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ABSTRACT

Climate change, a pressing global challenge, has wide-ranging implications for various

aspects of our lives, including housing prices. This paper delves into the intricate

relationship between climate change and housing prices in the United States. Using a

comprehensive dataset and employing machine learning techniques, we analyze the

relevance of climate variables for housing prices. Our findings suggest that climate

change variables can influence housing prices, particularly in the short term, but the

relationship varies by region. Understanding these dynamics is crucial for informed

decision-making, sustainable urban development and climate risk mitigation.

Keywords: Climate finance. Housing market. Machine learning. Predictive modeling



RESUMO

As mudanças climáticas, um desafio global urgente, têm amplas implicações para

vários aspectos de nossas vidas, incluindo os preços dos imóveis. Este estudo investiga

a relação entre as mudanças climáticas e os preços dos imóveis nos Estados Unidos.

Utilizando um conjunto de dados abrangente e empregando técnicas de machine

learning, analisamos a relevância das variáveis climáticas para os preços dos imóveis.

Nossos resultados sugerem que as variáveis das mudanças climáticas podem

influenciar os preços dos imóveis, especialmente a curto prazo, mas a relação varia por

região. Compreender essas dinâmicas é crucial para a tomada de decisões informadas,

desenvolvimento urbano sustentável e mitigação dos riscos climáticos.

Palavras-chave: Finanças climáticas. Mercado imobiliário. Machine learning.

Modelagem preditiva
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1 INTRODUCTION

Climate change significantly impacts various aspects of life, including extreme

weather events and rising sea levels. It particularly affects housing prices by altering

homebuyer preferences and increasing property damage from severe weather, thereby

influencing economic decisions in the face of climate change (IPCC, 2021; Emanuel,

2017; Kousky, 2014).

The Earth's average surface temperature has risen by 1.1°C since the late 19th

century due to human activities, affecting health, food systems, and water availability

(IPCC, 2021; Trenberth et al., 2014). This warming contributes to economic challenges

across infrastructure, agriculture, and energy sectors (Hsiang et al., 2017), underscoring

the need for urgent global action.

In the housing sector, climate risks are increasingly factored into property values,

with demand shifting based on an area's susceptibility to climate change (Heinen;

Khadan; Strobl, 2019; Kim et al. 2022). This shift results in higher insurance premiums

and affects housing affordability, especially in disaster-prone regions (Tucker, 1997).

The global real estate market, worth approximately $326.7 trillion in 2020, plays a

critical role in the economy, with significant investments in real estate assets and

mortgage-backed securities indicating its economic influence (Savills World Research,

2020; NAREIT, 2021; Federal Reserve, 2020). The housing market's health is a vital

economic indicator, reflecting overall economic conditions and consumer confidence

(U.S. Bureau of Economic Analysis, 2021; Case and Shiller, 2003).

This research delves into the intricate relationship between climate change and

housing prices within the United States, drawing upon prior studies emphasizing

climate-related variables such as temperature, precipitation, and humidity in shaping

housing preferences and valuations (Sussman et al., 2014). Our objective is to

comprehensively analyze this pivotal juncture, employing machine learning techniques

to evaluate the impact of climate variables on housing returns. More specifically, the

stepwise boosting was used, an iterative algorithm that by gradually incorporating

variables seeks to balance complexity and overfitting risk.
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This study incorporated decades of climate data, including temperature,

precipitation, and drought. Additionally, it considered macroeconomic, financial,

non-economic, non-financial factors, and measures of uncertainties to ensure a

comprehensive analysis of the impact of climate change variables, while controlling for

other factors. Multiple models were examined to evaluate the influence of climate

change variables on predictive performance and to investigate their significance through

selection rates within the boosting algorithm.

The significance of this research lies in its methodological and analytical

approaches to understanding the relationship between climate change and the real

estate market. The machine learning approach allows for a more sophisticated

understanding of how various climate-related factors, such as temperature, precipitation,

and drought, impact housing returns. The focus on specific climate variables and their

direct impact on the housing market provides vital insights for stakeholders, including

policymakers, real estate professionals, and the public. The empirical evidence

presented in this study facilitates informed decision-making, promoting sustainable

urban development and effective risk mitigation strategies in the face of climate change

challenges. Furthermore, the examination of the economic implications of climate

variables on housing markets enriches the understanding of broader economic

indicators and consumer confidence, highlighting the critical role of the real estate sector

in the global economy.

This paper is structured as follows: In Section 2, we discuss the impact of climate

change on the real estate sector, drawing from multiple relevant studies. Section 3

outlines the empirical strategy used in this study, consisting of three sections. In Section

3.1, we present the data used, along with its descriptive statistics. Section 3.2

elaborates on the step-wise boosting algorithm. The forecasting procedures and model

performance metrics employed are presented in Section 3.3. Sections 3.4 and 3.5

analyze the results pertaining to predictive accuracy and variable selection. Finally,

Section 4 offers concluding thoughts and suggestions for future research.
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2 CLIMATE CHANGE AND REAL ESTATE

The intricate interplay between climate change factors and the economy stands

as a topic within the climate finance realm and its impact on various sectors have been

subjects of extensive research and policy discussions. Several influential papers have

offered crucial insights into this topic and this review seeks to offer a comprehensive

amalgamation of extant research, accentuating the pertinence of climate change

elements.

The Stern Review on the Economics of Climate Change (2006) delivered a

foundational discovery, highlighting that the costs of inaction on climate change

significantly outweigh those of mitigation. Acemoglu et al. (2012) contributed a key

finding: environmental policies can direct technological change, leading to innovations

that aid climate mitigation. Their work highlighted the importance of proactive policy

measures in fostering sustainability.

Updating estimates of the social cost of carbon, Nordhaus (2017) reaffirmed its

importance in guiding climate policy, emphasizing that accurate assessments of this

parameter are vital for effective decision-making. A study by Burke, Hsiang, and Miguel

(2015) revealed a nonlinear, negative impact of rising temperatures on economic

production, suggesting that unchecked global warming could have severe global

economic consequences.

Comprehensive reviews, such as Carleton and Hsiang's work (2016), have

highlighted the extensive economic and social impacts of climate change. Their research

underscores the urgency of mitigation and adaptation measures. Regarding the

relationship between climate and economic development, Dell, Jones, and Olken (2014)

noted its complexity and emphasized the need to understand how climate influences

economic growth.

In the realm of uncertainty, Pindyck (2013) stressed that climate change

economics models must acknowledge significant uncertainties, particularly regarding

catastrophic events, which are crucial in policy formulation. In addressing the

uncertainties inherent in climate change economics, Heal and Millner (2014) stressed

the importance of considering risks and adaptation strategies in decision-making. Finally,
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Nordhaus (2018) revisited climate change modeling in the context of minimal climate

policies, emphasizing the need to account for uncertain future climate outcomes.

Shifting our focus to the housing sector, climate change presents significant

challenges. Numerous studies have highlighted vulnerabilities and potential

consequences associated with a changing climate. The U.S. Global Change Research

Program published a comprehensive assessment by Melilo et al (2014) outlining the

impact of climate change on infrastructure in the United States. Key findings from this

report emphasized increased risks of flooding, storm damage, and heat stress on roads,

buildings, and industrial facilities, underscoring the urgent need for improved resilience

measures, building codes, and land-use planning

The European housing sector also encounters climate-related challenges, as

demonstrated by Domínguez-Amarillo, Samuel, et al (2019). In their research, they

examine the performance of social housing in the face of temperature fluctuations. The

study reveals that while ensuring comfort during cold weather is still a concern, the

primary challenge lies in managing heat gain. This underscores the necessity for future

intervention policies in urban centers in southern Europe.

Akbar and Kinnear (2010) studied the impact of climate change on coastal

housing. This research, conducted in Queensland, Australia, examined the strain on

coastal infrastructure and buildings due to changing climate conditions, including rising

temperatures and extreme weather events. The findings underscored the intricate

challenge of incorporating climate change adaptation and mitigation strategies into

coastal housing policies while simultaneously aligning with the imperative of affordable

housing goals. Significantly, the difficulty in achieving housing affordability in such

contexts may stem from a heightened public awareness of climate change. This

awareness, as illustrated by Duan and Li's (2022) research, appears to be influencing

mortgage lenders to exercise greater caution in approving loans for homes situated in

regions highly susceptible to sea-level rise.

Additionally, climate change has significant implications for housing conditions

and health outcomes, with a pronounced effect on marginalized communities. Hales et

al. (2007) highlighted that economic factors play a crucial role in determining

vulnerability to extreme weather events. For instance, they pointed out that in the United
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States, economically disadvantaged communities lacking access to air conditioning are

particularly susceptible to the health consequences of heatwaves. Their research

underscores the importance of energy-efficient cities as a critical component of

ecologically sustainable development in the twenty-first century.

Investigations into the impact of climate change on housing values have brought

to light multifaceted dynamics. Early inquiries, notably those conducted by Maddison

and Bigano (2003) and Rehdanz and Maddison (2009), laid the groundwork by revealing

that elevated average temperatures and milder winters tend to be seen as assets, while

hotter and more humid summers are generally perceived as drawbacks. These initial

insights suggest that climate change factors, such as fluctuations in temperature, can

wield a considerable influence on housing markets.

Further examination of this correlation has expanded beyond mere temperature

fluctuations. Kahn's (2009) influential study scrutinized climate amenity values by

assessing home prices in major U.S. metropolitan areas. His research illuminated that

anticipated shifts in temperature and precipitation could adversely affect housing prices,

with certain cities experiencing declines exceeding 50%. These findings underscore the

intricate ways in which climate change variables impact housing costs, encompassing

both direct and indirect consequences.

Several research studies, including those conducted by Bernstein et al. (2019)

and Baldauf et al. (2020), have highlighted a noteworthy finding: residences exposed to

climate risks experience a reduction in their market value, often reaching up to 8.5%.

This devaluation, as expounded by Shi and Varuzzo (2020), can be directly attributed to

escalated repair and maintenance expenses, compounded by disruptions to

infrastructure caused by weather-related disasters.

Beyond the tangible ramifications of climate change, the diversity of beliefs

regarding long-term climate change risks has emerged as a significant factor influencing

housing valuation (Baldauf et al., 2020). This dimension introduces an innovative

perspective, emphasizing how individuals' beliefs concerning climate change can

permeate dynamics within the housing market.

The intricacy of the relationship between climate and housing prices has spurred

a variety of analytical approaches. Some studies have delved into exploring the
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connections between air pollutants, a climate change-related concern, and fluctuations

in housing prices (Fong et al., 2020). Numerous statistical models and methodologies

have been employed in the United States.

One frequently utilized approach is the hedonic pricing method, which posits that

housing prices are influenced by a bundle of attributes, including climate-related factors

like temperature and precipitation (Baldauf et al., 2020). This method has proven

effective, uncovering substantial associations between housing costs and variables such

as temperature, precipitation, and humidity.

Conversely, acknowledging the spatial disparities in housing prices, some

researchers have embraced spatial econometric models, such as the spatial

autoregressive model and geographically weighted regression (Zou et al., 2022). These

models offer a more nuanced and precise estimation of the impact of climate change

elements across various regions.

The incorporation of climate change scenarios into analyses has provided a vital

perspective from which to examine the dynamics of housing prices. These scenarios

allow researchers to envision potential futures and assess their repercussions on

housing markets. Findings from such scenarios have revealed that the effects of climate

change on housing prices exhibit significant variation across the United States

(Sussman et al., 2014). These disparities are particularly pronounced between eastern

counties and arid regions, influenced by factors like shifts in January temperature

relative to July apparent temperature and alterations in annual average precipitation.

These insights underscore the necessity of considering not only the presence of climate

change but also its spatial variability when evaluating housing markets.

From a policy standpoint, these findings underscore the profound influence of

climate change elements on housing markets. Policymakers and urban planners must

take into account climate scenarios and spatial distinctions when formulating decisions

related to land use, transportation, and climate mitigation strategies.

In conclusion, the prevailing literature emphasizes the profound and multifaceted

impact of climate change factors on housing prices on a global scale. Ultimately, the

insights derived from prior studies are indispensable for making informed decisions in a

world increasingly shaped by the intricate forces of climate change.
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3 EMPIRICAL ANALYSIS

The following section will cover the data and procedures applied in this work, as well

as a discussion about the results and their relation to the current literature. In brief, the

study analyzes data spanning several decades, incorporating climate-related variables

such as anomalies in temperature, precipitation, and drought. To model housing returns,

the paper utilizes stepwise boosting, an iterative algorithm that gradually integrates

variables to balance model complexity and mitigate the risk of overfitting.

In assessing how climate change variables contribute to predictive performance,

multiple models were tested, incorporating macroeconomic factors, financial factors,

non-economic factors, non-financial factors, and measures of uncertainties. Finally, the

study also examines the relevance of climate-related variables in housing return

modeling, particularly by analyzing their selection rates within the boosting algorithm.

The modeling for this study was executed using R and R Studio. For the specific

task of applying step-wise boosting, the mboost package was employed, adhering to the

methodologies outlined by Hofner B, Mayr A, Robinzonov N, Schmid M (2014).

Interested parties can find the datasets, scripts, detailed results, and a comprehensive

description of the variables used in this study at the following GitHub repository:

https://github.com/brunotag18/ClimateFinance-UFRGS.

3.1 DATA

In this study, we utilized a comprehensive set of six distinct dependent variables,

each representing a measure of real housing returns, defined as the change in the

housing index between two observations. The first of these variables encapsulated the

entirety of real housing returns within the United States, spanning the temporal range

from July 1960 to June 2021, and shall be denoted as "Y." Additionally, four other

dependent variables were established to scrutinize housing returns within distinct

regions of the United States: Northeast (YN), Midwest (YM), South (YS), and West

(YW). The data for these regional variables spanned from February 1975 to May 2021.



14

Finally, an overarching aggregate variable (YA) was constructed, consolidating data from

these four regional subsets, thus sharing an equivalent temporal scope.

Figure 1 – Real Housing Returns

Source: own elaboration based on data from the FHFA House Price Index (1960-2021).

The independent variables utilized in this study can be categorized into five distinct

sets. The first set comprised eight macroeconomic factors outlined by Ludvigson and Ng

(2009) collectively referred to as F1 through F8. The second and third sets pertained to

macroeconomic and financial uncertainties resulting from both economic and

non-economic factors, as expounded upon by Ludvigson et al. (2021). The variables in

the second set were designated as MEU1, MEU3, MEU12, FEU1, FEU3, and FEU12,

while the third set was characterized by NMEU1, NMEU3, NMEU12, NFEU1, NFEU3,

and NFEU12.

The fourth set encompassed a collection of ten climate risk factors representing

deviations in Average Temperature, Maximum Temperature, Minimum Temperature,

Precipitation, Cooling Degree Days, Heating Degree Days, Palmer Drought Severity

Index (PDSI), Palmer Hydrological Drought Index (PHDI), Palmer Modified Drought
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Index (PMDI), and Palmer Z-Index. These indicators were extracted from the National

Center for Environmental Information website and were denoted as CC1 through CC10.

Lastly, the fifth set delineated the volatility associated with these climate anomalies,

derived from a GARCH model, and was designated as CCV1 through CCV10. Moreover,

to augment the analytical depth, eleven lagged values for each variable were

incorporated into each set, resulting in a comprehensive assemblage of 480

independent variables for examination and assessment.

The primary characteristic of the variables within sets four and five is that they

quantify climate-related anomalies rather than the variables themselves. This approach

aligns with a substantial body of literature that associates climate change with

alterations in precipitation patterns (Cook et al., 2015; Trenberth, 2011; Huntington,

2006) and temperature (Coumou; Rahmstorf, 2012; Schär et al., 2004).

Table 1 - Descriptive statistics for the dependent and independent variables

Variables Mean St. Dev. Min Max

Dependent Variables

Real Housing Returns (Y) 0.12 0.56 -2.12 2.09

Real Housing Returns - Northeast (YN) 0.00 2.11 -9.06 4.88

Real Housing Returns - Midwest (YM) -0.02 2.44 -14.78 14.65

Real Housing Returns - Southwest (YS) 0.02 1.86 -16.75 13.12

Real Housing Returns - West (YW) -0.02 3.17 -10.58 12.78

Real Housing Returns - Aggregate (YA) 0.00 1.48 -4.70 5.35

Macro and Financial Factors

F1 0.00 0.40 -1.07 2.35

F2 0.00 0.27 -1.30 1.26

F3 0.00 0.26 -1.52 1.39

F4 0.00 0.23 -1.05 1.03

F5 0.00 0.21 -1.21 0.92

F6 0.00 0.20 -0.68 0.66

F7 0.00 0.17 -1.23 0.46

F8 0.00 0.15 -0.62 0.52

Macro and Financial Uncertainties

MEU1 0.66 0.11 0.53 1.14

MEU3 0.79 0.12 0.65 1.30
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MEU12 0.91 0.08 0.79 1.31

FEU1 0.90 0.16 0.60 1.55

FEU3 0.95 0.13 0.70 1.41

FEU12 0.98 0.04 0.89 1.11

Non-macro and Non-financial
Uncertainties

NMEU1 -0.01 0.01 -0.10 0.12

NMEU3 -0.01 0.01 -0.04 0.07

NMEU12 -0.01 0.01 -0.02 0.04

NFEU1 0.00 0.02 -0.01 0.17

NFEU3 0.00 0.01 -0.01 0.12

NFEU12 0.00 0.00 -0.01 0.03

Climate Change

CC1 0.04 2.78 -10.35 9.38

CC2 0.05 3.16 -13.27 11.13

CC3 0.04 2.64 -10.08 9.27

CC4 0.00 0.65 -2.32 2.19

CC5 0.33 24.25 -88.00 96.00

CC6 -0.90 72.92 -286.00 283.00

CC7 -0.05 2.98 -8.72 8.78

CC8 -0.04 3.09 -8.72 8.78

CC9 -0.04 3.04 -8.72 8.78

CC10 -0.03 2.34 -7.80 8.98

Climate Change Volatility

CCV1 7.80 3.32 5.72 30.99

CCV2 9.97 2.32 8.42 30.86

CCV3 7.24 4.65 4.38 42.05

CCV4 0.42 0.05 0.23 0.79

CCV5 904.18 1,461.41 183.09 11,091.93

CCV6 6,047.52 6,226.07 2,839.27 49,640.34

CCV7 9.04 10.57 0.56 71.73

CCV8 9.60 11.76 0.12 73.49

CCV9 9.25 10.69 0.37 70.93

CCV10 5.45 2.01 4.08 24.36

Source: own elaboration based on data from the FHFA House Price Index, Ludvigson and Ng (2009),
Ludvigson et al. (2021), National Center for Environmental Information (1961-2021)
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3.1.1 METHODOLOGY

In the subsequent section, we elucidate the partitioning of the dataset into training

and test sets for the out-of-sample forecasting method, a pivotal component of our

research framework. This methodological prerequisite stems from the need to rigorously

assess the predictive performance of our model. However, a notable challenge arises

when implementing this procedure within the context of our study. Namely, the resulting

datasets exhibit more variables than observations. Consequently, the common practice

of employing linear regression as a benchmark was unsuitable. Instead, we utilized an

autoregressive AR(11) model for the response variable in certain predictive power

analyses.

In response to this, we turn to the methodology of stepwise boosting. This approach

demonstrates its mettle by crafting robust and consistent models even within a

high-dimensional environment. One clear advantage, as delineated by the work of

Zhang and Haghani (2015), is that the boosting learning algorithm not only aptly

captures the intricate interplay between input variables and response variables but also

offers insights into the relative significance of individual input variables. This discernment

emerges organically through the iterative nature of the boosting procedure, fostering a

deeper understanding of the relationships underpinning the data.

At the core of the stepwise boosting methodology lies the following logic. It seeks to

construct a parsimonious yet highly effective linear model within the challenge of

high-dimensional data. To circumvent the inconsistency, stepwise boosting constructs

this model in an incremental fashion, systematically incorporating variables one by one.

This iterative approach endeavors to arrive at the optimal model, one that encapsulates

best the relationships between variables. The outcome is a function that aptly balances

predictive accuracy and model simplicity. In this section, we delve into the intricacies of

this stepwise boosting methodology and elucidate its application within the context of

our research, culminating in a robust framework for predictive analysis. that𝑓
^
(𝑥

𝑡
) = 𝑦

𝑡

^
 

can be described as
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(1)𝑓
^
(𝑥

𝑡
) = 𝑓

^(0)
+ 𝑣

𝑚=1

𝑀

∑ 𝑔
^(𝑚)

where is the vector containing the dependent variables, is a constant, known𝑥
𝑡

𝑓
^(0)

as the weak learner, is shrinkage parameter that ranges from 0 to 1 and is the𝑣 𝑔
^(𝑚)

learner estimated on each of the iterations, which is also chosen arbitrarily.𝑚

In the realm of boosting algorithms, the selection of an appropriate weak learner

constitutes a pivotal initial step, bearing profound consequences on the ensuing model's

performance. Notably, the effectiveness of the boosting process is often accentuated

when a sufficiently weak learner is employed, as this deliberate choice mitigates the risk

of overfitting, an intrinsic peril in complex predictive modeling scenarios, as emphasized

by Fuleky (2019). In this study, we designate the mean of the response variable as our

chosen weak learner, representing the temporary model.

Subsequently, the boosting algorithm proceeds with its iterative refinement to

enhance the predictive capabilities of our provisional model. To this end, we calculate

the residuals from this provisional model. As these residuals signify what was

unaccounted for by our initial model, a series of regressions against each predictor

variable is executed to try and explain what the previous model couldn’t. The next step

is to assimilate a fraction of the best regression outcomes, that meaning, the one𝑣

yielding lower Sum of Squared Residuals (SSR), to the provisional model. These steps

of iterative refinement and adaptation continue until the attainment of an optimal number

of iterations .𝑚

Briefly, the algorithm functions as follows.

a) start with the temporary model ;𝑓
^(0)

= 𝑦‾

b) obtain the residuals from such model ;𝑢
𝑡

= 𝑦
𝑡

− 𝑓
𝑡

^ (𝑚−1)

c) perform a regression of these residuals against each independent variable ;𝑥
𝑖

d) calculate the SRR for each one of these regression;

e) select the variable which model resulted in the smallest SRR;

f) define ;𝑔
^(𝑚)

= β
^

(𝑖)
𝑥

(𝑖)
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g) set the new model as ;𝑓
^(𝑚)

= 𝑓
^ (𝑚−1)

+ 𝑣𝑔
^(𝑚)

h) repeat the steps b through g for iterations.𝑚

The parameter represents the trade-off between model fitness and complexity, a𝑚

foundational consideration in predictive modeling. Numerous metrics are available for

quantifying this trade-off, including the Akaike Information Criterion (AIC), Bayesian

Information Criterion (BIC), and Cross-Validation. The main function of this parameter is

to prevent overfitting of an excessive number of iterations. In this study, we opted for the

AIC as the criterion of choice, applied within each prediction window, as it penalizes

overparameterization more stringently, promoting the selection of simpler true models.

These criteria are both asymptotically consistent and provide a robust framework for

model evaluation (Bozdogan, 1987).

Also pivotal for the boosting algorithm quality, is the parameter , commonly referred𝑣

to as the "step”. This numeric parameter, ranging from 0 to 1, assumes the role of a

shrinkage factor in each iterative step. Its function is twofold. Firstly, it introduces a mere

fraction of each predictor variable at every iteration, a form of regularization that imparts

a controlled bias to the model while simultaneously curtailing its variance. This ensures

that our model remains resilient against overfitting, making it a potent tool for predictive

purposes.

Moreover, , by constraining the inclusion of individual variables to a fraction, also𝑣

mitigates the risk of undue influence from any single variable, enhancing the predictive

power. In this study, we adhere to the standard convention established in the literature to

set the value of .𝑣 = 0. 1

3.2 FORECASTING PROCEDURES AND PERFORMANCE

Our approach involved an examination of the predictive power of various sets of

variables for each dependent variable and forecast horizon. This assessment was

performed through a series of six distinct models. The primary objective of this endeavor

was to evaluate the individual contributions of each set of variables toward enhancing

predictive accuracy.
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The suite of variables available for model selection expanded iteratively. Specifically,

each subsequent model inherited the pool of variables from the preceding one,

augmented by the introduction of a fresh set of variables. The initial model, used as the

benchmark, had at its disposal only the lags of the dependent variable. In contrast, the

sixth and final model had not only not only the lags of the dependent variable at its

disposal but also the entirety of the five sets of variables enumerated earlier. This

progression was designed to systematically probe the incremental value of each

variable set.

Furthermore, a pivotal aspect of our methodology involved the normalization of

variables within each training window. This step was implemented to safeguard against

the inadvertent infiltration of test set information into the model. Achieved through the

standardization of variables using mean and standard deviation, this normalization

process ensured that our models operated untainted by data leakage from the test set.

The step parameter was fixed at across all models. The optimal number of𝑣 = 0. 1

iterations for each window was determined through the AIC.𝑚

The forecasting procedure itself was executed through an out-of-sample rolling

window approach. This entailed the training of a new model in each distinct window, with

the objective of evaluating predictive performance. The forecasted periods varied

according to the specific dependent variable and the forecast horizon. The predicted

period for the overall real housing returns was from July 1991 to June 2021, from August

1991 to June 2021, from September 1991 to June 2021, and from December 1991 to

June 2021 for the horizons of 1, 3, 6 and 12 months respectively. For regional housing

returns and the aggregate the periods of forecast were from October 1998 to May 2021,

from November 1998 to May 2021, from December 1998 to May 2021 and from March

1999 to May 2021 for the same horizons. These smaller data sets are a result of the

division of the original data into training set and test set in a 1:2 ratio.

To gauge the efficacy of each model and elucidate the impact of different variable

sets on predictive power, we employed four key statistical metrics. These included the

Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The RMSE

quantifies the square root of the average squared prediction errors, offering insight into

the magnitude of prediction deviations. Meanwhile, the MAE represents the mean of
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absolute prediction errors, serving as a robust measure of the overall prediction

accuracy. Such statistic are described, respectively, as:
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executed by the model.

The two-sided Giacomini-White test (GW) was also employed to assess the

statistical difference between models, employing the first model as a benchmark. The

test was used in two forms, the first using RMSE and the second MAE. Therefore, using

the results of these metrics, we were able to make judgments about model superiority

when statistically significant differences emerged.

Additionally, we incorporated the Model Confidence Set (MCS) (Hansen, Lunde,

and Nason, 2011) as another statistical procedure within our analytical framework. The

MCS, through a battery of tests involving forecasted and actual values, helps to

delineate the best-performing model. It does so under the null hypothesis assumption of

equal predictive power among the models under consideration. The MCS demonstrates

the ability to discern a group of superior forecasting models from a pool, leveraging the

information contained within the data, being adept at identifying models that outperform

others efficiently (Hansen, Lunde, and Nason, 2003).

3.3 RESULTS

Table 2 provides an analysis of the performance of various predictive models with

respect to overall real housing returns (Y), encompassing different predictive horizons.

An examination of these results, particularly, when we focus on the short-term horizon (h

= 1), Model 6, which incorporates climate change volatility variables, emerges as the

frontrunner, displaying superior performance as indicated by RMSE, MAE, and the MCS

Rank



22

In contrast, for longer horizons, the benchmark model (Model 1) consistently

maintains its superiority, outperforming models that include climate change variables.

Notably, only when h = 12 does another model (Model 3) manage to surpass the

benchmark. In this specific case, the distinction becomes evident solely through the

MCS Rank, as both Giacomini-White (GW) Tests show no statistically significant

difference.

The results described above may shed light, at least in the short term, on the

intricate relationship between housing prices and residents' environmental preferences

as it is known to be the case in the realm of urban economics and the spatial equilibrium

model (Zou et al., 2022, Albouy, 2016). These studies have underscored the ability of

housing prices to serve as indicators of the value people place on their surroundings.

Similarly, in the context of predicting future trends, an intriguing pattern emerges, as for

longer horizons, none of the models incorporating climate change variables manages to

surpass the performance of the benchmark. These findings emphasize the nuanced

nature of predictive modeling, where certain variables can wield significant influence in

specific circumstances, while the broader context may reveal different dynamics.
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Table 2 - Statistics on the predictive power for the overall real housing returns (Y)

h = 1

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.2925 0.2104 E E

Model 2 0.2692 0.1949 0.3211 0.3189 5 5

Model 3 0.2644 0.1914 0.1784 0.1769 3 3

Model 4 0.2743 0.1912 0.0069* 0.0067* 2 2

Model 5 0.2739 0.1924 0.0053* 0.0052* 4 4

Model 6 0.2693 0.1885 0.0116* 0.0115* 1 1

h = 3

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.4035 0.2903 1 1

Model 2 0.4349 0.3063 0.5233 0.5151 4 4

Model 3 0.4226 0.2983 0.1797 0.1759 2 2

Model 4 0.4354 0.3068 0.0021* 0.0019* 3 3

Model 5 0.4478 0.3252 0.0169* 0.0160* E E

Model 6 0.4856 0.3429 0.0059* 0.0058* E E

h = 6

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.4092 0.2938 1 1

Model 2 0.4425 0.3210 0.5147 0.5006 3 3

Model 3 0.4403 0.3212 0.1243 0.1210 2 2

Model 4 0.4844 0.3380 0.0006* 0.0005* 4 4

Model 5 0.4952 0.3528 0.0006* 0.0006* E E

Model 6 0.5811 0.4077 0.0005* 0.0005* E E

h = 12

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.3845 0.2759 4 2

Model 2 0.3829 0.2719 0.3720 0.3791 2 3

Model 3 0.3770 0.2689 0.7120 0.7118 1 1

Model 4 0.3852 0.2740 0.2699 0.2462 3 4

Model 5 0.3882 0.2778 0.3605 0.3366 5 5

Model 6 0.3905 0.2809 0.2873 0.2708 6 6

Source: own elaboration
Notes: * Statistical difference at 5%
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Turning our attention to the aggregate variable encompassing data from all four

regions (YA), Table 3 shows that both GW Tests indicate no statistically significant

difference between the models in any horizon. However, the MCS Ranks consistently

excludes the first model across various horizons. Instead, models 2, 3, and 4 emerge as

the preferred choices under specific h values.
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Table 3 - Statistics on the predictive power for the real housing returns - Aggregate (YA)

h = 1

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.9064 0.6730 E E

Model 2 0.6571 0.4380 0.8519 0.8679 2 2

Model 3 0.6638 0.4357 0.8233 0.8402 1 1

Model 4 0.7145 0.4485 0.9420 0.9643 5 4

Model 5 0.6981 0.4440 0.8627 0.8821 3 3

Model 6 0.6805 0.4455 0.9897 0.9728 4 5

h = 3

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 1.0986 0.8608 E E

Model 2 0.8498 0.6354 0.8740 0.8554 4 4

Model 3 0.8547 0.6342 0.5518 0.5696 3 3

Model 4 0.8723 0.6295 0.7125 0.7587 1 1

Model 5 0.8692 0.6362 0.7237 0.7679 5 5

Model 6 0.8718 0.6316 0.8940 0.9342 2 2

h = 6

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 1.1682 0.8918 E E

Model 2 0.8910 0.6894 0.8023 0.7989 1 1

Model 3 0.8798 0.6935 0.3748 0.3706 2 2

Model 4 0.9899 0.7117 0.8936 0.9697 3 3

Model 5 0.9993 0.7522 0.7361 0.7950 E E

Model 6 1.0459 0.7826 0.5748 0.5190 E E

h = 12

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 1.3685 1.0059 E E

Model 2 1.1445 0.8390 0.8003 0.8257 3 3

Model 3 1.0956 0.8076 0.2964 0.3215 1 1

Model 4 1.1721 0.8349 0.8897 0.7484 2 2

Model 5 1.1821 0.8614 0.9200 0.7834 4 4

Model 6 1.2138 0.8780 0.6368 0.5052 5 5

Source: own elaboration
Notes: * Statistical difference at 5%
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For the regional variables, the results are presented in Appendix B. None of the

models incorporating climate change variables manage to surpass the benchmark

model in any of the statistical metrics employed. The first model consistently

outperforms the others, as evidenced by all measurement criteria, except for the West

(YW) region. Here, models 2 and 3 consistently secure the top position in the MCS

Rank, despite statistical differences in RMSE only appearing at h = 12.

The results for the regional dependent variables may exhibit some similarity to

those reported by Sussman et al. (2014). In their study, they explored different scenarios

and observed varying housing prices in the western, eastern, and northern counties of

the United States. These variations ranged from increases to decreases, suggesting that

the impact of climate change variables on a regional level may not be straightforward.

However, it is noteworthy that the mean change in housing prices for all counties

remained consistent across all scenarios examined by the authors. This finding also

corresponds with our results concerning overall housing returns, at least in the short

term.

3.4 VARIABLE SELECTION

As the selection of variables holds paramount importance in the context of

step-wise boosting, this section seeks to evaluate the relevance of climate change

variables in the modeling of housing returns by looking at its selection rate. In this

regard, it is pertinent to note that the variables selected for Model 1 are not explicitly

delineated in our results. This omission stems from the fact that Model 1 exclusively

incorporated the lags of the dependent variable, thereby providing limited insights into

the relative importance of each variable set under consideration.

The first noteworthy result is that, as presented in Table 4, for the overall real

housing returns, in Model 6, a significant proportion of the 15 most frequently selected

variables are associated with Climate Change Volatility. This result may point in part to

the significance of climate change factors as an explanation for the superior

performance of Model 6, as demonstrated in the preceding section. Notably, the lags of

Cooling Degree Days Anomaly and Heating Degree Days Anomaly stand out as key
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contributors within this subset. It is pertinent to underscore that, apart from the lags of

housing returns, only the variables from the first set, specifically the macro factors,

consistently feature among the top 15 variables in Models 2 through 4. Only with the

introduction of climate change factors in Models 5 and 6 can we see a shift in this trend.

The analysis of the frequency of variable selection reveals an interesting pattern,

with select climate change variables exhibiting frequencies exceeding 80% for specific

horizons of prediction. Notably, the tenth lag of Cooling Degree Days Anomaly Volatility

and the fourth lag of Heating Degree Days Anomaly Volatility were consistently selected

in 100% of instances when h = 6.

As Cooling Degree Days and Heating Degree Days quantify the energy demand

for cooling or heating buildings respectively, these metrics are highly relevant to current

literature. Specifically, in the context of social housing in Europe, Domínguez-Amarillo,

Samuel, et al. (2019) observed that while maintaining comfort during cold weather

remains important, the primary challenge has shifted towards managing heat gain.

Furthermore, in the pursuit of ecologically sustainable urban development, Hales et al.

(2007) emphasized the importance of energy-efficient cities. This is particularly crucial

for economically disadvantaged communities who, lacking access to air conditioning, are

more vulnerable to the health risks posed by heatwaves.

These nuanced observations underscore the potential influence of climate change

variables on our modeling efforts, particularly in scenarios where specific lagged values

manifest recurrently.

Table 4 - Step-wise boosting variable selection rate for the overall real housing returns (Y)

h = 1

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2 100.00% F2 100.00% F3 100.00% F3 100.00%

F3 100.00% F3 100.00% F3 100.00% Y_L1 100.00% Y_L1 100.00%

Y_L1 100.00% Y_L1 100.00% Y_L1 100.00% Y_L10 100.00% Y_L10 100.00%

Y_L10 100.00% Y_L10 100.00% Y_L10 100.00% F2 99.72% F2 98.06%

Y_L11 99.17% Y_L11 99.17% Y_L11 98.61% Y_L11 98.33% Y_L11 91.67%

F7_L8 89.44% F7_L8 88.06% F7_L8 88.33% F7_L8 78.06%
CCV6_L

3 90.56%

F3_L9 80.00% F3_L9 81.94% F3_L9 82.22% F4_L4 73.06% F4_L4 63.06%
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F7_L11 75.56% F4_L4 76.67% F4_L4 74.72% F3_L9 72.22%
CCV6_L

11 60.28%

F4_L4 75.00% F7_L11 74.72% F7_L11 74.17% F7_L11 65.83%
CCV5_L

7 59.17%

F8 65.83% F4_L5 70.28% F4_L5 65.00% F8 59.44%
CCV5_L

8 58.89%

F4_L5 62.22% F8 68.89% F8 64.44% F4_L3 54.44%
CCV5_L

10 56.94%

F7_L2 61.39% F8_L2 67.22% Y_L3 59.72% Y_L3 53.61% F7_L11 54.17%

F8_L2 60.83% F7_L2 65.83% F4_L3 57.22% F4_L5 53.33% F7_L8 54.17%

Y_L3 59.17% Y_L3 61.94% F7 54.44% F7 51.39%
CCV5_L

1 52.50%

F4_L3 57.22% F4_L3 58.61% F7_L10 53.06% CC5_L9 50.83% F8 52.50%

h = 3

Model 2 Model 3 Model 4 Model 5 Model 6

F3 100.00% F3 100.00% F2_L4 100.00% Y_L1 100.00% Y_L1 100.00%

F3_L1 100.00% F3_L1 100.00% F3 100.00% Y_L10 100.00% Y_L10 100.00%

F3_L2 100.00% F3_L2 100.00% F3_L1 100.00% Y_L3 100.00% Y_L3 100.00%

F8 100.00% F8 100.00% F3_L2 100.00% F8 98.89% F8 83.57%

Y_L1 100.00% Y_L1 100.00% F8 100.00% F2_L4 95.26% F3_L2 82.17%

Y_L10 100.00% Y_L10 100.00% Y_L1 100.00% F3_L2 90.53%
CCV5_L

8 81.06%

Y_L3 100.00% Y_L3 100.00% Y_L10 100.00% F8_L1 83.84% F2_L4 80.78%

F7 99.72% F2_L4 99.16% Y_L3 100.00% F3_L1 81.62% F8_L1 76.60%

F2_L4 99.16% F7 98.89% F2 98.61% F2_L1 81.06% F3 73.26%

F8_L1 97.77% F8_L1 97.77% F3_L10 94.15%
CC5_L1

0 80.22% F4_L11 72.42%

F2 97.49% F2 97.49% Y_L4 91.64% F3 78.27% F2_L1 71.87%

Y_L4 96.94% F2_L1 97.21% F8_L1 91.09% F4_L5 76.60% F3_L1 71.03%

F3_L10 96.38% F3_L10 96.10% F7 89.97% F7 76.60%
CCV6_L

4 70.19%

F2_L1 82.73% Y_L4 92.20% F2_L1 89.69% F2_L3 74.09% F2_L3 68.25%

F8_L2 81.89% F2_L2 82.17% F2_L2 86.07% F4 69.08% F7 67.97%

h = 6

Model 2 Model 3 Model 4 Model 5 Model 6

F3 100.00% F3 100.00% F2_L7 100.00% F2_L7 100.00%
CCV5_L

10 100.00%
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F3_L5 100.00% F3_L5 100.00% F3 100.00% F3_L5 100.00%
CCV6_L

4 100.00%

F7_L2 100.00% F7_L2 100.00% F3_L5 100.00% F8_L3 100.00% Y_L1 100.00%

F8_L3 100.00% F8_L3 100.00% F8_L3 100.00% Y_L1 100.00% F8_L3 99.72%

Y_L1 100.00% Y_L1 100.00% Y_L1 100.00% Y_L10 100.00% Y_L10 98.60%

Y_L10 100.00% Y_L10 100.00% Y_L10 100.00% Y_L4 100.00%
CCV5_L

4 97.77%

Y_L11 100.00% Y_L4 100.00% Y_L4 100.00% Y_L8 100.00% F2_L7 97.21%

Y_L3 100.00% Y_L8 100.00% Y_L8 100.00% Y_L9 100.00%
CCV6_L

3 93.02%

Y_L4 100.00% Y_L9 100.00% Y_L9 100.00% F3 90.22% Y_L8 92.46%

Y_L8 100.00% Y_L11 98.88% Y_L11 98.88% Y_L11 89.11% F3_L5 89.66%

Y_L9 100.00% Y_L3 98.88% Y_L3 98.60%
CC5_L1

0 85.75% Y_L9 89.39%

F2_L7 99.16% F2_L7 98.60% F2_L1 97.49% F2_L1 84.92%
CCV5_L

3 86.31%

F8_L2 98.32% F2_L1 96.37% F7_L2 95.81% F8_L1 84.64% Y_L4 84.08%

F2_L1 97.49% F8_L2 95.53% F8_L2 89.94% Y_L3 83.52%
CC5_L1

0 83.52%

F8_L1 91.90% F8_L1 86.03% F2 89.11% F8_L2 83.24% F3 83.52%

h = 12

Model 2 Model 3 Model 4 Model 5 Model 6

F3_L11 100.00% F3_L11 100.00% F3_L11 100.00% F3_L11 100.00% F3_L11 100.00%

Y_L1 100.00% Y_L1 100.00% Y_L1 100.00% Y_L1 100.00% Y_L1 100.00%

Y_L11 100.00% Y_L11 100.00% Y_L11 100.00% Y_L11 100.00% Y_L11 100.00%

F8_L3 99.72% F8_L3 97.75% F2_L11 94.37% CC3_L1 94.08% F7_L11 85.92%

F8 94.65% F7_L11 93.80% F7_L11 93.24% F7_L11 87.89% CC3_L1 83.10%

F7_L11 92.68% F8 92.96% F2 86.48% F8 83.10% CC5_L9 79.15%

F4 86.76% F2_L1 89.30% F3 83.94% F8_L3 80.85% F8_L3 75.21%

F8_L1 82.25% F4 85.92% F3_L10 83.94%
CC5_L1

0 78.87% F3 74.93%

F3 81.41% F2 81.41% F8_L3 83.38% CC5_L9 78.87% F8 74.08%

F2 78.31% F4_L5 80.56% F4 81.97% F2_L11 77.18%
CC5_L1

0 71.83%

F3_L10 78.03% F3 78.87% F4_L5 81.69% F4_L5 76.90% F2_L1 63.94%

F2_L1 76.62% F3_L10 78.59% F8 81.41% F3 76.62% F3_L10 62.54%

Y_L10 76.34% F8_L1 75.77% F3_L8 79.15% CC5 75.21% F4_L4 60.28%

F2_L11 75.49% F7_L2 74.93% F7_L2 75.21% F4 74.65% F4_L5 58.59%



30

F7_L2 75.49% F7_L1 72.96% F8_L11 75.21% F3_L10 71.27%
CCV6_L

4 57.75%

Source: own elaboration

Table 5 presents the outcomes of our variable selection process for aggregate

housing returns. In this context, the prevalence of climate change variables is notably

less pronounced compared to the previous case. An extreme instance of this

phenomenon occurs at h = 6, where only a single climate change variable finds its way

into the selection.

Interestingly, our analysis reveals the emergence of diverse factors beyond the

Cooling Degree Days Anomaly and Heating Degree Days Anomaly within the top 15

selected variables. These include Precipitation Anomaly, PDSI Anomaly, PMDI Anomaly,

and Z-Index Anomaly. Nevertheless, it remains a consistent pattern that climate change

factors continue to be the predominant representatives from variable sets beyond the

first one in the selection.

Table 5 - Step-wise boosting variable selection rate for the real housing returns - Aggregate (YA)

h = 1

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2 100.00% F2 100.00% F2 100.00% F2 100.00%

F3 100.00% F3 100.00% F3 100.00% F3 100.00% F3 100.00%

F4_L1 100.00% F4_L1 100.00% F4_L1 100.00% F4_L1 100.00% F4_L1 100.00%

F4_L2 100.00% F4_L2 100.00% YA_L1 100.00% YA_L1 100.00% YA_L1 100.00%

YA_L1 100.00% YA_L1 100.00% YA_L9 100.00% YA_L9 100.00% YA_L9 100.00%

YA_L9 100.00% YA_L9 100.00% F4_L2 99.26% F4_L2 93.01%
CCV7_L

9 88.97%

F3_L2 98.53% F3_L2 94.12% F3_L1 94.12% F3_L1 86.76% F6_L1 83.09%

F3_L1 92.28% F3_L1 93.01% F3_L2 89.71% F6_L1 80.88%
CCV10_

L6 82.35%

F6_L1 84.93% F6_L1 84.93% F6_L1 84.19% YA_L6 76.84% YA_L6 81.99%

YA_L2 78.68% F3_L11 77.21% F5 79.41% F4 72.06% F3_L1 72.06%

YA_L6 77.94% YA_L6 77.21% YA_L6 76.84% YA_L2 70.96% YA_L2 70.96%

F4 72.43% F4 74.63% F3_L11 76.10% CC4_L5 68.38% F4 67.65%
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F3_L11 70.59% F5 74.63% F4 73.90%
CC6_L1

0 66.18% F8_L3 65.07%

F5 70.59% F8_L3 73.53% F8_L3 72.06% F5 65.81% F4_L2 61.40%

F8_L3 70.59% YA_L2 71.32% YA_L2 69.85% F8_L3 64.34% F3_L11 55.51%

h = 3

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2 100.00% F2 100.00% F2 100.00% F2 100.00%

F2_L1 100.00% F2_L1 100.00% F2_L1 100.00% F2_L1 100.00% F2_L1 100.00%

F2_L2 100.00% F2_L2 100.00% F2_L2 100.00% F2_L2 100.00% F2_L2 100.00%

F3 100.00% F3 100.00% F3 100.00% F3 100.00% F3 100.00%

F3_L1 100.00% F3_L1 100.00% F3_L1 100.00% F3_L1 100.00% F3_L1 100.00%

F3_L2 100.00% F3_L2 100.00% F3_L2 100.00% F3_L2 100.00% F3_L2 100.00%

F4_L1 100.00% F4_L1 100.00% F4_L1 100.00% F4_L1 100.00% F4_L1 100.00%

F4_L2 100.00% F4_L2 100.00% F4_L2 100.00% YA_L1 100.00% F4_L2 100.00%

YA_L1 100.00% YA_L1 100.00% YA_L1 100.00% F4_L2 99.63% YA_L1 100.00%

YA_L6 97.05% YA_L3 97.79% F3_L11 98.52% F3_L11 89.67% F3_L11 96.68%

F4 96.68% F3_L11 96.68% YA_L3 93.36% F4 69.74%
CCV7_L

10 72.69%

F3_L11 95.94% YA_L6 91.51% YA_L6 92.62%
CC10_L

1 69.00% F4 71.22%

YA_L3 95.20% F4_L4 90.77% F4_L4 88.19% F4_L4 65.31%
CC10_L

1 70.85%

F3_L3 91.88% F3_L3 86.35%
NFEU1_

L6 87.08% YA_L7 63.10%
CC10_L

2 67.53%

F1_L3 87.08% F5_L3 85.61% F5_L3 83.76%
CC10_L

8 61.25%
CCV2_L

9 64.21%
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h = 6

Model 2 Model 3 Model 4 Model 5 Model 6

F2_L5 100.00% F2_L6 100.00% F2_L4 100.00% F2_L4 100.00%
CCV9_L

10 100.00%

F2_L6 100.00% F3 100.00% F2_L5 100.00% F2_L5 100.00% F2_L6 100.00%

F3 100.00% F3_L1 100.00% F2_L6 100.00% F2_L6 100.00% F3 100.00%

F3_L1 100.00% F3_L2 100.00% F3 100.00% F3 100.00% F3_L1 100.00%

F3_L2 100.00% F3_L5 100.00% F3_L1 100.00% F3_L1 100.00% F3_L5 100.00%

F3_L5 100.00% F3_L6 100.00% F3_L5 100.00% F3_L5 100.00% YA_L1 100.00%

F3_L6 100.00% YA_L1 100.00% YA_L1 100.00% YA_L1 100.00% F2_L5 99.26%

F3_L7 100.00% F2_L4 99.63% F3_L2 99.63% F3_L6 99.26% F3_L2 93.70%

F4_L2 100.00% F2_L5 99.63% F2_L7 99.26% F3_L2 98.15% F2_L7 91.48%

YA_L1 100.00% F3_L7 99.63% F3_L6 99.26% F2_L7 97.78% F3_L11 90.37%

F2_L4 99.63% F4_L1 99.63% F3_L7 98.52% F2_L3 95.56% F3_L6 83.70%

F4_L1 99.63% YA_L4 99.63% F2_L3 97.41% F4_L2 95.56% F2_L4 82.96%

YA_L4 99.63% F3_L8 98.89% F4 95.93% F3_L8 93.70% F4 78.89%

F2_L3 99.26% F4 98.52% F3_L8 95.56% F3_L7 90.37% F4_L2 71.48%

F4_L3 99.26% F4_L2 98.15% YA_L4 95.19% F4_L4 90.00% F6 69.63%

h = 12

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2_L10 100.00% F2_L10 100.00% F2_L11 100.00% F2_L11 100.00%

F2_L10 100.00% F2_L11 100.00% F2_L11 100.00% F3 100.00% F3 100.00%

F2_L11 100.00% F3 100.00% F3 100.00% F3_L1 100.00% F3_L1 100.00%

F3 100.00% F3_L1 100.00% F3_L1 100.00% F3_L11 100.00% F3_L11 100.00%

F3_L1 100.00% F3_L11 100.00% F3_L11 100.00% F3_L2 100.00% F3_L2 100.00%

F3_L11 100.00% F3_L2 100.00% F3_L2 100.00% YA_L1 100.00% YA_L1 100.00%

F3_L2 100.00% F3_L9 100.00% YA_L1 100.00% F2_L10 99.63% F3_L10 99.63%

YA_L1 100.00% YA_L1 100.00% F3_L10 98.88% F3_L10 99.25% F2_L10 94.76%

YA_L11 100.00% F4_L1 98.88% F3_L9 97.38% F3_L9 94.38% F3_L9 90.26%

F4_L1 99.25% F3_L10 98.50% F2 96.63% F4_L1 91.76% F8 89.51%

F4_L2 99.25% YA_L11 98.13% F4 96.63% F4 87.64% F4_L1 86.89%

F3_L10 98.50% F2 97.38% F8_L11 95.13% F8_L6 87.64% F8_L6 86.89%

F3_L9 98.50% F4_L2 97.38% F4_L1 94.38% F8 86.14% CC6_L1 81.27%

F4 97.75% F4 96.63% F8 92.13% CC6_L1 84.64% F4 79.03%

F8 96.63% F8 94.38% F8_L6 89.89% F2 82.77% F8_L3 77.15%

Source: own elaboration:
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The results of regional housing returns are presented in Appendix B. While a

definitive pattern is not observed it is evident that climate change variables bear

significance, albeit in a nuanced manner. Notably, for the Midwest (YM) region, climate

change variables seem to have some importance, particularly at h = 1, 3, and 12.

Similarly, for the Northeast region, climate change variables exhibit relevance at h = 3, 6,

and 12.

Examining the frequency of variable selection, certain climate change factors

consistently emerge with selection frequencies surpassing 80%. This recurring selection,

despite models containing these factors not consistently demonstrating substantial

improvements in forecasting accuracy, might be an indicator of the importance of such

factors.

As examined by (Sussman et al., 2014) the impact of climate change variables on

housing prices varies depending on different assumptions and the regional-level effects

may not be as evident as those observed in a broader context. Nevertheless, our results

from variable selection for certain time horizons indicate that these variables still exhibit

some degree of relevance, as occurs with the results by these authors.
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4 CONCLUSION

This paper intended to shed light on the intricate relationship between climate

change and housing prices within the United States. The study underscores the

profound and multifaceted influence of climate change factors on housing prices,

revealing nuanced patterns in different regions and time horizons.

The findings demonstrate that climate change variables, particularly climate

change volatility factors, can significantly impact short-term housing price predictions.

However, the influence of these variables diminishes for longer forecasting horizons.

This suggests that while climate-related factors play a role in shaping housing prices,

other economic and financial factors may retain greater importance in longer-term

predictions.

Moreover, the analysis of variable selection frequency highlights the relevance of

certain climate change variables in predicting housing returns, especially those related

to Cooling Degree Days and Heating Degree Days. While not always leading to

substantial improvements in forecasting accuracy, the consistent selection of these

variables underscores their potential influence.

Overall, this research contributes to a deeper understanding of how climate

change influences housing prices, providing critical insights for policymakers, real estate

professionals, urban planners, and investors. It underscores the importance of

integrating climate change considerations into urban planning and policy formulation,

highlighting the need for climate-resilient infrastructure to mitigate the adverse effects on

housing markets. This study also points towards the importance of climate mitigation

and adaptation strategies in the real estate sector, promoting measures that reduce

carbon footprints and enhance community resilience. Furthermore, it suggests that real

estate investors and professionals can use these insights for better risk assessment and

management, particularly by considering the short-term impacts of climate change

variables like Cooling Degree Days and Heating Degree Days on housing prices.

In the realm of investment strategies and market forecasting, the findings suggest

that while climate change variables have a significant impact on short-term housing price
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predictions, their influence wanes over longer forecasting horizons. This indicates the

necessity for a broader consideration of economic and financial factors in long-term

investment decisions, while still accounting for the potential future scenarios of climate

change. Moreover, the study enhances forecasting models by demonstrating the

potential of machine learning approaches in capturing the complex dynamics between

climate change and housing prices. Lastly, these insights can help inform public

discourse and awareness about the interconnectedness of climate change, urban

development, and economic stability, driving collective action and support for

sustainable and resilient housing market policies.

To advance our understanding of this issue through empirical evidence, a

recommendation would be adopting a similar methodology across different countries,

with a specific emphasis on regions where climate change poses a more acute threat.

This targeted approach may encompass island nations and rapidly growing economies

that are especially vulnerable to climate-related challenges.

Furthermore, a crucial improvement worth exploring involves analyzing how the

relevance and impact of climate change variables evolve in the aftermath of extreme

weather events like floods, hurricanes, and droughts. This analysis can provide valuable

insights into the dynamic relationship between climate change and housing markets,

shedding light on the immediate and long-term effects of such events on property values

and market dynamics.
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APPENDIX A - DEPENDENT VARIABLES

Figure 1 – Macroeconomic and Financial Factors

Source: own elaboration based on data from Ludvigson and Ng. (2009) (1960-2021).
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Figure 2 – Macroeconomic and Financial Uncertainties Factors

Source: own elaboration based on data from Ludvigson et al. (2021) (1960-2021)
.
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Figure 3 – Non-macroeconomic and Non-financial Uncertainties Factors

Source: own elaboration based on data from Ludvigson et al. (2021) (1960-2021).

Figure 4 – Climate Change Factors

Source: own elaboration based on data from the National Center for Environmental Information (1960-2021).
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Figure 5 – Climate Change Factors Volatility

Source: own elaboration based on data from the National Center for Environmental Information (1960-2021).
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APPENDIX B - REGIONAL RESULTS

Table 1 - Statistics on the predictive power for the real housing returns - Midwest (YM)
h = 1

Model RMSE MAE GW Test MSE GW Test MAE MCS Rank M
MCS Rank

R

Model 1 0.5174 0.3953 1 1

Model 2 0.5850 0.4489 0.0002* 0.0002* E E

Model 3 0.5964 0.4585 0.0509 0.0512* E E

Model 4 0.6279 0.4806 0.1273 0.1270 E E

Model 5 0.6583 0.5099 0.0351* 0.0353* E E

Model 6 0.6661 0.5165 0.0129* 0.0130* E E

h = 3

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M
MCS Rank

R

Model 1 0.7393 0.5705 1 1

Model 2 0.8321 0.6420 0.0017* 0.0017* E E

Model 3 0.8509 0.6683 0.1342 0.1377 E E

Model 4 0.8828 0.6974 0.2853 0.2869 E E

Model 5 0.9600 0.7717 0.1481 0.1480 E E

Model 6 1.0380 0.8244 0.1179 0.1194 E E

h = 6

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M
MCS Rank

R

Model 1 0.9348 0.7428 1 1

Model 2 1.0095 0.8007 0.0014* 0.0015* E E

Model 3 1.0293 0.8177 0.0145* 0.0155* E E

Model 4 1.0626 0.8354 0.0194* 0.0203* E E

Model 5 1.1345 0.9115 0.0206* 0.0214* E E

Model 6 1.2329 0.9773 0.0412* 0.0437* E E

h = 12

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M
MCS Rank

R

Model 1 1.1144 0.8298 1 1

Model 2 1.2120 0.9297 0.1065 0.1140 E E

Model 3 1.2290 0.9434 0.4062 0.4412 E E

Model 4 1.2745 0.9785 0.0558 0.0599 E E
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Model 5 1.4100 1.0855 0.0043* 0.0046* E E

Model 6 1.4437 1.1188 0.1966 0.2069 E E

Source: own elaboration
Notes: * Statistical difference at 5%
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Table 2 - Statistics on the predictive power for the real housing returns - Northeast (YN)
h = 1

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.6947 0.5038 1 1

Model 2 0.7189 0.5286 0.0352* 0.0339* 2 2

Model 3 0.7557 0.5494 0.0013* 0.0013* 4 4

Model 4 0.7856 0.5615 0.1344 0.1261 5 5

Model 5 0.7728 0.5466 0.2729 0.2633 3 3

Model 6 0.8154 0.5772 0.6171 0.6080 6 6

h = 3

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.9493 0.7030 1 1

Model 2 0.9598 0.7228 0.0134* 0.013* 2 2

Model 3 1.0002 0.7499 0.0013* 0.0012* 3 3

Model 4 1.0465 0.7645 0.0221* 0.019* E E

Model 5 1.1157 0.8236 0.1042 0.0931 E E

Model 6 1.2765 0.9341 0.3917 0.3695 E E

h = 6

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 1.0997 0.8368 1 1

Model 2 1.1739 0.8965 0.3012 0.2912 2 2

Model 3 1.2279 0.9262 0.028* 0.0247* 4 3

Model 4 1.2872 0.9548 0.2138 0.1796 6 4

Model 5 1.2342 0.9204 0.9377 0.9122 3 5

Model 6 1.2851 0.9661 0.4999 0.4821 5 6

h = 12

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 1.2368 0.9591 2 2

Model 2 1.2373 0.9503 0.0498* 0.0506 1 1

Model 3 1.2829 0.9865 0.0122* 0.013* 3 3

Model 4 1.2964 0.9962 0.1821 0.1517 4 4

Model 5 1.3187 1.0404 0.2999 0.2900 E E

Model 6 1.3426 1.0646 0.0954 0.1030 E E

Source: own elaboration
Notes: * Statistical difference at 5%
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Table 3 - Statistics on the predictive power for the real housing returns - South (YS)
h = 1

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.5055 0.3898 2 1

Model 2 0.5431 0.4016 0.8982 0.8901 1 2

Model 3 0.5628 0.4114 0.0336* 0.0326* 3 4

Model 4 0.6067 0.4327 0.0660 0.0628 4 3

Model 5 0.6142 0.4341 0.0123* 0.0118* E E

Model 6 0.6227 0.4381 0.0258* 0.0251* E E

h = 3

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.6319 0.5009 1 1

Model 2 0.7307 0.5534 0.8841 0.9058 E E

Model 3 0.7448 0.5720 0.0294* 0.0274* E E

Model 4 0.7995 0.6020 0.0249* 0.0214* E E

Model 5 0.8175 0.6262 0.0043* 0.0037* E E

Model 6 0.8408 0.6295 0.0019* 0.0017* E E

h = 6

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.8035 0.6486 1 1

Model 2 0.9407 0.7275 0.7062 0.7422 E E

Model 3 0.9625 0.7423 0.0354* 0.0315* E E

Model 4 1.0394 0.7718 0.0929 0.0773 E E

Model 5 1.0501 0.8020 0.0407* 0.0344* E E

Model 6 1.0909 0.8311 0.2263 0.2055 E E

h = 12

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.9605 0.7547 1 1

Model 2 1.0433 0.8205 0.7404 0.7621 2 2

Model 3 1.0587 0.8394 0.0796 0.0735 4 3

Model 4 1.1341 0.8848 0.0689 0.0578 E E

Model 5 1.0830 0.8479 0.0189* 0.0154* 3 4

Model 6 1.0902 0.8649 0.0354* 0.0302* E E

Source: own elaboration
Notes: * Statistical difference at 5%
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Table 4 - Statistics on the predictive power for the real housing returns - West (YW)

h = 1

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 1.9742 1.5002 5 4

Model 2 1.8697 1.3172 0.8355 0.8077 2 1

Model 3 1.8691 1.3250 0.6815 0.6502 1 2

Model 4 2.0024 1.3743 0.9015 0.9473 3 3

Model 5 2.0360 1.4357 0.8275 0.8664 4 5

Model 6 2.0851 1.5205 0.5948 0.6153 E E

h = 3

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 0.9493 0.7030 1 1

Model 2 0.9598 0.7228 0.0134* 0.013* 2 2

Model 3 1.0002 0.7499 0.0013* 0.0012* 3 3

Model 4 1.0465 0.7645 0.0221* 0.019* E E

Model 5 1.1157 0.8236 0.1042 0.0931 E E

Model 6 1.2765 0.9341 0.3917 0.3695 E E

h = 6

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 1.0997 0.8368 1 1

Model 2 1.1739 0.8965 0.3012 0.2912 2 2

Model 3 1.2279 0.9262 0.028* 0.0247* 4 3

Model 4 1.2872 0.9548 0.2138 0.1796 6 4

Model 5 1.2342 0.9204 0.9377 0.9122 3 5

Model 6 1.2851 0.9661 0.4999 0.4821 5 6

h = 12

Model RMSE MAE GW Test MSE GW Test Mae MCS Rank M MCS Rank R

Model 1 3.5085 2.7329 E E

Model 2 2.9756 2.2056 0.1591 0.1744 2 2

Model 3 2.9306 2.2041 0.0419* 0.0526 1 1

Model 4 3.0387 2.2526 0.1849 0.2991 3 3

Model 5 3.0976 2.3876 0.2268 0.3338 4 4

Model 6 3.1078 2.3996 0.1885 0.2719 5 5

Source: own elaboration
Notes: * Statistical difference at 5%
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Table 5 - Step-wise boosting variable selection rate for the real housing returns - Midwest (YM)

h = 1

Model 2 Model 3 Model 4 Model 5 Model 6

YM_L1 100.00% YM_L1 100.00% YM_L1 100.00% YM_L1 100.00% YM_L1 100.00%

YM_L2 100.00% YM_L2 100.00% YM_L2 100.00% YM_L2 100.00% YM_L2 100.00%

YM_L3 100.00% YM_L3 100.00% YM_L3 100.00% YM_L3 100.00% YM_L3 98.90%

YM_L7 100.00% F8_L2 98.53% YM_L5 98.53% YM_L9 87.87% YM_L7 94.49%

F8_L2 97.79% YM_L5 98.53% F8_L2 97.06% YM_L5 86.76% YM_L9 87.50%

YM_L5 97.43% YM_L7 91.18% YM_L7 90.81% YM_L7 85.66% F3 84.19%

YM_L6 94.85% F7_L9 90.81% YM_L9 88.60% F8_L2 84.93% F8_L2 80.88%

YM_L9 93.38% YM_L9 88.60% F7_L9 87.13% F3 84.56% YM_L5 74.63%

YM_L4 93.01% F4_L6 85.29% F3 85.29% F8_L7 70.96% F8_L7 68.38%

F7_L9 91.18% F3 84.56% F2_L11 78.31% YM_L10 66.91% YM_L10 67.28%

F4_L4 90.07% F7_L1 82.35% F8_L7 77.94% CC7_L5 66.18% CC5_L5 58.46%

F2_L3 88.60% F2_L3 80.88% F7_L1 77.57% CC5_L5 65.81% YM_L4 56.99%

F7_L1 87.87% YM_L4 80.51% F2_L3 76.47% CC5_L6 64.34% CC5_L6 53.68%

F2_L11 86.03% YM_L6 79.41% F4_L4 75.37% CC5_L9 64.34% CC7_L5 52.57%

F7_L7 84.56% F4_L4 78.68% YM_L4 75.37% CC4_L8 63.97% CC4_L8 50.74%

h = 3

Model 2 Model 3 Model 4 Model 5 Model 6

YM_L1 100.00% YM_L1 100.00% YM_L1 100.00% YM_L1 100.00% YM_L1 100.00%

YM_L2 100.00% YM_L2 100.00% YM_L2 100.00% YM_L2 100.00% YM_L2 100.00%

YM_L3 100.00% YM_L3 100.00% YM_L3 100.00% YM_L4 100.00% YM_L4 100.00%

YM_L4 100.00% YM_L4 100.00% YM_L4 100.00% YM_L5 100.00% YM_L8 98.89%

YM_L5 100.00% YM_L5 100.00% YM_L5 100.00% YM_L8 98.52% YM_L5 97.79%

YM_L7 100.00% YM_L7 100.00% YM_L7 100.00% YM_L9 98.15% YM_L9 85.61%

YM_L9 100.00% YM_L9 100.00% YM_L9 100.00% YM_L3 97.05% F8 72.69%

YM_L8 98.89% F8 98.52% YM_L8 98.89% YM_L7 96.31% CC5_L6 70.85%
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F8 98.52% YM_L8 97.79% F8 98.15% CC5_L6 86.72% F8_L8 70.85%

F5 89.30% F5 90.04% F5 90.04% YM_L6 86.35% CC4_L9 70.11%

F3_L10 87.82% YM_L6 89.67% YM_L6 90.04% CC4_L9 84.87% CC7_L5 66.05%

F8_L8 87.45% F3_L10 88.19% F3_L10 88.19% CC7_L5 84.87% F3_L1 63.84%

F4 86.72% F8_L8 85.24% F4 82.29% F8 81.18% YM_L6 63.84%

F4_L4 86.35% F4 81.55% F8_L8 82.29% F8_L8 77.86% YM_L3 60.89%

F8_L5 78.60% F8_L5 78.97% F8_L5 78.60% CC5_L5 76.38% F5 60.15%

h = 6

Model 2 Model 3 Model 4 Model 5 Model 6

YM_L1 100.00% YM_L1 100.00% YM_L1 100.00% YM_L1 100.00% YM_L1 100.00%

YM_L2 100.00% YM_L2 100.00% YM_L2 100.00% YM_L4 100.00% YM_L4 100.00%

YM_L3 100.00% YM_L3 100.00% YM_L3 100.00% YM_L6 100.00% YM_L8 100.00%

YM_L4 100.00% YM_L4 100.00% YM_L4 100.00% YM_L8 100.00% YM_L6 99.26%

YM_L5 100.00% YM_L5 100.00% YM_L5 100.00% YM_L2 99.63% YM_L2 95.56%

YM_L8 100.00% YM_L8 100.00% YM_L8 100.00% YM_L5 84.44% F5 75.19%

YM_L6 98.15% YM_L6 99.63% YM_L6 99.26% F5 83.70% F8_L3 73.70%

F5 93.33% F5 94.07% F5 94.07% YM_L3 82.59% F8_L5 72.59%

YM_L7 92.59% YM_L7 91.85% YM_L7 87.41% F8_L5 80.74% F8_L10 71.11%

F2_L4 88.89% F3_L2 85.19% F1_L3 82.96% CC5_L9 78.52% F8_L11 71.11%

F8_L3 86.67% F1_L3 84.44% F8_L5 82.96% F8_L3 76.67% F3 67.41%

F3_L2 85.93% F8_L3 83.70% F8_L3 81.11% F8_L10 74.07% F3_L1 60.00%

F8_L5 84.44% F2_L4 83.33% F3_L2 80.00%

CC5_L1
0 73.70% CC4_L3 59.63%

F8_L10 82.22% F8_L5 83.33% F3_L4 79.26% F3 72.96% F8_L8 58.89%

F8_L2 81.48% F8_L8 78.52% F4_L10 77.41% F8_L11 72.22%

CCV10_
L2 57.04%

h = 12

Model 2 Model 3 Model 4 Model 5 Model 6

YM_L1 100.00% YM_L1 100.00% YM_L1 100.00% YM_L1 100.00% YM_L1 100.00%

YM_L11 100.00% YM_L11 100.00% YM_L11 100.00% YM_L4 100.00% YM_L4 100.00%
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YM_L2 100.00% YM_L2 100.00% YM_L2 100.00% F3 82.40% F3 76.40%

YM_L4 100.00% YM_L4 100.00% YM_L4 100.00% YM_L11 82.40% F8_L3 75.66%

F8_L2 95.88% F8_L8 94.76% F8_L8 90.26% YM_L2 81.65% YM_L11 71.54%

F8_L8 95.51% F8_L2 92.51% YM_L9 87.64% F8_L3 74.91% F8_L2 65.92%

F7_L9 88.01% F7_L9 89.51% F8_L2 86.89% F6_L7 70.79%

CC6_L1
0 65.54%

YM_L9 86.14% F4 89.14% F5 85.39% F8_L2 70.79% CCV7 64.42%

F3 83.52% F4_L10 87.64% F3 84.27% CC2_L6 70.04% F6_L7 59.55%

F5 83.15% F5 86.52% F7_L9 82.77%

CC6_L1
0 67.79% F5 57.68%

F4_L10 82.40% YM_L9 85.39% F4_L10 81.65% F7_L10 67.79% F8_L8 56.18%

F7_L10 81.65% F3 83.52% F8_L3 76.78% F8_L8 64.42% CC4_L3 53.93%

F2_L3 79.78% F7_L10 81.27% F8_L5 74.53% CC2_L7 62.92%

CCV3_L
10 53.93%

F4 77.90% F2_L3 78.65% F4 73.78% F7_L9 62.92% CC4_L7 51.69%

F7_L8 77.90% F8_L3 74.91% F3_L1 72.66% CC5_L7 62.55% F8_L7 50.94%

Source: own elaboration
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Table 6 - Step-wise boosting variable selection rate for the real housing returns - Northeast (YN)

h = 1

Model 2 Model 3 Model 4 Model 5 Model 6

F3 100.00% F2 100.00% F2 100.00% F2 100.00% YN_L1 100.00%

YN_L1 100.00% F3 100.00% F3 100.00% YN_L1 100.00% YN_L4 100.00%

YN_L2 100.00% YN_L1 100.00% YN_L1 100.00% YN_L4 100.00% YN_L6 100.00%

YN_L4 100.00% YN_L2 100.00% YN_L2 100.00% YN_L6 100.00% F3 98.16%

YN_L6 100.00% YN_L4 100.00% YN_L4 100.00% F3 99.63% F2 97.43%

YN_L9 100.00% YN_L6 100.00% YN_L6 100.00% YN_L2 93.38% F3_L2 94.12%

YN_L3 98.90% YN_L9 98.90% F3_L2 97.06% F3_L2 91.91% YN_L9 83.82%

F2 98.53% YN_L3 97.06% YN_L9 95.96% YN_L9 91.18% YN_L2 61.76%

F3_L2 97.79% F3_L2 96.32% YN_L3 95.22% F8_L9 72.06% F4_L4 56.25%

F8_L9 95.59% F8_L9 94.49% F8_L2 83.82% YN_L3 70.59% CCV8 55.88%

F8_L2 88.24% F8_L2 86.40% F8_L9 83.09% CC6_L1 68.01% CC4_L2 54.04%

F7_L7 81.99% F7_L7 81.99% F7_L7 75.37% F2_L2 67.28% YN_L10 51.10%

F3_L1 80.51% F8_L1 77.21% F8_L1 73.16% F8_L2 65.07% F3_L1 44.49%

F8_L1 76.10% F4_L1 73.90% F8_L7 69.49% F7_L7 62.13% F2_L1 43.01%

F4_L1 73.53% F8_L7 71.69% F4_L4 65.44% CC4_L2 61.40% F8_L9 43.01%

h = 3

Model 2 Model 3 Model 4 Model 5 Model 6

YN_L1 100.00% YN_L1 100.00% YN_L1 100.00% YN_L1 100.00% YN_L1 100.00%

YN_L2 100.00% YN_L2 100.00% YN_L2 100.00% YN_L2 100.00% YN_L5 100.00%

YN_L4 100.00% YN_L5 100.00% YN_L5 100.00% YN_L5 100.00% F2_L1 98.89%

YN_L5 100.00% YN_L4 99.63% YN_L4 98.52% F2_L1 99.63% YN_L2 96.31%

F8_L2 98.15% F8_L2 98.89% F2_L1 98.15% YN_L9 98.15% YN_L9 96.31%

F2_L1 95.94% F2_L1 98.52% F8_L2 97.42% F8_L2 94.83% F8_L9 91.88%

YN_L9 93.36% F3_L5 93.36% F3_L5 94.83% F4_L8 94.46%

CCV10_
L1 84.50%
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F2_L3 90.04% YN_L9 91.14% YN_L9 92.62%

CC10_L
2 87.08%

CCV10_
L11 80.44%

F3_L5 88.19% F4_L8 85.61% F2_L3 85.98% F8_L8 84.50% CC4 77.86%

F8_L8 87.08% F8_L8 85.61% F4_L8 82.66% F2_L3 82.66% F8_L8 77.86%

F3_L3 81.92% F2_L3 84.87% F8_L3 80.44% CC6_L2 80.44% F2_L3 74.54%

F8_L1 79.70% F2 81.18% F8_L8 80.44% CC4 78.97%

CCV6_L
11 73.06%

F2 77.86% F8_L1 78.23% F3_L1 76.01% F8_L3 78.97% CC5_L9 72.32%

F4_L8 76.75% F8_L3 77.12% F2 75.65% YN_L4 77.49% F8_L2 72.32%

F3_L1 74.54% F3_L1 76.38% F8_L9 71.59% CC5_L9 74.17%

CC10_L
2 70.85%

h = 6

Model 2 Model 3 Model 4 Model 5 Model 6

YN_L1 100.00% F8_L11 100.00% YN_L1 100.00% YN_L1 100.00% YN_L1 100.00%

F8_L11 99.63% YN_L1 100.00% F8_L11 99.26% F3_L5 97.41% F8_L11 96.30%

F3_L5 98.89% F3_L5 98.89% F3_L5 98.15% F8_L11 95.93% F2_L1 89.63%

F2_L1 88.15% F2_L1 89.26% F2_L1 87.78% F2_L7 79.63% F3_L5 89.63%

F2_L7 80.74% F2_L7 85.93% F2_L7 85.19% F2_L1 77.41%

CC10_L
8 74.44%

F8_L10 79.26% F8_L10 80.37% F3_L4 73.33%

CC10_L
8 73.70% CCV8 73.33%

F3_L4 78.89% F3_L4 76.67% F6 69.63% F4_L8 68.15% F2_L7 71.85%

F6 73.33% F2 75.19% F2 65.19% F3_L4 59.26%

CCV10_
L11 61.85%

F6_L1 72.96% F6 73.33% F4_L8 65.19% CC6_L2 58.15% CC6_L2 61.48%

F2_L6 71.48% F8_L2 70.37% F6_L1 61.85% F6 57.78% F8 54.44%

F8_L2 71.48% F4_L8 67.04% F8 61.11%

CC5_L1
0 53.70% F4_L8 53.70%

F2 68.52% F6_L1 64.81% F6_L11 60.00% F8 52.22% F6 53.70%

F6_L11 65.56% F6_L11 63.33% F8_L10 60.00% F6_L1 51.85% F8_L10 53.33%
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F4_L8 62.59% F2_L6 62.59% F8_L2 58.52% F8_L10 51.85%

CCV8_L
11 51.48%

F8 58.52% F8 60.74%

NMEU1_

L10 54.44% F4_L7 50.00% F3_L4 48.52%

h = 12

Model 2 Model 3 Model 4 Model 5 Model 6

YN_L1 100.00% YN_L1 100.00% YN_L1 100.00% YN_L1 100.00% YN_L1 100.00%

YN_L11 90.26% F3_L11 88.76% F3_L11 88.39% F3_L11 90.26% CCV8 95.13%

F8_L2 88.01% YN_L11 86.89% F6_L11 85.39% F6_L11 83.52% F3_L11 90.26%

F6_L11 86.89% F6_L6 85.39% YN_L11 83.90%

CC10_L
2 81.27% CCV10 85.77%

F6_L6 84.27% F6_L7 85.02% F3_L1 80.52% F6_L7 79.03% F6_L11 79.03%

F6_L7 82.40% F6_L11 83.52% F6_L7 79.78% F3_L1 78.65% F3_L1 77.15%

F3_L11 81.65% F8_L2 83.15% F6_L6 78.65% F6_L6 78.28% F6_L7 73.03%

F3_L1 80.52% F7_L7 82.02% F8_L2 78.28% FEU12 69.66%

CCV6_L
10 71.54%

F7_L7 71.54% F3_L1 80.52% F7_L7 73.03% CC4 67.79% FEU12 68.91%

F3 65.17% F3_L10 70.04% FEU12 69.29% F7_L7 65.92% CC4 67.79%

F8_L8 64.79% FEU12 69.29% F3_L10 67.04% F8_L2 64.79% CC5_L9 66.67%

F6_L10 58.05% F3 64.42% F3 65.17% CC5_L9 62.17%

CC10_L
2 66.29%

F8_L10 58.05% F4_L4 54.31% F4_L4 53.93% YN_L11 61.80% F6_L6 65.92%

F8_L1 57.68% F2 52.81% F6_L10 53.93% CC2_L3 60.67%

CCV7_L
7 62.17%

F3_L10 57.30% F8_L10 52.81% F8_L7 49.44% F3 58.80% F7_L7 61.42%

Source: own elaboration
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Table 7 - Step-wise boosting variable selection rate for the real housing returns - South (YS)

h = 1

Model 2 Model 3 Model 4 Model 5 Model 6

F3 100.00% F3 100.00% F3 100.00% F8 100.00% YS_L1 100.00%

F4_L6 100.00% F4_L6 100.00% F4_L6 100.00% YS_L1 100.00% YS_L2 100.00%

F6_L11 100.00% F8 100.00% F8 100.00% YS_L2 100.00% YS_L3 100.00%

F8 100.00% YS_L1 100.00% YS_L1 100.00% YS_L3 100.00% F3 99.63%

YS_L1 100.00% YS_L2 100.00% YS_L2 100.00% F3 99.63% F8 99.63%

YS_L2 100.00% YS_L3 100.00% YS_L3 100.00% YS_L6 98.53% F2 97.79%

YS_L3 100.00% YS_L4 100.00% YS_L6 100.00% F2 98.16% YS_L6 96.32%

YS_L4 100.00% YS_L6 100.00% F2 98.53% YS_L4 96.32% YS_L4 94.12%

YS_L6 100.00% F2 99.63% F7 98.53% F4_L6 91.18% F7 79.41%

F2 99.63% F7 98.90% YS_L4 98.53% F7 82.35% F4_L1 72.06%

F7 99.26% YS_L11 95.96% YS_L11 94.12%

CC10_L
6 78.31%

CCV7_L
11 70.59%

F2_L7 97.43% F2_L5 95.59% F7_L8 93.01% F6_L11 77.94% F4_L6 62.13%

YS_L11 96.69% F6_L11 94.85% F6_L11 88.24% F7_L8 77.21% F5_L8 61.03%

F7_L8 94.85% F7_L8 93.38% F7_L3 84.56% F4_L1 75.00% F6_L11 61.03%

F2_L5 91.91% F2_L7 92.28% F2_L7 84.19% F7_L3 75.00% F5_L5 60.66%

h = 3

Model 2 Model 3 Model 4 Model 5 Model 6

F3_L1 100.00% F3_L1 100.00% F3_L1 100.00% F8 100.00% YS_L1 100.00%

F8 100.00% F8 100.00% F8 100.00% YS_L1 100.00% YS_L2 100.00%

YS_L1 100.00% YS_L1 100.00% YS_L1 100.00% YS_L2 100.00% YS_L4 100.00%

YS_L2 100.00% YS_L2 100.00% YS_L2 100.00% YS_L4 100.00% F8 99.26%

YS_L3 100.00% YS_L3 100.00% YS_L4 100.00% F3_L1 99.63% F3_L1 98.52%

YS_L4 100.00% YS_L4 100.00% YS_L3 99.63%

CC10_L
7 97.05% F8_L1 90.41%
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YS_L5 100.00% YS_L5 100.00% YS_L5 99.63% F8_L1 91.14%

CC10_L
7 85.24%

F3 92.99% F8_L1 95.94% F8_L1 92.99% F3_L2 87.82% F3_L2 83.76%

F7 92.99% F2_L1 89.67% F3_L2 86.35% F4_L2 84.13% F2_L2 75.28%

F8_L1 87.45% F3 88.93% F3 85.98% F3 79.34% F3 75.28%

F2_L2 85.24% F2_L2 84.13% F2_L5 83.03% F2_L2 78.60% F4_L2 74.54%

F6_L10 83.76% F7_L11 83.76% YS_L7 83.03% F2_L5 75.28% NFEU1 68.63%

YS_L7 83.39% F4_L1 81.55% F2_L2 80.07% F2_L1 70.11% F2_L1 67.53%

F3_L2 82.66% YS_L7 81.55% F4_L1 79.34% F7_L9 67.53% F5_L10 67.53%

F2_L1 81.92% F3_L2 81.18% F2_L1 77.86% F5_L10 66.79%

CCV10_
L10 65.68%

h = 6

Model 2 Model 3 Model 4 Model 5 Model 6

F3_L1 100.00% YS_L1 100.00% YS_L1 100.00% YS_L1 100.00% YS_L1 100.00%

YS_L1 100.00% YS_L3 100.00% YS_L3 100.00% YS_L3 99.63% YS_L3 99.26%

YS_L2 100.00% YS_L4 100.00% F3_L1 99.63% F3_L1 97.04% F8 98.89%

YS_L3 100.00% F3_L1 99.63% YS_L4 99.63% F2_L5 96.67% F3_L1 98.52%

YS_L4 100.00% F8 99.63% F8 98.89% F8 96.67% F2_L5 95.93%

YS_L5 100.00% YS_L2 98.89% F8_L6 98.15% F8_L1 96.30% F3_L5 80.74%

YS_L8 100.00% YS_L5 98.89% F8_L1 97.41% F3_L5 93.70% F8_L1 76.67%

F8 99.63% F8_L1 97.78% F2_L5 97.04% F3 83.33% F8_L6 73.33%

F8_L1 98.89% F2_L5 97.04% F3 91.48% F3_L4 82.59% F2_L1 67.04%

F3_L4 97.78% F3_L4 95.56% F3_L4 91.48% F8_L6 80.74% F3 63.70%

F3_L5 97.41% F3_L5 94.44% YS_L5 91.11% YS_L6 80.37% YS_L8 61.48%

F2_L5 97.04% F8_L6 94.44% F8_L9 90.37% YS_L4 79.63% F7_L9 55.93%

F8_L6 96.30% F3 92.96% YS_L2 90.37% F8_L9 72.96%

CCV4_L
5 55.19%

F3 94.44% F2_L1 91.11% F3_L5 89.63% CC3_L9 71.85% F3_L4 55.19%

F7_L4 89.26% F8_L9 88.15% YS_L6 88.52% F5_L10 68.52%

CCV7_L
11 54.44%
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h = 12

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2 100.00% YS_L1 100.00% YS_L1 100.00% YS_L1 100.00%

YS_L1 100.00% YS_L1 100.00% F2 99.63% F3_L11 94.38% F3_L11 92.88%

F2_L10 99.63% F2_L10 98.88% F2_L10 99.25% F2_L10 93.26% F3_L1 91.39%

F3_L11 99.25% F8 98.88% F2_L11 98.50% F3_L1 92.51% F3 90.64%

F8 98.88% F3_L11 97.75% F3_L1 95.51% F3 89.89% CC5_L11 83.52%

F3_L1 97.00% F3_L1 96.63% F3_L11 95.51% CC5_L11 89.51% F8 83.52%

F2_L11 95.51% F3 94.01% F3 94.01% F8 85.39% F2_L10 79.03%

F3 94.76% F2_L11 90.26% F8 93.63%

CC10_L
6 78.28%

CC10_L
6 71.16%

F5_L9 92.13% F8_L6 80.15% F8_L6 76.03% CC5 77.53% F2 64.04%

F8_L5 80.52% F8_L5 76.40% F6_L7 70.79% F2 70.41% F2_L11 64.04%

F8_L6 79.78% F7 73.03% F8_L5 70.41% F2_L11 69.29% NFEU1 63.30%

YS_L11 79.40% YS_L11 72.28% F5_L9 69.66% NFEU1 64.79% F5_L9 60.67%

F7 77.53% F5_L9 70.79% YS_L11 69.29% F5_L9 63.67% F6 60.67%

F3_L10 75.28% F6_L7 70.79% YS_L4 69.29% F6_L9 63.30% YS_L11 55.81%

F6_L9 74.53% F8_L4 67.42% F7 68.16% CC6_L1 62.17% CC6_L1 55.43%

Source: own elaboration
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Table 8 - Step-wise boosting variable selection rate for the real housing returns - West (YW)

h = 1

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2 100.00% F2 100.00% F2 100.00% F2 100.00%

F2_L3 100.00% F3 100.00% F3 100.00% F3 100.00% F3 100.00%

F3 100.00% F3_L1 100.00% F4_L1 100.00% F4_L1 100.00% YW_L1 100.00%

F3_L1 100.00% F4_L1 100.00% F6_L11 100.00% YW_L1 100.00% YW_L2 100.00%

F3_L2 100.00% F6_L11 100.00% YW_L1 100.00% YW_L2 100.00% YW_L3 100.00%

F4_L1 100.00% YW_L1 100.00% YW_L2 100.00% YW_L3 100.00% YW_L4 100.00%

F6_L11 100.00% YW_L2 100.00% YW_L3 100.00% YW_L4 100.00% F3_L1 95.59%

F7_L5 100.00% YW_L3 100.00% YW_L4 100.00% F2_L3 99.63% F2_L3 92.28%

YW_L1 100.00% YW_L4 100.00% F2_L3 99.63% F6_L11 97.79% F4_L1 91.91%

YW_L2 100.00% F2_L3 99.63% F3_L1 99.63% F3_L1 97.43% F7_L5 88.97%

YW_L3 100.00% F7_L5 99.63% F7_L5 99.63% F3_L4 93.01%

CCV2_L
8 75.37%

YW_L4 100.00% F3_L2 99.26% F8_L2 99.63% F8_L2 93.01% F6_L5 74.26%

F8_L2 99.63% F8_L2 98.53% F3_L2 97.79% F3_L2 91.54% F7_L7 72.79%

F6_L5 95.22% F6_L5 97.06% F6_L5 94.12% F7_L5 91.54% F6_L11 71.32%

F2_L2 94.49% F2_L2 94.12% F2_L2 92.65% F6_L5 86.40% YW_L6 69.85%

h = 3

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2 100.00% F2_L1 100.00% F2_L1 100.00% F2_L1 100.00%

F2_L1 100.00% F2_L1 100.00% F3_L1 100.00% F3_L1 100.00% F3_L1 100.00%

F3 100.00% F3 100.00% F3_L2 100.00% F3_L2 100.00% F3_L2 100.00%

F3_L1 100.00% F3_L1 100.00% YW_L1 100.00% YW_L1 100.00% YW_L1 100.00%

F3_L2 100.00% F3_L2 100.00% YW_L2 100.00% YW_L4 100.00% YW_L4 100.00%

YW_L1 100.00% YW_L1 100.00% YW_L3 100.00% F3 98.52% F2_L2 96.31%

YW_L2 100.00% YW_L2 100.00% YW_L4 100.00% YW_L2 97.42%

CCV2_L
9 84.50%
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YW_L3 100.00% YW_L4 100.00% F2 99.63% F2_L2 96.68% YW_L2 81.55%

YW_L4 100.00% YW_L3 99.63% F3 99.63% CC6 95.20% F3 78.23%

YW_L5 100.00% F7_L5 98.52% F7_L5 99.63% F2_L11 91.88% CC6 77.86%

F7_L5 98.15% YW_L5 97.42% F2_L2 96.68% F7_L5 86.72%

CCV10_
L9 77.12%

F2_L2 96.31% F8_L3 97.05% F2_L4 95.57% F2 83.03% CC5_L6 70.85%

F6_L5 95.94% F2_L2 96.68% F2_L5 95.57% F4_L3 79.34%

CCV10_
L10 70.11%

F8_L3 95.57% F2_L11 95.57% YW_L5 93.73% F8_L3 73.43% F6 66.42%

F8_L7 93.36% F2_L5 94.83% F2_L11 91.88% CC5_L6 71.96%

CCV8_L
5 64.21%

h = 6

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2 100.00% F2 100.00% F2_L1 100.00% F2_L4 100.00%

F2_L1 100.00% F2_L1 100.00% F2_L1 100.00% F2_L4 100.00% F3_L1 100.00%

F2_L4 100.00% F2_L4 100.00% F2_L4 100.00% F3 100.00% F3_L5 100.00%

F3 100.00% F3 100.00% F2_L5 100.00% F3_L1 100.00% YW_L1 100.00%

F3_L1 100.00% F3_L1 100.00% F3 100.00% F3_L5 100.00% YW_L3 100.00%

F3_L2 100.00% F3_L2 100.00% F3_L1 100.00% YW_L1 100.00% F2_L5 98.52%

F3_L5 100.00% F3_L5 100.00% F3_L2 100.00% YW_L3 100.00% F2_L1 95.56%

F8_L3 100.00% F8_L3 100.00% F3_L5 100.00% F2_L5 99.63% F3 95.19%

YW_L1 100.00% YW_L1 100.00% F8_L3 100.00% F8_L3 97.04% F3_L4 92.22%

YW_L3 100.00% YW_L3 100.00% YW_L1 100.00% F2 96.30% F3_L11 77.41%

YW_L5 100.00% YW_L5 100.00% YW_L3 100.00% F2_L7 96.30%

CCV2_L
6 74.81%

YW_L2 98.89% YW_L2 98.52% YW_L5 99.26% F3_L4 91.85% F2_L7 74.81%

F6_L5 98.52% F2_L5 98.15% YW_L2 96.67% F3_L11 89.63% F8_L3 72.22%

F2_L5 97.78% F8_L10 96.30% F3_L11 94.44% F3_L2 86.67% F2 71.11%

F4_L1 96.67% F3_L11 94.81% F2_L7 92.22% YW_L4 80.74% F7_L9 65.93%

h = 12



61

Model 2 Model 3 Model 4 Model 5 Model 6

F2 100.00% F2 100.00% F2 100.00% F2 100.00% F2 100.00%

F2_L10 100.00% F2_L10 100.00% F2_L10 100.00% F2_L10 100.00% F2_L10 100.00%

F2_L11 100.00% F2_L11 100.00% F2_L11 100.00% F3 100.00% F3 100.00%

F3 100.00% F3 100.00% F3 100.00% F3_L1 100.00% F3_L1 100.00%

F3_L1 100.00% F3_L1 100.00% F3_L1 100.00% F3_L11 100.00% F3_L11 100.00%

F3_L11 100.00% F3_L11 100.00% F3_L11 100.00% YW_L1 100.00% YW_L1 100.00%

F8_L3 100.00% YW_L1 100.00% YW_L1 100.00% YW_L3 100.00% YW_L3 100.00%

YW_L1 100.00% YW_L3 100.00% YW_L3 100.00% F3_L10 89.14% F3_L10 90.64%

YW_L3 100.00% F8_L3 99.25% F8_L3 95.51% F8_L3 84.64% F2_L9 88.76%

F6_L9 98.88% F2_L1 97.00% F2_L1 94.76% CC5_L4 84.27% F8_L3 83.90%

YW_L11 97.38% YW_L11 96.63% F3_L9 90.64% F2_L1 83.15% CC6_L1 81.65%

F2_L1 96.25% F6_L9 95.88% YW_L11 88.01% F2_L11 81.65% F6_L7 75.28%

F7_L1 92.88% F3_L9 89.89% F6_L9 86.14% CC6_L1 80.90% F3_L7 74.91%

F8_L8 88.39% F4_L10 88.01% F4_L10 85.02% F2_L9 78.65% F2_L11 72.66%

F3_L7 87.27% F3_L7 85.02% F2_L9 83.52% F6_L9 77.90%

CCV8_L
5 71.54%

Source: own elaboration


