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Abstract: Açaí (Euterpe oleracea Mart.) juice is rich in phenolic compounds with high antioxidant
capacity. It has been observed that the use of antioxidants may be an additional strategy to nonsurgical
periodontal therapy as well as to prevent alveolar bone loss. Thus, the objective of this study was
to investigate the effects of açaí supplementation on experimental periodontitis in rats. Twenty
male Rattus norvegicus (Wistar) rats were assigned into control, açaí, experimental periodontitis, and
experimental periodontitis with açaí supplementation groups. Periodontitis was induced by placing
ligatures around the lower first molars. Animals in the açaí groups received 0.01 mL/g of clarified
açaí juice for 14 days by intragastric gavage. At the end of the experimental period, blood was
collected to assess the reduced glutathione (GSH), Trolox equivalent antioxidant capacity (TEAC),
and lipid peroxidation (TBARS) levels. Moreover, hemimandibles were analyzed by micro-computed
tomography (micro-CT) for alveolar bone loss and bone quality. Açaí supplementation increased
blood total antioxidant capacity and decreased lipid peroxidation. It also reduced alveolar bone loss
when compared to the experimental periodontitis group. Moreover, clarified açaí per se modulated
the oxidative biochemistry and bone microstructure. Thus, açaí may be considered a viable alternative
for managing periodontal oxidative stress and preventing alveolar bone loss.

Keywords: periodontitis; antioxidants; açaí; Euterpe oleracea

1. Introduction

Euterpe oleracea Martius palm tree (Figure 1A), commonly called açaí palm tree, is
abundant along the Amazon basin soils, especially in its eastern part [1]. Açaí fruit is
a globose sessile drupe with a violet/purple color when ripe, with a diameter of 1 to
2 cm, and an average weight of 0.8 to 2.3 g. The palm tree fruit, the açaí (Figure 1C,D), is
widely consumed in pulp form by Brazil’s northern region population and has significant
economic importance [2]. The preparation of açaí juice is a two-stage process: the fruit is
softened in warm water, followed by mechanical pulping as water is added [3].
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Figure 1. Açaí palm. In (A), The trunk of Euterpe oleracea Martius palm; In (B), view of the açaí palm 
canopy; In (C), açaí fruit in the ripening stage; In (D), black açaí fruit, the stage at which it is used to 
prepare the pulp. 

Phenolic compounds are the predominant phytochemicals in the açaí fruit [4]. The 
purple color of the fruit is due to the high concentration of anthocyanins, phenolic 
compounds belonging to the flavonoid class. When the fruit is fully ripened, the major 
polyphenols are the anthocyanins cyanidin-3-rutinoside and cyanidin-3-glycoside, 
followed by the non-anthocyanin compounds homoorientin, orientin, taxifolin 
deoxyhexose, vitexin, and isovitexin [5,6]. The composition and high concentration of 
phenolic compounds account for the high antioxidant capacity of the açaí fruit pulp, 
whether measured by the Oxygen Radical Absorbance Capacity (ORAC) or Total Oxidant 
Scavenging Capacity (TOSC), compared to other berries or any other fruit or vegetable [2]. 
In this context, açaí has already demonstrated several important systemic properties 
associated with the phenolic compounds, such as a role neural protection [7] and tissue 
repair [8], in addition to antioxidant defense [9], as an inhibitor of osteoclast activity [10], 
and in the reduction of oxidative stress [11,12]. 

Antioxidant agents have been studied as adjuvant therapies for the prevention and 
treatment of many diseases, such as periodontitis [13–15]. In periodontitis, the use of these 
agents has been associated with an improved endothelial function, a decrease in markers 
of inflammation, and an increase in the antioxidant capacity of the intrinsic glutathione 
system and overcoming of oxidative effects, thereby reducing treatment side effects and 
possibly minimizing periodontal breakdown [16]. Furthermore, it has been demonstrated 
that nutritional interventions in the management of systemic inflammatory diseases, such 
as fruit intake, vitamins, and fish oils, can enhance the body’s antioxidant and anti-
inflammatory potential. Thus, there are already reports in the literature of the action of 
nutraceutical agents such as vitamin C, coenzyme Q10, and curcumin derived from 
turmeric as adjuvants for periodontal treatment [17,18]. In this regard, dietary 
intervention centered on antioxidants may minimize periodontal damage caused by an 

Figure 1. Açaí palm. In (A), The trunk of Euterpe oleracea Martius palm; In (B), view of the açaí palm
canopy; In (C), açaí fruit in the ripening stage; In (D), black açaí fruit, the stage at which it is used to
prepare the pulp.

Phenolic compounds are the predominant phytochemicals in the açaí fruit [4]. The pur-
ple color of the fruit is due to the high concentration of anthocyanins, phenolic compounds
belonging to the flavonoid class. When the fruit is fully ripened, the major polyphenols
are the anthocyanins cyanidin-3-rutinoside and cyanidin-3-glycoside, followed by the
non-anthocyanin compounds homoorientin, orientin, taxifolin deoxyhexose, vitexin, and
isovitexin [5,6]. The composition and high concentration of phenolic compounds account
for the high antioxidant capacity of the açaí fruit pulp, whether measured by the Oxygen
Radical Absorbance Capacity (ORAC) or Total Oxidant Scavenging Capacity (TOSC), com-
pared to other berries or any other fruit or vegetable [2]. In this context, açaí has already
demonstrated several important systemic properties associated with the phenolic com-
pounds, such as a role neural protection [7] and tissue repair [8], in addition to antioxidant
defense [9], as an inhibitor of osteoclast activity [10], and in the reduction of oxidative
stress [11,12].

Antioxidant agents have been studied as adjuvant therapies for the prevention and
treatment of many diseases, such as periodontitis [13–15]. In periodontitis, the use of
these agents has been associated with an improved endothelial function, a decrease in
markers of inflammation, and an increase in the antioxidant capacity of the intrinsic
glutathione system and overcoming of oxidative effects, thereby reducing treatment side
effects and possibly minimizing periodontal breakdown [16]. Furthermore, it has been
demonstrated that nutritional interventions in the management of systemic inflammatory
diseases, such as fruit intake, vitamins, and fish oils, can enhance the body’s antioxidant and
anti-inflammatory potential. Thus, there are already reports in the literature of the action
of nutraceutical agents such as vitamin C, coenzyme Q10, and curcumin derived from
turmeric as adjuvants for periodontal treatment [17,18]. In this regard, dietary intervention
centered on antioxidants may minimize periodontal damage caused by an imbalance
between oxidants and antioxidants, hence improving periodontitis clinical parameters [19].

Periodontitis is a multifactorial chronic inflammatory condition of supporting tissues
of the teeth triggered by dysbiotic biofilms, and mediated by a host’s inflammatory re-
sponse, and the susceptibility of the immunological system to environmental factors [20].
Periodontitis progression can result in changes in oxidative balance, bone metabolism
with the disruption of osteoblast and osteoclast activity, collapse of the teeth-supporting
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apparatus and, ultimately, tooth loss [21]. Moreover, periodontitis is also associated with
several systemic conditions such as diabetes mellitus, lupus, cancer, rheumatoid arthri-
tis, respiratory, cardiovascular, and renal diseases through a chronic low-level systemic
inflammation [22–24].

From this perspective, considering the already known antioxidant properties of açaí
components under oxidative stress conditions and its promising protective effect, the
objective of this study was to investigate the effect of açaí supplementation on the modu-
lation of experimental periodontitis in rats, evaluating its ability to modulate prooxidant
and antioxidant parameters associated with the development of periodontitis, and to
manage periodontal breakdown. The present study successfully demonstrated that açaí
supplementation prevented experimentally-induced alveolar bone loss.

2. Materials and Methods
2.1. Production and Composition of Clarified Açaí

The juice of Euterpe oleracea fruits used in this work was prepared according to a
patented process (PI 1003060-3, 4 August 2010). Briefly, clarified açaí was prepared from
fresh drupes. After cleaning the fruit, pulping was performed with the addition of 0.5 L
of water per kilogram of fruit. The juice was subsequently microfiltered and clarified to
obtain a thin, translucent, wine-colored liquid without lipids, proteins, or fibers but rich in
phenolic compounds.

An aliquot of clarified açaí was characterized by total phenolics (TP) and anthocyanins
composition. TP was determined by the Folin–Ciocalteu method [25]. Main flavonoid con-
tent was assessed using two validated UHPLC-DAD methods [5,6]. Orientin, homoorientin,
taxifolin, vitexin, isovitexin, cyanidin 3-glucoside, and cyanidin 3-rutinoside (Extrasynthèse,
Genay, France) were used as standard compounds.

2.2. Animals and Experimental Groups

This study was approved by the Ethics Committee on Animal Use of the Federal
University of Pará (UFPA) (Report No. 2615120919). Twenty male Rattus norvegicus (Wistar)
rats, 60 days old, weighing 150–200 g, obtained from the central animal house of UFPA
were randomly assigned to four experimental groups (n = 5 per group): the control group,
açaí group, experimental periodontitis (EP) group, and experimental periodontitis with
açaí supplementation group (EP + açaí). Sample size estimation was based on Castro et al.’s
(2020) study through G*Power software (Statistical Power Analyses 3.1.9.2). Animals were
conditioned in a 12-h light/dark cycle, maintained at a controlled temperature (25 ± 1 ◦C),
and received water from the same source and same food (NUVITAL®) ad libitum.

2.3. Induction of Experimental Periodontitis

To ensure similar stress conditions, on the first day of the experiment, all animals
were submitted to intraperitoneal anesthesia with xylazine hydrochloride (8 mg/kg) and
ketamine hydrochloride (75 mg/kg). After the loss of corneal reflexes of animals in the
groups with experimental periodontitis, bandages with cotton ligatures were placed around
the cervical regions of the first mandibular molars to induce periodontitis in groups exposed
to experimental periodontitis, being maintained for 14 days until euthanasia [26–28].

2.4. Clarified Açaí Supplementation

Animals of the açaí groups received dosages of 0.01 mL per g of animal weight, after
24 h of cotton thread placement, for 14 days, by intragastric gavage [29]. Animals belonging
to the other groups received a proportional volume of distilled water for the same period,
also intragastrically.

2.5. Sample Collection

At the end of the experimental period, the animals were anesthetized intraperitoneally
with the same previously described protocol and had their blood collected by cardiac punc-
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ture with further centrifugation to plasma collection. Next, the animals were perfused with
a heparinized (1%) saline solution (0.9%) and formaldehyde (4%) for fixation. The plasma
was stored at −80 ◦C until further biochemical analyses and the left hemimandibles were
post-fixed in 4% formaldehyde solution for microtomographic analyses. All methodological
steps are summarized in Figure 2.
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tion of clarified açaí; (B)—allocation to experimental groups; (C)—experimental stages of the pre-
collection study of the samples; (D)—sample collection stage, in which the plasm and the mandible
were obtained; (E)—evaluation of plasm oxidative stress; (F)—microtomographic analysis (micro-CT).

2.6. Biochemical Analysis

To evaluate açaí’s effects on blood oxidative biochemistry, blood samples were ob-
tained before perfusing the animals, stored in tubes containing 50 µL of 5% ethylenedi-
aminetetraacetic acid (EDTA), and centrifuged for 10 min at 3000 rpm. Plasma was collected
and kept in Eppendorf tubes at −80 ◦C after centrifugation for subsequent investigation
of reduced glutathione (GSH) levels, Trolox equivalent antioxidant capacity (TEAC), and
thiobarbituric acid reactive substances (TBARS) levels, as previously described [30].

2.6.1. Determination of Reduced Glutathione (GSH)

The determination of GSH concentrations was performed according to the method
proposed by Ellman (1959) [31]. This method is based on the ability of glutathione present
in the sample to reduce 5,5-dithiobis-2-nitrobenzoic acid (DTNB) to nitrobenzoic acid (TNB).
The results were obtained as µg/mL and then converted to a percentage of control.

2.6.2. Determination of Trolox Equivalent Total Antioxidant Capacity (TEAC)

TEAC value was determined following the RE et al., (1999) [32] method, the results
expressed in µg/mL, and then converted to a percentage of control.

2.6.3. Determination of Thiobarbituric Acid Reactive Substances (TBARS)

The samples were incubated with a thiobarbituric acid solution at 94 ◦C in a water
bath for 60 min. After cooling at room temperature, n-butyl alcohol was added, then
vortexed and centrifuged (2500 rpm, 10 min). The results were expressed in nM/mL and
then converted to a percentage of control [33].
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2.7. Micro-Computed Tomography (Micro-CT)

The left hemimandibles were subjected to micro-computed tomography (MicroCT.SMX-
90 CT; Shimadzu Corp., Kyoto, Japan) to determine whether daily consumption of açaí can
reduce periodontal breakdown. Thus, samples were placed on a rotating platform inside
the device, and images were taken with 360◦ rotation at an intensity of 70 kV and 100 mA.
Then, the images were reconstructed by inspeXio SMX-90CT software (Shimadzu Corp.,
Kyoto, Japan) with a voxel size of 10 µm in images at a resolution of 1024 × 1024 and 14 µm
thickness, which resulted in 541 images per sample.

Bone images were taken in the interradicular region, close to the furcation region
of the mandibular first molar. An area was standardized to create the region of interest
(ROI), considering the interradicular region of the mandibular first molar from the apical
third to the cervical third with an average area of 0.200 mm2. A threshold was applied
to segment the different gray values present in the image. Furthermore, measurements
were made with the software program ImageJ (National Institutes of Health, Bethesda, MD,
USA). Differences in gray levels of bone and other structures in the images were considered
to select the threshold. Based on this, the threshold was set from 120 to 255. Trabecular
thickness (Tb.Th), trabecular separation (Tb.Sp), and bone volume to tissue volume ratio
(BV/TV) were measured with the BoneJ plugin [34].

The software RadiAnt DICOM Viewer 5.0.1 (Medicant, Poznan, Poland) was used
for the three-dimensional (3D) reconstruction of the left hemimandible. The 3D images
of the samples were placed in a standard position, where the buccal and lingual surfaces
of the teeth could be observed. The distance between the cementoenamel junction and
the alveolar bone crest was defined as an evaluation parameter to measure the possible
effects on bone loss. Thus, bone loss was detected by measuring the distance between
the cementoenamel junction and the alveolar bone crest at six points on the mandibular
first molar (i.e., mesialvestibular and vestibular-medial disto-vestibular, mesial-lingual,
lingual-medial, disto-lingual) and averaging these points.

2.8. Statistical Analysis

To test the homocedasticity of the data, the Shapiro–Wilk statistical test was performed.
Then, a one-way ANOVA with Tukey’s post hoc test was applied for comparison among
groups, considering a statistical significance level of p < 0.05. GraphPad Prism 8.0.2 software
(San Diego, CA, USA) was used for all analyses.

3. Results
3.1. Analysis of Clarified Açaí Juice Composition

An aliquot of clarified açaí was previously characterized with a total content in phe-
nolic compounds of 3143.12 mg Eq. gallic acid/L. Using HPLC-DAD methods, the major
phenolic compounds of clarified açaí were identified and quantified as cyanidin-3-glucoside
(112.20 mg/L), cyanidin-3-rutinoside (543.30 mg/L), homoorientin (184.15 mg/L), orientin
(144.81 mg/L), taxifolin deoxyhexose (13.06 mg/L), vitexin (10.57 mg/L), and isovitexin
(10.18 mg/L).

3.2. Daily Consumption of Açaí Modulated Systemic Oxidative Biochemistry in Rats Plasma

The evaluation of plasma GSH levels showed that the experimental periodontitis
group (90.18 ± 3.22%) presented lower levels of GSH in comparison to the control group
(100 ± 3.49%; adj. p-value < 0.05). However, açaí supplementation did not demonstrate a
statistically significant difference in comparison to the experimental periodontitis group
(90.18 ± 3.22% vs. 88.66 ± 3.41%; adj. p-value = 0.71), as demonstrated in Figure 3A.
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Figure 3. Oxidative biochemistry analyses. (A) Analyses of Reduced Glutathione (GSH); (B) Trolox
equivalent antioxidant capacity (TEAC); (C) Thiobarbituric acid reactive substances (TBARS); (D) ratio
between TBARS and TEAC. EP: Experimental Periodontitis. Results are expressed as a percentage (%)
of control (mean ± S.E.M.). Different letters show a statistically significant difference (p < 0.05).
One-way ANOVA test with Tukey’s post hoc test (n = 5).

The experimental periodontitis with açaí supplementation group presented higher
plasma TEAC levels than the experimental periodontitis group (129.23 ± 3.99% vs.
118.80 ± 2.71%; adj. p-value = 0.02). Interestingly, açaí per se (131.28 ± 0.83%) could also
increase plasma TEAC levels compared to both control (100 ± 3.36%; adj. p-value < 0.0001)
and experimental periodontitis groups (118.80 ± 2.71%; adj. p-value = 0.01; Figure 3B).

The group with experimental periodontitis (253.08 ± 51.78%) showed higher plasma
TBARS levels in comparison to the control group (100 ± 43.72%; adj. p-value < 0.005)
and, interestingly, the açaí supplementation in animals with experimental periodontitis
(137.25 ± 31.87%) reduced the plasma TBARS levels in comparison to those animals not
exposed to such supplementation (adj. p-value < 0.005; Figure 3C).

Regarding total antioxidant capacity and rate lipid peroxidation in plasma, the exper-
imental periodontitis with açaí supplementation group demonstrated an increase in its
values compared with the group with experimental periodontitis without supplementation
(114.31 ± 16.88% vs. 59.0 ± 5.87%; adj. p-value = 0.002), suggesting a greater defense
against oxidative damage. Moreover, the group without periodontitis, supplemented
with açaí, had a rise in plasma TEAC/TBARS levels, compared to control (180.57 ± 7.89%
vs. 100 ± 8.54%; adj. p-value = 0.005), experimental periodontitis (180.57 ± 7.89% vs.
59.0 ± 5.87%; adj p-value = < 0.0001), and experimental periodontitis with açaí supplemen-
tation group (180.57 ± 7.89% vs. 114.31 ± 16.88%; adj. p-value = 0.008; Figure 3D).

3.3. The Ingestion of Açaí Was Able to Reduce Periodontal Breakdown

The experimental periodontitis group presented the highest alveolar bone loss in the
present study, demonstrated by the distance between the cementoenamel junction and
alveolar bone crest (0.86 ± 0.04 mm). Supplementation with clarified açaí juice minimized
that damage by reducing the alveolar bone loss (0.70 ± 0.01 mm) in comparison to the exper-
imental periodontitis group (0.86 ± 0.04 mm; adj. p-value = 0.005). It is worth mentioning
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that the experimental periodontitis supplemented with açaí group did not statistically differ
from the control group (0.70 ± 0.01 mm vs. 0.58 ± 0.02 mm; adj. p-value = 0.06).

Regarding bone quality parameters, when it comes to trabecular thickness (Tb.Th), the
experimental periodontitis with açaí supplementation group demonstrated higher values
compared to the experimental periodontitis group (0.15 ± 0.004 mm vs. 0.08 ± 0.006 mm;
adj. p-value = 0.0002). Nevertheless, there was no statistically significant difference
between the experimental periodontitis with açaí supplementation and control groups
(0.15 ± 0.004 mm vs. 0.12 ± 0.01 mm; adj. p-value = 0.11).

Moreover, the experimental periodontitis with açaí supplementation group demon-
strated lower trabecular spacing (Tb.Sp) values compared to the experimental periodontitis
group (0.11 ± 0.02 mm vs. 0.25 ± 0.036 mm; adj. p-value < 0.0001). The açaí group
also had lower levels compared to controls (10.38 ± 0.01 mm vs. 0.15 ± 0.007 mm;
adj. p-value = 0.03), as shown in Figure 4F.
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Figure 4. Effects of clarified açaí juice (0.01 mL/g/day for 14 days) on alveolar bone of rats
(n = 5/group) exposed or not to experimental periodontitis. Sagittal slices of the animals hemi-
mandibles with a red square representing the region of interest (ROI) and three-dimensional
reconstructions of the hemimandibles with a red arrow highlighting the alveolar bone loss dif-
ferences between the (A) control, (B) açaí, (C) experimental periodontitis, and (D) experimental
periodontitis + açaí groups. Scale bar = 1 mm. (E) trabecular thickness (Tb.Th; mm); (F) trabecular
spacing (Tb.Sp; mm); (G) bone volume to tissue volume (BV/TV; %); (H) alveolar bone crest to
cementoenamel distance (ABC-CEJ; mm). The results are expressed as mean ± standard deviation.
Different letters indicate a significant statistical difference. One-Way ANOVA followed by Tukey’s
post hoc test, p < 0.05.

The two groups supplemented with açaí showed higher levels of BV/TV (açaí group:
0.7772 ± 0.05409; experimental periodontitis + açaí group: 0.6552 ± 0.0368) in comparison
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to the groups without supplementation (control group: 0.3192 ± 0.05264; experimental
periodontitis group: 0.2345 ± 0.01325; adj. p-value < 0.05; Figure 4G).

4. Discussion

This is a pioneering study in assessing the potential of clarified açaí juice in the
management of periodontal breakdown by the reduction of bone loss and increasing
bone quality, in an experimentally induced periodontitis model in rats. In addition to
these findings, the systemic oxidative stress triggered by periodontitis was also attenuated
by açaí supplementation. The clarified açaí juice modulated bone quality by increasing
trabecular thickness and the bone volume to tissue volume ratio and decreasing trabecular
spacing, suggesting that this natural product is a promising adjuvant for the prevention
and treatment of periodontal disease. Furthermore, açaí supplementation was also capable
of preventing additional alveolar bone loss, with levels similar to control.

Among the existing models of induced periodontitis, three are generally performed by
authors: 1- ligature-induced periodontitis: insertion of a nylon, silk, or cotton thread in the
cervical region of molars [35]; 2- lipopolysaccharide (LPS)-induced periodontitis—application
of LPS in the marginal gingiva of molars [36] and; 3- microorganism-induced periodontitis—
specific periodontal pathogens are applied to the marginal gingiva [37]. The inoculation
of LPS and periodontopathogens is technically easier to perform due to difficulties in
accessing the oral cavity of rodents. However, periodontitis results from the interaction
between complex colonization of microorganisms, the host response, and several factors
that can attenuate or worsen the loss of tissue attachment. Thus, the inoculation of LPS or
bacteria represents a small part of the periodontal disease complexity. The ligature-induced
periodontitis model implies a dental biofilm accumulation triggering an inflammatory
response. Actinomyces, Prevotella nigrescens, Fusobacterium, Porphyromonas gingivalis, and
Aggregatibacter actinomycetemcomitans constitute the biofilm that accumulates in the liga-
ture [38]. Thus, the induction of experimental periodontitis in rats is a validated method
due to its similarity to human periodontitis. In both cases, periodontitis damage in the
destructive phase is marked by an inflammatory infiltrate in the gingiva, which occurs
before bone resorption [38].

Micro-computed tomography (micro-CT) has become a widespread method to evalu-
ate dentoalveolar structures in periodontal research. Since periodontitis causes an inflam-
matory disarrangement of periodontal tissues, especially a bone disruption, micro-CT is
precise and currently considered the gold standard for assessing periodontal and bone
microarchitecture changes [39]. Scanning parameters, such as a voltage of 70 KVp, voxel
size of 6–10 µm, and integration time up to 300 ms, generate images with clear demarcation
of bone resorption sites. The first mandibular molar is one of the most common teeth
analyzed and reported as a reasonable model for a translational analysis of bone loss.
Furthermore, according to a recent guideline for micro-CT analysis, the linear measurement
of the distance from the cementoenamel junction to the alveolar bone crest (CEJ-ABC) is
feasible in the assessment of bone loss generated by retained periodontal biofilm in the first
molar [40].

In vitro studies showed that the extract of Euterpe oleracea causes a downregulation in
NF-κB and its target genes, such as TNF-α, IL-6, IL-8, and IL-1β, which actively participate
in the bone resorption processes; in addition, it inhibits the activity and differentiation of
osteoclasts, acting on the activity of RANK-L cells, modulating inflammatory cytokines,
decreasing the secretion of IL-1α, IL-6, and TNF-α, and increasing the secretion of IL-3, IL-4,
IL-14, and IFNγ [10,41]. Systemically, açaí supplementation has also been demonstrated to
influence essential parameters in the bone resorption process during the formation of the
periradicular lesion, such as the reduction of TNF-α expression [42,43]; IL-1β and IL-6 [43]);
IL 8 and NF-κB (14); prevention of oxidative damage by a direct mechanism [44]; and
positive impact on serum antioxidant enzyme activity [9]. Although we did not assess
the inflammatory condition, our findings suggest that açaí can modify bone injury by
influencing the inflammatory response via oxidative stress modulation.
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A benefit of Euterpe oleracea is the ability to modulate the expression of the inducible
nitric synthase enzyme (iNOS), reducing the inflammatory response in macrophage cell
cultures [45]. In addition to free radical scavenging action (radical peroxyl, peroxynitrite,
and hydroxyl radical), the mechanism involved in this action is associated with the presence
of anthocyanins and other flavonoids [46,47]. Furthermore, flavonoids are related to
increases in the production and activity of antioxidant enzymes such as SOD, GPx, and
catalase, which help reduce ROS [48]. ROS are produced by different inflammatory cells in
periodontitis [49], which perform the host response to microbial aggression. The primary
sources of ROS are PMNs and fibroblasts, both contributing to the establishment and
progression of periodontal tissue destruction [50].

Many studies using the ligature-induced periodontitis model have found malonalde-
hyde as a marker of lipid peroxidation in serum, plasma, and tissue homogenates [49,51–54].
When superoxide dismutase is increased, ligature-induced inflammation and the increase
in malondialdehyde can be considerably decreased [55,56]. The plasma total antioxidant
activity and glutathione had higher levels in the periodontitis with açaí supplementation
group in our study. As SOD can increase glutathione levels [49,57], we can extend the
hypothesis that açaí is linked to a reduction in lipid peroxidation levels by increasing
the total antioxidant activity associated with more significant sequestration of reactive
oxygen species.

Oxidative stress is intrinsically related to periodontal connective tissue damage. Cy-
tokines, matrix metalloproteinase activity, and superoxide radicals are observed in the loss
of periodontal tissue attachment, and are also increased in bone resorption [49,51]. Peri-
odontal treatment reduces superoxide levels in periodontal tissues leading to reductions in
damage. Therefore, additional ways to reduce oxidative stress may positively impact bone
preservation periodontal therapy [50,57]. These findings also support the role of açaí in
the prevention of periodontal breakdown. The alveolar bone is the most dynamic tissue
in the periodontium, and its structural characteristics are directly related to its functions
and health [58,59]. Changes in the alveolar bone microarchitecture are observed in rats
with induced periodontitis, with consequences on bone quality [26,27]. Our results are in
accordance with that, as the group with experimental periodontitis showed alterations in
trabecular thickness, spacing, and bone volume to tissue volume ratio compared to the
control group (Figure 4). However, rats with the açaí supplementation improved bone
quality parameters by increasing trabecular thickness and decreasing the trabecular spacing
associated with the rise in the BV/TV parameter, compared to the groups exposed or not to
experimental periodontitis. The alveolar bone commonly presents a highly mineralized
bone mass with a trabecular architecture, showing thick bone with reduced space [58].
Hence, our data suggest that açaí may play a role in the modulation of alveolar bone
maturity and could attenuate the damage caused by the periodontitis model in this study.

Furthermore, bone loss may be a response related to the morphological bone state and
the activity of bone cells in the course of the inflammatory process of periodontitis [59]. Our
data showed that açaí supplementation decreased alveolar bone loss observed in rats ex-
posed to experimental periodontitis. This could be associated with the bone microstructure
pattern found in the animals and the biochemical assay results since polyphenols found in
açaí can act in osteoclastogenesis pathways [60].

The nuclear factor kappa B NF-κB pathway has been used to identify a reduction
in osteoclast activity by inhibiting hypoxia-inducible factor-1 (HIF-1a) expression in an
in vitro model [60]. Hypoxia in periodontitis is caused by the destruction of periodontal
tissues, including vascular tissue injury, decreased local blood flow, and edema caused
by the inflammatory process [20,52]. Hypoxic cells release HIF-1, which is regulated by
the NF-κB pathway, and osteoclast activation occurs, primarily because of an increase in
RANKL expression and a decrease in OPG in hypoxic cells.

Our findings raise additional questions about the açaí supplementation’s translational
applicability in humans. Furthermore, we wonder if its effects extend beyond the oxidative
biochemical system to the inflammatory response and possibly immune modulation in
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response to pathogenic microbiota. Finally, further clinical trials are needed to verify its
translational applicability in humans.

5. Conclusions

Açaí supplementation protects against oxidative damage by reducing the formation
of lipid peroxidation products, thus suggesting a potential protective effect promoted by
the antioxidants present in açaí. Moreover, daily supplementation of clarified açaí resulted
in a significant reduction in alveolar bone loss and changes in trabecular thickness, bone
volume to tissue volume ratio, and trabecular spacing. Therefore, açaí antioxidant effects
make it a potential adjuvant for the prevention and, eventually, treatment of periodontitis.
This study raises new questions regarding the therapeutical potential of açaí.
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