
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

OSVALDO MARTINELLO JUNIOR

KL-Cuts: A New Approach for Logic
Synthesis Targeting Multiple Output Blocks

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Renato Perez Ribas
Advisor

Prof. Dr. André Inácio Reis
Co-advisor

Porto Alegre, October 2010

CIP – CATALOGING-IN-PUBLICATION

Martinello Junior, Osvaldo

KL-Cuts: A New Approach for Logic Synthesis Targeting
Multiple Output Blocks / Osvaldo Martinello Junior. – Porto Ale-
gre: PPGC da UFRGS, 2010.

85f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2010. Advisor: Renato Perez Ribas; Co-advisor: André Iná-
cio Reis.

1. AIG. 2. Cut Enumeration. 3. KL-Cuts. 4. Logic Design.
5. Logic Synthesis. 6. Multiple Output Blocks. 7. Technology
Mapping. I. Ribas, Renato Perez. II. Reis, André Inácio. III. Tí-
tulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“This is your life and it’s ending one minute at a time.”
— CHUCK PALAHNIUK (FIGHT CLUB)

ACKNOWLEDGMENTS

It is a pleasure to thank the many people who made this thesis possible.
I am grateful to my advisor, Renato Perez Ribas, for his time and for his sense of

organization (which I lack). His understanding, encouraging and personal guidance have
provided a good basis for the present thesis.

I would like also to express my gratitude to my co-advisor, André Inácio Reis. His
wide knowledge and his logical way of thinking have been of great value for me.

I could not forget to thank my labmates, for supporting my work, for the stimulating
discussions, for working together before deadlines, and for all the fun we have had in the
last years.

To my oldest friends from Mato Grosso whose friendship molded me as I am, and to
my friends who are next to me now with whom I have divided the latest cheer times, my
sincere thank you.

I am especially thankful to my family: to my father Osvaldo Martinello, to my mother
Cleci Maria Martinello and to my sisters Christine and Caroline. I have missed them a lot
during this research time.

I owe my deepest gratitude to my girlfriend Bibiana Strohmayer Alves. Without her
encouragement, understanding and love it would have been impossible for me to finish
this work.

I need also to thank the ones that funded this period of research (besides my father).
The company Nangate Inc under a Nangate/UFRGS research agreement, CNPq Brazil-
ian funding agency through the National Program of Microelectronics (PNM), and the
European Community’s Seventh Framework Programme under grant 248538 - Synaptic.
Without their investment this work would not be possible.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF FIGURES . 11

LIST OF TABLES . 13

ABSTRACT . 15

RESUMO . 17

1 INTRODUCTION . 19
1.1 Synthesis . 19
1.2 Motivation . 20
1.3 Objective . 20
1.4 Thesis Organization . 21

2 TECHNICAL BACKGROUND . 23
2.1 Boolean Function and Boolean Network 23
2.2 Equivalence Classes of Logic Functions 24
2.3 Data Structures . 25
2.3.1 Directed Acyclic Graph . 26
2.3.2 Forest of Trees . 26
2.3.3 And-Inverter Graph . 26
2.3.4 Binary Decision Diagram . 27
2.4 Dag Nodes and Tree Nodes . 28
2.5 K-Feasible Cuts . 29
2.6 Library . 30
2.7 Technology Mapping . 30
2.7.1 Decomposition . 30
2.7.2 Pattern Matching . 31
2.7.3 Covering . 31

3 STATE OF THE ART . 33
3.1 Technology Mapping . 33
3.2 DAG-Aware AIG rewriting . 36
3.3 Using Signatures on Cut Computation 37
3.4 Factor Cuts . 38
3.4.1 Complete Cut Factorization . 38
3.4.2 Partial Cut Factorization . 39

3.5 TEMPLATE Boolean Matching Method 39
3.6 Area Flow Covering . 42

4 KL-FEASIBLE CUTS . 45
4.1 L-Feasible Backcuts . 45
4.1.1 Factor Backcuts . 46
4.2 KL-Cuts Generation Algorithm . 47
4.3 Unbounded KL-Cuts . 49
4.3.1 KL-Cuts with unbounded K . 50
4.3.2 KL-Cuts with unbounded L . 51

5 APPLICATIONS OF KL-CUTS . 53
5.1 Technology Mapping . 53
5.1.1 Greedy Covering . 53
5.1.2 Area Flow Covering for Multiple Outputs 54
5.1.3 Matching . 58
5.1.4 Partitioning . 61
5.2 Regularity Extraction . 61
5.3 Peephole Optimization . 62

6 RESULTS . 63
6.1 L-Feasible Backcuts . 63
6.2 KL-Cuts . 64
6.3 Covering Algoritms . 65
6.3.1 Greedy Covering . 67
6.3.2 Area Flow Covering for Multiple Output 69
6.3.3 Multiple Output Matching . 70
6.3.4 Partitioning . 70

7 CONCLUSIONS AND FUTURE WORK 73

REFERENCES . 75

A APPENDIX <KL-CUTS: UMA NOVA ABORDAGEM PARA SíNTESE
LÓGICA UTILIZANDO BLOCOS COM MÚLTIPLAS SAíDAS> 79

A.1 Introdução . 79
A.2 Cortes-KL . 80
A.2.1 Aplicações . 80
A.3 Conclusões . 84

LIST OF ABBREVIATIONS AND ACRONYMS

AIG And-Inverter Graph

BDD Binary Decision Diagram

CAD Computer-Aided Design

DAG Directed Acyclic Graph

DFM Design for Manufacturing

EDA Electronic Design Automation

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

IPO In-Place Optimization

LUT Lookup Table

MFFC Maximum Fanout-Free Cone

OTR Odd-level Transistor Replacement

PI Primary Input

PO Primary Output

RTL Register Transfer Level

TSBDD Terminal-Suppressed Binary Decision Diagram

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

LIST OF FIGURES

Figure 2.1: A truth table representation of a function. 24
Figure 2.2: A Boolean network. 24
Figure 2.3: A directed acyclic graph example. 26
Figure 2.4: A forest of trees. 27
Figure 2.5: An and-inverter graph. 27
Figure 2.6: An example of a BDD. 28
Figure 2.7: AIG illustrating dag and tree nodes. 28

Figure 3.1: Different AIG structures for function f = a ∗ b ∗ c. 36
Figure 3.2: Two cases of AIG rewriting of a node. 36
Figure 3.3: Naive approach for computing R[f]P 40
Figure 3.4: A generic view of a truth table. 40
Figure 3.5: Reducing search space by cutting non-maximal branches. 41
Figure 3.6: Reducing search space by using symmetry. 42

Figure 4.1: AIG demonstrating backcut factorization. 46
Figure 4.2: Pseudo-code for KL-cuts calculation. 48
Figure 4.3: AIG illustrating covering. 49
Figure 4.4: Pseudo-code for KL-cuts with unbounded K computation. 50
Figure 4.5: AIG exemplifying KL-cuts with unbounded K. 51
Figure 4.6: Pseudo-code for KL-cuts with unbounded L computation. 52

Figure 5.1: An AIG to illustrate the multiple output area flow algorithm. 57
Figure 5.2: An AIG with a loop formed by KL-cuts. 58
Figure 5.3: A truth table representation of a set of functions L1. 60
Figure 5.4: Computing R[L1]PP . 61

Figure 6.1: Number of KL-cuts versus K. 65
Figure 6.2: Time taken to compute KL-cuts versus K. 65
Figure 6.3: Number of KL-cuts versus L. 66
Figure 6.4: Time taken to compute KL-cuts versus L. 66
Figure 6.5: Execution time of matching algorithm varying the number of inputs. . 71
Figure 6.6: Execution time of matching algorithm varying the number of outputs. 71

Figure A.1: Tempo de execução de algoritmo de identificação de padrões var-
iando o número de entradas. 84

Figure A.2: Tempo de execução de algoritmo de identificação de padrões var-
iando o número de saídas. 85

LIST OF TABLES

Table 2.1: Number of equivalence classes under various equivalence relations. . 25
Table 2.2: An example of K-feasible cuts computation. 29

Table 3.1: Effect of iterations in area flow. 43

Table 4.1: An example of L-feasible backcuts computation. 47

Table 5.1: Effect of iterations in multiple output area flow, using only mode 1. . 56
Table 5.2: Effect of iterations in multiple output area flow, using all modes of

operation. 56
Table 5.3: Area flow according to different modes of computing fanout. 56

Table 6.1: Benchmark information. 63
Table 6.2: Comparison between L-backcut enumeration and factor L-backcut

enumeration. 64
Table 6.3: Comparison between KL-cuts enumeration and factor KL-cuts enu-

meration. 67
Table 6.4: Covering for single output LUTs using ABC and Area Flow methods. 68
Table 6.5: Greedy bottom-up covering using KL-cuts. 68
Table 6.6: Greedy bottom-up covering using only factor KL-cuts. 69
Table 6.7: Covering using the area flow for multiple outputs algorithm. 70
Table 6.8: Comparison between a covering with factor trees and a covering with

KL-cuts with unbounded K. 72

Table A.1: Cobertura para LUTs de uma saída usando ABC e fluxo de área. . . . 81
Table A.2: Cobertura gulosa usando cortes-KL. 82
Table A.3: Mapeamento de fluxo de área para múltiplas saídas. 83

ABSTRACT

This thesis introduces the concept of KL-feasible cuts, which allows controlling both
the number K of inputs and the number L of outputs in a circuit region. The design
of a digital circuit can roughly be divided in two phases: logic synthesis and physical
synthesis. Within logic synthesis, one of the main steps is the technology mapping. Tra-
ditionally, the technology mapping process only handles single output functions, in order
to construct circuits. The objective of this method is to explore the use of multiple output
blocks on technology mapping. To provide scalability, the concept of factor cuts is ex-
tended to KL-cuts. Algorithms for enumerating these cuts and also for enumerating some
subsets of cuts with some special characteristics are presented and results are shown.
As examples of practical applications, different covering algorithms are proposed. The
greedy algorithm is a simple alternative and produces good results in area, but it is too
restrictive, as it is not practical in timing oriented mapping. The other covering algorithm
presented is an extension to the area flow algorithm and allows cuts with multiple outputs
to be used while making possible the control of some other costs. A Boolean matching
algorithm that is able to handle multiple output blocks is also described, which permits
the use of a standard cell library with more than one output on technology mapping. The
results show the viability and usefulness of the method.

Keywords: AIG, Cut Enumeration, KL-Cuts, Logic Design, Logic Synthesis, Multiple
Output Blocks, Technology Mapping.

RESUMO

KL-Cuts: Uma Nova Abordagem para Síntese Lógica Utilizando Blocos com
Múltiplas Saídas

Esta dissertação introduz o conceito de cortes KL, o que permite controlar tanto o
número K de entradas como o número L de saídas em uma região de um circuito. O
projeto de um circuito digital pode ser dividido em duas fases: síntese lógica e síntese
física. Dentro de síntese lógica, um dos principais passos é o mapeamento tecnológico.
Tradicionalmente, o processo de mapeamento tecnológico somente lida com funções de
saída única, para a construção de circuitos. O objetivo deste método é explorar o uso
de blocos de múltiplas saídas no mapeamento tecnológico. Para prover escalabilidade, o
conceito de fatoração de cortes é estendido para os cortes KL. Algoritmos para enumerar
esses cortes e também para enumerar alguns subconjuntos de cortes com características
específicas são apresentados e os resultados são mostrados. Como exemplos de aplica-
ções práticas, diferentes algoritmos de cobertura são propostos. O algoritmo guloso é uma
alternativa simples e produz bons resultados em área, mas é muito restritivo, pois não é
factível em mapeamento orientado à atraso. Outro algoritmo de cobertura apresentado é
uma extensão do algoritmo de fluxo de área e permite a utilização de cortes com várias
saídas, mantendo possível a consideração de outros custos. Um algoritmo de correspon-
dência Booleana que é capaz de lidar com blocos com múltiplas saídas também é descrito.
Isso permite a utilização de uma biblioteca padrão com células com mais de uma saída no
mapeamento tecnológico. Os resultados mostram a viabilidade e utilidade do método.

Palavras-chave: AIG, Blocos com Múltiplas Saídas, Enumeração de Cortes, KL-Cuts,
Mapeamento Tecnológico, Projeto Lógico, Síntese Lógica.

19

1 INTRODUCTION

Technologies based on digital integrated circuits have major impact on society, be-
ing present on virtually every knowledge area. The advances in the field of conception
of integrated circuits make possible the aggregation of an increasingly large number of
components on a same device. This high integration scale imposes new challenges to
the synthesis process. In order to deal with constant changes in the design rules, and to
increase productivity, the automation of this process through the use of EDA (Electronic
Design Automation) tools plays a crucial role.

Usually the design methodologies are classified as custom and semicustom design
(MICHELI, 1994). In the former methodology, both functional and physical designs
are handcrafted, requiring hard skilled designers and a great effort in order to fine-tune
features of the circuit. This methodology has, therefore, a high cost, which may be com-
pensated by a high quality design. Semicustom design consists in establishing design
restrictions, such as limiting the number of primitives, which limit the ability of optimiza-
tion of a circuit. This reduction on the solution space makes easier the development of
CAD (Computer-Aided Design) tools for design and optimizations, reducing the time-
to-market of a design. Currently the number of semicustom designs outnumbers custom
design.

1.1 Synthesis

The goal of the circuit synthesis is to transform a higher abstraction level description
of a circuit into a more detailed model, such as a geometrical model. The whole synthesis
process is often broken into three major steps: architectural synthesis, logic synthesis and
physical synthesis (MICHELI, 1994). The architectural synthesis, often called high-level
synthesis, consists of transforming a behavioral description of a system — usually repre-
sented in an HDL (Hardware Description Language), such as VHDL or Verilog, or even
in a higher abstraction level language, such as SystemC — into a structural view, which
describes the organization of the system, mainly described in RTL (Register Transfer
Level).

The next step is the logic synthesis, whose role is to translate a logic description of
a circuit into a network of interconnected cells of a given technology. It is typically di-
vided in three phases: technology independent optimizations, technology mapping and
technology dependent optimizations. The first one applies some transformations that do
not depend on the technology, but depend on the chosen mapping algorithm. These trans-
formations can be structural or Boolean. Then the technology mapping phase binds the
circuit with the technology, by mapping portions of the circuit to a cell implemented in the
target technology. After that, more optimizations are applied to the mapped circuit, such

20

as cell resizing or logic duplication. These are called technology dependent optimizations.

The physical synthesis, or geometrical level synthesis, physically distributes the cells
and performs its interconnections. The final product is a layout of the circuit that imple-
ments the initial behavioral description of the system.

1.2 Motivation

Some recent advances on logic synthesis are based on And-Inverter Graphs (AIGs),
for scalability reasons (LING; ZHU; BROWN, 2008; MISHCHENKO; BRAYTON, 2006).
Part of these advances is based on the concept of K-feasible cuts (CONG; WU; DING,
1999; PAN; LIN, 1998), including algorithms for re-synthesis based on AIG rewriting
(MISHCHENKO; CHATTERJEE; BRAYTON, 2006). Scalability is obtained by keeping
the value ofK small so that logic functions can be manipulated as vectors of integers. For
instance, in (MISHCHENKO; BRAYTON; CHATTERJEE, 2008) scalability is achieved
by using functions of 16 or less inputs represented as binary truth-tables.

Algorithms for efficient cut computation are well known for single output cuts. Par-
ticularly, algorithms for exhaustive computation of K-feasible cuts were introduced by
Cong (CONG; WU; DING, 1999) and Pan (PAN; LIN, 1998). Chatterjee (CHATTER-
JEE; MISHCHENKO; BRAYTON, 2006) introduced the concept of factor cuts, where
exhaustive enumeration is avoided by making a separation between dag nodes and tree
nodes in the AIG. The computation of factor cuts enables to work with cuts up to 16 in-
puts, which is not possible with the previous algorithms of exhaustive enumeration. All
these algorithms for cut enumeration are only able to take the number K of inputs into
account, not contemplating the benefits of multiple output reasoning. For example, in
technology mapping using K feasible cuts, logic duplication may occur during the step
of covering, which is likely a problem on a design flow.

Even though current technologies do support blocks with more than one output, such
as FPGAs (HUTTON et al., 2004; COSOROABA; RIVOALLON, 2006), the entire flow
is currently oriented to single output blocks, and a combination step is added in the end
to try to take advantage of these multiple output elements.

1.3 Objective

The objective of this thesis is to introduce the idea of controlling the number of out-
puts L in K-feasible cuts. This way, by enumerating KL-cuts, we are able to deal di-
rectly with multiple output blocks throughout the logic synthesis process. Applications
of KL-cuts may include peephole optimization (WERBER; RAUTENBACH; SZEGEDY,
2007), regularity extraction (ROSIELLO et al., 2007) and technology mapping. The use
of KL-feasible cuts in peephole optimization is justified as an arbitrary portion of the cir-
cuit, potentially having multiple outputs, can be exchanged by another one by taking into
account all signals which it affects at once. Its use in regularity extraction can be jus-
tified as many regular (logic) patterns are composed of multiple output circuits. This is
especially true for arithmetic circuits, e.g. full adder and half adder library cells. Tech-
nology mapping aiming dual output blocks is already a reality (HUTTON et al., 2004;
COSOROABA; RIVOALLON, 2006), and multiple output blocks should be explored,
even on a standard cell flow.

21

1.4 Thesis Organization

The remaining of this thesis is organized as follows.

Section 2: Technical Background — Provides the reader with all basic and consolidated
knowledge that is needed to understand the concepts presented in this work.

Section 3: State of the Art — Traces an evolutionary line over the technology mapping,
and describes some recent works that are connected to the work presented in this
document.

Section 4: KL-Feasible Cuts — Describes the main contribution of this work, which is
the concept of KL-cuts, along with some algorithms for its enumeration. It also
discusses some properties of specific types of KL-cuts.

Section 5: Applications of KL-Cuts — Shows a number of proposed applications for KL-
cuts. Some of them are defined in this thesis, including mapping algorithms and
a Boolean matching, and are discussed in detail. Others are just discussed more
generally as possible applications, like peephole optimizations and regularity ex-
traction.

Section 6: Results — Presents and discusses results of several experiments. These results
are cross referenced throughout the text, so the reader can check this section while
reading the other sections of this document.

Section 7: Conclusions and Future Work — Presents some conclusions, summarizes the
contributions of this work, and discusses some possible future work.

22

23

2 TECHNICAL BACKGROUND

This section provides a review of the basics needed to understand the concepts intro-
duced by this work. The idea of Boolean functions and Boolean networks is illustrated,
and the classification of an equation into equivalence classes is explained. It explains as
well how functions can be represented using different data structures. Then a manner to
enumerate ways of breaking these data structures into smaller and more easily treatable
ones is discussed. This is followed by a succinct revision on cell libraries and technology
mapping.

2.1 Boolean Function and Boolean Network

The Boolean set is defined as B = {0, 1}, whose elements can be interpreted as logic
values. Usually the 0 value means false and the 1 value means true. An n-dimensional
Boolean set Bn is composed by all distinct Boolean vectors with length n. For example,
B0 = ∅,B1 = {0, 1},B2 = {00, 01, 10, 11},B3 = {000, 001, 010, 011, 100, 101, 1100, 111}
et cetera. This way, the set Bn has 2n elements.

A Boolean function f : Bn 7→ B is a function that relates every element of its domain
Bn into one element of its co-domain (or image) B, i.e. each Boolean vector of length n
is associated by a Boolean function either to 0 or to 1.

Boolean variables are variables in the Boolean space, i.e. they can assume values of
B. A Boolean function of the form f : Bn 7→ B is a function of n variables, and each
vector of Bn being an input vector defines the value of every Boolean variable. As each
one of the 2n vectors corresponds to one of the two values 0 or 1, there are 22n different
Boolean functions of n variables.

A very common representation of a Boolean function is a truth table. An example of
truth table can be seen in Figure 2.1. Each variable is assigned to a position of the input
vector, and the last column is the output value of the function for that input vector.

There are three basic Boolean operations, AND (∗), OR (+) and NOT (!), which can
be applied to Boolean values of Boolean functions. The AND and OR operations are
binary operations, since they have two operands. The AND function evaluates to (or
returns) 1 when all of its operands are 1, and evaluates to 0 otherwise. The OR function
returns 0 when all of its operands are 0, and returns 1 otherwise. The NOT function is a
unary operation, it has only one operand. When the operand is 0 the NOT function, also
called inversion operation, returns 1 and vice-versa.

A Boolean expression is a representation of a Boolean function, and it is characterized
by a particular association of Boolean variables and Boolean operations. Although an
expression represents exactly one function, a function can be represented by an infinite
number of different expressions. As an example, equations 2.1 and 2.2 are two possible

24

a b c f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Figure 2.1: A truth table representation of a function.

representations of the function f depicted in figure 2.1.

f = (!c+ (a ∗ b)) (2.1)

f = (!a∗!b∗!c) + (!a ∗ b∗!c) + (a∗!b∗!c) + (a ∗ b) (2.2)

Boolean operations can also be represented graphically as nodes in a graph. This way,
Boolean expressions can be viewed as graphs, potentially sharing signals between them.
This graphical representation of a set of Boolean functions is called a Boolean network.
An example of a Boolean network is shown in figure 2.2.

Figure 2.2: A Boolean network.

2.2 Equivalence Classes of Logic Functions

Consider the three following operations over the function f :

op1: Negation of some variables in f .

op2: Permutation of some variables in f .

op3: Negation of f .

25

If a function g can be derived from f by a combination of these three operations, then
the function g is NPN-equivalent to f . The set of functions that are NPN-equivalent to
the function f forms an NPN-equivalence class [f]NPN , of which f is a representative
function. Similarly, the functions that are obtained by applying operations op1 and op2
in f are NP-equivalent to f , and form an NP-equivalence class [f]NP . If only operation
op2 is considered, then a P-equivalence class [f]P is defined.

For example, let us define the functions f1 = a+b, f2 =!a+b, f3 =!(a+!b), f4 = a+!b.
Functions f2 and f4 belong to the same P-equivalence class. Functions f1, f2 and f4 are
of the same NP-equivalence class. Finally, all of these functions belong to the same NPN-
equivalence class.

Table 2.1: Number of equivalence classes under various equivalence relations (SASAO,
1999).

0 1 2 3 4

All functions 2 4 16 256 65536
P-equivalence class 2 4 12 80 3984
NP-equivalence class 2 3 6 22 402
NPN-equivalence class 1 2 4 14 222

Table 2.1 shows the number of different equivalence classes up to n = 4. When n is
sufficiently large, the number of equivalence classes can be approximated as follows:

The number of P-equivalence classes is
22n

n!
. (2.3)

The number of NP-equivalence classes is
22n

2n × n!
. (2.4)

The number of NPN-equivalence classes is
22n

2n+1 × n!
. (2.5)

To categorize functions into equivalence classes is useful in the matching phase of
a technology mapping. The task of the matching phase is to find sub-functions that are
equivalent to one of those in the target library. As the objective is to cover the subject
graph with black boxes connecting each other, the permutation operation is free. Hence
the P-equivalence class is useful for any technology mapping. Moreover if the logic style
used is dual rail, when all functions are generated both direct and complemented, then the
negation operation is also free, so the NPN-equivalence class is the most useful.

2.3 Data Structures

A logic circuit or Boolean network may be represented by a variety of data structures.
Each of them is more or less appropriate to a specific manipulation, having its particular
strengths and weaknesses. An appropriate data structure is a key element to an efficient
computation.

26

2.3.1 Directed Acyclic Graph

Graphs of operators are widely used data structures to represent the combinational
part of circuits. A Directed Acyclic Graph (DAG) G = (V (G), E(G)) is a directed graph
and has no directed cycles. A node in the graph v ∈ V (G) represents a logic function,
such as AND or OR, a primary input (PI) or a primary output (PO). The set of directed
edges e ∈ E(G) arriving in the node v, iedge(v), represent the inputs of v. The set of
edges leaving from v, oedge(v), represent the outputs of v. The fanout of v is defined as
|oedge(v)|. If ∀v ∈ V (G), |iedge(v)| ≤ K, then the DAG is K-bounded. An example of
DAG can be seen in figure 2.3, it represents the same Boolean network of figure 2.2.

Figure 2.3: A directed acyclic graph example.

A DAG is a direct translation of a Boolean network into a data structure. It represents
the circuit in an integrated way, but algorithms that perform technology mapping directly
over DAGs tend to suffer of scalability problems.

2.3.2 Forest of Trees

A tree is a particular case of DAG, in which ∀v ∈ V (G), |oedge(v)| = 1. In other
words, the fanout of every node is equal to one. In order to be able to represent any circuit
as a forest of trees, every logic function that has a fanout larger than one will originate a
new tree. This partitioning of the graph reduces the complexity of the subsequent tech-
nology mapping, at the cost of reducing the space of solutions, thus producing a mapping
of inferior quality. A forest of trees representing the same Boolean function as before is
depicted in figure 2.4.

Breaking a DAG into a forest of trees can greatly reduce the computational cost of
the technology mapping process. Algorithms that achieve optimum results both in area
and timing in polynomial time exist, but the optimality is only guaranteed for each tree
individually. Hence, the use of trees on technology mapping can severely restrict the
quality of the results.

2.3.3 And-Inverter Graph

An And-Inverter Graph (AIG), G, is a specific type of DAG. Each node v ∈ V (G)
has either 0 or 2 incoming edges, hence it is 2-bounded. Nodes that have no incoming
edges are primary inputs, and nodes having 2 inputs are AND nodes. Each edge can
be complemented or not, denoting the inversion operation. Some nodes are marked as

27

Figure 2.4: A forest of trees.

primary outputs (PO). An AIG of the same Boolean network of figure 2.2 is shown in
figure 2.5.

Figure 2.5: An and-inverter graph.

An AIG is a restricted DAG, though the problems of using it in technology mapping
are reduced by the regularity and simplicity of its structure.

2.3.4 Binary Decision Diagram

Graphs of operators are structural representations of circuits, as they have as starting
point the description of a circuit as interconnected logic operations. Another way of
representing the logical behavior of a circuit is to represent directly the logic functions
of each output of the circuit. A logic function is characterized by its truth table, which
relates every possible input vector into an output value. Storing directly the truth table of
a function is not efficient because, for a logic function having n input variables, the table
has 2n values. A more compact representation is the BDD.

Binary Decision Diagrams (BDDs) are graph representations of Boolean functions
(BRYANT, 1986). A BDD is a DAG with two terminal nodes, called 0-terminal and 1-
terminal. Each non-terminal node has an index to identify an input variable of the Boolean
function and has two outgoing edges, the 0-edge and the 1-edge. A BDD is represented
in Figure 2.6. It represents the same function f from the truth table in Figure 2.1.

28

Figure 2.6: An example of a BDD.

2.4 Dag Nodes and Tree Nodes

A dag node is defined as a node with fanout larger than one. The nodes that are not
dag ones are tree nodes. The set of all dag nodes in a graph G is represented by F , and
the set of tree nodes by T .

A sub-graph of G, GT , induced by the nodes in T is a forest of trees. The root node of
a tree in GT is either an input of a dag node or a PO. Consider a sub-graph Tn induced by
a dag node n and the trees in GT that are inputs to it. Tn is a factor tree. In addition, when
the root node of a tree in GT is a PO, the tree itself is also a factor tree. This way, each
node n in G is contained in a single factor tree. In Figure 2.7, the dag nodes are shaded,
and its factor trees are delimited.

Figure 2.7: AIG illustrating dag and tree nodes (CHATTERJEE; MISHCHENKO;
BRAYTON, 2006). Nodes p, q, b, c and d are primary inputs. Node x is a primary output.

A leaf of a factor tree that is not a PI has dag nodes as its inputs. A factor tree along
with the dag nodes that are inputs of its leaves is called a factor leaf-DAG. In Figure 2.7,
the factor leaf-DAG for the node x is its factor tree in conjunction with the nodes a and b.

29

2.5 K-Feasible Cuts

A K-feasible cut of a node n defines a subgraph, more specifically a logic cone, rooted
in n, having no more than K inputs. In other words it defines a region in the graph
that represents the logic function of n, using at most K variables. It is a useful tool in
technology mapping, especially when targeting FPGAs, which are composed of LUTs
that can implement any logic function up to a fixed number of inputs.

Formally, a cut of a node n is a set of nodes c such that every path between a PI and
n contains a node in c. If a cut c1 is a subset of a cut c2, then c1 dominates c2. A cut is
irredundant if it is not dominated by another cut. A K-feasible cut is an irredundant cut
containing K or lesser nodes (PAN; LIN, 1998; CONG; WU; DING, 1999). The region
defined by a K-feasible cut is composed by all nodes contained in a path between a node
in c and the node n, including n and excluding the nodes of c.

The nature of the algorithm for enumeration of cuts is combinatorial. The combination
of two cuts, where each cut is a set of nodes, is simply the union of these two sets. As each
node has a set of cuts associated to it, it is of interest to define an operation that combines
cuts as a Cartesian product between two sets of cuts. Notice that the simple combination
of two K-feasible cuts does not guarantee that the resulting cut is K-feasible. Therefore
the proposed combination operation should remove any cut that is not K-feasible.

Let A and B to be two sets of cuts. Let the auxiliary operation ./ to be:

A ./ B = {a ∪ b|a ∈ A, b ∈ B, |a ∪ b| ≤ K} (2.6)

Let ΦK(n) to be the set of K-feasible cuts of n ∈ G, and if n is an AND node, let n1

and n2 to be its inputs. Then, ΦK(n) is defined recursively as follows:

ΦK(n) =

{
{{n}} : n is a PI
{{n}} ∪ (ΦK(n1) ./ ΦK(n2)) : otherwise (2.7)

The ./ operation can also easily remove the redundant cuts, by comparing the cuts
with one another, and possibly by making use of signatures (explained in section 3.3).

Table 2.2 illustrates the computation of K-feasible cuts. The AIG being computed is
the one of figure 2.7, and the value ofK is kept unlimited for the sake of the example. No-
tice that each node has one cut composed only by itself (called the trivial cut) in addition
to all combinations of its fanin nodes’ cuts.

Table 2.2: An example of K-feasible cuts computation.

Node K-feasible cuts

p {p}
q {q}
a {a}, {p, q}
b {b}
y {y}, {a, b}, {b, p, q}
c {c}
d {d}
z {z}, {c, d}
x {x}, {y, z}, {c, d, y}, {a, b, z},

{a, b, c, d}, {b, p, q, z}, {b, c, d, p, q}

30

2.6 Library

A cell library is a finite set of primitive logic gates, including combinational, sequen-
tial (e.g. flip-flops) and interface (e.g. drivers) elements. Here we focus on combinational
cells, which are implementations of Boolean functions. This may seem too restrictive,
but practical approaches of technology mapping usually deal only with the combinational
portion of the circuit.

Traditionally, technology mapping algorithms rely on static pre-characterized libraries.
Each cell of the library is fully characterized through exhaustive simulations, resulting in
accurate information about the behavior of the cell concerning timing, power consump-
tion and its physical area. This way, the technology mapping algorithms are restricted to
use these cells in the mapping process. This approach is known as library-based mapping.

The quality of the final circuit is increased as the library becomes richer, i.e. a larger
cell variety, both in number of functions implemented and in different flavors of each logic
function (VUJKOVIC; SECHEN, 2002). However the number of different P-equivalence
classes, or even NPN-equivalence classes, grows exponentially with the number of inputs.
Further, the processes of electrical characterization and layout generation are extremely
computing demanding, making the creation of an exhaustive library, even for a number of
inputs not so large, unfeasible (SECHEN et al., 2003).

As an alternative to this duality — either to have a rich library but at a high develop-
ment cost, or to have a restricted library at expense of the final quality — lies the concept
of library-free technology mapping. The main idea is that the library is not fully de-
signed and characterized prior to the mapping, but it is defined by means of rules, e.g.
the maximum number of inputs, or the maximum number of series transistors. This re-
duces drastically the cost of maintaining such a large library. However, as the cells are
not characterized, not even laid out, the technology mapping does not dispose of suffi-
cient information to choose which cells to use. Thus estimation methods for each piece of
information required by the mapping must be provided. These estimation methods must
be fast, in order to be able to treat many cells in a short time, and accurate, in order to
not mislead the mapping process. Also, once the mapper has chosen which cells must be
used, they need to be properly generated, and as the variety of cells is potentially large,
an automatic layout generator may be required.

2.7 Technology Mapping

Technology mapping, also known as technology binding, transforms a logic network
independent from a technology into gates implemented in a technology library (HAS-
SOUN; SASAO, 2002). It can be decomposed in three phases: decomposition, pattern
matching and covering.

2.7.1 Decomposition

The decomposition process transforms the initial representation of the circuit into a
more simple and restricted one, in order to aid the technology mapping algorithm. For
example, it applies the same structural transformations in the graph representations of
cells, if structural matching is used, or it breaks the graph into trees, if the technology
mapping was designed to map only these data structures. This new representation, called
the subject graph depends strongly on the future mapping strategy.

One of the tasks of the decomposition phase is to assure that each node of the subject

31

graph does have at least one match against the library, considering the technology map-
ping to be used. If this can be achieved, then at least one successful covering is guaranteed
to exist.

2.7.2 Pattern Matching

Once the data structure is constructed, the pattern matcher finds a set of matches be-
tween nodes on the circuit and a predefined library. This means being able to determine
whether a portion of the subject graph can be implemented by a cell in the library. Match-
ing algorithms can be classified into two major groups: structural matching and Boolean
matching (MICHELI, 1994).

Structural matching relies on the identification of common patterns. For this reason,
both the subject graph and the library cells must be decomposed in the same way, so the
matching process can be reduced to a graph isomorphism testing. The cells in the library
may have more than one representation in the subject graph format, hence more than one
representation must be maintained. Even though the problem of determining isomorphism
between two graphs may be intractable, considering the size of the subgraphs used in
technology mapping the computational time can be neglected.

Boolean matching relies on the identification of Boolean functions of the same equiv-
alence class. This approach is less restrictive than structural matching, because a same
function can be represented by many different graphs. It usually performs the matching
using BDDs by trying different variable orderings, until a matching is found. Boolean
matching is computationally more expensive than structural matching, but can lead to
better results.

2.7.3 Covering

The final step, the covering, chooses a subset of the matches such that the entire net-
work is covered and optimizing some objective function. This function is often the total
area, the largest delay, the power consumption, or a composition of these.

More formally, the result of a covering is a set of cells, which have input and output
signals, such that:

• Every node of the subject graph is covered by at least one cell.

• Each signal that is input of a cell is an output of another cell.

• Every cell has at least one output used by another cell as an input.

The quality of the mapping will depend significantly on the quality of the subject
graph composed in the first stage of the mapping. The best algorithm executed over a
poor subject graph may produce a worse result than an average mapping over a good
graph. This problem is known as structural biasing.

As the technology mapping is a step that transforms every cell in the network, it has a
major impact on the final circuit characteristics.

32

33

3 STATE OF THE ART

This section starts with a review of the evolution of technology mapping, both library-
based and library-free. After that, a collection of works that are related to the research
presented in this thesis is summarized.

3.1 Technology Mapping

The first methods for automatic synthesis of digital circuits had no specific algorithms
for technology mapping. The synthesis process was restricted to applying a set of rules
over a structure that represents the circuit, seeking some kind of optimization. The main
approaches of synthesis based on rules were presented in the 1980s, by Darringer (1981)
and Gregory (1988). This kind of methodology performs local optimizations, trying to
reduce the cost of a region of the circuit. However, not all local optimizations lead towards
global optimizations, given a particular objective function. As alternatives to the rules
based system, new algorithmic solutions have emerged in order to perform the technology
mapping of circuits using heuristics or even exact algorithms.

The first technology mapping algorithm, called DAGON, was proposed by Keutzer
(1987). He noted a similarity between technology mapping and the tasks of a compiler.
The pattern matching between sub-graphs of a circuit representation and cells of a library
is a similar problem as to identify patterns between intermediate representations of a com-
puter program and a given set of machine instructions. The subject graph used is a binary
tree represented in the form of a string, and this description was consistent with the input
format of the compiling engine. The structural matching and the initial representation of
the circuit restrict the search space to be explored by mapping, affecting the quality of the
mapped circuit. Moreover, the algorithm requires all isomorphic matches to be stored in
each node of the tree, until the end of covering step. This precluded the use of very large
libraries, when the number of patterns found is usually higher. It also required greater
storage capacity and more time to find a solution.

In the same year, Detjens (1987) proposed the first method that actually used trees as
the subject graph. In addition to this innovation, Detjens proposed the insertion of pairs
of inverters in the graph. This increases the possibility of identifying new patterns in the
graph (graph isomorphism), increasing the solution space. However to take advantage
of this increased search space, it is necessary to create several decompositions for each
element of the library. Thus, the use of a large library becomes unfeasible.

Some years later, Mailhot (1993) presented the first technology mapping algorithm
that used an approach of functional verification to identify patterns. Like previous algo-
rithms (KEUTZER, 1987; DETJENS et al., 1987), the initial DAG is partitioned into a
forest of trees. However, the comparison between the sub-trees and the cells of the library

34

is performed by using BDDs. Since BDDs are a canonical form of representing Boolean
functions, finding matches did not depend anymore on the structure of these sub-trees.
However, this Boolean approach was computationally expensive, leading to limitations
similar to previous approaches.

The dynamic reorganization proposed by Lehman (1995) was another alternative to
minimize the dependence on the initial graph representation. In this algorithm, the decom-
position phase is integrated with the pattern matching. Graphs functionally equivalent but
structurally different are associated with each node of the graph, increasing the search
space in order to find better solutions. Consequently, by storing many decompositions per
node, the graph grows rapidly, making it impractical for large circuits.

Kukimoto (1998) proposed a method in which the mapping is executed directly over
a DAG representation, and ensures optimum result in terms of speed, regardless of the
initial decomposition of the graph. However, it is necessary to emphasize that the delay
model, for which the optimal solution is guaranteed, ignores the load of the cell, taking
into account only its propagation delay. This means that it requires a post-processing step
to ensure the proper sizing of the logic cells.

Stok (1999) proposed the algorithm called wavefront, which is similar to Lehman’s
approach, but solving the scalability problem. Like Kukimoto’s method, the circuit is
represented by a DAG and the delay model is independent of the cell’s load. To prevent
the DAG to increase exponentially with the insertion of different representations for each
node, the stages of decomposition, pattern matching and covering are executed concur-
rently in a “sliding window”, called wavefront, which is tunable in terms of logic depth.
This heuristic algorithm has performed well compared to its predecessors.

The state-of-the-art in library-based technology mapping is presented by Chatterjee
(2006). It brings together a series of techniques used in logic synthesis, integrated and
well calibrated to the benefit of the technology mapping. The essence of the mapping
algorithm is the same of Kukimoto’s method. The main differences are in the pattern
matching, which is a Boolean matching, and in the data structure, which is an AIG. This
algorithm was incorporated into an academic tool, called ABC (Berkeley Logic Synthesis
and Verification Group, 2010).

In parallel with the evolution of library-based algorithms, methods based on virtual
libraries have also been proposed. The first one was presented by Berkelaar (1988), and
like the first methods for technology mapping, it partitions the circuit into logic cones, but
does not use trees to represent them. Expressions of sums-of-products and product-of-
sums are represented as graphs, using a prefixed notation. Traversing these graphs from
outputs to inputs, they are partitioned into logic cells. This happens every time that a
certain portion of the graph reaches a limit imposed by a set of constraints that defined
the virtual library. The biggest problem with this approach is that it is a greedy algorithm.
As the cuts are made top-down, the logic depth of what is below is unknown. So, it is not
possible to guarantee a solution with minimum logic depth or with minimum number of
cells.

Abouzeid (1993) proposed a new approach to generating cells, motivated by the pos-
sibility of using a large number of logic cells. In this method, the initial DAG is also
partitioned into trees, but these are n-ary trees, as each node can have n child nodes. The
representation as an n-ary tree decreases the dependence on the initial graph, allowing
change of structure in a given set of nodes. Based on this representation, cuts are made
each time a node that exceeds any of the restrictions is found. Although the cuts are gen-
erated from inputs to outputs, they are made in a greedy way, not contemplating logic

35

depth minimization.

Liem (1992) proposed a method based on a strategy called constructive matching. Un-
like previous approaches that considered only maximum values for chains of transistors,
this method considered the number of inputs and logic depth of a cell. These two ad-
ditional restrictions are imposed to ease post-mapping stages, because the used cells are
smaller. This also restricts the number of possible matchings, reducing the complexity
of the problem. One problem is the algorithm dependence on the initial structure of the
circuit, considering that the circuit is represented by binary trees. Another problem is
the storage of the matchings up until the covering, which also precluded the method for
mapping large circuits.

The method presented by Reis (1999) proposes a different approach in library-free.
The representation of each logic cone is made by a special type of BDD, called Terminal-
Suppressed Binary Decision Diagram (TSBDD). An interesting property of this structure
is the direct association of the arcs of the BDD to transistors. However, this representation
faces the same problems of representation by trees. The major contribution of this method
was the use of dynamic reordering on the initial representation of the circuit.

Later on, Jiang (2001) proposed the Odd-level Transistor Replacement (OTR) method.
This method works directly on a graph representing the electrical diagram at transistor
level of a circuit, so it depends on an already mapped structure. The goal of the algorithm
is to select which gates can be collapsed in order to achieve a better performance. Like
most of the methods, it also depends strongly on the initial decomposition of the circuit.

A latter strategy for mapping based on virtual libraries, and using trees as a subject
description, was presented by Correia (2004), originating the ELIS tool. This method
uses n-ary trees to represent the cones of a logic circuit. The main advantage of this
algorithm is that it considers several decompositions of sub-trees dynamically (at a low
computational cost), leading to a minimum coverage using dynamic programming. The
major limitation comes from the use of by trees, which prevent a broader view of the
circuit.

Marques (2007) proposes the VIRMA algorithm. VIRMA performs the mapping over
a DAG, aiming the reduction the circuit delay. The library uses a maximum number
of series transistor, but considering the lower bound (SCHNEIDER et al., 2005) in a
topologically non-complementary implementation of CMOS cells. It also uses a sliding
window to reduce the complexity, and achieves a reasonable scalability comparing to its
predecessors.

All methods discussed above have limitations imposed by how they address the prob-
lem of technology mapping. In general, the application of heuristics is necessary to ensure
the tractability of the problem. As an example of heuristic, the mapping for minimum area
in a DAG is NP-complete, but if the DAG is partitioned into trees and each tree mapped
independently, optimum coverings for each tree can be found in linear time. Regarding a
mapping for minimal delay, it can be achieved on a DAG mapping depending on the delay
model. However, it should be noted that these models are not precise enough to ensure
proper sizing of the circuit. Thus, a further step of sizing is necessary. There are methods
that try to solve the problem of mapping and sizing simultaneously. The algorithm pro-
posed by Karandikar (2004) is an example of it. It finds good results in polynomial time
using more sophisticated delay models associated to some heuristics.

36

3.2 DAG-Aware AIG rewriting

AIG rewriting is a greedy algorithm for minimizing the number of nodes of an AIG.
It iteratively selects subgraphs and replaces them with pre-computed logically equivalent
subgraphs.

The algorithm needs a hash table of pre-computed graphs, for all functions with up
to a certain number of inputs inputs. The authors used functions with up to four inputs.
So, first of all, a series of AIG subgraphs are computed for every one of the 222 different
NPN-equivalence classes with up to four inputs.

Once the hash table is set up, the algorithm traverses the AIG in topological order,
from inputs to outputs. For each node, all 4-feasible cuts are enumerated. Each 4-feasible
cut is matched with the pre-computed graphs from the hash-table. Cuts that reduce the
number of nodes without increasing the height of the region, or cuts that add shared nodes
are sought. After trying all available subgraphs for a node, the one that leads to the greatest
improvement replaces the original cut.

Figure 3.1: Different AIG structures for function f = a ∗ b ∗ c (MISHCHENKO;
CHATTERJEE; BRAYTON, 2006).

Figure 3.2: Two cases of AIG rewriting of a node (MISHCHENKO; CHATTERJEE;
BRAYTON, 2006).

An example follows. Figure 3.1 shows three AIG representations of the function
f = a∗b∗c, which were pre-computed and stored in a hash-table. Figure 3.2 contains two
examples of AIG rewriting. In the upper example subgraph 1 was detected and replaced
by subgraph 2, causing a reduction of one node. The lower example shows, besides
the marked cut, two more nodes that are already elsewhere on the graph. In this case,
subgraph 2 is detected and replaced by subgraph 1, a seemingly useless subgraph since it

37

is redundant. However the sharing of nodes caused this replacement to reduce one node
in the graph.

After the entire AIG is traversed, a second type of AIG rewriting takes place, called
refactoring. This algorithm has a heuristic that chooses one large cut for each AIG node.
Refactoring a cut is performed by extracting the Boolean function of the cut and running
an equation factorization algorithm, which is converted back to an AIG representation,
possibly replacing the original cut. The change is accepted if there is a reduction of the
number of nodes.

A third step consists in balancing the AIG structure. The authors suggest a script that
traverses the structure 10 times, as follows: b, rw, rf, b, rw, rwz, b, rfz, rwz, b. In the
abbreviated form, b stands for balancing, rw/rf stand for AIG rewriting and refactoring,
and rfz/rwz is the same, but with zero improvement replacements permitted.

The authors claim that this approach leads to a reduction of area in the order of 10%
and 5% gains in delay, while the runtime is reduced by a factor ranging between 7 and
∼1000, when comparing with certain scripts of MVSIS (MVSIS Group, 2010) and SIS
(SENTOVICH et al., 1992).

3.3 Using Signatures on Cut Computation

The use of signatures on cut computation has been proposed by Mishchenko (2007).
Its use speeds up the process, and does not affect the final result.

A signature, sign(c), of a cut c is an M -bit integer. It is suggested by the authors to
use M as the number of bits that compose a word of the target processor. Every node
n ∈ c has an ID. The signature is computed by bitwise OR operations, for each node
contained on the cut, as seen on equation 3.1.

sign(c) = OR
n∈c

2(ID(n)modM) (3.1)

Testing cut properties is much faster with signatures than testing the actual cuts. Al-
though the use of signatures cannot avoid completely the computation over the real cuts,
they are able to reduce it drastically.

If cuts c1 and c2 are equal then sign(c1) = sign(c2). Hence if the signatures are
different, so are the cuts. If the signatures are equal, then the cuts must be tested for
equality.

If a cut c1 dominates a cut c2 then all the 1s in sign(c1) are contained in sign(c2).
This way, if sign(c1)ANDsign(c2) 6= sign(c1) then c1 does not dominate c2. Otherwise,
the cuts must be tested for dominance.

If c1 ./ c2 is a K-feasible cut then |sign(c1) OR sign(c2)| ≤ K. Here |s| denotes the
number of 1s on the binary representation of s. So, if |sign(c1) OR sign(c2)| > K then
c1 ./ c2 is not K-feasible, otherwise its K-feasibility must be tested.

An example follows. Let M = 8. Cut c1, having the nodes with ids 32, 68 and 69
would have sign(c1) = 00110001. A second cut c2 with nodes having ids 32, 68 and
70 would have sign(c2) = 01010001. It can be inferred that neither c1 dominates c2 nor
c2 dominates c1, without having to actually compare the cuts. If c3 is a cut composed
by nodes having ids 36, 64 and 69, then sign(c3) = sign(c1) = 00110001. However
c1 6= c3, which shows that the comparison of the cuts is sometimes necessary.

38

3.4 Factor Cuts

Factor cuts (CHATTERJEE; MISHCHENKO; BRAYTON, 2006) are a collection of
K-feasible cuts, grouped in two categories, local cuts and global cuts. The definition
of these groups can vary according to the factorization scheme. However, the idea is to
construct these two sets of cuts in order to be able to expand them generating a (possibly
complete) set of K-feasible cuts. Observe that in this context the term factorization has a
distinct meaning from factorization of Boolean equations.

In short, factor cuts allow algorithms that were conceived to use K-feasible cuts to
work without the need of enumerating all cuts of every node. Only factor cuts need to be
computed, and further calculation can be executed on-the-fly as more cuts are needed.

The expansion process can be explained as follows. Let c to be a global cut of a node
n, and let ci to be a local cut of a node i belonging to c. If e is a cut defined as e =

⋃
i ci ,

and e is K-feasible, then e is a 1-step expansion of n. The set of cuts obtained expanding
the cut c is defined as 1-step(c).

1-step(c) = {e|e is a 1-step expansion of c} (3.2)

In Figure 2.7, expanding the node a in the global cut {a, b, z} by its local cut {p, q},
we get the cut {p, q, b, z}, which is therefore a 1-step expansion of {a, b, z}.

3.4.1 Complete Cut Factorization

When using complete factorization, the local cuts are the tree cuts, and the global
cuts are the reduced cuts. The complete factorization has an interesting property: any
K-feasible cut can be generated by 1-step expansion.

3.4.1.1 Tree Cuts

The tree cuts of n are cuts only involving nodes within its factor tree.
Let ΦKT (n) be the set of tree cuts of a node n. Define the auxiliary function Φ†KT (n)

as follows:

Φ†KT (n) =

{
∅ : n ∈ F
ΦKT (n) : otherwise (3.3)

Then, ΦKT (n) is defined by:

ΦKT (n) =

{
{{n}} : n is a PI
{{n}} ∪ (Φ†KT (n1) ./ Φ†KT (n2)) : otherwise

(3.4)

So, ΦKT (n) is the subset of ΦK(n) that is composed only of nodes from the factor tree
of n.

For example, in Figure 2.7, ΦKT (x) = {{x}, {y, z}, {y, c, d}}.

3.4.1.2 Reduced Cuts

The set of reduced cuts of a node n, ΦKR(n), is defined as:

ΦKR(n) =

{
{{n}} : n is a PI
{{n}} ∪ ((ΦKR(n1) ./ ΦKR(n2))\ΦKT (n)) : otherwise (3.5)

The formula of ΦKR(n) is very similar to ΦK(n), except that the tree cuts of n are
recursively removed. Because of that ΦKR(n) is much smaller than ΦK(n).

39

In Figure 2.7, ΦKR(x) = {{x}, {a, b, z}}.

3.4.2 Partial Cut Factorization

The partial factorization scheme does not allow the generation of a complete set of
K-feasible cuts by 1-step expansion as the complete factorization scheme does, although
it is much faster and in practice produces good results. For partial factorization, the local
cuts are the leaf-dag cuts, and the global cuts are the dag cuts.

3.4.2.1 Leaf-dag Cuts

The leaf-dag cuts of a node n are cuts only involving nodes of its factor leaf-DAG.
Let ΦKL(n) be the set of leaf-dag cuts of a node n. Define the auxiliary function

Φ†KL(n) as follows:

Φ†KL(n) =

{
{{n}} : n ∈ F
ΦKL(n) : otherwise (3.6)

Then, ΦKL(n) is defined by:

ΦKL(n) =

{
{{n}} : n is a PI
{{n}} ∪ (Φ†KL(n1) ./ Φ†KL(n2)) : otherwise

(3.7)

Leaf-dag cuts are conceptually similar to the tree cuts. The difference lies at the fact
that leaf-dag cuts include also the dag nodes that are inputs to the factor tree of n.

For example, in Figure 2.7, ΦKL(x) = {{x}, {y, z}, {a, b, z}, {y, c, d}, {a, b, c, d}}.
Notice that {a, b, z} and {a, b, c, d} are not tree cuts of x.

3.4.2.2 Dag Cuts

Let ΦKD(n) define the set of dag cuts of the node n:

ΦKD(n) =

{{n}} : n is a PI
(ΦKD(n1) ./ ΦKD(n2)) : n ∈ T
{{n}} ∪ (ΦKD(n1) ./ ΦKD(n2)) : otherwise

(3.8)

This way, ΦKD(n) will only contain dag nodes and primary inputs. The number of
dag cuts is much smaller than reduced cuts, but still allows us to capture much of the
reconvergence in the network.

In Figure 2.7, ΦKD(x) = {{x}, {a, b, c, d}, {p, q, b, c, d}}.

3.5 TEMPLATE Boolean Matching Method

The TEMPLATE system (TEchnology Mapping PLATform) (HINSBERGER; KOLLA,
1998) is a method for Boolean matching of functions, which tries to find whether func-
tions belong to the same equivalence class.

The method is based on the definition of a canonical representative function R[f] for
each equivalence class [f]. Thus, the matching of a function against a library can be
performed as follows: first the canonical representative function is computed for each
function in the library; then the representative for the target function is computed and a
direct comparison takes place, if R[f1] = R[f2] then f1 is a match of f2.

A function is defined by its truth table, which can be represented as a bit string. When
looking at a bit string as an unsigned integer representation, there is an inherent ordering.

40

This way, the two functions can be compared and classified as larger, smaller or equal by
comparing the integers formed by their bit string representations.

So the representative function R[f] of [f] can be defined as the largest function in [f],
as said in equation 3.9.

R[f] = max
g∈[f]

g (3.9)

The most intuitive way of finding R[f] would be trying all operations allowed in
the target equivalence class. For example, figure 3.3 shows functions of three variables
obtained by all possible permutations of the inputs, hence considering a P-equivalence
class, in the format of a tree. In the figure, the variables are represented by the numbers
1, 2 and 3. Each node contains a variable ordering assigned. In the S0,3 line there is no
ordering assigned to any variable, in the line S1,3 the first variable is assigned, and so on.

Figure 3.3: Naive approach for computing R[f]P (HINSBERGER; KOLLA, 1998).

One interesting property can be visualized with the help of figure 3.4. If the variable
ordering is defined up to the k-th variable, no matter the ordering of the subsequent vari-
ables, the first 2k lines of the truth table are already defined. This is because every variable
having an index larger than k has an equal value (zero) on these first 2k lines.

xn . . .xk+1 xk . . .x1 f(x1 . . . xn)

0 . . . 0 T0

0
...

...
1 . . . 1 T2k−1

0 . . . 1 0 . . . 0 T2k
...

...
...

1 . . . 1 1 . . . 1 T2n−1

Figure 3.4: A generic view of a truth table.

With this property in mind, at each node of the tree some of the first values of the
function can be evaluated. As the most significant bits play a more important role on

41

determining relations of equality and ordering, some branches of the tree are already
known not to produce the largest integer, hence some branches are not computed any
further. Following the same example, figure 3.5 shows a reduction on the computation of
R[f]P when comparing to 3.3. This way the computation of the whole tree is avoided, by
not reaching the not maximal leaves.

Figure 3.5: Reducing search space by cutting non-maximal branches (HINSBERGER;
KOLLA, 1998).

Although reduction is achieved by cutting branches, every branch producing a maxi-
mal integer is still reached, even though only one could provide the correct representative.
To reduce even further the computational effort, information of variable symmetry can be
used. Two variables a and b of a function f are symmetrical when they can be exchanged
without changing the result of the function. More formally, if f(a, b) = f(b, a) then a
and b are symmetrical. The set of variables that are symmetrical between them defines a
symmetry class.

From the definition of variable symmetry, it is deductible that not every variable
should be tested in every position, but only one variable of each symmetry class. This
is because if the only difference between two branches is that the position of two sym-
metric variables is exchanged, then these two branches produce the same integers in their
leaves. The same example now is shown in figure 3.6, but taking advantage of the fact
that variables 2 and 3 are symmetrical.

The authors also define a generalization for the NPN-equivalence class case. Instead
of considering only permutations, the tree is constructed by also considering inversions in
the variables. This covers the NP-equivalence class. But as the tree is constructed twice,
one for the direct function and another for the inverted function, the NPN-equivalence
class case is covered.

The authors claim that this algorithm is able to manage about 106 functions per second,
using an HP 735/125. The tests were executed over the 1989 MCNC benchmark circuits,
and they did not provide the average size of the cuts, which is the average number of
inputs of the functions treated.

Other authors (DEBNATH; SASAO, 2004) have improved this method to make it
faster. The difference on this latter approach is that the entire set of possible negations
and permutations is pre-computed and stored in a hash-table. According to the authors,

42

Figure 3.6: Reducing search space by using symmetry (HINSBERGER; KOLLA, 1998).

once this hash-table is computed, the matching phase presents a speed-up of two orders
of magnitude, at expense of using much more memory. Hash-tables for functions with up
to seven variables consume 140 megabytes of memory.

3.6 Area Flow Covering

The area flow covering algorithm (MANOHARARAJAH; BROWN; VRANESIC,
2006) uses a dynamic programming approach, and finds a solution in time proportional to
the number of nodes times the average number of K-feasible cuts per node. An important
characteristic of the algorithm is that it can be performed iteratively, and each execution
of the algorithm uses information from the last one.

The area flow of a node, AF(n), is an estimate of the area used up to the generation
of that node, and is defined in equation 3.10. In this equation cn is the cut rooted in n that
produces the smallest AF(n). It is called the best cut of n.

AF(n) =
Area(cn) +

∑
i AF(Inputi(cn))

Fanoutest(n)
(3.10)

The sum of the area flows of the output nodes of a circuit is therefore an estimate for
the area of the entire circuit.

The reason why the area flow is an estimate of the area, and not the actual area, is
because the fanout of each node can only be determined after the covering of the circuit.
Therefore, each iteration can take in consideration the fanout of the nodes in the previous
iteration.

The fanout estimation of a node, Fanoutest(n), used in the computation of the area
flow is a weighted average between the last estimation, Fanout′est(n), and the fanout of
the last iteration, Fanout(n). According to the authors, values of α between 1.5 and 2.5
produce the best area results.

Fanoutest(n) =
Fanout′est(n) + α Fanout(n)

1 + α
(3.11)

After an iteration, the graph is fully covered. Every cell, or block, has inputs and
outputs. This way, the fanout of a node Fanout(n) is defined as the number of occurrences

43

of that signal as an input of another block. The use of a signal as a PO is also counted. At
the first iteration, the covering to be considered is one cell per node of the graph, so the
fanout estimation of a node is its actual fanout on the graph.

At each iteration, the graph is traversed twice. The first traversal is performed from
inputs to outputs, and computes the area flow of each node. Then a traversal from outputs
to inputs takes place, recursively choosing the cuts with minimal area flow. The output
nodes of the chosen cuts are said to be the visible nodes, and the number of times that
node is used is the definition of Fanout(c). For the nodes that are not visible, i.e. fanout
equal to zero, the authors recommend using a fanout value of one.

Table 3.1 shows the effect of successive iterations over the benchmark circuit s38584,
with a mapping oriented to an FPGA having LUTs with up to four inputs and using
α = 2. The process of mapping to an FPGA allows any cut that do not exceed the number
of inputs of the LUTs to be used on the final mapping, and considers that the area of
each cut is unitary. The table reports the number of LUTs used (# cuts) and the area
flow seen from the primary outputs (AF) for each iteration. It is noticeable that the area
flow approximates to the area as iteration continues. This is due to the correction of the
fanout estimation on each iteration. As the area flow approaches the true value of area, the
algorithm is able to reduce area even further, because it actually tries to reduce the total
area flow of the circuit. The authors say that for most circuits the improvements cease at
eight iterations.

Table 3.1: Effect of iterations in area flow.

Iteration # cuts AF

1 3874 3337.77
2 3831 3568.19
3 3820 3708.66
4 3818 3774.60
5 3818 3801.44
6 3818 3811.99
7 3818 3815.93
8 3818 3817.31

The first iteration also makes sure that the covering has a minimum depth, i.e. the
maximum number of cuts in a path. All subsequent iterations minimize area without
increasing the depth of the circuit, eventually augmenting the depth of a path that had a
slack. Anyhow the implementation considered in this thesis, and subsequently the results
shown in section 6.3, aims only area minimization and is unaware of the circuit depth.

44

45

4 KL-FEASIBLE CUTS

In this section the notion of KL-feasible cuts, or simply KL-cuts, is introduced. Ini-
tially, the notion of backcuts and L-feasible backcuts is shown. Some conceptual varia-
tions on the computation of KL-cuts are also discussed, and algorithms are sketched to
ease the understanding of the generation process.

Cuts are an efficient way of representing a region of an AIG regarding one signal
generation. However, when it comes to multiple output regions multiple cuts would be
needed. To overcome this limitation, the proposed KL-cuts are subgraphs which not only
have a limited and well controlled number of inputs, but these same properties are ex-
tended to the outputs.

A KL-cut defines a sub-graph GKL of G which has no more thanK inputs and no more
than L outputs. It is represented as two sets of nodes {GK,GL}: being GK the set of inputs
and GL the set of outputs. If a node n belongs to a path between nK ∈ GK and nL ∈ GL,
and n /∈ GK, then n is contained in GKL. Notice that all nodes in GL are contained in GKL.
However, GKL does not contain any node of GK (MARTINELLO et al., 2009, 2010).

A KL-cut is said to be complete when all the following conditions are met:

c1: Every path between a PI and a node nL ∈ GL contains a node in GK;

c2: Every path between a node contained in GKL and a PO contains a node in GL;

c3: No KL-cut defined by a subset of GK and the same GL is complete;

c4: No KL-cut defined by the same GK and a subset of GL is complete.

In essence, a KL-cut defines a region of a graph, which have at most K inputs and at
most L outputs. It is represented by the set of inputs and the set of outputs. All nodes
between the set of inputs and the set of outputs, including the set of outputs but excluding
the set of inputs, are “inside” the delimited region.

4.1 L-Feasible Backcuts

In order to be able to construct KL-cuts, another structure must be defined, so the idea
of backcuts is introduced.

The algorithms for computing cuts work from inputs to outputs. Computing KL-cuts
involves computing backward cuts — or backcuts — from outputs to inputs. The proposed
backcuts are quite similar to cuts. However, instead of representing a set of nodes that can
generate n, they represent a set of nodes that are influenced by n.

46

A backcut of a node n is a set of nodes c such that every path between n and a PO
contains a node in c. If a backcut c1 is a subset of a backcut c2, then c1 dominates c2. A
backcut is irredundant if it is not dominated by another backcut. An L-feasible backcut is
an irredundant backcut containing L or lesser nodes (MARTINELLO et al., 2009, 2010).

Let us keep the definition of the operation ./, only changing K for L, as shown in
equation 4.1. For convenience, let us define another operator, as seen in equation 4.2.
This attribution can be made since the ./ operation is commutative.

A ./ B = {a ∪ b|a ∈ A, b ∈ B, |a ∪ b| ≤ L} (4.1)

n
1

i=m
xi = xm .// xn (4.2)

Let ΦL(n) be the set of L-feasible backcuts of n, and let ni to be the i-th node con-
nected to its output. We define ΦL(n) as:

ΦL(n) =

{
{{n}} : n is a PO
{{n}} ∪ (1iΦL(ni)) : otherwise (4.3)

As an example, in Figure 4.1, ΦL(p) = {{p}, {r, s}, {s, t}}.

Figure 4.1: AIG demonstrating backcut factorization. Nodes a, b, c and d are primary
inputs. Nodes s and t are primary outputs.

Table 4.1 shows an example of L-feasible cuts enumeration. The AIG used is the
one represented in figure 4.1, and the value of L was kept unlimited. Each node has
the backcut containing itself only (called trivial backcut) along with the combination of
backcuts of its fanout nodes. When the node’s fanout is one, it inherits the fanout’s cuts.
Notice that the backcuts {q, r, s} and {q, s, t} are redundant, since they are dominated by
the cuts {r, s} and {s, t} respectively, and hence are not present in ΦL(c).

4.1.1 Factor Backcuts

As it can be done when dealing with cuts, backcuts can be factored into two groups:
global and local backcuts. We propose a factorization, similar to the partial cuts factoriza-
tion scheme, for backcuts, and similarly to the precursor scheme the proposed algorithm
cannot generate every L-feasible backcut by 1-step expansion. The definition is as fol-
lows.

47

Table 4.1: An example of L-feasible backcuts computation.

Node L-feasible backcuts

t {t}
r {r}, {t}
a {a}, {r}, {t}
s {s}
p {p}, {r, s}, {s, t}
b {b}, {p}, {r, s}, {s, t}
q {q}, {s}
c {c}, {p, q}, {q, r, s} , {q, s, t} , {p, s}, {r, s}, {s, t}
d {d}, {q}, {s}

Let Φ†LL(n) to be an auxiliary function:

Φ†LL(n) =

{
{{n}} : n ∈ F
ΦLL(n) : otherwise (4.4)

Let ΦLL(n) define the set of local backcuts of the node n:

ΦLL(n) =

{
{{n}} : n is a PO
{{n}} ∪ (1

i
Φ†LL(ni)) : otherwise (4.5)

For example, in Figure 4.1, ΦLL(c) = {{c}, {p, q}, {p, s}}.
And let ΦLD(n) denote the set of global backcuts of the node n:

ΦLD(n) =

{{n}} : n is a PO
{{n}} ∪ (1

i
ΦLD(ni)) : n ∈ F

1
i
ΦLD(ni) : otherwise

(4.6)

In Figure 4.1, ΦLD(c) = {{c}, {p, s}, {s, t}}.
This definition allows the local backcuts to contain only nodes belonging to its factor

leaf-DAG, and let the global backcuts to transgress the factor leaf-DAG barriers, allowing
the reconstruction of many of the L-feasible backcuts by 1-step expansion. The expansion
of backcuts works in the same way as for cuts. The global backcuts have their nodes
expanded by the local backcuts. Some quantitative results are shown in section 6.1.

As an example of 1-step expansion, consider the backcut {p, s} in Figure 4.1. Ex-
panding the node p by its local backcut {r, s}, we get to the backcut {r, s}. Thus, {r, s}
is a 1-step expansion of {p, s}.

4.2 KL-Cuts Generation Algorithm

The objective of this algorithm is to find KL-cuts that have shared nodes on the gener-
ation of more than one output, that is, nodes that belong to K-feasible cuts of more than
one output.

Figure 4.2 shows a pseudo-code for KL-cuts enumeration. It starts enumerating all K-
feasible cuts and all L-feasible backcuts of the circuit. Each computed backcut generates a
set of KL-cuts. The function COMBINEKCUTS combines the K-feasible cuts of the nodes

48

belonging to the current backcut d. Let di to be a node of d. Let p = 1iΦK(di). This
way, p is a set of input groups pi, and each one defines a KL-cut {pi, d}. Nevertheless, not
every resulting KL-cut is complete, because condition c2 is not assured. So, the function
CHECKANDFIX adds nodes to the set of outputs in order to make the KL-cut complete,
or else discards the KL-cut. If a node nKL belonging to GKL has as output a node that
does not belong to GKL, then nKL must be added to GL. If GL still have no more than L
nodes, GKL is a complete KL-cut, otherwise it is discarded. In this implementation the
CHECKANDFIX function also discards KL-cuts that are not connected, as its partitions
would most likely appear again as different cuts.

Particularly when L = 2, the connectivity test can be avoided. When combining the
cuts from the two output nodes, only a pair of cuts that have a common node should be
combined. This way, only connected graphs can be formed, and the testing for connectiv-
ity is skipped, speeding up the process while producing exactly the same result.

1: function COMPUTEKLCUTS(K,L, aig)
2: kcuts← COMPUTEKCUTS(aig,K)
3: lcuts← COMPUTELCUTS(aig, L)
4: klcuts← ∅
5: for all lcut in lcuts do
6: p← COMBINEKCUTS(lcut)
7: for all pi in p do
8: klcut← CREATEKLCUT(pi, lcut)
9: if CHECKANDFIX(klcut) then

10: klcuts.add(klcut)
11: end if
12: end for
13: end for
14: return klcuts
15: end function

Figure 4.2: Pseudo-code for KL-cuts calculation.

For instance, in Figure 4.3 (a), starting by the backcut {u, v} generated by the node s,
the cuts {a, b, s} from u and {s, g, h} from v are combined, generating the incomplete KL-
cut {{a, b, s, g, h}, {u, v}}. The last step adds the node r to the set of outputs, resulting
in the complete KL-cut {{a, b, s, g, h}, {r, u, v}} containing the nodes u, v, r and t.

To reduce the number of calculated KL-cuts, one can use only global cuts and global
backcuts in the process, which produces global KL-cuts. They are fewer and larger KL-
cuts. However, the covering of the circuit may get compromised. To ensure the covering,
an additional round of KL-cuts generation could be done, this time using only local cuts
and backcuts, creating local KL-cuts, and possibly only over the previously uncovered
portion of the AIG. The collection of local and global KL-cuts together defines the factor
KL-cuts.

A quantitative comparison between full KL-cuts enumeration and factor KL-cuts enu-
meration can be found in section 6.2.

As an example, let us consider the AIG shown in Figure 4.3. If the KL-cuts, with K =
5 and L = 3 (or simply 5-3-cuts), are computed based only on global cuts and backcuts
one possible covering for the circuit is shown in Figure 4.3 (a), which is composed by the

49

(a)

(b)

Figure 4.3: AIG illustrating covering. Nodes a, b, c, d, e, f , g and h are primary inputs.
Nodes u and v are primary outputs. (a) A covering using 5-3-cuts. (b) A covering using

3-2-cuts.

KL-cuts {{a, b, s, g, h}, {r, u, v}} and {{c, d, e, f}, {s}}. On the other hand, the circuit
cannot be covered only by global 3-2-cuts. Under these conditions, only the nodes r, t,
u and v can be covered. To complete the covering, local KL-cuts must be used, and a
possible covering is shown in Figure 4.3 (b).

4.3 Unbounded KL-Cuts

Although the gains on scalability with KL-cuts come from the fact that the parameters
K and L can be controlled, it can be also interesting to fix one of these values leaving the
other unlimited. For that application, the KL-cut with unbounded K and the KL-cut with
unbounded L are defined here.

Any L-feasible backcut has exactly one correspondent KL-cut with unbounded K,
and that should be the largest KL-cut formed by that L-feasible backcut and a cut (not
necessarily K-feasible). Similarly, any K-feasible cut has exactly one correspondent KL-
cut with unbounded L, being that the largest KL-cut formed by a backcut (not necessarily
L feasible) and the K-feasible cut in question.

50

4.3.1 KL-Cuts with unbounded K

The KL-cuts with unbounded K are very similar to regular KL-cuts, although they
have no restriction on K, i.e. the number of inputs.

Figure 4.4 shows the pseudo-code for the algorithm. First of all, the L-feasible back-
cuts are calculated. Each backcut GL is the set of outputs of a KL-cut GKL, so the set
of inputs GK needs to be found. The graph is recursively traversed in depth first order
(function ADDNODES()). Each node that neither is a PI, nor has a backcut composed
exclusively by nodes on the set of outputs (function LCUTSOK()) is added to the set of
inputs, otherwise the function is applied recursively to its child nodes. In other words,
GKL only contains nodes n such that ∃c ∈ ΦL(n)|c ⊆ GL.

1: function COMPUTEKLCUTSUNBOUNDEDK(aig, L)
2: lcuts← COMPUTELCUTS(aig, L)
3: klcuts← ∅
4: for all lcut in lcuts do
5: inputs← ∅
6: for all node in lcut do
7: ADDNODES(node, inputs, lcut)
8: end for
9: klcuts.add(CREATEKLCUT(inputs, lcut))

10: end for
11: return klcuts
12: end function
13: function ADDNODES(node, inputs, lcut)
14: if LCUTSOK(node, lcut) and node is not PI then
15: ADDNODES(node.input(1), inputs)
16: ADDNODES(node.input(2), inputs)
17: else
18: inputs.add(node)
19: end if
20: end function

Figure 4.4: Pseudo-code for KL-cuts with unbounded K computation.

Notice that by applying this algorithm, any L-feasible backcut in the AIG leads to
exactly one KL-cut with unbounded K, and this computation is performed in a single
traversal of the graph. Observe also that the value of K is self adjusted by the topology
and convergence of the graph.

Instead of computing all backcuts, it is possible to use only global backcuts, speeding
up the process. Moreover, when using only global backcuts for calculating KL-cuts with
unbounded K, the generated sub-graphs have factor trees as its elementary blocks. In
other words, each one of these KL-cuts is constituted by one or more complete factor
trees.

It is of particular interest the KL-cuts with unbounded K and L = 1, and based on
global backcuts. In this case the sub-graph may contain more than one factor trees that
are reconvergent to the sole output it presents. For instance, in Figure 4.5, the KL-cut with
unbounded K for the global backcut {t} is {{a, b, c, d}, {t}}. Observe the incorporation
of 3 factor trees on this KL-cut. Moreover, there is only one possible covering of a circuit

51

by KL-cuts of this specific type, and its computation is done in a single traversal of the
AIG. This performs a full partitioning of the circuit, and each partition will be an MFFC
(CONG; DING, 1996). Some results are present in section 6.3.4.

Figure 4.5: AIG exemplifying KL-cuts with unbounded K. The KL-cut
{{a, b, c, d}, {t}} is a KL-cut with unbounded K.

A KL-cut with unbounded K contains all nodes that are only used for producing
its outputs. For instance, in Figure 4.1, the backcut {r} leads to the KL-cut with un-
bounded K {{a, p}, {r}}, the backcut {s} to {{p, c, d}, {s}}, and the backcut {r, s} to
{{a, b, c, d}, {r, s}}.

Observe that on this process no K-feasible cut needs to be calculated. Also, the use of
global backcuts instead of all backcuts can reduce the total time.

4.3.2 KL-Cuts with unbounded L

The KL-cuts with unbounded L are KL-cuts with no restriction on L — the number
of outputs. These KL-cuts contain all nodes that have a support defined by the starting
K-feasible cut.

The pseudo-code for computing KL-cuts with unbounded L is described in figure 4.6.
Initially, the K-feasible cuts are generated for all nodes. Then, for each cut GK a set
of outputs GL needs to be generated, to define a KL-cut GKL. The nodes are traversed
from the starting cut nodes on the outputs direction (function ADDNODES()). Each node
is tested by the function KCUTSOK(), which returns true if the node has at least one
K-feasible cut formed only by nodes in kcut. That is, GKL contain nodes n such that
∃c ∈ ΦK(n)|c ⊆ GK.

To illustrate, considering figure 4.1, starting from the K-feasible cut {b, c, d}, the re-
sulting KL-cut with unbounded L would be {{b, c, d}, {p, s}}.

On a technology mapping process the excessive number of outputs can be circum-
vented, a KL-cut with unbounded L having N outputs can be implemented as dN/Le reg-
ular KL-cuts. As an example, a 5-5-cut can be made out of two 5-2-cuts and one 5-1-cut.

52

1: function COMPUTEKLCUTSUNBOUNDEDL(aig,K)
2: kcuts← COMPUTEKCUTS(aig,K)
3: klcuts← ∅
4: for all kcut in kcuts do
5: outputs← ∅
6: for all node in kcut do
7: ADDNODES(node, outputs)
8: end for
9: klcuts.add(CREATEKLCUT(kcut, outputs))

10: end for
11: return klcuts
12: end function
13: function ADDNODES(node, outputs)
14: if KCUTSOK(node) and node is not PO then
15: for all out in node.outputs do
16: ADDNODES(out, outputs)
17: end for
18: else
19: outputs.add(node)
20: end if
21: end function

Figure 4.6: Pseudo-code for KL-cuts with unbounded L computation.

53

5 APPLICATIONS OF KL-CUTS

In this section possible applications for KL-cuts are discussed. Some of them were
explored in this work, and results are shown in section 6. For other applications the
discussion is qualitative, but no results were produced.

5.1 Technology Mapping

Multiple output cells are a reality on modern standard cell libraries, e.g. the full-adder
and half-adder cells. Similarly, library free technology mappers could use multiple output
cells to reduce the area of a circuit, especially on arithmetical circuits. Moreover, current
FPGAs have multiple output LUTs available (HUTTON et al., 2004; COSOROABA;
RIVOALLON, 2006). Hence the utilization of methodologies that only manage single
output portions of circuits can lead to a poor quality result.

Technology mapping for FPGAs is somehow simpler than standard libraries. In a
simplistic approach, every LUT on an FPGA is equal, so delay, area and power can be
normalized to those of one LUT. Also, as the interconnections are already established on
the circuit, there is no load variation, making the timing estimation much more reliable.

5.1.1 Greedy Covering

A simple algorithm to perform a full covering of a circuit by KL-cuts was elaborated.
This algorithm does not intend to achieve the state-of-the-art in mapping, but to confirm
the potential of using KL-cuts in technology mapping. The greedy algorithm searches for
local maxima. At each iteration the largest possible KL-cut is chosen, and all KL-cuts with
overlapping nodes are eliminated from the solution space. These iterations are repeated
until the circuit is fully covered.

Two effort levels are defined. Using high effort level, all KL-cuts are present in the
solution space of the algorithm, granting a search through the entire specter of possible
cuts. When using low effort level, only global and local KL-cuts are available to the cov-
ering algorithm. This is a good heuristic because global cuts are the largest cuts available,
but may not be sufficient to cover the circuit. For the areas where global cuts fail to cover,
local cuts will be used.

Besides that, different flavors of this greedy covering were elaborated. The completely
free covering, where the largest cut among all is chosen, is able to rapidly cover a large
portion of the circuit, but leaving too many small portions uncovered and isolated, so
when the time comes to cover these regions, only small cuts are available. Trying to
address this deficiency, directed coverings are proposed. One is a top-down approach,
where the only candidate cuts are the ones covering the topmost (output end) nodes of

54

the circuit. It can be seen as if successive layers are covered one by one. Alternatively a
bottom-up covering can be used, which is similar to the top-down approach, but starting
from the inputs. As most of the circuits are wider near the inputs than near the outputs, a
bottom-up covering usually presents better results than a top-down approach.

As a proof-of-concept algorithm, it showed the usability of KL-cuts on a technology
mapping algorithm on a multiple output flow. Results of some variations of this algorithm
are shown in section 6.3.1.

5.1.2 Area Flow Covering for Multiple Outputs

The area minimization problem in the duplication free mapping can be solved opti-
mally by decomposing the circuit into MFFCs, which are mapped for area. However with
the use of controlled duplication, further area can be saved.

An extension to the algorithm of area flow covering (MANOHARARAJAH; BROWN;
VRANESIC, 2006) is presented in this thesis, as the original one only deals with single
output cuts. The area flow computation remains practically the same. The main differ-
ences are the classification of nodes, and the creation of different modes of operation.

Here, the idea of area flow of a node AF(n) is kept, but let us separate this into two
concepts: area flow of a node AF(n) and area flow of a cut AF(c). If Cn is the set of cuts
that have n as an output, then AF(n) is the smallest AF(cn)|cn ∈ Cn. In other words,
the area flow of a node n is the smallest area flow between all cuts that generate n. This
chosen cut cn is called, as before, the best cut of n. The area flow of a cut is defined in
equation 5.1. In this equation, cK is the set of input nodes of c.

AF(c) =

Area(c) +
∑

ni∈cK
AF(ni)

Fanoutest(c)
(5.1)

The main change lies on how to compute Fanoutest(c). Let us first define a classifi-
cation system for nodes and cuts. In the original algorithm, nodes are classified only as
visible or not visible. In this version the same node can have different classifications when
regarding different cuts. Let us assume a given covering C. If cL is the set of output nodes
of a cut belonging to this covering c ∈ C, at least one n ∈ cL is used, but not necessarily
all of them. Even if a node n is effectively used, the cut c in question may not be the best
cut of n, meaning that n is necessarily generated again by another cut.

In this context, for a node n and a cut c:

• If n has a fanout larger than zero and c is its best cut, then n is a used node in c.

• If n has a fanout larger than zero, but c is not its best cut, then n is a virtually used
node in c.

• If n has a fanout zero, it is classified as a node not used, or not visible.

Notice that the fanout of a cut is the denominator in the area flow formula. Being so,
it is of great impact on the choice of the covering, and should receive special attention.

Considering this scenario, the most coherent way of computing the fanout of a node,
let us call it the mode 1, would be the one described in equation 5.2. Here, considering
cL as the nodes that are outputs of c, cu denote the set of used nodes in cL, cv the set of
virtually used nodes in cL and cn the set of not used nodes in cL. Basically, the fanout of
a cut is the sum of the fanout of its used nodes. If it does not have used nodes, then its
fanout should be considered one.

55

Fanout(c) =

{ ∑
ni∈cu

Fanout(ni) : cu 6= ∅

1 : otherwise
(5.2)

Although this method produces a valid covering, it often fails on the extensive use of
multiple output cuts. To overcome this limitation, two more method are proposed.

Mode 2 considers, as well as the used nodes, the virtually used nodes, as seen in
equation 5.3. The idea of considering all visible nodes is that, if a multiple output cut was
not the best cut at a previous iteration, it does not mean that it will not be at the next one.

Fanout(c) =
∑
ni∈cu

Fanout(ni) +
∑
ni∈cv

Fanout(ni) (5.3)

Finally mode 3 counts the fanout of every output, regardless if it is used or not, see
equation 5.4. The inspiration for this is to use it at the first iterations, so the other methods
will have as starting point a covering that uses plenty of multiple output cuts.

Fanout(c) =
∑
ni∈cu

Fanout(ni) +
∑
ni∈cv

Fanout(ni) +
∑
ni∈cn

1 (5.4)

All of these modes of operation deal differently with nodes having different classifi-
cations. Nevertheless, if only single output KL-cuts are used, the three modes reduce to
the original algorithm proposed for K-feasible cuts.

It is easily noticeable that the area flow when using modes 2 and 3 do not converge
to the actual area used by the covering. This is not necessarily a problem, since the idea
is to use them during the first iterations only, always finishing the covering using mode
1. Notice that the first iteration uses as fanout estimation the fanout of the nodes in the
starting graph, so for this specific iteration the mode does not matter. An empirically
found good distribution would be a covering achieved by the first iteration (in any mode),
followed by two or three iterations on mode 3, the by two or three in mode 2, and finally
by three to five in mode 1.

As an example table 5.1 shows the evolution of the area flow through the iterations
by using only mode 1. Columns ‘# SO cuts’ and ‘# MO cuts’ divide the total number of
cuts into single output and multiple output cuts respectively. This example is the same
benchmark circuit as table 3.1. Even though the number of multiple output cuts was of the
order of 20%, the reduction on the number of cuts when comparing to the single output
version did not follow.

Now let us compare these results with table 5.2. This table shows the iterations of a
mapping using, besides the first iteration, two using mode 3, two using mode 2 and five
using mode 1, in this order. The first thing to notice is that, in modes 3 and 2, the reduction
on the use of multiple output cuts is slower. Then, although the number of multiple output
cuts in the end is slightly smaller, there is a reduction on the total number of cuts.

The authors of the original algorithm say that values of α between 1.5 and 2.5 produce
good results. An α too small requires more iterations to let area flow to converge to the
real area. On the other hand, an α too big may produce worst results or even make the
area flow to oscillate and never converge.

As a brief example, consider the graph in figure 5.1. Consider that there are three cuts
available to the covering: c1 = {{a, b, c}, {x, y, f, e}}, c2 = {{a, b, c}, {d, f, z}} and
c3 = {{a, b, c}, {x, y, z}}. To make it clear, c1 contains the nodes d, e, f , x and y, c2
contains d, e, f and z, and c3 all nodes except the primary inputs a, b and c. Consider also

56

Table 5.1: Effect of iterations in multiple output area flow, using only mode 1.

Iteration # cuts AF # SO cuts # MO cuts

1 3808 2700.78 2779 1029
2 3581 3047.68 2749 832
3 3548 3290.89 2785 763
4 3527 3414.07 2800 727
5 3515 3474.00 2806 709
6 3514 3498.49 2812 702
7 3512 3507.78 2812 700
8 3512 3510.44 2812 700
9 3512 3511.37 2812 700

10 3512 3511.77 2812 700

Table 5.2: Effect of iterations in multiple output area flow, using all modes of operation.

Iteration # cuts AF # SO cuts # MO cuts Mode

1 3808 2700.78 2779 1029 *

2 3758 2799.64 2740 1018 3
3 3759 2864.14 2742 1017

4 3598 3006.58 2748 850 2
5 3561 3139.40 2763 798

6 3510 3285.54 2752 758 1
7 3493 3382.59 2764 729
8 3468 3435.32 2777 691
9 3464 3450.26 2785 679

10 3465 3457.77 2787 678

that this is a covering aiming a programmable device, so the area of every cut is unitary.
In this scenario, table 5.3 contains values of AF (ci) in different situations. The column
labeled “1st” contains the value of area flow on the first iteration, which is independent of
mode. As a consequence of these values, the first covering would be constituted by cuts
c1 and c2. In this moment, x and y are used nodes in c1, and z is a used node in c2. c3 does
not contain any used node, but x, y and z are virtually used in c3. The other nodes are not
used.

Table 5.3: Area flow according to different modes of computing fanout.

1st M1 M2 M3

c1 1/7 1/2 1/2 1/4
c2 1/7 1 1 1/3
c3 1/3 1 1/3 1/3

Then three cases are considered. The columns labeled “M1”, “M2” and “M3” rep-

57

Figure 5.1: An AIG to illustrate the multiple output area flow algorithm.

resent area flow in modes 1, 2 and 3 respectively. In these columns equation 3.11 is
bypassed by using α = ∞, for the sake of an easy comprehension of this example. The
best solution of this example would be a covering using only c3, which would never be
achieved by using only mode 1. Mode 2 leads to the best solution, since AF (c3) is the
smaller area flow. In mode 3 cuts AF (c2) = AF (c3), but this tie only occurs when look-
ing to node z. Even if c2 is effectively chosen by z, as the final passes are always in mode
1, c2 would be dropped in favor of c3. So, although the other modes are not directly re-
lated to the area, they contribute to a better result by promoting the use of multiple output
cuts.

Although the AIG representation is loop free, an additional precaution must be taken
to avoid loops at a KL-cuts abstraction level. Figure 5.2 shows a loop free AIG that
have loops when looking at KL-cuts as black boxes. The AIG is divided in two KL-cuts:
c1 = {{a, b, g}, {e, f}} and c2 = {{c, d, e}, {g, h}}. The cut c1 has as input the node g,
which is generated by c2, and the cut c2 has as input the node e, which is generated by c1.
This defines a loop, since c1 depends on c2 which depends on c1. As the algorithm runs
the graph depth-first at a KL-cuts abstraction level, it must be loop free. One simple way
of avoiding these loops is explained as follows.

When looking a KL-cut GKL isolated, consider the height of a node h(n) as the largest
number of hops from the node n to a node nin ∈ GK. One necessary condition for a loop
to exist is that ∃nin ∈ GK,∃nout ∈ GL|h(nin) ≥ h(nout). For example, looking at the
cut c1 = {{a, b, g}, {e, f}}, h(g) = h(e), being g an input of c1 and e an output. The
simplest way to avoid having loops is to exclude from the solution space every cut that
does not respect this height relation restriction.

Another consideration to be made is about the way KL-cuts are constructed. In the
generation algorithm, a final step assures that every node pointing to another one out-
side the cut is listed as an output. As an example, in figure 5.2, the incomplete cut
{{a, b, g}, {f}} would be completed to form the cut {{a, b, g}, {e, f}}. This is vital
for an application such as AIG rewriting or other peephole optimization procedure (see
section 5.3), because otherwise a signal could be ignored and be not generated. But for
this application an incomplete KL-cut causes no harm, and a proof could be derived from
the fact that that any K-feasible cut can be seen as an incomplete KL-cut. It is worth to
point out that the proposed multiple output area flow covering algorithm, when fed with
K-feasible cuts represented as incomplete KL-cuts, behaves exactly as the original single

58

Figure 5.2: An AIG with a loop formed by KL-cuts.

output area flow algorithm, and thus can be considered a generalization of it.
One final step, after concluded the covering process, removes the outputs that are not

used in the covering, possibly turning some cuts incomplete, and also possibly excluding
some cuts form covering, in case all of its outputs were removed. This reduces the task of
cells generation, if a library-free mapping is the target. This step may also be excluded if
a library based approach is being followed.

Finally it must be highlighted that this method is still under investigation. Different
modes of operation and different modes distributions throughout the mapping process are
still to be tested. Nevertheless, results of the current state of the algorithm are shown in
section 6.3.2.

5.1.3 Matching

The covering process needs, besides the structure to be covered, a search space formed
by cells. This search space, or solution space, is composed by the matches between
portions of the subject graph and a predefined library.

When mapping using a library-based approach, the matching phase consists in de-
ciding whether the sub-circuit has a correspondent cell in the library. In this context,
“correspondent” may have several definitions. On a structural matching, a sub-circuit
matches a cell if they have an isomorphic representation. It is possible that the same li-
brary cell is associated to more than one graph decomposition. On a Boolean matching, a
match is when the Boolean function implemented by the sub-circuit belongs to the same
equivalence class as the cell function.

On a library-free mapping, the solution space is constituted by the cuts that respect a
determined restriction. If it is a matter of number of inputs and outputs, then the genera-
tion already takes care of generating only useful cuts. On the other hand, if the restriction
is more sophisticated, like the number of series transistors, then an algorithm must be run
on each cut to determine if it must be pruned out of the solution space before the covering
process.

Even in the case of a library-free mapping, if the target is not a programmable device, a
matching algorithm is required. The result of the covering phase is a set of cuts. Place and
route algorithms, which is usually the following step on a design flow, requires each cell to
have a layout associated. In a library-free flow this layout generation step is postponed to
after the covering is complete. Being so, a grouping of the cells chosen by the technology

59

mapping into equivalence classes is necessary, so only one layout for each equivalence
class can be generated instead of one layout per cell.

As the Boolean matching methods are more comprehensive then structural matching
methods, an extension to the TEMPLATE method (HINSBERGER; KOLLA, 1998) is
proposed in this thesis in order to contemplate cells having multiple outputs.

5.1.3.1 A Multiple Output Boolean Matching Method

As well as the concepts of P, NP and NPN-equivalence classes are defined for a single
function, the ideas of PP, NPP or NPNP-equivalence classes can be defined for a list of
functions, which can be viewed as a single multiple output function f : Bn 7→ Bm.

A PP-equivalence class is defined by allowing permutations both in inputs and outputs.
As an example, consider the following lists of functions:

s1 =

{
f1 = a ∗ b+ c
f2 = b ∗ c

s2 =

{
f1 = a ∗ c
f2 = a ∗ c+ b

s3 =

{
f1 = a ∗ c
f2 = a ∗ b+ c

Here s1 belongs to the same PP-equivalence class as s3. Starting from s3, it suffice to
switch the inputs a and b, and the outputs f1 and f2 to obtain exactly s1. Now comparing
s1 and s2: although f1 of s1 (let us call it s1.f1 for a simpler notation) is P-equivalent to
s2.f2, and s1.f2 is P-equivalent to s2.f1 — a condition necessary to P-equivalence, but not
sufficient —, s1 is not PP-equivalent to s2. This is because its internal functions are only
P-equivalent to each other in different input permutations, and there is no permutation
that makes both s1.f1 P-equivalent to s2.f2 and s1.f2 P-equivalent to s2.f1.

Similarly an NPP-equivalence class is defined by allowing input negation and permu-
tation, and output permutation. And an NPNP-equivalence class is defined by allowing
inputs and outputs to be both negated and permuted. Two lists of functions with a different
number of inputs or a different number of outputs never belong to the same equivalence
class. This work is focused in PP-equivalence class matching.

This thesis proposes an extension of the TEMPLATE system (reviewed in section
3.5), in order to be able to find PP-equivalence between lists of functions. The focus
application is to determine multiple output cells equivalence. The idea is similar to the
original algorithm, to find a representative list of functions R[Lf]PP of [Lf]PP .

The truth table representation of a list of functions (figure 5.3 shows a truth table
for a list L1) has more than one column of outputs, so its representation as a bit string
is not trivial. For this algorithm, the bit sequence is composed by interspersing the bit
string representations of each function. As an example, the bit string representation of L1,
of figure 5.3, is 001101000110001101100110. This representation is changed whenever
the input ordering or the output ordering is changed. Once the lists of functions can be
represented this way, they can be compared using the unsigned integer semantic, thus
establishing a relation of order. This way, the representative function is defined as the
maximum list in the same equivalence class, as shown in equation 5.5.

R[Lf] = max
Li∈[Lf]

Li (5.5)

60

c b a f1 f2 f3

0 0 0 0 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 1
1 1 0 1 0 0
1 1 1 1 1 0

Figure 5.3: A truth table representation of a set of functions L1.

The bit string is defined this way in order to keep profiting from the property shown
in figure 3.4, discussed in section 3.5. If the order of variables is defined up to the k-th
variable, then the first 2k lines of the truth tables are defined. Consequently, the first 2k

times the number of functions bits of the bit string representation are also defined. So,
by defining this rule of bit string, the non-maximal branches are pruned, just like in the
original algorithm.

Symmetry information can also be used, although potentially with less profit than in
the single output version. In order to be able to cut off a branch of the search space,
the variables must be symmetrical in all functions. The probability of this to happen
decreases as the number of outputs grow. So, in the current implementation this feature is
not present.

Figure 5.4 shows a tree denoting the input variable permutations tested. At each node,
the already defined bits are shown interspersed in the output order that produces the max-
imal integer. The output order already defined is also displayed. If some outputs still do
not have an established order, they are grouped together.

Following the example, at the starting node
()

no variable ordering is defined. This
way only the first line of the truth table is known. Two of the three functions evaluate
to 0, and f3 to 1. Being so, the bit string can start in three different ways: 001, 010 or
100. As 100 is larger than the others, it is the chosen one and determines that f3 is the first
function. The function ordering (or output ordering) is represented immediately below the
bit string, as {{3}, {1, 2}}, meaning that first comes output 3, followed by, in unknown
relative order, outputs 1 and 2.

Each child node adds one variable ordering regarding its father. For example, in node(
1
1

)
the first position is occupied with the first variable (a). Node

(
1
2

)
attributes to the first

position variable 2 (b), and so on. As the tree is constructed in breadth-first order, each
time a level is completed, all non-maximal nodes can be abandoned. In the example, node(
1
1

)
is larger than the others, so the son nodes of

(
1
2

)
and

(
1
3

)
are never reached.

In the end, all leaves reached will have the same integer representation. If the out-
put ordering is not completely specified in a leaf, then any order contained in the order
specification may be used.

Results demonstrating the performance of this algorithm is shown in section 6.3.3.

By having the representative list of functions already computed, the matching reduces
to a single equality comparison. If R[L1]PP = R[L2]PP , then they are PP-equivalent.

61

Figure 5.4: Computing R[L1]PP .

5.1.4 Partitioning

Technology mapping algorithms often make use of heuristics in order to reduce the
complexity of the problem. One of the most popular heuristics is the partitioning.

Partitioning consists into breaking the circuit to be covered into several smaller parts,
performing the mapping individually on each part, unifying the mapping in the end. It can
make use of a post-processing step to correct mispredictions or to improve some charac-
teristic. The decomposition of a graph in a forest of trees is an example of partitioning.

A decomposition that is a little more comprehensive than breaking into trees is break-
ing the circuit into MFFCs. A fanout-free cone of a node v FFCv is a cone which every
node has its fanout nodes inside the cone. For each node v there is a unique maximum
fanout-free cone MFFCv that contains every FFCv (CONG; WU; DING, 1999).

A KL-cut with unboundedK and L = 1 is an MFFC, and there is exactly one possible
covering of a circuit into MFFCs. Hence, KL-cuts provide a way to decompose circuits
into MFFCs. More than that, cuts with unbounded K may also be used with larger L to
perform a partitioning. These cuts may be larger than MFFCs, but small enough to be
able to be treated by some exhaustive algorithm. Further discussion and some results are
shown in section 6.3.4.

5.2 Regularity Extraction

Implementing logic blocks in an integrated circuit in terms of repeating regular geom-
etry patterns can provide significant advantages in terms of manufacturability and design
cost (KHETERPAL et al., 2005). Regularity extraction, which means to detect recurring
functionalities during logic synthesis, can constrain the physical design phase to exploit
the regular netlist produced, going towards a DFM approach (ROSIELLO et al., 2007).

62

Design for Manufacturing (DFM), can be defined as a set of techniques adopted to esti-
mate, control, and improve the yield and robustness of a circuit prior to fabrication.

One possible way of profiting from the use of KL-cuts in regularity extraction is ex-
plained step-by-step as follows:

• Enumeration of KL-cuts over the circuit structure;

• Pruning of the cuts by a predefined rules system, either restrictions from a virtual
library, or even a heuristic;

• Grouping the cuts using a matching engine, either using a structural matching
(faster) or a Boolean matching (more comprehensive);

• Attributing costs to these potential cells, by considering, besides electrical and
physical properties, the number of matches each equivalence class, or template,
has;

• Performing a mapping using this cost system.

This way the regularity of a mapping can be favored in a technology binding process.

5.3 Peephole Optimization

Another application for KL-cuts is to perform peephole optimizations. By defining
a sub-graph on an AIG, it can be replaced by any other sub-graph that implements the
same Boolean functions, but minimizing a given cost function. An example of peephole
optimization is AIG rewriting (MISHCHENKO; CHATTERJEE; BRAYTON, 2006), ex-
plained in section 3.2.

This can be interesting also in a post-mapping stage (WERBER; RAUTENBACH;
SZEGEDY, 2007), when it is usually called In-Place Optimization (IPO). Here several
sub-circuits are analyzed and the ones that could produce improvement to some char-
acteristic, typically area or delay, are selected. This sub-circuits are then replaced by a
single complex cell, generated on-the-fly, and the resulting circuit is reanalyzed in order
to evaluate improvements.

A variation of this IPO using KL-cuts, which was preliminarily studied, is described
as follows. After the circuit is mapped on a standard cell library, KL-cuts are enumerated
over the circuit, but only allowing cuts that do not break the current cells. In other words,
the elementary block of these cuts are not the nodes of the AIG, but the cells on the
previous mapping. Then, the cuts are grouped in PP-equivalence classes, and the most
frequent functionalities are enumerated. So the automatic cell generator can create a
complex cell by compacting these cells into one single cell, trying to reduce area. Finally,
these cells replace the cuts, and the circuit is evaluated again for measuring improvements.

63

6 RESULTS

The results obtained come from implementations in Java language executing on a
2.4GHz Intel Pentium IV with 2GB of RAM. The benchmark circuits used are the largest
circuits from ISCAS’85 and ISCAS’89. The AIGs were generated from original BLIF
files by using the ABC tool (Berkeley Logic Synthesis and Verification Group, 2010).
ABC performs a structural hashing (MISHCHENKO; CHATTERJEE; BRAYTON, 2005)
in order to construct the AIG, and after that the command ‘dc2 -l’ is executed twice in
order to minimize node count, resulting on an efficient AIG representation.

Table 6.1 shows the profile of the circuits that compose the benchmark set. The num-
ber of nodes range from 400 to 11000 nodes, and the concentration of dag nodes varies
from 20% to 40%. As for the sequential circuits, the flip-flops were stripped off, being
replaced for an input/output pair, therefore only the combinational part remains.

Table 6.1: Benchmark information.

Name Nodes % Dag

C1355 424 38.68
C1908 385 40.78
C2670 680 19.71
C3540 947 24.29
C5315 1467 23.86
C6288 1902 73.82
C7552 1526 39.78
s13207 2849 23.20
s15850 3439 27.25
s35932 10837 30.96
s38417 9872 24.57
s38584 11554 25.64

Avg. 3824 32.71

6.1 L-Feasible Backcuts

Table 6.2 shows a brief comparison between complete L feasible backcuts enumera-
tion and factor backcuts enumeration for L = 2. Although on the average, factor back-
cuts represent almost as many cuts as the complete enumeration and take a little longer
to compute, for some circuits it represents much lesser cuts. This depends essentially on

64

the topology of the circuit, being hard to determine beforehand. The gains of using factor
backcuts become more evident as the value of L grows. For example, for L = 4 the factor
cuts sum a half of the complete enumeration, and are computed in 75% of the time. But
for now the applications are limited to small values of L.

Table 6.2: Comparison between L-backcut enumeration and factor L-backcut
enumeration.

All Factor
Name Total Time (s) Global Time(s) Local Time(s)

C1355 1707 0.06 1081 0.02 915 0.02
C1908 1805 0.03 997 0.02 966 0.02
C2670 4342 0.06 1285 0.03 2564 0.03
C3540 6986 0.13 1361 0.03 6176 0.09
C5315 9960 0.16 3248 0.08 4787 0.08
C6288 7682 0.16 5871 0.16 4638 0.13
C7552 16790 0.30 4452 0.13 5037 0.16
s13207 10796 0.33 3233 0.17 10405 0.22
s15850 13715 0.39 4873 0.34 10490 0.34
s35932 90147 3.91 23484 2.91 31937 2.94
s38417 40936 2.38 14011 2.30 28767 2.48
s38584 39643 3.53 13969 3.08 33907 3.20

Avg. 20376 0.95 6489 0.77 11716 0.81

6.2 KL-Cuts

Figure 6.1 shows the number of KL-cuts enumerated on the largest circuit of the
benchmark set, circuit s38584, varying K for some L values. Figure 6.2 shows the time
taken to compute these cuts. It is visible that both the number of cuts and the time taken
to compute them grow exponentially with K. Following, figures 6.3 and 6.4 present the
same results, but changing the x-axis from K to L. This view of the same data reveals
that the growth of both the number of cuts and the time taken to compute them is also ex-
ponential in relation to L. In figure 6.4 it is visible a certain discontinuity when changing
L from 2 to 3. This is because, as said in section 4.2, if L = 2 there is a trick to avoid
checking the cuts for connectivity. If L = 1 the cuts will always be connected, no test
being needed. So, this step is the time taken on this test. This phenomenon can also be
viewed in figure 6.2, as the lines for L = 3 and L = 4 are have a larger slope than L = 1
and L = 2. Part of it is because for larger L the graphs are larger, and the connectivity
test takes more time.

Table 6.3 shows the results for constructing all KL-cuts and for factor KL-cuts enu-
meration. For 5-2-cuts, factored enumeration produced 56% of the number of KL-cuts
generated from full enumeration, taking about the same run-time. If only global cuts are
considered, then the process is done in half of the time. Global cuts can be used as a
heuristic in the covering process, being local cuts used only in the portions of the cir-
cuit where global cuts fail to cover. It is also noticeable that global KL-cuts have more
nodes on average than KL-cuts produced by complete enumeration, which is shown in the

65

Figure 6.1: Number of KL-cuts versus K.

Figure 6.2: Time taken to compute KL-cuts versus K.

columns labeled Size.

6.3 Covering Algoritms

Modern FPGAs are capable of implementing LUTs with two outputs (HUTTON
et al., 2004; COSOROABA; RIVOALLON, 2006). They consist essentially of two LUTs

66

Figure 6.3: Number of KL-cuts versus L.

Figure 6.4: Time taken to compute KL-cuts versus L.

packed together. The main advantage of doing so is to alleviate the congestions on rout-
ing, although it produces some gain area. Generally a multiple output LUT can work on
different configurations, for example some work either as a 6-1 LUT or as a 5-2 LUT. As
each vendor and each model has specific configurations, it is assumed here that all LUTs
are multiple output capable, but it is not necessary that all outputs are effectively used in
a mapping.

67

Table 6.3: Comparison between KL-cuts enumeration and factor KL-cuts enumeration.

All Global Local
Name Total Size Time Total Size Time Total Size Time

C1355 4646 6.11 0.55 1228 7.67 0.11 670 1.77 0.05
C1908 3344 5.00 0.38 790 5.69 0.09 806 2.28 0.05
C2670 5920 4.34 0.42 293 5.80 0.08 2057 2.79 0.11
C3540 9458 3.47 1.03 520 3.32 0.13 4632 2.91 0.31
C5315 12863 4.19 1.30 818 4.91 0.28 5254 2.76 0.25
C6288 11727 3.59 4.31 4787 3.79 2.11 3738 1.63 0.34
C7552 15283 4.67 2.45 1904 4.24 0.42 3909 2.48 0.44
s13207 12150 3.10 1.34 1275 2.94 0.48 8073 2.77 0.66
s15850 20821 3.50 2.13 2072 3.44 0.72 9928 2.70 1.03
s35932 89065 5.11 11.94 8740 5.56 6.27 36012 3.05 6.88
s38417 69215 3.43 9.28 3818 3.47 4.56 32691 2.80 5.83
s38584 67163 3.24 9.97 5528 3.16 6.81 40231 2.86 7.39

Avg. 26805 4.15 3.76 2648 4.50 1.84 12333 2.57 1.94

Table 6.4 shows some results on single output mapping, which will serve as a com-
parison to the multiple output algorithms. Two methods were used. The first, shown in
column “ABC” shows the number of LUTs used by mapping the circuit running the ‘ st;
dch; if -C 12; mfs -W 4 -M 5000’ commands (MISHCHENKO et al., 2009) on ABC four
times, and picking the best result, with a library containing LUTs with up to 5 inputs.
This library assumes the same cost for each LUT. Constants, buffers and inverters are not
considered in this value. The second method is the area flow method (MANOHARARA-
JAH; BROWN; VRANESIC, 2006), reviewed in section 3.6, after eight iterations and
using α = 2. It can be noticed that area flow is almost three times faster than ABC, but
produces slightly worse results.

6.3.1 Greedy Covering

Tables 6.5 and 6.6 show results for using all cuts and only factor cuts respectively, on
a greedy mapping using a bottom-up (from inputs to outputs) approach. Columns named
“Cuts” show the number of cuts for the resulting covering. Columns “% MOC” are the
percentage of cuts that have multiple outputs. Two single output cuts can be implemented
by a single multiple output LUT, as long as the sum of the number of inputs of these
cuts is no larger than the LUT number of inputs. For example, a 2-1-cut can always be
combined with a 3-1-cut, if we have a 5-2-LUT available. For that reason the columns
labeled “LUTs”, which show the number of LUTs necessary to implement the covering,
present a lower value than the columns “Cuts”. The columns “% MOL” represents the
percentage of used LUTs that uses both outputs.

The conversion between the number of cuts and the number of LUTs, in this context,
depends only on the number of inputs of each cut, and not from the actual inputs. It is
a matter of counting how many single output cuts can be combined with each other. On
a typical multiple output flow, all the covering process is performed on a single output
basis, and finally a series of comparisons are made throughout the inputs of cuts, trying
to bind together the ones with shared inputs. This comparison process can be very ex-

68

Table 6.4: Covering for single output LUTs using ABC and Area Flow methods.

ABC Area Flow
Name LUTs Time (s) LUTs Time(s)

C1355 68 4.11 66 1.27
C1908 105 4.12 101 0.92
C2670 149 2.91 127 1.08
C3540 276 15.30 285 2.13
C5315 324 10.69 339 2.73
C6288 501 51.16 711 7.11
C7552 372 14.05 373 4.48
s13207 718 12.69 707 2.89
s15850 966 16.83 945 4.86
s35932 2493 14.95 2682 16.34
s38417 2659 49.22 2648 17.89
s38584 2655 29.27 2754 19.08

Avg. 941 18.78 978 6.73

pensive, and it is exactly this computation that is avoided by using our approach, which
considers multiple output blocks from the beginning. These blocks with shared inputs
will automatically be found as multiple output blocks, and ideally no single output block
would have shared inputs to be combined (or else they would have been found).

Table 6.5: Greedy bottom-up covering using KL-cuts.

Name Time (s) Cuts % MOC LUTs % MOL

C1355 0.95 74 37.84 54 88.89
C1908 0.72 75 69.33 64 98.44
C2670 1.16 141 35.46 110 73.64
C3540 2.38 273 47.25 223 80.27
C5315 3.42 326 44.48 269 75.09
C6288 5.06 359 91.36 344 99.71
C7552 3.70 333 66.07 285 94.04
s13207 5.20 589 55.69 487 88.30
s15850 8.33 819 47.86 657 84.32
s35932 87.69 2221 55.74 1746 98.11
s38417 70.84 2159 61.32 1809 92.54
s38584 112.66 2631 40.94 2123 74.66

Avg. 25.18 833 54.45 681 87.33

By comparing tables 6.5 and 6.6, it is clear that it is a matter of trading off the quality
of the results and speed. The restriction on the use of only factor cuts drops the execution
time to less than a half, but results on 10% more cuts and 5% more LUTs. The reason of
this difference on the reduction of cuts and LUTs is because the covering with factor cuts,
on the regions where local cuts are used, is performed with cuts with lesser inputs, hence

69

Table 6.6: Greedy bottom-up covering using only factor KL-cuts.

Name Time (s) Cuts % MOC LUTs % MOL

C1355 0.56 75 33.33 55 81.82
C1908 0.52 81 56.79 69 84.06
C2670 0.78 152 11.18 114 48.25
C3540 1.13 304 18.42 243 48.15
C5315 1.89 358 18.72 282 50.71
C6288 3.63 359 93.59 348 99.71
C7552 1.67 341 53.37 289 80.97
s13207 2.92 662 31.27 513 69.40
s15850 4.30 859 27.82 664 65.36
s35932 34.25 2478 29.06 1805 77.17
s38417 23.48 2564 16.97 1947 54.03
s38584 40.44 2712 26.62 2224 54.41

Avg. 9.63 912 34.76 713 67.84

the ones that are single output are more easily “combinable” to produce a single LUT.
It was also implemented a undirected version of the covering, where the absolute

largest cuts are chosen regardless their position on the graph. The average number of cuts
and LUTs was practically the same (less than 1% of difference), but the execution time
was, on average, 7 times larger. This shows that the use of a bottom-up approach is an
efficient heuristic on this kind of covering.

The algorithms find a good fraction of KL-cuts which are naturally multiple output,
and most of the single output KL-cuts found have few inputs, which allows its combination
leading to a high utilization of multiple output LUTs (more than 85% on average when
using all cuts), resulting on fewer LUTs used on the mapping (30% reduction comparing
to ABC mapping).

Although this greedy covering has produced results with fewer LUTs than ABC map-
ping, it does not mean that it is a better algorithm. It must be taken in consideration
that the LUTs used by ABC have one output, whereas our LUTs have two. So, ideally,
our mapping should produce a 50% reduction on the use of LUTs, if the mapping has
equivalent quality, and if the topology of the circuit allows such a reduction. On the other
hand, if even with such a simplistic covering algorithm the results were relatively good,
it means that this strategy of treating multiple output blocks from the beginning is on the
right direction.

6.3.2 Area Flow Covering for Multiple Output

The area flow covering for multiple outputs algorithm, proposed in section 5.1.2, pro-
duced the results shown in table 6.7. The first thing to notice is that, even with the use of
artifices like the different modes of computing fanout, the utilization of multiple output
cuts is much smaller than produced by the greedy covering. Also, the algorithm tends to
select cuts with a large number of inputs, making difficult the combination of single out-
put cuts into a multiple output LUT. On the other hand, even with this sub-utilization of
multiple output LUTs, the total number of LUTs is less than 10% larger than the greedy
covering. In other words, there is more room for improvement in this algorithm than in

70

the greedy covering algorithm.

Table 6.7: Covering using the area flow for multiple outputs algorithm.

Name Time (s) Cuts % MOC LUTs % MOL

C1355 1.81 71 9.86 64 21.88
C1908 1.44 83 24.10 66 56.06
C2670 1.59 119 9.24 114 14.04
C3540 3.08 252 11.11 235 19.15
C5315 4.20 314 7.32 302 11.59
C6288 15.39 241 98.76 240 99.58
C7552 6.77 302 19.87 298 21.48
s13207 4.09 645 9.61 564 25.35
s15850 6.42 850 10.94 736 28.13
s35932 28.88 2266 23.74 1664 68.51
s38417 25.61 2401 7.71 2168 19.28
s38584 25.84 2501 9.96 2364 16.33

Avg. 10.43 837 20.18 735 33.45

One particular circuit had utilization of almost 100% of multiple outputs cuts, where
the number of LUTs used was a half of the used by ABC. The c6288 circuit is a highly
regular circuit, which implements a 16 by 16 bits multiplier in an array of adders.

Another advantage of this area flow algorithm over the greedy covering is explained
as follows. The original area flow algorithm is able to find the depth minimum covering,
and then perform area recovery on the following steps. This multiple output version could
have this characteristic as well, but the greedy covering cannot.

6.3.3 Multiple Output Matching

The graphic of figure 6.5 shows the performance of the developed algorithm. The
number of inputs varied from 4 to 16, and the number of outputs from 1 to 4. Each point
in the graph is an average value obtained after 100 executions over randomly generated
functions. It is noticeable that the dependency of the time consumed on the number of
inputs is higher than an exponential approximately up to K = 11, and then it becomes a
line in the semi-log graphic, denoting an exponential. The line representing a single output
cut is approximately the time taken by the original algorithm, but without the symmetry
optimization. Figure 6.6 shows the same results, but having L instead of K in the x-axis.
In this graph it can be seen that the execution time has also an exponential relation with
the number of outputs. However the slope is much less steep, meaning that is cheaper to
add an output than adding an input.

6.3.4 Partitioning

A comparison between the circuit covering by factor trees and by KL-cuts with un-
bounded K and L = 1 is given in Table 6.8. The column labeled “Total” shows the
number of sub-graphs necessary to perform the covering, the column “Size” shows the
average number of nodes per sub-graph, and the column “Mean K” shows the average
number of inputs of the sub-graphs. Notice that the increase in the number of nodes

71

Figure 6.5: Execution time of matching algorithm varying the number of inputs.

Figure 6.6: Execution time of matching algorithm varying the number of outputs.

(45%) is proportionally larger than the increase in the number of inputs (23%). This indi-
cates that the KL-cuts with unbounded K are indeed reconvergent graphs and not single
trees.

When performing a greedy covering using all cuts, and a KL-cuts with unbounded K
and L = 1 partitioning, the time consumed dropped, in average, to one third of the time
taken without the partitioning, at the expense of 16% more LUTs used.

72

Table 6.8: Comparison between a covering with factor trees and a covering with KL-cuts
with unbounded K.

KL-Cuts with
Factor Trees unbounded K

Name Total Size Mean K Total Size Mean K

C1355 164 2.39 2.11 68 5.76 3.68
C1908 157 2.29 2.34 103 3.50 3.02
C2670 134 4.04 3.81 59 9.17 6.39
C3540 230 4.02 4.25 192 4.82 4.86
C5315 350 3.84 3.63 241 5.58 4.58
C6288 1404 1.33 2.33 1403 1.33 2.33
C7552 607 2.34 2.59 370 3.83 3.35
s13207 661 3.12 3.59 646 3.19 3.65
s15850 937 2.94 3.34 848 3.25 3.58
s35932 3355 2.71 2.63 2320 3.91 3.30
s38417 2426 3.35 3.60 2241 3.63 3.76
s38584 2963 3.32 3.58 2531 3.88 4.00

Avg. 1116 2.97 3.15 919 4.32 3.88

73

7 CONCLUSIONS AND FUTURE WORK

The main contribution of this thesis was the introduction of the concept of KL-feasible
cuts, which allows controlling both the number K of inputs and the number L of outputs
in the computation of circuit cuts. Algorithms for computing KL-feasible cuts were pre-
sented and results have shown the usefulness of the method. The concept of factor cuts
was also extended to KL-cuts, which has shown the viability of computing KL-cuts with
larger K and L. A novel algorithm for computing KL-feasible cuts with unbounded K
was presented, which is especially useful in partitioning. Similarly, KL-cuts with un-
bounded L were proposed, which can be useful in technology mapping, although not
widely explored in this work.

The second contribution was the proposal of two types of covering algorithms. One
very simple, that was intended to be a proof of concept algorithm, which is the greedy
algorithm, has shown interesting results, even when compared to the state of the art. Its
drawback is that it can deal with area only, not being able to treat delay. The second one
is an extension of the area flow covering that is able to deal with multiple output cuts.
This algorithm is still under investigation, and the results show that there is still place for
improvement, as, even with a low utilization of multiple output resources, it has produced
fairly good results.

It is worthy to highlight that both algorithms were implemented in a tool, which is
able to read an AIG on AIGER format, and write the mapped circuit in a Verilog file,
along with a description of a library needed. The use of this standard file formats will
make easier to perform tests in a commercial tool environment.

A third contribution was the development of a Boolean matching mechanism that is
able to deal with multiple output blocks. It was strongly based on a previous work, but
the extension added to the solution make it much more general.

There is still much work that needs to be carried on. First of all, other applications
must be explored, such as peephole optimizations — especially AIG rewriting —, regu-
larity extraction and IPO of an already mapped circuit.

The proposed algorithm for covering is still immature. New modes of operation could
improve the quality of the results, and further study on partitioning could improve its
throughput. There are also some properties that should be simple to implement, but re-
quire further analysis. One example is on the exploration of factor cuts in the area flow for
multiple outputs algorithm to improve performance. Another point is on implementing
the depth minimum and depth constrained mappings, which are supported by the original
area flow algorithm.

It was explored in this thesis the application of covering focused in FPGA technology.
It is necessary the study on how to switch to standard cell mapping, using this methodol-
ogy. One of the required infrastructures that were explored in this thesis is the Boolean

74

matching. To make it more generic, the Boolean matching algorithm should be extended
from P-equivalence checking to NPN-equivalence checking.

Even though much work needs to be done, current results have shown the viability and
usefulness of KL-cuts on the logic synthesis when multiple output blocks are available.

75

REFERENCES

ABOUZEID, P.; LEVEUGLE, R.; SAUCIER, G. Logic Synthesis for Automatic Layout.
In: IFIP WG10.2/WG10.5 WORKSHOPS ON SYNTHESIS FOR CONTROL DOM-
INATED CIRCUITS, Amsterdam, The Netherlands, The Netherlands. Proceedings. . .
North-Holland Publishing Co., 1993. p.335–343.

BERKELAAR, M.; JESS, J. Technology mapping for standard-cell generators. In:
COMPUTER-AIDED DESIGN, 1988. ICCAD-88. DIGEST OF TECHNICAL PA-
PERS., IEEE INTERNATIONAL CONFERENCE ON. Proceedings. . . [S.l.: s.n.], 1988.
p.470 –473.

Berkeley Logic Synthesis and Verification Group. ABC: a system for sequential synthe-
sis and verification. Available at http://www.eecs.berkeley.edu/~alanmi/
abc. Accessed in sep. 2010.

BRYANT, R. Graph-Based Algorithms for Boolean Function Manipulation. Computers,
IEEE Transactions on, [S.l.], v.C-35, n.8, p.677 –691, aug. 1986.

CHATTERJEE, S. et al. Reducing Structural Bias in Technology Mapping. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, [S.l.], v.25,
n.12, p.2894 –2903, dec. 2006.

CHATTERJEE, S.; MISHCHENKO, A.; BRAYTON, R. Factor Cuts. In: COMPUTER-
AIDED DESIGN, 2006. ICCAD ’06. IEEE/ACM INTERNATIONAL CONFERENCE
ON. Proceedings. . . [S.l.: s.n.], 2006. p.143–150.

CONG, J.; DING, Y. Combinational logic synthesis for LUT based field programmable
gate arrays. ACM Trans. Des. Autom. Electron. Syst., New York, NY, USA, v.1, n.2,
p.145–204, 1996.

CONG, J.; WU, C.; DING, Y. Cut ranking and pruning: enabling a general and efficient
fpga mapping solution. In: FPGA ’99: PROCEEDINGS OF THE 1999 ACM/SIGDA
SEVENTH INTERNATIONAL SYMPOSIUM ON FIELD PROGRAMMABLE GATE
ARRAYS, New York, NY, USA. Proceedings. . . ACM, 1999. p.29–35.

CORREIA, V.; REIS, A. Advanced technology mapping for standard-cell generators. In:
SBCCI ’04: PROCEEDINGS OF THE 17TH SYMPOSIUM ON INTEGRATED CIR-
CUITS AND SYSTEM DESIGN, New York, NY, USA. Proceedings. . . ACM, 2004.
p.254–259.

COSOROABA, A.; RIVOALLON, F. Achieving Higher System Performance with the
Virtex-5 Family of FPGAs. [S.l.]: Xilinx, 2006.

76

DARRINGER, J. A. et al. Logic synthesis through local transformations. IBM J. Res.
Dev., Riverton, NJ, USA, v.25, n.4, p.272–280, 1981.

DEBNATH, D.; SASAO, T. Efficient computation of canonical form for Boolean match-
ing in large libraries. In: ASP-DAC ’04: PROCEEDINGS OF THE 2004 ASIA AND
SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, Piscataway, NJ, USA.
Proceedings. . . IEEE Press, 2004. p.591–596.

DETJENS, E. et al. Technology Mapping in MIS. In: IEEE INTERNATIONAL CON-
FERENCE ON COMPUTER-AIDED DESIGN. Proceedings. . . [S.l.: s.n.], 1987. p.116–
119.

GREGORY, D. et al. SOCRATES: a system for automatically synthesizing and optimiz-
ing combinational logic. In: DAC: PAPERS ON TWENTY-FIVE YEARS OF ELEC-
TRONIC DESIGN AUTOMATION, 25., New York, NY, USA. Proceedings. . . ACM,
1988. p.580–586.

HASSOUN, S.; SASAO, T. (Ed.). Logic Synthesis and Verification. Norwell, MA,
USA: Kluwer Academic Publishers, 2002.

HINSBERGER, U.; KOLLA, R. Boolean matching for large libraries. In: DAC ’98: PRO-
CEEDINGS OF THE 35TH ANNUAL DESIGN AUTOMATION CONFERENCE, New
York, NY, USA. Proceedings. . . ACM, 1998. p.206–211.

HUTTON, M. et al. Improving FPGA Performance and Area Using an Adaptive
Logic Module. [S.l.]: Altera, 2004.

JIANG, Y.; SAPATNEKAR, S. S.; BAMJI, C. Technology mapping for high-performance
static CMOS and pass transistor logic designs. IEEE Trans. Very Large Scale Integr.
Syst., Piscataway, NJ, USA, v.9, n.5, p.577–589, 2001.

KARANDIKAR, S. K.; SAPATNEKAR, S. S. Logical effort based technology mapping.
In: ICCAD ’04: PROCEEDINGS OF THE 2004 IEEE/ACM INTERNATIONAL CON-
FERENCE ON COMPUTER-AIDED DESIGN, Washington, DC, USA. Proceedings. . .
IEEE Computer Society, 2004. p.419–422.

KEUTZER, K. DAGON: technology binding and local optimization by dag matching.
In: DAC ’87: PROCEEDINGS OF THE 24TH ACM/IEEE DESIGN AUTOMATION
CONFERENCE, New York, NY, USA. Proceedings. . . ACM, 1987. p.341–347.

KHETERPAL, V. et al. Design methodology for IC manufacturability based on regu-
lar logic-bricks. In: DAC ’05: PROCEEDINGS OF THE 42ND ANNUAL DESIGN
AUTOMATION CONFERENCE, New York, NY, USA. Proceedings. . . ACM, 2005.
p.353–358.

KUKIMOTO, Y.; BRAYTON, R. K.; SAWKAR, P. Delay-optimal technology mapping
by DAG covering. In: DAC ’98: PROCEEDINGS OF THE 35TH ANNUAL DESIGN
AUTOMATION CONFERENCE, New York, NY, USA. Proceedings. . . ACM, 1998.
p.348–351.

LEHMAN, E. et al. Logic decomposition during technology mapping. In: ICCAD ’95:
PROCEEDINGS OF THE 1995 IEEE/ACM INTERNATIONAL CONFERENCE ON

77

COMPUTER-AIDED DESIGN, Washington, DC, USA. Proceedings. . . IEEE Computer
Society, 1995. p.264–271.

LIEM, C.; LEFEBVRE, M. A constructive matching algorithm for cell generator based
technology mapping. In: CIRCUITS AND SYSTEMS, 1992. ISCAS ’92. PROCEED-
INGS., 1992 IEEE INTERNATIONAL SYMPOSIUM ON. Proceedings. . . [S.l.: s.n.],
1992. v.6, p.2965 –2968 vol.6.

LING, A.; ZHU, J.; BROWN, S. Scalable Synthesis and Clustering Techniques Using De-
cision Diagrams. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, [S.l.], v.27, n.3, p.423–435, march 2008.

MAILHOT, F.; DE MICHELI, G. Algorithms for technology mapping based on binary
decision diagrams and on Boolean operations. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, [S.l.], v.12, n.5, p.599 –620, may 1993.

MANOHARARAJAH, V.; BROWN, S.; VRANESIC, Z. Heuristics for Area Mini-
mization in LUT-Based FPGA Technology Mapping. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, [S.l.], v.25, n.11, p.2331–2340,
nov. 2006.

MARQUES, F. S. et al. DAG based library-free technology mapping. In: GLSVLSI ’07:
PROCEEDINGS OF THE 17TH ACM GREAT LAKES SYMPOSIUM ON VLSI, New
York, NY, USA. Proceedings. . . ACM, 2007. p.293–298.

MARTINELLO, O. et al. KL-Cuts. In: INTERNATIONAL WORKSHOP ON LOGIC
AND SYNTHESIS. Proceedings. . . [S.l.: s.n.], 2009.

MARTINELLO, O. et al. KL-Cuts: a new approach for logic synthesis targeting mul-
tiple output blocks. In: DESIGN, AUTOMATION TEST IN EUROPE CONFERENCE
EXHIBITION (DATE), 2010. Proceedings. . . [S.l.: s.n.], 2010. p.777–782.

MICHELI, G. D. Synthesis and Optimization of Digital Circuits. [S.l.]: McGraw-Hill
Higher Education, 1994.

MISHCHENKO, A.; BRAYTON, R. Scalable Logic Synthesis using a Simple Circuit
Structure. In: INTERNATIONAL WORKSHOP ON LOGIC AND SYNTHESIS. Pro-
ceedings. . . [S.l.: s.n.], 2006.

MISHCHENKO, A.; BRAYTON, R.; CHATTERJEE, S. Boolean factoring and decom-
position of logic networks. In: COMPUTER-AIDED DESIGN, 2008. ICCAD 2008.
IEEE/ACM INTERNATIONAL CONFERENCE ON. Proceedings. . . [S.l.: s.n.], 2008.
p.38–44.

MISHCHENKO, A.; CHATTERJEE, S.; BRAYTON, R. FRAIGs: a unifying represen-
tation for logic synthesis and verification. [S.l.]: UC Berkeley, 2005.

MISHCHENKO, A.; CHATTERJEE, S.; BRAYTON, R. DAG-aware AIG rewriting: a
fresh look at combinational logic synthesis. In: DESIGN AUTOMATION CONFER-
ENCE, 2006 43RD ACM/IEEE. Proceedings. . . [S.l.: s.n.], 2006. p.532–535.

78

MISHCHENKO, A.; CHATTERJEE, S.; BRAYTON, R. K. Improvements to Technology
Mapping for LUT-Based FPGAs. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, [S.l.], v.26, n.2, p.240–253, feb. 2007.

MISHCHENKO, A. et al. Scalable don’t-care-based logic optimization and resynthesis.
In: FPGA ’09: PROCEEDING OF THE ACM/SIGDA INTERNATIONAL SYMPO-
SIUM ON FIELD PROGRAMMABLE GATE ARRAYS, New York, NY, USA. Pro-
ceedings. . . ACM, 2009. p.151–160.

MVSIS Group. MVSIS: multi-valued logic synthesis system. Available at http://
embedded.eecs.berkeley.edu/mvsis/. Accessed in sep. 2010.

PAN, P.; LIN, C.-C. A new retiming-based technology mapping algorithm for LUT-
based FPGAs. In: FPGA ’98: PROCEEDINGS OF THE 1998 ACM/SIGDA SIXTH
INTERNATIONAL SYMPOSIUM ON FIELD PROGRAMMABLE GATE ARRAYS,
New York, NY, USA. Proceedings. . . ACM, 1998. p.35–42.

REIS, A. I. Covering Strategies for Library Free Technology Mapping. Integrated Cir-
cuit Design and System Design, Symposium on, Los Alamitos, CA, USA, v.0, p.0180,
1999.

ROSIELLO, A. et al. A Hash-based Approach for Functional Regularity Extraction Dur-
ing Logic Synthesis. In: VLSI, 2007. ISVLSI ’07. IEEE COMPUTER SOCIETY AN-
NUAL SYMPOSIUM ON. Proceedings. . . [S.l.: s.n.], 2007. p.92–97.

SASAO, T. Switching Theory for Logic Synthesis. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 1999.

SCHNEIDER, F. R. et al. Exact lower bound for the number of switches in series to
implement a combinational logic cell. In: ICCD ’05: PROCEEDINGS OF THE 2005
INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, Washington, DC, USA.
Proceedings. . . IEEE Computer Society, 2005. p.357–362.

SECHEN, C. et al. Libraries: lifejacket or straitjacket. In: DAC ’03: PROCEEDINGS OF
THE 40TH ANNUAL DESIGN AUTOMATION CONFERENCE, New York, NY, USA.
Proceedings. . . ACM, 2003. p.642–643.

SENTOVICH, E. M. et al. SIS: a system for sequential circuit synthesis. [S.l.: s.n.], 1992.

STOK, L.; IYER, M. A.; SULLIVAN, A. J. Wavefront technology mapping. In: DATE
’99: PROCEEDINGS OF THE CONFERENCE ON DESIGN, AUTOMATION AND
TEST IN EUROPE, New York, NY, USA. Proceedings. . . ACM, 1999. p.108.

VUJKOVIC, M.; SECHEN, C. Optimized power-delay curve generation for standard cell
ICs. In: ICCAD ’02: PROCEEDINGS OF THE 2002 IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, New York, NY, USA. Proceed-
ings. . . ACM, 2002. p.387–394.

WERBER, J.; RAUTENBACH, D.; SZEGEDY, C. Timing optimization by restructur-
ing long combinatorial paths. In: COMPUTER-AIDED DESIGN, 2007. ICCAD 2007.
IEEE/ACM INTERNATIONAL CONFERENCE ON. Proceedings. . . [S.l.: s.n.], 2007.
p.536–543.

79

A APPENDIX <KL-CUTS: UMA NOVA ABORDAGEM PARA
SÍNTESE LÓGICA UTILIZANDO BLOCOS COM MÚLTIPLAS
SAÍDAS>

A.1 Introdução

Tecnologias baseadas em circuitos integrados digitais têm grande impacto na so-
ciedade, estando presente em praticamente todas as áreas do conhecimento. Os avanços
no campo da concepção de circuitos integrados possibilitam a agregação de um número
cada vez maior de componentes em um mesmo dispositivo. Esta elevada escala de inte-
gração impõe novos desafios ao processo de síntese. A fim de lidar com constantes mu-
danças nas regras de projeto, e aumentar a produtividade, a automatização deste processo
através da utilização de ferramentas de EDA (do inglês Electronic Design Automation)
desempenha um papel crucial.

O objetivo da síntese é transformar uma descrição de alto nível de abstração de um cir-
cuito em um modelo mais detalhado, como um modelo geométrico. O processo de síntese
é frequentemente dividido em três etapas principais: síntese arquitetural, síntese lógica e
síntese física (MICHELI, 1994). O papel da síntese lógica é o de traduzir uma descrição
lógica de um circuito em uma rede de células de uma determinada tecnologia interli-
gadas. Ela é geralmente dividida em três fases: otimizações independentes de tecnologia,
mapeamento tecnológico e otimizações dependentes de tecnologia. Na primeira aplica-se
algumas transformações que não dependem da tecnologia, mas dependem do algoritmo
de mapeamento escolhido. Estas transformações podem ser estruturais ou Booleanas.
Em seguida, a fase de mapeamento tecnológico liga o circuito à tecnologia, substituindo
porções do circuito por células implementadas na tecnologia alvo. Depois disso, mais
otimizações são aplicadas ao circuito mapeado, como redimensionamento ou duplicação
de células lógicas. Estas são chamadas de otimizações dependentes de tecnologia.

Alguns dos recentes avanços na síntese lógica são baseados em AIG (do inglês And-
Inverter Graph), por motivos de escalabilidade, já que esta é uma estrutura simples e
regular (LING; ZHU; BROWN, 2008; MISHCHENKO; BRAYTON, 2006). Parte desses
avanços é baseada no conceito de cortes-K (CONG; WU; DING, 1999; PAN; LIN, 1998),
incluindo algoritmos de re-síntese com base em reescrita de AIG (MISHCHENKO; CHAT-
TERJEE; BRAYTON, 2006). A escalabilidade é obtida mantendo-se o valor de K pe-
queno de modo que funções lógicas possam ser manipuladas como vetores de inteiros.
Por exemplo, em (MISHCHENKO; BRAYTON; CHATTERJEE, 2008) escalabilidade é
atingida utilizando funções de 16 ou menos entradas representadas como tabelas verdade.

Algoritmos para computação eficiente de cortes para uma única saída são bem con-
hecidos. Particularmente, os algoritmos para a computação exaustiva de cortes-K foram

80

introduzidas por Cong (CONG; WU; DING, 1999) e Pan (PAN; LIN, 1998). Chatterjee
(CHATTERJEE; MISHCHENKO; BRAYTON, 2006) introduziu o conceito de fatoração
de cortes, onde enumeração exaustiva é evitada por fazer uma separação entre nodos ár-
vore e nodos dag no AIG. O cálculo da fatoração de cortes permite trabalhar com cortes
de até 16 entradas, o que não é possível com os algoritmos anteriores de enumeração
exaustiva. Todos estes algoritmos para enumeração de cortes só são capazes de levar em
conta o númeroK de entradas, não contemplando os benefícios da utilização de múltiplas
saídas. Por exemplo, no mapeamento tecnológico usando cortes-K, duplicação da lógica
pode ocorrer durante a etapa de cobertura, o que é provavelmente um problema no fluxo
de projeto.

Mesmo que as tecnologias atuais suportem blocos com mais de uma saída, como
FPGAs (HUTTON et al., 2004; COSOROABA; RIVOALLON, 2006), todo o fluxo está
orientado a blocos com uma única saída, e uma etapa de combinação é adicionado no final
para tentar tirar vantagem destes elementos com múltiplas saídas.

A.2 Cortes-KL

Cortes são uma maneira eficiente de representar uma região de um AIG quando se trata
da geração de um sinal por vez. No entanto, quando se trata de regiões com múltiplas
saídas múltiplos cortes seriam necessários. Para superar essa limitação, os propostos
cortes-KL são subgrafos que não somente têm um número limitado e bem controlado de
entradas, mas essas mesmas propriedades são estendidas para as saídas.

Em essência, um corte-KL define uma região de um grafo, que tenha no máximo K
entradas e, no máximo, L saídas. É representado pelo conjunto de nodos entrada e um
conjunto de nodos saída. Todos os nós entre o conjunto de entradas e o conjunto de saídas,
incluindo o conjunto de saídas, mas excluindo o conjunto de entradas, estão “dentro” da
região delimitada.

A.2.1 Aplicações

A.2.1.1 Mapeamento Tecnológico

Células com mais de uma saída são uma realidade em bibliotecas atuais, como por
exemplo, as células somador completo e meio somador. Da mesma forma, mapeamentos
livres de tecnologia podem utilizar células com múltiplas saídas para reduzir a área de um
circuito, especialmente em circuitos aritméticos. Além disso, FPGAs atuais têm LUTs
de múltiplas saídas disponíveis (HUTTON et al., 2004; COSOROABA; RIVOALLON,
2006). Logo a utilização de metodologias que só consideram porções com uma única
saída podem levar a um resultado de má qualidade.

A Tabela A.1 mostra alguns resultados de mapeamentos para blocos de uma saída,
que servirá como base de comparação para os algoritmos de múltiplas saídas. Dois méto-
dos foram utilizados. O primeiro, mostrado na coluna “ABC”mostra o número de LUTs
usadas pelo mapeamento do circuito produzido rodando os comandos ‘r; dch, if -C 12;
mfs -W 4 -M 5000’ no ABC (MISHCHENKO et al., 2009) quatro vezes, e escolhendo o
melhor resultado, com uma biblioteca contendo LUTs de até 5 entradas. Esta biblioteca
assume o mesmo custo para cada LUT. Constantes, buffers e inversores não são consider-
ados neste valor. O segundo método é o método do fluxo de área (MANOHARARAJAH;
BROWN; VRANESIC, 2006), depois de oito iterações e usando α = 2. Pode-se notar
que o fluxo de área é quase três vezes mais rápido que o ABC, mas produz resultados um

81

pouco piores.

Table A.1: Cobertura para LUTs de uma saída usando ABC e fluxo de área.

ABC Fluxo de Área
Nome LUTs Tempo (s) LUTs Tempo (s)

C1355 68 4.11 66 1.27
C1908 105 4.12 101 0.92
C2670 149 2.91 127 1.08
C3540 276 15.30 285 2.13
C5315 324 10.69 339 2.73
C6288 501 51.16 711 7.11
C7552 372 14.05 373 4.48
s13207 718 12.69 707 2.89
s15850 966 16.83 945 4.86
s35932 2493 14.95 2682 16.34
s38417 2659 49.22 2648 17.89
s38584 2655 29.27 2754 19.08

Média 941 18.78 978 6.73

A.2.1.1.1 Mapeamento Guloso

Um algoritmo simples para realizar uma cobertura completa de um circuito com
cortes-KL foi elaborado. Este algoritmo não pretende atingir o estado-da-arte em ma-
peamento, mas apenas confirmar o potencial da utilização de cortes-KL no mapeamento
tecnológico. Este algoritmo guloso procura por máximos locais. Em cada iteração o
maior corte-KL possível é escolhido e todos os cortes-KL com nodos sobrepostos são
eliminados do espaço de solução. Estas iterações são repetidas até que o circuito esteja
completamente coberto.

A Tabela A.2 mostra os resultados de cobertura do mapeamento guloso. A coluna
nomeada “Cortes” mostra o número de cortes da cobertura resultante. Coluna “% CMS”
são a percentagem dos cortes que têm múltiplas saídas. Dois cortes com uma saída po-
dem ser implementados por uma LUT de duas saídas, desde que a soma do número de
entradas desses cortes não seja maior do que o número de entradas da LUT. Por exem-
plo, um corte-2-1 sempre pode ser combinado com um corte-3-1, se houver uma LUT-5-2
disponível. Por esse motivo, a coluna “LUTs”, que mostra o número de LUTs necessárias
para implementar a cobertura, apresenta um valor menor do que a coluna “Cortes”. A
coluna “% LMS” representa a porcentagem de LUTs usadas que usam as duas saídas.

O algoritmo encontra uma boa fração de cortes KL com múltiplas saídas, e a maioria
dos de única saída têm poucas entradas, o que permite sua combinação levando a uma
elevada utilização de LUTs de múltiplas saídas (mais de 85 %, em média), resultando em
redução de LUTs utilizadas (redução de 30 % em comparação com o mapeamento ABC).

Embora essa cobertura gulosa produza resultados com menos LUTs que o ABC, isso
não significa que ele é um algoritmo melhor. Deve ser levado em consideração que as
LUTs usadas pelo ABC têm uma saída, enquanto a nossa tem duas. Portanto, no caso
ideal, o nosso mapeamento deveria produzir uma redução de 50 % no número de LUTs,
se o mapeamento tiver qualidade equivalente e se a topologia do circuito permitir essa

82

Table A.2: Cobertura gulosa usando cortes-KL.

Nome Tempo (s) Cortes % CMS LUTs % LMS

C1355 0.95 74 37.84 54 88.89
C1908 0.72 75 69.33 64 98.44
C2670 1.16 141 35.46 110 73.64
C3540 2.38 273 47.25 223 80.27
C5315 3.42 326 44.48 269 75.09
C6288 5.06 359 91.36 344 99.71
C7552 3.70 333 66.07 285 94.04
s13207 5.20 589 55.69 487 88.30
s15850 8.33 819 47.86 657 84.32
s35932 87.69 2221 55.74 1746 98.11
s38417 70.84 2159 61.32 1809 92.54
s38584 112.66 2631 40.94 2123 74.66

Média 25.18 833 54.45 681 87.33

redução. Por outro lado, se mesmo com esse algoritmo simples os resultados foram rel-
ativamente bons, isso significa que essa estratégia de considerar blocos de várias saídas
desde o início está na direção certa.

A.2.1.1.2 Mapeamento de Fluxo de Área para Múltiplas Saídas

Uma extensão ao algoritmo de cobertura de fluxo de área (MANOHARARAJAH;
BROWN; VRANESIC, 2006) é apresentado nesta dissertação, uma vez que o original
lida apenas com cortes de única saída. O cálculo do fluxo área permanece praticamente
o mesmo. As principais diferenças são a classificação de nodos, e a criação de diferentes
modos de operação.

Este algoritmo modificado produziu os resultados mostrados na tabela A.3. A primeira
coisa a notar é que a utilização de cortes com duas saídas é muito menor do que os pro-
duzidos pela cobertura gulosa. Além disso, o algoritmo tende a selecionar os cortes com
um grande número de entradas, tornando difícil a combinação de cortes em uma única
LUT de duas saídas. Por outro lado, mesmo com esta sub-utilização das LUTs de múlti-
plas saídas, o número total de LUTs é menos que 10 % maior do que a cobertura gulosa.
Em outras palavras, há mais espaço para melhorias neste algoritmo que no algoritmo de
cobertura gulosa.

Um circuito em especial utilizou quase 100 % dos cortes de múltiplas saídas, onde
o número de LUTs usadas foi a metade do utilizado pelo ABC. O circuito c6288 é um
circuito muito regular, que implementa um multiplicador 16 por 16 bits como uma matriz
de somadores.

Outra vantagem deste algoritmo de fluxo de área sobre a cobertura gulosa é explicado
a seguir. O algoritmo original de fluxo de área é capaz de encontrar a cobertura de pro-
fundidade mínima, e depois executar a recuperação da área nas próximas iterações. Esta
versão múltiplas saídas poderia ter essa característica também, mas a cobertura gulosa
não pode.

83

Table A.3: Mapeamento de fluxo de área para múltiplas saídas.

Nome Tempo (s) Cortes % CMS LUTs % LMS

C1355 1.81 71 9.86 64 21.88
C1908 1.44 83 24.10 66 56.06
C2670 1.59 119 9.24 114 14.04
C3540 3.08 252 11.11 235 19.15
C5315 4.20 314 7.32 302 11.59
C6288 15.39 241 98.76 240 99.58
C7552 6.77 302 19.87 298 21.48
s13207 4.09 645 9.61 564 25.35
s15850 6.42 850 10.94 736 28.13
s35932 28.88 2266 23.74 1664 68.51
s38417 25.61 2401 7.71 2168 19.28
s38584 25.84 2501 9.96 2364 16.33

Média 10.43 837 20.18 735 33.45

A.2.1.2 Identificação de Padrões

O processo de cobertura necessita, além da estrutura a ser coberta, um espaço de
busca formado por células. Este espaço de busca, ou espaço de solução, é composto
por correspondências entre as porções do grafo a ser coberto e uma biblioteca de células
predefinida.

Quando o mapeamento usa uma abordagem baseada em bibliotecas, a fase de identifi-
cação de padrões consiste em decidir se a biblioteca possui uma célula correspondente ao
sub-circuito a ser coberto. Neste contexto, “correspondente” pode ter várias definições.
Em uma identificação de padrões estrutural, um sub-circuito corresponde a uma célula
se estes forem representados por grafos isomórficos. Em uma identificação de padrões
Booleana, a correspondência se dá quando a função booleana implementada pelo sub-
circuito pertence à mesma classe de equivalência que a função implementada pela célula.

Bem como os conceitos de classes de equivalência P, NP e NPN são definidas para
uma função, as idéias de classes de equivalência PP, NPP ou NPNP podem ser definidas
para uma lista de funções, o que pode ser visto como uma função de múltiplas saídas
f : Bn 7→ Bm.

Esta dissertação propõe uma extensão do sistema TEMPLATE (HINSBERGER; KOLLA,
1998) a fim de ser capaz de encontrar equivalência-PP entre listas de funções. O foco é
a aplicação para determinar equivalência entre células com múltiplas saídas. A ideia é
semelhante ao algoritmo original: encontrar uma lista representativa das funçõesR[Lf]PP

de [Lf]PP .
O gráfico da Figura A.1 mostra o desempenho do algoritmo desenvolvido. O número

de entradas variou de 4 a 16, e o número de saídas de 1 a 4. Cada ponto no gráfico é um
valor médio obtido após 100 execuções de funções geradas aleatoriamente. É notório que
a dependência do tempo consumido com número de entradas é superior a um exponencial
até cerca de K = 11, e então torna-se uma linha no gráfico semi-log, o que denota uma
exponencial. A linha que representa um corte de única saída é aproximadamente o tempo
do algoritmo original. A Figura A.2 mostra os mesmos resultados, mas com L em vez de
K no eixo x. Neste gráfico pode-se observar que o tempo de execução também tem uma

84

relação exponencial com o número de saídas. No entanto, a inclinação é muito menos
acentuada, o que significa que é mais barato adicionar uma saída do que adicionar uma
entrada.

Figure A.1: Tempo de execução de algoritmo de identificação de padrões variando o
número de entradas.

A.2.1.3 Particionamento

Algoritmos de mapeamento tecnológico frequentemente fazem uso de heurísticas a
fim de reduzir a complexidade do problema. Uma das heurísticas mais populares é o
particionamento.

O particionamento consiste em dividir o circuito a ser coberto em várias partes menores,
realizando o mapeamento individual em cada parte. A decomposição de um gráfico em
uma floresta de árvores é um exemplo de particionamento.

Uma decomposição um pouco mais abrangente do que a quebra em árvores é o parti-
cionamento do circuito em MFFCs. Pode-se utilizar algoritmos de enumeração de cortes-
KL para encontrar MFFCs ou algo mais geral.

A.3 Conclusões

A principal contribuição desta dissertação é a introdução do conceito de cortes-KL, o
que permite controlar tanto o número K de entradas e o número L de saídas no cálculo
dos cortes do circuito. Algoritmos para computação cortes-KL são apresentados e os
resultados demonstram a utilidade do método.

A segunda contribuição foi a proposta de dois tipos de algoritmos de cobertura. Um
muito simples, que serve como prova de conceito, que é o algoritmo guloso, mostrou re-
sultados interessantes, mesmo quando comparado com o estado da arte. Sua desvantagem
é que ele pode lidar unicamente com área, não sendo capaz de tratar atraso. A segunda é

85

Figure A.2: Tempo de execução de algoritmo de identificação de padrões variando o
número de saídas.

uma extensão do algoritmo de cobertura de fluxo de área que é capaz de lidar com cortes
com múltiplas saídas. Este algoritmo ainda está sob investigação, e os resultados mostram
que ainda há lugar para melhorias, mas mesmo com uma baixa utilização de recursos de
múltiplas saídas, tem produzido resultados bastante bons.

Uma terceira contribuição foi o desenvolvimento de um mecanismo Booleano de iden-
tificação de patrões que é capaz de lidar com blocos de múltiplas saída. Foi fortemente
baseada em um trabalho anterior, mas a extensão adicionada à solução a torna muito mais
geral.

Ainda há muito trabalho a ser desenvolvido. Primeiro de tudo, outras aplicações de-
vem ser explorados, como otimizações locais — especialmente reescrita de AIG —, ex-
tração de regularidade e IPO (do inglês In-Place Optimization) de um circuito já mapeado.

O algoritmo proposto para a cobertura ainda é imaturo. Novos modos de operação
poderiam melhorar a qualidade dos resultados, e um estudo mais aprofundado sobre par-
ticionamento poderia melhorar o seu rendimento. Existem também algumas propriedades
que devem ser simples de implementar, mas exigem uma análise mais aprofundada. Um
exemplo é sobre mapeamento com profundidade lógica mínima e com profundidade lim-
itada, que são suportados pelo algoritmo original de fluxo de área.

Mesmo tendo muito trabalho a ser feito, os resultados atuais têm demonstrado a vi-
abilidade e utilidade de cortes-KL na síntese lógica, quando blocos de múltiplas saídas
estão disponíveis.

