 
antagonism but also by the activation of the plant to better defend itself. 

The actinobacterial isolates used in this work showed antagonistic action against B. sorokiniana, preventing root 
rot in a greenhouse experiment and promoting the growth of wheat plants. Therefore, it can be suggested that these 
Streptomyces isolates can potentially be used as biocontrol agents for diseases caused by B. sorokiniana. Assays 
using a mixture of the two actinobacterial isolates and field tests to confirm the results obtained are suggested for 
future work.  
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