
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

LEONARDO REINEHR GOBATTO

Improving Content-Aware Video Streaming
in Congested Networks with In-Network

Computing

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. José Rodrigo Furlanetto
Azambuja
Coadvisor: Prof. Dr. Weverton Luis da Costa
Cordeiro

Porto Alegre
April 2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Ensino (Graduação e Pós Graduação) : Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escola de Engenharia: Profa. Carla Schwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Cláudio Machado Diniz
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegretti Borges

“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON

ACKNOWLEDGEMENTS

I would like to thank my advisor José Azambuja and my co-advisor Weverton

Cordeiro, who helped me with this and every other project. The meetings and conversa-

tions were essential to the project’s success and to my personal career decisions.

I am grateful to all of those with whom I have had the pleasure to work during this

and other related projects. Especially my friends Pablo Rodrigues, who introduced me to

this research group, and Mateus Saquetti, who I have had the opportunity to work closely

with these last years.

I would like to thank my parents Janete and Milton, and my sisters Luana and

Michele, who have always supported and helped me. Thank you to several other relatives

and friends that showed their support and whom I was also able to learn from.

Júlia, my partner through all these years, who always provides valuable feedback

in all of my works, thank you for all the love and support. I love you!

ABSTRACT

Network congestion and packet loss pose an ever-increasing challenge to video streaming.

Despite the research efforts toward making video encoding schemes resilient to lossy

network conditions, forwarding devices have not considered monitoring packet content to

prioritize packets and minimize the impact of packet loss on video transmission. In this

work, we advocate in favor of in-network computing employing a packet drop algorithm

and an in-network hardware module to devise a solution for improving content-aware

video streaming in congested network. The results indicate a substantial decrease in frame

loss (up to 7%), with minimal impact on resource utilization and performance costs.

Keywords: In-network Computing. networking. Video Streaming.

Melhorando a transmissão de vídeo em redes congestionadas utilizando

In-Network Computing

RESUMO

O congestionamento da rede e a perda de pacotes representam um desafio cada vez maior

para o streaming de vídeo. Apesar dos esforços de pesquisa para tornar os esquemas de

codificação de vídeo resilientes a condições de rede com perdas, os dispositivos de enca-

minhamento não consideraram o monitoramento do conteúdo do pacote para priorizá-los

e minimizar o impacto da perda de pacotes na transmissão de vídeo. Neste trabalho, de-

fendemos a computação em rede empregando um algoritmo de descarte de pacotes e um

módulo de hardware em rede para desenvolver uma solução para melhorar o streaming de

vídeo com reconhecimento de conteúdo em uma rede congestionada. Os resultados obti-

dos indicam uma redução substancial na perda de quadros (até 7%), com mínimo impacto

na utilização de recursos e performance.

Palavras-chave: In-network computing. Redes de Computadores. Transmissão de Ví-

deo.

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application Specific Integrated Circuit

AVC Advanced Video Coding

CLB Configurable Logic Blocks

CTC Common Test Conditions

DSL Domain Specific Languages

DSP Digital Signal Processing

ECN Explicit Congestion Notification

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HEVC High-Efficiency Video Coding

HM HEVC Test Model

IDR Instantaneous Decoding Refresh

IRAP Intra Random Access Point

LAN Local Area Network

MPEG ISO/IEC Motion Picture Experts Group

NAL Network Abstraction Layer

PDP Programmable Data Plane

PSNR Peak Signal-to-Noise Ratio

P4 Programming Protocol-Independent Packet Processors

QP Quantization Parameter

SDN Software-Defined Networking

VoD Video on Demand

VCEG Video Coding Experts Group

WAN Wide Area Network

LIST OF FIGURES

Figure 2.1 NAL Header...16
Figure 2.2 A overview of the SDN architecture..18
Figure 2.3 Basic internal organization of FPGAs. ..21
Figure 2.4 P4VBox Design ...23

Figure 4.1 In-network Hardware Module Diagram ..32
Figure 4.2 Simulator modules ...34

Figure 5.1 IRAP packet loss..37
Figure 5.2 IRAP packet loss grouped by resolution ...38
Figure 5.3 IRAP packet loss grouped by QP...39
Figure 5.4 IRAP packet loss..40
Figure 5.5 Frame loss Comparison with Random approach...40

LIST OF TABLES

Table 2.1 NAL unit types ..17

Table 4.1 In-network hardware occupation...33

Table 5.1 Average of packets used by one IRAP frame..41

CONTENTS

1 INTRODUCTION...11
2 BACKGROUND..14
2.1 Video Transmission...14
2.2 Video Quality...14
2.3 Video Compression/Encoding..15
2.3.1 H.265/HEVC standard ...16
2.4 Software Defined Networks..17
2.5 Domain Specific Languages ...18
2.5.1 Programming Protocol-Independent Packet Processors ..19
2.6 Field-Programmable Gate Arrays...20
2.7 P4vBox ...22
3 RELATED WORK ...24
3.1 Video...24
3.2 Network Hardware and Accelerators ...26
3.3 In-network Computing...28
4 PROPOSED IN-NETWORK COMPUTING ARCHITECTURE.........................29
4.1 Proposed Packet Drop Algorithm..29
4.2 Proposed In-Network Hardware Module ...31
4.3 Simulator ...33
5 EVALUATION...36
6 CONCLUSIONS ...42
7 FUTURE WORK..43
REFERENCES...44

11

1 INTRODUCTION

Video streaming has been the main driving force of Internet traffic growth in the

past few years, having accounted for over 60% of the global traffic in 2019 (Sandvine

Inc., 2019) and almost 50% of mobile traffic in 2021 (Sandvine Inc., 2021). Many re-

ports also predict that streaming will jump to 80% of global traffic share in the coming

years (Sandvine Inc., 2019). This trend is explained by three main factors: (i) the higher

number of connected multimedia devices, estimated to be more than three times the global

population by 2023 (Cisco Inc., 2021); (ii) the increased use of high and ultra-high resolu-

tion videos, with more pixels than other standard video resolutions, resulting in increased

Internet traffic, e.g., 66% of connected flat-panel TVs will support 4K (3840× 2160 pix-

els) by 2023 (Cisco Inc., 2021); and (iii) the popularization of video streaming due to

video-on-demand (VoD) services.

The growing demand for video streaming will pose ever-increasing stress on the

global networking infrastructure, a situation only worsened with the coronavirus pan-

demic (KANG; ALBA; SATARIANO, 2020). It means that to keep up with users’ ex-

pectations for high-quality streaming, networking researchers and practitioners will need

to upgrade the networking infrastructure (e.g., with faster links) and devise solutions to

optimize its usage (encoding schemes, delivery strategies, etc.). In this work, we focus on

delivering strategies to optimize video streaming network usage.

One such strategy is processing video streaming packets as they transit the net-

work (TONI; CHEUNG; FROSSARD, 2016; BAGCHI et al., 2019), by taking into ac-

count current network conditions (e.g., the proportion of users from a given network re-

gion interested in the streaming, available network bandwidth, etc.), thus complementing

the decades-old rate-limiting video transmission strategy based on the end-user software

feedback (COWAN et al., 1995). Nonetheless, network congestion and packet losses re-

main a significant challenge, and encoding schemes resilient to losses become paramount.

In this context, the bitstream in recent video coding standards such as H.264/AVC

(Advanced Video Coding) (ITU-T; ISO/IEC, 2003) and H.265/HEVC (High-Efficiency

Video Coding) (ITU-T; ISO/IEC, 2013) is partitioned into Network Abstraction Layer

(NAL) units to facilitate video transmission over lossy packet-based networks (SJOBERG

et al., 2012). Unlike previous standards, H.264/AVC and H.265/HEVC are robust to

packet losses since video can be decoded even when some packets are lost. In HEVC this

is done with the division of coded video data and metadata into NAL units of different

12

types, Intra Random Access Point (IRAP) and non-IRAP picture NAL units. The former

contains video data encoded with intra prediction and is self-contained since it does not

need other NAL units to be reconstructed. IRAP NAL units are particularly important in

the decoding process, as they are used as a reference to reconstruct non-IRAP pictures

that employ inter prediction through motion compensation.

Due to the error propagation in frame encoding, packet losses influence video

quality more aggressively when IRAP NAL units are lost in error-prone packet-based

networks. To the best of our knowledge, no solution has explored the idea of preemp-

tively discarding non-IRAP packets under network congestion. One option to address the

network congestion issue is to devise an in-network mechanism capable of monitoring

the video stream and selectively discarding packets that pose less impact on the video

quality. Recent advances in network programmability and computer architectures have

allowed designers to move the computation inside the network, where it is closest to the

data (CORDEIRO; MARQUES; GASPARY, 2017; SAPIO et al., 2017). Even though we

cannot stop packet loss, we can analyze packets going through the network and prioritize

data, such as IRAP over non-IRAP NAL units.

As a first step, we propose an in-network computing approach for selective video

streaming packet discarding under network congestion. In our proposal, we monitor video

streaming based on video coding standards such as H.264/AVC and H.265/HEVC and

selectively discard non-IRAP picture NAL unit packets in a content-aware network flow.

To this end, we rely on a hardware architecture that extends traditional packet-forwarding

devices (e.g., switches) employing network programmability to analyze network flows,

detect congestion, and preemptively discard non-IRAP NAL units. First, we evaluated

the algorithm based on the percentage of IRAP packets it preserved at the end of a period

of network congestion, which showed great results.

In the sequence, aiming to get closer to an analysis of how much packet loss would

impact the end-user experience, we chose to analyze the relationship between packet loss

and its consequent loss of video frames. Analyzing the relationship between the loss

of IRAP packets and the consequent loss of frames, it can be seen that they are closely

related, and the percentage of loss of frames is always slightly higher than the percentage

of loss of packets in the same condition. One of the reasons why these two metrics are

related is that when losing some IRAP packets, the IRAP frame and some subsequent

frames that would be generated from it are lost.

As a future work, we intend to analyze our algorithm and hardware module in

13

terms of video quality based on Peak Signal-to-Noise Ratio (PSNR) metrics. With this

approach, it is expected to better measure the relationship between IRAP packet losses

and frame losses, previously verified, and the resulting video quality. In addition, work-

ing with more realistic network congestion simulations should bring our results closer to

what the streaming end user perceives in terms of quality. Based on these metrics, adjust-

ments to the originally proposed algorithm may be necessary, in addition to determining

maximum acceptable limits for IRAP packet losses.

In the following chapters, a review will be made of the theoretical foundations that

support this research (Chapter 2), the existing research related to Video Transmission and

In-network Computing (Chapter 3), our proposed architecture (Chapter 4), the evaluation

of this architecture (Chapter 5), our conclusions (Chapter 6) and future work (Chapter 7).

14

2 BACKGROUND

This chapter discusses the fundamental topics that underlie this work, including

video streaming, video quality analysis, video compression, software-defined networks,

domain-specific languages, and FPGA.

2.1 Video Transmission

Video is transmitted over the Internet in compressed form, often using interna-

tional standard codecs developed by ISO/IEC Motion Picture Experts Group (MPEG)

and ITU-T Video Coding Experts Group (VCEG). These standards define the decoding

process and the syntax of the compressed video (bitstream). Real-time video transmis-

sion over the Internet in the presence of packet losses is not a new problem, and many

techniques were proposed to make it more resilient to errors (WANG et al., 2000).

An important development in this subject was introduced in H.264/AVC stan-

dard (ITU-T; ISO/IEC, 2003). This standard was developed considering video trans-

mission through packet-switching networks. The bitstream in H.264/AVC is partitioned

into NAL units, separating video data and metadata and exposing some information to the

transport layer. This is done through the NAL unit header, which includes a NAL unit

type field to identify sequence and picture parameter sets (metadata information about

video sequences and pictures), IDR pictures (Instantaneous Decoding Refresh - used for

random access in the bitstream), non-IDR pictures, and so on. The H.265/HEVC stan-

dard (ITU-T; ISO/IEC, 2013) inherits this concept while defining the more general IRAP

pictures/NAL (SJOBERG et al., 2012).

2.2 Video Quality

As video transmission becomes more present in users’ lives and its consumption

also occurs on high-resolution TV screens, user expectations for quality keep increasing.

It was found that the percentage of time spent in buffering has the largest impact on the

user’s engagement across all types of video content, even more than the resolution/quality

reduction (DOBRIAN et al., 2011). Understanding this impact is becoming more relevant

every year so new technical alternatives are sought to avoid buffering time while main-

15

taining a sufficient quality of video displayed to the users.

Other studies explored the correlation between packet loss in a video streaming

and resulting video quality (CHEN et al., 2011). It was concluded that the higher the

packet loss rate, the worse the image quality, due to the possibility of losing more in-

formation. The reason for the proportional relevance between the packet loss rate and

the size of the affected image area is that the decoding error caused by the packet loss

would accumulate and influence other parts of the image. It has also been found that the

compromised video quality is directly related to the frame type of the lost data. In the

loss of data from the most important frames, there is a distinct mosaic. While in the less

significant frame data loss image, there is ghosting around the edges in some parts of the

image. Due to coding characteristics, loss of IRAP frame data would affect the decoding

result of the IRAP frame and its subsequent frames, and cause mosaicing at the end. If

there is data loss of other types, it means that some information such as the motion vector

is missing. As a result, the missing data will affect the inter-frame prediction, leading to

a jittery feeling when viewing the video.

2.3 Video Compression/Encoding

Compression is the act of compressing data into fewer bits than the original data.

Video compression is the conversion of a digital video into a format that takes up less

space, either to store or transmit it over a network, in a live video streaming, for example.

The "RAW" format of a video requires a large and fixed bitrate, that is, all video frames

occupy the same amount of memory, so compression is necessary to be able to store or

transmit large amounts of video (RICHARDSON, 2011).

Video compression usually involves a CODEC pair (enCOder/DECoder), where

the encoder is responsible for compressing the data before transmission or storage, while

the decoder is responsible for decompressing the data to a representation of the original

video. To perform the compression several techniques are used, mainly exploring redun-

dancies in the stored data. We can divide the types of compression into two main types:

lossless compression, where statistical redundancies are removed so that the reconstructed

video is an exact copy of the original; and lossy compression, where subjective redundan-

cies are removed, which do not affect the final result much but the resulting video will

never be exactly like the original again.

In video compression one of the parameters that can completely change the final

16

result is the Quantization Parameter (QP), in HEVC/H.265 the QP ranges from 0 to 51.

The quantization parameter is used to determine the quantization step, which doubles

each time QP increases its value by 6. Quantization is the act of mapping a set of values

to a smaller set of values, it works using an integer division where the quantization step is

the divisor and the original value is the dividend. So this process is irreversible because

it introduces data loss and the higher the quantization parameter the stronger will be the

quantization and consequently the data loss.

2.3.1 H.265/HEVC standard

The H.265/HEVC standard (High-Efficiency Video Coding), as its name said, is

exceptionally good at compressing videos, about twice as much as H.264. An HEVC

bitstream consists of a sequence of network abstraction layer (NAL) units, in Figure 2.1

it is possible to see that the first two bytes of a NAL unit belong to its header, and the rest

is the payload. Using this header we can know the kind of picture stored in each NAL.

Figure 2.1 – NAL Header

Source: The Author

NAL unit types can be divided into IRAP pictures and non-IRAP pictures (SZE,

2014). In Table 2.1 we can see some of the different types of NAL units that exist, but in

this work, we will focus just on IRAP and non-IRAP pictures. In HEVC each picture is

partitioned into slices (one or multiple), each slice is part of a picture that can be decoded

without using data from other slices in the same picture. At the same time, to follow

network transmission restrictions each slice can be divided into multiple slice segments,

where the second slice segment and the next ones are dependent on the first segment of

the slice. It is important to note that each NAL unit only carries one slice segment.

The IRAP picture consists of a picture that is coded not using the content of other

17

Table 2.1 – NAL unit types

Description Type code

Trailing non-IRAP pictures 0-5
Leading pictures 6-9

Reserved non-IRAP 10–15
Trailing non-IRAP pictures 16-21

Reserved IRAP 22–23
Reserved non-IRAP 24–31

Source: The Author

pictures as reference, they are used to set points in the bitstream where it is possible to

start the decoding process. The first picture of a bitstream must always be of type IRAP,

but there are IRAP pictures scattered throughout the bitstream. To store or transmit the

bitstream, IRAP pictures are usually sent at regular intervals, with this it is possible to

quickly provide random access to any part of the video since decoding can start from any

IRAP picture. In real-time transmissions, where random access is not so useful, fewer

IRAPs are sent and not periodically, only when corrupted data is noticed and a new IRAP

is needed to refresh the video scene.

The non-IRAP pictures in a video are all the other pictures that depend on an

IRAP picture to be completely decoded. There are a lot of types of non-IRAP pictures,

each one with its function, but in essence, they are pictures that are usually associated

with the closest IRAP picture in the bitstream and because of this, does not need to store

all the frame, just some information about the difference between the current frame and

the frame of the associated IRAP picture.

2.4 Software Defined Networks

The emergence of Software-Defined Networking (SDN) has allowed researchers

and network operators to think about the idea of a more programmable network. With

SDN, the network intelligence is decoupled into a control plane and a data plane to make

the network more flexible, taking the control logic out of the network devices, and letting

it in charge of the forwarding roles. Fig. 2.2 shows an overview of an SDN architecture.

Applications are in a higher abstraction than the control plane and interact with

it through northbound interfaces. In SDN, the control plane becomes responsible for

specifying forwarding rules, such as specified through the use of an SDN controller and

an interface (southbound) for managing the table entries of network devices operating on

18

the data plane. This way, SDN becomes a vehicle that can make it possible for network

operators to manage network devices in a more centralized manner since the configuration

of network devices is focused on a single entity.

Figure 2.2 – A overview of the SDN architecture.

Source: The Author

2.5 Domain Specific Languages

A domain-specific language is a computer programming language of limited ex-

pressiveness, focused on a specific domain. There are four key elements in this definition:

(i) Computer programming language: A DSL is used by humans to instruct a computer

to do something. As in any modern programming language, its structure is designed

to facilitate understanding by human beings, but it must still be something executable

by a computer; (ii) Natural language: a DSL is a programming language and, as such,

must have a sense of fluency in which expressiveness comes not only from individual

expressions but also from the way they can be composed; (iii) Limited expressiveness: a

general-purpose programming language provides many features, such as support for var-

ied data structures, control, and abstraction. All of this is useful but makes learning and

using difficult. A DSL supports the minimum resources required to support your domain.

One cannot build an entire software system on a DSL; Rather, you use DSL for a specific

aspect of a system; and (iv) domain focus: a limited language is only useful if it has a

19

clear focus on a small domain. The focus of the domain is what makes a limited language

worthwhile (FOWLER, 2010).

The adoption of a domain-specific language involves benefits and disadvantages,

and working with this approach means finding a balance between them. The benefits

of DSLs include: (i) DSLs allow solutions to be expressed in the language and level of

abstraction of the problem domain. Consequently, domain experts themselves can un-

derstand, validate, modify, and often even develop DSL programs (DEURSEN; KLINT;

VISSER, 2000); (ii) The programs are concise, largely self-documenting, and can be

reused for different purposes (LADD; RAMMING, 1994); (iii) DSLs increase produc-

tivity, reliability and maintainability (KIEBURTZ et al., 1996) and allow validation and

optimization at the domain level (BRUCE, 1997); and (iv) DSLs improve testability and

maintainability (SIRER; BERSHAD, 1999).

However, according to (DEURSEN; KLINT; VISSER, 2000), the disadvantages

of using a domain-specific language are (i) The costs of designing, implementing, and

maintaining a DSL; (ii) The costs of education for DSL users; (iii) The difficulty of find-

ing the appropriate scope for a DSL; (iv) The difficulty of balancing between domain

specificity and general-purpose programming language constructions; (v) The potential

loss of efficiency when compared to manually coded software; and (vi) the limited avail-

ability of DSLs (KRUEGER, 1992).

2.5.1 Programming Protocol-Independent Packet Processors

Programming Protocol-Independent Packet Processors (P4) is a high-level lan-

guage that provides a suitable abstraction model for Programmable Data Plane with the

capability of specifying and programming the data plane behavior of a network device.

(BOSSHART et al., 2014). Its main objectives are reconfigurability, protocol indepen-

dence, and target independence. Reconfigurability proposes that the analysis and pro-

cessing of packets can be redefined by the controller. Protocol independence suggests

that the controller can extract header fields by specifying the packet analyzer and a col-

lection of match-action tables for header processing. The target independence focuses on

the possibility of the network operator specify the behavior of the switch while abstracts

the non-relevant information about the target device.

A P4 program mainly defines six items: (i) headers, which specify the names and

widths of the protocol fields in which the program operates; (ii) metadata, structures that

20

provide specific package information; (iii) parser, a group of state machines for analyz-

ing headers and extracting data for metadata structures; (iv) match-action table, which

identifies fields and metadata of packages to be compared and the possible actions being

taken in response; (v) execution pipeline and control flow, to define how the packages are

processed; and (vi) deparser, a process for rebuilding packages.

The task flow of the definition of a network device with P4 support begins with

network operators writing and compiling a P4 program using a front-end compiler in a

High-Level Intermediate Representation (HLIR). Then, a back-end compiler adapts the

program to different targets, including FPGAs. Finally, through a runtime controller,

operators can populate entries in the match-action tables in the data plane and allow the

destination device to process and forward packets.

2.6 Field-Programmable Gate Arrays

The use of hardware-accelerated network devices in switches and routers is en-

abling rapid growth of the Internet. Currently, Ethernet switches are widely used to

switch traffic on Local Area Networks (LANs) and to route protocol packets across Wide

Area Networks (WANs). Commercial vendors use ASICs and/or FPGAs to speed up

the switching, routing and processing of network data (LOCKWOOD et al., 2007). As

previously explained, the new generation of SDN-related solutions introduced the notion

of programmability of the data plane (for instance, P4 and POF). They allow faster de-

velopment/provisioning of new protocols, as opposed to the long wait for the release of

fixed-function ASIC switches that support standardized protocols (SIVARAMAN et al.,

2015). The intrinsic characteristics of the FPGAs are aligned with the programming of

the data plane that seeks reconfigurability and programmability.

More specifically, FPGAs are prefabricated silicon devices that can be electri-

cally programmed to become virtually any type of digital circuit or system (KUON et al.,

2008). They offer several attractive advantages over fixed-function ASICs (CHINNERY;

KEUTZER, 2002). In addition, ASICs take months to manufacture and cost hundreds

of thousands to millions of dollars to obtain the first device, while FPGAs are set up in

minutes (and can usually be reconfigured if an error is made in generating a configuration

file, commonly called bitstream) and cost from a few dollars to a few thousand dollars.

The flexible nature of FPGAs, however, has a significant cost in area, delay and energy

consumption: an FPGA requires approximately 20 to 35 times more area than an ASIC, it

21

has a speed performance approximately 3 to 4 times slower than an ASIC and consumes

approximately 10 times more energy (KUON; ROSE, 2007). These disadvantages arise

in large part from the programmable routing mesh of an FPGA, which has a high cost in

area, speed and power consumption to traffic data when compared to an ASIC.

Figure 2.3 – Basic internal organization of FPGAs.

Source: The Author

An FPGA is composed of fundamental building blocks called Configurable Logic

Blocks (CLBs), which provide the physical support for a design to be implemented and

loaded into the FPGA, also, it contains Digital Signal Processing (DSP) slices and mem-

ory blocks. Fig. 2.3 illustrates the basic internal organization of an FPGA. The CLB is

the main logical feature of the FPGA to implement sequential, combinatorial, and logical

functions. Each CLB is connected to the routing loop through a routing matrix (CHAN-

DRAKAR; GAITONDE; BAUER, 2015). The DSP is designed to carry out digital signal

22

processing functions, like multipliers, in a more efficient way than implementing those

functionalities with CLBs. The referenced memory itself is a block RAM. The use of

FPGAs allows fast prototyping but also takes advantage of flexibility, high performance,

and reconfiguration. The main difference in the use of FPGAs, when compared to the use

of microprocessors, is the ability to make substantial changes to the hardware, including

changes in data and control flows (YANG et al., 2014), in addition to better efficiency in

terms of performance and power consumption, since it implements a dedicated circuit.

When compared to using a custom ASIC, the advantage of using FPGAs is the possibility

to change the hardware at runtime, loading a different circuit in the reconfigurable matrix.

2.7 P4vBox

P4VBox (SAQUETTI et al., 2020) is an architecture that allows the virtualization

of the data plane, using programmable switches, in a FPGA board. It proposes that vir-

tualization be done without adding difficulties for the network operator, allowing him to

deploy the same byte codes as a switch, both in the virtualized environment of the P4VBox

and in another non-virtualized environment. In addition, it allows hot-swapping, which is

the functionality of being able to change only one switch instance without affecting the

others with zero downtime, this is done using the partial reconfiguration functionality.

In Figure 2.4 we can see the P4VBox design, the whole architecture has four

10Gbps and Direct Memory Access (DMA) I/O ports, BRAM Output Queues, and an

Input Arbiter. P4VBox specifically has the Input P4 Interface, the Output P4 Interface,

and allows multiple Output Port Lookup (OPL) instances. Each OPL instance, in this

case, is a different and completely isolated switch instance, all these switches can be

written in P4 and generated using the High-Level Synthesis workflow.

In order to deal with the multiples switches receiving flows from multiple ports,

P4VBox implements the Input P4 Interface that uses a VLAN (802.1Q) concatenated with

the frame destination address to identify which switch should receive each packet. The

Output P4 Interface has a similar behavior, but works to deliver the packets to the right

output port at the end of the processing, working similar as a demultiplexer.

To use the P4VBox, you must program the network device using P4, pass it

through a High-Level Synthesis flow, and finally, optionally, add some hardware mod-

ules written in Verilog. The P4VBox allows the network operator to deploy switches up

to two orders of magnitude faster than its competitors, making it very good for prototyp-

23

Figure 2.4 – P4VBox Design

Input Arbiter

Input P4 Interface

OPL OPL OPL...

Output P4 Interface

BRAM Output Queues

10Gbps
RX 0

10Gbps
RX 1

10Gbps
RX 2

10Gbps
RX 3

DMA
RX

10Gbps
TX 0

10Gbps
TX 1

10Gbps
TX 2

DMA
TX

10Gbps
TX 3

P4VBox

Source: The Author. Adapted from (SAQUETTI et al., 2020)

ing and testing. In addition, with the set of commands and options it implements, using

its recommended flow, it is possible to quickly and practically obtain results of latency

and occupation of programmed devices.

24

3 RELATED WORK

This chapter presents techniques used to improve the quality of video transmitted

over computer networks. In addition, types of hardware accelerators that can be used in a

network to optimize video transmission are presented.

3.1 Video

This section aims to present different techniques that analyze and try to improve

the quality of video transmissions over the network. They work with aspects ranging from

analyzing the impact of degraded videos to techniques for modifying the video bitstream

to make it more resilient in a packet loss condition.

The authors from (KORHONEN, 2018) used H.264/AVC to present a subjective

video degradation analysis under packet loss scenarios while differentiating the impact

of reference and non-reference pictures. In their studies, they explored the impact of

video artifacts using a touchscreen where video sequences were displayed and the users

tapped into the positions where they found some artifacts. They also analyzed the features

derived from those artifacts and proposed two models for estimating and combining those

features into an objective metric for assessing the apparency of the artifacts. One model

is just analytical and the other one is learning-based. Using these two models they found

out that multiple different factors can influence the visibility of packet loss artifacts, and

expected that by knowing better these factors, researchers can develop new methods to

minimize the impact of packet losses in video transmission.

In (KAZEMI; IQBAL; SHIRMOHAMMADI, 2018), an encoding-time technique

is presented for defining intra-predicted frames (i.e., IRAP) positioning in the H.264/AVC

bitstream to improve packet loss resiliency. Multiple description coding (MDC) is a tech-

nique for video transmission over error-prone networks that fragments a single media

stream into n substreams, so in this paper, they worked on a new intra-coding approach in

MDC. They found out that using MDC streams, the best policy is to encode some kinds

of frames as IRAP ones instead of encoding some parts of other frames in intra mode.

Using this new encoding technique they could achieve higher PSNR compared to other

MDC techniques, however, their technique degrades the compression ratio.

A similar strategy is adopted in (WALLENDAEL et al., 2021) where IRAP frames

(referred to as keyframes by the authors) are periodically inserted during the encoding

25

process to improve H.265/HEVC bitstreams resiliency. They made this work by using

both a compression-efficient video stream with another stream consisting of just IRAP

frames. Using some restrictions and modifications they were able to make this work with

video encoded by H.265/HEVC, providing a quicker error recovery at low-quality impact.

Even though the inserted keyframes are 7 to 30 times greater than the replaced frames,

the quality decrease is smaller and less perceptible.

The work in (OZTAS et al., 2012) analyzes the behavior of HEVC and AVC over

many different scenarios and concludes that HEVC is less error resilient than H.264/AVC,

especially in videos with a high amount of motion. Is important to note that the HEVC’s

higher level of compression compromises the error resilience reducing significantly the

necessary bandwidth. In more static scenes the HEVC becomes more resilient due to the

amount of similarity between two frames, which works like a frame coping. They also

found that HEVC handles transmission errors better when the resolution is higher because

each frame needs more packets to be transmitted and each packet carries a smaller portion

of the frame, so losing a packet has not have a high impact on the video quality.

The work in (NIGHTINGALE; WANG; GRECOS, 2012) has developed a frame-

work for streaming and evaluating HEVC-encoded video over lossy networks. These

lossy networks were simulated in a realistic testbed, with external interference, bandwidth

limitations, and even packet loss. The framework provides an error concealing method to

overcome some limitations of HEVC, making changes both in the decoder and in the way

NAL units are divided into packets. These modifications are carried out in three main

stages. In the first one, encoding and prioritization are carried out simultaneously, where

the modified log of the first one provides parameters for the second one. The second

stage, where the bitstream is extracted and packetized, based on previously defined prior-

ities and subsequent streaming; and finally, the correction/hiding of errors, where when

perceiving a frame that the decoder could not decode, the framework copies the closest

frame. After all these steps, the quality analysis is performed. As video quality results are

usually measured in peak signal-to-noise ratio (PSNR) in past works, they chose to keep

the same metric in this one. Measuring the PSNR they reach an average loss of 3.61dB

when reducing the bandwidth by 10%.

26

3.2 Network Hardware and Accelerators

In the context of computer networks, many advances have occurred in the past

decade, especially in terms of Software-Defined Networking (SDN). Such advances have

led to the emergence of network programmability (BOSSHART et al., 2013; CORDEIRO;

MARQUES; GASPARY, 2017) and have provided network administrators with the abil-

ity to reprogram the behavior of forwarding devices through Domain-Specific Languages

(DSL) such as P4 (BOSSHART et al., 2014). In the same way that the networking infras-

tructure advanced in programmability, it also advanced in computational power. With new

programmable network hardware and accelerators on the market, such as Smart Network

Interface Cards (SmartNICs) (SANVITO; SIRACUSANO; BIFULCO, 2018), Graphics

Processing Units (GPUs) (SUN et al., 2019), and FPGAs (WOODRUFF; RAMANUJAM;

ZILBERMAN, 2019), a new generation of programmable network devices is flooding the

market, enabling computation to be performed within the network.

In (SANVITO; SIRACUSANO; BIFULCO, 2018) they studied the viability for

using programmable network devices, such as SmartNICs, as a Artificial Neural Networks

accelerators. A network interface card is a component that connects the computer or

server on which it is installed to the internet. A SmartNIC is a network interface card

that has extra pieces of hardware dedicated to performing functions such as storing and

processing security functions. SmartNIC are generally composed of a standard network

interface with a CPU or an FPGA attached. The ability for functions to be executed on

the SmartNIC reduces the processing load on the main processor of the machine where

the SmartNIC is installed, which is very useful on servers with high bandwidth.

Graphics Processing Units (GPUs) are devices that are also widely used on servers

and very common in High-Performance Computing (HPC) applications. General-Purpose

GPUs (GPGPUs), more specifically, transcend the domain of computer graphics and can

be used to accelerate hardware in areas such as deep learning and cryptocurrency mining.

Although GPUs are efficient for running heavy computing applications, they are usu-

ally not directly connected to the network, which makes them less suitable for network-

intensive applications (TOKUSASHI et al., 2019). It is believed that this is one of the

reasons that the in-network computing literature does not present many works that make

use of these devices, however, it is difficult to assess how far network computing can go

and what are the possibilities that the next generations of hardware will make available.

There are a lot of studies that worked with FPGA-based Hardware Accelerators

27

using In-Network Computing. The work of Cooke and Fahmy (COOKE; FAHMY, 2020)

developed a model for evaluating the different approaches of in-network computing, that

consider: the multiple levels of network structure; hardware differences and its changes

on computing and networking, which includes accelerator platforms; realistic represen-

tation of metrics, such as performance, energy cost and financial cost. In order to test

the proposed model they develop some Python scripts. This model is used to investigate

a case-study scenario that demonstrates reductions in the latency of communication be-

tween devices, in addition to low computation latency when using acceleration in FPGA.

An image classification application based on neural networks called SqueezeNet is used

as a case study and quantifies the computation latency resulting from different platforms.

The NetDebug (BRESSANA; ZILBERMAN; SOULÉ, 2018) proposes a fully

programmable hardware-software framework for real-time validation and debugging of

programmable data planes at full line rate. The NetDebug prototype was built on a

NetFPGA-SUME using Xilinx SDNet, which translates P4 descriptions into hardware

modules. Also, it is independent of the language of the determined application, validating

data planes even in such a different workflow like high-level synthesis. However, the first

assessment found that the state of the reject parser, an essential feature of the P4 language,

is not currently implemented by SDNet compiler.

LaKe (TOKUSASHI; MATSUTANI; ZILBERMAN, 2018) is a layered key-value

storage design, executed as a network application. It works using multiple layers of

cache, where each layer provides a trade-off between memory size and performance. This

FPGA-based proposal achieves 17× better power efficiency than running on a host, with

a transfer rate of 6.7× up to 13.6× higher, maintaining two orders of magnitude with bet-

ter latency. Lake was implemented using Verilog, a hardware description language, on a

NetFPGA-SUME board, but this language restriction can be impeditive for a programmer.

iSwitch (LI et al., 2019) proposes a distributed solution using in-network comput-

ing to move gradient aggregation operations from network node servers to FPGA-based

switches, reducing the number of network hops during gradient aggregation operations.

Gradient aggregation is Reinforcement Learning (RL) operations used to train Artificial

Intelligence applications. The results demonstrate that compared to the latest generation

distributed training approaches, iSwitch offers an acceleration of up to 3.66 times for

synchronous and 3.71 times for asynchronous distributed training while achieving better

scalability. Also, the authors rethought the distributed RL training algorithms and propose

a different hierarchical aggregation mechanism to increase parallelism and scalability.

28

3.3 In-network Computing

In-network computing is still in its infancy, with most works targeting networking-

related applications, such as caching (MATSUZONO; ASAEDA; TURLETTI, 2017), and

data aggregation (SAPIO et al., 2017), with only a few works aiming at other areas such

as artificial intelligence (LI et al., 2019; SAQUETTI et al., 2021) and adaptive video

rates (BRONZINO et al., 2014; BOUTEN et al., 2014).

In the (MATSUZONO; ASAEDA; TURLETTI, 2017) work, a mechanism was

proposed that reduces losses and latency in video transmission using an extension made

for Content-Centric Networking (CCN), which basically allows data consumers and routers

to use network caching, contributing to a better use of computer network resources. The

work is based on the fact that, given a network with a high volume of data sensitive to

delays, each node makes an estimate of acceptable delay and probability of loss, in order

to apply the techniques according to these values.

The applied techniques are a mixture of using multiple paths in the network, using

efficient technologies for this, such as the cache for retransmission of lost packets, video

coding in the network nodes, and adapting the flow in the network. In addition, in some

specific cases of competition for bandwidth, changing encoder parameters to adjust the

quality of the video produced and its consequent size. It was validated that this solution

behaves better than the standard use of a CCN, being an interesting solution that makes

use of In-network computing to optimize video transmission.

The MobilityFirst (BRONZINO et al., 2014) project proposes the extension of the

data plane with attached modules. This extensions modules can improve the experience

of end-users of mobile devices while sending some part of the workload to a network

device. They present also a new protocol and API extension to increase the flexibility of

the solution usage. Related to video streaming their solution used the data from all nodes

to estimate the available bandwidth to calculate the best bit rate of the video, adjusting at

execution time the compression settings.

29

4 PROPOSED IN-NETWORK COMPUTING ARCHITECTURE

The proposed in-network computing architecture discussed in this work targets a

generic packet-forwarding device. It aims at decreasing IRAP packet loss during network

congestion while maintaining packet loss to a minimum. To do so, we conceived an in-

network hardware module that implements a content-aware preemptive non-IRAP packet

drop algorithm. This hardware module implementation could prove the feasibility of

our approach in terms of resource usage and performance, having great results with a

measly cost on resources without interfering with the main device latency. In order to test

and develop the algorithm we also created a fully customizable simulator that allows us

to quickly test between algorithms. In the following sections, we describe in detail the

chosen packet drop algorithm, how we developed the in-network hardware module that

implements the algorithm, and the simulator.

4.1 Proposed Packet Drop Algorithm

Because IRAP frames are whole figures within a video and are used to reconstruct

the other frames adjacent to it in the decoding process and the loss of one of them can

cause several frames to fail, the main objective of our Proposed packet discard algorithm

is to minimize IRAP packet loss. This idea aims to try as much as possible not to drop the

IRAP packets so that it is possible to reconstruct each IRAP frame from the video that is

been transmitted over the congested network.

A more naive option would be to, as soon as the network congestion was detected,

start preemptively drop any non-IRAP packets until the congestion is gone. However,

this can lead to the unnecessary loss of non-IRAP packets, as depending on the case

the buffer may be able to store all the IRAP packets forwarded during the congestion

and even additional non-IRAP packets. Thus, a better option would be to evaluate how

many packets we can store during the congestion based on packet throughput and buffer

occupation. By doing so, we can guarantee that our proposed packet drop algorithm will

not unnecessarily drop non-IRAP packets.

We chose an algorithm that, upon detecting network congestion, manages the free

space in the device’s buffer. This management is based on the fact that, given an occupa-

tion of X in the buffer and a ranking of importance among the video packets, the algorithm

is able to suggest to the device on which it is installed whether or not to drop each packet

30

that passes through it. during the period of network congestion.

By previously knowing the size of the device’s buffer and its occupation in real-

time, the algorithm is able to decide with greater confidence whether or not to drop the

packet. This control is done in order to avoid losing IRAP packets at all costs. For exam-

ple, at a given moment when the buffer has free space for 30 packets, but the algorithm

estimates that there are about 50 packets left in this congestion period, the algorithm will

suggest the drop of any non-IRAP packet. In another moment, when the buffer has free

space for 25 packets and it is estimated to receive another 15 packets during the conges-

tion period, then the algorithm will not suggest a drop for any packet. In this way, the

algorithm tries to protect the IRAP packets at all times when it considers that there is a

danger of losing them if the congestion persists. One of the reasons for choosing this

algorithm to start the studies is due to the ease of detecting whether a packet contains part

of an IRAP frame or not, and thus testing the viability of the original idea of improving

video quality during network congestion.

Algorithms 1 and 2 describe the pseudocode of our packet drop routine, both al-

gorithms are called for each packet that passes through the network device. Algorithm 1

is the one responsible for triggering a timer, which puts the system into congestion mode,

whenever it receives a packet with a congestion notification. In this experiment the timer

was set to 20, representing packets arriving during the congestion period. This value was

arbitrary and takes into account the device, its throughput, and the size of its buffer. This

action is performed attributing the (c_time) constant to the (timer) variable, this (c_time)

is predefined by the programmer and its value can be achieved by experimentation. This

behavior of attributing (c_time) to (timer) every time a flagged packet is received works

as if the timer was reinitialized while the congestion remains. This congestion notifica-

tion could be received in flagged packets, for example through the classic TCP Explicit

Congestion Notification (ECN) (FLOYD, 1994) (p_ecn). To do this work we consider

that there is a separate function running in parallel to count the timer down to zero.

Algorithm 1 Timer Policy
1: function SET_TIMER(packet)
2: if is_tcp_ecn_enabled(packet) then
3: timer ← c_time
4: end if
5: end function

Algorithm 2 is also called for each packet received. If still in congestion (timer >

0), we need to compute how many packets could be received until the end of the expected

congestion window (packets) by multiplying the current throughput (p_tp) by the re-

31

maining timer (timer). In case the buffer can no longer hold any further packets to be

received during the congestion event (b_free < packets) and the packet is a non-IRAP

(!p_irap), our algorithm recommends a packet drop (return true). Otherwise, it recom-

mends not dropping the packet (return false). Note that this is only a recommendation to

the packet-forwarding device, as the decision to drop packets is the forwarding device’s.

Algorithm 2 Drop Packet Policy
1: function DROP(b_free, p_tp, p_irap)
2: if timer > 0 then
3: packets← p_tp× timer
4: if b_free < packets and !p_irap then
5: return true
6: end if
7: end if
8: return false
9: end function

4.2 Proposed In-Network Hardware Module

Based on the algorithm previously defined, we developed an in-network hardware

module that extends a generic packet-forwarding device through a simple interface. This

implementation was made in FPGA given its flexibility, programmability, and agility in

the implementation, and because we already have the necessary tools to implement a

switch and a module attached to it (SAQUETTI et al., 2020). Using the P4VBox archi-

tecture, it is possible to, using a small set of commands, generate detailed latency and

resource occupation reports.

As shown in Fig. 4.1, the in-network hardware implements our proposed algorithm

with two blocks, the Content Identifier and the Drop Control. The Content Identifier

receives a protocol identifier (Prot. ID) and the NAL type (NAL Type). The Drop Control

block inputs information on the congestion: congestion flag (Cong. Flag) and congestion

period (Cong. Per.), the validity of the data received (Data Valid), and information on

the buffer status, length (Buffer Len.) and current occupation (Buffer Occ.), returning true

if there is not enough space left in the buffer until the end of the network congestion.

When both these flags are true, the in-network hardware module indicates to the packet-

forwarding device that the packet should be dropped.

Regarding the Algorithm 1 our hardware module implements it as a register for

the timer and a block for verifying at each clock if there is a new packet header with the

flag on the data bus. We use this same block to, once the timer was set, count it down

32

Figure 4.1 – In-network Hardware Module Diagram

In-Network Hardware

Content
Identifier

Drop Control

Packet Forwarding Device

D
ro

p
Pa

ck
et

...

Pr
ot

. I
D

NA
L

Ty
pe

Co
ng

. F
la

g
Co

ng
. P

er
.

Da
ta

 V
al

id

Bu
ffe

r L
en

.
Bu

ffe
r O

cc
.

Source: The Author

by one for each received packet. In order to implement the Algorithm 2 we use the same

timer register cited before, a new register for storing the remaining packets estimate and

some data inputs, so it can determine the buffer state and if it is a good idea to indicate

if the packet should be dropped. To get some of this information needed by the module

we made use of another benefit of using P4VBox architecture because we have access to

its source code it is possible to know exactly in which data bus the packets will flow and

use our Verilog module to access it to get what we want. Also, this knowledge is useful

to send buffer information across the packet’s metadata. This section of the module is the

most affected by algorithm changes since it has all logic behind the drop suggestion.

We implemented a layer-2 switch (l2-switch) as a baseline packet-forwarding de-

vice in P4 (BOSSHART et al., 2014) and our proposed in-network hardware module in

Verilog. To interface both modules, we modified the l2-switch pipeline (in P4) to de-

tect NAL headers and forward them through an external module to our hardware module

(in Verilog). We then synthesized both projects (l2-switch and l2-switch extended) to

the NetFPGA-SUME board with the Xilinx SDNet high-level synthesis tool, following

the P4VBox (SAQUETTI et al., 2020) workflow. Our resource usage and performance

evaluations were performed on Xilinx Vivado 2018.2 by injecting custom NAL packets.

Table 4.1 shows resource usage and performance of a case-study l2-switch and

the same l2-switch with our extended in-network hardware module for packet dropping

obtained in Xilinx Vivado for a NetFPGA-SUME. In terms of resource usage, our imple-

mentation required additional 2.6% LUTs and 1.9% FFs. Note that the l2-switch is one

of the simplest packet-forwarding devices, and our implementation is agnostic to the for-

warding device. Therefore, more complex devices would perceive an even smaller impact

33

on resource usage. Considering performance, the extended l2-switch achieved the same

latency and throughput as the baseline, without degradation.

Table 4.1 – In-network hardware occupation

Resource and Performance L2-switch L2-switch extended Overhead (%)

LUTs 1,774 1,821 47 (2.6%)
FFs 3,831 3,904 73 (1.9%)
Latency (µs) 0.56 0.56 –
Throughput (Gbps) 101.1 101.1 –

Source: The Author

4.3 Simulator

Since programming the algorithms in Verilog and testing hardware is more com-

plex and time-consuming than writing the algorithm in a high-level programming lan-

guage and the assemble and usage of a network testbed can take a lot of time we devel-

oped a simulator for the packet-forwarding device, which included tools for analysis of

H.265/HEVC bitstream flows under congestion conditions. Using this simulator we were

able to compare algorithms and just really implement the better ones. The simulation flow

has 5 independent modules that need to be executed to obtain the final results. This mod-

ularity was done bearing in mind that other studies may only want to change, for example,

the encoder used or the way congestion is simulated.

To make the analysis of packet drop algorithms easier, it was decided to develop

this simulator using the Python 3 programming language and some bash scripts to carry

out the steps using multiprocessing techniques. Python 3 was chosen due to its ease

and speed of implementation and code maintenance, in addition to the great availability

of external libraries to generate packets, handle the generated data and create reports,

allowing the algorithm to evolve quickly.

In Figure 4.2 we can see the modules of the simulator. The first module is re-

sponsible for encoding the video to the H.265/HEVC format. For this, the HEVC Test

Model(HM) reference software for HEVC in version 17 (ITU-T; ISO/IEC, 2023) was

used. With it, it is possible to define files with configuration parameters similar that the

ones used to validate other experiments around the world, this allows our results to be

better compared with other works that pursue similar goals.

The second module is responsible for extracting the video data into a format that

34

Figure 4.2 – Simulator modules

Encoder

H26X-Extractor

Raw video Parameters

Module 1

Simulator

Decoder

Report Generator

Module 2

Module 3

Module 4

Module 5

HEVC bitstream

NAL units

Remaining bitstream

Decoded
videos

Raw
metrics

Detailed
Reports Graphs

Simulation
Parameters

Algorithm

Source: The Author

the simulator understands, for this purpose h26x-extractor (ROBITZA, 2021) open-source

project was used, with an expansion to work with H.265/HEVC bit streams, where the

output is a file with details of each NAL unit of the corresponding video. These details

range from its header, with information about its type and consequent importance, to the

payload (used to reconstruct the video after packet loss).

The third module is the simulator itself, it has a configurable test bench, allowing

users to adjust packet input and output rates, buffer size, and congestion frequency and

duration (where the output rate would drop to zero during the congestion). It is possible to

35

analyze relevant information about NAL units, such as the number of NAL units, packets

per NAL, bytes per NAL, and percentages of NAL types, among other relevant data. The

package drop algorithm is also implemented within the simulator, for the results of this

work the Algorithm 2 was used, but given its modularity, it could be any algorithm that is

based on the NAL type and returns the suggestion of drop or not of the package.

The fourth module is responsible for decoding the video using only the remaining

packets and thereby obtaining metrics on how good or bad the algorithm is in terms of

packet loss, loss of bytes, or even loss of frames. For decoding we again used the HM

reference software decoder. This module is closely linked to the fifth module, which con-

denses all the information resulting from the previous module with some details obtained

from the original video files and returns various reports with the requested information.

An important point to be emphasized is that, as the encoding, simulation, and

decoding of each video are independent, all modules come with the option of running

in parallel to optimize the time spent on the whole simulation, which is important to use

since testing all cases addressed in this work get us a thousand different simulations. Tests

were carried out on computers with 4, 8, and 20 cores, where a huge time advantage can

be seen compared to running all simulations sequentially.

36

5 EVALUATION

For our evaluation, we transmitted a set of videos through a simulated packet-

forwarding device in congested network environments. We configured our simulator with

a buffer size of 60 packets, a realistic value considering the target board used for syn-

thesizing our proposed in-network hardware module. Considering that forwarding packet

devices usually operate at line rate, having buffers specifically for cases of network insta-

bility, and for simplicity, we set the packet input and output rates at 60 and 120 packets per

time unit, respectively. By doing so, the buffer will start filling as soon as the congestion

starts and will be cleared as soon as the congestion ends. Additionally, we can manage

packet loss by adjusting the frequency and duration of the congestion scenarios. To adjust

our experiments for packet losses from 5% to 50%, in a 5% step, we varied congestion

times from 10% to 94.11% of the simulation time.

As case-study video benchmark, we used all 25 videos from the Common Test

Conditions (CTC) of H.265/HEVC (BOSSEN, 2013) encoded using x265 with the four

recommended Quantization Parameters (QP - 22, 27, 32, and 37). The CTC contains

videos with multiple resolutions (416× 240, 832× 480, 1024× 768, 1280× 720, 1920×

1080, and 2560 × 1600), including different motion and texture characteristics. Consid-

ering that the videos are relatively short, we chose to concatenate them 100 times before

sending them through our simulator, to reach statistical relevance (σ = 0.0068).

Fig. 5.1 correlates the random IRAP packet loss (X-axis), simulating the baseline

l2-switch, with our proposed architecture’s IRAP packet loss (Y-axis), simulating the l2-

switch extended, for all 25 benchmark videos encoded with 4 different QPs and 10 packet

loss rates, in a total of 960 simulations. As one can notice, all points are sub-linear

(y < x), showing that our approach is never worse than the random one. Instead, the

drawn line shows the linear regression with an average IRAP packet loss of 4.8%, 82.5%

lower than the average 27.5%. However, even though the linear regression line is below

10%, some points presented worse results.

Fig. 5.2 shows the same data as Fig. 5.1 but colored according to video resolution.

It makes clearer that our solution, on average, deals better with lower-resolution videos

(416×240 to 1280×720) than with higher-resolution ones (1920×1080 and 2560×1600).

Considering the linear regression lines, the 2560 × 1600 videos show almost 33 times

more IRAP packets lost than the 416 × 240. This happens mainly because of the ratio

between the number of packets needed to send an IRAP NAL and the number of packets

37

Figure 5.1 – IRAP packet loss

0 10 20 30 40 50
Random IRAP packet loss (%)

0

10

20

30

40

50

Pr
op

os
ed

 A
rc

hi
te

ct
ur

e
IR

AP
 p

ac
ke

t l
os

s (
%

)

Source: The Author

that the packet-forwarding device can hold in its buffer. Considering that packets will be

lost during congestion, higher resolution videos have a higher chance of sending a single

frame during the time of congestion, thus decreasing our proposed approach’s gain over

the baseline. However, results for high-resolution videos vary in the Y-axis, showing a

significant margin to improve results.

Fig. 5.3 shows the data points constrained to the higher-resolution videos at 1920×

1080 (Fig. 5.4(a)) and 2560×1600 (Fig. 5.4(b)), thus showing the impact of different QPs.

As one can notice, the QP affects our proposed architecture when dealing with higher-

resolution videos. For the 1920 × 1080 resolution videos, we can observe IRAP packet

loss reduction, on average, in 96% by increasing QP from 22 to 37. For the 2560× 1600

resolution videos, we can reduce packets lost, on average, from 21.9% to 3.9% (82%

reduction). Overall, our solution provides higher improvements over the random solution

for higher QP values. Similar to what happens for high-resolution videos (recall Fig. 5.2),

low QP values lead to larger bitstreams and, as a result, to a higher number of packets

per IRAP picture. Thus, the ratio of packets to transmit an IRAP picture per number of

packets in the buffer grows higher and limits the benefits of our solution.

Combined, these results show that our approach can reduce IRAP packets lost dur-

ing network congestion at a negligible cost in resource usage and performance degrada-

tion. They also show that our proposed architecture works seamlessly for lower-resolution

38

Figure 5.2 – IRAP packet loss grouped by resolution

0 10 20 30 40 50
Random IRAP packet loss (%)

0

10

20

30

40

50

Pr
op

os
ed

 A
rc

hi
te

ct
ur

e
IR

AP
 p

ac
ke

t l
os

s (
%

)
416x240
832x480

1024x768
1280x720

1920x1080
2560x1600

Source: The Author

videos but requires attention when dealing with higher-resolution videos, especially when

considering the ones encoded with low QPs.

As a second part of our study, we keep using all 25 videos from the CTC of

H.265/HEVC (BOSSEN, 2013) encoded using x265 with the four recommended Quan-

tization Parameters (QP - 22, 27, 32, and 37). Now, to encode these videos we use the

DecodingRefreshType configuration, which specifies the type of decoding refresh to ap-

ply at the intra-frame period picture, as IDR and the Slice Max size, that determines

the maximum size a slice can be, according to the Maximum Transmission Unit (MTU).

Considering that the videos are relatively short, we chose to concatenate them 100 times

before sending them through our simulator, to reach statistical relevance (σ = 0.0068).

A comparison of the experimental results obtained with the new configurations

is presented in Figure 5.4. Upon analyzing this figure and comparing it to Figure 5.1,

it can be observed that, in general, the results continue to exhibit a sub-linear behavior.

However, the outcomes are comparatively less significant. This is primarily due to the

fact that, when adhering to the 1500 byte limit imposed by the MTU, the IRAP frame

occupies multiple packets instead of just one. Such behavior results in the ratio of packets

with IRAP and non-IRAP being closer to 1, in contrast to the ratio between IRAP and

non-IRAP frames that is predetermined by the encoder.

However, as mentioned earlier, simply analyzing the number of lost packets be-

39

Figure 5.3 – IRAP packet loss grouped by QP.

0 10 20 30 40 50
Random IRAP packet loss (%)

0

10

20

30

40

50
Pr

op
os

ed
 A

rc
hi

te
ct

ur
e

IR
AP

 p
ac

ke
t l

os
s (

%
)

QP 22 QP 27 QP 32 QP 37

(a) 1920x1080

0 10 20 30 40 50
Random IRAP packet loss (%)

0

10

20

30

40

50

Pr
op

os
ed

 A
rc

hi
te

ct
ur

e
IR

AP
 p

ac
ke

t l
os

s (
%

)

QP 22 QP 27 QP 32 QP 37

(b) 2560x1600

Source: The Author

tween the two solutions is not sufficient to evaluate whether the final result for the user

watching the video is satisfactory. To address this, after conducting simulations, results

were obtained during video decoding that indicated the number of frames that could be

reconstructed in relation to the original video. Since each video has a different number of

40

frames, the percentage of frames was used to compare their performance collectively.

Figure 5.4 – IRAP packet loss

0 10 20 30 40 50
Random IRAP packet loss (%)

0

10

20

30

40

50
Pr

op
os

ed
 A

rc
hi

te
ct

ur
e

IR
AP

 p
ac

ke
t l

os
s (

%
)

Source: The Author

Figure 5.5 – Frame loss Comparison with Random approach

0 10 20 30 40 50 60
Random frame loss (%)

0

10

20

30

40

50

60

Pr
op

os
ed

 A
rc

hi
te

ct
ur

e
fra

m
e

lo
ss

 (%
)

Source: The Author

Fig. 5.5 correlates the random frames loss (X-axis), simulating the baseline l2-

switch, with our proposed architecture’s frame loss (Y-axis), simulating the l2-switch

extended, for all 25 benchmark videos encoded with 4 different QPs and 10 packet loss

41

rates, in a total of 1000 points (each one representing the our versus random approach).

It is possible to see that even considering frame loss instead packet loss our solution

continues to win against a random approach, but the results are not too significant as the

ones that we got analizing just the packet loss. Our results shows an average of 6.98%

more frame loss in the random approach.

In table 5.1 we can see that one of the reasons for these results is that, as the

resolution grows, more packets are needed to send just one IRAP frame, so in a congestion

situation the 60 slots buffer is not enough to protect those packets. The problem becomes

worst in high-resolution videos, where just one IRAP frame from a 2560 × 1600 video

can occupy up to 959 packets at the same time that for a 416× 240 resolution video, just

5 packets are enough to send the whole frame. As one can notice the selected QP of the

encoding also impacts a lot on the size of the frame itself, because the QP determines the

step size for associating the transformed coefficients with a finite set of steps, so as the

QP grows, that fidelity of the encoding reduce.

Table 5.1 – Average of packets used by one IRAP frame

Video sequence Resolution QP Packets/IRAP

NebutaFestival 2560x1600 22 959
NebutaFestival 2560x1600 37 179
BasketballDrive 1920x1080 22 108
BasketballDrive 1920x1080 37 15

SlideShow 1280x720 22 62
SlideShow 1280x720 37 31
RaceHorses 416X240 22 25
RaceHorses 416X240 37 5

Source: The Author

This is due to the fact that, considering the way the video is decoded, using IRAP

frames as base for other adjacent frames, where adjacent frames, simply put, only store

the differences between their frame and the IRAP frame, losing an IRAP frame is a very

difficult loss to recover. While losing any other frame decreases the count of decoded

frames by 1, losing an IRAP frame can impact the loss of an important sequence of frames.

42

6 CONCLUSIONS

This work tackled the issue of the ever-increasing stress on the global network

infrastructure due to video streaming with the recent technology of in-network computing.

We present an algorithm that prioritizes packets containing parts of IRAP frames in a

situation of network congestion regardless of the packet forwarding device, a hardware

module in the network that can be implemented in FPGA cards, being coupled in parallel

to a device, and finally, a modular simulator to evaluate the performance of algorithms in

congested environments. Results were considered on two fronts, packet loss, and frame

loss. Our comprehensive H.265/HEVC video benchmark results show that our solution

can reduce packet loss containing IRAP by over 82% with negligible costs in resource

usage and performance. This allocation of resources and performance tends to become

less and less impactful when used with more complex network devices, as the experiment

was performed on simple layer 2 switch.

Addressing the relationship between packet loss and frame loss in congested net-

works, with a particular focus on protecting IRAP frames, our findings suggest that just

protecting packets containing parts of IRAP frames alone is not sufficient to prevent frame

loss in all cases, and more complex algorithms for drop suggestions are needed. This is

due to the fact that the video encoding and decoding structure is more complex than just

the two classes, IRAP and non-IRAP, of frames, addressed in this study. Additionally,

our current solution has demonstrated better performance on lower-resolution video, as

higher-resolution video can require up to 200 times more network packets to transmit

IRAP frames, making it challenging to maintain them all in the buffer.

As a consequence of this study, we have developed a modular simulation suite for

the transmission of video packets under congested conditions. The simulator has several

modules that can change everything from video encoding and decoding parameters, how

the video is split into network packets, how the simulation of a congested network oc-

curs, to how the packet drop suggestion happens, and what the network equipment does

with it. The simulator includes a default configuration included with a default package

drop suggestion function, discussed throughout this article. This function can be adjusted

in several ways by us and other researchers for further investigations and comparisons

between drop suggestion algorithms.

43

7 FUTURE WORK

Considering that the packet and frame loss results of higher resolution videos were

highly impacted by buffer size and although it is assumed that a larger buffer can improve

these results, more research is needed to determine its cost-effectiveness. In future work,

we intend to improve our approach by considering different drop priorities for non-IRAP

frames based on their hierarchy, this hierarchy can be approached as a dependency tree

and with that, a package drop policy based on the importance of the type of packets can

be defined in this tree. It is important to mention that another approach we intend to take

is to explore alternative transmission technologies such as HLS and MPEG-DASH.

A potential avenue needed for future research, aiming to obtain a more accurate

simulation of congested networks, would be to simulate multiple network devices and uti-

lize multiple variable data streams to induce congestion on the network in question. This

is due to the fact that we cannot actually control the buffer usage of a network device by

just passing a stream through it, which leads to competition between all streams passing

through the device simultaneously. Therefore, simulating a set of network devices with

multiple flows would provide a much more realistic description of congestion in networks

than just simulating a device and its buffer.

44

REFERENCES

BAGCHI, S. et al. Dependability in edge computing. Commun. ACM, Association for
Computing Machinery, New York, NY, USA, v. 63, n. 1, p. 58–66, dec 2019. ISSN 0001-
0782. Available from Internet: <https://doi.org/10.1145/3362068>.

BOSSEN, F. Common test conditions and software reference configurations. In: JCT-VC
document no. L1100. [S.l.: s.n.], 2013.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 44, n. 3, p. 87–95, jul.
2014. ISSN 0146-4833.

BOSSHART, P. et al. Forwarding metamorphosis: Fast programmable match-action pro-
cessing in hardware for sdn. In: ACM SIGCOMM 2013. New York, NY, USA: ACM,
2013. (SIGCOMM ’13), p. 99–110. ISBN 9781450320566.

BOUTEN, N. et al. In-network quality optimization for adaptive video streaming services.
IEEE Transactions on Multimedia, v. 16, n. 8, p. 2281–2293, 2014.

BRESSANA, P.; ZILBERMAN, N.; SOULÉ, R. A programmable framework for validat-
ing data planes. In: Proceedings of the ACM SIGCOMM 2018 Conference on Posters
and Demos. [S.l.: s.n.], 2018. p. 1–3.

BRONZINO, F. et al. In-network compute extensions for rate-adaptive content delivery
in mobile networks. In: 2014 IEEE 22nd International Conference on Network Pro-
tocols. [S.l.: s.n.], 2014. p. 511–517.

BRUCE, D. What makes a good domain-specific language? apostle, and its approach to
parallel discrete event simulation. Kamin [43], p. 17–35, 1997.

CHANDRAKAR, S.; GAITONDE, D.; BAUER, T. Enhancements in ultrascale clb ar-
chitecture. In: Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. [S.l.: s.n.], 2015. p. 108–116.

CHEN, N. et al. Study on relationship between network video packet loss and video qual-
ity. In: 2011 4th International Congress on Image and Signal Processing. [S.l.: s.n.],
2011. v. 1, p. 282–286.

CHINNERY, D.; KEUTZER, K. Closing the gap between ASIC & custom: tools and
techniques for high-performance ASIC design. [S.l.]: Springer Science & Business
Media, 2002.

Cisco Inc. Cisco Annual Internet Report (2018–2023) White Paper. 2021.
Available from Internet: <https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html>.

COOKE, R. A.; FAHMY, S. A. Quantifying the latency benefits of near-edge and in-
network fpga acceleration. In: Proceedings of the Third ACM International Workshop
on Edge Systems, Analytics and Networking. [S.l.: s.n.], 2020. p. 7–12.

https://doi.org/10.1145/3362068
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

45

CORDEIRO, W.; MARQUES, J.; GASPARY, L. Data plane programmability beyond
openflow: Opportunities and challenges for network and service operations and manage-
ment. Journal of Network and Systems Management, v. 25, n. 4, p. 784–818, Oct 2017.
ISSN 1573-7705.

COWAN, C. et al. Adaptive methods for distributed video presentation. ACM Computing
Surveys (CSUR), ACM New York, NY, USA, v. 27, n. 4, p. 580–583, 1995.

DEURSEN, A. V.; KLINT, P.; VISSER, J. Domain-specific languages: An annotated
bibliography. ACM Sigplan Notices, ACM New York, NY, USA, v. 35, n. 6, p. 26–36,
2000.

DOBRIAN, F. et al. Understanding the impact of video quality on user engagement. SIG-
COMM Comput. Commun. Rev., Association for Computing Machinery, New York,
NY, USA, v. 41, n. 4, p. 362–373, aug 2011. ISSN 0146-4833. Available from Internet:
<https://doi.org/10.1145/2043164.2018478>.

FLOYD, S. Tcp and explicit congestion notification. ACM SIGCOMM Computer
Communication Review, ACM New York, NY, USA, v. 24, n. 5, p. 8–23, 1994.

FOWLER, M. Domain-specific languages. [S.l.]: Pearson Education, 2010.

ITU-T; ISO/IEC. Advanced video coding for generic audiovisual services. ITU-T Rec-
ommendation H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), 2003.

ITU-T; ISO/IEC. High Efficiency Video Coding. ITU-T Recommendation H.265 and
ISO/IEC 23008-2, 2013.

ITU-T; ISO/IEC. HM reference software for HEVC. [S.l.], 2023. Available from Inter-
net: <https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tree/master>.

KANG, C.; ALBA, D.; SATARIANO, A. Surging traffic is slowing down our internet.
The New York Times, March 2020. Available from Internet: <https://www.nytimes.com/
2020/03/26/business/coronavirus-internet-traffic-speed.html>.

KAZEMI, M.; IQBAL, R.; SHIRMOHAMMADI, S. Joint intra and multiple description
coding for packet loss resilient video transmission. IEEE Transactions on Multimedia,
v. 20, n. 4, p. 781–795, 2018.

KIEBURTZ, R. B. et al. A software engineering experiment in software component gen-
eration. In: IEEE. Proceedings of IEEE 18th International Conference on Software
Engineering. [S.l.], 1996. p. 542–552.

KORHONEN, J. Study of the subjective visibility of packet loss artifacts in decoded video
sequences. IEEE Transactions on Broadcasting, v. 64, n. 2, p. 354–366, 2018.

KRUEGER, C. W. Software reuse. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 24, n. 2, p. 131–183, jun. 1992. ISSN 0360-0300.

KUON, I.; ROSE, J. Measuring the gap between fpgas and asics. IEEE Transactions
on computer-aided design of integrated circuits and systems, IEEE, v. 26, n. 2, p.
203–215, 2007.

https://doi.org/10.1145/2043164.2018478
https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tree/master
https://www.nytimes.com/2020/03/26/business/coronavirus-internet-traffic-speed.html
https://www.nytimes.com/2020/03/26/business/coronavirus-internet-traffic-speed.html

46

KUON, I. et al. Fpga architecture: Survey and challenges. Foundations and Trends® in
Electronic Design Automation, Now Publishers, Inc., v. 2, n. 2, p. 135–253, 2008.

LADD, D. A.; RAMMING, J. C. Two application languages in software production. In:
USENIX Very High Level Languages Symposium Proceedings. [S.l.: s.n.], 1994. p.
169–178.

LI, Y. et al. Accelerating distributed reinforcement learning with in-switch computing. In:
IEEE. 2019 ACM/IEEE 46th Annual International Symposium on Computer Archi-
tecture (ISCA). [S.l.], 2019. p. 279–291.

LOCKWOOD, J. W. et al. Netfpga–an open platform for gigabit-rate network switch-
ing and routing. In: IEEE. 2007 IEEE International Conference on Microelectronic
Systems Education (MSE’07). [S.l.], 2007. p. 160–161.

MATSUZONO, K.; ASAEDA, H.; TURLETTI, T. Low latency low loss streaming using
in-network coding and caching. In: IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications. [S.l.: s.n.], 2017. p. 1–9.

NIGHTINGALE, J.; WANG, Q.; GRECOS, C. Hevstream: a framework for streaming
and evaluation of high efficiency video coding (hevc) content in loss-prone networks.
IEEE Transactions on Consumer Electronics, v. 58, n. 2, p. 404–412, 2012.

OZTAS, B. et al. A study on the hevc performance over lossy networks. In: 2012 19th
IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012).
[S.l.: s.n.], 2012. p. 785–788.

RICHARDSON, I. The H.264 Advanced Video Compression Standard. [S.l.]: Wiley,
2011.

ROBITZA, W. h26x-extractor. 2021. Available from Internet: <https://github.com/slhck/
h26x-extractor>.

Sandvine Inc. The Global Internet Phenomena Report September 2019. 2019.
Available from Internet: <https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/
Downloads/InternetPhenomena/InternetPhenomenaReportQ3201920190910.pdf>.

Sandvine Inc. The Mobile Internet Phenomena Report 2021. 2021. Available from In-
ternet: <https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2021/
Phenomena/MIPRQ1202120210510.pdf>.

SANVITO, D.; SIRACUSANO, G.; BIFULCO, R. Can the network be the ai accelerator?
In: Proceedings of the 2018 Morning Workshop on In-Network Computing. [S.l.:
s.n.], 2018. p. 20–25.

SAPIO, A. et al. In-network computation is a dumb idea whose time has come. In: Pro-
ceedings of the 16th ACM Workshop on Hot Topics in Networks. [S.l.: s.n.], 2017. p.
150–156.

SAQUETTI, M. et al. P4vbox: Enabling p4-based switch virtualization. IEEE Commu-
nications Letters, v. 24, n. 1, p. 146–149, 2020.

https://github.com/slhck/h26x-extractor
https://github.com/slhck/h26x-extractor
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/ Internet Phenomena/Internet Phenomena Report Q32019 20190910.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/ Internet Phenomena/Internet Phenomena Report Q32019 20190910.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/ 2021/Phenomena/MIPR Q1 2021 20210510.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/ 2021/Phenomena/MIPR Q1 2021 20210510.pdf

47

SAQUETTI, M. et al. Toward in-network intelligence: Running distributed artificial neu-
ral networks in the data plane. IEEE Communications Letters, v. 25, n. 11, p. 3551–
3555, 2021.

SIRER, E. G.; BERSHAD, B. N. Using production grammars in software testing. ACM
SIGPLAN Notices, ACM New York, NY, USA, v. 35, n. 1, p. 1–13, 1999.

SIVARAMAN, A. et al. Dc. p4: Programming the forwarding plane of a data-center
switch. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research. [S.l.: s.n.], 2015. p. 1–8.

SJOBERG, R. et al. Overview of HEVC high-level syntax and reference picture manage-
ment. IEEE Transactions on Circuits and Systems for Video Technology, v. 22, n. 12,
p. 1858–1870, 2012.

SUN, P. et al. Optimizing network performance for distributed dnn training on gpu clus-
ters: Imagenet/alexnet training in 1.5 minutes. arXiv preprint arXiv:1902.06855, 2019.

SZE, V. The H.264 Advanced Video Compression Standard. Switzerland: Springer
International Publishing, 2014.

TOKUSASHI, Y. et al. The case for in-network computing on demand. In: Proceedings
of the Fourteenth EuroSys Conference 2019. New York, NY, USA: Association for
Computing Machinery, 2019. (EuroSys ’19). ISBN 9781450362818.

TOKUSASHI, Y.; MATSUTANI, H.; ZILBERMAN, N. Lake: the power of in-network
computing. In: IEEE. 2018 International Conference on ReConFigurable Computing
and FPGAs (ReConFig). [S.l.], 2018. p. 1–8.

TONI, L.; CHEUNG, G.; FROSSARD, P. In-network view synthesis for interactive mul-
tiview video systems. IEEE Transactions on Multimedia, v. 18, n. 5, p. 852–864, 2016.

WALLENDAEL, G. V. et al. Keyframe insertion: Enabling low-latency random access
and packet loss repair. Electronics, Multidisciplinary Digital Publishing Institute, v. 10,
n. 6, p. 748, 2021.

WANG, Y. et al. Error resilient video coding techniques. IEEE Signal Processing Mag-
azine, v. 17, n. 4, p. 61–82, 2000.

WOODRUFF, J.; RAMANUJAM, M.; ZILBERMAN, N. P4dns: In-network dns. In:
IEEE. 2019 ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (ANCS). [S.l.], 2019. p. 1–6.

YANG, H. et al. Review of advanced fpga architectures and technologies. Journal of
Electronics (China), Springer, v. 31, n. 5, p. 371–393, 2014.

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background
	2.1 Video Transmission
	2.2 Video Quality
	2.3 Video Compression/Encoding
	2.3.1 H.265/HEVC standard

	2.4 Software Defined Networks
	2.5 Domain Specific Languages
	2.5.1 Programming Protocol-Independent Packet Processors

	2.6 Field-Programmable Gate Arrays
	2.7 P4vBox

	3 Related Work
	3.1 Video
	3.2 Network Hardware and Accelerators
	3.3 In-network Computing

	4 Proposed In-Network Computing Architecture
	4.1 Proposed Packet Drop Algorithm
	4.2 Proposed In-Network Hardware Module
	4.3 Simulator

	5 Evaluation
	6 Conclusions
	7 Future Work
	References

