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ABSTRACT

This work is about agents and their adoption of behaviors in a given network. The work

has focused on defining models and policies related to the "diffusion of information"

not through agent reasoning but through a force exerted by the network. The model

reasoning process checks whether each agent has received enough influence to surpass a

threshold related to a given subject or behavior, deciding whether the agent enters into

social conformity with its network of connections.

We consider models with multiple behaviors and different criteria for behavior adoption

but with neighbors having the same level of social influence. We also define models and

diffusion operations with directed influence with neighborhood connections with differ-

ent weights on behavior adoption. We propose a minimal propositional dynamic logic

language for all these variations and provide reduction axioms for each logic.

We also present naive algorithms for each model update operation.

Keywords: Diffusion of Behavior. Dynamic Logic. Reduction Axioms.



Modelando Difusão de Comportamento com Lógica Dinâmica

RESUMO

Este trabalho é sobre agentes e sua adoção de comportamentos em uma rede. O trabalho

tem como foco a definição de modelos e políticas relacionadas à "difusão de informa-

ções" não por meio do raciocínio do agente, mas por meio de uma força exercida pela

rede. O processo de difusão verifica, para cada agente, se ele recebeu influência suficiente

para ultrapassar um limiar, relacionado a um determinado assunto ou comportamento,

decidindo então, se o agente entra ou não em conformidade social com sua rede de co-

nexões. Consideramos modelos com múltiplos comportamentos e diferentes critérios de

adoção de comportamento, mas com vizinhos com o mesmo nível de influência social.

Também são apresentados modelos com a influência pode ser em uma direção apenas e

onde cada conexão pode ter um peso diferente na adoção de comportamentos. Para to-

das essas variações propomos uma lógica dinâmica proposicional mínima e, para cada

lógica, fornecemos axiomas de redução. Também apresentamos algoritmos naïve para

cada operação de atualização de modelos.

Palavras-chave: Difusão de Comportamento, Lógica Dinâmica, Axiomas de Redução..
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1 INTRODUCTION

The importance of studying the dynamics of agents has long been recognized.

It provides insights into how humans interact with each other and the environment. By

studying agents, researchers can improve the understanding and prediction of human be-

havior and the effect of different behaviors on social networks and other related systems.

It provides insights into designing better systems with artificial intelligence or robotics

that can interact with humans meaningfully and naturally.

Our work has focused on social behavior, an area of study that originates from

the field of Information Propagation and Epidemics. This study area received different

approaches from researchers, dealing with cases ranging from energy distribution and

blackouts to epidemiology and marketing. Although information propagation relates to

transmitting information from one network node to another, in epidemics, the word "infor-

mation" can be substituted by many others without causing a loss of sense of functioning.

In epidemics, the propagation can be of infectious diseases (viral or bacterial) or meta-

diseases, such as anxiety, worry, fear, and many others. In that case, these meta-diseases

are spread by emotions, beliefs, and attitudes from person to person within a population.

The field of study of epidemic diseases has always been a topic where biological issue

mix with social ones (CHRISTAKIS; FOWLER, 2009; EASLEY; KLEINBERG, 2010).

Diseases and other spread contagions that create "epidemics" are studied in the

works of Christakis and Fowler (2009), Watts (2004), Easley and Kleinberg (2010), with

some examples being: obesity; depression; suicidal behavior; smoking and substance

abuse; voting patterns; sexual and infectious diseases: influenza, measles, HIV/AIDS;

technologies; ideas; products; political opinions; religious beliefs; cultural norms;

Rules applied to the spread of opinions in networks can be influenced by factors

such as word of mouth, peer pressure, and the availability of information (WATTS, 2004;

EASLEY; KLEINBERG, 2010; CHRISTAKIS; FOWLER, 2009).

Threshold Models (TM) of Collective Behaviors were introduced by Granovetter

(1978). They are models describing the relationship between the number of people re-

quired to start a collective action and the probability that it will be successful. He argued

that the number of people required to start a collective action and the probability that it

will be successful are linked. A few examples of such collective actions are riot behavior,

strikes, innovation and rumor diffusion, voting, and migration.

The "threshold" is a key concept in his approach and was later generalized in the
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work of Easley and Kleinberg (2010). Threshold Models have been an object of research

in many areas, including in the logic community, that make use of Threshold Models

to give semantics for a logic formalization for the diffusion of behaviors (CHRISTOFF,

2016; BALTAG et al., 2018; HANSEN, 2011; CHRISTOFF; HANSEN, 2015; ZHEN;

SELIGMAN, 2011; LIBERMAN; RENDSVIG, 2022; HANSEN, 2015; GONZALEZ,

2022).

In this dissertation, we take as a departure point the non-epistemic part of the

work of (BALTAG et al., 2018). We propose several extensions to their basic definitions

of threshold model and threshold model update.

The element diffused in a network of agents is termed a behavior. However, it can

express not only a behavior but also an opinion, a fashion, or product. Sometimes agents

are refereed as holders or not holders of a behavior. Also, the verb adopt denotes that an

agent became a holder of the behavior.

Along the dissertation, we adopt a minimal propositional dynamic logic to express

the state of the network of agents, i.e, which agents are direct neighbors and which agents

hold a behavior. We assume a set of propositional variables Nab interpreted as agents a

and b are neighbors, and a set of propositional variables Ba meaning that agent a holds

behavior B For expressing the dynamic aspect, i.e., the diffusion of behavior, the logic

has a dynamic modality for the adoption of a behavior.

This dissertation is organized as follows: in Chapter 2 we present the background

that form the basis of our study. In Chapter 3, we consider threshold models with: Multi-

ple Independent Behaviors; Conflicting Behaviors; Conflicting Behaviors and Priority for

Adoption; Dependent Behaviors; Dependent Behaviors and Priority for Adoption; Con-

flicting and Dependent Behaviors; and lastly Conflicting and Dependent Behaviors and

Priority for Adoption. In Chapter 4, we define two models with a single behavior where

the adoption threshold takes into account how influential each neighbor of an agent is: a

model with weighted undirected edges, and a model with directed unweighted edges. We

conclude with a discussion on future work.
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2 BACKGROUND AND RELATED WORKS

This preliminary chapter introduces the theory behind behavior diffusion in social

networks. We start by evaluating ideas from sociology by discussing the possibilities of

why this behavior diffusion effect occurs in networks. Subsequently, we will give the first

steps into network information propagation, citing research areas and examples of use.

We then discuss threshold models of collective behavior and cascade models, arriving at

the work of Easley and Kleinberg (2010) that inspired the work of Baltag et al. (2018),

which in turn inspired this dissertation.

We conclude this chapter with a brief introduction to aspects of Logic that will

be used in the following chapters, and we introduce basic concepts about graph networks

that may be necessary for the proper understanding of the operators for behavior diffusion

to be proposed.

2.1 The Origins of Social Network Analysis

The book "The Development of Social Network Analysis" by Freeman (2004)

states that some writers date the origin of social network analysis to beginning in the early

1930s with the work of Jacob Moreno introducing sociometry, which he published in his

book "Who Shall Survive? A New Approach to the Problem of Human Interrelations.". In

contrast, some argue that social network analysis began in the early 1970s when Harrison

White started training graduate students at Harvard.

In the work of Moreno (1934), he developed sociograms to analyze choices of

preferences within a group. A sociogram is a graphic representation of a person’s so-

cial links, diagramming the structure and patterns of group interactions. In this sense,

Moreno’s work with sociograms was seen as an early application of graph theory to so-

cial network analysis.

A Columbia University sociologist named Allen Barton, in 1968, made the state-

ment that mainstream social research was focused exclusively on the behavior of indi-

viduals, neglecting the social part of the behavior, neglecting the part concerned with the

influential aspect that one has on another (FREEMAN, 2004).

The study of the social relationships linking individuals rather than the individuals

themselves is not confined to the study of human social relationships; in fact, it is present

in almost every field of science. Astrophysicists, for example, assign a lot of effort into the
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study of the relationship between planets, the gravitational attraction of each planet in the

solar system on each of the others in order to account for planetary orbits; biologists study

how each of the species interacts within an ecosystem; Electrical engineers, on how the

interactions of various electronic components occur and affect the flow of current through

a circuit; and many other examples can be found in other areas of study (FREEMAN,

2004).

An important fact to be noted is that the relationships that social network ana-

lysts study are usually those that link individual human beings. However, sometimes, the

study may be more interesting, linking social individuals that are not human, like animals,

agents, or robots, or that are not even individuals at all, like groups and organizations, once

influence, for example, may be received from a brand, from an AI bot, an old subscript,

and so on.

2.2 Information Propagation

In this area of study (social network analysis), the term information propagation

is related to transmitting information from one network node to another. Depending on

the field, the dynamics of these spreads can change. Over the years, approaches for prop-

agation through networks have been developed by researchers working in areas such as

energy distribution, marketing, politics, economics, social sciences, social networks, and

epidemiology.

In social networks, the spread of opinions is often the result of a direct influ-

ence between individuals, such as family or friends, and it can be influenced by factors

such as word of mouth, peer pressure, and the availability of information (WATTS, 2004;

EASLEY; KLEINBERG, 2010; CHRISTAKIS; FOWLER, 2009). Individuals adopt the

opinion of those they are connected with, creating an adoption cascade effect that quickly

spreads, similar to the spread of virus contagion and epidemics. The network’s structure

also affects the spread, such as its size, density, and connectedness.

In epidemics research, "information" can be substituted by infectious diseases or

meta-diseases, such as anxiety, worry, fear, and others. In that case, these meta-diseases

are spread by emotions, beliefs, and attitudes from person to person within a popula-

tion. Diseases and other spread contagions that create "epidemics" are vastly studied in

the works of Christakis and Fowler (2009), Watts (2004), Easley and Kleinberg (2010).

The study of epidemic diseases has always been a topic where biology and social ones
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influence each other (EASLEY; KLEINBERG, 2010).

2.3 Classification of Information Propagation

Classifying the propagation of information can help with understanding how in-

formation flows, the identification of potential risks and vulnerabilities, and also helps

with the development of strategies for more effective propagation and control of the flow

of information.

The classification we present in this section was given by the work of Liben-

Nowell (2005), in which the author divides the field of information propagation into In-

formation Propagation and Epidemics, Game-Theoretic Approaches, and Diffusion of

Innovation. We briefly go through each one of these types situating this dissertation in the

last one, namely Diffusion of Innovation.

2.3.1 Information Propagation and Epidemics

Most of the research investigating the flow of "information" through networks has

been based upon the analogy between the spread of disease and the spread of information

in networks. The study of epidemiology brings up essential aspects of networks and the

diffusion effect.

Classical disease propagation in epidemiology is based on the disease cycle in a

host, commonly called the SIR model. This model classifies individuals into three cate-

gories: susceptible, infected, and recovered. This model uses the contact rates between

individuals and the transmission rate of the disease to simulate its spread into a population.

The simulation results are used to identify potential interventions that could slow down

the spread. This model can also be used to evaluate the effectiveness of interventions that

have already been implemented (KEELING; ROHANI, 2008).

If someone is exposed to a disease and is susceptible, he becomes infected with

some probability. The disease then runs its course in the host, who recovers. The recov-

ered individual becomes immune for a while until it eventually may become susceptible

again, and the cycle goes on. The SIR model is applied for diseases in which the host

never becomes susceptible again, and the SIRS model is applied when the recovered host

eventually becomes susceptible again. Other models are SI (susceptible-infected), SIS
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(susceptible-infected-susceptible), SEIR (susceptible-exposed-infectious-recovered), and

others.

2.3.2 Game-Theoretic Approaches

Game Theory is the branch of mathematics used to analyze decision-making and

strategic interactions between different agents, allowing the construction of rigorous mod-

els describing situations of conflict and cooperation between rational decision-makers.

Game theory has been successfully applied to many situations, such as business compe-

tition, functioning of markets, political campaigning, jury voting, auctions, procurement

contracts, and union negotiations. Game theory has also shed light in disciplines such as

evolutionary biology and psychology (TADELIS, 2013).

The propagation of information through the perspective of Game Theory considers

the utility for players to adopt an innovation or behavior. Players receive a positive payoff

for each of their neighbors that have also adopted, in addition to an intrinsic benefit from

adopting it. For example, if enough friends switched from videotape to DVDs, a person

with friends who have made the same choice can benefit by borrowing movies (LIBEN-

NOWELL, 2005).

2.3.3 Diffusion of Innovation

The Diffusion of Innovation is a technology diffusion and adoption theory pro-

posed by Rogers (1983) that describes how, why, and at what rate new ideas and tech-

nologies spread across cultures. Many studies in other areas also use the model as a basis,

including political science, public health, communications, history, economics, technol-

ogy, and education (DOOLEY, 1999; STUART, 2001).

Adoption is a decision of "full use of an innovation," rejection is a decision of

"not adoption of an innovation," and diffusion is "the process in which an innovation is

communicated through certain channels over time among the members of a social system"

(ROGERS, 1983).

The author mentions an interrelationship between the rate of knowledge about

innovation in a system and its adoption rate. The diffusion effect means that, while an

individual does not have a minimum level of information and peer influence from the
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environment, he is unlikely to adopt it. However, once the level of information increases

past a certain threshold, adoption becomes more likely to occur. A threshold seems to

occur when the leader’s opinions favor innovation in the given system (ROGERS, 1983).

The literature considers two fundamental models for Diffusion of Innovation:

Threshold Models by Granovetter (1978) and Cascade Models by Goldenberg, Libai and

Muller (2001). Each of the models is discussed in the following subsections.

2.3.4 Threshold Models of Collective Behavior

The Threshold Models of Collective Behaviors, proposed by Granovetter (1978),

describe the relationship between the number of people required to start a collective ac-

tion and the probability of its success. He argued that the number of people required to

start a collective action and the probability of success are linked. A few suggested ap-

plications are riot behavior, strikes, innovation and rumor diffusion, voting, migration,

measurements, falsifications, and verification.

These models are developed for situations in which actors, who are assumed ratio-

nal (given their goals, preferences, and perception of their situation, they act seeking max

utility), are faced with two alternatives. The costs and benefits of the alternatives depend

on the number of actors opting for each.

The key concept is given by the "threshold," which represents the proportion of

others who have to decide before the actor decides (GRANOVETTER, 1978). Each node

u in the network chooses a threshold Tu ∈ [0, 1]. Each edge between nodes v and u has a

non-negative connection weight wu,v, so that
∑

v∈Γ(u))wu, v ≤ 1, and u adopts if and only

if Tu ≤
∑

v∈Adopters∩Γ(u))wu,v, where Γ(u) denotes the graph-theoretic neighborhood of

the node u (LIBEN-NOWELL, 2005).

The author gives a few descriptions of agents according to their threshold: "radi-

cal" being a low threshold owner, "instigators" being part of the radicals but with a thresh-

old of 0%, and "conservatives" with thresholds varying from 80% to 100%.

2.3.5 Cascade Models

The work of Goldenberg, Libai and Muller (2001) examines word-of-mouth (w-o-

m) communications, which is a phenomenon that occurs when people share information
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through informal conversation and other forms of personal interactions. It is a basic form

of communication in many forms of marketing, as it is a powerful tool for spreading

information about a product, service, or brand.

The Cascade Model of w-o-m has use of the theory of weak and strong ties given

by the work of Granovetter (1973), which says that the strength of weak ties between

individuals is, often, more beneficial than strong ties, providing access to new information

and resources that may not be available through strong ties. Weak ties are typically formed

between individuals with less in common or more distant. In contrast, strong ties are made

between individuals who are closer to each other and have more in common.

Whenever a social contact v in the neighborhood of u adopts an innovation, then

u adopts it with a given probability of pv,u. In other words, every time someone adopts it,

there is a chance of someone related to this person to adopt it as well (LIBEN-NOWELL,

2005).

The work of Kempe, Kleinberg and Tardos (2003) promotes the general cascade

model, which generalizes the independent cascade model given by Goldenberg, Libai and

Muller (2001), and also generalizes the threshold model.

2.4 Social Conformation

As discussed in the previous sections, the importance of studying the dynamics

of agents has long been recognized. It provides insights into how humans interact with

each other and the environment. By studying agents, researchers can improve the un-

derstanding and prediction of human behavior and the effect of different behaviors on

social networks and other related systems. The study of agents can yield insights into

designing better systems in areas such as artificial intelligence or robotics that can in-

teract with humans more meaningfully. A famous perspective about agents is given by

Wooldridge (2009). The author state that agents should have the following abilities: the

ability to operate without the direct intervention of humans and control over their internal

state (autonomy), the ability to interact with humans and other agents (social behavior),

the ability to perceive changes in the environment and respond to them in a timely fashion

(reactivity), and the ability to exhibit goal-directed behavior (proactivity).

However, interactive agents often fail to adapt to real-world society’s norms; the

improperly developed agent can look like a dictator or, in other cases, the complete op-

posite, accepting everything and thus not contributing. For example, we can imagine a
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situation of earthquake rescue involving multiple robot agents and humans; both robots

and humans have previous knowledge related to rescue missions; both are able to explore

the terrain searching for track of survivors; and both are able to call for group actions,

actions that a single unit can’t perform. If the robot acts as a complete dictator, he will

refuse to delay or abandon his plans to attend to calls, which might cost lives. At the

same time, a one hundred percent passive robot may abandon his plans too early to par-

ticipate in a group call, despite being very near to a rescue. In other words, the lack of

mechanisms to balance agent decision-making can result in agents that are not "social"

enough. Sometimes a priority list might fix it; sometimes, a group decision might be the

best option. In the end, understanding the dynamics of group interactions is essential to

developing more evolved agents.

Christakis and Fowler (2009), for instance, propose three different definitions for

human social networks. They calls a group of people a network defined by an attribute

(for example, woman, Democrats, lawyers, long-distance runners etc.); they define a net-

work as a collection of people with a specific set of connections between them, where

the pattern of these ties are often more important than the individual people themselves.

Those groups defined by the network can do things that a disconnected collection of in-

dividuals cannot. Lastly, they define a network community as a group of people who are

much more connected to one another than they are to other groups of connected people in

other parts of the network.

An explanation for why individuals form groups is given by Peterson (2017). The

author uses an insight from Stanford biologist Robert Sapolsky about zebras. Zebras (they

are black with white stripes) are not camouflaged against their surrounding environment.

Instead, they are camouflaged to blend in with the herd.

This blending effect makes it hard for researchers to study zebras in their natural

environment. They make a note as soon as they notice something about a zebra. However,

when they look back, they cannot tell if it is the same zebra. Researchers had the idea to

red paint or ear tag zebras and found that once the zebra was market, it was quickly killed

by the lions. Researchers realized that lions do not necessarily kill the weakest in the herd

but typically go for the ones they can identify. Being a small zebra, a zebra with a limp,

red painted, or those who stick their head up are all reasons to become a potential target

for predators.

More proof of that can be seen in fish hordes, for example. The intelligent, healthy,

large fishes stay in the center of the school. When the herd moves around, the healthier
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fishes keep moving to the middle of the herd, using the herd as protection. Another case

is found in reindeer. When the herd is in danger, the reindeer begin to run in circles

around the hunter, creating entire cyclones and making it nearly impossible for the hunter

to target a single animal (WEISBERGER, 2019).

We didn’t find proper Studies in the area relating this theory to humans, although

we found that the explanation might be plausible, matching the dynamics of Diffusion of

Innovation. We hope that the future brings more research being done in the area.

We point out that the book Christakis and Fowler (2009) seems to be a good can-

didate for analysis. It presents a collection of multiple cases of social epidemics related to

humans that enforce the dynamic ideas behind the social conformation theory to humans.

Although, despite our initial intentions, we decided that the cases were too harsh to be

presented in our work without a deep and proper discussion. It’s a sensible area, and it

is possible that many of the cases reported in the book are not the standard but rather

cases that, in the area of statistics, would be called outlier cases. Even so, we remember

that the area of economy conducts many studies precisely to find characteristics of these

outliers, discovering patterns and making, for instance, decisions about investments. The

book Taleb (2008) illustrates that.

For now, what we found relating to humans is not complete work but a discussion

done by Peterson (2017), where, according to him, people might act following the same

principles of the social conformation theory: they try to place themselves at the center of

the crowd so that there is a protective barrier between them and potential attacks. He says

that humans tend to keep their opinions and behaviors not too distinctive from the crowd

so they can feel protected by not "sticking out their heads."

Resuming, the theory itself says that: It is not the survival of the fittest; instead, it

is the survival of the conformist.

2.5 Modelling Behavior Diffusion with Dynamic Logic

This dissertation is in the context of a logical treatment for the diffusion of behav-

ior relying on the generalized model of threshold limited influence given by (EASLEY;

KLEINBERG, 2010) that creates an effect that matches the definition of social confor-

mity. According to this approach, agents adopt a behavior whenever a given proportion

of their direct neighbors have already adopted it.

After the discussion in the previous sections of different ways of approaching
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diffusion of information in a network of individuals, in this section, we give some back-

ground on Dynamic Logic for reasoning about the effects of actions and, more specifi-

cally, about threshold models and the process of diffusion of behaviors.

Dynamic Logic was first proposed by Vaughan Pratt (PRATT, 1976) as a modal

logic for reasoning about imperative programs. If P is a program and φ is a property

about state involving values of variables manipulated by P , a formula [P ]φ of Dynamic

Logic expresses that φ holds after the execution of a P . Dynamic Logic, as developed

by Pratt, is a generalization of Floyd-Hoare (FLOYD, 1967; HOARE, 1969) logic for

programs: a Hoare triple {ϕ} P {ψ} corresponds to ϕ→ [P ]ψ in Dynamic Logic.

After the pioneering work of Pratt, Dynamic Logic attracted the attention of re-

searchers working with Logic in areas other than program verification. Any logic for

studying operators that can modify the proper structure in which their effect is being

evaluated is based on Dynamic Logic. Examples are Dynamic Epistemic Logics (DIT-

MARSCH; HOEK; KOOI, 2007) and Dynamic Preference Logics (VAN BENTHEM,

2009; LIU, 2011).

This dissertation follows the lines of (CHRISTOFF, 2016), (SELIGMAN; LIU;

GIRARD, 2011), and, more specifically, (BALTAG et al., 2018), but instead of advanc-

ing in the epistemic part of their work, we took a step back: we provide non-epistemic

logics for reasoning about different threshold models of behavior diffusion. Our point of

departure as inspiration was the basic threshold model and model update operation given

by Baltag et al. (2018). We also assume a minimal propositional logic for reasoning about

behavior adoption and neighborhood relation between agents.

Our first extension to the basic model of Baltag et al. (2018) considers multiple

independent behaviors instead of a single behavior, and it is given in Section 3.2. Since

it is a straightforward extension to the basic model, that section can also be read as a

background for the first, non-epistemic part of Baltag et al. (2018).

2.6 Graph Theory and Networks

At first, Euler’s ideas for solving the famous Konigsberg Bridges puzzle and the

"graph theory" he developed were used only for solving puzzles and in analyzing games

and other recreations (HARRIS; HIRST; MOSSINGHOFF, 2009). In the mid-1800s,

however, people began to realize that graphs could be used to model many things, e.g.,

people and friendships, computers and communication lines, chemicals and reactions
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(HARRIS; HIRST; MOSSINGHOFF, 2009; NEWMAN; BARABASI; WATTS, 2006).

Field applications continued to grow, and the graph theory saw applications in engi-

neering, operations research, computer science, and sociology (NEWMAN; BARABASI;

WATTS, 2006).

In mathematics graph theory studies graphs and mathematical structures used to

model pairwise relations between objects (EASLEY; KLEINBERG, 2010; NEWMAN;

BARABASI; WATTS, 2006).

This section provides basic graph theory concepts necessary for understanding

the behavior diffusion operations presented in Chapters 3 and 4. We understand that

most readers of our work are familiar with these concepts, and they can skip this section

proceeding to chapters 3 and 4.

A network graph, or simple a graph, consists of two finite sets, V and E. Each

element of V is called vertex (plural vertices) or nodes, and elements of E, called edges

or links, are unordered pairs of vertices.

Some more specific examples of graphs to represent networks related to our theme

of research are: Communication networks where nodes are agents, computers, or other

devices that can relay messages, and edges represent direct links along which messages

can be transmitted; Social Networks with nodes related to people, agents, or groups of

those, and edges are some social interaction; and Information networks where nodes are

some kind of information resources such as web pages and documents, and edges are

logical connections such as hyperlinks, citations, or cross-references.

The vertex set of a graph G is denoted by V (G), and the edge set is denoted by

E(G). The order of a graph G is the cardinality of its vertex set, and the size of a graph

is the cardinality of its edge set (HARRIS; HIRST; MOSSINGHOFF, 2009).

Given two vertices u and v, if (u, v) ∈ E, then u and v are adjacent to each

other, if (u, v) /∈ E, then u and v are non adjacent (HARRIS; HIRST; MOSSINGHOFF,

2009). The degree of v refers to the number of edges adjacents to v, the number of direct

connections it has to other nodes.

Figure 2.1 – Visual representation of Graph G
a b

c d

e

f

Source: the author.

The visual representation of the following graph G can be seen in Figure 2.1,
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the set V = {a, b, c, d, e, f} and the set E = {(a, b), (a, c), (b, d), (c, d), (d, e), (d, f)}.

Together, V and E are a graph G.

Figure 2.1 and Figure 2.2a are examples of undirected graph. The edges indicate

a symmetric relationship between their vertices. Although less common, the graph in

Figure 2.2b also represents a symmetric relation between edges.

Figure 2.2 – Two examples of graphs with symmetric relation between edges
(a) Undirected graph

a

b c

(b) bi-directional directed graph

a

b c

Source: the author.

Edges can represent an asymmetric relationship, creating a directed graph or di-

graph. In this case, the set E is a set of ordered pairs of vertices (a, b) drawn as an arrow

departing from a and pointing to b. Figure 2.3 shows a digraph. Digraphs in the context

of social networks allow the effect of directed influence among other cases.

Figure 2.3 – Directed graph G
a b

c d

e

f

Source: the author.

Another typical case is related to how strong one agent’s influence is on other

agents. This relationship can be modeled using weighted edges as shown in Figure 2.4.

Figure 2.4 – Visual representation of Graph G with weighted edges

a
b

c

d

e f
g

h

1

4 3 22

3

3

2
1

Source: the author.

A Weighted graph is a graph G with a weight function W that maps the edges of

G to, commonly, nonnegative real numbers. Although in some cases, the weight function

allows negative numbers, notes, tags, or anything that result in true, false, a number, or

even a new tag after being evaluated by the quoted function. Graphically speaking, the

edge usually is represented together with a label.

A graph that allows repeated pairs of edges, replacing the set E with a multiset,

generates a multigraph (Figure 2.5). In the case of social networks, a possible example
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would be considering different edge types for information, money, friendship, antago-

nism, etc.

Figure 2.5 – Multigraph G
a

b

c d

Source: the author.

When vertex self-connection is available, "loops," the graph is called pseudograph

as in Figure 2.6.

Figure 2.6 – Pseudograph G

a

bc

Source: the author.
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3 DIFFUSION WITH MULTIPLE BEHAVIORS

Having a single subject of discussion isn’t the norm in real societies. With that in

mind, this chapter proposes the first variations to the basic model of diffusion presented

in (BALTAG et al., 2018). We assume a finite set B of behaviors B,Bi, . . . B1, . . ., and

we also assume a function β that maps behaviors to the set of agents that hold them.

In this chapter, we consider different approaches for modeling behavior diffusion.

They have in common that they are all formalized in dynamic logic and consider threshold

models with multiple behaviors.

Each approach is presented in a separate section. All these sections have the same

structure: they first present the definition of model and model update operation and pro-

vide an example of model update and a naive algorithm for it. After that, each section

provides the syntax, semantics, and (except for the last approach) an axiomatization for a

minimal propositional dynamic logic for reasoning about the neighborhood relation and

behavior adoption.

3.1 Network of Agents

Throughout this dissertation, a network of agents is represented as a graph where

nodes represent agents and edges represent a binary relationship between agents, which

receive the general denomination of neighborhood relation.

We start with the definition of a network of agents following that of (BALTAG et

al., 2018):

Definition 3.1.1 (Adapted from (BALTAG et al., 2018)). A Network is a pair (A,N ),

whereA is a non-empty finite set of agents, and N : A → P(A) is a function that assigns

a set N(a) of direct neighbors to each a ∈ A, such that:

• a /∈ N(a) - irreflexivity

• b ∈ N(a) iff a ∈ N(b) - symmetry

• N(a) ̸= ∅ - seriality

Although irreflexivity and seriality of the neighborhood relation will be kept through-

out this work, symmetry is a requirement for the approaches of this chapter only, where

we assume that all agents have the same capacity to influence other agents.
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Symmetry and irreflexivity mean that the network graph is undirected and without

self-loops, and with that, we can model relationships between agents such as neighbor-

hood and friendship, for instance. Seriality means that agents have at least one neighbor,

as isolated agents do not contribute to behavior diffusion.

3.2 Independent Behaviors

This first multi-behavior approach aims for behaviors that can be adopted by

agents independently of any other behavior they might hold or not. We first describe

the model and the model update operation, and then we introduce a logic language, its

semantics, and its axiomatization.

Model and Model Update

Definition 3.2.1. A Threshold Model with Independent Behaviors (TMIB) is a tu-

ple M = (A, N,BID, β, θ) where (A,N ) is a network, BID is a finite set of behaviors,

β : B → P(A) is a total function mapping each behavior to the set of agents that hold it,

and θ ∈ [0, 1] is the adoption threshold.

The behavior diffusion is essentially the same as that given in (BALTAG et al.,

2018) except that it considers models that can have multiple behaviors. In what follows,

the notation β′ = β[B 7→ S] means that β′ is equal to β, except that the behavior B is

mapped to the set of agents S.

Definition 3.2.2. The Threshold Model Update of a TMIBM = (A, N,BID, β, θ) by

the diffusion of a behavior B ∈ Dom(β) results in the model M′ = (A, N,BID, β′, θ)

where β′ = β[B 7→ S] and S is a set of agents given by:

S = β(B) ∪
{
a ∈ A :

|N(a) ∩ β(B)|
|N(a)|

≥ θ
}

We occasionally write TMIB(M, B) for the model that results from the update of

modelM by the diffusion of B following the model update operation defined above.

Definition 3.2.2 provides quantitative criteria for the adoption of behavior as it

expresses that the new set of agents adopting a behaviorB are those agents whose fraction

of their neighbors that have adopted B has reached or surpassed a given threshold θ.
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Example 3.2.1. Figure 3.1 (a) has a graphical representation of a TMIBM with a set of

agents A = {ana, bia, cid, don}, a set of behaviors BID = {B1, B2, B3} and a function

β s.t. β(B1) = {ana, bia}, β(B2) = {ana, cid}, and β(B3) = {don}. Considering a

threshold θ = 0.5, Figure 3.1 (b) illustrates the modelM′ that results from the update of

M by one step of the diffusion of behavior B1. Agents cid and don are the only agents

that do not hold behavior B1, but only cid adopts B1 after the diffusion step fromM to

M′ since two of its three neighbors already hold B1, which is above the threshold θ.

Figure 3.1 – Evolution of modelM after one step in the diffusion of B1, considering θ = 0.5 and
model update of Definition 3.2.2.

B1, B2

ana

B1

bia

B2

cid

B3

don

(a) M

B1, B2

ana

B1

bia

B1, B2

cid

B3

don

(b) M′

Source: the author.

We present an algorithm for the model update of Definition 3.2.2. As explained

in Chapter 1, the main goal of the algorithms we give in this dissertation is to provide

a straightforward and clear operational view of the different model update operations

presented. For that reason, the algorithms are intentionally left naïve.

We split the algorithm into two parts. Algorithm 1 defines a routine called influence

that, given as arguments an agent a, a networkN , and a behaviorB, returns the proportion

of direct neighbors of agent a in the networkN that hold behaviorB. The Algorithm 2 re-

Algorithm 1: TMIB Update - influence.
Input: agent a, network N , behavior B
Output: a number in [0..1]

1 directN← getNeighborsOf(a,N)
2 directNHolders← directN ∩B
3 return |directNHolders|/|directN|

ceives as arguments a TMIB modelM and behavior B and returns a new modelM′ with

the set of agents holding behavior B updated. It initializes a variable newHolders for

storing the set of agents that will adopt the behavior (line 1). The algorithm goes through

all agents that are not holders of B (lines 2-6), adding them to newHolders (line 4) if

the influence of their direct neighbors that hold behavior B is greater than or is equal to a
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threshold θ (line 3). Finally, the algorithm adds newHolders to the set of agents holding

behavior B and returns the updated model (lines 7-9).

Algorithm 2: TMIB Update.
Input:M=(A,N ,BID, β,θ) & B ∈ Dom(β)
Output:M′=(A,N ,BID, β′,θ)

1 newHolders← {}
2 foreach a ∈ A s.t. a /∈ β(Bi) do
3 if influence(a,N,B) ≥ θ then
4 newHolders← newHolders ∪ {a}
5 end if
6 end foreach
7 β′ ← β
8 β′(B)← β(B) ∪ newHolders
9 return (A, N,BID, β′, θ)

The logic LIB[]

The syntax of the logic language for multiple independent behaviors is slightly

different from that of (BALTAG et al., 2018) that considers a single behavior. Besides

a finite set with propositional variables Nab, one for each a, b ∈ A, we also assume a

finite set with propositional variables Ba, one for each B ∈ BID and each a ∈ A. Also,

instead of a single dynamic modality [adopt] of (BALTAG et al., 2018) we have an adopt

dynamic modality [B] for each B ∈ BID.

Syntactically, all the other logics presented in this dissertation have the same syn-

tactic structure. They will differ in their semantics and axiomatizations.

Definition 3.2.3. The set of formulas of LIB[] is defined by the following grammar:

φ ::= Nab | Ba | ¬φ | φ ∧ ψ | [B] φ

Definition 3.2.4. The semantics of LIB[], w.r.t. a TMIB modelM = (A, N,BID, β, θ) is

given by:

M |= Ba iff a ∈ β(B)

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [B] φ iff M′ |= φ,whereM′ = TMIB(M, B) (Def. 3.2.2).
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In order to reason about threshold models with independent behaviors, we give a

Hilber-style axiomatization for the logic LIB[].

Definition 3.2.5. The following are the axioms and the rules of inference for LIB[]:

Network axioms

¬Naa Irreflexivity

Nab ↔ Nba Symmetry∨
b∈A Nab Seriality

Reduction axioms

[B] ¬φ ↔ ¬[B] φ Red.Ax.¬

[B] (φ ∧ ψ) ↔ [B] φ ∧ [B] ψ Red.Ax.∧

[B] Nab ↔ Nab Red.Ax.N

[B] B′
a ↔ B′

a B ̸= B’ Red.Ax.B1

[B] Ba ↔ Ba ∨ BNa≥θ Red.Ax.B2

Inference rules

If φ and φ→ ψ, then ψ Modus Ponens

If φ, then [B] φ Necessitation[B ]

If φ and ψ ↔ χ, then φ[ψ/χ] Replacement of Equivalents.

The first three axioms capture the properties of the network structure. The last

three lines of the table have the inference rules for a minimal propositional modal logic

with a box modality.

The reduction axioms are obtained following the standard method known as re-

duction developed in the context of Dynamic Epistemic Logic. Reduction axioms char-

acterize the truth of a formula [B] φ in terms of the truth of another formula ψ obtained

by pushing the modality [B] inside φ.

This reduction process proceeds recursively until a formula of propositional logic

with no occurrences of modality [B] is reached, meaning that the truth value of a formula

with modality [B] can be characterized by the truth value of a formula of propositional

logic without the modality.

In the first two reduction axioms, Red.Ax.¬ and Red.Ax.∧, we observe, in a left

to right reading, the [B] modality being pushed inside the formula structure. This process

proceeds until a propositional letter/symbol is reached, i.e., until we have either [B] Nab,

[B] B′
a with B ̸= B′, or [B] Ba.
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For the case of [B] Nab, reduction axiom Red.Ax.N expresses that the existence of

a neighborhood relation between agents is not affected by the diffusion of a behavior. For

the case of [B] B′
a withB ̸= B′, reduction axiom Red.Ax.B1 expresses the independence

among behaviors, i.e., the truth status of a formula B′
a is not affected by the diffusion of

a different behavior B.

For this logic, the most interesting reduction axiom is for the case [B] Ba. The

reduction axiom Red.Ax.B2 expresses that the truth of formula [B] Ba. i.e., the truth of

Ba after one step in the diffusion of B is characterized by the following disjunction: either

Ba is true (agent a happens to hold behavior B), or, if that is not the case, the conditions

for the adoption of behavior B by agent a are present.

The formula that captures the conditions for the adoption by agent a of behavior

B was given in (BALTAG et al., 2018). In axiom Red.Ax.B2, we use the notation BNa≥θ

as an abbreviation for it.

BNa≥θ ≡
∨

G⊆N⊆A:
|G|
|N|≥θ

(
∧
b∈N

Nab ∧
∧
b ̸∈N

¬Nab ∧
∧
b∈G

Bb)

The formulaBNa≥θ is true if there are sets of agentsN ⊆ A and G ⊆ N with |G|/|N | ≥ θ

for which the following holds: all elements of N are neighbors of agent a, agents not in

N are not neighbors of agent a, and agents in G hold behavior B.

3.3 Conflicting Behaviors

Certain behaviors are mutually exclusive. For instance, an agent cannot be at

the same time vegan and carnivore. In this section, we consider a logical treatment that

prevents agents from adopting behavious that conflict with behaviors they already hold,

even if the threshold for adoption has been reached.

Model and Model Update

We start by introducing a new model component that maps a behavior to the set of

its conflicting behaviors:

Definition 3.3.1. A function C : BID → P(BID) is a Behavior Conflict function if, for

each B ∈ BID
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• B /∈ C(B) - irreflexivity

• B ∈ C(Bj) iff Bj ∈ C(B) - symmetry

In models with possibly conflicting behaviors, the function β mapping behaviors

to the set of agents that hold them, and the behavior conflict functions C should be con-

sistent with each other, i.e. no agents can hold conflicting behaviors at the same time:

Definition 3.3.2. Let β : BID → P(A) be a function that maps behaviors to the set of

agents that hold them, and let C : BID → P(BID) be a behavior conflict function. We say

that β and C are consistent with each other if they are such that:

∀Bi, Bj ∈ Dom(β). Bi ∈ C(Bj) implies that β(Bi) ∩ β(Bj) = { }

With the previous two definitions, we are ready to define threshold models with

conflicting behaviors:

Definition 3.3.3. A Threshold Model with Conflicting Behaviors (TMCB) is a tuple

M = (A, N,BID, β, C, θ) where (A, N ) is a network, BID is a finite set of behaviors,

β : BID → P(A) is a mapping from behaviors to the set of agents that hold then, C :

BID → P(BID) is a behavior conflict funcion, with β and C consistent with each other,

and θ ∈ [0, 1] is the threshold.

Besides the satisfaction of the threshold criteria, the adoption of a behavior B by

an agent only occurs if the agent does not hold a behavior that conflicts with B. We

introduce an auxiliary notation to be used in the definition of model update considering

conflicting behaviors. We write HasConflictM(a,B) to express that, in model M, the

agent a holds a behavior that conflicts with behavior B.

HasConflictM(a,B) ≡ ∃Bi ∈ Dom(βM) . Bi ∈ CM(B) ∧ a ∈ βM(Bi)

The subscriptM can be omitted when the model is clear from the context.

Definition 3.3.4. The Threshold Model Update of a TMCBM = (A, N,BID, β, C, θ),

by the diffusion of a behaviorB ∈ Dom(β), produces the modelM′ = (A, N,BID, β′, C, θ)

where β′ = β[B 7→ S] and S is a set of agents given by:

S = β(B) ∪ {a ∈ A | ¬HasConflict(a,B) ∧ |N(a) ∩ β(B)|
|N(a)|

≥ θ}
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We will occasionally write TMCB(M, B) for the model that results from the up-

date of TMCBM by diffusion of behavior B.

Example 3.3.1. Assuming that the TMCBM of Figure 3.2 (a) has a threshold θ = 0.5,

and a behavior conflict function defined as

C(B1) = {B2, B3} C(B2) = {B1} C(B3) = {B1}

we have that Figure 3.2 (b) illustrates the modelM′ that results from the update of model

M of Figure 3.2 (a) by one step of the diffusion ofB1 according Definition 3.3.4. Observe

that half of the direct neighbors of ana hold the behavior B1, so judging only by the

threshold criteria ana could adopt B1, but that is not possible since ana holds B2 which

conflicts with B1. A similar reason precludes don from adopting B1.

Figure 3.2 – Evolution of modelM after one step in the diffusion of B1, considering θ = 0.5 and
model update of Def. 3.3.4.
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Source: the author.

Algorithms 3 and 4 provide an operational description of the TMCB model update

operation. Algorithm 3 describes a boolean function for the additional criteria to be used

by the update algorithm 4. It goes through each behavior Bi that conflicts with behavior

B (line 1) and stops with true when it finds that the agent holds that conflicting behavior

Bi (lines 2-3).

Algorithm 3: TMCB - hasConflict.
Input: agent a, conflict funtion C, behavior mapping β, behavior B
Output: a boolean value

1 foreach Bi ∈ C(B) do
2 if a ∈ β(Bi) then
3 return true
4 end if
5 end foreach
6 return false
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Algorithm 4 differs from Algorithm 2 only in line 3, where a test for conflict

existence is added to the condition of the if command.

Algorithm 4: TMCB Update.
Input:M=(A,N ,BID, β,C,θ) & B ∈ Dom(β)
Output:M′=(A,N ,BID, β′,C,θ)

1 newHolders← {}
2 foreach a ∈ A s.t. a /∈ β(B) do
3 if ¬hasConflict(a, C, β, B) && influence(a,N,B) ≥ θ then
4 newHolders← newHolders ∪ {a}
5 end if
6 end foreach
7 β′ ← β
8 β′(B)← β(B) ∪ newHolders
9 return (A,N ,BID, β′,C,θ)

The logic LCB[]

As mentioned before, the syntax of formulas of LCB[] are exactly the same as in

LIB[] (Definition 3.2.3) so we do not repeat it here again. The definition of semantics

differs in the clause for formulas [B] φ:

Definition 3.3.5. The semantics ofLCB[], w.r.t. a TMCB modelM = (A, N,BID, β, C, θ)

is given by:

M |= Ba iff a ∈ β(B)

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [B] φ iff M′ |= φ,whereM′ = TMCB(M, B) (Def. 3.3.4.)

The Network Axioms and the Inference Rules for LCB[] are the same as those of

LIB[], given in Definition 3.2.5. The interesting reduction axioms, however, differ:

Definition 3.3.6. The axiomatization of LCB[] is composed of the Network Axioms and
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the Inference Rules of Definition 3.2.5, and of the following Reduction Axioms:

Reduction axioms

[B] ¬φ ↔ ¬[B] φ Red.Ax.¬

[B] (φ ∧ ψ) ↔ [B] φ ∧ [B] ψ Red.Ax.∧

[B] Nab ↔ Nab Red.Ax.N

[B] B′
a ↔ B′

a B ̸= B′ Red.Ax.B1

[B] Ba ↔ Ba ∨ BCNa≥θ Red.Ax.B2

The reduction axiom Red.Ax.B2 in Definition 3.3.6 uses the notation BCNa≥θ

which is an abbreviation for the following formula:

BCNa≥θ ≡ (
∧

B′ ∈ C(B)

¬B′
a ) ∧ BNa≥θ

The subformula between parenthesis expresses that agent a does not hold any behavior

that conflicts with B. The subformula BNa≥θ in the right side of the conjunction is the

same used in the axiomatization of LIB[] (axiom Red.Ax.B2 of Definition 3.2.5), and it

expresses that the threshold for the adoption by agent a of behavior B has been reached.

3.4 Conflicting behaviors with Priority for Adoption.

We now consider a variant of the update operation of the previous section. By this

variation, an agent is forced to unadopt behaviors when they conflict with a behavior that

can be adopted by the threshold criteria. This approach models a scenario where, in case

of conflicts, the most recent social influence has a higher priority over agents’ current

behaviors. This approach, and that of Section 3.8, are the only approaches presented in

this dissertation where agents can drop behaviors.

Model and Model Update

The model we consider here is exactly the same as that of Definition 3.3.3. To

hopefully, obtaining a clear definition of the new model update operation with behavior

unadoption, we assign the name TB to the set of agents that have reached or surpassed the

threshold for the adoption of B in a given TMCB model, i.e, the agents have satisfied the
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quantitative criteria for behavior adoption. This notation will also be used in other parts

of this work.

TB ≡ {a ∈ A :
|N(a) ∩ β(B)|
|N(a)|

≥ θ}

Definition 3.4.1. The Threshold Model Update of a TMCB modelM = (A, N,BID, β, C, θ),

that prioritizes adoption of a behavior B ∈ Dom(β) over conflicts, results in the model

M′ = (A, N,BID, β′, C, θ) where the function β′ is defined as

β′(Bi) =


β(B) ∪ TB if Bi = B

β(Bi)− TB if Bi ∈ C(B)

β(Bi) otherwise

We write TMCBPA(M, B) for the TMCB model that results from the model up-

date operation defined above with priority for adoption.

The first clause of the definition of β′ above expresses that agents that pass the

threshold criteria do adopt the behavior B. The second clause of the definition of β′

above characterizes that agents that adopted B have to drop behaviors that conflict with

it.

The operational aspect of Definition 3.4.1 is expressed in Algorithm 5. From lines

1-8, the algorithm is the same as the one for independent behaviors. The difference is

in lines 9-11, which perform the unadoption by new holders of behavior B, of behaviors

that conflict with B.

We do not consider the possible cascade side effects that this unadoption can have

on other agents that might have adopted a behavior due to the social influence of neighbors

who are now abandoning it.

The logic LCBPA[]

The syntax of formulas of LCBPA[] are exactly the same as in LIB[] and in LCB[]
(Definition 3.2.3). The definition of semantics differs in the clause for formulas [B] φ:

Definition 3.4.2. The semantics ofLCBPA[], w.r.t. a TMCB modelM = (A, N,BID, β, C, θ)
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Algorithm 5: TMCB Update with Unadoption.
Input:M=(A, N , BID, β, C, θ) & B ∈ Dom(β)
Output:M′=(A, N , BID, β′, C, θ)

1 newHolders← {}
2 foreach a ∈ A s.t. a /∈ β(Bi) do
3 if influence(a,N,B) ≥ θ then
4 newHolders← newHolders ∪ {a}
5 end if
6 end foreach
7 β′ ← β
8 β′(B)← β(B) ∪ newHolders
9 foreach Bi ∈ C(B) do

10 β′(Bi)← β(Bi)− newHolders
11 end foreach
12 return (A, N,BID, β′, C, θ)

is given by:

M |= Ba iff a ∈ β(B)

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [B] φ iff M′ |= φ,whereM′ = TMCBPA(M, B) (Def. 3.4.1.)

The Network Axioms and the Inference Rules for LCBPA[] are the same as those

of LIB[], given in Definition 3.2.5. Next we give the reduction axioms only:

Definition 3.4.3. The axiomatization of LCBPA[] is composed of the Network Axioms

and the Inference Rules of Definition 3.2.5, and of the following Reduction Axioms:

Reduction axioms

[B] ¬φ ↔ ¬[B] φ Red.Ax.¬

[B] (φ ∧ ψ) ↔ [B] φ ∧ [B] ψ Red.Ax.∧

[B] Nab ↔ Nab Red.Ax.N

[B] B′
a ↔ B′

a B ̸= B’ and B’ ̸∈ C(B) Red.Ax.B1a

[B] B′
a ↔ B′

a ∧ ¬ BNa≥θ B ̸= B’ and B’ ∈ C(B) Red.Ax.B1b

[B] Ba ↔ Ba ∨ BNa≥θ Red.Ax.B2

Observe that the reduction axiom Red.Ax.B2 is exactly the same as Red.Ax.B2

for the logic LIB[] seen in Section 3.2 that considers multiple independent behaviors: the
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truth of a formula [B] Ba is characterized by the truth of a formula saying that either agent

a already holds behavior B, or that the conditions for the adoption of B by agent a are

present. i.e., the threshold has been reached (formula BNa≥θ).

For a formula [B] B′
a, with B ̸= B′, we have two axioms: the reduction ax-

iom Red.Ax.B1a, for the case where B′ does not conflict with B, and reduction axiom

Red.Ax.B1b for the case where B′ does conflict with B.

The interesting one is axiom Red.Ax.B1b that characterizes the truth of [B] B′
a,

for B ̸= B′ and B conflicting with B′, by the formula saying that agent a holds behavior

B′ and it is not the case that the conditions for the adoption of B by agent a are present.

3.5 Dependent Behaviors

We now consider the case when the adoption of a behavior might be conditioned

to the previous adoption of other behaviors.

Model and Model Update

We need to define a way to express the dependency relation between behaviors:

Definition 3.5.1. A function D : BID → P(BID) is a behavior Dependency function if,

for each B ∈ BID

• B /∈ D(B) - irreflexivity

• if Bi ∈ D(Bj) then Bj /∈ D(Bi) - asymmetry

• Bi ∈ D(Bj) and Bk ∈ D(Bi), implies Bj ∈ D(Bk) - transitivity

The set D(B) is the set of behaviors that are pre-requisites for the adoption of

behavior B. Irreflexivity and asymmetry mean that the adoption cannot deadlock due to

self or mutually dependent behaviors. Another reading for transitivity is: if Bj depends

on Bi and Bi depends on Bk, then Bj depends on Bk.

We also must define a notion of consistency between the function β that maps

behavious to set of agents and the behavior dependency function D, in the following

sense: if an agent is in the set of agents that hold behavior Bj , then it must also be in the

set of all behaviors Bi that Bj depends on:
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Definition 3.5.2. Let β : BID → P(A) be a behavior mapping function, and let D :

BID → P(BID) be a behavior dependency function. We say that β and D are consistent

with each other if they are such that:

∀Bi, Bj ∈ BID,∀a ∈ A. a ∈ β(Bj) and Bi ∈ D(Bj) implie that a ∈ β(Bi)

With the previous two definitions, we are ready to define threshold models with

behaviors depending on other behaviors:

Definition 3.5.3. A Threshold Model with Dependent Behaviors (TMDB) is a tuple

M = (A, N,BID, β,D, θ) where (A, N ) is a network, BID is a finite set of behaviors,

β : BID → P(A) maps each behavior to the set of agents that hold it, D : BID → P(BID)

is a behavior Dependency function with β andD consistent with each other, and θ ∈ [0, 1]

is the threshold.

For a more compact definition of model update, we write a HoldsReqOf B to

express that (in a model that will be clear from context) the agent a holds all the behaviors

that are pre-requisites for the adoption of B:

a HoldsReqOfM B ≡ ∀Bj ∈ DM(B). a ∈ βM(Bj)

Definition 3.5.4. The Threshold Model Update with Dependent behaviors of a model

M = (A, N,BID, β,D, θ), by the diffusion of B, results inM′ = (A, N,BID, β′, D, θ)

where β′ = β[B 7→ S] and S is a set of agents given by:

S = β(B) ∪ {a ∈ A : a HoldsReqOf B ∧ |N(a) ∩ β(B)|
|N(a)|

≥ θ}

Example 3.5.1. An illustration of the diffusion process considering dependent behaviors

can be seen in Figure 3.3. Assuming that the behavior dependency function of modelM

of Figure 3.3 (a) is defined as

D(B1) = {} D(B2) = {B1} D(B3) = {}

and that θ = 0.5, observe that the behavior B2 is adopted by the agent ana inM′ since

ana holds the behavior B1 inM of Figure 3.3 (b), and the threshold for the adoption of

B2 has been reached by ana. But agents bia and don cannot adopt B2 despite the fact that

both agents satisfy the threshold criteria.
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Figure 3.3 – Evolution of modelM after one step in the diffusion of B2, considering θ = 0.5 and
model update of Def. 3.5.4.
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Source: the author.

Algorithm 7 provides an operational view of Definition 3.5.4. In line 3, besides

checking if the threshold has been reached, it also checks if agents hold all the behaviors

that behavior B depends on. Algorithm 6 performs this last checking.

Algorithm 6: TMDB - HoldReqsOf.
Input: agent a, dependency funtion D, behavior mapping β, behavior B
Output: a boolean value

1 foreach Bi ∈ D(B) do
2 if a ̸∈ β(Bi) then
3 return false /* if a does not hold a behavior that B depends on
4 end if
5 end foreach
6 return true

Algorithm 7: TMDB Update
Input:M=(A,N ,BID, β,D,θ) & B ∈ Dom(β)
Output:M′=(A,N ,BID, β′,D,θ)

1 newHolders← {}
2 foreach a ∈ A s.t. a /∈ β(B) do
3 if HoldsReqsOf(a,D, β,B) && influence(a,N,B) ≥ θ then
4 newHolders← newHolders ∪ {a}
5 end if
6 end foreach
7 β′ ← β
8 β′(B)← β′(B) ∪ newHolders
9 return (A,N ,BID, β′,D,θ)

The logic LDB[]

The syntax of the logic language LDB[] for dependent behaviors is the same as
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that of LIB[]. Its semantics is also analogous except that it is given with respect to the

definition 3.5.4.

Definition 3.5.5. The semantics ofLDB[], w.r.t. a TMDB modelM = (A, N,BID, β, C, θ)

is given by:

M |= Ba iff a ∈ B

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [B] φ iff M′ |= φ,whereM′ = TMDB(M, B) (Def. 3.5.4.)

The Network Axioms and the Inference Rules for LDB[] are the same as those of

LIB[], given in Definition 3.2.5. Below we give the reduction axioms:

Definition 3.5.6. The axiomatization of LDB[] is composed of the Network Axioms and

the Inference Rules of Definition 3.2.5 and of the following Reduction Axioms:

Reduction axioms

[B] ¬φ ↔ ¬ [B] φ Red.Ax.¬

[B] (φ ∧ ψ) ↔ [B] φ ∧ [B] ψ Red.Ax.∧

[B] Nab ↔ Nab Red.Ax.N

[B] B′
a ↔ B′

a B ̸= B’ Red.Ax.B1

[B] Ba ↔ Ba ∨ BDNa≥θ Red.Ax.B2

The reduction axiom Red.Ax.B2 above uses the notation BDNa≥θ which is an

abbreviation for the following formula:

BDNa≥θ ≡ (
∧

B′ ∈ D(B)

B′
a ) ∧ BNa≥θ

The formula between parenthesis expresses that agent a holds all behaviors that B de-

pends on.

3.6 Dependent Behaviors with Priority for Adoption

This section proposes a different treatment for dependent behaviors than that of

Section 3.5. Instead of preventing the adoption of a behavior B by an agent a that does
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not hold all behaviors B depends on, this section proposes a multi-adoption, by a in the

same diffusion step, of not only B but also of all behaviors that are requirements for B.

Model and Model Update

The model we consider here is exactly the same as that of Definition 3.5.3. In the

following, we use again the notation TB for the set of agents that satisfy the quantitative

criteria for the adoption of behavior B.

Definition 3.6.1. The Threshold Model Update of a TMDB modelM = (A, N,BID, β,D, θ),

with priority for the adoption of B, results inM′ = (A, N,BID, β′, D, θ) where the func-

tion β′ is defined as

β′(Bi) =


β(B) ∪ TB if Bi = B

β(Bi) ∪ {a ∈ TB : a ̸∈ β(Bi)} if Bi ∈ D(B)

β(Bi) otherwise

We write TMDBPA(M, B) for the model that results from the update of model

M by the diffusion of behavior B following the update operation defined above that

prioritizes adoption.

Example 3.6.1. Figure 3.4 illustrates the diffusion process considering dependent behav-

iors with priority for adoption. Assuming that the behavior dependency function of model

M of Figure 3.4 (a) is defined as

D(B1) = {} D(B2) = {B1} D(B3) = {B4}

and that θ = 0.5, observe that the behavior B2 is adopted by the agent ana inM′ since

ana holds the behavior B1 inM of Figure 3.3 (b), and the threshold for the adoption of

B2 has been reached by ana. But agents bia and don cannot adopt B2 despite the fact that

both agents satisfy the threshold criteria.

The operational aspect of Definition 3.6.1 is expressed in Algorithm 8. From lines

1-8 the algorithm is the same as the one for independent behaviors. The difference is in

lines 9-13 which perfom the adoption, by each new holder of behavior B, of behaviors

Bi that B depends on.
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Figure 3.4 – Evolution of modelM after one step in the diffusion of B2, considering θ = 0.5 and
model update of Definition 3.6.1.
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Source: the author.

Algorithm 8: TMDB Update with Multiple Adoption.
Input:M=(A, N , BID, β, C, θ) & B ∈ Dom(β)
Output:M′=(A, N , BID, β′, C, θ)

1 newHolders← {}
2 foreach a ∈ A s.t. a /∈ β(Bi) do
3 if influence(a,N,B) ≥ θ then
4 newHolders← newHolders ∪ {a}
5 end if
6 end foreach
7 β′ ← β
8 β′(B)← β(B) ∪ newHolders
9 foreach Bi ∈ D(B) do

10 foreach a ∈ newHolders, s.t. a ̸∈ β′(Bi) do
11 β′(Bi)← β′(Bi) ∪ {a}
12 end foreach
13 end foreach
14 return (A, N,BID, β′, C, θ)

The logic LDBPA[]

The syntax of LDBMA[] is the same as all the previous logics presented. The

semantics is given by:

Definition 3.6.2. The semantics ofLCDBPA[], w.r.t. a TMDB modelM = (A, N, β, C,D, θ)

is given by:

M |= Ba iff a ∈ B

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [B] φ iff M′ |= φ,whereM′ = TMDB_ma(M, B) (Def. 3.6.1)
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Definition 3.6.3. The axiomatization of LDBMA is composed of the Network Axioms

and the Inference Rules of Definition 3.2.5 and of the following Reduction Axioms:

Reduction axioms

[B] ¬φ ↔ ¬ [B] φ Red.Ax.¬

[B] (φ ∧ ψ) ↔ [B] φ ∧ [B] ψ Red.Ax.∧

[B] Nab ↔ Nab Red.Ax.N

[B] B′
a ↔ B′

a B ̸= B’ and B’ ̸∈ D(B) Red.Ax.B1a

[B] B′
a ↔ B′

a ∨ BNa≥θ B ̸= B’ and B’ ∈ D(B) Red.Ax.B1b

[B] Ba ↔ Ba ∨ BNa≥θ Red.Ax.B2

3.7 Conflicting and Dependent Behaviors

A set of behaviors can be composed of both conflicting and dependent behaviors.

This section deals with this case by combining the approaches of the last two sections.

Model and Model Update

For combining conflicting and dependent behaviors, the Behavior Conflict func-

tion of Definition 3.3.1 and the Behavior Dependency function of Definition 3.5.1 must

be consistent with each other in the following sense: if two behaviors, say Bi and Bj are

conflicting, then no dependency relation should exist between then:

Definition 3.7.1. Let C : BID → P(BID) and D : BID → P(BID) be, respectively,

a Behavior Conflict and a behavior Dependency function. We say that C and D are

conflict-dependency consistent with each other if

Bi ∈ C(Bj) implies Bi /∈ D(Bj) ∧Bj /∈ D(Bi)

Definition 3.7.2. A Threshold Model with Conflicting and Dependent Behaviors (TM-

CDB) is a tupleM = (A, N,BID, β, C,D, θ) where (A, N ) is a network, BID is a finite

set of behaviors, β : BID → P(A) maps behaviors to agents holding them, C : BID →

P(BID) and D : BID → P(BID) are, respectively a Behavior Conflict and a behavior

Dependency function, such that β is consistent with both C and D, and C and D are

conflict-dependency consistent, and θ ∈ [0, 1] is the threshold.
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Definition 3.7.3. The Threshold Model Update of a TMCDBM = (A, N,BID, β, C,D, θ)

by the diffusion of a behavior B ∈ Dom(β) results in M′ = (A, N,BID, β′, C,D, θ)

where β′ = β[B 7→ S] and S is a set of agents given by

S = β(B)∪{a ∈ A | a HoldsReqOf B ∧ ¬HasConflict(a,B) ∧ |N(a) ∩ β(B)|
|N(a)|

≥ θ}

Example 3.7.1. Assuming that the TMCDB of Figure 3.5 (a) has a threshold θ = 0.5 and

conflict and dependency functions C and D defined as

C(B1) = {B3, B4} C(B2) = {} C(B3) = {B1} C(B4) = {B1}

D(B1) = {} D(B2) = {B1} D(B3) = {} D(B4) = {B3}

Figure 3.5 (b) illustrates the model M′ that results from M by one step diffusion of

behavior B2. Observe that the behavior B2 is adopted by agents ana and eli, since they

already have behavior B1. Agents bia and don, however, cannot adopt B2 because they

do not hold B1, despite both being able to pass the requirements for threshold θ. In fact,

the agent don will never be able to adopt B2 because the adoption of B2 depends on B1

which conflicts with B3 held by don. In Section 3.8, we present another approach for

diffusion combining conflicting with dependent behaviors that gives priority for behavior

adoption. When that approach is applied to the model of this example, agents bia and don

will be able to adopt B2.

Figure 3.5 – Evolution of modelM after one step in the diffusion of B2, considering θ = 0.5 and
model update of Definition 3.7.3.
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Source: the author.

Algorithm 9 has an operational view of the update of TMCDB models. For an

agent a to be added to the set of new holders of behavior B (line 3), besides satisfying

the threshold criteria, it cannot hold any behavior that conflicts with B, and it should hold

all behaviors B depends on (line 2). The descriptions for subroutines hasConflict and

HoldsReqsOf are given in Algorithm 3 and Algorithm 6, respectively.
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Algorithm 9: TMCDB Update
Input:M = (A,N ,BID, β,C,D,θ) & B ∈ Dom(β)
Output:M′ = (A,N ,BID, β′,C,D,θ)

1 newHolders← {}
2 if ¬hasConflict(a, C, β, B) && HoldsReqsOf(a,D, β,B) &&

influence(a,N,B) ≥ θ then
3 newHolders← newHolders ∪ {a}
4 end if
5 β′ ← β
6 β′(B)← β′(B) ∪ newHolders
7 return (A,N ,BID, β′,C,D, θ)

The logic LCDB[]

The syntax of the logic language LCDB[] for conflicting and dependent behaviors

is the same as that of LIB[]. Its semantics is also analogous to that of LIB[] except that it

is given with respect to the definitions 3.7.2 and 3.7.3 above.

Definition 3.7.4. The semantics ofLCDB[], w.r.t. a TMCDB modelM = (A, N, β, C,D, θ)

is given by:

M |= Ba iff a ∈ B

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [B] φ iff M′ |= φ,whereM′ = TMCDB(M, B) (Def. 3.7.3)

The network axioms and the inference rules for LCDB[] are the same as before.

Definition 3.7.5. The axiomatization of LCDB[] is composed of the Network Axioms and

the Inference Rules of Definition 3.2.5 and of the following Reduction Axioms:

Reduction axioms

[B] ¬φ ↔ ¬ [B] φ Red.Ax.¬

[B] (φ ∧ ψ) ↔ [B] φ ∧ [B] ψ Red.Ax.∧

[B] Nab ↔ Nab Red.Ax.N

[B] B′
a ↔ B′

a B ̸= B’ Red.Ax.B1

[B] Ba ↔ Ba ∨ BCDNa≥θ Red.Ax.B2
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The reduction axiom Red.Ax.B2 uses the notation BCDNa≥θ which is an abbrevi-

ation for the following formula:

BCDNa≥θ ≡ (
∧

B′∈C(B)

¬B′
a ∧

∧
B′∈D(B)

B′
a ) ∧ BNa≥θ

The formula between parentheses expresses that agent a doe not hold any behavior

conflicting with B and holds all behaviors that B depends on.

3.8 Conflicting and Dependent Behaviors with Priority for Adoption

In Section 3.7, we defined an approach for model update that combines conflict-

ing and dependent behaviors and that follows the following principle: besides satisfying

the quantitative threshold, an agent a can only adopt a behavior B if it does not hold a

behavior that conflicts with B and if it holds all behaviors that B depends on.

In this section, we present a different version of this combination of conflicting

and dependent behaviors that prioritizes adoption of a behavior B by agent a even if that

leads a to drop behaviors conflicting with B and to adopt all behaviors that are required

for the adoption of B.

Model and model update

The model is defined exactly as in Definition 3.7.2 of Section 3.7. The difference

lies in the model update operation. As before, TB names the set of agents that satisfy the

quantitative criteria for adoption of a behavior:

Definition 3.8.1. The Threshold Model Update of a TMCDBM = (A, N,BID, β, C,D, θ)

by the diffusion of a behavior B ∈ Dom(β) and with priority for adoption results in a

modelM′ = (A, N,BID, β′, C,D, θ) where β′ is defined as

β′(Bi) =



β(B) ∪ T if Bi = B (1)

β(Bi) ∪ {a ∈ T : a ̸∈ β(Bi)} if Bi ∈ D(B) (2)

β(Bi)− T if Bi ∈ C(B) or Bi ∈ C(Bj), with Bj ∈ D(B) (3)

β(Bi) otherwise
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By clause (1) above, all agents that satisfy the quantitative criteria adopt the be-

havior B. By clause (2), these agents, new holders of B, also adopt all behaviors that B

depends on, and, by clause (3), they drop any behavior Bi that conflicts with B and also

drop any behavior Bi that conflicts with behaviors that B depends on.

Example 3.8.1. Assuming that the TMCDB of Figure 3.6 (a) has a threshold θ = 0.5,

and has conflict and dependency functions C and D defined as

C(B1) = {B3, B4} C(B2) = {} C(B3) = {B1} C(B4) = {B1}

D(B1) = {} D(B2) = {B1} D(B3) = {} D(B4) = {B3}

Figure 3.6 (b) illustrates the modelM′ that results fromM of Figure 3.6 (a) by

one step diffusion of behavior B2. Observe that the behavior B2 is adopted by agents ana

and eli, and they don’t have to adopt or drop any other behavior for that since they already

have the behavior B1 that B2 depends on.

The agent bia satisfies the quantitative criteria for adoption of B2, but bia needs to

adopt B1 too. Agent don also satisfies the quantitative criteria for adopting B2 and since

this adoption has priority for him, he must adoptB1. behaviorB1, however, conflicts with

B3 he holds, so don drops B3.

Figure 3.6 – Evolution of modelM after one step in the diffusion of B2, considering θ = 0.5 and
model update of Definition 3.8.1.
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Source: the author.

Algorithm 10 has an operational view of the update of TMCDB models with pri-

ority for adoption. From lines 2 to 7 the algorithm obtains the set thlds of agents whose

proportion of neighbors holding behavior B has reached the threshold. These agents

adopt the behavior B (lines 8-9). From line 11 to 15 these agents also adopt all behaviors

Bi that B depends on. Lines 17 to 20 collect the behaviors that have to be dropped: the

behaviors that conflict with B (line 17), and all the behaviors that conflict with behaviors
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Bj that B depends on (lines 18 to 20). From lines 22 to 24 the algorithm removes agents

thlds from the behaviors these agents must drop.

Algorithm 10: TMDB Update with Multiple Adoption.
Input:M=(A, N , BID, β, C, θ) & B ∈ Dom(β)
Output:M′=(A, N , BID, β′, C, θ)

1

2 thlds← {}
3 foreach a ∈ A s.t. a /∈ β(Bi) do
4 if influence(a,N,B) ≥ θ then
5 thlds← thlds ∪ {a}
6 end if
7 end foreach
8 β′ ← β
9 β′(B)← β′(B) ∪ thlds

10

11 foreach Bi ∈ D(B) do
12 foreach a ∈ thlds, s.t. a ̸∈ β′(Bi) do
13 β′(Bi)← β′(Bi) ∪ {a}
14 end foreach
15 end foreach
16

17 toDrop← C(B)
18 foreach Bj ∈ D(B) do
19 toDrop← toDrop ∪ C(Bj)
20 end foreach
21

22 foreach Bi ∈ toDrop do
23 β′(Bi)← β′(Bi)− thlds
24 end foreach
25 return (A, N,BID, β′, C, θ)

The logic LCDBPA[]

The syntax of the logic languageLCDBPA[] for conflicting and dependent behav-

iors with priority for adoption is the same as that of LIB[]. Its semantics is also analogous

to that of LIB[] except that it is given with respect to the definitions 3.7.2 and 3.8.1 above.

Definition 3.8.2. The semantics ofLCDBPA[], w.r.t. a TMCDB modelM = (A, N, β, C,D, θ)
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is given by:

M |= Ba iff a ∈ B

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [B] φ iff M′ |= φ,whereM′ = TMCDBPA(M, B) (Def. 3.8.1)
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4 DIFFUSION WITH SINGLE BEHAVIOR AND DIFFERENT NETWORKS

This chapter proposes another kind of variation to the basic behavior diffusion

model based on different notions of networks. Each notion leads to different ways to

check if a given threshold has been reached. In order to focus on the network aspects,

we assume models with a single behavior only. With a single behavior, the syntax of

the corresponding logic languages are slightly changed: they all have a single dynamic

modality [adopt] instead of one modality [B] for each behavior B.

We present two approaches. In Section 4.1, we keep the undirected (symmet-

ric) neighborhood relation between agents but add weights to each connection between

agents. In Section 4.2, we present the only approach in this work that considers directed

connections between agents.

4.1 Weighted and undirected connections between agents

In more complex multiagent systems, the influence received by different sources

is far from equal. Different neighbors may cause a different level of social influence in

one agent. This level of influence, when it is reciprocal, is modeled in the network as

an undirected weighted edge connecting two agents. We observe that all the approaches

presented in the previous chapter assumed undirected edges connecting agents. In this

section, we keep undirectdness, but we add weights to each edge.

Models and model uddate

We start by defining weighted undirected networks, where the weight refers to the

reciprocal influence between the pair of agents connected by that edge.

Definition 4.1.1. A Weighted Undirected Network is a tuple (A, N,W ), where A and

N form a network and W : A × A → N is a function that assigns a weight to each edge

connecting a pair of agents in the network.

Observe that the neighborhood relation between agents keeps the same properties

defined in the previous chapter, i.e., it is irreflexive, symmetric, and serial.

Definition 4.1.2. A Threshold Model with Weighted Undirected Network (TMWUN)

is a tupleM = (A, N,W,B, θ) whereA,N , andW form a weighted undirected network,
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B ⊆ A is a behavior, and θ ∈ [0..1] is a uniform adoption threshold.

The model update is not anymore based on the proportion of neighbors of an agent

that hold a behavior, but instead, it takes into account the weight of the social influence of

each neighbor:

Definition 4.1.3. The Threshold Model Update of a TMWUNM = (A, N,W,B, θ)

results inM′ = (A, N,W,B′, θ) where

B′ = B ∪
{
a ∈ A :

∑
b∈N(a)∩BW (a, b)∑
b∈N(a)W (a, b)

≥ θ
}

We write TMWUN(M) for the model that results from one step update of M

following the update operation defined above.

Example 4.1.1. An illustration of the diffusion process considering the update of Defi-

nition 4.1.3 can be seen in Figure 4.1. Considering, for instance, a threshold θ = 0.5,

observe that after the update ofM only agent bia adopts behavior B (Fig. 4.1 (b)) since

the sum of weights of bia’s connections with her neighbors holding B divided by the to-

tal weight of all connections with her neighbors is equal to the threshold. Figure 4.1 (c)

shows modelM′′ which results from modelM′ after one step diffusion of B. We can see

that agent cat can only adopt B after the adoption by bia.

Figure 4.1 – Evolution of modelM after one step in the diffusion, considering θ = 0.5 and
model update of Def. 4.1.3
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Source: the author.

The Algorithm 11 is straightforward: it goes through the network, adding the

weights of all neighbors of each agent (line 3) and adding the weight of all neighbors that

hold the behavior (line 4). The agent is added to the set of new holders (line 6) if the

fraction of these two values is greater than or equal to the threshold (line 5).
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Algorithm 11: TMWUN update
Input:M=(A,N , W ,B,θ)
Output:M′=(A,N , W , B′,θ)

1 newHolders← { }
2 foreach a ∈ A s.t. a ̸∈ B do
3 totalNWeight← addNeighborsWeight(a,N,W )
4 holdersWeight← addNeighborsHoldersWeight(a,N,B)
5 if holdersWeight / totalNWeight ≥ θ then
6 newHolders← newHolders ∪ {a}
7 end if
8 end foreach
9 B′ ← B ∪ newHolders

10 return (A,N , W , B′,θ)

The logic LWUN []

The logic language LWUN[] for threshold models with a weighted undirected

network is syntactically the same as the previous languages, except that, as we now have

a single behaviour, we have a single modality [adopt]. The semantics of the language is

also similar, except that it is given w.r.t. definitions 4.1.2 and 4.1.3.

Definition 4.1.4. The semantics of LWUN[], w.r.t. a TMWUNM = (A, N,W,B, θ) is

given by:

M |= Ba iff a ∈ B

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [adopt] φ iff M′ |= φ,whereM′ = TMWUN(M) (Def. 4.1.3)

Definition 4.1.5. The axiomatization of LWUN [] is composed of the Network Axioms

and the Inference Rules of Definition 3.2.5 and of the following Reduction Axioms:

Reduction axioms

[adopt] ¬φ ↔ ¬ [adopt] φ Red.Ax.¬

[adopt] (φ ∧ ψ) ↔ [adopt] φ ∧ [adopt] ψ Red.Ax.∧

[adopt] Nab ↔ Nab Red.Ax.N

[adopt] Ba ↔ Ba ∨ BWUNNa≥θ Red.Ax.B

The interesting axiom is Red.Ax.B which uses the notation BWNNa≥θ as an ab-
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breviation for the following formula:

BWNNa≥θ ≡
∨

G ⊆ N ⊆ A: W≥θ

(
∧
b∈N

Nab ∧
∧
b ̸∈N

¬Nab ∧
∧
b∈G

Bb)

where

W ≡
∑

b∈G W(a, b)∑
b∈N W(a, b)

The formula BWNNa≥θ is true if there are sets of agentsN ⊆ A and G ⊆ N withW ≥ θ

for which the following holds: all elements of N are neighbors of agent a, agents not in

N are not neighbors of agent a and all agents in G hold the behaviour B.

4.2 Directed (and unweighted) connections between agents

We now consider networks where agents are connected with directed edges. Hence,

the neighborhood relation is non-symmetric. The word neighborhood, however, suggests

a symmetric relation (a is neighbor of b iff b is neighbor of a, or, as formalized in the

previous chapter, Nab iff Nba). Because of non-symmetry, we now might have that Nab,

but not necessarily Nba. We will keep the letter N for this relationship but we will call it

influence relation. If Nab we say that agent a is influenced by agent b and, graphically,

that will be represented as a directed arrow pointing to a and departing from b1

Differently from the other sections of this dissertation, we start with an example

of behaviour diffusion of a model with directed edges.

Example 4.2.1. The Figure 4.2 shows an illustration of the following model M with a

non-symmetrical relation N :

M =



A = {ana, bia, cid, don},

B = {cid},

N = {(bia, ana), (bia, cid), (don, cid), (cid, ana), (ana, bia))},

θ = 0.5

We can readN above as: bia is influenced by ana and cid, don is influenced by cid,

1Usually in a directed graph the direction of the arrow departs from a, the first component in the pair,
and has b, the second component of the pair, as its destination. We opted for doing the other way around for
reusing, in this section, the notation N(a) in the update operation with a different interpretation.
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Figure 4.2 – Evolution of modelM in two steps of diffusion of behaviour B.
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cid is influenced by ana, and ana is influenced by bia. Although half of ana’s connections

hold the behaviour B (the threshold is 0.5) inM, none of the connections that influence

her hold B, so ana does not adopt B inM’. The fraction of agents that influence bia and

don and that hold B inM has reached the threshold, so these two agents adopt B inM’.

After bia’s adoption of B, ana will finally be influenced by her and also adopt B inM”.

Model and model update

The influence relationship is irreflexive since an agent cannot be influenced by it-

self. Moreover, it is serial, meaning that any agent influences other agents or is influenced

by other agents.

Definition 4.2.1. A Network of Influence is a pair (A,N ), whereA is a non-empty finite

set of agents, and N : A → P(A) is a function that assigns, to each a ∈ A, a set N(a) of

agents that influence a such that:

• a /∈ N(a) - irreflexivity

• for all a, there is b, s.t. b ∈ N(a) or a ∈ N(b)

Definition 4.2.2. A Threshold Model with Directed Network (TMDN) is a tupleM =

(A, N,B, θ) where A and N form a network of influence, B ⊆ A is a behavior, and

θ ∈ [0..1] is a uniform adoption threshold.

Definition 4.2.3. The Threshold Model Update of a TMDNM = (A, N,B, θ) results

inM′ = (A, N,B′, θ) where

B′ = B ∪
{
a ∈ A :

|N(a) ∩B|
|N(a)|

≥ θ
}
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The algorithm for this update operation is essentially the same as that of Section

3.2 for independent behaviours

Algorithm 12: TMDN - fracOfInfluencersHolders
Input: agent a, N , behaviour B
Output: a number in [0..1]

1 influencers← getInfluencersOf(a,N)
2 influencersHolders← influencers ∩B
3 return |influenceHolders|/|influencers|

Algorithm 13: TMDN Update.
Input:M=(A,N ,B,θ)
Output:M′=(A,N ,B′,θ)

1 newHolders← {}
2 foreach a ∈ A s.t. a /∈ β(Bi) do
3 if fracOfInfluencersHolders(a,N,B) ≥ θ then
4 newHolders← newHolders ∪ {a}
5 end if
6 end foreach
7 B′ ← B ∪ newHolders
8 return (A, N,B′, θ)

Logic LDN []

The syntax of LDN [] is the same as the previous section The semantics is given

w.r.t definitions 4.2.2 and 4.2.3.

Definition 4.2.4. The semantics of LDN[], w.r.t. a TMDN modelM = (A, N,B, θ) is

given by:

M |= Ba iff a ∈ β(B)

M |= Nab iff b ∈ N(a)

M |= ¬φ iff M ̸|= φ

M |= φ ∧ ψ iff M |= φ andM |= ψ

M |= [adopt] φ iff M′ |= φ,whereM′ = TMDN(M) (Def. 4.2.3).

As for the axiomatization: the inference rules remain the same, symmetry is re-

moved from the network axioms, and seriality is reformulated.
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Definition 4.2.5. The following are the axioms and the rules of inference for LDN[]:

Network axioms

¬Naa Irreflexivity∨
b∈A(Nab ∨ Nba) Seriality

Reduction axioms

[adopt] ¬φ ↔ ¬[adopt] φ Red.Ax.¬

[adopt] (φ ∧ ψ) ↔ [adopt] φ ∧ [adopt] ψ Red.Ax.∧

[adopt] Nab ↔ Nab Red.Ax.N

[adopt] Ba ↔ Ba ∨ BNa≥θ Red.Ax.B

The formula that captures the conditions for the adoption by agent a of behaviour

B in axiom Red.Ax.B is exactly the same as that used in the axiomatizations of LIB[] in

Definition 3.2.5. The semantics of Nab in the formula BNa≥θ, however, is different.
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5 CONCLUSION

In this dissertation, we developed behavior diffusion models and policies. We

define a model update operation for each model, a logic with its semantics, and axiomati-

zation.

We separate the different model policies into two chapters: Chapter 3 deals with

seven different model policies with multiple behaviors that can be independent, conflict-

ing, or dependent on other behaviors. Chapter 4 deals with model policies with only one

behavior and two versions for the network of agents: weighted undirected and directed

edges. We believe that these different policies make it possible to experiment with models

closer to the real world than those previously proposed by other works.

We aimed to work with models, one at a time, to facilitate understanding of their

main features. However, combining more than one model in a single model is possible.

Experiments of this were illustrated with the Multiple Conflicting Dependent Behaviors

and Multiple Conflicting Dependent Behaviors with Priority for Adoption given in Chap-

ter 3. In what follows, we mention future work we believe is worth pursuing:

Proofs of Soundness and Completeness and Reduction Axioms forLCDBPA[]. Sound-

ness and Completeness proofs are important for establishing a proper relationship be-

tween the syntactic and semantic aspects of a logical system. Together they imply that all

and only validities (truths) are provable. As we mentioned at the beginning of Chapter

3, the reduction axioms for LCDBPA[] were not defined. These two tasks have a higher

priority on our list of future work.

Epistemic Operators. Epistemic logic uses the notion of possible worlds, made well-

known by Saul Kripke, where possible worlds are interpreted as epistemic alternatives.

In this approach, each possible world represents a complete description of a given reality,

and the set of all possible worlds represents all the ways the world could be. Agents

have knowledge or beliefs about the world. Epistemic models also have accessibility

relationships between the worlds for each agent (DITMARSCH; HOEK; KOOI, 2007;

RENDSVIG; SYMONS, 2021; HINTIKKA, 1962). In all the approaches proposed in

this dissertation, behavior diffusion occurs in a way that the environment imposes on the

agents the adoption of a behavior.

With epistemic threshold models for behavior diffusion, agents adopt a behavior
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based on what they know about the environment. More specifically, the adoption only

happens when it is true, in all possible worlds accessible to the agent, that a given thresh-

old has been reached.

We believe that the combination of the extensions we defined in this dissertation

and epistemic models is worth pursuing to obtain a better understanding of realistic sce-

narios. The work of Christoff (2016), Baltag et al. (2018) presents a basic model with

epistemic operators for diffusion and can be used as the basis of new expansions.

Logical framework. The works of EIJCK (2008), Gattinger (2018b), Gattinger (2018a),

Hansen (2011), Said (2010), Schwarzentruber (2019) are examples of logical frameworks

for different logics, including modal logic, dynamic epistemic logic, hybrid logic, and

others. Logical frameworks are a powerful tool for learning, illustrating model and world

changes, and allowing experimentation with different concrete models. Our first intention

for this dissertation was the implementation of a logical framework, but due to technical

difficulties, the focus of the work changed. We do have a preliminary implementation for

the basic model with multiple agents and we plan to resume activities with that project.

More information about the project and for access to the source code of the preliminary

version of the tool can be found at gsamorim.github.io/SocialDiffusionProj/

Topology analysis and network modification. The book of Watts (2004) classifies net-

work topology into three different types: Regular, Small-World, and Random Networks.

Analyzing the effect of different operators applied to each type of topology, given by

Watts (2004) and others, would allow a better understanding of network dynamics that

could be used to understand better and prevent the spread of diseases, fake news, and hate

speech. The work of Newman, Barabasi and Watts (2006) recognizes that networks evolve

as the product of dynamical processes that add or remove vertices or edges. For example,

a social network of friendships changes as individuals make and break ties with others.

Behavior diffusion considering network modifications also deserves further investigation

in conjunction with the different diffusion models we presented.
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APPENDIX A — RESUMO EXPANDIDO

Este trabalho é sobre agentes e sua adoção de comportamentos em uma rede. O

trabalho tem como foco a definição de modelos e políticas relacionadas à "difusão de in-

formações" não por meio do raciocínio do agente, mas por meio de uma força exercida

pela rede. O processo de difusão verifica, para cada agente, se ele recebeu influência

suficiente para ultrapassar um limiar, relacionado a um determinado assunto ou compor-

tamento, decidindo então, se o agente entra ou não em conformidade social com sua rede

de conexões.

Consideramos modelos com múltiplos comportamentos e diferentes critérios de

adoção de comportamento, onde os agentes vizinhos se situam com o mesmo nível de in-

fluência social. Também são apresentados modelos onde a influência pode ser direcionada

entre agentes dadas suas conexões, também definimos modelos onde há definição de peso

para cada influência no processo de adoção de comportamentos. Para todas essas vari-

ações propomos uma lógica dinâmica proposicional mínima e, para cada lógica, fornece-

mos axiomas de redução. Também apresentamos algoritmos naïve para cada operação de

atualização d modelos.

O estudo de influência social teve sua origem na área hoje chamada de Informa-

tion Propagation and Epidemics (propagação de informação e epidemias), e que trata de

diversos tipos de propagações dada uma rede, dentre os quais podemos citar: casos de re-

des de distribuição de energia e apagões, casos de epidemias bacterianas e virais, casos de

propagação de comportamento de consumidores em economia, entre outros. Nesta área,

onde muitas vezes questões biológicas se misturam com questões sociais (CHRISTAKIS;

FOWLER, 2009; EASLEY; KLEINBERG, 2010), o conceito de grafos é essencial. O

primeiro uso de grafos, chamados então de sociograms (sociogramas), servia representar

escolhas de preferências dado um grupo de agentes..

Conforme sugerido por Liben-Nowell (2005), a área pode ser subdividida em tres

vertentes : Information Propagation and Epidemics (propagação de informação e epi-

demias), Game-Theoretic Approaches (abordagem da teoria dos jogos), e Diffusion of

Innovation (difusão de inovações). Dada esta divisão, denotamos que nosso trabalho se

situa na sub-área de Diffusion of Innovation, que teve origem no estudo de adoção de

comportamento de novas tecnologias dada uma rede de influência. Está sub-área faz uso

de dois conceitos essenciais, o threshold (melhor traduzido em limiar) que precisa ser

alcançado, dado o cálculo de influência, para que o agente possa então adotar o compor-
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tamento. E o conceito de Cascade Models (modelos de efeito em cascata), que diz que

cada vez que um contato social v na vizinhança de u adota uma inovação, então u a adota

também considerando uma probabilidade pv,u. Ou seja, cada vez que alguém adota, existe

a chance de alguém relacionado a está pessoa também adotar. (LIBEN-NOWELL, 2005;

GOLDENBERG; LIBAI; MULLER, 2001; GRANOVETTER, 1973; ROGERS, 1983).

Ademais, chamamos de behavior (comportamento) o elemento a ser propagado na

rede e de holders (adotantes) os agentes que são adotantes do comportamento trabalhado.

Nosso trabalho prático segue as linhas de Christoff (2016), Seligman, Liu and

Girard (2011), e mais especificamente de Baltag et al. (2018), mas ao invés de avançar-

mos em questões epistêmicas do trabalho deles, resolvemos nos concentrar em incorporar

novos modelos lógicos de raciocínio não-epistêmicos para difusão de comportamento.

Com os modelos propostos e possível representar situações envolvendo mais riqueza de

detalhes, que não eram consideradas no modelo original de Baltag et al. (2018).

Fizemos uma divisão de capítulos onde o 3 e o 4 apresentam os modelos propos-

tos. O capítulo 3 apresenta sete modelos considerando uma rede de agentes respeitando

irreflexibilidade (a /∈ N(a)), simetria (b ∈ N(a) iff a ∈ N(b)) e também serialidade

N(a) ̸= ∅, uma vez que agentes isolados na rede não nos interessam. E o capítulo 4

volta a considerar somente um comportamento e apresenta dois modelos com variações

na estrutura da rede.

No capítulo 3 desenvolvemos modelos que permitem simular múltiplos compor-

tamentos sendo espalhados em diferentes etapas da simulação; a possibilidade de mode-

lar comportamentos conflitantes, como por exemplo, determinado agente a ser vegano e

comer carne; a possibilidade de que um agente deixe de ser vegano e passar a comer carne,

e a possibilidade de dependência entre comportamentos, por exemplo, para o agente ser

portador de uma carta de motorista precisa antes saber dirigir.

Nosso primeiro modelo propõe uma extensão do modelo básico de (BALTAG et

al., 2018) mas considerando múltiplos comportamentos independentes, ou seja um agente

pode adotar um comportamento independentemente de outros comportamentos que ele

tenha ou não adotado.

A Figura A.1 ilustra um modelo M contendo quatro diferentes agentes (ana,

bia, cid, don) representados por nodos nos grafos, três comportamentos independentes

B1, B2, B3 e um limiar θ = 0.5. Após uma etapa da difusão do comportamentoB1 tem-se

o modelo resultante M′. O agente cid adotou B1 em M′ por sofrer influência de dois

terços de seus vizinhos, o que é superior ao limiar de 0, 5.
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Figure A.1 – Evolução do modeloM depois de uma etapa da difusão do comportamento B1,
considerando θ = 0.5 e o modelo de update dado por 3.2.2.
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Fonte: O autor.

Nosso segundo modelo proposto contempla a possibilidade de comportamentos

conflitantes. Nste caso, a adoção de um novo comportamento Bi por um agente é im-

pedida caso esse agente já seja adotante de um comportamento Bj conflitante com Bi,

mesmo que o limiar de influência ja tenha sido atingido.

O terceiro modelo proposto chamado contempla comportamentos conflitantes com

prioridade para adoção. Esse modelo também considera a possibilidade de comportamen-

tos conflitantes entre si, mas caso haja conflito, o agente influenciado a adotar, que ap-

resente um comportamento Bj conflitante com um novo comportamento Bi deve fazer a

"desadoção" de Bj e assumir Bi.

O quarto modelo considera a possibilidade de haver uma reloação de dependência

entre comportamentos. Dessa forma, um agente é impedido de adotar um comportamento

Bj caso ele não possua comportamentos dos quais o comportamento Bj dependa. O

quinto modelo é semelhante ao anterior, mas, caso um agente a não possua o comporta-

mento Bi do qual Bj é dependente, então, em caso de difusão de Bj , o agente a adotaria

tanto Bj quanto Bi no mesmo turno.

O sexto e o sétimo modelo proposto apresentam combinações de modelos anteri-

ores. O sexto é uma combinação dos modelos conflitantes e dependentes , e o sétimos dos

modelos conflitantes e dependentes, ambos com prioridade para adoção.

No capítulo 4, o primeiro modelo proposto adiciona peso às influências exercidas

pela vizinhança, e mantém a simetria de influências entre agentes. O segundo modela

influência direcionada entre agentes, ou seja, a remoção da simetria na relaçao de vizin-

hança. Se determinado comportamento sendo espalhado for relacionado a área de saúde

por exemplo, é natural que um agente especialista naquela área exerça mais influência

sobre outros agentes do que um agente leigo no assunto. Outro aspecto que pode ser

modelado é o que se observa em redes sociais, como Instragram por exemplo: um agente
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pode seguir e ser influencidado por um agente famoso e não ser seguido por esse agente

influcencer.

Ao final da dissertação, mencionamos possíveis trabalhos futuros relacionados,

dentre os quais destacamos os seguintes: (i) a adição da noção de operadores epistêmicos;

(ii) estudos sobre a influência da topologia de rede com a utilização dos operadores pro-

postos, afim de para avaliar impactos dos diferentes tipos de redes sobre as influências es-

palhadas; e (iii) dar continuidade a implementação de um framework lógico para realizar

simulações com os modelos propostos (fonte e executável disponíveis respectivamente em

github.com/gsamorim/SocialDiffusionProj e gsamorim.github.io/SocialDiffusionProj/).
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