
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

JÚLIA DARTORA CRAIDE

Switch (De)Composer++
Evolution and Practical Evaluation

of Switch (De)Composer

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. Weverton Cordeiro

Porto Alegre
April 2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Ensino (Graduação e Pós Graduação) : Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escola de Engenharia: Profa. Carla Schwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Cláudio Machado Diniz
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegretti Borges

“Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.”

— MARIE CURIE

ACKNOWLEDGMENTS

First and foremost, I need to recognize my advisor Weverton Cordeiro, your guid-

ance and experience were fundamental to the success of this research, and you’ve been

very special to me all these years. I would also need to thank Paula D. Bol for her initial

proposal of Switch (De)Composer, without it this project would not be possible. And the

help and incentive from UFRGS network group and the research team in laboratory room

208, especially Matheus Saquetti’s insights related to the practical evaluation.

I would like to thank this university, its faculty, and its staff, that provide me

with this unique learning experience. I’m especially grateful for all the great teachers,

from basic education to now, whom I had the honor to learn from. I also met awesome

classmates along the way who were very important and form true friendships, to them my

gratitude. A big thanks as well to my colleagues and leaders from my internship at "SAP

Labs São Leopoldo", who help me start my career in the best way possible.

I need to acknowledge the student groups I was part of, which had an immense im-

pact on my academic and professional journey. Firstly, the "Laboratório de Programação

Competitiva (LPC)" study group that help me train for programming competitions like

ICPC, especially professor Rodrigo Machado who made me feel welcome right from my

first semester. I also need to thank all members of "Empresa Júnior IDE", especially the

ones that were on projects and/or the directory board with me, it was a pleasure working

with you, I learn so much there, and hope I could be of help as well.

I’m extremely grateful for the support offered by my family and friends, who

assisted me immensely. My deepest appreciation to my parents, Alex and Jesmarí, for

always being there for me in the good, the bad, and the great times. My most sincere grat-

itude to my little sister Aléxia, who has been a blessing, sometimes in disguise, throughout

my entire life. You three encouraged me so much to push forward in my studies and give

my best in every situation, I cannot express in words all my gratitude.

Last, but not least, I need to offer the biggest thank you to Leonardo, who has

been my partner all those years in and out of university. You’ve been with me every step

of the way and offered unique feedback from the very first class we had together until the

final revisions of this project. I’m so proud of all your accomplishments and your support

means the world to me as well. I could not have asked for a better person by my side.

I apologize for those I did not have the chance to properly name here. And dedicate

this as well to all the loved ones that are not here anymore and will be forever missed.

ABSTRACT

Switch (De)Composer is a solution proposed to create modular switch code leveraging the

One Big Switch(OBS) abstraction according to a network topology. It enables network

developers to deploy the code that promotes reusability, maintainability, and efficient re-

source usage, across the programmable forwarding plane. In this undergraduate thesis, we

proposed Switch (De)Composer++ (CRAIDE, 2023) a continuation of the project aiming

to enhance the solution and follow up with a practical evaluation on top of FPGAs, such as

NetFPGA-SUME. The results obtained indicate significant improvements in latency and

occupation when comparing switches generated from Switch (De)Composer to a trivial

OBS model deployment.

Keywords: One Big Switch. Switch. Software Defined Network. P4. µP4. FPGA.

NetFPGA SUME. P4VBox.

Switch (De)Composer++: Evolução e Avaliação Prática do Switch (De)Composer

RESUMO

Switch (De)Composer é uma solução proposta para criar código switches modulares se

aproveitando da abstração One Big Switch (OBS) de acordo com a topologia da rede.

Dessa forma permitindo desenvolvedores de redes realizarem a implementação do có-

digo e promovendo reusabilidade, manutenibilidade e uso eficiente de recursos, atra-

vés do plano de dados. Nesse trabalho de conclusão de curso foi proposto o Switch

(De)Composer++ (CRAIDE, 2023), uma continuação do projeto com objetivo de apri-

morar a solução e em sequência fazer uma avaliação prática utilizando FPGAs, como

NetFPGA-SUME. Os resultados obtidos indicam melhorias significativas de latência e

ocupação, quando comparando switches gerados pelo Switch (De)Composer com uma

implementação trivial do OBS.

Palavras-chave: One Big Switch. Switch. Software Defined Network. P4. µP4. FPGA.

NetFPGA SUME. P4VBox.

LIST OF ABBREVIATIONS AND ACRONYMS

ACL Access Control Lists

ASIC Application-Specific Integrated Circuit

API Application Programming Interface

BLE Basic Logic Element

BMv2 Behavioral Model version 2

CLB Configurable Logic Block

CLI Command-Line Interface

CPU Central Processing Unit

DAG Directed Acyclic Graph

DRAM Dynamic Random Acess Memory

DSP Digital Signal Processing

FPGA Field-Programmable Gate Arrays

ILP Integer Linear Programming

IP Internet Protocol address

IPI Input P4 Interface

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

JSON JavaScript Object Notation

LCS Longest Common Subsequence

LoC Lines of Code

LUT Lookup Table

MAC Media Access Control

µP4 Micro P4

MILP Mix-Integer Linear Programs

NAT Network Address Translation

OBS One Big Switch

OPI Output P4 Interface

OPL Output Port Lookup

PCIe Peripheral Component Interconnect Express

P4 Programming Protocol-Independent Packet Processors

PISA Protocol-Independent Switch Architecture

RAM Random-Access Memory

Regex Regular Expressions

SDN Software Defined Network

SRAM Static Random Acess Memory

SSS Simple Sume Switch

TDG Table Dependency Graphs

TCP Transmission Control Protocol

UFRGS Federal University of Rio Grande do Sul

LIST OF FIGURES

Figure 1.1 OBS deployment vs. Switch (De)Composer deployment13

Figure 2.1 Software Defined Network planes ...14
Figure 2.2 PISA Architecture vs V1Model Architecture..18
Figure 2.3 FPGA internal organization...19
Figure 2.4 SimpleSumeSwitch Architecture...20
Figure 2.5 P4VBox design ..21

Figure 5.1 Switch (De)Composer++ basic architecture overview30
Figure 5.2 Switch (De)Composer++ steps to generate the switches...............................33
Figure 5.3 Switch (De)Composer++ dependency graph example35

Figure 6.1 V1Model vs Simple Sume Switch...42
Figure 6.2 OBS vs. Switch (De)Composer detailed deployment43

LIST OF TABLES

Table 4.1 Number of Switch Tables (Cumulative)..27
Table 4.2 Related Work Comparison ..28

Table 6.1 Switches Time measurements ...45
Table 6.2 Switches Occupation ...45
Table 6.3 Switches Deployment Latency and Occupation..46

CONTENTS

1 INTRODUCTION...12
2 BACKGROUND..14
2.1 Software Defined Network (SDN) and OpenFlow ...14
2.2 One Big Switch (OBS) ..15
2.3 P4 and µP4 ..16
2.4 Mininet ...17
2.5 Intel Tofino and V1Model...17
2.6 Field-Programmable Gate Arrays (FPGA) ..18
2.7 NetFPGA and NetFPGA SUME..20
2.8 P4VBox...21
3 RELATED WORK ...22
3.1 Switch (De)Composer ...22
3.2 SNAP ..23
3.3 Flightplan...23
3.4 SPEED..24
3.5 P²GO...25
4 OVERVIEW AND PRELIMINARY EVALUATION..26
4.1 Switch (De)Composer Overview..26
4.2 Preliminary Evaluation ..27
5 OUR EXTENSION: PROPOSED ARCHITECTURE ...29
5.1 Proposed Architecture ..29
5.2 Architecture Improvements ...32
5.3 Switch (De)Composer++ Usage Process ...38
5.4 Quantitative Analysis..40
6 EXPERIMENTAL EVALUATION ...41
6.1 Test Modifications ...41
6.2 Practical Evaluation..43
6.3 Results discussion..46
7 FINAL CONSIDERATIONS AND OUTLOOK..47
7.1 Considerations on Results Achieved ...47
7.2 Future Work ..48
REFERENCES...50

12

1 INTRODUCTION

In recent years, the networking community has seen many advancements toward

programming entire networks (GAO et al., 2020) or defining flow policies (ARASHLOO

et al., 2016) using only a single file. These advancements are based on the One Big Switch

(OBS) abstraction (KANG et al., 2013) that incentives network developers to be mindful

of the behavior needed for forwarding planes globally, this already occurs on Software

Defined Network (SDN) control and application planes. That way the programming nec-

essary for the global network is facilitated, since from an individual file is possible to

generate ASIC constraints that satisfy individual and/or network-wide constraints.

On the other hand, this abstraction can make developers less aware of run time

constraints, like policies, when deploying and remain tied to the OBS model. Since all

behavior are expressed on a single program, changes to specific protocols and services

implementations may be difficultated, because they would depend o shared resources like

headers and parsers. This can also make the program tightly coupled and tied to some

scenarios, making it harder to reuse in different cases.

The proposed Switch (De)Composer (BOL et al., 2021a) is a solution that al-

lows programmers to leverage the OBS abstraction, and simultaneously produce modular

switch code, that facilitates reusability in different domains, functionality extensions, and

independent maintainability. In order to produce modular custom switch code, Switch

(De)Composer receives three parameters as inputs: the switch constraints, the target for-

warding plane topology, and the big switch code. The switch constraints are the flow

policies that must be enforced on a given flow. The forwarding plane topology, on the

other hand, describes the architecture of switches and connections that decides the ar-

riving package’s destination. The big switch code, in this context, could be an OBS

abstraction written in a modular language like µP4 (SONI et al., 2020b).

The solution can also generate switch programs that are more efficient in resource

usage. As an example, Figure 1.1, has a network with three switches and four access

points. Each colored line represents a flow, the triangles a switch constraint, and the

circles a flow endpoint. Comparing Switch (De)Composer deployment with a strawman

OBS, in this hypothetical case, the total number of modules is reduced from nine to seven.

While Switch (De)Composer presented very promising theoretical results for re-

source savings in large-scale network backbones and data centers, no practical evaluation

was performed considering the particularities of real-world hardware implementations.

13

Figure 1.1 – OBS deployment vs. Switch (De)Composer deployment

Source: The Author, adapted from (BOL et al., 2021a)

In particular, no assessment of potential resource savings and impact on network flows

remained as a prospective direction to be analyzed in future investigations. In this con-

text, the goal of this work is to provide a practical evaluation of Switch (De)Composer

focusing on real-world hardware, also closing the gap on the refinement of OBS models

considering the policies implemented in the network for each programmable forwarding

device. We also aim to go beyond the previous development, adding more features and

making important modifications, therefore achieving a more complete solution we call

Switch (De)Composer++ (CRAIDE, 2023).

The remainder of this document is organized as follows. Chapter 2 elaborates in-

depth on background concepts, whereas Chapter 3 reviews related work, both important

topics used as the basis for the rest of the work. Chapter 4 provides an overview of Switch

(De)Composer and the preliminary evaluation previously made about the projects proof-

of-concept version (BOL et al., 2021a). Chapter 5 discusses the software improvements

intended to be developed for this undergraduate manuscript and how those changes were

actually implemented. Chapter 6 describes the steps we took in order to make the practical

evaluation of Switch (De)Composer output switches on FPGA boards, followed by an

examination of the premises and results of this evaluation. Finally, Chapter 7 has the

outlook of what was developed in this undergraduate project, the conclusions taken, and

mentions the possibilities for future work.

14

2 BACKGROUND

In this section, we discuss more in-depth about the relevant background for this

undergraduate thesis. We conceptualize the main terms and technologies involved in the

development of the Switch (De)Composer solution.

2.1 Software Defined Network (SDN) and OpenFlow

Software Defined Network (SDN) is a concept that gain a lot of traction in the

last decades, due to the many benefits, like flexibility, controllability, maintainability,

scalability, and reliability, it brings to network architectures compared to the classical

model. The main idea behind SDN is to divide the network into planes as shown in

Figure 2.1, that way control and forwarding functionalities into two planes, the control

plane, and the data plane. That way, decoupling the physical devices from the routing and

forwarding logic. Furthermore, in this architecture, the control plane is centralized in a

single controller that oversees the network and defines the network policies that will be

enforced (BENZEKKI; FERGOUGUI; ELALAOUI, 2016).

Figure 2.1 – Software Defined Network planes

Source: The Author, adapted from (GOBATTO et al., 2021)

Although SDN inspired many improvements related to network management on

the control plane side, there are still concerns raised about the data plane (GOBATTO et

15

al., 2021). These concerns are mainly related to how to extend the protocol sets on physi-

cal devices. One challenge that persists is that many network devices have functionalities

predefined by manufacturers, which impede the support of newer protocols.

One of the first real implementations of Software Defined Networks was made by

OpenFlow (BENZEKKI; FERGOUGUI; ELALAOUI, 2016), which is an open protocol

that enables traffic management and communication between the control panel and the

network devices. The initial OpenFlow(MCKEOWN et al., 2008) objective was to enable

researchers to control and test their experimental flows on production environments, in a

way they will be isolated from production traffic on the same network. The OpenFlow

switch also attempted to fulfill four goals, to comply with high-performance and low-cost

implementations, to support a large range of research, to assure traffic flows isolation, and

to be consistent with vendors’ need for closed platforms.

Currently, OpenFlow is one of the most commonly deployed solutions based on

SDN (LARA; KOLASANI; RAMAMURTHY, 2014). The OpenFlow architecture has

three main components, the OpenFlow-compliant switches are only responsible to for-

ward the packets according to their flow tables, the controller provides the forwarding

rules to the data plane by manipulating the flow tables, and a secure channel is the inter-

face in which the control plane applications and data plane elements can communicate

via the OpenFlow protocol. The flow tables consist of a list of entries that has match

fields, a counter, and instructions, when a packet arrives in the switch its header fields are

compared against the entries, and they equal to an entry match field they are processed

following the instructions actions, while the counter is used to keep entries statistics.

In such a manner, OpenFlow provides an abstraction (NGUYEN et al., 2016)

that hides the complexity of the network devices thus facilitating and giving freedom to

the network management operators. This abstraction allows any high-level policy to be

translated into flow entries that can be distributed to the switches in a network topology.

However, a current open challenge is how to translate these high-level policies into lower

lever forwarding rules, while also satisfying resource constraints.

2.2 One Big Switch (OBS)

One Big Switch is a popular abstraction amongst the networking community, that

considers the whole network as one (big) switch (KANG et al., 2013). That way, it conve-

niently hides the internal package forwarding topology details so the network developer

16

can focus on developing the global forwarding plane. This way all the necessary code can

be written on a single file, that can be used to generate specific switches in a topology.

One of the main challenges in implementing this abstraction is how to optimize

the mapping of the high-level policies into low-level ones to be placed in each switch on

the topology (KANG et al., 2013). This is also known as the big switch problem. The

trivial solution to this problem is to implement all possible policies in all switches, but

this results in a poor resource usage efficiency.

2.3 P4 and µP4

Programming Protocol-Independent Packet Processors (P4) is a high-level lan-

guage for programming the forwarding behavior of protocol-independent packets on net-

work devices (BOSSHART et al., 2014). The three main goals of the language are: (i)

reconfigurability in the field, (ii) protocol independence, and (iii) target independence

(GOBATTO et al., 2021). Reconfigurability in the field means that the controller should

be able to change how a given field is parsed and processed once deployed. Protocol

independence means that the controller can configure the parser that extracts the neces-

sary header field and the match action table to process the field, this way the device is

not tightly coupled with a specific protocol and/or packet format. Finally, target inde-

pendence means the P4 code, which describes the processing function, should be written

independently of the underlying hardware, the P4 compiler is the one responsible to turn

the P4 program into a target-dependent program.

One of the main challenges of P4 programs is related to portability and reusability,

since the P4 code tends to be monolithic and dependent on underlying hardware architec-

ture. The µP4 framework (SONI et al., 2020b) was created to address those challenges,

it provides logical architecture abstractions needed to compose data planes independently

from the hardware-level structures. It also supports a powerful kind of program compo-

sition, enabling developers to write modular code and use functions from other programs

and/or reusable libraries. Finally, a compiler that transforms the µP4 programs into P4

programs was provided, so the code can be deployed on the same environments.

17

2.4 Mininet

Mininet is an open-source tool that allows its users to emulate large virtual net-

works, with support for OpenFlow devices and SDN controllers (KAUR; SINGH; GHUM-

MAN, 2014). It is an alternative to the physical testbed, which can be very expensive

and hard to configure, and to other virtualization and simulators, which can require code

modification, and may struggle with scalability, and speed. Compared to the mentioned

alternatives, Mininet has a lower cost, is more convenient to use, and enables rapid proto-

typing, realistic accuracy, and scalability.

In other to provide the emulation of scalable networks on a single machine Mininet

uses lightweight virtualizations, such as process-based virtualization and network names-

paces (CONTRIBUTORS, 2022). These techniques permit the quick creation, customiza-

tion, and sharing of prototypes, but are also the reason why Mininet depends on the Linux

kernel. The Mininet code was mostly written in Python, that is why an extensive Python

API is provided to create and test network experiments.

Applicability is a big advantage of Mininet (OLIVEIRA et al., 2014) since its

resources can be replicated in real environments and other test infrastructures without ex-

tensive changes. It also exceeds expectations in prototyping and sharing since it provides

fast startup times, low overhead to test designs, the possibility to test on modest hardware

and ease to share projects, tests, and configuration by allowing multiple developers to

work independently on the same topology. However, the tool has its limitation especially

regarding network fidelity on larger scales, since all nodes run on a shared computer,

therefore being bound by its CPU and bandwidth.

2.5 Intel Tofino and V1Model

The Intel Tofino (BYTE, 2017) is a network processing platform designed to han-

dle the growing demands of data traffic and complex network management tasks in mod-

ern data centers. Based on Application-Specific Integrated Circuit (ASIC) chip technol-

ogy, the Tofino offers a high throughput and ultra-low latency, making it ideal for orga-

nizations that need to handle large volumes of real-time data. Additionally, the Tofino is

highly programmable and customizable, using P4 allows developers to program the data

plane, creating network solutions to meet the specific needs of their customers. It also

has metadata export features that using P4, allow the programmer to send metadata to

18

orchestration platforms for better control.

The Barefoot Tofino switches are compatible with P4 programs that follow the

V1Model architecture (P4LANGUAGE, 2022). This architecture is included with the

P4C compiler and was created to support version P416 of the P4 language. It is also fully

compatible with the architecture used on the previous P4 version P414 and implemented

on top of the BMv2 framework and Simple Switch target implementation.

Figure 2.2 – PISA Architecture vs V1Model Architecture

Source: The Author, adapted from (P4.ORG, 2017)

V1Model (P4.ORG, 2017) also follows the principles from Protocol-Independent

Switch Architecture (PISA), since it has a P4 programmable input parser, followed by

match-actions, and at the end a P4 programmable deparser as shown in Figure 2.2. The

difference to the basic PISA architecture is that it has defined blocks on the math-action,

those being a block to checksum verification, an ingress pipeline, it has a traffic man-

ager, an egress pipeline, and finally a block to update checksums on the packets. The

traffic manager is can schedule and replicate packets between I/O ports, it is also not

programmable in the P4 language.

2.6 Field-Programmable Gate Arrays (FPGA)

Field-Programmable Gate Arrays (FPGA) are prefabricated programmable de-

vices that can be changed into nearly any integrated circuit needed (KUON; TESSIER;

19

ROSE, 2008). This reconfigurability and flexibility capacities are one of the main dif-

ferentials of FPGAs allowing them to change the hardware at runtime and be used as

fast prototyping. Compared to a microprocessor, FPGAs can change the hardware itself

changing data and control flow (YANG et al., 2014), which leads to more efficiency in

performance and power consumption.

Compared to their ASICs counterparts, FPGAs are cheaper to buy (low volume

cost), fast to set up, and can be electrically reconfigured in case of a mistake or a neces-

sary change, while ASICs are fixed-function, have a high cost and can take a long time

to be fabricated (KUON; TESSIER; ROSE, 2008). The trade for these advantages is that

FPGAs have a significantly higher cost in area, delay, and power consumption: an FPGA

requires around 20 to 35 times more area than an ASIC made with standard cells, and

it has a speed performance of approximately 3 to 4 times slower and consumes approxi-

mately 10 times more energy (KUON; ROSE, 2007). These losses in performance, area

and power consumption are mainly caused by the routing mesh used by the FPGA to

connect the data traffic between its internal logic blocks.

The fundamental logic blocks that compose FPGAs are Configurable Logic Blocks

(CLBs), Digital Signal Processing (DSP) slices, and RAM memory blocks, as shown in

Figure 2.3 these blocks are internally organized in a matrix and connected by a mash. The

CLBs are the main FPGA block used to implement, sequential, combinatorial, and logic

functions. DSPs are focused on efficient processing of digital signal functions, multipli-

cation being one of the most important examples (GOBATTO et al., 2021).

Figure 2.3 – FPGA internal organization

Source: The Author, adapted from (GOBATTO et al., 2021)

20

2.7 NetFPGA and NetFPGA SUME

NetFPGA(IBANEZ et al., 2019) is an open-source project that provided software

and hardware to simplify high-speed networking research. The project is focused on

academic and education communities, so beyond software and hardware, the NetFPGA

team also supports learning resources such as tutorials, workshops, forums, and summer

camp events. The community around NetFPGA is strong leading to many contributions

from members on the related projects and the education resources mentioned.

NetFPGA SUME (ZILBERMAN et al., 2014) is a NetFPGA platform created

to enable research and development focus on the high requirement of the data center

networks, such as large bandwidth and throughput. It is an FPGA-based PCIe board that

has support for an I/O that exceeds 100Gb/s and is provided by 3013.1GHz transceivers, it

also has other practical interfaces, SRAM, and extensible DRAM memory. The NetFPGA

SUME is the third and latest FPGA board on the NetFPGA hardware family, its main

objectives were to have a low-cost, commodity and flexibility to be used on a wide range

of research applications since it was designed for the academic community.

Figure 2.4 – SimpleSumeSwitch Architecture

Source: The Author, adapted from (IBANEZ; ZILBERMAN, 2018)

In implementations of switches using the NetFPGA platform, we follow the Sim-

ple Sume Switch (SSS) model1. The SSS model consists of and P4 architecture with 3

switch logic steps. The first step is a packet parser, followed by a single match action

pipeline and then a packet deparser as shown in the Figure 2.4.
1https://github.com/NetFPGA/P4-NetFPGA-public/wiki/SimpleSumeSwitch-Architecture-(v1.2.1-and-

Earlier) (IBANEZ; ZILBERMAN, 2018)

21

2.8 P4VBox

P4VBox (SAQUETTI et al., 2020) in an architecture that enables the virtualization

of independent P4-based switches on the data plane and implements a methodology for

hot-swapping the virtual switches deployed. This architecture aims to satisfy 5 simulta-

neous virtualization challenges: (i) virtual switch instance decoupling from the virtualiza-

tion environment, (ii) network flow isolation, (iii) hardware resource isolation, (iv) virtual

networking within the hypervisor, and (v) feasible performance and memory footprint.

Figure 2.5 – P4VBox design

Source: The Author, adapted from (SAQUETTI et al., 2020)

The architecture increments the canonical NetFPGA reference design by replacing

the single Output Port Lookup (OPL) for a structure that introduces Input P4 Interface

(IPI), an Output P4 Interface (OPI), and multiple OPL instances. Figure 2.5 shows the

P4VBox design, where it replaces the single OPL from the canonical design. P4VBox

was tested on a NetFPGA SUME with 3 types of virtual switches: layer-2 switches,

routers, and firewalls, obtaining very positive results for bandwidth and latency.

22

3 RELATED WORK

In this section, we present investigations related to our by also proposing solutions

to enhance switch programmability for the forwarding plane. Among these investigations,

some are also related to the One Big Switch abstraction, some to the Software Defined

Network concept, and some to the usage of P4 language as a basis for their optimiza-

tions. As so understanding these different approaches may lead to meaningful insights

for analyzing the Switch (De)Composer results. We provide in Chapter 4 a more in-depth

comparison of the related work that form the conceptual basis of this work.

3.1 Switch (De)Composer

Switch (De)Composer was initially a solution proposed on a 2021 SIGCOMM

poster (BOL et al., 2021a) its main objective was to be able to generate a modular switch

code given policies constraints and the topology of the desired network. The idea behind

it was to leverage the One Big Switch abstraction, it did this by using OBS model µP4

program previously annotated in the places where it would invoke and instantiate other

modules, then the solution would include the required modules from the OBS program

onto a template program that has also been annotated, therefore generating switch pro-

gram with only the necessary modules for all switches in the topology. That way it would

allow the network programmer to generate and deploy switches on the programmable

forwarding plane that are easier to maintain due to its reusable modules, and that fosters

efficient hardware resource usage since it only included the required modules.

The solution was developed in Python 2 and was composed of a program that did

the process of constructing the µP4 previously described, another Python program to run

tests on Mininet, the µP4 templates and modules, and a few examples of the solution uti-

lization. The initial constraints supported were network policies, mainly, ethernet, IPv4,

and IPv6, since they would be used as the basis to later support further constraints. The

project also previewed the utilization of a constraint interpreter to directly read the pol-

icy’s constraints to determine which modules should be included in each switch, but this

was not developed before the work on the project cease.

The solution was also not able to be tested on the target FPGA hardware, so the

poster evaluation was based on the number of switch tables µP4 and JSON on two topol-

ogy scenarios, obtaining results that indicate a potential to enhance resource usage. This

23

undergrad project is a continuation of the development of the Switch (De)Composer solu-

tion, where one of the final objectives is to make a practical evaluation on top of FPGAs.

Therefore the results of this Switch (De)Composer proof-of-concept preliminary evalua-

tion will be discussed in depth in Chapter 4, and mentions of the original proof-of-concept

will be present in the remaining text.

3.2 SNAP

SNAP is a stateful programming model used to develop SDN programs on top of

the one big switch abstraction (ARASHLOO et al., 2016). The main challenge it solves

is providing advanced managing support for state persistence on the data plane, enabling

programmers to implement a large range of stateful applications. SNAP was evaluated

and validated for the expressiveness of its language and the in relation to the compiler

process on a wide range of sample programs.

In order to provide the stateful model SNAP provides global persistent arrays to

which the OBS programs can read and write from. The SNAP compiler is the component

responsible to take care of the read/write dependencies on the data arrays. It also uses an

internal representation based on binary decision diagrams to translate OBS programs, and

finally, these diagrams are transformed into Mix-Integer Linear Programs (MILP) which

optimizes state placement and the traffic routes on top of the topology.

The SNAP language provides stateful operations alongside packet processing, it

is based on the NetCore/NetKAT family of languages, in which a program consists of a

set of predicates and policies. In the SNAP context, a predicate receives the packet and

must decide based on state reads either to drop or pass the packet, but it cannot alter the

state. Policies, on the contrary, still need to process the packet, but they are able to modify

packets and the state, therefore every predicate is a policy that does not modify.

3.3 Flightplan

Flightplan (SULTANA et al., 2021) is a proposed target-agnostic toolchain that

can disaggregate a single P4 program into cooperative programs to run on heterogeneous

data planes. It also maps the subprograms generated to run on distributed systems on

different kinds of hardware, leveraging their strengths and exploiting features. That way

24

it keeps the same code behavior while optimizing bandwidth, energy consumption, device

heterogeneity, and latency, as it has shown in its evaluation.

The code segmentation on Flightplan was not automated at the time of the original

publication, but it consisted of adding annotations to delimit boundaries for the segmenta-

tions. Those segments of code are then automatically transformed into abstract programs

that consist of Directed Acyclic Graphs(DAGs). Then these programs, in conjunction

with resource semantics rules, network topology description, and optimization objectives,

are sent to the Flightplan planner which will lazily and exhaustively generate plans that

satisfy the given plan input constraints.

Then the generated plan consists of 3 components the allocation model, the anno-

tated program, and a control profile. The first one is used to explain how the allocation

found will be modeled when the program executes across data planes. The second is the

original program, with annotations about how the segments will be mapped to the data

plane, which will later be used to split the programs and compiler to the specific target

device. Finally, the control profile is used to configure Flightplane runtime, by distributing

the programs, starting the execution, and querying its states.

3.4 SPEED

SPEED is a system for the deployment multiple of data plane programs (CHEN

et al., 2020) on a network with programmable switches. It does it by merging different

data plane programs written in P414 or P416 to reduce redundancy in the code deployed.

The SPEED objective was to achieve high performance since many applications demand

strict performance requirements and resource efficiency in order to not exceed the network

programmable switches’ internal capacity.

The three biggest challenges in the implementation of SPEED were acceptance of

a diversity of programs, dealing with the strict performance and resource constraints, and

preserving the data plane program logic when splitting it into multiple switches. To fulfill

its requirement, Speed reduces program redundancy by merging input data, abstracting

the network to the OBS model, and deploying in stages the merged program, that way

reducing the resources used. It also maps the OBS on the substrate network respecting

the given constraint and aiming for optimal placement to enhance performance.

SPEED’s program merging algorithm is based on Longest Common Subsequence

(LCS) problem and uses generates Table Dependency Graphs (TDG), which help to deal

25

with heterogeneous programs. It also provides metadata sharing and inter-device packet

scheduling to ensure the correct behavior of the original logic, after splitting among

switches. To test the solution it was constructed a testbed with a Barefoot Tofino switch

and server to send data, which was able to achieve positive results regarding resource

efficiency and high end-to-end performance.

3.5 P²GO

P²GO (WINTERMEYER et al., 2020) is a system that works alongside the P4

compiler and uses runtime information to do profile-guided optimizations to the programs

and their placement in hardware. This approach could also reduce compilation fails since

it considers actual data with unrealistic and infrequent inputs. That way the compiler can

leverage real traffic information to make possible a broader spectrum of optimizations to

minimize resource utilization.

To more efficiently allocate resources to the P4 programs, the three main things

P²GO does are: (i) remove not manifested dependencies, (ii) adjust table and register sizes

to reduce the pipeline length, and (iii) offload rarely used parts of the program. It works

alongside the compiler by iteratively modifying, compiling, and analyzing its changes

compared to the original program, ensuring the same behavior in the given traffic trace. It

also can present information about program usage, so the developer can examine unused

pieces of code for further optimization based on a particular observation.

The idea behind the profile-guided optimizations comes from general-purpose lan-

guages which use execution profiles to facilitate memory and pipeline stages optimization.

P²GO works with four phases to accomplish its optimizations iteratively, the first one is

profiling the program the next three use this to make optimization, there is a phase for

removing dependencies, then reducing memory, and finally offloading code to the con-

troller. The prototype evaluation was done on a Tofino switch and showcased the benefits

of profiling techniques applied to the P4 compiler.

26

4 OVERVIEW AND PRELIMINARY EVALUATION

In this chapter, we will present Switch (De)Composer, in terms of its design vi-

sion and evaluation reported. Section 4.1 explains the core questions that motivated

the creation of the solution. In Section 4.2 we show the initial evaluation of Switch

(De)Composer preliminary version and comparison with other bodies of work.

4.1 Switch (De)Composer Overview

Switch (De)Composer design (BOL et al., 2021a) addresses three main questions:

(i) What switch constraints to support? (ii) How to compute switch module dependency

based on the expressed constraints? And (iii) How to build a custom switch program

from a given set of modules? As it is, the answer to the first question is that Switch

(De)Composer only has network policy constraints. The reason for this is as a way to en-

force further constraints, the switch must include the code to support the network policies,

so those were the first addressed. As an example, a switch must include an IPv6 handling

module, in order to enforce IPv6 routing policies.

About question number two, Switch (De)Composer uses module annotations, in-

side the OBS module to compute dependencies based on the constraints. For that was

made a constraints interpreter, specific to the constraint type, to determine the necessary

modules. To illustrate this process let’s imagine we have "match: tcp.dport == 80; action:

drop" as a policy constraint. In this scenario, the interpreter should find the switch mod-

ule annotation, written by the network developer, and would include a module to handle

the TCP flows. And then when parsing the TCP header, it may also require a module for

parsing IPv4 or IPv6, thus making a dependency graph of necessary modules.

About the third and final question, to build the custom switch programs the origi-

nal version of Switch (De)Composer solution was to use templates to base what modules

should be included in a given switch. In the development of this project, we decided

to stop working with templates to start working only with the OBS µP4 module itself.

So now the network developer will provide a dependency graph where there must be a

head OBS module that serves as the foundation to build the switch. This base module

must contain annotations like @ModuleInvokeBegin(submoduleName), @ModuleInvo-

keEnd(submoduleName), @ModuleInstantiateBegin(submoduleName), and @ModuleIn-

stantiateEnd(submoduleName), surrounding lines that refer to a given submodule, which

27

the name is between the parenthesis. As an alternative Switch (De)Composer also allows

annotating the switch internal modules from a repository for switch code composition.

Algorithm 1 Switch (De)Composer Main Routine (BOL et al., 2021a)
Input: Forwarding Plane Topology, OBS Program
Output:Set of Custom-Made Switch Programs

1: for each switch in forwarding plane topology do
2: RequiredModules← FetchAndInterpretConstraints(switch)
3: FullModulesList← ComputeDependencies(RequiredModules,OBSProgram)
4: CustomSwitchProgram← GenerateProgramFromTemplate(FullModulesList, OBSProgram)
5: end for

Lastly, Algorithm 1 is the one used to generate the custom code for each switch in

the forwarding plane topology. The solution may foster higher resource usage efficiency

across the network, but it is depended on the constraint placed. For switches policies, one

alternative is SNAP (ARASHLOO et al., 2016), which uses Integer Linear Programming

(ILP) to compute the optimal policy placement.

4.2 Preliminary Evaluation

The original proof-of-concept of Switch (De)Composer1 was made in Python and

µP4(SONI et al., 2020b), and two scenarios were evaluated (BOL et al., 2021a), using

Mininet and BMv2. The first scenario is the right one illustrated in Figure 1.1. The

second Stanford topology SNAP was used. The network constraint policies used in the

scenarios were IPv6, IPv4, and NAT/ACL. The test methodology was to sum the number

of µP4 and JSON switch tables used to deploy the OBS program and our custom Switch

(De)Composer switches, to asses the solution’s effectiveness.

Table 4.1 – Number of Switch Tables (Cumulative)

Scenario
Number of Tables Required

OBS Switch (De)Composer
JSON µP4 JSON µP4

1 72 15 53 (H26%) 11 (H26%)
2 624 130 554 (H11%) 114 (H12%)

Source: (BOL et al., 2021a)

The outcome of each scenario can be seen in Table 4.1, the quantity of match-

action tables was reduced by approximately 26% in the first scenario, and approximately

11% in the second. These results suggest a potential in Switch (De)Composer for gener-

ating resource savings in Switches implementation. This evidentiates the need for further
1https://github.com/pauladbol/SwitchDeComposer (BOL, 2021)

28

testing on a target NetFPGA-SUME (SAQUETTI et al., 2019; SAQUETTI et al., 2020).

Switch (De)Composer shares the OBS philosophy with related work such as Flight-

plan (SULTANA et al., 2021) and SPEED (CHEN et al., 2020). Our solution may lead

to more independent and reusable programs when compared to Flightplan since the last

one splits P4 programs into modules tightly coupled to network domains and scenarios.

SPEED, on the other hand, merges input programs into a single OBS and then slice them

into stages and assigns them into switches. That way SPEED assumes that all switches

in the topology have the same amount of stages, while Switch(De)Compose could have

support for receiving the number of stages as a property. SPEED also cannot support

constraints, like policies, differently from what we proposed for Switch (De)Composer.

A more similar direction is seen in P²GO (WINTERMEYER et al., 2020) uses insights

gathered from network flows to generate switches optimizing for resource usage, but it

does not target the OBS model.

Table 4.2 allows a more visual comparison of our solution with all related works

presented. We can see that the solutions provide switch code optimization and most also

use the OBS model in order to do so. However, none of the related works used the network

policies to optimize the switch code deployment except our solution.

Table 4.2 – Related Work Comparison

Work Optimize switch code Use OBS Use policies as constraint
SNAP X X

Flightplan X X
SPEED X X
P²GO X

Switch (De)Composer X X X

29

5 OUR EXTENSION: PROPOSED ARCHITECTURE

This chapter will discuss the software solution Switch (De)Composer++ provides.

We begin with Section 5.1 where we elapse about what we wanted to achieve with the

evolution of the original tool and why. Then in Section 5.2 we describe in detail the

necessary modifications and extensions done to the project. After showing the changes

done to the project we will describe the typical use case in Section 5.3. In this example, we

will also mention the optional customizations made possible by this project. To finalize,

in Section 5.4 we will present a quantitative analysis based on lines of codes changed.

5.1 Proposed Architecture

The first proof-of-concept of Switch (De)Composer had a lot of shortcuts that

needed to be fully developed before it could become e suitable tool. Because of these

limitations, we aim to make improvements to the architecture and remove some hard-

coded dependencies in order for it to accept more diversity in constraints and topologies.

The technologies chosen to be used in Switch (De)Composer++ were Python 3

language and Shell script for the tool itself and µP4 for the modules. The choice of using

µP4 language had already been made for the proof-of-concept, the reason behind it was to

benefit from the abstractions it provides, which enable more modularity, portability, and

reusability of code compared to the P4 language. The use of Python 3 and Shell scripts is

because those are famous tools for automation, and that is something we needed to do on

Switch (De)Composer++ to simplify the workflow. Also about Python specifically, the

project already used Python 2 in the main module, but we opt to upgrade the language

version to Python 3 since Python 2 was discontinued in 2020.

The objective of this undergrad dissertation is to make a new version with some

major improvements to the switch development process. Figure 5.1 shows the expected

inputs and outputs from Switch (De)Composer++ as if it was a black box. The only inputs

we want to have are: a JSON file with the switches topology; a JSON file that explicitly

the dependency graph for the One Big Switch file used; policies files for each switch in

the topology; and, all the modules, including the base One Big Switch µP4 code. The

expected output was for our project to generate a series of modular P4 switch programs

according to the given topology input.

In the original proof-of-concept of Switch (De)Composer, it was defined a series

30

Figure 5.1 – Switch (De)Composer++ basic architecture overview

Source: The Author

of compilation steps needed to get from the µP4s to the final P4 switches, including testing

the topology. Each step corresponds to a command that was previously executed in the

terminal. The steps defined were:

1. The first step was to run the main Switch (De)Composer program that generates

µP4 code for the switch

2. Then we need to compile the µP4 code for the submodules that are going to be

imported by our switch code

3. Then we compile the µP4 into P4 code

4. After that we can take the resulting P4 program and compile it

5. This final step is not mandatory, but after doing the first four steps to all switches in

the topology, we can run a Mininet to test the generated switches

In the proof-of-concept, the commands to run these steps were handwritten on

the terminal or in a Shell file and then executed, this was prone to error, especially due

to spelling errors or problems with file paths. The improvement proposed for this new

version of Switch (De)Composer architecture is for it to automatically generate a Shell

file with all commands to do the steps sequentially. This script file could be run right after

its generation, but could also be used to test changes to the OBS and µP4 modules in the

same topology since it does all generation and compilation processes.

We proposed to remove some hard-coded dependencies, such as the topology and

the dependency graph. For the topology, we defined a JSON file where the network

developer could declare the switches, hosts, and connections necessary for creating the

topology. Another topology-related improvement needed is to create a Mininet script

31

that uses these values to test the topology and P4 switches since the previous script only

accepted the configuration from Figure 1.1. In relation to the dependency graph, we made

also propose a JSON file that would contain an array of the modules, where each module

will list its direct dependencies, direct dependencies being all submodules called inside

the code, this array will later be turned into a directed graph used in the Python generator.

One of the promises of Switch (De)Composer was to be able to add modules

according to the policies constraint, but this functionality was not implemented on the

proof-of-concept (BOL et al., 2021a). So we plan on building a constraints interpreter

that could read the policy document searching for specific expressions that indicate that a

module should be included, then our program will also get all dependencies necessary to

ensure all modules are implemented correctly. Nonetheless, we decided to keep providing

the option to specify the wanted modules by picking them manually in case the network

developer wants to have more control over the modules included.

We also cease using the idea of templates that the initial Switch (De)Composer

(BOL et al., 2021a) had, because it could cause some confusion, so in the new version we

only work with the base OBS program as the head module on our dependencies graph.

That way instead of adding code from the OBS to a template file we already consider

the main OBS module as the template, since it is the source of all modules. So in this

new approach, when a submodule is not used we remove the declarations, instantiations,

and invocation of this module, based on the topology definition and dependency graph,

instead of adding code to the main OBS.

Besides that, we aimed to make improvements to the organization of the repos-

itory, making it easier to run and maintain. Among those proposed modifications many

were simple changes like adding folders to improve the organization of the programs,

enhancing the Python code using language best practices, and changes to the git repos-

itory to make it easier to contribute. The most impactful among those minor changes

was that, on the proof-of-concept version, we needed to copy the repository code into

a frozen version of the obs-microp41 repository forked from the original µP4 repository

(MicroP42 (SONI et al., 2020a)). So we aim to invert this dependency in order to improve

this process of installation and make Switch (De)Composer easier to implement and use.

1https://github.com/pauladbol/obs-microp4 (BOL et al., 2021b)
2https://github.com/cornell-netlab/MicroP4

32

5.2 Architecture Improvements

One of the first necessary improvements was to make a program that could create

a Shell script to automate the execution of all steps needed in order to build the µP4 and

turn it into P4. So based on this necessity generate_distribute_programs.py was made

using Python3, the Python language was chosen since the project already used Python to

make the main functionality of combining the µP4 modules. The output Shell objective

was to be able to run all the steps and print helpful messages to the terminal, such as

which step is currently executing and the occasional error messages.

This change to Switch (De)Composer saves a lot of time, since, before it, all steps

were run manually on the terminal, additionally, it also decreases the chance of making

a mistake by typing the wrong command during the building process. This is especially

true as the number of switches in your topology increases since you’d need to run at

least 3 commands per switch, but this number can be way larger depending on how many

modules are necessary for each switch. Figure 5.2 shows the steps that are now done by

the resulting Shell file. In addition to the steps discussed in the previous chapter, there is

a new one to remove the intermediate files generated during the compilation and testing.

The reason for adding the new step to remove the intermediate files was identified

during the development and testing of this project since there were many files such as

JSON files, p4i files, p4rt files, and µP4 files, created during the build process. After the

build was finished all of them became useless, but none of them were deleted originally.

This would crowd the output folder, especially after the Mininet test, thus making it harder

to find the actual P4 programs containing the output switches. This step was simple to

make, we just use a command to remove files with the extension previously mentioned.

After this, the next big improvement made was to change the way we accepted

the topology inputs. Before it was all made by arguments passed to the commands in the

terminal, but this was prone to error since one typo could be the cause of the error on

multiple steps, and that was not easy to catch. So we changed the input to be a JSON file,

which describes the switches, host, and how they are connected.

The JSON needs to have 3 properties, one called switches that has an array of

objects, where each object describes a switch in the topology, with attributes like name,

modules needed, policies file name, MAC address, and the dependencies graph used,

some of them will be further explained later. Another property of the topology file is

hosts, just like switches it has an array of objects, where each object describe a host,

33

Figure 5.2 – Switch (De)Composer++ steps to generate the switches

Source: The Author

with attributes like hostname, MAC address, IPv4 address, IPv6 address, the switch it

is connected to and in which switch port. The last JSON parameter is the switchlinks

which describes the connections among the switches. Listing 5.1 presents an example of

a topology JSON file with 3 switches that have the same configuration as in Figure 1.1.

Listing 5.1 – Topology JSON example

1 {

2 "switches": [

3 {

4 "switchname": "s1",

5 "modules": "all",

6 "dependencies": "dependencies_e1.json",

7 "mac": "00:aa:bb:00:00:01"

8 },

9 {

10 "switchname": "s2",

34

11 "policies": "s2_policy_e1.txt",

12 "dependencies": "dependencies_e1.json",

13 "mac": "00:aa:bb:00:00:02"

14 },

15 {

16 "switchname": "s3",

17 "modules": "ethernet,ipv6",

18 "dependencies": "dependencies_e1.json",

19 "mac": "00:aa:bb:00:00:03"

20 }

21],

22 "hosts":[

23 {

24 "hostname": "h1",

25 "switchname": "s1",

26 "mac": "00:00:00:00:00:01",

27 "ipv6": "2021::1/64",

28 "ipv4": "10.0.1.1/24",

29 "port": "1"

30

31 },

32 {

33 "hostname": "h2",

34 "switchname": "s1",

35 "mac": "00:00:00:00:00:02",

36 "ipv6": "2022::1/64",

37 "ipv4": "10.0.2.1/24",

38 "port": "2"

39 },

40 {

41 "hostname": "h3",

42 "switchname": "s2",

43 "mac": "00:00:00:00:00:03",

44 "ipv6": "2023::1/64",

45 "ipv4": "10.0.3.1/24",

46 "port": "3"

47 },

48 {

49 "hostname": "h4",

50 "switchname": "s3",

51 "mac": "00:00:00:00:00:04",

52 "ipv6": "2024::1/64",

53 "ipv4": "10.0.4.1/24",

54 "port": "4"

55 }

56],

57 "switchlink":[

58 ["s1", "s2"],

59 ["s1", "s3"]

60]

61 }

35

The way Switch (De)Composer++ handles the dependencies also changed, it was

added the idea of a dependencies JSON file that has a list of the module’s objects, each

object needs to have 3 mandatory parameters: the module name, the module file name,

and an array of direct dependencies. In this context, direct dependencies are all the sub-

modules called inside the module described. The dependencies JSON file also has three

optional parameters: function, regex, and head, the first and second will be further ex-

plained later, while the third represents if a file is the head of the dependency graph. The

head module of the dependency graph is also called the OBS base code since it is from

it that all switches are built, therefore should only exist one head per dependency graph.

Figure 5.3 has an example of the dependency graph used in our test cases, the base module

is the switch module that just implements the ethernet protocol.

Figure 5.3 – Switch (De)Composer++ dependency graph example

Source: The Author

This dependencies graph needs to be a directed graph with no cycles and needs

to have a head node, so it may be also called a dependencies tree. Because of that we

sometimes use nomenclature related to trees, such as the head module and leaf modules.

The dependencies graph is used in the generation of the switches to check if all modules

necessary exist because Switch (De)Composer needs to resolve all the annotations, for

each module in the switch. For this purpose, we created a function to sort and get the

dependencies by searching the tree to see if all modules listed exist and adding missing

modules in order to make a connected graph, since it is not connected one of the depen-

dencies will not be properly included in the code. Listing 5.2 presents an example of a

dependencies JSON file with 3 modules that have the same configuration as in Figure 5.3.

Listing 5.2 – Dependencies JSON example

1 [

2 {

3 "name": "ethernet",

4 "file": "obs_main.up4",

5 "function": "ethernet",

36

6 "directDependencies": ["ipv4", "ipv6"],

7 "regex": [

8 "ethernet",

9 "([0-9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2})"

10],

11 "head":true

12 },

13 {

14 "name": "ipv4",

15 "file": "ipv4.up4",

16 "function": "ipv4",

17 "directDependencies": [],

18 "regex": ["ipv4", ...]

19 },

20 {

21 "name": "ipv6",

22 "file": "ipv6.up4",

23 "function": "ipv6",

24 "directDependencies": [],

25 "regex": ["ipv6", ...]

26 }

27]

As a way to let different switches on the topology have completely different codes,

we decide to allow each switch to have a different dependencies graph. To do that in the

topology JSON you need to define the topology file name as a switch parameter. Then if

the network developers want to use their own modules and dependency graph, they can

do it by putting their code and files in the respective folders on the project root, modules

and dependencies-json, or by passing a customizable folder as a solution parameter.

A new piece of code implemented was the constraints interpreter that analyses

policy documents, like Open Flow, to identify which modules should be included on

a given switch. For this, we created a function that uses regular expressions to match

patterns on the policy file with modules on the dependencies graph. To allow users to add

new expressions according to their policies, we added a property regex array that can be

passed to each switch object to the dependencies JSON, where they can add new regex.

We can see how to pass the regex on Listing 5.2, although some of them were ellipsed

since their content has large and would take too much space.

This modification is really important because it automates the switches genera-

tion, based on predefined policies, which can save a lot of time since the developer does

not need to remember all necessary models. In order to use this interpreter, instead of di-

rectly listing the modules in the topology JSON, we added a new property policies, which

represents the name of the policy file used to extract the necessary modules to include.

37

The policies files must be added to a folder named policies on the root of the repository,

or passed as a customized parameter of the Switch (De)Composer++. On the Listing 5.1

we can see the second switch, named s2, uses a police file to get the dependencies, while

the other two use the older method of listing the modules.

Another challenge was related to changing the forwarding tables, the proof-of-

concept had a fixed topology so all the forwarding tables used these constant IPs and

MACs values to forward the packet. So we needed to find a way to replace this part

of the code according to the switch topology. The way we find to solve this problem

was to create another annotation @TableInstantiate() that must surround the table, then

a new table is mounted using a function that receives topology data and then send it to

replace the original table code. These functions are placed in a new python file called

specific_functions.py so the user can change them or add new ones as well. In order for

Switch (De)Composer++ to know which function is used to generate a table, the function

name has to be declared in the dependencies JSON.

A major flaw related to Switch (De)Composer usability, was that in order for it

to work we needed to copy the repository into the folder extensions/csa/ of a frozen ver-

sion of the obs-microp4 repository3 which contains the µP4 source code. Besides that,

the user still had to run multiple configuration commands to set environment variables

before being able to successfully use Switch (De)Composer. So what we decided to do

was to invert that logic and have the copy of the frozen repository as a git submodule

of the Switch (De)Composer++ repository, this was one of the hardest challenges since

we needed to configure the git submodule correctly and set the path to all environment

variable according to project path.

This change was made so that the user doesn’t need to worry about doing multi-

ple configurations before even running our solution. This was a successful modification

because following it the user only needs to download our repository and run a few scripts

we left ready to run on the help folder before they are ready to generate P4 switches.

Although these improvements deeply facilitated the process, we don’t eliminate all requi-

sites from Switch (De)Composer++, anyone that wants to use our solution still needs to

have the P4 language and Python 3 language already installed on the machine. Our solu-

tion may also not run on all Operational Systems, since we only tested so far on Ubuntu

18.04 because that is the version µP4 recommends 4.

We also decided to make our program more customizable to better fit the necessi-

3https://github.com/pauladbol/obs-microp4 (BOL et al., 2021b)
4https://github.com/cornell-netlab/MicroP4#11-dependencies (SONI et al., 2020a)

38

ties of all network developers, for this purpose we made a series of optional parameters to

customize Switch (De)Composer++. The first one is the option to insert the output path

for the switches, so it could be saved where the user wants. If this parameter is not passed,

the output P4 switch programs will be placed inside a Switch (De)Composer++ folder ap-

propriately called outputs. Other parameters related to paths on the operating system are

the location of the folder that has the dependencies JSON (dependencies-folder-path) and

the folder that has the policies (policies-folder-path), already mentioned before.

Another optional parameter, called not-run-mininet, disables the automatic run of

Mininet, as shown in Figure 5.2 this step is the second last on our workflow, however,

we understand it may not be necessary for all scenarios, so it was added a flag to disable

the default run of Mininet to test the P4 modules generated. We also included the option

separate-mininet to put the Mininet script in a separate Shell file, so it could be run apart

from the generation of the switches. It was also defined that the Shell script, which gets

all the modules and does the compilation, would be automatically run after its creation,

therefore only a single command will be necessary to generate the switches, so a flag

not-auto-run was added to disabled this automation.

A minor improvement done to the project was a refactor on the main code from

Switch (De)Composer, the generate_switch_program.py, to make it able to run on Python

3 instead of Python 2, since that version was discontinued and will not receive further

updates. There were some additional refactors that remove a class definition and some

specialized functions from inside the main file to their own files and move all Python

source code to a src folder to improve code readability, reusability, and organization.

5.3 Switch (De)Composer++ Usage Process

So far it was discussed how the solution works and the improvements made to its

usability, but to finish let’s paint a full picture of the process that a network developer

needed to use Switch (De)Composer++, from start to finish. First, the developer needs

to have a set µP4 modules, with their OBS switch and all the necessary annotations, the

process of adding the annotations can take a while but it would only need to be done once.

If this is a customized set of µP4 modules used the user also needs to provide their own

dependency JSON file, specifying all dependencies between modules. Or the developer

could use the modules we already provide, which so far only include IPv4, IPv6, and the

main OBS code that implements ethernet, therefore also using our dependency graph.

39

After adding the modules and dependencies graph, the final input they need to have

before using our solution is a JSON file with the desired topology wanted for the network.

For each switch in the topology, the network developer can manually add the modules they

want to include or link to a policies document that will be automatically interpreted to get

the module’s dependencies. With all this they can finally run our tool, opting to add the

optional parameters, such as output path, dependencies folder path, policies folder path,

disable Mininet, separate Mininet, and automatically run the generation Shell script.

If the option was chosen to allow the automatically run of the generation and

compilation script, it already will be executed inside the chosen output folder. In the

opposite case, the developer can manually run the Shell script, which will be placed inside

the chosen output folder after its generation. Then the script will execute following the

steps from Figure 5.2, in the case a policies file was added to a switch in the topology

JSON the interpreter will be run inside on the first step that generates the switches. Finally,

after the Shell script is finished, for each switch in the topology there will be a P4 program

with the modular switch code ready to be deployed.

Something that is also very important to notice is that if the Mininet step is en-

abled, it will take over the terminal. This will allow the user to run Mininet commands

and make their test on the fly. When they are satisfied, is possible to finish the Mininet

by typing exit or pressing ctrl + D, and the script will do the final cleaning step. If the

terminal is closed during the Mininet step nothing will be lost, all P4 switches will be

available, and the only part that will not be done is cleaning the intermediate files. If the

option to run the separate Mininet is selected, it will create a new file named mininet.sh

with the last three steps represented in Figure 5.2.

Another important usage scenario to consider is when a network of switches was

previously generated by Switch (De)Composer++ and is necessary to make modifications

to a few of the switches. In this case, the best thing will be to keep the original inputs

given to Switch (De)Composer++, and then run it again making the required changes to

the switches on to the topology and policies files. The code generated for the unchanged

switches the second time should be the same, since Switch (De)Composer++ is determin-

istic. Because of that tests and simulations can be run on top of the generated switches

to check the behavior of the topology after the changes. At the end of the process, the

network developer can take only the P4 programs generated for the modified switches and

deploy them individually instead of needing to make changes to the whole network.

40

5.4 Quantitative Analysis

As a quantitative analysis of the software improvements, the original Switch (De)

Composer repository5 contained around 1400 Lines-of-Code in total this included the

Python automation code, the µP4 modules, and also some example and git files. Consid-

ering only the Python used for switch generation, the proof-of-concept had approximately

320 LoC. Our complete repository 6 has 2400 LoC including python, Shell script the mod-

ules, topologies, dependencies graph, helpers, and git configurations files. Considering

only the Python programs to automate the generations the newer version has approxi-

mately 610 LoC, which is almost twice the size of the original code.

Using the git diff command we gather some additional data regarding the changes,

there were 45 files changed, among those 28 new files were added and only two were

deleted. About lines of code, git shows us there were 1103 code line insertions and only

162 line deletions. There are also 8 new folders added to the root repository, 9 when

counting the obs-microp4 dependency, which helps with the organization.

Running the git diff with a filter for only the python files specifically does not

show useful statistics, because the two original Python files were renamed, so the git

considers them different files counting the lines of code of the original files as deletion

and the new ones as insertions. But it does shows there are 6 newer files, including

the generate_distribute_programs.py which represents almost a third of the Python code.

Analyzing all these quantitative results, we could build on top of the existing solution by

adding important automation to enhance the software significantly.

5https://github.com/pauladbol/SwitchDeComposer (BOL, 2021)
6https://github.com/JuDCraide/Switch-De-Composer- (CRAIDE, 2023)

41

6 EXPERIMENTAL EVALUATION

A crucial part of proposing any new tool, especially the ones related to networking,

is to test it in realistic situations, so this Chapter exposes the testing efforts done. To test

our solution on the available hardware, a few modifications to the output switches P4 code

needed to be done, in Section 6.1 those are gonna be explained. Then the obtained results

and calculations will be presented in Section 6.2

6.1 Test Modifications

Switch (De)Composer generates switches that follow the V1Model, so since we

did not have a Tofino switch to make our tests, it was needed to make adaptations to the

generated P4 code in order to test it on the board we had, a NetFPGA-SUME that work

with the Simple Sume Switch architecture. A comparison between the V1Model and the

Simple Sume Switch code is shown in Figure 6.1, we can see that the V1Model has 6 basic

P4 control functions that execute in order, while the Simple Sume Switch only has 3. The

main difference in the code is that Simple Sume Switch doesn’t have the two checksum

functions in the packet way in and out, the ingress and egress, all those functions are

united in a single TopPipe control.

So in order to make the P4 output from Switch (De)Composer++ run in the board,

changes were needed to adapt it to the Simple Sume Switch model. The first change

we encounter was that SUME doesn’t accept arrays of structs, in our V1Model P4 we

had a msa_packet_struct_t struct that has an array of msa_byte_h structs as an attribute

called msa_hdr_stack. So instead of a single array we needed to have n attributes, like

msa_hdr_stack_0, msa_hdr_stack_1, . . . , msa_hdr_stack_n, with n being the array size,

which varies between switches that have IPv4 module or IPv6 module, because of the

change of the size of the packet header.

Another important change was that the main struct standard_metadata_t needed

to be replaced. The problem was that this metadata struct was defined on the v1model.p4

package, so is not compatible with the SUME metadata, so we need to change it to the

appropriate metadata for the board. The fix for this problem was simple, we replaced

references to it with the official SUME metadata struct, the sume_metadata_t.

The P4 V1Model annotation call @name(“.NoAction”), also needed to be re-

moved, since its name wasn’t accepted by the Simple Sume Switch architecture. We

42

Figure 6.1 – V1Model vs Simple Sume Switch

Source: The Author

initially believed the problem was that the annotation name starts with a dot symbol,

which we believe confused the compiler. Searching about it on the official P4 NetFPGA

repository wiki 1, we realized Simple Sume Switch model doesn’t support name annota-

tions at all, so we went ahead and remove all annotations of this type.

The P4 match_kind ternary operator didn’t work on NetFPGA SUME, we could

not exactly pinpoint why, thankfully in our match action every time the code uses the

ternary operator all the table entries had the same default value. The word default (also

equivalent to _) in this context represents a don’t care, which means this value is not used

to choose between entries. So we could change the match_kind to an exact since an exact

comparison with a don’t care accept the universal set of values.

Specifically, on the switches that implemented the IPv6 module, there were changes

needed because the V1Model struct for IPv6 header uses the word class as the name of an

attribute. On the other hand SDNET compiler, used to compile the Simple SUME Switch,

has class as a reserved word. So to solve the problem we needed to replace the IPv6_h

struct attribute name, and this was the last modification that needed to be made.

1https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-Overview#annotations (IBANEZ;
ZILBERMAN, 2018)

43

Lastly, the entries from all match-action tables needed to be moved to a secondary

commands.txt file since this is the way architecture handles this workflow2. The table

entries format also had some changes, but every entry line in the V1Model became another

line in the commands, so we do not believe this would have much impact on the metrics.

One more small change related to the match-action is that on the command entries, it

does not accept boolean type, so the boolean logic was converted to numeric 0 and 1. So

after all these changes to the switches P4 programs, we were able to compile all of them

successfully and start the steps for the practical evaluation.

6.2 Practical Evaluation

In this evaluation, we focused on a test case that corresponds to scenario 1 from

the original Switch (De)Composer(BOL et al., 2021a) preliminary evaluation as shown

in Chapter 4. Figure 6.2 shows the topology used by our tests, which is a specialization

of the one shown 1.1. This is a simple topology with three switches connected in a V-

shape, with only two constraint policies, IPv4 and IPv6. Switch 1 (S1) needs to support

both IPv4 and IPv6 protocols and is connected to two hosts Host 1 (H1) and Host 2 (H2).

Switch 2 (S2) needs to support only IPv4 and is connected to S1 and Host 3 (H3). Finally,

Switch 3 (S3) needs to support only IPv6 and is connected to S1 and Host 4 (H4).

Figure 6.2 – OBS vs. Switch (De)Composer detailed deployment

Source: The Author, adapted from (BOL et al., 2021a)

2https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-Overview#workflow-steps
(IBANEZ; ZILBERMAN, 2018)

44

We are going to compare two equivalent solutions regarding latency and occu-

pation, in the OBS model deployment, all switches have the full OBS code with both

protocols. On the other hand, in the Switch (De)Composer deployment, S1 has the full

OBS code, S2 has the base OBS code plus the IPv4 module, and finally, S3 has the base

OBS code plus the IPv6 module. To simplify the nomenclature for the following ta-

bles we are going to be using the following nomenclature: IPv4 Switch equivalent to S2

switch from the Switch (De)Composer deployment, IPv6 Switch equivalent to S3 from

the Switch (De)Composer deployment, and OBS Switch equivalent to S1 from the Switch

(De)Composer and S1, S2, and S3 from the OBS deployment.

In order to do the test for our evaluation, we need to connect to a computer with a

Xilinx license server to authenticate the SDNet Compiler and Vivado tools. There was a

script to test if the license server is properly working, that needed to be run before anything

else, because if the license failed it may lead to many errors. Something important to

notice is that all commands used to run the practical tests must be executed as root user

(su -), otherwise, they will not execute correctly. This is because all the software needed

was installed in the root, so we cannot run as a normal user.

P4VBox (SAQUETTI et al., 2020) provides a CLI to run all steps needed between

compiling P4 and generating the bitstream. In this test workflow, there are 5 stages, the

first one compiles the P4 code, the next one generates the testbench, the third simulates

the switch behavior according to the testbench, the fourth one does the bitstream imple-

mentation, and the last one is to open the implementation in Vivado. Steps one, two, and

four are done exclusively in the command line, step three can be done both by the terminal

or on Vivado graphical interface, and step five is done on the Vivado graphical interface.

Before doing any step all the changes mentioned in the previous Chapter were

done to each switch program. The testbench used to test the switches was based on the

P4VBox template, first, we define packets to be sent to the board entry ports, then we

compare the switch output to the expected headers, payload, and exit port. There were

actually two different versions of the testbench, one that sends IPv6 packets and the other

IPv4 packets. In the testbench results, the latency can be seen by analyzing the waveforms

from the signals that indicate the packet was entering (t0) or exiting (t1) the board.

Based on the measured in-out times, gather from the testbench analysis, we calcu-

lated the packet round trip time by doubling the difference between t1 and t0. The clock

used by the testbench simulation was 5ns, with that we can compute the clock cycle by

dividing the round trip by the clock. Then finally to calculate the switch latency, instead

45

of the actually used clock we use the minimum clock allowed by the SUME NetFPGA,

that according to (SAQUETTI et al., 2020) is 1,826 ns as the critical path occupies the

fixed parts of the FPGA architecture, then we multiply that value with the previously ob-

tain clock cycle. Table 6.1 shows the result of all these time measures for each switch in

our topology. It is important to notice that the OBS Switch, was tested twice, one for each

protocol testbench, but the latency was the same between the tests.

Table 6.1 – Switches Time measurements

Switch t0 (ns) t1 (ns) Round Trip (ns) Clock Cycles Latency (ns)
IPv4 Switch 26816.5 28300 2967 593.4 1083.5484
IPv6 Switch 26816.5 28492 3351 670.2 1223.7852
OBS Switch 26816.5 28956 4279 855.8 1562.6908

In the final step, we can see all the reports generated from the implementation.

The most important to our study is the occupation report. Table 6.2 shows the most im-

portant occupancy measures, the sliced LUTs, and sliced registers occupancy. These two

metrics are so essential because commercial FPGAs, such as the ones made by Xilinx and

Altera, use LUTs and Flip-flops to compose the Basic Logic Element (BLE) (FAROOQ;

MARRAKCHI; MEHREZ, 2012). And those units are then used on the FPGAs config-

urable logic blocks, which can consist of a cluster of BLEs or a single BLE to provide the

logic and storage functionalities.

Table 6.2 – Switches Occupation

Switch Slice LUTs Slice Register
IPv4 switch 67436 157634
IPv6 switch 77766 204837
OBS switch 109063 378567

After gathering the latency and occupation data for each of the generated P4 pro-

grams, Table 6.3 shows a comparison between the two solutions. OBS solution deploy-

ment is the one where all three switches use the full OBS code (OBS Switch). In con-

trast, Switch (De)Composer generates the 3 switches with only modules needed (one

OBS Switch, one IPv4 Switch, and one IPv6 Switch) for its deployment.

In order to obtain occupancy measurements shown for the Switch (De)Composer

solution, we add one of each switches occupancy from Table 6.2, and, for the OBS so-

lution, we multiply by three the OBS Switch from the same table. For the latency we

measure two scenarios the first one goes from Host 1 to Host 3 (H1 to H3), therefore

46

Table 6.3 – Switches Deployment Latency and Occupation

Occupation Latency (ns)
Slice LUTs Slice Register H1 to H3 H1 to H4

OBS 327189 1135701 3125.3816 3125.3816
Switch
(De)Composer 254265 741038 2646.2392 2786.4760

passing through S1 and S2, and the second goes from Host 1 to Host 4 (H1 to H4), there-

fore passing through S1 and S3. For these latency scenarios, we only sum the latency

of the switches in the flow path from Table 6.1, consequently disregarding the latency of

the network cables. A better way of measuring the latency between hosts would be to

implement physically all switches the topology on the NetFPGA SUME, we do intend to

test this, but could not finish this experiment on time for the deadlines.

6.3 Results discussion

The results obtained from the practical evaluation were very positive, regarding

the latency shown in Table 6.1 the IPv4 Switch was around 31% lower than the OBS

Switch on the IPv4 testbench and the IPv6 Switch was 22% lower than OBS Switch on

the IPv6 testbench. This is also aligned with the occupancy results shown in Table 6.2

since, compared to the OBS Switch, IPv4 Switch occupied around 31% fewer LUTs and

50% fewer registers, regarding IPv6 Switch it occupied around 22% fewer LUTs and 37%

fewer registers. This was expected since there is a correlation between the robustness of

the switch code, the occupation of the FPGA, and the increase in latency.

In Table 6.3 we compare the switches generated from a trivial OBS deployment

with our solution based on a topology describe in Figure 6.2. Regarding the latency

Switch (De)Composer was 15% lower at sending IPv4 packets through two switches (one

OBS Switch and one IPv4 Switch) and 11% lower sending IPv6 packets by two switches

(one OBS Switch and one IPv6 Switch), compared to the OBS deployment. Our solution

had significant improvements in the FPGA occupation over the OBS, using 18% fewer

LUTs and 29% fewer registers. Those results are comparable to the occupancy approxi-

mation made on the proof-of-concept (BOL et al., 2021a) by counting the switch tables,

there the equivalent scenario (scenario 1) had a 26% reduction in the occupancy using

Switch (De)Composer, which is close to the 18% reduction in LUTs and 29% reduction

in registers obtained practically on the NetFPGA SUME.

47

7 FINAL CONSIDERATIONS AND OUTLOOK

This work addresses the problem of generating modular switch codes for multiple

switches in a topology following the given constraints while taking advantage of the OBS

abstraction. Our main objectives were to generate programs that could be reusable, easily

extended, and not tightly coupled due to the OBS model. Another important metric we

aimed to achieve a more efficient resource usage and lower latency, due to the reduced

number of modules our solution produces compared to the trivial OBS implementation,

section 7.1 will discuss in depth these metrics and results. Lastly, Section 7.2 will present

ideas for future iterations of this work.

7.1 Considerations on Results Achieved

We present significant changes to the Switch (De)Composer architecture, most

importantly the automation of the switch generation and the compilation process that used

to be manually made. Due to this new process, we also created a new way of inputting

the topology requirements via JSON file, as before the user needed to manually generate

each switch in the console by passing the modules and constraints. The way we handle

the OBS module and submodules was completely changed, now all modules must be

described in a dependency JSON file to generate the dependency graph and we made it

possible for switches in the same topology to be based on different dependency graphs.

A different automation issue tackled was how Switch (De)Composer gets the nec-

essary modules to include in a switch, so we create a constraints interpreter that can decide

which module to include by analyzing Open Flow policies. We also implemented a so-

lution to allow network developers to customize the forwarding tables for each switch

program based on the topology by adding an annotation to the code. Finally, there were

several improvements made to the repository and the code itself using best practices, and

all these changes overall made Switch (De)Composer++ easier to use and customize.

A quantitative analysis was also made comparing the code of Switch (De)Composer

with Switch (De)Composer++, which shows that approximately 1000 lines were added

to the repository. From those around 600 LoC were Python programs created for the

automatization efforts, this show how the solution was extended, while still leveraging

the functionalities from the existing code. Therefore, on the software side, we deliver a

complete solution that can generate multiple switches from a topology, based on policies

48

constraint, a dependencies graph, and the given OBS µP4 modules.

Our conclusions from the practical evaluation were that using the modular switches

generated by Switch (De)Composer++ there were relevant reductions both in latency and

occupation in all the tests we made. We saw greater improvements comparing just among

two switches (Table 6.1 and Table 6.2), one with a single module and the other with the

full OBS, than comparing our entire topologies scenario (Table 6.3). This is explained

since in an average topology there will probably be some switches with all modules and

some switches with fewer modules, so the topology is a limiting factor to latency and

occupation improvements. As a hypothetical example, a topology with 10 switches gen-

erated by Switch (De)Composer where nine are IPv4 Switch and one is OBS Switch will

have better metrics than a topology with nine OBS Switch and one IPv4 Switch.

In our tests, the IPv6 module was the most complex of the network policy modules,

so when we compare switches that include only IPv6 (IPv6 Switch) with switches that

only include IPv4 (IPv4 Switch), the IPv6 Switch is slightly worst in both latency and

occupancy. We also believe that the impact could be even greater with more modules in

the topology since the gains will not be so limited by the larger module as it happened

with IPv6. We also acknowledge that there were many changes needed to be able to test

our output modular switches on the NetFPGA-SUME board, which could have an impact

on the result obtained, but we tried to do only the necessary changes to interfere with the

least possible and get reasonable results.

7.2 Future Work

Despite the advancements to Switch (De)Composer solution in this project, there

are still many opportunities for future work to be developed on top of this solution. Firstly

due to time constraints, we could only test one scenario, so, in the future, we intend to test

more robust scenarios to improve our results. Also due to a lack of equipment, we could

not test the switches in the Intel Tofino, they were originally designed for.

A few promises made on the original Switch (De)Composer article (BOL et al.,

2021a) have yet to be developed. The most important one is to add more modules and

constraints, including constraints of different types, as an example resources available, or

continuously changing contains, which would require changing the modules on the fly.

And although we did run some basic testbenches to test if the Switch (De)Composer++

switches programs had the correct behavior, they were far from complete. So there is

49

still a great effort ahead to create a verification strategy that can ensure all behaviors are

equivalent between the custom modular switches and the initial OBS program.

Lastly, our idea for the work made to the project is to write a paper for publication

at a symposium, like the ACM SIGCOMM Symposium on SDN Research (SOSR). We

also want to make a full analysis of the topology in terms of latency using a real testbed

with the switches implemented on NetFPGA SUME. Finally, we would like to compare

the same test on a Tofino, since the academic laboratory this project is part of just received

a new Barefoot Tofino.

50

REFERENCES

ARASHLOO, M. T. et al. Snap: Stateful network-wide abstractions for packet pro-
cessing. In: Proceedings of the 2016 ACM SIGCOMM Conference. New York, NY,
USA: Association for Computing Machinery, 2016. (SIGCOMM ’16), p. 29–43. ISBN
9781450341936. Available from Internet: <https://doi.org/10.1145/2934872.2934892>.

BENZEKKI, K.; FERGOUGUI, A. E.; ELALAOUI, A. E. Software-defined network-
ing (sdn): a survey. Security and Communication Networks, v. 9, n. 18, p. 5803–
5833, 2016. Available from Internet: <https://onlinelibrary.wiley.com/doi/abs/10.1002/
sec.1737>.

BOL, P. D. SwitchDeComposer. 2021. Accessed: March 31, 2023. Available from Inter-
net: <https://github.com/pauladbol/SwitchDeComposer>.

BOL, P. D. et al. Modular switch deployment in programmable forwarding planes with
switch (de)composer. In: Proceedings of the SIGCOMM ’21 Poster and Demo Ses-
sions. New York, NY, USA: Association for Computing Machinery, 2021. (SIGCOMM
’21), p. 30–32. ISBN 9781450386296. Available from Internet: <https://doi.org/10.1145/
3472716.3472856>.

BOL, P. D. et al. obs-microp4. 2021. Accessed: March 31, 2023. Available from Internet:
<https://github.com/pauladbol/obs-microp4>.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors. Asso-
ciation for Computing Machinery, New York, NY, USA, v. 44, n. 3, p. 87–95, jul 2014.
ISSN 0146-4833. Available from Internet: <https://doi.org/10.1145/2656877.2656890>.

BYTE, N. Intel demonstra o primeiro switch Ethernet óptico co-
empacotado do setor (English Only). 2017. Accessed: March 31,
2023. Available from Internet: <https://newsroom.intel.com.br/news/
intel-demonstra-o-primeiro-switch-ethernet-optico-co-empacotado-do-setor-english-only/
#gs.ssbo4h>.

CHEN, X. et al. Speed: Resource-efficient and high-performance deployment for data
plane programs. In: 2020 IEEE 28th International Conference on Network Protocols
(ICNP). [S.l.: s.n.], 2020. p. 1–12.

CONTRIBUTORS, M. P. (Ed.). Mininet Overview. 2022. Accessed: March 31, 2023.
Available from Internet: <http://mininet.org/overview/>.

CRAIDE, J. D. Switch-De-Composer++. 2023. Accessed: April 16, 2023. Available
from Internet: <https://github.com/JuDCraide/Switch-De-Composer->.

FAROOQ, U.; MARRAKCHI, Z.; MEHREZ, H. Fpga architectures: An overview. In:
. Tree-based Heterogeneous FPGA Architectures: Application Specific Explo-

ration and Optimization. New York, NY: Springer New York, 2012. p. 7–48. ISBN 978-
1-4614-3594-5. Available from Internet: <https://doi.org/10.1007/978-1-4614-3594-5_
2>.

https://doi.org/10.1145/2934872.2934892
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737
https://github.com/pauladbol/SwitchDeComposer
https://doi.org/10.1145/3472716.3472856
https://doi.org/10.1145/3472716.3472856
https://github.com/pauladbol/obs-microp4
https://doi.org/10.1145/2656877.2656890
https://newsroom.intel.com.br/news/intel-demonstra-o-primeiro-switch-ethernet-optico-co-empacotado-do-setor-english-only/#gs.ssbo4h
https://newsroom.intel.com.br/news/intel-demonstra-o-primeiro-switch-ethernet-optico-co-empacotado-do-setor-english-only/#gs.ssbo4h
https://newsroom.intel.com.br/news/intel-demonstra-o-primeiro-switch-ethernet-optico-co-empacotado-do-setor-english-only/#gs.ssbo4h
http://mininet.org/overview/
https://github.com/JuDCraide/Switch-De-Composer-
https://doi.org/10.1007/978-1-4614-3594-5_2
https://doi.org/10.1007/978-1-4614-3594-5_2

51

GAO, J. et al. Lyra: A cross-platform language and compiler for data plane programming
on heterogeneous asics. In: . New York, NY, USA: Association for Computing Machinery,
2020. (SIGCOMM ’20), p. 435–450. ISBN 9781450379557. Available from Internet:
<https://doi.org/10.1145/3387514.3405879>.

GOBATTO, L. et al. Programmable data planes meets in-network computing: State of the
art, challenges, and research directions. Journal of Integrated Circuits and Systems,
v. 16, n. 2, p. 1–8, 2021.

IBANEZ, S. et al. The p4-netfpga workflow for line-rate packet processing. In:
ACM/SIGDA Int’l Symposium on Field-Programmable Gate Arrays. New York, NY,
USA: ACM, 2019. (FPGA ’19), p. 1–9. ISBN 978-1-4503-6137-8.

IBANEZ, S.; ZILBERMAN, N. P4-NetFPGA-public. 2018. Accessed: March 31, 2023.
Available from Internet: <https://github.com/NetFPGA/P4-NetFPGA-public>.

KANG, N. et al. Optimizing the "one big switch" abstraction in software-defined net-
works. In: Proceedings of the Ninth ACM Conference on Emerging Networking Ex-
periments and Technologies. New York, NY, USA: Association for Computing Ma-
chinery, 2013. (CoNEXT ’13), p. 13–24. ISBN 9781450321013. Available from Internet:
<https://doi.org/10.1145/2535372.2535373>.

KAUR, K.; SINGH, J.; GHUMMAN, N. Mininet as software defined networking testing
platform. In: International Conference on COMMUNICATION, COMPUTING &
SYSTEMS (ICCCS–2014). [S.l.: s.n.], 2014. p. 139–142.

KUON, I.; ROSE, J. Measuring the gap between fpgas and asics. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, v. 26, n. 2, p. 203–215,
2007.

KUON, I.; TESSIER, R.; ROSE, J. Fpga architecture: Survey and challenges. Founda-
tions and Trends® in Electronic Design Automation, v. 2, n. 2, p. 135–253, 2008. ISSN
1551-3939. Available from Internet: <http://dx.doi.org/10.1561/1000000005>.

LARA, A.; KOLASANI, A.; RAMAMURTHY, B. Network innovation using openflow:
A survey. IEEE Communications Surveys & Tutorials, v. 16, n. 1, p. 493–512, 2014.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., Association for Computing Machinery, New York, NY, USA,
v. 38, n. 2, p. 69–74, mar 2008. ISSN 0146-4833. Available from Internet: <https://doi.
org/10.1145/1355734.1355746>.

NGUYEN, X.-N. et al. Rules placement problem in openflow networks: A survey. IEEE
Communications Surveys & Tutorials, v. 18, n. 2, p. 1273–1286, 2016.

OLIVEIRA, R. L. S. de et al. Using mininet for emulation and prototyping software-
defined networks. In: 2014 IEEE Colombian Conference on Communications and
Computing (COLCOM). [S.l.: s.n.], 2014. p. 1–6.

P4LANGUAGE (Ed.). Behavioral Model (bmv2): The bmv2 simple switch target.
2022. Accessed: March 31, 2023. Available from Internet: <https://github.com/p4lang/
behavioral-model/blob/main/docs/simple_switch.md>.

https://doi.org/10.1145/3387514.3405879
https://github.com/NetFPGA/P4-NetFPGA-public
https://doi.org/10.1145/2535372.2535373
http://dx.doi.org/10.1561/1000000005
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md

52

P4.ORG (Ed.). P4 Language Tutorial: P4 developer day fall 2017. 2017. Accessed:
March 31, 2023. Available from Internet: <https://opennetworking.org/wp-content/
uploads/2020/12/P4_tutorial_01_basics.gslide.pdf>.

SAQUETTI, M. et al. Hard virtualization of p4-based switches with virtp4. In: Pro-
ceedings of the ACM SIGCOMM 2019 Conference Posters and Demos. New York,
NY, USA: Association for Computing Machinery, 2019. (SIGCOMM Posters and Demos
’19), p. 80–81. ISBN 9781450368865. Available from Internet: <https://doi.org/10.1145/
3342280.3342314>.

SAQUETTI, M. et al. P4vbox: Enabling p4-based switch virtualization. IEEE Commu-
nications Letters, v. 24, n. 1, p. 146–149, 2020.

SONI, H. et al. MicroP4. 2020. Accessed: March 31, 2023. Available from Internet:
<https://github.com/cornell-netlab/MicroP4>.

SONI, H. et al. Composing dataplane programs with µp4. In: . New York, NY, USA:
Association for Computing Machinery, 2020. (SIGCOMM ’20), p. 329–343. ISBN
9781450379557. Available from Internet: <https://doi.org/10.1145/3387514.3405872>.

SULTANA, N. et al. Flightplan: Dataplane disaggregation and placement for p4 pro-
grams. In: 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association, 2021. p. 571–592. ISBN 978-1-939133-
21-2. Available from Internet: <https://www.usenix.org/conference/nsdi21/presentation/
sultana>.

WINTERMEYER, P. et al. P2go: P4 profile-guided optimizations. In: Proceedings of
the 19th ACM Workshop on Hot Topics in Networks. New York, NY, USA: Associa-
tion for Computing Machinery, 2020. (HotNets ’20), p. 146–152. ISBN 9781450381451.
Available from Internet: <https://doi.org/10.1145/3422604.3425941>.

YANG, H. et al. Review of advanced fpga architectures and technologies. Journal of
Electronics, v. 31, p. 371–393, 10 2014.

ZILBERMAN, N. et al. Netfpga sume: Toward 100 gbps as research commodity. IEEE
Micro, v. 34, n. 5, p. 32–41, 2014.

https://opennetworking.org/wp-content/uploads/2020/12/P4_tutorial_01_basics.gslide.pdf
https://opennetworking.org/wp-content/uploads/2020/12/P4_tutorial_01_basics.gslide.pdf
https://doi.org/10.1145/3342280.3342314
https://doi.org/10.1145/3342280.3342314
https://github.com/cornell-netlab/MicroP4
https://doi.org/10.1145/3387514.3405872
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://doi.org/10.1145/3422604.3425941

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background
	2.1 Software Defined Network (SDN) and OpenFlow
	2.2 One Big Switch (OBS)
	2.3 P4 and uP4
	2.4 Mininet
	2.5 Intel Tofino and V1Model
	2.6 Field-Programmable Gate Arrays (FPGA)
	2.7 NetFPGA and NetFPGA SUME
	2.8 P4VBox

	3 Related Work
	3.1 Switch (De)Composer
	3.2 SNAP
	3.3 Flightplan
	3.4 SPEED
	3.5 P²GO

	4 Overview and Preliminary Evaluation
	4.1 Switch (De)Composer Overview
	4.2 Preliminary Evaluation

	5 Our Extension: Proposed Architecture
	5.1 Proposed Architecture
	5.2 Architecture Improvements
	5.3 Switch (De)Composer++ Usage Process
	5.4 Quantitative Analysis

	6 Experimental Evaluation
	6.1 Test Modifications
	6.2 Practical Evaluation
	6.3 Results discussion

	7 Final Considerations and Outlook
	7.1 Considerations on Results Achieved
	7.2 Future Work

	References

