
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JOSÉ FERNANDO DE LACERDA MACHADO JR.

Client-Transparent and Self-Managed
MQTT Broker Federation at the

Application Layer

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Lisandro Zambenedetti
Granville
Coadvisor: Prof. Dr. Marco Aurélio Spohn

Porto Alegre
June 2023

CIP — CATALOGING-IN-PUBLICATION

de Lacerda Machado Jr., José Fernando

Client-Transparent and Self-Managed MQTT Broker Fed-
eration at the Application Layer / José Fernando de Lacerda
Machado Jr.. – Porto Alegre: PPGC da UFRGS, 2023.

58 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2023. Advisor: Lisandro Zambenedetti Granville; Coadvisor:
Marco Aurélio Spohn.

1. MQTT. 2. Self-managed networks. 3. IoT. I. Granville,
Lisandro Zambenedetti. II. Spohn, Marco Aurélio. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The saddest aspect of life right now is that science gathers knowledge faster

than society gathers wisdom.”

— ISAAC ASIMOV

ACKNOWLEDGMENTS

To my Grandmother, who passed away during the development of this work and

dedicated 62 years to teaching.

To my family, without who this work would have been finished a year (or more)

earlier.

To Prof. Granville and Prof. Spohn, for being patient with all the ups and downs,

for the ear pulls, and for all the knowledge shared.

ABSTRACT

Scalability in messaging systems remains an open topic. Regular solutions present clus-

terized approaches, which can be very scalable for high-throughput systems but still rely

on a unique orchestrator which is a single point of failure. On the other hand, a few so-

lutions, mainly commercial products, provide scalability based on federation approaches,

which means the solution’s robustness relies on being distributed and highly fault-tolerant.

Spohn (Spohn, 2020) presented an innovative solution based on a federation approach and

being self-managed, which became the foundation of this work. On that, it is presented

a Python-written wrapper for Mosquitto MQTT brokers providing federation capabilities

with self-managed characteristics. The wrapper is client-transparent and self-managed,

being capable of attaching to the MQTT Mosquitto broker without any significant cus-

tomization, only with a minor tune on the configuration to allow the log output to be

diverted, and can also deal with topology changes without supervision.

Keywords: MQTT. self-managed networks. IoT.

Federação de Brokers MQTT Transparentes ao Cliente e Auto Gerenciada em

Nível de Aplicação

RESUMO

Escalabilidade em sistemas de mensageria ainda é um tópico a ser explorado. As soluções

existentes utilizam, principalmente, estratégias de clusterização, o que torna essas solu-

ções adequadas para sistema com grandes fluxos de dados mas continuam dependendo

unicamente de um orquestrador, que caracteriza um ponto único de falha. Por outro lado,

algumas soluções, normalmente produtos comerciais, oferecem escalabilidade baseada

em federação, sendo as principais características de robutez dessas soluções o fato de

serem distribuídas e altamente tolerante a falhas. Spohn (2020) apresentou um solução

inovadora baseada em federação, também sendo auto-gerenciada, que é o principal fun-

damento deste trabalho. Então, apresenta-se aqui um wrapper escrito em Python utilizado

em conjunto com brokers MQTT Mosquitto, possibilitando que estes trabalhem de ma-

neira federada e auto-organizada. Este wrapper é totalmente transparente ao cliente e

pode ser anexado ao broker MQTT sem necessidade customização, apenas com pequenos

ajustes de configuração de saída dos logs da aplicação.

Palavras-chave: MQTT, agentes federados, rede auto-gerenciada.

LIST OF ABBREVIATIONS AND ACRONYMS

ACL Access Control List

FBR Filter-Based Routing

GB Gigabyte

IBM International Business Machines

IoT Internet of Things

IP Internet Protocol

ISO International Standardization Organization

M2M Machine-to-Machine

MANET Mobile Ad Hoc Network

MQTT MQ Telemetry Transport (former Message Queue)

OSI Open Systems Interconnection

P/S Publish/Subscribe

PIP Packet Installer for Python

PUMA Protocol for Unified Multicast Routing

RADIUS Remote Authentication Dial-In User Service

RAM Random Access Memory

RMTP Reliable Multicast Transport Protocol

RFID Radio Frequency Identification

SSL Secure Socket Layer

TCP Transport Control Protocol

TINA Telecommunications Information Networking Architecture

UDP User Datagram Protocol

LIST OF FIGURES

Figure 4.1 Main Functions ..33
Figure 4.2 Support Functions..36

Figure 5.1 Validation Topology, extracted from [Spohn 2020].......................................41
Figure 5.2 Console image of federated brokers ..42
Figure 5.3 Six-node topology..43
Figure 5.4 Fifteen-node topology..44
Figure 5.5 Twenty-five-node node topology ...45

LIST OF TABLES

Table 4.1 Message types ...37

CONTENTS

1 INTRODUCTION...11
2 BACKGROUND..14
2.1 The Internet of Things..14
2.1.1 Definition ...14
2.1.2 Architecture and Reference Models...16
2.2 Protocols & MQTT ...18
2.2.1 MQTT ..19
2.3 Scalability ..20
3 RELATED WORK ...22
3.1 General Works and First Efforts Towards Scalability ..22
3.1.1 InfoBus Repeater: A Secure and Distributed Publish/Subscribe Middleware22
3.1.2 The Federation of Critical Infrastructure Information via Publish-Subscribe

Enabled Multisensor Data Fusion...23
3.1.3 Towards Scalable Publish/Subscribe Systems ...24
3.2 Foundation Works...25
3.2.1 Publish, Subscribe, Federate!...26
3.2.2 Federação de Brokers do Protocolo MQTT - Implementação e Análise de

Desempenho..27
4 PROPOSAL AND IMPLEMENTATION...29
4.1 Proposal ...29
4.2 Resources Overview..30
4.2.1 Mosquitto ...30
4.2.2 Python ..31
4.2.3 Paho..31
4.3 Model and Implementation..32
4.3.1 Model ...32
4.3.1.1 Main Group Functions ..33
4.3.1.2 Support Group Functions..35
4.3.1.3 Message Types ..36
4.3.2 Implementation ..38
5 VALIDATION AND PERFORMANCE TESTS..40
5.1 Validation...40
5.2 Performance Tests ...43
6 CONCLUSION ...46
6.1 Open Topics and Future Work ..47
REFERENCES...48
APPENDIX A — RESUMO EXPANDIDO ..51
APPENDIX B — PUBLISHED PAPER - ICNC 2023 - QUALIS A253

11

1 INTRODUCTION

Modern automation and telemetry solutions became an essential part of modern

life. Public safety, transportation, wearable gadgets, home, commercial and industrial

automation, and a myriad of possible solutions based on sensors and small equipment

populate the ecosystem of connected devices. Initially, those environments were called

Connected Devices (CO) and later were named Internet Of Things (IoT) [Zouganeli e

Svinnset 2009]. IoT devices gather and generate, mainly, small data that can be used to

integrate information systems, delivering great value to information systems.

The data generated and gathered in IoT environments require an optimized infras-

tructure to be stored, commuted, and processed. As the complexity of the environment

grows, there is a need for middleware to manage the data. Distributed solutions and spe-

cific protocols ease the integration and provide additional resources. However, another

variable in this equation also needs to be addressed: the limitation of individual computa-

tional resources of the equipment involved [Castellani et al. 2010].

Based on those points, addressing scalability is strategic. Adding more devices

to a given environment grows the amount of data collected and, consequently, the need

for computational power to deal with it. Transporting, storing, and processing requires

additional computational resources that a single device may not deliver, so there is a need

to use differentiated strategies for allowing data to be distributed and delivered. Scaling

computational resources in these complex environments is a challenge that needs to be

addressed wisely.

Scalability is a delicate topic because it comprehends various possible solutions

and approaches, each focused on a different part of the environment. On regular deploy-

ments, devices gather data transferred to some storage device, which can be an interme-

diary or final storage. Thus, the data can be integrated and processed into an information

system. On distributed systems, there is a need to use intermediate elements, which allows

scalability and availability of data to be converged. Focusing on a strategy that delivers

the most significant value based on its uniqueness is necessary to scale such environments.

There are, basically, two main approaches for scalability on computational sys-

tems. One is clustering, which uses the aggregation of individual computational units to

behave as a unique entity, relying on an orchestrator that distributes tasks and data, de-

livering great computational power in a vertical approach. On the other hand, Federating

computational units allow these individuals to behave based on common roles and policies

12

in a coordinated way, distributing computational power on a horizontal approach [Spohn

2022].

Protocols also play an essential role in those solutions. Several solutions have

emerged, allowing interoperability in those environments. Still, MQTT, formerly known

as MQ Telemetry Transport (sometimes referred to as Message Queue Telemetry Trans-

port), a protocol developed by IBM (Internation Business Machines) in the ’90s, delivered

desired characteristics and has been adopted widely, becoming one of the most used pro-

tocols (or architectures) on IoT deployments [Naik 2017].

MQTT uses a publish/subscribe paradigm, which means data is generated by a

given device that publishes its data on a storage entity - the broker - structured in topics.

Systems, devices, or any integrator can easily subscribe to a topic to gather this data,

which is pushed to the subscriber as soon as it is published [Firouzi et al. 2020].

So, the broker is a critical element in storing data generated and published. Here

starts one of the main challenges of scaling such environments. The more publishers

there are in a given environment, the more resources brokers need to gather and provide

access to stored data. Brokers have limited resources to provide, and depending on the

environment, using scalability strategies is imperative.

Different scaling strategies exist for MQTT deployments. The most common is

scaling the environment through clustering a set of brokers, allowing a significant growth

of the processing power available to interact with publishers and subscribers. The major

turnabout of using a clustering approach is that it mainly relies on an orchestrator, the load

balancer, which can be seen as a single point of failure. Having a single point of failure

can be risky in critical environments, and also, the load balancer has limited resources

that need to be scaled, making the solution extremely complex [Spohn 2020].

On the other hand, it is possible to scale computational systems using a fed-

eration approach, where all the members act based on specific roles and policies but

autonomously, with background coordination. With this approach, the distributed sys-

tem doesn’t rely on a single orchestrator; consequently, there is no single point of fail-

ure [Spohn 2020].

Scaling MQTT environments using a federation approach is not a deeply ex-

plored topic and remains open. There are some solutions presented as proprietary, like

HiveMQ [HiveMQ 2022] that claims to have federation capabilities, but there is no in-

depth documentation presenting the implementations. Another solution that claims to be

federation capable is RabbitMQ [VMWare 2022], which is open-source, but the imple-

13

mentation needs the subset of queues that will be federated to be previously configured.

To explore a more autonomous solution, the foundation of the present work proposes a

client-transparent and self-managed solution for federating MQTT brokers, written by

Spohn [Spohn 2020]. Based on that, this work aims to implement the proposal using

a Python-written wrapper attached to a regular Mosquitto MQTT broker, delivering au-

tonomous federation capabilities.

The implementation proposed in the present work aims to be the least intrusive

as possible and flexible enough to be adapted to any other MQTT broker that allows the

same integration strategy the Mosquitto MQTT allows. This solution interacts with the

broker by gathering log data and, with its federation capabilities, managing orchestration

and data communication with other federation members.

The work is organized as follows: in chapter two, the bibliographic revision dis-

cusses IoT foundations, MQTT characteristics, and scalability challenges. In chapter

three, the related works are presented as the theoretical proposal for this work. The im-

plementation details are presented in chapter four, followed by chapter five, where the

validation and performance tests are discussed. Chapter six brings conclusions and future

work.

14

2 BACKGROUND

This chapter presents the background for this work, which focuses on integrating

IoT devices using the MQTT protocol and scaling strategies for IoT environments. With

the increasing ubiquity of IoT, it is essential to review the development of the technology

and MQTT protocol and its importance to the present work.

2.1 The Internet of Things

2.1.1 Definition

The concept of IoT and its related areas have been at the forefront of computing

research for almost a decade. Numerous definitions of IoT have been proposed as pre-

sented by Firouzi et al., ranging from simple descriptions such as "connecting any device

to the internet and other devices" to more elaborate definitions such as “the network of

physical objects that contain embedded technology to communicate and sense or interact

with their internal states or the external environment” [Firouzi et al. 2020]. Despite their

variations, all definitions emphasize data collection from the environment by devices and

their ability to interact with other systems or devices through the internet. In this study,

we adopt a comprehensive definition of IoT that encompasses the various dimensions of

the technology.

According to Firouzi et al. [Firouzi et al. 2020], IoT deployments typically in-

volve several key elements. First, there are the things or devices, which are intelligent

elements capable of sensing, actuating, and interacting with other objects, systems, or

people. These devices typically include a processing unit, power source, sensor or actu-

ator, network connection, and some identification method, such as a network address or

tag for unique identification.

Connectivity is the second essential element in an IoT deployment, enabling de-

vices to communicate with other elements. Connectivity means establishing a physical

connection and using some protocols to support data exchange.

The third element is data, defined as "...the first step toward action and intelli-

gence" [Firouzi et al. 2020]. Data collected from IoT devices range from environmental

data gathered through sensors, diagnostic data, location, reports, commands for automa-

tion, and other means of interactions.

15

Intelligence is the element that unlocks the potentiality of an IoT environment,

allowing insights to be generated from the data collected. Various approaches can be used

to analyze the data, including predicting maintenance, improving services, and enhancing

productivity, not limited to these. The potential applications of IoT are vast and varied,

and the insights gained from analyzing the data can help businesses and organizations

optimize their operations and improve decision-making.

There is no interaction without action. This is why intelligence and action work

as pair. Automation is a keyword in IoT deployments, so interaction is a central concept.

Other concepts may be secondary, such as ecosystem and heterogeneity, meaning

IoT should be analyzed through a generic optic. IoT environments usually are organized

as an ecosystem of diverse equipment, which brings heterogeneity, but they must share a

common reference model to interact coordinately.

Also, dynamic changes are expected in an organized environment to sense and

interact. This is why this characteristic is also expected to be listed as a part of the IoT

environment concept.

Finally, enormous scale and security and privacy are characteristics directly re-

lated to the need for scalable deployment on IoT environments and concerns about secu-

rity and privacy, as data gathered, generated, and exchanged inside the ecosystem can be

very sensitive.

From another angle, Firouzi et al. [Firouzi et al. 2020] points out that the IoT

ecosystem is based on four pillars: things, data, people, and processes. This view is simi-

lar to the deployment view but focuses on a more strategic angle of the IoT existence. As

one can directly relate, things are related to the devices and their operationality, including

their ability to interact, automate, and other functionalities that can be delivered or con-

sumed. Data is related directly to the data gathered and sensed through devices but also

includes all the necessary treatments to filter, sort, and store the data. In this view, the

role of the people is to be an agent of operation of the IoT ecosystem or a consumer of

the outcomes of the data processing, playing the role of a beneficiary of these outcomes.

And, at last, the final component of the IoT ecosystem is process, where "...the benefits

of intelligent automation, informed decision-making and control, and efficient procedures

are realized". This element of the IoT ecosystem includes analyzing data and delivering

value-added information to consumers".

The value added by IoT is remarkable. Firouzi et al. [Firouzi et al. 2020] presents

some differential benefits that IoT delivers. As devices can sense the external environ-

16

ment, delivering enhanced safety inside hazardous environments is possible, as monitor-

ing and managing can be enormously improved. Also, operationally monotonous tasks

can be improved and automated. One example is parking access (or another type of access

control) automation, which needs minimal people involved today. Another topic that ben-

efits from the IoT ecosystem is healthcare. Monitoring has become more complete and

agile, and the possibility of interacting with life-support devices brings medical response

to another level. Adopting IoT can be a game-changer in all areas, from smartwatches

that can monitor health parameters to connected pacemakers.

Adopting IoT is very challenging. As presented by Firouzi et al. [Firouzi et al.

2020], significant changes need to be addressed, ranging from strategic and management

changes, as new functions and roles are needed in the business, to operational and techni-

cal issues involving the deployment, administration, maintenance, and monitoring of the

IoT devices and its operation. Security is another essential item to be added to this list, as

IoT devices are very low on resources and can be used as a point of entry for invasions. In

2017, a security breach was explored through an aquarium monitoring device that allowed

a hacker to download around ten gigabytes of data from a casino [Schiffer 2017]. Privacy

concerns also are very important because IoT is now part of everyday life, leading to

different means of exploitation, as presented by Stamps [Stamps 2021], who brought the

story of an incident where a baby monitor was exploited, allowing the attacker to interact

with the house residents.

Data-related challenges can also be extended to dealing with the amount of data

generated in the IoT ecosystem. Differentiated approaches are needed, as classical data

storage means can not deliver the performance needed, and a structured scheme that better

fits IoT data may also be imperative. Firouzi et al. [Firouzi et al. 2020] cites a few

technologies and frameworks that appeared to propose solutions, such as NoSQL-based

and time-series-based databases.

2.1.2 Architecture and Reference Models

As IoT evolved quickly, no reference model with clear guidelines existed for al-

lowing an ordinated technology development. [Bauer et al. 2013] states that IoT is a

product of the evolution of technology in different areas that started to converge. The

evolution of RFID (Radio Frequency Identification) solutions was an essential enabler as

this technology became widely adopted for cargo tracking, and devices (sensors) capable

17

of reading RFID tags supported more functionalities and interconnection, allowing real-

time data gathering. Also, sensors became smaller and computing power higher, enabling

even more resources that could be adopted for different markets [Bauer et al. 2013].

As sensor devices and other related solutions were adopted, a reference model for

supporting the coordinated evolution and development of the technology became nec-

essary. The first result of the coordinated effort of several equipment manufacturers

appeared in 2009 [Bauer et al. 2013] when the IoT- Architecture project (IoT-A) was

presented. The result was the first guideline for coordinated IoT product architecture

standardization. It was clear that several aspects diverge significantly from business to

business, including security and privacy, which are commonly subject to different poli-

cies and laws depending on the location, as stated by Bauer [Bauer et al. 2013].

As IoT-A was the first reference model, several aspects were not covered, such as

scalability [Bauer et al. 2013]. Also, there was a need to present more specific guidelines

for developing products with different architectures, with more concrete details, focusing

on functionality, performance, deployment, and security. In-depth, the reference model

details design guidelines, where a domain model helps describe concepts of the area of

interest, also defining its essential attributes; an informational model helps to define in-

formation structure and its relationships and how it is handled and processed; a functional

model helps to describe the desired behavior and which functions the product shall have

to act as expected; the communication model is aimed at defining the paradigms to allow

internal and external communications, ranging from communication between processes

to communicating through the internet to other devices or sensing the environment to

communicate with RFID, as an example; and, finally, a trust, security and privacy model,

supporting the development of policies, mechanisms and the adoption of solutions for a

more fiducial environment.

Another reference level was proposed to address the need for more specific ele-

ments. Thus, reference architectures were presented to standardize interfaces and foment

the adoption of best practices. The IoT Architectural Reference Model (ARM) was pre-

sented based on a deep analysis of requirements gathered between selected end-users and

the project stakeholders [Bauer et al. 2013]. One of the most strategic gains was interop-

erability, leading to easy technology adoption.

As an architectural model, the ARM aims to address important questions in guid-

ing technological development and adoption. Functional elements, the way they interact,

the way the information is managed, which operational features a device can present, and

18

how it can be deployed are aspects specified in the model [Bauer et al. 2013]

2.2 Protocols & MQTT

As seen in Section 2.1, communication is essential to IoT. The IoT ARM addresses

communications through a structural model that "...allows the identification of homoge-

neous subsystems and their capabilities and constraints, identify suitable protocols stacks

and network topologies to be merged in a common system view and define gateways

bridging solutions" [Bauer et al. 2013].

The key to defining the communication model is the establishment of all subsys-

tems through a complete and well-defined domain and information modeling [Bauer et

al. 2013]. This allows defining "homogenous subsystems as a set of system elements

sharing the same communication technology and similar hardware capability" [Bauer et

al. 2013]. The communication requirements also permit identifying communication pat-

terns, consequently identifying the interoperable stack and topologies, following three

specific points: first, each stack must grow from a specific communication technology;

second, interoperability shall be enforced in the lowest possible layer of the stack. Third

and last, the combination of identified stacks and topologies must satisfy all the require-

ments [Bauer et al. 2013]. It is important to note that the second rule automatically drives

the interoperability to the network stack, as devices mainly share the same ISO/OSI (In-

ternational Standardization Organization/Open Systems Interconnection) network model.

This simplifies interoperability and allows easy integration of devices and other systems

that adhere to this model.

It can be inferred that for dealing with communication stacks, the ISO/OSI model

delivers different levels of interoperability to various subsystems. As some subsystems

can be integrated with other internal or external subsystems through lower-level network

stacks, some other subsystems’ integration need to be addressed on higher-level network

stacks, even at the application level [Bauer et al. 2013]. So, no single rule fits all the

possible solutions.

Bringing the topic to a higher level, the intercommunication that is needed to

integrate IoT devices with other systems, besides the low-level network protocols, shall

deliver simplicity and allows reliable end-to-end communication with the least control

overhead, good fault tolerance, and consume the least possible network resources [Bauer

et al. 2013] and [Firouzi et al. 2020].

19

Delivering end-to-end communication is a tricky goal. Achieving this means al-

lowing a high interoperability level, not only M2M (Machine to Machine) communica-

tion but also allowing data to be delivered to storage and information systems [Bauer et

al. 2013]. Protocols that operate at the application level tend to provide functions that

are not present on lower-level layers, and this is why there is a need to use standardized

application protocols to achieve the desired interoperability [Bauer et al. 2013].

Communication at the application level allows more complex operations. Several

devices use HTTP or WebServices to provide refined resources, but this approach has

cons, such as a significant communication overhead as presented by [Firouzi et al. 2020]

and [Bauer et al. 2013]. The search for a leaner protocol led to the development of one

that could deliver resources with very restricted constraints - the MQTT (MQ Telemetry

Transport) [HiveMQ 2020].

2.2.1 MQTT

MQTT was proposed as a protocol in 1999, allowing IoT devices to communicate

reliably [MQTT 2022]. The main goal was to present a lightweight protocol with the low-

est resource requirements to deliver reliable communication on unreliable networks with

low bandwidth and high latency. The main goal was to provide a protocol to be used for

pipeline monitoring using devices that consume minimal battery and connect to satellite

networks, following requirements such as simplicity of implementation, quality of ser-

vice data delivery, efficiency on bandwidth and latency, being data agnostic, and allow-

ing continuous session awareness [HiveMQ 2020]. MQTT adopts the Publish/Subscribe

approach, in which IoT devices do not directly connect to the client that consumes the

messages. This is based on a three-dimensional decoupling approach, where space, time,

and synchronization are key points [HiveMQ 2020].

Space decoupling means that the publisher and the subscriber may not know each

other, allowing simplicity in the implementation and management; time decoupling means

that the publisher and subscriber may not be running (or turned on) at the same time;

and third, synchronization decoupling implies that operations on both components do not

need to be interrupted during the publish/subscribe task and there are no processing nor

network overhead to synchronize elements for communicating [HiveMQ 2020].

MQTT architecture proposes two main elements involved in messaging: clients

that act as publishers or subscribers and the broker. The broker is the middleware on

20

which MQTT relies to interact with clients and gather or deliver data, depending on the

client’s role [HiveMQ 2020]. As told, clients can act as data publishers when they are

pushing data gathered into the broker, and it acts as a subscriber when they pull data from

a broker [HiveMQ 2020].

The broker is the most important element in architecture as it allows components

to interact. The publisher clients connect to the broker and push data to dataspaces called

topics [MQTT 2022]. Topics are hierarchical structures similar to folders, where data

is pushed and can be named freely, regarding the case-sensitive nature of a topic identi-

fier [MQTT 2022]. It is also possible to state that information published to the broker is

subject-based, as every data unit pushed to the broker has a subject [HiveMQ 2022]. Data

published shall be represented using UTF-8 (Unicode Transformation Format - byte ori-

ented) to avoid problems with data representation [Oasis 2014], as Unicode can generate

escape codes that can be misunderstood on different systems; however, MQTT specifica-

tion indicates that if data is encoded using Unicode, the data packet will be dropped.

2.3 Scalability

Scalability is a sensitive topic on MQTT implementations, as main efforts to scale

such environments were made towards clustering [Spohn 2020]. Ruempitak [Ruenpitak

et al. 2022] also states that there are three main approaches for scaling MQTT deploy-

ments. Bridging is the first approach, where brokers are statically and directly connected,

which has some drawbacks, such as inefficient message forwarding and possible message

looping [Ruenpitak et al. 2022]. The second approach, proposed by [Longo e Redondi

2023], is through implementing spanning tree capabilities on the MQTT protocol, called

MQTT-ST [Longo et al. 2020], which allows brokers to be interconnected without mes-

sage lopping risk. The third approach is through clustering, which is the most adopted

solution but relies on a single orchestrator, which can be risky for mission-critical envi-

ronments, as presented by [Bass 2002] and [DE LACERDA MACHADO Jr., Spohn e

Granville 2023].

The cited three approaches to scalability leave a gap in the topic for a reliability-

focused approach, which can be filled with the proposal presented by Spohn [Spohn

2020]. Scalability based on a self-organizing federation approach is a different proposal

that focus on high availability, but because of its novelty, it is underexplored. Motivated

by this panorama, the present work presents a simple but ingenious implementation of the

21

work presented by [Spohn 2020].

22

3 RELATED WORK

3.1 General Works and First Efforts Towards Scalability

This section presents work efforts toward scalability with a federation approach. It

is essential to note the topic’s complexity, as years were spent trying to deliver substantial

evolution. The topic remains open due to a few factors like the evolution of devices’

processing power, developments in connectivity, and more reliable technology, allowing

clustering to evolve quickly [DE LACERDA MACHADO Jr., Spohn e Granville 2023]

and being an accepted and widely adopted solution. But distributed critical environments

need a different approach, focused on the survivability of the infrastructure [Bass 2002].

The following works give an essential overview of the topic’s evolution.

3.1.1 InfoBus Repeater: A Secure and Distributed Publish/Subscribe Middleware

The InfoBus Repeater is a middleware developed by Uramoto and Maruyama

[Uramoto e Maruyama 1999] in 1999. Based on the Infobus API (Application Program

Interface), which is an interface that allows Java Beans to intercommunicate [Sagar 2003],

the repeater provides distributed communication through a simple federation approach us-

ing the publish/subscribe principle.

Infobus is an event-driven communication interface provided by Java1 that allows

data updates to different processes (or software instances) using a publish/subscribe ap-

proach [Sagar 2003]. Three types of Java Beans interact with the InfoBus in the archi-

tecture: data producers, data consumers, and data controllers. These elements need to

join the InfoBus to access notifications generated by the events. Data producers announce

the availability of new data, data consumers register to listen to data items that have been

published, and data controllers filter and monitor data items [Sagar 2003]. But InfoBus

has limitations in distributed environments, lacking the ability to communicate to remote

instances, leading to the proposal of the InfoBus Repeater [Uramoto e Maruyama 1999].

The InfoBus Repeater thus provides the regular InfoBus resources in distributed

networking environments. The repeater connects to InfoBus instances and acts as a data

publisher and data consumer, monitoring all data items that flow in the instance [Uramoto

e Maruyama 1999]. It also monitors data consumers announced inside the InfoBus in-

1http://java.com

23

stances and thus monitors which data items are marked as redistributable for later relaying

to the remote instances [Uramoto e Maruyama 1999].

By allowing data published on an InfoBus instance to be replicated to other in-

stances, the InfoBus Repeater acts as a federation agent allowing intercommunication

between remote elements, as the same behavior and data availability is expected in all

interconnected nodes [Uramoto e Maruyama 1999]. The interconnection between two In-

foBuses is made using TCP (Transmission Control Protocol), but if more instances need

to be interconnected, RMTP (Reliable Multicast Transport Protocol) should be used to

avoid data retransmission loops [Uramoto e Maruyama 1999]. The repeater also provides

SSL (Secure Socket Layer) authentication to allow secure interconnection between those

networked buses [Uramoto e Maruyama 1999].

The idea of an orchestrator that provides message replication through an integrator

is not new, but the InfoBus Repeater proposal delivered a mature work on the topic, and

it stands as a valuable contribution to modern research.

3.1.2 The Federation of Critical Infrastructure Information via Publish-Subscribe

Enabled Multisensor Data Fusion

In 2002, Bass [Bass 2002] presented a work that proposed models for federat-

ing critical infrastructure monitoring systems in "loosely coupled service-oriented infor-

mation fusion processes administered by a federation of organizational services," which

includes:

• federated sensor, processing, assessment, and storage;

• publication, subscription, and other fusion services;

• attribute-based data and information publishing;

• subscription-based data and information availability.

The models focused on delivering a reliable communication architecture for mon-

itoring critical infrastructure, such as communication networks, electric power grids, in-

telligence networks, immigration systems, air traffic control, and transportation systems,

not limited to those, using a publish/subscribe approach [Bass 2002].

The motivation for using a publish/subscribe approach is its event-oriented na-

ture, as other aspects that are desirable in a monitoring environment, such as time and

space decoupling, which means that data publishers and subscribers do not need to be

24

synchronized and also do not need to be aware of their mutual existence [Bass 2002].

One important point is the network topology, which is critical to the federation.

Bass [Bass 2002] states that centralized network topologies are unsuitable for critical en-

vironments, and a distributed approach is needed. The author analyzes three network

topologies - hierarchical, acyclic peer-to-peer, and general peer-to-peer. Hierarchical

topologies have cons regarding the servers at the top of the hierarchy, which the up-

coming data can overload. This issue can generate a dangerous bottleneck to the moni-

toring system [Bass 2002]. Acyclic peer-to-peer networks prevent a server overloading

by presenting a more distributed topology, but it also has its cons, as they may not de-

liver a desirable redundancy to server interconnection, which can be seen as single point

of failure [Bass 2002]. So, a general peer-to-peer is the adequate network topology for

critical monitoring infrastructure, presenting redundancy in links to avoid single points

of failure [Bass 2002], but it is an utopic and costly scenario when integrating different

networks of diverse entities.

But on the other hand, regarding the uniqueness of each involved party in the

network integration, a hybrid model acting in a cooperative way, just like a real-world

internet topology, will deliver significant reliability and can fit the singularities of each

integrated member network policy [Bass 2002].

To provide data availability over the network, data access points are needed. These

access points should rely on an event notification service, which notifies interested parties

of new data published over its topics of interest over the distributed and heterogeneous

environment [Bass 2002]; the author’s point of view on this particular topic enlights one

of the foundation points of the present work which is delivering a federated network

of MQTT brokers which provides data access to all topics of interest in a distributed

environment.

With that, this particular work magnifies the motivations of Spohn’s [Spohn 2020]

proposal and reinforces the need for a viable solution that fits the singularities of this

problem and related environments.

3.1.3 Towards Scalable Publish/Subscribe Systems

Distributed publish/subscribe solutions have evolved in their design and imple-

mentation, and distributed architectures have become more commonly adopted, bringing

FBR (Filter-Based Routing) as a highly adopted solution on these topologies. As stated

25

by Ji et al. [Ji et al. 2015], FBR is not efficient nor flexible, despite being highly adopted

as a viable solution for distributed environments. This comes from the coupling of event

matching and routing, where each routing decision is based on the resulting event prop-

erties. Also, FBR suffers from limitations such as problems supporting general overlay

topologies, subscription duplication, redundant and repeated event matching, and a lack

of flexible support to overlay reconfiguration [Ji et al. 2015].

Ji et al. initially proposed the D-DBR (Dynamic Destination-Based Routing) to

overcome these problems by decoupling the P/S (publish/subscribe) system into two inde-

pendent layers, one responsible for content-based matching and the other responsible for

destination-based multicasting [Ji et al. 2015]. This allows topology changes (the over-

lay) to be held by the multicasting layer, which keeps the routing information updated and

addresses message forwarding; supporting overlay reconfiguration introduces a valuable

fault-tolerance mechanism and optimizes performance [Ji et al. 2015].

Although, D-DBR has scalability issues related to large-scale networks, as each

broker has to have knowledge of all brokers in the system; this is why Ji et al. proposed

the MERC (Match ad Edge and Route intra-Cluster), which aims at allowing scaling P/S

environments on large networks deployments by creating clusters of brokers that just need

to be aware of other brokers in the same cluster, and interconnection cluster brokers that

act on the edges as routers to other clusters.

MERC also uses the same destination-based content routing used in D-DBR,

adding a hierarchical approach, organizing the brokers into interconnected clusters through

edge brokers, i.e., brokers that are part of two or more clusters [Ji et al. 2015]. The

destination-based routing is divided into two layers, the intra-cluster, and the extra-cluster

event routing, assembled based on the brokers’ advertisements of subscriptions [Ji et al.

2015].

Notably, efforts toward delivering an efficient solution to handle data over a dis-

tributed environment based on a publish/subscriber approach try to explore decoupling at

all levels. This particular work contributed to the present work by providing a more solid

foundation for task division in the implementation.

3.2 Foundation Works

The Foundation Works to the present work provides the theoretical foundation or

the main guidelines for the present work, also bringing a new vision over the implementa-

26

tion. Three main works have contributed to the current work, which will be presented and

discussed in this section. The first work is the paper presented by Spohn [Spohn 2020],

who proposed the theoretical model for federating MQTT brokers using an ad-hoc ap-

proach, meaning that there is no need for one broker to connect directly to other federated

brokers, just its neighbors, and, on [Spohn. 2021], a first implementation proposal was

presented. Ribas [Ribas 2022] presented the first derived implementation of Spohn’s work

, presenting a Rust-written federator that relies on the attached broker to store information

regarding federation and its federated topics.

3.2.1 Publish, Subscribe, Federate!

This is the main foundation work on which this proposal relies. Spohn [Spohn

2020] presented a model for delivering federation resources to MQTT brokers using a

simple and innovative approach. IoT deployments rely on brokers to gather and deliver

information to clients, and mainly, scaling such systems is typically made using a clus-

tering approach. To deliver high availability, Spohn [Spohn 2020] proposes a federative

approach to scale those deployments, focusing on MQTT-based solutions.

The model proposed by Spohn aims at being simple and flexible, bringing commu-

nication principles introduced by MANETs (Mobile Ad-Hoc Networks), where network

routing and orchestrating are made at the application level, as a network member (or node)

may only have direct and limited access to its neighbors [Spohn 2020].

Also, the model proposes resources for dealing with information spreading through

the network, based on PUMA (Protocol for Unified Multicast Routing), which relies on

meshes for multicast communications [Spohn 2020].

Based on these two pillars, the model proposed by Spohn works on two levels.

The first is establishing an overlay network that delivers routing and other high-level

network resources to network members, called the federation [Spohn 2020]. Over that

overlay network, data is forwarded and routed to all groups, or individual members of the

federation, allowing end-to-end communication.

As MQTT-based IoT deployments are the environment the model aims to support,

dealing with particularities of the publish/subscribe approach is mandatory. The main

point of the proposed solution is to allow remote subscribers to a common topic to receive

data regarding that particular topic on any interconnected broker. This only can happen if

all brokers are aware of the existence of subscribers and their localization. To solve this

27

problem, the model proposes a network-wide announcement for subscribers’ presence,

assembling a mesh that facilitates data to flow between remote brokers. The mesh format

also aims to facilitate routing and managing mesh topics, as described by Spohn [Spohn

2020].

The proposed format for managing the meshes, the overlay network or the topic

meshes, is a core element election that plays a referential role in each mesh. All orches-

tration and data forwarding is made depending on this reference element. The model also

proposes a generic message format or data that is used to orchestrate the meshes, which

shall carry the following information [Spohn 2020]:

• CoreID

• Distance to the core in hops

• Mesh membership flag

• List of parents

All information regarding core brokers, being the overlay core or a topic core, is

known by all federation members and, consequently, information regarding all federated

topics. This allows a broker not part of a topic mesh, meaning there are no locally con-

nected subscribers to that given topic, to forward messages to a federated topic, reaching

the subscribers to the topic that are connected to remote brokers transparently [Spohn

2020].

The implementation proposed in Section 4.3 tries to be as fiducial as possible to

this model.

3.2.2 Federação de Brokers do Protocolo MQTT - Implementação e Análise de De-

sempenho

This work presents one implementation derived from Spohn’s [Spohn 2020] work

written in Rust2 by Ribas [Ribas 2022], which relies on the MQTT broker to store federation-

related information.

The implementation uses a topic called federator in which information about

core announcements, member announcements, routing, and beacons which are messages

regarding local subscribers, are stored. The beacon is a registration message published

by the client subscribing to a federated topic. So, the subscriber needs to be aware of

2https://www.rust-lang.org/

28

federated topics and register to receive information from the federation if there is any

publication on remote brokers, as described by Ribas [Ribas 2022].

This implementation provides a good overview of the challenges in implementing

Spohn’s model. The implementation proposed in the present master thesis tries to be more

transparent to clients, being aware of the existence of a federation, and also tries to detach

from the MQTT broker, avoiding its use as a data store.

29

4 PROPOSAL AND IMPLEMENTATION

4.1 Proposal

The work presented by Spohn [Spohn 2020] was chosen to be the foundation of

the present work. His work, as reviewed, proposes some adapting to an existing MQTT

broker, allowing intercommunication between brokers and orchestration to assemble an

overlay network, allowing topic meshes to be organized and providing data published on

a given topic to be propagated to all brokers that have subscribers.

To implement Spohn’s work, some points needed to be defined. First, a regular

MQTT broker to provide all the core MQTT functionalities. Second, a viable approach for

customizing the broker keeping it low on resource usage and being the least intrusive as

possible. Third, and last, a programming language that allows implementing the solution

without excessive effort.

The chosen MQTT broker for implementing the proposal was Eclipse Mosquitto

MQTT broker [Eclipse 2018] which is a very mature, reliable, low profile on resource

usage, and highly deployed solution. More details about Mosquitto will be presented

ahead, but one important characteristic is that all log data generated can be redirected

to a specific topic. This is a game-changer because allows all broker operations to be

monitored without deeper customization.

Mosquitto’s capability to redirect logs to a topic allowed the possibility to create

a module that interacts with the broker in a simple manner, through native MQTT. So,

if the broker allows the module to connect using its regular resources, it is also possible

to design a module that consumes messages from the log topic to monitor and manage

data. Based on this approach, and knowing that Python [Python 2022] has a library that

allows interactions with MQTT brokers, it became the chosen programming language to

implement the proposed solution.

The library that allows MQTT interactions with Python is called Paho [Paho

2022]. With this library, it is possible to subscribe to broker’s topics and treat data re-

ceived, also, it is possible to publish data on the topics. With that, the idea of developing

a module that could be attached to the broker providing the needed communication and

orchestration functions evolved, and, the development of a wrapper became possible.

Ahead, it will be presented a brief overview of the technologies involved, and,

after, the design and implementation of the wrapper

30

4.2 Resources Overview

4.2.1 Mosquitto

Eclipse Mosquitto MQTT broker [Eclipse 2018] is a well-known and highly de-

ployed MQTT broker that aims to be highly flexible and adequate for IoT deployments,

as it is focused on being low profile on computational resources usage. Also, it is open-

source software distributed under the Eclipse Public Licence (EPL), which allows audi-

tion, free modification, and limited redistribution. Mosquitto broker has also been ported

to several platforms and can be installed on almost every operating system.

Current branches of the Mosquitto MQTT broker present two versions of MQTT

protocol implementation, the 3.1.1 and the 5.0 [Eclipse 2018]. The main difference be-

tween these two versions is that version 5.0 provides additional features such as ses-

sion/Message Expiry Interval, Reason Code, Topic Alias, User Properties, and Shared

Subscriptions. It improves the performance, stability, and scalability of large systems

[EMQX 2022]. For this work, the version used was 3.1.1 because of its wide adoption

and also for being more mature than 5.0

Mosquitto configuration allows all log data to be redirected to a particular system

topic, the $SYS topic [Eclipse 2018]. This is one of the most important elements that pro-

vided resources for implementing this work. All information regarding topic subscribers

is logged and can be used to monitor if there is any subscriber to a given topic, as shown

in the following example:

log_dest topic

log_type all

For a more adjusted option, it is possible to fine-tune which information will be

published in the SYS topic, placing all desired logging levels one per line, as shown:

log_dest topic

log_type debug

log_type error

log_type warning

log_type notice

log_type information

log_type subscribe

31

log_type unsubscribe

4.2.2 Python

Python [Python 2022] is a powerful and flexible programming language that pro-

vides valuable resources for implementing Spohn’s [Spohn 2020] proposal. Python is a

high-level scripted programming language, not compiled, but with a very good perfor-

mance and low on computational resources usage. This is why Python was chosen for the

implementation.

Also, Python is a very mature programming language, with several libraries to

support virtually every computing topic, ranging from low-level networking, data analy-

sis, neural networks, web applications, and other areas [Python 2022].

For dealing with IoT, mainly MQTT-based environments, the Eclipse foundation

presented the Paho project, which delivers to various programming languages a resource-

ful library to deal with MQTT-related applications [Paho 2022].

4.2.3 Paho

The Paho Project results from efforts to deliver resources that provide open-source

implementations of open standards protocols aimed at applications for IoT environments

[Paho 2022]. Paho, as explained by the Eclipse Foundation [Paho 2022], is a Maori word

that means "to broadcast, to transmit, to announce" and fits the main functions that the

library delivers.

Eclipse Project tried to facilitate the creation of a flexible ecosystem for IoT en-

vironments, delivering value-aggregated tools to integrate M2M (Machine-to-Machine)

solutions, and MQTT protocol plays a vital role in this scenario; with the MQTT code

made available by its creators, Paho became a framework that was quickly adopted to

deal with the technology that was evolving, back in 2010’s [Paho 2022].

The first code was made available in C and Java and later ported to other pro-

gramming languages, such as Python [Paho 2022], and can be installed using the regular

Python package manager PIP (Package Installer for Python).

32

4.3 Model and Implementation

After the initial implmementation presented by Spohn [Spohn. 2021], Ribas [Ribas

2022] introduced a RUST-written federator that uses the broker to store information re-

garding federated topics and routing information. The federator interacts with the broker

using the Paho library provided by the RUST programming language.

To be more detached from the broker, the present work proposes a wrapper that in-

teracts to gather and post information directly related to federated topics, handling routing

and monitoring internally without storing functional data in the broker.

The main goal was developing a very light and simple solution that delivers the

expected behavior proposed on Spohn’s work [Spohn 2020].

4.3.1 Model

The Main Group is composed of four functional subgroups. These subgroups are

named federator, orchestrator, integrator, and forwarder. The first subgroup, the federator,

has two primary functions: first, monitor communication links between neighbors using

a handshake-like function, and second, generate a regular announcement token used by

the wrapper to assemble the federation. The second subgroup deals with orchestrating

functions, using information from the brokers to assemble and manage the federation (the

overlay network) and monitor and manage information regarding the federated topics.

The third subgroup is responsible for interacting with the broker to monitor subscribers

and topic data, gathering new data to forward to remote federated brokers, or publishing

received data from remote brokers to local topics. And the fourth subgroup is responsible

for forwarding packets, avoiding looping forwards and spurious retransmissions.

Figure 4.1 briefly overviews the Main Group and its subgroups. There is also a

Support Group, which encompasses six subgroups that aim to provide support function-

alities to the broker, such as flushing caches, low-level networking functions to send and

receive packets, packet inspection, logging, and debugging, as demonstrated in Figure

4.2.

These two functional groups support all the needed functions allowing a full-

functional wrapper. Ahead, a more detailed presentation of each group will be made.

33

Figure 4.1: Main Functions

4.3.1.1 Main Group Functions

Federator Subgroup:

As presented, there are four main functions that the wrapper relies on. The sub-

group that delivers federation capabilities is called Federator group and has two functions.

As reviewed in Section 3.2.1, the wrapper does not connect to other wrappers besides its

neighbors. Because of that, monitoring these links is mandatory to keep up with topology

changes, which will consequently change routes.

The helo function uses a regular helo packet to the neighbors, being responded

with a heloback packet, assuring that the link is up and the neighbor is ready. It is

essential to state here that there is a need for previous knowledge of the neighbors. The

helo packet sending interval can be adjusted to fit topology singularities, but a notifi-

cation every ten seconds should work in most cases. When the handshake is made, the

wrapper registers internally that there is a link up with that particular neighbor and the

remote IP address. This information is stored in a Python list called activeNeigh.

The second function inside the Federator subgroup is the federate function, which

also sends announcement packets in regular intervals. The packet is structured as follows:

fd(sequenceCount, distanceVector, brokerId)

For each new announcement, the wrapper, identified by an integer called brokerID,

adds one to the sequenceCount, which is an integer, indicating the information life-

time. The distanceVector, also an integer, is added by one on every forward oper-

ation, indicating the number of hops (or in-between wrappers). This information stores

the federation topology view on each wrapper, which is assembled by knowing which

neighbor delivered the same packet with the smaller distanceVector; the resulting

data will be stored in memory as a routing table. One can ask about packet looping, but

this is avoided by a message-forwarding cache.

34

Orchestrator Subgroup:

In the Orchestrator Subgroup, there are three main functions: the federation as-

sembly function, the federation manipulation function, and the federated topic monitoring

function. The first function treats the packets received with other federation members’

information. This function filters data inside fd packets, organizing the list with infor-

mation regarding federation members, routes, and distance, which is vital to the wrapper

functions. Data is stored inside a Python list of dictionaries, allowing quick and easy

access. The federation list is organized as follows, having a dictionary item assigned

for each federation member:

federation = [pAdd1 : {’brokerID’: valueBID, ’route’: neighIP,

’sequenceCount’: valueSC,

’distanceVector’: valueDV},

The federation manipulation function orchestrates the core election and federation

topologies updates. It uses the data inside federation list to elect core broker, manage

brokerID collisions, and manage topology changes.

Federated Topic Monitoring function orchestrates the topic meshes. Information

regarding the federated topics, the topic core, the membership flag, and core disputes are

handled by this function. The data is stored inside a Python dictionary of lists, organized

as follows:

topics={topic1:[coreID,memberFlag],topic2:[coreID,memberFlag]}

Integrator Subgroup:

The Integrator Subgroup encompasses two functions that are directly related to the

wrapper’s attachment to the broker: topic monitoring and subscriber monitoring. These

functions rely on the Paho library to subscribe to the broker’s topics and monitor the

information submitted.

Subscriber monitoring allows the wrapper to identify if there is a new subscriber

to a topic and adjust its flag membership on a federated topic. When a client subscribes

to a topic, the information is published in the $SYS topic, which the wrapper monitors

for updates. A message is generated, and if the topic is not federated, the federation

announcement is made throughout the federation.

Finally, Topic Monitoring is made through the wrapper’s ability to monitor all

topics in the broker using the # topic. It filters data published to federated topics and

replicates to the mesh.

35

Forward Subgroup:

This unfunctional group filters and forwards messages, relying on the message

caches. Each message that arrives is cached and forwarded. If a message has already

been received, it is ignored. There is a secondary cache for topic messages, as topic

messages can also be repeated - a temperature monitor, for example - and this secondary

cache avoids looping messages but allows similar messages to be received.

4.3.1.2 Support Group Functions

These subgroups of functions are secondary but not less important. Support func-

tions help orchestrate and allow the wrapper to work as software. The six subgroups of

functions are packet sending, packet receiving, packet inspection, logging, debugging, and

cache flushing.

Packet Sending:

This subgroup has one primary obvious function: send packets using low-level

network functions provided by the socket library. But for the wrapper to work, there

are three types of packet sending. The first type is made of packets that are sent to the

neighbors. The list of active neighbors is the data source used to send these packets. The

second type deals with packets that shall be sent to the federation. The difference between

the first and the second is that packets sent to the federation include all packets, and packet

forwarding excludes resending the packet to the sender.

The third function is routed sending, which sends packets based on their destina-

tion. This function needs additional routing information gathered from the federation

list. So, when a packet is directed to some federation or topic core wrapper, the packet

handling is diverse from the packets broadcasted to neighbors (or helo packets).

Packet Receiving:

Packet Receiving has two main goals. First, to provide a socket to receive data

and handle packets to the packet inspector. Second, handle packets that need to be for-

warded to the packet forwarder. These two functions are straightforward but dramatically

important as the entry point for messages to the wrapper.

Packet Inspector:

The packet inspection function filters packets based on their message type. Mes-

sage types will be discussed ahead. The inspector calls for each message type a different

function or group of functions, handling data in the packet payload.

Logging:

36

Figure 4.2: Support Functions

Logging is a very important function as it helps monitor tasks and data being held

and allows inferring the software behavior. The log stores information regarding function

activities and results, allowing wrapper behavior inspection.

Debugging:

Debugging delivers a more profound experience than logging, as it registers ev-

ery message that the wrapper sends and receives and gathers information placed inside

federation and topic variables.

Flushing:

All messages are placed in caches to avoid infinite message retransmission. Peri-

odical flushing is mandatory to keep a lean memory usage. There are two caches, one for

forwarded messages and another for received messages.

4.3.1.3 Message Types

All packets that are exchanged between wrappers carry a message that is identified

by two letters, and, additionally, a payload. There are ten different types of messages,

presented in table 4.1.

For the neighbor handshake, hl and hb messages are used. These messages carry

no payload and are used just for wrapper mutual announcements. After the initial hand-

shake, the wrapper makes regular announcements using fd messages that carry a simple

payload, as presented before, with its brokerID and two counters, one that is marked

every time the message is forwarded counting the distance, and the other marking the

sequential number of the announcement; if a message with a lower announcement count

is received, it means that information regarding the remote wrapper needs to be updated,

37

Table 4.1: Message types
hl helo message
hb helo back message
fd federate announce message
rc reconsider brokerID message
ca core announcement message
tc topic core announcement message
rt reconsider topic core announcement message
ts topic subscribe message
tm topic data message
tu topology update message

and, consequently, the distance information may change.

When two wrappers announce themselves to the federation with the same brokerID,

a dispute system is needed; wrappers with colliding identification send rcmessages to the

federation asking for a reconsideration. Wrappers receiving reconsideration notification

generate a new random identifier posteriorly announced throughout the federation.

The core election happens during the federation overlay network assembly. The

broker with the lowest brokerID number is elected the core broker, and it starts sending

periodic ca messages.

Following the logic proposed by [Spohn 2020], every new subscriber attached to

a broker makes the wrapper announce a topic subscription to the federation through a ts

message. This information is registered by all wrappers, who monitor its brokers for new

messages. If a new message is posted on a federated topic, the wrapper assembles a tm

message and directs it to the topic core broker.

Electing the core broker for the topic is a slightly different task. When a wrapper

first announces a topic to be federated, it is accepted as the topic core broker and starts

sending periodic tc messages. In case of collision, i.e., two brokers announce themselves

as core, a rt message is exchanged, and the wrapper with the lowest brokerID takes

the role.

There are two scenarios in that a topology update packet is generated. First is when

a core broker stops announcing itself for a long time. The federation "understands" that

the core is no longer available, so a new core election is needed. The second is when there

are detected topology changes between neighbours, which means routing tables must be

updated.

38

4.3.2 Implementation

Python allowed a very simple implementation of the model. The version used for

coding the wrapper was 3.8. Supportive libraries and simplicity in coding helped build a

resourceful wrapper with low coding. Low-level network functions are delivered by the

socket library, allowing the wrapper to communicate through a UDP socket that listen

to connections using port 10500. All data packets are "encapsulated" using pickle

library, which provides data serialization, keeping payload integrity when assembling and

disassembling packets.

Paho library, presented in section 4.2.3, allows topic and event monitoring in the

Mosquitto broker. Like other functions, such as periodical announcements, debugging,

and cache flushing, Paho-related functions rely on the threading library, which allows

parallelism to be explored in the implementation. Other libraries, such as copy, time,

and random, were also used, providing elementary resources for dealing with variables

and time-related functionalities.

Depending on data type inference, some variable initialization is needed when

dealing with lists or dictionaries. The variable needs to be initialized to store dictionaries

inside a list or a list inside a dictionary because the Python interpreter may misinfer the

external data type.

Addressing parallelism is a delicate topic; as several tasks were parallelized using

the threading library, concurrent data access must be managed, and blocking the vari-

ables is mandatory. Blocking guarantees that data stored inside a variable is not subject

to change-in-change, which means that two concurrent threads will not change the data

inside a variable simultaneously, guaranteeing data integrity.

The single file wrapper script runs side-by-side with the broker, and it is called

from the command line, as it is a simple single file script.

All the implementation and tests were made in a Linux environment. A virtual

machine using Ubuntu1 22.04 set up with 8GB of RAM, 30GB of disk space, and 2

virtual processors, hosted by a Linux Mint2 21-powered laptop. The hypervisor used to

power the virtual machine was a regular Oracle VirtualBox3 7.0.6 Desktop Edition.

To simulate multiple instances of broker/wrapper pairs, an LXD4 (Linux Contain-

1http://ubuntu.com
2http://linuxmint.com
3http://virtualbox.org
4http://linuxcontainers.org/lxd/

39

ers Daemon) 5.0 environment provided the ability to work with containers that, differently

from a regular Docker environment, for example, does not need a new application image

to be generated every time the code changes.

LXD delivers full-stack virtualization and containerization experiences. A lean

environment where the memory and processing footprint for each instance is shallow

but offers a complete operating system experience. Each container used on the imple-

mentation and tests provided a fully-functional Ubuntu 20.04 LTS (Long-Term Support)

environment with a Mosquitto 3.1.1 broker and Python 3.8.10, followed by Paho-MQTT

1.6.1 library on top. The Mosquitto broker was configured to redirect logs to $SYS topic,

as explained in 2.2.1, providing the needed resources for the wrapper.

In LXD, as in other virtualization platforms, it is possible to use virtual switches to

interconnect groups of instances and provide advanced networking resources. Automation

is also possible, but regular resources were used to use the platform to demonstrate the

implementation. All instances were initiated and connected to the same virtual switch.

As explained in 4.3.1, the topology is defined by a list of neighbors, so there

is no direct relation to the network stack addressing. Then overlay network functions,

management, and orchestration are done at the application layer. The unique premise

is that all neighbors should be reachable by each other. In the case of a non-reachable

neighbor, the link will not be activated, and the initial topology will be diverse from the

planned.

The wrapper’s code was structured in four blocks as the environment was set up.

The first block contains library calls, constants, and variables, as some shall be initiated.

The second block encompasses the primary functional group, and the third contains the

support functions group. The fourth block contains threading initialization and general

program calls.

A rudimentary console was implemented to monitor the wrapper’s behavior, which

could bring more information about the operation and managed and stored data.

40

5 VALIDATION AND PERFORMANCE TESTS

After the wrapper’s development, validation and testing were necessary to guaran-

tee that the wrapper meets all proposal’s principles. To provide a validation environment,

LXD was used to instantiate containers just as proposed in the topology presented by

Spohn [Spohn 2020], as can be seen in the figure 5.1.

The scope of the implementation encompasses the main MQTT functions. The

implementation did not explore two resources: Quality of Service (QoS) and security.

They were set out of this study because the main focus is validating an innovative proposal

to orchestrate network meshes, and those two topics were considered for future work.

Based on that, it is stated that the implementation will only use messages with QoS level

0.

5.1 Validation

The proposed topology was used to validate the wrapper’s adherence to the pro-

posal. To initiate, all wrappers were adjusted to know their neighbors, which was done

using the neigh constant, where neighbors’ IP addresses are stored. After the initial

topology adjustment, all the wrapper instances were started.

Through the console, which brings information regarding linked neighbors, feder-

ated members, and federated topics, it was possible to observe after the initial handshake

that the neighbors’ list started to be filled. Helo packets were set up to be sent every ten

seconds, so it took a little more than ten seconds for every neighbor link to each other.

The overlay network assembly is started parallel to the neighbor handshake. The

wrappers send fd packets to their neighbors, which are forwarded to propagate through

the network. At that time, wrappers started to show remote wrappers information, with

their respective BrokerID, routes, and distances. With that information, it is valid to

state that the federation mechanism was correctly implemented and can be considered

accurate. Several simulations were made, and the overlay network converged precisely in

all rounds.

At this point, it is essential to disclose that convergence time is relatively high.

fd messages are sent every twenty seconds. Adding the time for propagation and core

dispute treatment, convergence can take more than one minute, depending on the number

of wrappers in the topology. Console messages presented in figure 5.2 show n as the

41

Figure 5.1: Validation Topology, extracted from [Spohn 2020]

list of neighbors, f as the list of federated brokers, with respective IP address, BrokerID,

distance, routes, and information lifetime.

The core election occurs when wrappers and remote wrappers send core announce-

ment messages every twenty seconds. Core announcement packets ca propagate and are

received by wrappers, which are analyzed. If the core is not elected, the ca with the

lowest brokerId is taken as core. Every twenty seconds, the thread that addresses core

election monitors if the federated member with the lowest brokerID is the core broker.

If not, the wrapper with the lowest brokerID is elected, and additionally, the individual

wrapper sends additional ca announcements to the federation.

The overlay network deals with topology changes by monitoring the lifetime field

in federation information. Suppose no fb packet is received in one minute, what also

does not update lifetime information. In that case, the wrapper understands that there is a

topology change, i.e., one of the overlay network wrappers has stopped responding.

This mechanism delivers the desired behavior to deal with topology changes. Or-

chestration occurs autonomously, allowing wrappers to reorganize routing and informa-

tion regarding federation members without manual interference. To validate this, ran-

dom wrapper disconnections were simulated, forcing network partitioning. The overlay

network behaved as expected, and in the case of network partitioning, a new core was

announced for the coreless part. When two networks join, the dispute mechanism orches-

trates the election between duplicated cores.

Convergence time in the case of network partitioning can take up to five minutes,

depending on the number of wrappers and federated topics. This happens because of

42

Figure 5.2: Console image of federated brokers

the significant interval times used in the implementation, which can be adjusted. All the

timers are set not to flood the network with control packets and keep a low profile on

traffic.

The topic meshes assembly is event-driven, triggered by new subscribers’ an-

nouncements. When an event of this nature happens, the wrapper checks its registers

if the topic is already federated. If the topic is not federated, the wrapper sends a tc

message, announcing itself as the topic core. This message propagates throughout the

federation, and wrappers become aware of the topic’s existence and where messages shall

be routed.

The same principle is adopted to deal with a collision in topic meshes core an-

nouncements. If, in an even event, two or more wrappers announce themselves as topic

cores, the wrapper with the lowest brokerID is elected the core.

Topic core announcement messages are sent periodically, every thirty seconds, by

the topic core wrapper. This message has the same information as a fdmessage, allowing

federation members to know their distance in hops to the topic core and the information

lifetime. If a topic core stops sending announcements, the nearest topic mesh member

assumes the role and starts to send new announcement messages. The timeout for topic

core information was set up to two minutes.

Every published message on a broker to a federated topic that has no subscribers

to that topic is sent toward the topic core. New topic members announce themselves when

a new subscriber is connected to the wrapper’s broker, and a tm is sent toward the topic

core. A mesh membership flag is marked, and the wrapper identifies as part of the mesh.

Intermediate wrappers between the new member and the topic core wrapper also adhere

to the mesh membership, marking the membership flag on their registers.

In topic meshes, when there is a topology change, as topic membership messages

also carry lifetime data, intermediary wrappers that stop receiving these messages become

aware that they are no part of the mesh anymore, as no traffic is forwarded, and the topic

membership flag is unset.

Topic messages are gathered through general topic monitoring; the wrapper sub-

43

Figure 5.3: Six-node topology

scribes to the root # topic. Based on the federated topics list, the wrapper filters which

topics shall have messages forwarded to the federation. In case of a new message to a

federated topic, it is packed in a tm packet and sent. This action has no timer adjustments

because it is trigger-based; as soon as a message is published, it is sent to the federation.

All validation tests presented satisfactory results, and it is possible to state that the

implementation delivered the desired behavior and resources proposed in Spohn’s [Spohn

2020] work.

5.2 Performance Tests

Performance is a very delicate topic in this work. As the implementation aims to

be reliable in delivering availability and flexibility, the focus on time-based performance

indexes is secondary for the environments which are aimed by the proposed solution.

Compared to cluster-based solutions, convergence in the proposed solution is ex-

ceptionally high. Clustering mainly aims for throughput maximization, which means con-

vergence time is essential. But, because clustering-based solutions rely on a unique entity

to orchestrate topology, and topology is mainly disposed of parallel elements, delivering

high availability needs additional resources, which can consume elevated computational

resources [Spohn 2022].

Bass’ [Bass 2002] work states that IoT-based solutions for critical-distributed en-

vironments are highly indicated and remarks that traffic throughput is less important than

availability. Monitoring such infrastructure usually tolerates higher convergence time,

with few exceptions. Based on this understanding, it is possible to state that delivering

high availability to IoT-based deployments in distributed networks accepts convergence

time of minute greatness.

Suppose that in a public illumination environment, one small sector fails. The

time needed to repair or recover from failure has more-than-an-hour greatness, some-

times one day. In a distributed network environment, it can be supposed that one or two

44

Figure 5.4: Fifteen-node topology

network elements will fail, and the topology will change. If part of the network traffic is

compromised for 5 minutes, it will not significantly affect the monitoring liability.

This means that the convergence time observed to rearrange the overlay network,

which took one to five minutes, depending on the number of wrappers. Three scenarios

were assembled to watch the solution’s behavior, one with six wrappers (fig. 5.3), one

with fifteen wrappers (fig. 5.4), and one with twenty-five wrappers (fig. 5.5).

The convergence time for federation topology in the six-wrapper topology stands

around one minute. Tests were made removing wrappers number three and number one

and three simultaneously. The convergence time was unaffected if any elements played

the core wrapper role. When analyzing topic mesh behavior, the convergence time was

higher, standing around two minutes to converge, including the cases where the failed

wrappers were playing topic core roles. There were six different federated topics, with

five subscribers and five publishers connected randomly.

When the number of connected wrappers is higher, convergence time is also higher,

but there is no direct time-population ratio. Timers are essential in avoiding network

flooding and delivering acceptable behavior to the self-managed meshes. Tests were made

with one to four failed wrappers, randomly chosen. It is important to note that failing

nodes on the edge of the mesh do not significantly affect performance. Convergence in

the fifteen-wrapper topology took up to two minutes for the overlay network and between

two and three minutes for the topic mesh.

In a more dense topology, tests were made with up to eight randomly chosen failed

wrappers, and the convergence time for the overlay network was between two to three

minutes and between two to five minutes for the topic mesh. There was no significant

45

Figure 5.5: Twenty-five-node node topology

time variation when node edges failed.

Network partitioning was also tested, with a higher time-to-converge in the core-

less partitions, but the difference remained below half a minute.

One can argue that missed messages can not be recovered, which is an undeniable

truth. But when remembering the scope of the proposed solution, missed messages are

tolerable, as the environments for which this proposal fits have a high tolerance for this

scenario.

46

6 CONCLUSION

This work presented one Python-written and wrapper-based implementation pro-

posal to the innovative work published by Spohn [Spohn 2020], which proposes a self-

managed network of interconnected brokers for high-availability environments for IoT.

This means the environment shall address availability besides time-based performance,

tolerating high-time convergence behavior.

This work resulted in a wrapper that can be attached to a Mosquitto MQTT broker,

delivering the ability to interconnect with other brokers and make topics and their data

available network-wide. The wrapper development was aimed at simplicity and low use

of computational resources.

The wrapper coding was made over a single file, using multithreading resources

and relying upon MQTT-aimed support libraries, allowing easy integration to the MQTT

Broker. Because of its simplicity in integrating with the Mosquitto MQTT broker, it is

proper to state that any MQTT broker implementation can be used if it allows subscriber

information to be published on an internal topic. In Mosquitto, the subscriber information

log can be directed to the $SYS topic, which the broker accesses. Data is filtered to gather

information related to topics that have been subscribed. All other data regarding topics

are gathered from the # topic.

The implementation was tested in three different topologies, each with six, fifteen,

and twenty-five interconnected wrappers. Tests were made aiming for two objectives:

first, to validate the implementation, as it is based on an innovative model, and second, to

test convergence times in cases of node failures.

The first objective was achieved, as the wrapper behaved as proposed in all tested

environments. The activities of listing connected neighbors, assembling the federation,

electing the federation core wrapper, addressing disputes with the federation core wrapper

election, identifying new topic subscribers and federating new topics, announcing feder-

ated topic core, addressing federated topic core disputes, and, finally, addressing topology

changes, where handled correctly on all proposed environments, allowing confidence in

the implementation.

Performance tests were made focusing on high availability and resilience. All tests

showed the brokers’ ability two deliver these two properties, not focusing on convergence

time. The proposed applications for the solution are high-time tolerant, allowing some

data to be missed and minute-high convergence.

47

Tests showed that convergence could take up to five minutes, depending on the

scenario, but these numbers are acceptable. There was no direct ratio between the number

of wrappers in the network and the time to converge, but, as expected, denser topologies

needed more time.

The number of publishers and subscribers was out of scope, and the simulations

used a fixed number of topics, subscribers, and publishers connected randomly to the

brokers. This was because the main goal was validating the implementation behavior and

convergence time on the overlay network, mainly and secondarily convergence time on

topic meshes, not including traffic volume interference.

The results showed that the proposed solution confidence is high in test environ-

ments but still has open topics that must be addressed to deliver a fully-functional product

for real-world use.

6.1 Open Topics and Future Work

This work aimed at implementing and validating the theoretical proposal but fo-

cusing mainly on functionality. This led to a few open topics that can be further in-

vestigated and implemented. It is known that further development is needed to improve

resources related to security and the quality of service that MQTT provides.

Regarding security, MQTT provides authentication and encryption. Authentica-

tion can be implemented in several ways, such as ACLs (Access Control Lists), RADIUS

integration, and certificates, as regular clients can authenticate to the broker without is-

sues [MQTT 2022]. But the wrapper, as it connects to the broker, can also be authenti-

cated using Paho library resources. Also, authentication between wrappers was out of the

scope of the present work, but it also can be in the open topics list.

Encryption is also a desired resource to enforce security between brokers. Python

offers several libraries that can be used to implement such functionality [Python 2022],

and strategies to implement it can be explored and turned into research work.

Further work regarding the present implementation can encompass deep research

into performance issues, fine-tuning for faster convergence time, and exploring different

and denser traffic scenarios.

48

REFERENCES

BASS, T. The federation of critical infrastructure information via publish-subscribe
enabled multisensor data fusion. In: Proceedings of the Fifth International Conference
on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997). [S.l.: s.n.], 2002.
v. 2, p. 1076–1083 vol.2.

BAUER, M. et al. Iot reference model. In: . Enabling Things to Talk: Designing
IoT solutions with the IoT Architectural Reference Model. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013. p. 113–162. ISBN 978-3-642-40403-0. Disponível
em: <https://doi.org/10.1007/978-3-642-40403-0_7>.

CASTELLANI, A. P. et al. Architecture and protocols for the internet of things: A case
study. In: 2010 8th IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops). [S.l.: s.n.], 2010. p. 678–683.

DE LACERDA MACHADO Jr., J. F.; SPOHN, M. A.; GRANVILLE, L. Z. Client-
Transparent and Self-Managed MQTT broker federation at the application layer. In:
2023 International Conference on Computing, Networking and Communications
(ICNC): Network Algorithms and Performance Evaluation (ICNC’23 NAPE).
Honolulu, USA: [s.n.], 2023.

ECLIPSE. Eclipse Mosquitto. 2018. Accessed: 2022-12-14. Disponível em:
<https://mosquitto.org/>.

EMQX. EMQX Website. 2022. <https://emqx.com>. Accessed: 2022-08-19.

FIROUZI, F. et al. Iot fundamentals: Definitions, architectures, challenges, and promises.
In: . Intelligent Internet of Things: From Device to Fog and Cloud. Cham:
Springer International Publishing, 2020. p. 3–50. ISBN 978-3-030-30367-9. Disponível
em: <https://doi.org/10.1007/978-3-030-30367-9_1>.

HIVEMQ. MQTT MQTT 5 Essentials. [S.l.]: HiveMQ GmbH, 2020. ISBN
9783000679131.

HIVEMQ. HiveMQ Website. 2022. <https://hivemq.com>. Accessed: 2022-04-19.

Ji, S. et al. Towards scalable publish/subscribe systems. In: 2015 IEEE 35th
International Conference on Distributed Computing Systems. [S.l.: s.n.], 2015. p.
784–785.

LONGO, E.; REDONDI, A. E. Design and implementation of an advanced mqtt broker
for distributed pub/sub scenarios. Computer Networks, v. 224, p. 109601, 2023.
ISSN 1389-1286. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S1389128623000464>.

LONGO, E. et al. Mqtt-st: a spanning tree protocol for distributed mqtt brokers. In: ICC
2020 - 2020 IEEE International Conference on Communications (ICC). [S.l.: s.n.],
2020. p. 1–6.

MQTT. The standard for IOT messaging. 2022. <https://mqtt.org/>. Accessed:
2023-03-10.

https://doi.org/10.1007/978-3-642-40403-0_7
https://mosquitto.org/
https://emqx.com
https://doi.org/10.1007/978-3-030-30367-9_1
https://hivemq.com
https://www.sciencedirect.com/science/article/pii/S1389128623000464
https://www.sciencedirect.com/science/article/pii/S1389128623000464
https://mqtt.org/

49

NAIK, N. Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP,
AMQP and HTTP. In: IEEE International Systems Engineering Symposium (ISSE).
Vienna, Austria: [s.n.], 2017. p. 1–7.

OASIS. MQTT 3.1.1 Specification. 2014. Accessed: 2022-12-14. Disponível em:
<http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718009>.

PAHO, E. Eclipse Paho Website. 2022. <https://www.eclipse.org/paho/>. Accessed:
2022-10-20. Disponível em: <https://pypi.org/project/paho-mqtt/>.

PYTHON. Python Website. 2022. <https://python.org>. Accessed: 2022-10-20.

RIBAS, N. K. Federação de Brokers do Protocolo MQTT: Implementação e
Análise de Desempenho. Trabalho de conclusão de curso - Bacharelado em Ciência da
Computação — Universidade Federal da Fronteira Sul, 2022.

RUENPITAK, C. et al. Scalable distributed broker system for very large mqtt networks.
In: 2022 19th International Joint Conference on Computer Science and Software
Engineering (JCSSE). [S.l.: s.n.], 2022. p. 1–6.

SAGAR, A. Take a ride on the Infobus. 2003. Accessed: 2023-04-10. Disponível em:
<https://www.comscigate.com/JDJ/archives/0302/sagar/index.html>.

SCHIFFER, A. How a fish tank helped hack a casino. 2017.
<https://www.washingtonpost.com/news/innovations/wp/2017/07/21/
how-a-fish-tank-helped-hack-a-casino/>. Accessed: 2023-02-19.

SPOHN., M. An endogenous and self-organizing approach for the federation of
autonomous mqtt brokers. In: INSTICC. Proceedings of the 23rd International
Conference on Enterprise Information Systems - Volume 1: ICEIS,. [S.l.]:
SciTePress, 2021. p. 834–841. ISBN 978-989-758-509-8. ISSN 2184-4992.

SPOHN, M. A. Publish, subscribe and federate! Journal of Computer Science,
Science Publications, v. 16, n. 7, p. 863–870, Jul 2020. Disponível em: <https:
//thescipub.com/abstract/jcssp.2020.863.870>.

SPOHN, M. A. On mqtt scalability in the internet of things: Issues, solutions,
and future directions. J. Electron. Electric. Eng, v. 1, n. 1, 2022. Disponível em:
<https://ojs.wiserpub.com/index.php/JEEE/issue/view/jeee.v1i12022>.

STAMPS, M. Are Internet of Things Devices Invading your Privacy? 2021.
<https://blog.techguard.com/internet-of-things-invading-your-privacy>. Accessed:
2023-03-22.

URAMOTO, N.; MARUYAMA, H. Infobus repeater: a secure and distributed
publish/subscribe middleware. In: Proceedings of the 1999 ICPP Workshops on
Collaboration and Mobile Computing (CMC’99). Group Communications (IWGC).
Internet ’99 (IWI’99). Industrial Applications on Network Computing (INDAP).
Multime. [S.l.: s.n.], 1999. p. 260–265.

VMWARE. RabbitMQ. 2022. Accessed:2023-01-04. Disponível em: <https:
//www.rabbitmq.com/>.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718009
https://www.eclipse.org/paho/
https://pypi.org/project/paho-mqtt/
https://python.org
https://www.comscigate.com/JDJ/archives/0302/sagar/index.html
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/
https://thescipub.com/abstract/jcssp.2020.863.870
https://thescipub.com/abstract/jcssp.2020.863.870
https://ojs.wiserpub.com/index.php/JEEE/issue/view/jeee.v1i12022
https://blog.techguard.com/internet-of-things-invading-your-privacy
https://www.rabbitmq.com/
https://www.rabbitmq.com/

50

ZOUGANELI, E.; SVINNSET, I. E. Connected objects and the internet of things — a
paradigm shift. In: 2009 International Conference on Photonics in Switching. [S.l.:
s.n.], 2009. p. 1–4.

51

APPENDIX A — RESUMO EXPANDIDO

Federação de Brokers MQTT Transparentes ao Cliente e

Auto Gerenciada em Nível de Aplicação

Escalabilidade em sistemas para IoT é um tópico que ainda apresenta espaço para

inovação. Estes ambientes possuem características muito particulares, como, por exem-

plo, a necessidade de gerenciamento cuidadoso de tráfego e escalabilidade. Visando en-

tregar recursos simples e focados na conservação de energia, resistenstes a ambientes de

rede com características não ideais de latência e perdas, o protocolo MQTT suge como

um divisor de águas e passa a ser amplamente adotado. Porém, soluções de escalibil-

idade para ambientes de IoT têm focado intensamente em soluções baseadas em clus-

ter pela facilidade de gerenciamento e pela evolução tecnológica, que entregou equipa-

mentos e soluções de conectividade e de processamento mais confiávies [DE LACERDA

MACHADO Jr., Spohn e Granville 2023].

Porém, ambientes distribuídos possuem características um pouco diferentes, que,

através de um ambiente com escalabilidade centralizada como clusters, não possuem

soluções maduras, ou estas são comerciais, sem um detalhamento da arquitetura e com-

portamento. Outro ponto a ser levantado é a necessidade de um elemento central para

orquestração em ambientes centralizados, papel feito pelo balanceador de carga, ou load

balancer, que oferece risco de disponibilidade por ser um ponto único de falha na arquite-

tura [Spohn 2022].

Visando contornar esse risco em ambientes distribuídos que requeiram alta disponi-

bilidade, Spohn [Spohn 2020] propôs um modelo de solução focada em escalabilidade

horizontal para brokers MQTT que se utiliza de princípios de comunicação para redes ad

hoc, onde tarefas de alto nível, como roteamento e orquestração, são tratadas em nível

de aplicação, uma vez que os elementos interconectados em rede não necessariamento

podem ter capacidade de comuncação direta.

O modelo proposto por Spohn divide a orquestração da solução em dois elemen-

tos distintos. A orquestação da federação que trata da organização de todos os elementos

membros, criando uma rede overlay que entrega comnuicação fim-a-fim. E, sobreposta

a essa rede, se organizam malhas vinculadas a tópicos, criando um elemento sobreposto

com orquestração autônoma, destacada da rede overlay. As malhas vinculadas a tópicos

permitem que assinantes de tópicos recebam atualização de dados publicados indepen-

dentemente do broker no qual estejam conectados, e de igual forma, independentemente

52

do broker onde a informação seja publicada.

O modelo proposto por Spohn é o fundamento do presente trabalho, que tem como

objetivo apresentar uma proposta de implementação do modelo. Para isto, a linguagem

de programação Python foi escolhida, pois entrega recursos para integração com soluções

baseadas em MQTT, além de possuir uma diversidade de bibliotecas signigicativa que

suportam o desenvolvimento rápido e simples de aplicações. A implementação foi real-

izada através do desenvolvimento de um wrapper que se integra a uma instância regular

do broker Eclipse Mosquitto de maneira transparente, e oferece os recursos de federação

da proposta fundamental.

A implmementação possui dois grandes grupos funcionais, sendo um grupo prin-

cipal, com quatro subgrupos - federador, orquestrador, integrador e encaminhador - e um

de suporte, com seis funções secundárias, mas não menos importantes - envio e recebi-

mento de pacotes de rede, inspetor de pacotes, logging e [?], e um gerenciador de cache.

A orquestrção é feita através de dez diferentes tipos de mensagens, suportando

tanto a orquestração da rede overlay como as malhas de tópicos, além de permitirem noti-

ficações de assinantes de tópicos federados bem como o transporte dos dados publicados

nos respectivos tópicos.

Para validar a implementação do modelo, foram, inicialmente feitos testes uti-

lizando uma topologia com seis elementos, interligados aleatoriamente. Os testes permi-

tiram identificar que a implementação apresentou o comportamento esperado.

Para a realização de testes de escala, foram utilizados três cenários diferentes, com

topologias de seis, quinze e vinte e cinco elementos. Os testes tiveram como objetivo

verificar o tempo de convergência da orquestração e a correta reorganização das malhas

de forma autônoma em caso de falha de elementos aleatórios.

Observou-se que o tempo de convergência é relativamente alto em comparação

a soluções clusterizadas, porém, como o ambiente de alta disponibilidade para o qual a

solução foi pensada suporta este perfil de tempo, entendeu-se que o comportamento estava

adqueado.

Finalmente, concluiu-se que a implmentação entregou o comporatmento desejado,

porém deixando alguns pontos a serem explorados futuramente, como refinamentos em

relação ao tempo de convergência e a implmementação de recursos de autenticação e

segurança, que estiveram fora do escopo do presente trabalho.

53

APPENDIX B — PUBLISHED PAPER - ICNC 2023 - QUALIS A2

J. F. d. L. Machado, M. A. Spohn, and L. Z. Granville, "Client-Transparent and Self-

Managed MQTT Broker Federation at the Application Layer," 2023 International

Conference on Computing, Networking and Communications (ICNC), Honolulu, HI,

USA, 2023, pp. 603-607, doi: 10.1109/ICNC57223.2023.10074556.

Abstract: The use of IoT devices for monitoring and automation became very dissemi-

nated. Also, as a consequence, IoT scalability issues evolved into one of the main chal-

lenges on large deployments. One of the most adopted architectures for the communica-

tion between IoT devices and other information systems is based on the Publish/Subscribe

paradigm, mainly embraced by MQTT-capable devices. Some implementations aimed

to solve scalability challenges in those environments, mainly using clustering solutions,

while a few considered federation approaches. Existing solutions are predominantly pro-

prietary, lacking public documentation, and may be considered incipient. In the present

work, we propose a client-transparent and self-managed solution for scaling MQTT bro-

kers using a federation approach through a Python-written wrapper, providing federation

functionalities and message routing without customizing regular brokers. While cluster-

ing solutions usually target throughput improvement, the federation approach explores

higher availability through distributed architecture. We present a validation to expose our

solution’s flexible availability and capability to deal with topology change issues.

URL: <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=10074556isnumber=10073976>

Client-Transparent and Self-Managed MQTT
Broker Federation at the Application Layer

José Fernando de Lacerda Machado Jr.∗, Marco Aurélio Spohn†, Lisandro Zambenedetti Granville∗
∗Institute of Informatics - Federal University of Rio Grande do Sul - Porto Alegre, Brazil

†Federal University of Fronteira Sul - Chapecó, Brazil
lacerda.machado@ufrgs.br, marco.spohn@uffs.edu.br, granville@inf.ufrgs.br

Abstract—The use of IoT devices for monitoring and automa-
tion became very disseminated. Also, and as a consequence, IoT
scalability issues evolved into one of the main challenges on large
deployments. One of the most adopted architectures for the com-
munication between IoT devices and other information systems
is based on the Publish/Subscribe paradigm, mainly embraced
by MQTT-capable devices. Some implementations aimed to solve
scalability challenges on those environments, mainly using clus-
tering solutions, while a few considered federation approaches.
Existing solutions are predominantly proprietary, lacking public
documentation, and may be considered incipient. In the present
work, we propose a client-transparent and self-managed solution
for scaling MQTT brokers using federation approach through a
python-written wrapper, providing federation functionalities and
message routing without customization of regular brokers. While
clustering solutions usually target throughput improvement, the
federation approach explores higher availability through dis-
tributed architecture. We present a validation to expose our
solution’s flexible availability and its capability to deal with
topology change issues.

I. INTRODUCTION

The MQ Telemetry Transport (MQTT) protocol has been
widely adopted on Internet of Things (IoT) devices commu-
nication [1] [2], not only because of its low data overhead
but also because of its reliability and strong standardization.
That is due not only to MQTT’s maturity but also to its ease
of implementation. As a result, the adoption and deployment
of MQTT-enabled devices and the solutions based on the
platform became popular [3].

MQTT employs the Publish/Subscribe (P/S) paradigm
where a broker intermediates the communication between
publishers (e.g., IoT devices) and subscribers (e.g., other
devices or applications that consume the publishers’ offered
information). Because IoT devices (playing the role of ei-
ther publishers or subscribers) usually suffer from limited
resources (battery capacity, processing power, and communi-
cation support), MQTT-based solutions aim at dealing with
the limitations of IoT deployed setups [4]. Scaling up such
systems by supporting an increasing number of publishers and
subscribers also has to consider scaling up MQTT brokers
to avoid them becoming bottlenecks in environments with
varying amounts of flowing information. There exist several
solutions for MQTT-based setups that employ clustering [5]
[6] [7] as a technique to deal with the brokers’ scalability
issue. Unfortunately, most of those solutions are only available
in commercial products. As an alternative to the clustering

techniques, the use of federation techniques [8] are being
considered, but still less mature than clustering.

Although attempts to solve the scalability problem in MQTT
are in place, as mentioned above, the central fact is that
MQTT implementations with improved scalability are scarce
and often limited to proprietary products. As such, scaling up
MQTT environments by employing a public, freely available
solution is still a need. Implementing such functionality is thus
an opportunity and potential game-changer, providing elastic
capabilities for a broad set of application scenarios.

In a previous work [9], we proposed a self-managed MQTT
federation that offers the first movement toward building and
maintaining an overlay mesh network of autonomous brokers.
Clients (i.e., publishers, and subscribers) communicate over
this self-organizing mesh network with low control overhead.
The materialization of the above solution can range from a
more intrusive one (i.e., requiring changes to the broker) to the
one in which the federation mechanism, which internally also
relies on the P/S paradigm, stays exclusively at the application
layer (i.e., brokers remain unchanged) [10].

In this paper, we advance our previous research by present-
ing the design, implementation, and case study of a federation
module for MQTT as a wrapper. Our solution, written in
Python 3.8 and attached to a Mosquitto 3.1.1 MQTT broker,
is flexible, easy-to-implement, and better scales up because
of our self-managed federation approach. Our implementation
seeks to be the least intrusive possible to the ordinary MQTT
environment.

The remainder of this paper has the following organization.
In Section II, we review related work. In Section III, we
introduce our MQTT wrapper and detail how a set of wrappers
in the mesh network federate. We show our implementation
and case study in Section IV. In Section V, we conclude this
paper with final remarks and future work.

II. RELATED WORK

Several research efforts have addressed scaling up P/S
systems, some based on clustering and others based on feder-
ation strategies. Bakker and Pattenier [11] present federation
strategies on networked systems. They focus on two leading
solutions: federation for connection-oriented networks and
federation for connection-less networks, as those based on
TINA-C NRA (Telecommunications Information Networking

2023 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and
Performance Evaluation

978-1-6654-5719-4/23/$31.00 ©2023 IEEE 603

Architecture Consortium - Network Resource Architecture),
mainly employed in telecommunications environments.

Uramoto and Maruyama [12] present the InfoBus Re-
peater application, conveying a unique approach for scaling
up MQTT environments throughout a bus. The application,
written in Java, acts as a middleware that allows intercommu-
nication between group members. When a member joins the
bus, it informs its status as a publisher, subscriber, or both.
The bus is a single point of failure and a bottleneck, providing
limited scalability.

Bass [13] carried out a structured analysis of a P/S federated
network approach for critical infrastructure environments. The
work evaluates assembling models, the compliance of existing
solutions, and the security aspects and characteristics of pos-
sible topologies. Although it is primarily theoretical, the work
delivers a broad view of possible scenarios and solutions for
assembling federated networks of sensors.

Thean et al. [14] presents a work based on clustering MQTT
brokers to deal with edge computing demands. They propose
an architecture for scaling a cluster of container-based MQTT
brokers on the edge of the environment, each acting as a
bridge to the brokers placed on a cloud infrastructure. Even
though their solution provides enhanced scalability results, the
container orchestrator remains a single point of failure.

In previous work, we [8] presented a generic approach for
federating MQTT brokers following a mesh-assembling mech-
anism over an overlay network. The solution includes an over-
lay mesh network that provides the primary communication
system, allowing the arrangement of topic meshes, reaching all
clients for any federated topic, regardless of where the client
connects. A new mesh forms whenever the first subscriber
connects to any broker. All brokers with subscribers for the
same topic, and any broker that interconnects them, integrate
the topic mesh. A mesh has a core broker that coordinates
the mesh construction and maintenance. The routing of topic
messages begins by forwarding them toward the corresponding
topic core, but as soon as the message reaches a mesh member,
the message spreads throughout the mesh.

Afterward, we [10] proposed an implementation based on an
endogenous approach [9]. The solution employs the native P/S
mechanism for managing the meshes and routing of messages.
Subscribers must send a beacon message to advertise them-
selves, but the federation of brokers is primarily transparent
to the clients.

III. FEDERATION PROPOSAL

We present a self-managed wrapper-based federation solu-
tion coded in Python and integrated into the Eclipse Mosquitto
3.1.1 MQTT broker. A wrapper is software capable of interact-
ing with the MQTT broker transparently. For that, the wrapper
monitors the broker’s log, which has its data redirected to a
topic called $SYS. The wrapper gathers data from all topics,
being possible to monitor specific topics and subtopics for later
forwarding its data to all federated members. This strategy
makes it possible to adapt this solution to other known MQTT
broker implementations capable of redirecting log data to

a specific topic. Each broker to be federated shall have a
wrapper attached and be responsible for communicating with
the neighboring set of brokers and wrappers.

The wrapper follows the principles of the federation mech-
anism proposed by [8], on which the brokers federate through
their neighbors, building a mesh. Each federated broker for-
wards messages through the mesh, allowing communication
between brokers that are not neighbors. Information needed to
manage the federation includes a broker identification number
(BrokerID), the distance in hops to the core broker (i.e.,
the broker that coordinates the mesh), the mesh membership
flag (signaling whether the broker is in a given mesh), a
list of neighboring brokers, and the desired mesh redundancy
(achievable when the overlay topology allows).

A. Architecture
The main element of our architecture is the wrapper that

interacts with the broker and allows communication with
neighboring wrappers and their related brokers. The wrapper
interacts with the broker monitoring its logs and all the topics
and subtopics, so we assume that the wrapper can access all
data generated on the broker.

The wrappers interact with other wrappers through network
sockets, allowing data exchange. We chose UDP for transport-
ing data between brokers, as a missing packet may arrive on a
wrapper through different paths, so delivery confirmation is not
critical. The main goal is to deliver data published on a given
topic on a broker with a federated wrapper by forwarding it to
another broker through its wrapper where there are connected
subscribers to that given topic. Figure 1 presents the schematic
architecture.

Fig. 1. System’s architecture overview

B. Behavior
The wrappers’ federation process encompasses two main

phases. First, the federation assemblage, regarding the overlay
infrastructure that provides communication among federated
wrappers. Second, the mesh building and maintenance provide
the means for transporting data between wrappers connected
to brokers with publishers and subscribers. Regular topics with
subscribers will be called federated topics.

2023 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and
Performance Evaluation

604

1) Federation Assemblage: Federation assemblage assumes
that every wrapper knows its neighbors’ IP addresses. Periodi-
cal hello messages are exchanged between neighbor wrappers
to keep track of their online status. Announcement messages
with an identification number (BrokerID) for the wrapper
are also sent periodically, which are forwarded through their
neighbors to the other interconnected wrappers, allowing the
assemblage of the overlay network (i.e., nodes learn about all
federated brokers and their distances). As the announcements
propagate, the wrapper nodes settle collisions by randomly
selecting a new ID.

As the federation starts, there is a need to elect a core
wrapper to coordinate the updates on the federation topology
and other management matters. The election is based on the
BrokerID number, winning the node with the lowest ID. This
core wrapper will be called the management core.

2) Topic meshes: Topic meshes are the meshes of wrappers
where there are subscribers to a given topic. They start
along the federated network. When a wrapper detects a first
subscriber for any topic for which there is no mesh, the
wrapper advertises itself as the core for the new mesh. Through
a core announcement message, wrappers learn how to reach
any previously established core. Management and topic cores
are similar, with the latter being the reference point for
starting topic meshes, while the former orchestrates the overlay
network. The node with the lowest ID wins the dispute in a
core announcement contention.

If there is a topic core on a topic with a new subscriber, the
wrapper sends a mesh membership announcement toward the
topic core. If there are two or more paths towards the core with
the same distance, it is possible to handle redundancy. The
new membership may trigger intermediate wrappers to join the
mesh to keep it connected. As for publications, the topic core is
the reference target: the wrapper sends the message toward the
core, and once reaching it or a mesh member first, the message
spreads throughout the mesh. Wrappers keep a local cache to
avoid sending the same message indefinitely, considering that
the same publication may arrive through different paths.

IV. IMPLEMENTATION AND VALIDATION TESTS

In our implementation, we have used Python version 3.8,
supported by libraries providing MQTT functions such as
threading, serialization, and socket connections. The Paho-
MQTT library is also used and plays the most crucial role
in the solution, allowing the interaction between the wrapper
and the broker and entitling monitoring of subscriptions and
messages on topics.

The wrapper has five main functional groups and the initial
data setup, with this latter including information regarding IP
addresses and ports, constants, initial broker identification, and
the list of neighbors. By default, wrapper instances communi-
cate through UDP port 10500.

The first functional group handles low-level network-related
activities, such as packet sending and receiving. For perfor-
mance purposes, we used UDP on the transport layer. There
are two main functions - packet sending and packet receiving.

Packets that need to be redirected are also handled over these
functions.

The second functional group handles the operational func-
tions. Packets have a function identifier and are handled ac-
cording to their message types. A packet’s structure comprises
a message type field, followed by the data regarding that
particular message.

(’fd’, (14, 1, (’10.81.180.217’, 7535)))

There are ten different types of messages: hello (hl), hello
back (hb), federate (fd), reconsider (rc), core announcement
(ca), topic core (tc), reconsider topic core (rt), topic subscribe
(ts) topic message (tm) and topology update (tu). Federate,
core announcement, and topic core announcement have de-
tailed information on message sequence numbering for control
purposes. For instance, the structure of a federation message
is as follows:

(’fd’, (14, 1, (’10.81.180.217’, 7535)))
(seq, dist, (ip, id)

The fd field indicates the message type, followed by a
tuple that carries the announcement sequence number, the hop
distance from the announcer, and its BrokerID - which also
consists of a tuple holding the IP address and the node’s virtual
ID. The source broker defines the sequence number, while the
distance field changes as the message moves farther from the
source.

A group of processes runs as daemons. These processes
are responsible for the hello, federation, core announcements,
MQTT broker monitoring, and maintenance. By default, nodes
transmit federation and core announcements every 20 s and
hello messages every 5 s. The latter group comprises addi-
tional functions, such as log generating, cache flushing, and
debugging.

The environment for validating our solution consisted of
a regular desktop computer (4th generation quad-core i7 with
8GB of RAM) running Linux Mint 20.3 and Oracle VirtualBox
6.1.38 hypervisor with a Ubuntu 22.04 virtual machine guest,
using 4GB of RAM and 35GB of disk space. LXD 5.0 was
used to host LXC containers inside the virtual machine, using
the mainstream Ubuntu 20.04 LTS image. Each container had
Mosquitto 3.1.1 installed alongside Python 3.8.10, with Paho-
MQTT 1.6.1 library installed through Pip.

For redirecting log messages generated by Mosquitto to
the $SYS topic, /etc/mosquitto/mosquitto.conf
needed to be configured with the lines below:

log_dest topic
log_type all

Each container had only one network interface installed,
named ’eth0’, connecting to a virtual bridge ’lxdbr0’ on the
Ubuntu 22.04 host (this is necessary because the solution
uses the network interface name to gather its IP address).
Each broker/wrapper set on the network corresponds to one

2023 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and
Performance Evaluation

605

container instance. The configuration regarding the neighbors
is in a list in the wrapper, as mentioned before. Example:

neigh = [(’10.81.180.180’),
(’10.81.180.217’)]

A. Environment remarks and considerations

LXC delivers a handful of scenarios better than a Docker-
based environment because it provides a complete operating
system experience with minimal memory and processing foot-
print. Also, Docker needs a new image of the application
to be generated each time the source code is changed. With
LXC, creating new instances and cloning running instances is
straightforward, making scaling the system a trivial task.

B. Validation and testing

For validation purposes, we used the scenario proposed in
[8] (Figure 4). The validation aims to check the assemblage of
the overlay network and identify whether the wrapper behaves
as desired, handling federated topics and message routing.

After configuring and starting all the wrappers on network
nodes, the nodes populate their federation list. Figure 2 shows
the node’s three federation lists (n = is the list of neighbors,
f = is the list of federated nodes, followed by the broker IP
and node’s ID, then the management core).

Fig. 2. Node’s 3 federation list

The next step consists of simulating a topic subscrip-
tion and observing the federated topic evolution. We start
with a subscriber at node zero. Figure 3 depicts the
node’s five debugging outputs, showing the federated topic
mytopic/example_subtopic, and the core for that
given topic is node zero - the node that we have the subscriber
attached to. Publications for the related topic are forwarded
toward node zero and flood the mesh once reaching it.

To test publication routing, we did a publication on node
four, monitoring the wrapper, gathering the publication, and
sending it toward the core through node one. Next, a pub-
lication starts on node five, which has route redundancy
towards the core. In this case, we randomly choose one of the
neighbors in the message-forwarding process. In all situations
under consideration, the publications successfully reach the
subscriber.

C. Performance analysis

When analyzing our solution’s performance, it is impera-
tive to differentiate the key performance indicators between

Fig. 3. Example of a federated topic with a subscriber attached to node 0

clustering and federation. Clustering relies on aggregating
computational resources as a single block, having the load
balancer as the main bottleneck and single point of failure.
On the other hand, the federation relies on orchestrating
distributed resources with multiple access points. Therefore,
one could argue that the federation first targets the service’s
high availability, while clustering aims at high throughput.

The performance analysis evaluates the message delivery
reliability while dealing with changes to the overlay topology.
For the case studies, we consider the analysis starting after an
initial configuration for the federation of brokers is running.

The first test consists of running a subscriber for a non-
existent topic. The corresponding node advertises itself as the
core for the new topic. The topic mesh construction begins as
new subscribers for the same topic connect to different nodes.
To test the message routing, a client starts publishing from a
node outside the mesh. Initially, messages are directed toward
the core, spreading throughout the mesh once reaching the
core or a mesh member.

We evaluate the core election process by simultaneously
instantiating two subscribers to the same topic in separate
nodes. For a while, two core announcements wander around
the federation, but eventually, the core with the greater ID
gives way to the one with the minor ID. Once nodes learn
about the remaining core, the mesh construction process
converges. In the case of network partitioning, there will be
two different scenarios. In the first, the slice that kept the
existing core will rely on it to identify disconnected nodes,
and the remaining nodes will be informed to update their
databases. In the second, the remaining brokers on the coreless
slice will identify that they are not receiving core information
updates and will orchestrate a new core election.

V. CONCLUSIONS

This work presents a new variant for the federation approach
introduced in previous works [8]–[10]. Our solution differs
by adopting a wrapper cooperating with the broker while
communicating to other wrappers running on neighboring
brokers. This proposal is ongoing work and lacks function-
alities available on a regular Mosquitto MQTT broker, such
as QoS controls and authentication, which are part of future
work. However, we achieve our main objective: to provide and
evaluate a self-managed federation of MQTT brokers.

We noticed that the initial federation process (i.e., related
to the overlay network) requires more time than anticipated. It

2023 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and
Performance Evaluation

606

Fig. 4. Validation topology

shows it is worth improving all the topology-related services,
from the initial overlay establishment to all the resulting
maintenance. We are working on new mechanisms for better
handling joining and leaving the federation network.

Monitoring active subscribers is still an open issue. For now,
we assume the connection between a subscriber and the broker
is stable and remains connected indefinitely. On the other
hand, intermittent connecting clients might get new IDs when
reconnecting, which becomes a broader monitoring burden.

The present work opens an extensive list of possibilities
for improving the federation of MQTT brokers. Compared
to other solutions, mainly proprietary market-driven solutions,
our solution covers a particular domain, and the initial proto-
type shows our proposal’s potential. The increased availability
comes from the self-managing mesh approach, which is central
to our work. In case of network partitioning or general
connectivity problems, the service is still available for the
clients in the same partition. As partitions merge again, the
system converges quickly with reduced control overhead.

REFERENCES

[1] M. Houimli, L. Kahloul, and S. Benaoun, “Formal Specification, Ver-
ification and Evaluation of the MQTT Protocol in the Internet of
Things,” in International Conference on Mathematics and Information
Technology (ICMIT), Adrar, Algeria, Dec. 2017, pp. 214–221.

[2] N. Naik, “Choice of Effective Messaging Protocols for IoT Systems:
MQTT, CoAP, AMQP and HTTP,” in IEEE International Systems
Engineering Symposium (ISSE), Vienna, Austria, Oct. 2017, pp. 1–7.

[3] M. Kashyap, V. Sharma, and N. Gupta, “Taking MQTT and NodeMcu
to IOT: Communication in internet of things,” Procedia Computer
Science, vol. 132, pp. 1611 – 1618, 2018, international Conference
on Computational Intelligence and Data Science. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050918308585

[4] I. Made Wirawan, I. Dwi Wahyono, G. Idfi, and G. Radityo Kusumo, “Iot
communication system using publish-subscribe,” in 2018 International
Seminar on Application for Technology of Information and Communi-
cation, 2018, pp. 61–65.

[5] HiveMQ, “HiveMQ website,” https://hivemq.com, 2022, accessed: 2022-
04-19.

[6] EMQX, “EMQX website,” https://emqx.com, 2022, accessed: 2022-08-
19.

[7] VerneMQ, “VerneMQ website,” https://vernemq.com, 2022, accessed:
2022-08-19.

[8] M. A. Spohn, “Publish, subscribe and federate!” Journal of Computer
Science, vol. 16, no. 7, pp. 863–870, Jul 2020. [Online]. Available:
https://thescipub.com/abstract/jcssp.2020.863.870

[9] M. Spohn., “An endogenous and self-organizing approach for the
federation of autonomous mqtt brokers,” in Proceedings of the 23rd
International Conference on Enterprise Information Systems - Volume
1: ICEIS,, INSTICC. SciTePress, 2021, pp. 834–841.

[10] N. K. Ribas and M. A. Spohn, “A new approach to a self-
organizing federation of mqtt brokers,” Journal of Computer Science,
vol. 18, no. 7, pp. 687–694, Jul 2022. [Online]. Available:
https://thescipub.com/abstract/jcssp.2022.687.694

[11] J. H. L. Bakker and F. J. Pattenier, “The layer network federation
reference point-definition and implementation,” in TINA ’99. 1999
Telecommunications Information Networking Architecture Conference
Proceedings (Cat. No.99EX368), 1999, pp. 125–127.

[12] N. Uramoto and H. Maruyama, “Infobus repeater: a secure and dis-
tributed publish/subscribe middleware,” in Proceedings of the 1999 ICPP
Workshops on Collaboration and Mobile Computing (CMC’99). Group
Communications (IWGC). Internet ’99 (IWI’99). Industrial Applications
on Network Computing (INDAP). Multime, 1999, pp. 260–265.

[13] T. Bass, “The federation of critical infrastructure information via
publish-subscribe enabled multisensor data fusion,” in Proceedings of the
Fifth International Conference on Information Fusion. FUSION 2002.
(IEEE Cat.No.02EX5997), vol. 2, 2002, pp. 1076–1083 vol.2.

[14] Z. Y. Thean, V. Voon Yap, and P. C. Teh, “Container-based mqtt broker
cluster for edge computing,” in 2019 4th International Conference
and Workshops on Recent Advances and Innovations in Engineering
(ICRAIE), 2019, pp. 1–6.

2023 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and
Performance Evaluation

607

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background
	2.1 The Internet of Things
	2.1.1 Definition
	2.1.2 Architecture and Reference Models

	2.2 Protocols & MQTT
	2.2.1 MQTT

	2.3 Scalability

	3 Related Work
	3.1 General Works and First Efforts Towards Scalability
	3.1.1 InfoBus Repeater: A Secure and Distributed Publish/Subscribe Middleware
	3.1.2 The Federation of Critical Infrastructure Information via Publish-Subscribe Enabled Multisensor Data Fusion
	3.1.3 Towards Scalable Publish/Subscribe Systems

	3.2 Foundation Works
	3.2.1 Publish, Subscribe, Federate!
	3.2.2 Federação de Brokers do Protocolo MQTT - Implementação e Análise de Desempenho

	4 Proposal and Implementation
	4.1 Proposal
	4.2 Resources Overview
	4.2.1 Mosquitto
	4.2.2 Python
	4.2.3 Paho

	4.3 Model and Implementation
	4.3.1 Model
	4.3.1.1 Main Group Functions
	4.3.1.2 Support Group Functions
	4.3.1.3 Message Types

	4.3.2 Implementation

	5 Validation and Performance Tests
	5.1 Validation
	5.2 Performance Tests

	6 Conclusion
	6.1 Open Topics and Future Work

	References
	Appendix A — Resumo expandido
	Appendix B — Published Paper - ICNC 2023 - Qualis A2

