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Estudo sobre Engenharia de Prompt para Dados de Engenharia de Software: 

Integração do ChatGPT com uma Ferramenta de Geração de Métricas de Engenharia 

de Software 

  

RESUMO 

 

Com o avanço constante da tecnologia e a contínua transformação digital, a inteligência 

artificial tem se tornado cada vez mais presente em diversos aspectos de nossas vidas. O 

ChatGPT é baseado na arquitetura GPT (Generative Pre-trained Transformer), e é um exemplo 

de sistema que pode ser treinado em uma variedade de tópicos e áreas de conhecimento, o que 

permite que ele gere respostas precisas e úteis em uma variedade de situações. Este trabalho 

visa investigar como integrar o ChatGPT (e como usá-lo de maneira mais eficaz) à uma suíte 

de ferramentas de análise de código que usa métricas e indicadores sobre code smells e 

qualidade de código – a DR-Tools Suite. O objetivo é que tal integração produza orientações 

para o engenheiro de software em relação à qualidade do código ou até mesmo algum nível de 

automação em apoio a seu trabalho de refatoração. O trabalho resume as características 

principais das tecnologias envolvidas, desenvolve a engenharia de prompt para o trabalho, 

apresenta a abordagem de integração e alguns exemplos de uso, e finalmente discute os 

resultados obtidos. Por fim, apresenta melhores práticas para a engenharia de prompt, avalia os 

potenciais das tecnologias e o propõe potenciais avanços em futuras pesquisas. 

 

Palavras-chave: ChatGPT. Engenharia de software. Refatoração. Grande Modelo de 

Linguagem.  

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

With constant innovation in technology and continuous digital transformation, Artificial 

Intelligence is becoming more present in different aspects of our lives. The ChatGPT is based 

on the GPT (Generative Pre-trained Transformer) architecture and is a good example of a 

system that can be trained in a variety of topics and knowledge areas, what allows it to generate 

precise and useful answers on multiple situations. This project aims to investigate how to 

integrate ChatGPT (and how to use it in the most effective way) into a code analyzer and smells 

detection tool suite – the DR-Tools Suite. The intention is that this integration provides 

guidance to the software engineer in relation to the code quality and even some automation to 

his/her refactoring job. This work summarizes the characteristics of the main technologies 

involved, presents the integration approach and some use cases, and finally discusses the results 

achieved. It concludes by presenting best practices for prompt engineering, evaluating the 

potential of the technologies, and proposing potential future research. 

 

Keywords: ChatGPT. Software engineering. Refactoring. Large Language Model (LLM). 
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1 INTRODUCTION 

 

Software maintenance and constant updates currently are a big part of software 

development, as it is needed to comply with new regulatory requirements or corrections to adapt 

to new needs. Society is at a point when much of the codes used throughout applications are 

over 10 years old and, in some cases, more than 25 years old, so that software maintenance 

becomes by each day a more fundamental part of society. Soon, major maintenance will be 

needed, such as adding support to digits to US phone numbers or US Social Security numbers. 

There were already similar situations in the past, like the Year 2000 software bug, in which it 

is estimated that over 75 percent of all software applications were affected by the issue. 

It highlights the importance of keeping the software easy to maintain and having tools 

and automation to help to keep legacy code with quality. Jones (2006) estimates that soon the 

number of professionals working on maintenance compared to new developments would top 

75 percent of all Information Technology (IT) professionals working with software 

engineering. By the Mid-21st century, maintenance costs could top five trillion dollars overall, 

which highlights the need for better maintenance tools and technologies to support these 

activities.  

Due to the sizable impact of this issue, there is extensive research on the topic. The 

previous research explored on this project covered the analytical part of software maintenance 

through smells and refactoring metrics, which lead to DR-Tools Suite1 presented on Lacerda et 

al. (2023). In this work, the tool presents data that provides statistics about software smells and 

refactoring opportunities for more efficient code maintenance. 

While there is this growing need for software maintenance, new advances from 

Artificial Intelligence (AI) and Large Language Models (LLM), such as OpenAI`s Generative 

Pre-trained Transformer (GPT) models used on its ChatGPT tool, can be brought to assist on 

it. ChatGPT is an interactive AI released in 2022 that in a few months proved to be a powerful 

tool to problem solving and creative production through a precise prompt engineer to guide it. 

Such tool was already used for the automation of multiple creative activities with different 

success rates (MA et al., 2024), though we see potential to assist on the software maintenance 

through providing insights on maintenance or even providing automation. 

In this work, we will integrate the two technologies – DR-Tools Suite and ChatGPT -   

to provide the software engineering community with guidance on how to leverage both and take 

 
1 Available at https://drtools.site/. DR-Tools Suite will be further presented in section 2.4. 
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the best synergy possible from them. For instance, using ChatGPT with the statistics from DR-

Tools to provide insights into what software engineers should investigate and what could be 

done to improve the code, or even scenarios in which some automation could be implemented.  

 

1.1 Objectives 

 

The objective of this work is to explore the potential of combining a software 

engineering analyzer tool like DR-Tools Suite with a LLM like ChatGPT.  

A secondary goal is to expand on the existing functionalities of DR-Tools with a proof 

of concept of using the data from Metrics to provide insights to a software developer performing 

a code refactoring via a LLM tool like ChatGPT. 

 

1.2 Structure of the text 

 

This work is structured as follows: chapter 2 presents the concepts and tools that base 

this work. Chapter 3 explains the design challenges and justifies the decisions on the 

implementation, besides presenting the reader with empirical information on how to use the 

tools for similar integrations.  

With both concepts (and tools) presented and with the design challenges and decisions 

well stablished, chapter 4 presents the reader with a qualitative analysis of the outcomes, 

concluding each analysis with a forward-looking perspective based on the results.  

The conclusions are presented on chapter 5, which analyzes achievements, scope 

limitations, perspectives for future works and possible enhancements and additions to this 

project to come closer to a full-refactoring tool available for developers to use under DR-Tools 

Suite.  

As an extra resource, the more relevant prompts and console outputs referred to in the 

text are presented in Appendix A, as their full form is not necessary in the text. This approach 

is to provide the reader with the ability to check on what was the full prompt extracted directly 

from the console, and even enable some replication of the results by following the same 

methodology. 
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2 FUNDAMENTS AND CONCEPTS  

 

 This chapter introduces the reader to the fundamental concepts focused and the tools 

that are subject of this study. Previous related research is presented, especially the ones around 

the two tools, DR-Tools and ChatGPT. An overview of related works that at some level either 

approach problems similar to this work or use similar methodologies to resolve problems is 

presented. 

 

2.1 Code Smells 

 

A smell is a concept used on software engineering for a software problem that is not the 

same as a bug that would generate a failure, but it is a problem that can impact the software 

maintenance and future enhancements through increased complexity, for example (LACERDA 

et al., 2020). 

The term “smells” became popular initially with agile software development and was 

popularized due to the original work of Fowler et al. (1999), which was pioneer in the code 

smell identification and provided techniques to solve them. 

Figure 2.1 - List of code smells presented by Fowler et al. (2018) 

 
Source: Fowler et al. (2018) 
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Smells can be divided into lower level, known as code level (FOWLER et al., 1999), or 

higher level, known as design level (BROWN et al., 1998). 

Fowler et al. (1999) has originally presented 22 code smells with proposed ways to have 

it refactored. Later the list was extended by research like Fowler et al. (2018). Figure 2.1 

presents both the referred smells from the original work and the 6 additions proposed. 

Brown et al. (1998) presented anti-patterns that could be divided into development, 

architecture, and project management design smells. The anti-patterns describe the common 

occurrences that could result in negative consequences throughout the code life cycle. On 

Figure 2.2 is presented a list of the main design smells according to Brown et al. (1998). 

Figure 2.2 - List of design smells presented by Brown et al. (1998) 

 
Source: Brown et al. (1998) 

 

There are subsequential works, for example Wake (2003) and Kerievsky (2004), that 

expanded with addition of other smells and different perspectives, though this will not be further 

detailed in this work as the main smells and their perspective were covered already. 

 

2.2 Refactoring 

 

Refactoring, as highlighted by Lacerda et al. (2020), is the primary approach to remove 

smells (FOWLER et al., 1999). Refactoring is the reorganization strategies to support software 

change to help to improve code quality by making it more readable, efficient and/or eliminating 

possible problems, as introduced by Opdyke (1992). 

Refactoring can be done on different levels of abstraction and on different software 

entities. For example, as referred to by Mens et al. (2003), refactoring can be done on the 

Unified Modeling Language (UML) models, database schemes, software architecture, 

requirements, and language structure. As refactoring does not change the purpose or the 

behavior of the software, it can be done on different levels to achieve the best results to have 
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the code supported in the future, which means that different techniques can be used and often 

be used in a sequence to improve the quality, though its sequence is arbitrary. 

Refactoring is usually divided at two levels as smells: high-level (composite refactoring) 

and low-level (primitive refactoring). High-level refactoring consists of significant and 

structural design changes at a macro or architectural level, while low-level are small and 

specific code changes. Opdyke (1992) work defined that to do a high-level refactoring a low-

level refactoring will be required, as well as introduced the fundamental elements for the 

refactoring of both levels, which are the preconditions. The concept of precondition is that it is 

necessary to establish preconditions which are checked before applying the transformations 

and, after applied, these conditions are rechecked to guarantee that the behavior of the code is 

not altered by the refactoring changes, having the same preconditions. 

The key importance of performing refactoring on codes that do not present bugs is that 

40 percent of the time invested in software maintenance is the cost to understand the code and 

its architecture (TELEA; VOINEA, 2011). One key strategy is to invest in automation and 

provide tools for developers to detect refactoring opportunities (or smells), so that the process 

can be optimized. 

 

2.3 ChatGPT and GPT Concept 

 

ChatGPT, released by OpenAI in November 2022 (NERDYNAV, 2024), is a large-scale 

language model that once made available reached 100 million users in 3 months and has over 

25 million daily users. 

OpenAI’s GPT models, the tool behind ChatGPT, have been trained to understand 

natural language and code, in a way that when provided with a text input, it provides a text 

output in response. These inputs are referred to as “prompts” and their designing is essential to 

how GPT model will be answering, which will directly influence its content and accuracy. 

According to OpenAI, GPTs can be used across a great variety of tasks including content 

or code generation, summarization, conversation, creative writing, and more. 

 

2.3.1 ChatGPT API 

 

Through its website, OpenAI makes available to developers a public API (Application 

Programming Interface) that can be used to access the GPT resources. It works by sending a 
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request containing the inputs and the developer API key and receiving a response containing 

the model’s output. The latest models, GPT-4, GPT-4 Turbo and GPT-3.5-turbo are accessed 

through the chat completions API endpoint. 

With the key generated at https://platform.openai.com, it can possibly send requests 

using https://api.openai.com/v1/chat/completions endpoint through HTTP requests from code 

(or code language) as far as the HTTP request to the API is done correctly.  

The API will be explored later in this work as well as challenges faced during 

implementation. 

 

2.3.1.1 Models, token count, costs, and usage 

 

Token counting is not a simple concept in which a word or a letter will be a token. For 

English2, OpenAI specifies that a token could be as short as a character or as long as a word. 

Therefore, it is not easy to precisely determine the number of tokens that will be used, though 

a Phyton library to calculate tokens is provided by OpenAI, which clarify that due to model 

updates, the library answer may be only an approximation. 

On the other hand, by doing a request to ChatGPT API, when it replies, the message 

contains the data of how many context tokens and how many generated tokens were used on 

that API request. There is an issue, which is that no message is provided with number of tokens 

if any token limits are exceeded. 

Number of tokens is a fundamental concept when using OpenAI’s ChatGPT API, as 

both the price and the maximum supported prompt are defined based on the number of tokens 

generated. Table 2.1 presents the context window supported (number of tokens), training data 

and the costs of each model. 

Table 2.1 - ChatGPT Cost table per model 

Model Context Window Training Data Input Cost Output Cost 

gpt-4-0125-preview 128000 tokens Up to April 2023 $0.01/1k tokens $0.03/1k tokens 

gpt-4-1106-preview 128000 tokens Up to April 2023 $0.01/1k tokens $0.03/1k tokens 

gpt-3.5-turbo-1106 16385 tokens 
Up to September 

2021 
$0.0010/1k tokens $0.0020/1k tokens 

gpt-3.5-turbo-instruct 4096 tokens 
Up to September 

2021 
$0.0015/1k tokens $0.0020/1k tokens 

Source: Adapted from OpenAI’s website 

 
2 OpenAI documentation does not specify other languages, limiting to comment that in some languages tokens can 

be shorter than one character or longer than one word. 
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Costs are billed per token, meaning that the longer request prompt or the longer the text 

generated is, higher will be the cost. There are also usage limitations according to how many 

requests per minute or day it can be done, in order to assure that service is available and manage 

load on the OpenAI’s infrastructure. 

To govern this restriction, OpenAI has the concept of usage tiers, which are organization 

account level classifications based on credits paid combined with time since first payment. 

There are 5 usage tiers (additionally to the free account) which can be found along with its 

qualification requisites on Table 2.2. Additionally, Figures 2.3 and 2.4 present the rate limits 

for usage Tier 1 and Tier 3 respectively, tiers which will appear on this work. 

Table 2.2 - ChatGPT API’s usage tiers table 

Usage Tier Context Window Output Cost 

gpt-4-0125-preview 128000 tokens $0.03/1k tokens 

gpt-4-1106-preview 128000 tokens $0.03/1k tokens 

gpt-3.5-turbo-1106 16385 tokens $0.0020/1k tokens 

gpt-3.5-turbo-instruct 4096 tokens $0.0020/1k tokens 

Source: Adapted from OpenAI’s website 

 

Figure 2.3 - OpenAI’s ChatGPT API rate limitation for Tier 1 account 

 
Source: Extracted from OpenAI’s API Documentation (2024) 

 

Tier 1 is the first paid level, while as more credit is bought and used, the account 

progresses from tiers. At the end of the project, its account had progressed to Tier 3, therefore 

more data usage was allowed. The limits for the Tier 3 account can be found below. 
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Figure 2.4 - OpenAI’s ChatGPT API rate limitation for Tier 3 account 

 
Source: Extracted from OpenAI’s API Documentation (2024) 

 

2.3.2 ChatGPT on Development 

 

 Currently the implications and the applicability of ChatGPT to code development and 

to support software activities are being studied. According to studies and recent results of the 

ChatGPT, increased interest is on the area of automation of software development tasks in a 

way to assist the developers to perform their tasks more efficiently (ELOUNDOU et al., 2023). 

Tools like ChatGPT are leading to impressive results, on both quantity and quality, producing 

outcomes (e.g., code) that are in some cases comparable to what humans produce. For example, 

Golzadeh et al. (2023) investigations in large open-source projects on GitHub concluded that 

bots are among the biggest and most active contributors, although without being labeled as bots.  

 On the empirical study over quality of code between developers and tools like ChatGPT 

conducted by Nascimento et al. (2023), the result was that in certain scenarios ChatGPT has 

outperformed new software engineers in specific tasks, though this was more specific on 

solving easy to medium-level tasks/problems, when the ChatGPT consistently outperformed 

the new software engineer. On the other hand, the same study has concluded that there is 

decisive evidence to support the theory that ChatGPT would outperform an experienced 

developer in terms of solution performance. In summary, the study reveals a dynamic interplay 

between human and AI performance and the need for a collaborative approach to fine-tone the 
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AI inputs based on the developer expertise while improving efficiency via automatons through 

the AI. 

 

2.4 DR-Tools Suite 

 

 DR-Tools Suite is a set of lightweight open-source tools that provide resources and 

information to improve source code quality, supporting the developer in his daily work. DR-

Tools Suite was inspired by the medicine metaphor created by Lacerda et al. (2023). 

DR-Tools Suite consist of 2 tools: DR-Tools Metric, which is a Command-Line 

Interface (CLI) tool that collects and shows different source code metrics, and DR-Tools Metric 

Visualization, which is a tool to provide visual feedback through different graphical formats 

from the data generated by DR-Tools Metric. DR-Tools Metric is the tool focused on this work 

and for that reason we will only further develop it. 

DR-Tools has a third tool under development, already available in a binary executable 

file, which is the DR-Tools Health Code. This tool will be explored later and have the data used 

to a limited extent as it is the tool that will provide this project with data on smells specifically. 

Table 2.3 - ChatGPT Cost table per model 

Model Input Output 

gpt-4-0125-preview $0.01/1k tokens $0.03/1k tokens 

gpt-4-1106-preview $0.01/1k tokens $0.03/1k tokens 

gpt-3.5-turbo-1106 $0.0010/1k tokens $0.0020/1k tokens 

gpt-3.5-turbo-instruct $0.0015/1k tokens $0.0020/1k tokens 

Source: OpenAI website 

 

2.4.1 DR-Tools Metric 

 

DR-Tools Metric is designed to provide a well-known set of combined metrics from 

software metrics research and define a set of heuristics for the combination of metrics based on 

relationships and thresholds. Thus, the tool calculates metrics and provides insights from the 

source code, so that this can help developers to learn about software complexity, smells, and 

refactoring opportunities. 

To better understand the source code, a key point is to have the code metrics and its 

correlations clear, as shown in studies like Radjenovic et al. (2013). For example, the relation 

between size metrics and object-orientated metrics helps to analyze aspects of code 
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maintainability. Also, according to Bigonha et al. (2019), when a metric is associated with some 

threshold, it facilitates its use and understanding. 

DR-Tools Metric analyzes the source code and provides the results in different formats 

(line command, CSV, and JSON) to be used in different contexts. It is not required to do any 

configuration or installation of any complementary software or plug-in to use the tool. 

DR-Tools Metric provides 33 metrics contextualized by project summary, namespaces 

(packages), types (classes), methods, dependencies, and coupling (namespace and type). The 

following list of metrics by context is adapted from Lacerda et al (2023): 

• Summary (9):  

o Total of namespaces  

o Total of types 

o Average of types per namespaces (types/namespaces) 

o Total of lines of code (SLOC) 

o Average lines of code per types (SLOC/types) 

o Total of methods 

o Average of methods per types (methods/types) 

o Total of complexity (CYCLO) 

o Average of complexity per types (complexity/types) 

• Namespaces (2):  

o Number of classes/types (NOC)  

o Number of abstract classes (NAC) 

• Types (9):  

o Lines of code (SLOC) 

o Number of methods (NOM) 

o Number of public methods (NPM) 

o Class complexity (WMC) 

o Number of dependencies (DEP) 

o Number of internal dependencies (I-DEP) 

o Number of other types that depend on a given type (FAN-IN) 

o Number of other types referenced by a type (FAN-OUT) 

o Number of fields/attributes (NOA) 

• Methods (5):  

o Lines of code (MLOC) 
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o Cyclomatic complexity (CYCLO) 

o Number of invocations (CALLS) 

o Nested block depth (NBD) 

o Number of parameters (PARAM) 

• Namespace Coupling (5):  

o Afferent coupling (CA) 

o Efferent coupling (CE) 

o Instability (I) 

o Abstractness degree (A) 

o Normalized distance (D) 

• Type Coupling (4):  

o Number of dependencies (DEP) 

o Number of internal dependencies (I-DEP) 

o Number of other types that depend on a given type (FAN-IN) 

o Number of other types referenced by a type (FAN-OUT) 

• Dependencies (3):  

o General dependencies (DEP) 

o Internal dependencies (I-DEP) 

o Cyclic dependencies 

The tool also provides its users with the flexibility to combine and query contextual 

information, from general information (summary), information about packages, classes, 

methods, dependency types, couplings, and reference thresholds of metrics. When presenting 

the results, the data are sorted according to the context. For example, when presenting 

information about classes, data is sorted by lines of code, complexity, and number of methods 

or when presenting about methods, the combination is cyclomatic complexity, nested blocks, 

lines code, and invocations. 

It is also possible to filter contextualized results using the –top option. Therefore, it is 

easier for developers to analyze the source code and filter out the most problematic elements. 

As presented, it is possible to have a view on summary and packages, more complex classes, 

and methods (showing the first 5), in a single option.  

The tool is currently only developed to analyze Java code, but its architecture is designed 

to allow simple enhancement to other languages by developing a parser and corresponding 

visitor to the new language. 
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DR-Tools Metric is designed to be independent from environments and platforms, 

facilitating interoperability. Its open architecture allows both the functionalities and the 

resulting data in known standardized formats to be integrated with other tools, without 

additional installation or configuration. The tool research is a work in progress and is intended 

to be expanded with new tools, like refactoring recommendation, to support code review. At 

this place that this work will be connected. 

DR-Tools Metrics is an open-source tool available on GitHub, as well as its code, on 

this link. For proof of concept of how to perform the integration, we will be exploring the code 

structure of this tool and its data output. Output which can be controlled by the end user when 

running the tool as it can select what to extract or to be presented. Table 2.4 presents the 

commands and what is the output for each of them. 

Table 2.4 - DR-Tools Metrics output option for command line 

Output Option Output 

NO OPTION Shows tool usage options 

-mt 
Shows metric thresholds to the metrics as a reference. 

(Like Healthcare Exams provide reference values) 

-a All metrics below 

-s Summary Metrics 

-n Namespace Metrics 

-t Type Metrics 

-m Method Metrics 

-d Dependency Metrics 

-cd Cyclic Dependency Metrics 

-id Internal Dependency Metrics 

-nc Namespace Coupling Metrics 

-tc Type Coupling Metrics 

-ac All Coupling 

-mv Output file to be used on DR-Tools Metric Visualization 

-sn Statistical Metrics from Namespace Metrics 

-st Statistical Metrics from Type Metrics 

-sm Statistical Metrics from Method Metrics 

-san 

Namespace Metrics (same as -n)  

+  

Statistical Metrics from Namespace Metrics 

-sat 

Type Metrics (same as -n)  

+  

Statistical Type from Namespace Metrics 

-sam 

Method Metrics (same as -n)  

+  

Statistical Metrics from Method Metrics 

Source: Elaborated by the author based on DR-Tools Site information and Code 



23 

 

As observed on the Table 2.4, the end user can select which metrics to be calculated and 

shown with different levels of detail, for example, the user can extract/present only the summary 

metrics of the project by using the “-s” option, which will show metrics previously presented 

under as Summary metrics. The same logic is applied for metrics between “-s” and “-tc”, while 

“-a” usage is for present all metrics from the different options and “-ac” to all coupling metrics. 

Options “-s*” are to show statistical metrics from the metrics calculated, so that average, 

median, standard deviation and quartier division are presented, what is available for namespace 

metrics (“-sn”), type metrics (“-st”) and method metrics (“-sm”). These statistical metrics can 

also be provided with its subject metrics, so that for example namespace metrics are presented 

and then contextualized with its statistics. 

The outputs and their difference will be fundamental to be understood to this work as 

the integration will just be added on top the existent outputs and so will be using the same 

command options. This will be further explored in upcoming sections 3.1 and 3.2, and in 

chapter 4. 

 

2.4.2 DR-Tools Code Health 

 

DR-Tools Code Health is a tool from DR-Tools Suite that expands on the DR-Tools 

Metrics to contextualize the metrics and provide further insights on the code general health. 

Lacerda et al. (2023) describes the tool on its website as “a tool that allows for a deeper 

investigation regarding metrics/statistics, design issues (smells), smell co-occurrences, and 

code elements ranking/prioritization, identifying the most problematic parts at different levels 

of granularity.” 

The tool is an evolution of DR-Tools Metrics, expanding on the contextualized metrics, 

increasing to 48 metrics, and adding code smells detection (based on metrics) as well as its co-

occurrence and ranking code smells for refactoring process. On the ranking, it implements a 

prioritization model, based on severity, representativeness, impact on quality and degree of 

intervention. A list of the metrics generated by DR-Tools Code Health is presented below, 

adapted from Lacerda et al (2023): 

• Summary (15): total of namespaces, total of types, mean number of types/namespaces, 

total of lines of code (SLOC), average number of SLOC/types (with median and 

standard deviation), total of methods, average number of methods/types (com median e 
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standard deviation), total of complexity (CYCLO), and average number of 

complexity/types (with median and standard deviation); 

• Namespaces (2): number of classes/types (NOC) and number of abstract classes 

(NAC); 

• Types (14): lines of code (SLOC), number of methods (NOM), number of public 

methods (NPM), class complexity (WMC), number of dependencies (DEP), number of 

internal dependencies (I-DEP), number of other types that depend on a given type 

(FAN-IN), number of other types referenced by a type (FAN-OUT), number of 

fields/attributes (NOA), lack of cohesion in methods (LCOM3), deep in inheritance tree 

(DIT), number of children (CHILD), number of public attributes/fields (NPA), and 

number of cyclic dependencies (types) (CDEP); 

• Methods (5): lines of code (MLOC), cyclomatic complexity (CYCLO), number of 

invocations (CALLS), nested block depth (NBD), and number of parameters 

(PARAM); 

• Namespace Coupling (5): afferent coupling (CA), efferent coupling (CE), instability 

(I), abstractness degree (A) e normalized distance (D); 

• Type Coupling (4): number of dependencies (DEP), number of internal dependencies 

(I-DEP), number of other types that depend on a given type (FAN-IN), and number of 

other types referenced by a type (FAN-OUT); 

• Dependencies (3): general dependencies (DEP), internal dependencies (I-DEP), and 

cyclic dependencies (CDEP); 

On top of the metrics above, it also identifies the smells below: 

• Granularity: Namespace 

o Too Large Package; 

o Cyclic Dependency; 

• Granularity: Type 

o God Class; 

o Broken Modularization; 

o Cyclically Dependent Modularization; 

o Insufficient Modularization; 

o Deep Hierarchy; 

o Deficient Encapsulation; 

o Hub-like Modularization; 
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o Multifaceted Abstractions; 

o Wide Hierarchy; 

• Granularity: Method 

o Long Method; 

o Long Parameter List; 

o Complex Method; 

o Bumpy Road; 

The tool is also a command-line tool, but it can be used on an interactive usage as well. 

Via command prompt, its results can be provided in 3 formats, console, CSV or/and JSON. 

There is the possibility of providing a configuration file to the tool to adjust its parameters to 

the analyzer, though this is optional. On Figure 2.5, details on the usage for the end users are 

presented. 

Figure 2.5 - DR-Tools Code Health Structure 

 
Source: Lacerda et al. (2023) 

 

2.5 Related Works 

 

This section presents works which have a similar approach or try to solve a similar 

problem to the one proposed by this project. The related works analyzed is summarized by 

similarities and differences on Table 2.5 and further explored on individual subsections 2.5.1 

and 2.5.2. 
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Table 2.5 - Summary of related works similarities and differences with this work 
Related work Similarities Differences 

CodeScene’s Refactoring tool 

powered by LLM 

(TORNHILL et al., 2024) 

Use a code health/metric tool to 

support LLM refactoring 

Completely automate refactoring of 

specific code smells, approaching from a 

button-up perspective.  

This work will not automate refactoring 

but provide a top-down approach to help 

prioritize what to refactor. 

Prompt Patterns for improving 

code quality 

(WHITE et al., 2023) 

Develop prompt patterns to be used 

for software engineering, similarly 

this work on prompt engineering to 

define best practices. 

Does not approach on automation in a 

tool or integration with other tool data, 

focusing on provide prompts to be used as 

best practices. 

This work will also focus on developing 

an integration between a metrics tool and 

the LLM. 

Source: Elaborate by the author 

 

2.5.1 CodeScene’s Code Refactoring tool powered by LLM with fact-checking  

 

This first related work that will be analyzed is a code refactoring tool developed by 

CodeScene, which is presented via a whitepaper by Tornhill et al. (2024). It is important to note 

this is a very recent work, to the point that the tool is not currently available (as of February 

2nd), but on beta testing via waitlist on CodeScene website.  

On its whitepaper, Tornhill et al. (2024) starts with a benchmarking of state-of-art LLMs 

and its effectiveness on refactoring, introducing the term “refunctoring”, which consists of 

while refactoring the code also change its function, what might result on introducing bugs. On 

the benchmarking it is noted that only 37% of the refactoring was resulting on improvements 

with correctness, while later when applied CodeScene’s fact-checking technique it was 

improved to 98%. 

The tool uses CodeScene Code Health’s3 metrics to fact-check if there are 

improvements on the code health metrics on the new refactored code, because if no 

improvements are observed, the refactor would not be approved as it failed to pass the test. The 

idea is that code health metrics are the only code-level metric with a proven business impact in 

terms of development velocity and post release defects, then if they do not present 

improvements there is no business reason to risk a production code change, which would expose 

the code to bugs or expenses testing pre-deployment.  

 

 

 
3 Documentation available on https://codescene.io/docs/guides/technical/code-health.html. 
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Figure 2.6 - At left, LLMs success rate on refactoring, at the right, improved results by fact-checking 

technique developed by CodeScene 

 
Source: Tornhill et al. (2024) 

 

Code Health presented by CodeScene has a similar approach to the problems as DR-

Tools, as both parse the information and identify code smells, which later are categorized. For 

more visual representation, it is possible to refer the figure 2.7, which explains the metric and 

classification process at a high-level. 

Figure 2.7 - CodeScene’s Code Health is a language-neutral, aggregated code quality metric based on 

a combination of 25 code smells. 

 
Source: Tornhill et al. (2024) 

 

Code Health metrics, illustrated on Figure 2.7, is used to improve the process of 

refactoring using the data for validation on improvement of the refactoring. The process will 

start with the simpler question, which is if new code has a valid syntax, then if syntax is valid, 

health code metrics are compared between original and refactored code, if not improved or 

syntax is not valid, refactor will be rejected and not presented to end-user. The third part of the 
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process is the semantic equivalence, which is intended to validate if the function is preserved, 

though this area is an unresolved research problem. The whole process is illustrated in Figure 

2.8. 

Figure 2.8 - A schematic overview of the layered model for factchecking AI-refactored code 

 
Source: Tornhill et al. (2024) 

 

To handle the semantic equivalent problem, CodeScene has used its data pool of 

+100,000 real-world refactoring project information to train their in-house model for semantic 

equivalence detection for a limited set of code smells identified by Code Health metrics. By 

doing so, they were able to effectively train the model to fact-check refactoring scenarios for 

the 4 supported smells: 

• Complex Conditionals;  

• Deep Nested Logic; 

• Bumpy Road; 

• and Complex Method. 

When comparing CodeScene’s work with the one presented by this project, the tools 

approach similar to the perspective to support the refactoring by code health metrics. While 

their proposal is for a complete automation from a button-up view on code refactoring, focusing 

on code refactoring specific code smells, the DR-Tools integration with ChatGPT will focus on 

a top-down approach and to be an assistant to the software developer, by providing guidance 

on which areas the refactoring should be focused. 
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In conclusion, CodeScene validates our hypothesis of using code health metrics with 

LLMs to provide better refactoring and some level of automation. Besides, it provides a very 

interesting idea of fact-checking, which could be an inspiration for future works, especially if 

focused on also developing full automation for some specific scenarios. 

 

2.5.2 ChatGPT Prompt Patterns for Improving Code Quality 

 

As already stated by OpenAI itself, a key point of good usage of LLM, like ChatGPT, 

is to provide a good prompt and context to the request. Therefore, it is an area of study 

developed and explored in this research. 

Though there are several patterns, and they can take various forms, to perform software 

engineering tasks it is typically better to start with a scoping statement, like “from now on”, 

“act as a X”, “for the next four prompts” (WHITE et al., 2023). 

White et al. (2023) investigated and proposed 13 prompt patterns for different software 

engineering tasks. They were documented, tested, and analyzed with the format below: 

• A name and classification: provides a clear name to identify and classifies the 

pattern based on the type of problem to be solved. The prompt patterns proposed can 

be viewed on Figure 2.9. 

• The intent and context: summarizes the problem to be solved and its goal. 

• Motivation: explains the importance of the problem to be solved. 

• The structure and key ideas: describes the fundamentals of the pattern and the 

context that need to be provided to the LLM to achieve the expected resolution. 

• Example implementation: shows an example of the pattern implemented and 

discusses it. 

• Consequences: evaluates the pros and cons of using the pattern and how to adapt 

the pattern to other scenarios. 

This research focuses more specifically on the refactoring piece as the goal is to integrate 

ChatGPT to DR-Tools Suite to provide the refactoring technique to be followed and study what 

can be provided by ChatGPT. The research already done on the topic by White et al. (2023) 

supports the intention of our project, as according to it, tools like ChatGPT have a surprisingly 

powerful understanding of abstract coding constructs and can deliver innovative approaches to 

code refactoring. 
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Figure 2.9 - Classifying Prompt Patterns for Automating Software Engineering Tasks 

 
Source: White et al. (2023) 

 

2.5.2.1 Pseudo-code Refactoring Pattern 

 

This method consists in basically providing the LLM (ChatGPT) with the pseudo-code 

structure desired and having the AI refactor to adapt to the specific situation. The refactoring 

pattern will follow instructions as the Figure 2.10. 

Figure 2.10 - Pseudo-code Refactoring Pattern 

  
Source: White et al. (2023) 

 

One important consideration is that in case the pseudo-code requires an extensive 

description and precising code, the usage of the LLM could be not advantageous as its benefits 

will be reduced by the required coding of the pseudo-code to specify the refactoring. This 

pattern can also lead to substantial refactoring and because of that requires the code to be 

splitted or have functions removed, which could impact on its public interface be changed and 

require further refactoring.  
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It is important to note that this methodology would not be the best fit for this research, 

as we will be integrating ChatGPT with a data generation tool (DR-Tools) and not a pseudo-

code tool.  

 

2.5.2.2 Data-guided Refactoring Pattern 

 

On this pattern, the idea is that providing the data that needs to be changed the LLM 

will do the refactoring to have the data the closest to the requested. Though it is not exactly to 

have it matching the smells and source code metrics, but code results and formats, we believe 

this might be the best pattern to fit our scenario. Figure 2.11 shows how this pattern would be 

structured. 

Figure 2.11 - Data-guided Refactoring Pattern 

 
Source: White et al. (2023) 

 

The results from White et al. (2023) indicate that this pattern reduces the manual effort 

to refactor many types of code changes. On many cases the refactoring can be completed 

automatically or at least be a booster and speed up the refactor causing potentially a cost 

reduction on the change of data formats, for example. 

In general, this last study concluded that the depth of the capabilities of LLMs, like 

ChatGPT, are not fully understood or appreciated, as the tool holds a lot of potential for software 

engineering automation throughout the software life cycle. The conclusion is that the key to 

leverage all these capabilities is to codify an effective catalog of prompts and guidance on how 

to combine these patterns to improve software engineering through automation. At the same 

time, it is highlighted the significance of human involvement and expertise as currently 

ChatGPT tends to “hallucinate” confidently, so guidance and scrutiny is required to mitigate 

these possible issues. 

In conclusion, the tools have a lot of potential, but it is required much research and 

development on prompt pattern engineering to have the best results provided and all potential 

be fulfilled. 



32 

 

3 INTEGRATING DR-TOOLS AND CHATGPT 

 

This chapter is organized in three parts and presents the development and experiments 

used to develop the ChatGPT integration into DR-Tools. It is important to highlight that the 

areas intersect with each other and many of the developments happened in parallel with one 

influencing into another area. Therefore, Figure 3.1 presents a high-level overview of the 

activities developed and in which section of this work they are explored.  

Figure 3.1- Visual representation of development flow and how it is presented on the text 

 
Source: Elaborated by the author 

 

The first part, section 3.1 – ChatGPT API Integration, analyzes the code challenges, and 

how the retrieving of information and GPT interactions were structured, based on the DR-Tools 

Metrics code. The second part, section 3.2 Prompt Engineering, develops the prompt 

engineering for this work, experimenting and determining which are the best prompts to analyze 

DR-Tools’ metrics providing software engineering advice and measuring how effective and 

insightful they are. 
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These first two parts, sections 3.1 and 3.2, are part of the development of the proof of 

concept for the integration between DR-Tools and ChatGPT. Based on the development of these 

experiments, the proof of concept was created, which has the execution sequence illustrated on 

Figure 3.2 to generate the insights about the refactoring. 

Figure 3.2 - Sequence Diagram for insight generation 

 

Source: Elaborated by the author 

 

The third part simulates the results that applying the same solution developed for DR-

Tools Metrics on sections 3.1 and 3.2 would generate, therefore allowing us to evaluate if the 

same project would be effective for DR-Tools Code Health. This activity is done by using data 

extracted from DR-Tools Code Health to hard-code it into the solution developed for DR-Tools 

Metrics (prompt engineering and code for API requests), then evaluates if the solution 

developed on the sections 3.1 and 3.2 are effective DR-Tools Code Health. The goal is to 

analyze the result to evaluate if DR-Tools Code Health combined with ChatGPT has potential 

to be a good solution to be developed in the future. 

This approach of work on both tools is because the DR-Tools Code Health tool is an 

ongoing project that does not have its code public yet, so this research evaluates on manually 

generated prompts to ChatGPT using the data manually extracted from running the tool via its 

available binary code data. Therefore, this work aims to validate how to best develop the 

integration of the tools at code level, for which DR-Tools Metrics (DR-Tools Code Health 
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predecessor) code will be enhanced as a proof of concept. Thus, in future works a defined path 

and a working scenario will be available. 

 

3.1 ChatGPT API Integration 

 

The first step of this proof of concept is to develop a working integration with OpenAI 

ChatGPT API, for that a class to do the integration through HTTP Request to the API end point 

was developed. 

 

3.1.1 ChatGPT API Class creation and first communication test 

 

This subsection presents how the chatGPTAPI class was created, and which challenges 

were faced to establish successful communication. Throughout the section challenges will be 

presented and how this work has been overcome, then the reader can refer to this to avoid 

similar issues. 

The first step for the integration was to have OpenAI’s account and the API Public key 

to be used on the HTTP Request to open the connection created. As OpenAI provides free 

access for limited calls and rates and the number of API calls would not be high, the initial plan 

was to use this free version as limits from number of requests at first were not believed to be 

exceeded, though this will be revisited multiple times through the experiments. 

The Java classes below were used for handling the connection and data retrieval: 

• java.net.HttpURLConnection and java.net.URL to handle the HTTP Connection 

creation; 

• java.io.InputStreamReader and java.io.OutputStreamWriter to handle the flow of 

information with ChatGPT API, to both convert the strings to byte to be communicated 

(OurtputStreamWriter) as convert the data in bytes to strings (InputStreamReader); 

• java.io.BufferedReader and StringBuffer to handle and manipulate the Input Stream 

from ChatGPT into the code. 

The class was developed to have one public method, ChatGPT(String prompt), which 

sends to the class the prompt that should be used to the request to ChatGPT, then it would 

convert and return only the GPT content part of the answer to the class calling the method. This 

way, when just ChatGPT to print an answer to a prompt/question was wanted, only a call like 

below would be done: 
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System.out.println(chatGPT("What is a bird? In one line")); 

 

The method chatGPT will only return the ChatGPT answer to the question in a string 

format. On the first test, the following error was faced: “Server returned HTTP response code: 

429 for URL: https://api.openai.com/v1/chat/completions”. On Open AI documentation, it was 

founded that this could be one of the 3 below reasons: 

• You are using a loop or a script that makes frequent or concurrent requests. 

• You are sharing your API key with other users or applications 

• You are using a free plan that has a low-rate limit. 

 (OpenAI Article 6891829 Error Code 429 - Rate limit reached for requests, accessed 

in January 2024)  

 

Upon checking on the OpenAI API usage dashboard, the absence of API requests 

registered were noticed, so it could not be either first or second option. Once remaining the 

latest one and after reviewing if any limits by a code bug could be exceeding, it was determined 

that the issue is that the free version does not have a limit to achieve a single call, what means 

that in practice ChatGPT API is paid service only. 

After upgrading to a paid version by recharging $50 dollars to the OpenAI account used, 

which allowed the API call to be successful with no changes to the code. The first part was 

completed as a class that manages the API calls was developed. A call and the code used for 

the call are exemplified on Figure 3.3: 

Figure 3.3 - First chatGPT class successful test 

 
Source: Elaborated by the author 

 

As conclusion, to be able to use the GPT API, a payment for the service is required, so 

that is the first lesson learned.  
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 3.1.1.1 Support to dictionary and placeholder translation 

 

This subsection presents in advance how the chatGPTAPI class supports the concept of 

having placeholders, a dictionary of equivalence to names used on the data analyzed and how 

its translation is done. This concept will be further explained and validated in subsection 3.2.2. 

The concept is basically that instead of providing data to ChatGPT API with its original 

name, it will be replaced on the prompt for a unique and simple placeholder name, like method1 

or type1. Therefore, a conversion from this placeholder name into the real name will eventually 

be needed; this responsibility will follow on chatGPTAPI class, which per our design will 

receive the prompt with the placeholder in the prompt and return an answer using the real name. 

To achieve this conversion, the class will have a public method setDictionary (String 

dictionary), which will set a local attribute to the string provided. The value for the dictionary 

is generated from DR-Tools code with format like “method1 = realName.method, method2 = 

realName.second.method”.  

With the dictionary local attribute, the chatGPTAPI class will always check if there is a 

dictionary setup before returning any answer from ChatGPT API requests. When there is a 

dictionary, the class will create an instance of itself without dictionary and run a request to as 

ChatGPT API to act as a “find and replace” tool and from the dictionary replace all placeholders 

with its real name on the answer previously provided. The prompt is provided to ChatGPT 

method by on the code concatenating the context, the message to be corrected, the request and 

the dictionary as presented on Figure 3.4: 

Figure 3.4 - Dictionary and translation logic implemented on ChatGPT method to request data 

 
Source: Elaborated by the author 

  

This feature will be fundamental to improve results from the data analysis of complex 

and big dataset, which  will be clearly an advantage as exposed on subsection 3.2.2.3. Though 

when no dictionary is setup, the behavior will remain unchanged and same code can be reused 

on the translation. 
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3.1.2 Cost considerations and model definition for the project 

 

In one day of moderated testing, 60 API requests were generated, which consumed 2425 

tokens (1238 context tokens and 1187 generated tokens), while on another day 48 API requests 

were generated, which consumed 4604 tokens (1339 context tokens and 3265 generated 

tokens). Due to the price structure, it is more efficient to have a broader prompt and limit the 

output via the prompt instructions, as context tokens are cheaper than generated tokens. 

There are other models, but only GPT-4 Turbo and GPT-3.5 Turbo will be focused since 

they are the flagship models. There are limitations on the models, for instance, GPT-3.5 Turbo 

supports up to 4096 context tokens (under model GPT-3.5 Turbo) or 16385 (under model GPT-

3.5 Turbo-1106), while GPT4 Turbo supports 128000 context tokens. For that reason, if on any 

point a test with a larger prompt that exceeds 16385 would be needed, only GPT-4 Turbo or 

GPT-3.5 Turbo-1106 could be used. Training data is also different as GPT-3.5 training data is 

up to September 2021 and GPT-4 is up to April 2023. However, it is not expected that to be an 

issue as much of the base of refactoring and code smells proceeds 2021 timeline. 

Based on the testing conducted and the price structure, both models can be considered 

financially viable. Therefore, if GPT-4 proves to have much higher efficiency and precision on 

its insights, it can be the best approach to this project. Though, an evaluation is needed at the 

end of the project with full scope defined, including using DR-Tools data as context tokens, 

what would be the average number of tokens per API request and how many API calls it is 

expected that a user refactoring will do. The cost impact will be reviewed in the conclusions. 

For now, the execution of the tests with both gpt-3.5-turbo / gpt-3.5-turbo-1106 (GPT-

3.5 Turbo) and gpt-4-0125-preview (GPT-4 Turbo) is defined, in order to evaluate both and 

determine when they are different, and which is superior and how much. 

 

3.1.3 Simulate Prompts to test chatGPTAPI class 

 

After confirming that the API call was working, the idea was to already test the response 

from the ChatGPT to one of the outputs of the DR-Tools Metrics tool. So before starting further 

integration and developing code to retrieve the data from the tool and format it into the ChatGPT 

prompt, the decision was to execute the tool for one metric and simulate the result to provide 

the same as part of the prompt. 
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From DR-Tools Metrics project, the chatGPTAPI class (discussed on subsection 3.1.1) 

was added and a new class to handle the integration between DR-Tools Metrics (we called 

GPTIntegration class) was created. This class will act as the link between DR-Tools and 

ChatGPT calls and prompts. On this first step, a GPTInsight() public method to be called from 

DR-Tools Metrics main code was created and chatGPTAPI class was called with a hard-coded 

prompt to prove that all processes were working in the correct order. Later both data retrieval 

and prompt definitions will be discussed and explored. 

From this first test, DR-Tools Metrics was run on its own project code, and the results 

below were received: 

------------------ 

SUMMARY OF METRICS 

------------------ 

            Total of Namespaces: 32 

                 Total of Types: 127 - 3.97 (number of types/namespaces - 

median: 3.00 - std dev: 2.90) 

                  Total of SLOC: 7957 - 62.65 (number of SLOC/types - 

median: 37.00 - std dev: 75.48) 

               Total of Methods: 1167 - 9.19 (number of methods/types - 

median: 3.00 - std dev: 5.80) 

                 Total of CYCLO: 1513 - 11.91 (number of CYCLO/types) 

 

To prove if the usage of the data on the prompt would be effective, a hard-coded string 

was coded with the same numbers and similar structure to be used to do the GPT API request, 

though when running it failed with “HTTP response code: 400” and error illustrated in Figure 

3.5, together with the coding of the prompt.  

Figure 3.5 - First test with hard-code prompt with DR-Tools Metrics code failure 

 
Source: Elaborated by the author 
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After reviewing previous successful API calls, it was noticed that this test was the first 

using new line character “\n”, then the deletion of it was tested and the same command without 

the new lines did not face any issues.  

To confirm that a correct answer was being achieved, it was adjusted to have a easily 

verifiable question. Part of the data was provided and a question was asked to determine which 

metric have the higher number. The answer was correct and is presented on Figure 3.6 

experiment: 

Figure 3.6 - Successful ChatGPT call with hard-coded prompt with code Metrics 

 
Source: Elaborated by the author 

 

When confirming that removing the new line character the issue is also removed, how 

to keep the new line was searched, as this would as well make it easier to have the data for the 

GPT prompt and also print the same console answers. From that search it was found one quick 

reference on the OpenAI Documentation that references to new line as a possible non-trivial 

issue on the parsing server-sent events (see extract below from OpenAI documentation).  

 

Parsing Server-sent events is non-trivial and should be done with caution. Simple 

strategies like splitting by a new line may result in parsing errors. We recommend 

using existing client libraries when possible. (API Reference - OpenAI API, 2024) 

 

Based on this experiment and this documentation reference, it was determined that all 

of the prompts should be provided avoiding any new line or formatting characters (like “\t”) in 

order to prevent issues with the GPT model. In addition to it, it was determined that all prompt 

segments would be concatenated in a string without new lines and just characters like simple 
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quotes, parentheses, and other punctuation characters will be used to segregate data, what will 

be further investigated and further explored with a more complex dataset later. 

 

3.1.4 Retrieving DR-Tools Metrics data in prompt format 

 

This section explores the structure of the DR-Tools Metrics’ data at a high-level as well 

as explains the approach to retrieve and integrate this data into a structured GPT prompt form. 

Experiments on generation of the data in prompt format will be presented at the end of the 

chapter, while integration experiments will be presented and have its results analyzed on the 

subsection 3.1.5, including some failures that establish design and scope decisions. 

DR-Tools Metrics have multiple outputs depending on what the user requests. The 

metrics as well as the commands that can be run to extract them were already explored on the 

chapter 2.1.4, though on this part of the process some of them are run and the output and later 

the code that generated them were analyzed, to engineer the prompt design logic. To better 

understand how DR-Tools Metrics retrieve data, the code and its logic to present data were 

analyzed. 

On figures 3.7, 3.8 and 3.9, the output for the summary of the project’s code metrics, 

type metrics and the statistical data for the type metrics can be respectively found. From these 

outputs and their code, the creation of the data side of the prompt is going to be started. 

Figure 3.7 - DR-Tools Metrics output for Project’s Summary 

 
Source: Elaborated by the author 
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Figure 3.8 - DR-Tools Metrics output for Metrics per Type 

 
Source: Elaborated by the author 

 

Figure 3.9 - DR-Tools Metrics output for Type Summary statistics 

 
Source: Elaborated by the author 

 

Based on this research and the literature review4, the best approach to provide data is to 

delimit it to be clear how they are grouped. To achieve this, it was determined that the data 

should be organized on a String (based on tests reported on 3.1.3) with no new lines, so it would 

be needed to have this same data from the output, though in a different format to make it easier 

and more precise to the GPT model processing it. 

 
4 OpenAI documentation advice to use delimiters: 

 (https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-delimiters-to-

clearly-indicate-distinct-parts-of-the-input)  
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At this phase, the code was developed to generate the data above in a string delimited 

by some token to indicate where it starts and ends each data. The goal was to have a String 

returned as exemplified below: 

 

• <Token> Metric x <Token> Type: <data> <Token>… 

 

Review and understand the DR-Tools’ logic, especially its data retrieval architecture, 

was necessary to develop the code for the prompt’s data string (described above) generation. 

Though it was not necessary to know how the data is calculated and generated as this work is 

not validating or analyzing the data generated but interested in its consumption. This analysis 

was specifically focused on the process to retrieve data and to print it on the console when 

executing the tool with the “–console” output (to have DR-Tools printing the data in the 

console) as it was the closer to the string generation. 

The DR-Tools’ architecture is well organized and modularized in such a way that the 

implementation was relatively easy, to the point that no existing code needed to be much 

rewritten. DR-Tools is organized into classes where after its parsing and calculation, the metrics 

data is stored or is calculated upon requests to these same classes. The classes are listed with a 

short description: 

• NamespaceMetricResult: Hold data and have methods to return values of the 

metrics from the different Namespaces on the analyzed project. 

• TypeMetricResult: Hold data and have method to return values of Metrics from 

the different Types on the analyzed project. 

• MethodMetricResult: Hold data and have method to return values of Metrics 

from the different Methods on the analyzed project. 

• StatisticalAnalysis: Hold data and have method to return values of the statistical 

data (average, median, standard deviation) from analyzed project metric. Data is 

presented on Figure 3.7 and 3.9. (average, median, standard deviation, etc.) 

Then the second part of the DR-Tools Metrics retrieving data logic is done by a public 

interface called MetricOutput, which has all methods to retrieve the data from the above-

mentioned classes. This interface is then implemented by classes specifically to the data output 

selected by the end user when running the tool. There are classes which will implement the 

methods and have the data output created and provided to the user according to its request. The 

possible outputs and classes are as following: 
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Table 3.1 - DR-Tools Metrics’ Output and classes 

Output Class Argument 

Console MetricResultConsole --console 

CSV file MetricResultCSV --csv 

JSON file MetricResultJSON --json 

File for DR-Tools Visualization tool MetricResultFile --save 

Source: Elaborated by the author 

 

Due to this modularity and having already a logic in place for different outputs, a new 

class implementing the MetricOutput interface was created, which was called 

MetricResultsGPT. It was partially replicated following the logic from MetricResultConsole, 

modifying it to be able to return the metric’s data on a prompt friendly string to be used on the 

GPT request. 

Through a similar logic used on other MetricResult classes and a series of 

concatenations into a prompt data variable, the string is returned by a public method to be used 

later. For example, the same metrics shown on Figure 3.7 (with project summary metrics) can 

be seen on Figure 3.10 printed on prompt format: 

Figure 3.10 - DR-Tools GPT prompt data for Project’s summary 

 
Source: Elaborated by the author 

 

For having it easier to execute more testing on formatting this prompt data, two constant 

variables were used to hold a data beginning and ending token values, so that it can be easily 

changed how the data are being divided for prompt testing, which will be evaluated on 

upcoming section 3.2.2. 

 

3.1.5 Validating DR-Tools data on ChatGPT API requests 

 

This section discusses at a high-level how ChatGPT can be integrated with DR-Tools 

data metrics using the previously discussed chatGPTAPI and metricResultsGPT classes, as well 

as the challenges with the implementation. 



44 

 

On DR-Tools Metrics, the information output to the end user is controlled by a 

ProjectInfo class, for which the main program code creates an instance with the MetricResults 

as one of its parameters. This class will be managing which of the methods of the MetricResults 

is called to have the metrics provided. 

The same logic was replicated on a new class that is called GPTIntegration, which will 

be used to manage the data retrieval (explored on subsection 3.1.4), the prompt generation (to 

be explored on section 3.2), ChatGPT API (explored on subsection 3.1.1) requests and GPT 

insight output to be provided. The class will be the main hub link between DR-Tools code and 

the newly developed code, except for the new MetricResults implementation. 

To validate if the GPT requests and prompts are generating valid answers, an easy to 

validate experiment was conducted, like request “which is the method with more lines” or 

“which types have dependencies higher than a specific number”. Prompts for refactoring 

insights will be discussed in section 3.2. Different metrics were tested to validate if data 

retrieval into prompt was effective. Both tests were done with both GPT-4 Turbo and GPT-3.5 

Turbo. 

When the test was run on GPT-3.5 Turbo (model gpt-3.5-turbo), GPT API replied with 

“Server returned HTTP response code 400 error”, as presented at Figure 3.11. Through a 

further analysis of the prompt data (extract available on Appendix A), it was concluded that the 

error was due to the context tokens (for reference see section 2.3.1) on the API request, which 

exceeded the number of tokens supported for the model. The prompt had 9172 words (context 

token will be a little higher) and the GPT-3.5 Turbo used (model gpt-3.5-turbo), supports up to 

4096 context tokens (as referenced on Table 2.2). Therefore, it would be needed to reduce the 

number of tokens on the prompt or choose another model. 

An option to continue using and testing GPT-3.5 Turbo would be to use the latest gpt-

3.5-turbo-1106 model, which supports up to 16385 context tokens, though the same issue was 

faced. As explained in section 2.3.1.1, the number of tokens will play a major role in the models 

supported and the costs, then on decisions. The challenge is that a clear response from API on 

number of used tokens exceeded is missing, as in the experiment on Figure 3.11.  

It will be further explored in the prompt engineering chapter as if prompts exceed 16385 

tokens in the GPT-3.5 will be supported and if exceeds 128000 GPT-4 Turbo will also not be 

supported. Some strategy or scope limitation for this integration usage to not exceed the token 

limits need to be developed, as prompts will increase according to the analyzed project size and 

complexity. 
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Figure 3.11 - GPT API request error 400 due to large prompt request 

 
Source: Elaborated by the author 

 

The same request was done for GPT-4 Turbo, which was successful and provided an 

accurate answer, presented on figure 3.12, when asked to list the types with more than 20 

dependencies based on the metrics provided on the prompt (generated from DR-Tools). 

ChatGPT also provided, without request, the number of dependencies for each type, what can 

be helpful and will be further investigated in section 3.2 about prompt engineering. 

Figure 3.12 - GPT-4 Turbo API correctly answering the Types with more than 20 dependencies 

 
Source: Elaborated by the author 
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An important note is that GTP-4 Turbo takes longer time to process the same prompt, 

so this will be analyzed later as a disadvantage. Section 3.2 further explores comparing the 

models and the best prompts, as it is important to demonstrate that the ChatGPT can understand 

the metrics that the integration with DR-Tools has provided. 

To confirm that GPT-3.5 also understood the data format and to be able to compare if 

there are differences between their answers, similar experiment was performed using summary 

(-s command) and requested which would be greater: average line of code per type or its 

median. With this experiment, a smaller dataset would be obtained and could help avoid any 

token limitations. 

Figure 3.13 - GPT-3.5 Turbo API correctly answering comparation between metrics 

 
Source: Elaborated by the author 

 

From this experiment, it was observed that both models were able to provide an accurate 

answer, though the answer’s structure was very different. While GPT-3.5 Turbo provided a 

more direct answer to the point (as observed on Figure 3.13), GPT-4 Turbo provided it in the 

middle of a long text with information that would not necessarily be relevant as observed on 

Figure 4.14. 
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Figure 3.14 - GPT-4 Turbo API correctly answering comparation between metrics 

 
Source: Elaborated by the author 

 

The next sections will switch from one model to another to evaluate the prompts and 

each model’s response, to later analyze advantages and cost benefits. To perform tests on both, 

chatGPTAPI class code can be easily changed via a variable that has being currently used 

hardcoded on the code, but on a final product it could easily be improved to be via a config.file, 

though for this proof of concept to have it at code level was sufficient. 

 

3.2 Prompt Engineering 

 

The next step on the integration is to work on prompt engineering to determine the best 

structure and wording to do the requests to the ChatGPT. 

 

3.2.1 Importance of Prompt Engineering 

 

This section presents the importance of good prompt engineering and develops on 

analysis of results of different structures of prompt to receive the best, more accurate and more 
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time effective answers. It presents a series of experiments to empirically demonstrate some 

fundaments described in the previous literature review (especially on 2.3.3 section). 

To abstract the more complex and sometimes not so intuitive concepts of software 

engineering, the first section experiments simply revolve on how ChatGPT would define a 

simple concept of a “bird” and explore how the prompt design influence its output for the same 

simple animal. The goal is that from this section, the motivations for the prompt engineering 

strategies for the project are justified. Then, in the next section, the use of strategies with the 

DR-Tools Metrics data is explored. 

Throughout this chapter, gpt-3.5-turbo-1106 (referred from now on simply as latest GPT 

3.5 Turbo) and gpt-4-0125-preview (referred from now one simply as GPT-4 Turbo) will both 

be experimented on. The older gpt-3.5-turbo will no longer be considered a viable possibility 

as its 4096 tokens were already proven to be not sufficient from experiments on section 3.1.5. 

 

3.2.1.1 Bird Definition Experiment 

 

This section explores a simple and to some degree fun exercise designed for this project, 

which consists of having ChatGPT answering the simple question of “What is a bird?”. 

Although initially appearing to be a silly experiment, this is a powerful way to demonstrate the 

value of a good prompt in order to have the correct answer to the perspective that API user 

wants without any complex topic where the reader might not have knowledge to judge the 

ChatGPT answer. 

The section is structured of a series of 12 experiments divided into 4 groups, which each 

will have one open question with no limitation on answer, another that limits on 1 line5 answer 

and a last one limiting on one-word answer. Each group also has different structures: 

1. Just the open question and the answer size limitation, without any context. 

2. Opening the prompt with the question, then providing the context and finishing with 

answer size limitation. 

3. Starting with context statement, then questioning and finishing with answer size 

limitation. 

 
5 Based on our experiments, ChatGPT seems to understand prompts with phrases, clauses, periods, or sentence 

limitations as an answer with one or more verbs, but only one period being simple period or compost period. 

Example: “The bird is my tasty treat, and I would pounce on it with my sharp claws and devour it hungrily.” is 

considered one clause. This could inform a grammatical discussion on ChatGPT understanding; however, this will 

not be relevant for this work. 
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4. Starting with context statement (different from above to prove change in answer), 

then questioning and finishing with answer size. 

All the experiments above were coded directly on the chatGPTAPI class, so that each 

group has all its 3 answer limitation prompts run together printing on the same console its 

prompt, its answer, the time that ChatGPT API took to provide the answer and the number of 

tokens used and generated for each scenario. The data is also considered throughout the 

analysis. On this first subsection, only results from latest GPT-3.5 Turbo are explored to 

subsequent subsection explore GPT-4 Turbo and compare both models. 

Figure 3.15 - Bird definition experiment on latest GPT-3.5 Turbo without context definition 

 
Source: Elaborated by the author 

 

From the first experiments, it was observed that the output as well as the time that 

ChatGPT takes is highly influenced by the prompt and the instruction on the prompt to the 

answer’s size. The experiment shows that, by limiting the size of the answer, there are benefits 

on ChatGPT performance and on costs. As previously referred to in section 3.1.2, the number 

of tokens influences the cost and generated tokens are 2 to 3 times more expensive. 

Figure 3.16 - Bird definition experiment on latest GPT-3.5 Turbo with question first then context 

definition 

 
Source: Elaborated by the author 

 

On this second experiment set, the context setting is experimented to extract an answer 

from one specific perspective, in this case, to ChatGPT describe what is a bird from a cat 

perspective. The goal is to have it described as something that the cat would eat or hunt as the 
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normal concept that cats hunt birds, though on the experiment it was not the description that 

was followed. 

For instance, when no size limitation was provided, the bird was more described by 

physical appearance, then added the information that the cat would occasionally chase it but 

having the idea that it could catch if “lucky” and then having a more cat like behavior to describe 

that, if catching, it would bring the bird to its human. It is possible to notice that at first there 

was not much sign of cat behavior, though in the end there was more. 

When there is answer size limitation, an answer closer to the initial goal is provided; 

when on one line, it gives the idea of something that flies and is out of reach (as the bird flies 

and the cat does not) and presents the idea of catching it. This is still far from the initial goal, 

though due to the smaller space, it has compiled all the context (the bird and the cat perspective) 

into the first statement. 

Finally, when ChatGPT is limited to having only one word, it needs to consider all the 

prompt contexts and summarizes it in a word, only then it is presented with the initial expected 

answer. This experiment shows that limiting ChatGPT reduces its “hallucination”, which 

although includes correct facts, but not necessarily the facts requested by the prompt. This 

experiment conclusion is an important concept to be used through the prompt engineering on 

this work because providing easy to read information and avoiding long answers which miss 

the main objective is important, otherwise it might be distracting for the end user. 

Figure 3.17 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first 

then question 

 
Source: Elaborated by the author 

 

The third experiment is inspired by White et al. (2023), which highlights the importance 

of setting a persona to ChatGPT and requesting that it act as such persona. Therefore, the 

experiment prompt starts with the specification to ChatGPT acting as a hungry cat, then it is 

observed that from all 3 answer sizes there is a hunter behavior when ChatGPT describes the 

bird as a prey (even if indirectly). 
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At this experiment, the same outcome was presented when comparing the different 

answer size limitations, in which no limitation generated a long answer that does not directly 

describe as the goal intended. Though when the model is pushed to one line answer, it provides 

the intended answer, and the one word describes it perfectly. 

Figure 3.18 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (human) first 

then question 

 
Source: Elaborated by the author 

 

To prove the conclusions above, the last experiment had the same structure, though 

requiring “to act as” a human. Throughout all the requests, it can be observed that the 

hunter/prey relationship was not presented as the human view of a bird is not as a prey or a 

meal, thus proving that the previous answers were due to the contextualization provided. 

Throughout this experiment, the token usage was also presented (information extracted 

from API response) which provided insight on how the LLM handles the tokens. There will be 

no deep investigation on how the model is dividing the strings into tokens, as referred to in 

previous section 2.3.1.1. 

One important note is that as context tokens are cheaper than generated tokens, therefore 

the investment on better prompts even if longer can be financially beneficial, as from examples 

above, the more precise answers were ones generated due to answer size limitation, which 

reduces generated tokens making it a cheaper answer.  

 

3.2.1.2 ChatGPT inconsistent answers 

 

From the previous section experiment, there was a second important finding to be 

presented and explored at some level. Throughout this work’s experiments, it was observed that 

the answers to the same questions were not always the same. 
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Figure 3.19 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first 

then question (generated on February 1st) 

 
Source: Elaborated by the author 

 

No clear pattern is observed, as sometimes the answer changes for requests done almost 

simultaneously (or very close to). For example, the experiment on figure 3.19 was rerun with 

intervals of less than minutes from figure 3.17. On figures 3.17, 3.19 and 3.20, the same 

experiment was run providing different answers on each iteration, demonstrating the non-

determinism property of LLMs like ChatGPT, which is also observed and explored on other 

works like Ouyang et al. (2023). Such property will require that, throughout our development, 

extensive tests are performed to assure a good level of consistency on the solutions.  

Figure 3.20 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first 

then question (generated on February 2nd) 

 
Source: Elaborated by the author 

 

Note that comparing with the previous subsection and figure 3.17, not only the content 

is different, but also the processing time was very different. The time difference could be 

justified by the fact that the answer is provided through the internet and on a cloud computing 

environment, therefore there are numerous possible reasons that could even be combined, like 

lower internet speed, higher internet latency, higher load on the cloud service, resources update 

on the cloud, among others. This work does not target the performance of ChatGPT, so the 

analysis of it is limited, though it is an important factor to be considered when a future tool to 

end users derives from this work. 
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To further explore this inconsistency aspect, the following experiment was conducted: 

rerunning the experiments 8 and 9 and creating similar experiments 13 and 14, including “From 

now on,” statement at the beginning as indicated by White et al. (2023), which was not fully 

implemented on 8 and 9 previously. On this test, experiments 8 and 13 run multiple times 

interchanged at the same run, same with 9 and 14. 

Figure 3.21 - Bird definition experiment 8 and 13 run multiple times providing different answers 

 
Source: Elaborated by the author 

 

What could be observed is that there were no clear benefits to the “From now on” 

statement on both experiments, though this will be revisited when experimented with multiple 

API requests on section 3.2.1.4. It was observed (Figure 3.21) that both prompts were effective 

on keeping a consistent idea in the answer, though the answer have a noticeable difference on 

every request, even if with a clear hunter/prey or meal relationship.  

Interestingly, when there is a more limiting prompt request with one word specification, 

throughout all executions the answer was practically the same, only on some situations adding 

a period at the end. This will be kept in mind when creating this project prompt, to limit the 
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answer when applicable, though not being a requirement as noticed that the same answer not 

being consistently does not mean that the idea of the answer is inaccurate or not provide the 

same idea. 

Figure 3.22 - Bird definition experiment 9 and 14 run multiple times providing different answers 

 
Source: Elaborated by the author 

 

Based on this section’s experiments, the approach for any performance analysis will be 

to compare the time of requests done on a relatively close time window that does not exceed 

minutes between them. On the other hand, for the answer consistency assurance it is more 

important to assure that repeated tests are executed to make sure that prompt is reliable to not 

have too much inconsistency on the answers.  

From the results above, two best practices were defined for experiments: 

• For performance comparation: different experiments to be executed in a very short 

time window.  
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o Why: The idea is to evaluate only prompt differences and avoid datacenter 

operating on different workloads between experiments. 

• For quality assurance: experiments to be executed multiple times with its time 

interval not playing a key part (except if happening between model updates, which 

are informed by OpenAI via email and website). 

o Why: Because of LLMs non-determinism, it is expected that answer is 

different on each request; the key is that they need to have consistent ideas 

and multiple executions assure and allow us to measure its deviation. 

 

3.2.1.2 GPT-3.5 Turbo vs. GPT-4 Turbo 

 

On this subsection, it will be reproduced the bird definition experiment with the GPT-4 

Turbo to then compare both models and highlight strengths and weaknesses on each model. It 

will also be explored if any model can be considered not fit to this project objective. 

Figure 3.23 - Bird definition experiment on GPT-4 Turbo without context definition 

 
Source: Elaborated by the author 

 

Based on the experiment, there is clear evidence that the same benefit of limiting the 

answer size is also presented on GPT-4 Turbo. From the generated tokens number, GPT-4 

Turbo generated 228% more tokens (78 against 256 tokens) than latest GPT-3.5 Turbo for the 

same open question “What is a bird?”. Therefore, GPT-4 Turbo clearly generates more text if 

not limited and can deviate from the requested objective (if not a very broad answer). 

When limiting the answer, the answer content is very similar between both models, with 

GPT-4 Turbo being slightly longer though all same concepts. When limiting it into one word it 

was precise and accurate though at different levels, but avian and animal are both accurate 

answers. 
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Figure 3.24 - Bird definition experiment GPT-4 Turbo with question first then context definition 

 
Source: Elaborated by the author 

 

As observed on Figure 3.24, ChatGPT-4 Turbo presented on this experiment 4 the same 

behavior as on previous experiment 1, where it gives a long answer with a lot of accurate 

information. Interestingly, it can be observed that without an answer size limitation, there is a 

focus on the perspective word, then the answer ends up providing different perspectives (as a 

prey, as a thread, as a frustration, etc.), which in general are accurate, but have some degree of 

hallucination. For instance, it says that cats would be intrigued with bird ability to fly, while 

cats cannot. 

When limiting the answer, the model provides a very accurate answer from an idea 

perspective, though it is observed a tendency to use over complicated words, for example, for 

a non-native speaker, words like “elusive” or “mesmerizing” may be not very known. This 

presents a possible challenge that will need to be addressed on the prompt by correctly 

providing a context of the interlocution desired, thus the provided answer can be clear to a 

broader population and not limited to native-speakers and very proficient professionals. 

Figure 3.25 - Bird definition experiment GPT-4 Turbo with context definition (cat) first then question 

 
Source: Elaborated by the author 
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Here is demonstrated the power of the prompt referred by White et al. (2023), once 

when “Act As …” statement is used, the description changes to a very hunter/prey discourse in 

which it is clear the intent to prey on the bird. Noticeable is that when size requirement is not 

present, the generated answer tends to be repetitive, describing both cat’s hunting abilities and 

bird’s characteristics that are linked with hunting/be hunted, all accurate and interesting, though 

could be classified as prolix at some level. Size limitation removes the problem and should be 

always pursued; while there are scenarios that a longer answer might be needed, there will be 

need to provide better questioning and requirements to the answer still. For the longer answers 

needed, a valuable approach is to request a structure in the answer, for example, one paragraph 

describing the issue, and one paragraph on how to solve the issue.  

Figure 3.26 - Bird definition experiment GPT-4 Turbo with context definition (human) first then 

question 

 
Source: Elaborated by the author 

 

These last experiments just highlight the already pointed and proven knowledge, which 

shows the value of scoping, limiting answer size and the “Act as” technique. On both models, 

it can be highlighted the tendency to use a set of no ordinary words (e.g., “elusive”, 

“tantalizing”, “pounce”, “mesmerizing”, etc.), which at some degree we might need to address. 

Based on the challenges presented and the demonstrations of the prompt patterns that 

are providing best results, a new prompt was developed in which the context of a hungry cat 

was settled, requesting what a bird is (but for its hunger) and then limiting the answer on size 

as well as on requiring to cite bird and use simple English. Therefore, there was a very consistent 

answer with all providing the sense that bird is the prey/food of the cat as observed on figure 

3.27. 



58 

 

Figure 3.27 - Bird definition experiment GPT-4 Turbo with context definition, closer question, answer 

limitations and requirements 

 
Source: Elaborated by the author 

  

The same experiment and prompt were performed on the latest GPT-3.5 Turbo with 

very similar result (added to Appendix A in case reader would like to review). Based on this, it 

is possible to assume that both models can provide similar results and accurate ones when using 

a more robust prompt. Though a more complex experiment, which requested ChatGPT to 

compare 2 different metrics from DR-Tools to tell which was higher and what is the difference, 

shown that GPT-3.5 Turbo needed more explicit request to calculate the difference, as with 

simple question: “what is the difference?”, the model sometimes answer simply that the 

difference is significant without providing the difference. 

Based on the experiments conducted, it was defined that the best prompts would follow 

the characteristics below: 

• Initiating with setting a context to ChatGPT and its persona with “Act As…”. 

• Avoiding open questions, preferring to use closer questions that already direct 

the model to the answer desired. 

• Providing requirements to the answer, like size of the answer, what interlocution 

should be used, level of detail wanted and if there is a need to cite something 

specifically. 

• Requesting explicitly on what is wanted from the output (especially when using 

GPT-3.5 Turbo). 

Next sections will build on all the concepts above and expand on them to a more specific 

scenario to software engineering and metrics analysis. 
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3.2.1.4 Explore multiple API requests vs. single API request 

 

This section explores the difference between having one single message against an 

“interactive” approach of using multiple messages to the API, to emulate the behavior of the 

ChatGPT interactive chat available on OpenAI’s website. 

It is important to highlight that the ChatGPT API does not support any session or context 

memory from previous API requests, as referred on ChatGPT API Documentation: “the models 

have no memory of past requests, all relevant information must be supplied as part of the 

conversation history in each request.”. To overcome this limitation, the API receives an array 

of messages, which can be from System, Assistant or User (referred at section 2.3.1). 

The feature was experimented to evaluate if any format would be more effective. Three 

scenarios were defined to be evaluated: first scenario would have all the prompt in one user 

message (scenario of the previous experiments), a second scenario with 2 user messages (one 

with context and second with request) and a third scenario with 1 system message and one user 

message, being the system message the context and the user message the request. 

The same explored bird definition experiment was used with the prompt established at 

the end of section 3.2.1.3 as the more robust prompts, which was “Act as a hungry cat. What is 

a bird for your hunger and what would you do to it? In one phrase citing bird and using simple 

English.” It will be shown with the ChatGPT API request body, so that the format and difference 

are clear to the reader. 

Figure 3.28 - Comparation 1 user message prompt, 2 user messages prompt and 1 system + 1 user 

message prompt using bird definition experiment) 

 
Source: Elaborated by the author 
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When analyzing the answers quality, there were no clear advantages on this separation 

for this simple scenario, having the answers variance between the different approaches being 

smaller or equal than the variance that the models usually have when the same request is 

answered multiple times (as observed on 3.2.1.2). It indicates that from the answer quality 

perspective there was no clear advantage. 

Besides, the prompt consumption on the context generation is higher when there are 

multiple messages because there will be more context to the message outside of the content 

itself. The difference between using a single message or multiple is not significant due to the 

limited number of tokens added, which will be less significant when considered the amount of 

data that some prompts will be providing (referred on 3.1.5). Therefore, if advantageous this 

approach could be a viable resource. 

The multiple user messages and the system message are already supported in the 

chatGPTAPI class, though it will not be used as no clear advantages were presented. It can be 

revisited in some future scenarios, for example, if a chatbot is implemented, in which to have 

the chat context would be needed to provide all messages exchanged for each new 

request/interaction. 

 

3.2.2 Prompt Engineering to provide data to GPT 

 

On this section, it will be presented the combination of section 3.1.5 with the findings 

of experiments on 3.2.1 on the prompt importance. It starts with the scope definition of what 

this project answer should be to then exploring the methodology and the experiments that 

created the final product of this proof of concept. 

Section 3.1.5 provided an experiment using tokens to present beginning and ending of 

data, like XML structure, which proves that ChatGPT was able to understand the data. 

Therefore, the same will be used to test other structures and delimitation tokens to confirm that 

data is understood, only changing it to have only one phrase and what the difference is (to 

confirm if data is understood).  

 

3.2.2.1 Evaluating GPT-3.5 Turbo vs GPT-4 Turbo  

 

This subsection presents the results of experiments on both models and with different 

delimiter tokens, so that the most effective token and model can be established. 
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For the latest GPT-3.5 Turbo, it was needed to explicitly mention to calculate the 

difference, once without explicitly requesting it would only say if the difference was significant 

or not. The importance to having a calculated difference is that it would be a value that ChatGPT 

would unlikely get right just by chance, so it would need to know which data to get to do the 

calculation. For the experiment, the prompt below was used as the first part of the prompt, 

followed by the data structure. The result can be found in Figure 3.29. 

 

"Act as a Software Architect. You are giving advice for refactoring a 

code with the following metrics beginning after the questions: what is higher, 

the average of line of code per type or its median? What is the calculated 

difference between them? Answer in one phrase for each question. Data:" 

Figure 3.29 - Experiment confirming ChatGPT understands the data provided 

 
Source: Elaborated by the author 

 

This experiment was designed to determine if ChatGPT understands the data, to provide 

us with the correct answer. The experiments were executed on the latest GPT-3.5 Turbo and 

GPT-4 Turbo models and with several delimiters’ tokens/markers. The delimiter 

tokens/markers are indicator of the beginning and the ending of the data; they can be found on 

table 3.2 with its result for the test above (just changing <BEGIN DATA TOKEN> and <END 

DATA TOKEN> to the tokens (strings) on first and second column from Table 3.2: 
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Table 3.2 - DR-Tools Metrics’ Output and classes 

Token to mark 

beginning of 

data 

Token to mark 

ending of data 

Context tokens used 

(extracted from 

ChatGPT API) 

Answer Quality (% from 2 executions) 

Correctness Information Amount 

GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4 

<BEGIN DATA 

TOKEN> 

<BEGIN DATA 

TOKEN> 
300 280 50%6 100% 100% Good 100% Good 

<BEGIN> <END> 260 240 100% 100% 100% Good 100% Good 

<DATA> </DATA> 260 240 100% 100% 100% Good 100% Good 

<D> </D> 260 240 100% 100% 100% Good 100% Good 

| (Vertical bar) | (Vertical bar) 206 206 100% 100% 100% Good 100% Good 

(Single Space) (Single Space) 206 206 100% 100% 100% Extra7 100% Good 

NO 

SEPARATOR 

NO 

SEPARATOR 
197 197 100% 100% 100% Good 100% Good 

Source: Elaborated by the author 

Table 3.2 describes the results from the experiment, which demonstrates that in general 

all delimiters provided good answers. There is a fundamental importance on the prompt as 

through our investigation on section 3.1.5, there were scenarios in which the model was not 

providing correct information without delimiters, though this experiment was with a simple and 

small dataset (just summary metrics, which are specified on section 2.4.1). 

Through a deeper analysis of the prompt data, it was observed that the structure of the 

data was not ideal once the average, median and standard deviation were packed as the same 

data. This could result in it being harder for the model to understand and compute on it, likely 

not an issue on which delimiter is used, but on the packaging structure of the information. For 

the previous experiment, the packaging was the following (not clearly specifying the average 

or package average and medium as its own data): 

• <BEGIN DATA TOKEN>SUMMARY OF METRICS: <BEGIN DATA TOKEN>Total of 

Namespaces: 32<END DATA TOKEN> <BEGIN DATA TOKEN>Total of Types: 

127<END DATA TOKEN> <BEGIN DATA TOKEN>Number of types/namespaces: 

3.97 (median: 3.00 - std dev: 2.90')<END DATA TOKEN> 

For the new experiment, which results are highlighted on table 3.3, the data packaging 

was changed so that the average, median and standard deviation all are inside its own data 

structure. Another improvement is the increased 50 test runs for each scenario, as previous 

experiment presented a low number of tests (2 test runs). Therefore, the new experiment 

measured more accurately the percentage of correctness as well as percentage of answers with 

 
6 Considered bad correctness as from 2 GPT Requests, while both replied with right difference value, one answered 

that the median was higher than the average.  
7 ChatGPT response provided more than just what was higher and what was the difference, but also extra 

information explicating that on software engineering it is important to consider both. 
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extra information (Information amount), this last one to measure when the model provides 

unnecessary information or is prolix. 

Table 3.3 - DR-Tools Metrics’ Output and classes 

Token to mark 

beginning of 

data 

Token to mark 

ending of data 

Context Tokens used 

(extracted from 

ChatGPT API) 

Answer Quality 

Correctness Information Amount 8 

GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4 

<BEGIN> <END> 282 283 94% 100% 
100% 

Requested 

100% 

Requested 

| (Vertical bar) | (Vertical bar) 186 216 72% 100% 

96% 

Requested 

4% Extra 

100% 

Requested 

 

NO 

SEPARATOR 

NO 

SEPARATOR 
193 193 90% 100% 

92% 

Requested 

8% Extra 

100% 

Requested 

Source: Elaborated by the author 

 

One interesting and important observation, not explicit on the table, is that on both 

models there was no test in which the model calculated the difference (average subtracted the 

median) that was calculated incorrectly. However, on GPT-3.5 Turbo, a weakness on 

comparing values was observed, which was evident when on 6-28% (depending on delimiter 

token used) the model provided an answer that the median was higher than the average, what 

is not true. Based on the 6-28% failure in this “simple” operation, it could be considered a high 

failure rate for a professional tool; using DR-Tools healthcare metaphor, a doctor that on 6-

28% of the times misdiagnoses a simple disease would not be considered “the best doctor”.  On 

GPT-4 Turbo, it is interesting to note that thought the analysis was consistently done correctly, 

sometimes the values used for it are highlighted/displayed, as in the answer: “The average of 

lines of code per type (64.36) is higher than its median (38.00). The calculated difference 

between them is 26.36.”, while on other it does not, for instance: “The average of line of code 

(SLOC) per type is higher than its median. The difference between them is 26.36.” Therefore, 

if highlighting the data that based the answer is needed, the best is to explicitly have it required 

in the answer by the prompt. 

Based on the higher tendency of GPT-4 Turbo to contextualize the answer with the 

metric numbers, it was experimented to change the prompt for the experiment using GPT-3.5 

to request the metrics and then compare it, which resulted on the prompt below. The prompt 

 
8 If it is only providing the requested information or is giving extra information, which is unnecessary information 

to answer the question. 
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was used on a new experiment limited to running the prompt on GPT-3.5 Turbo with the 

Vertical bar separator to analyze if correctness would improve. 

 

"Act as a Software Architect. You are giving advice for refactoring a 

code with the following metrics beginning after the questions: what is the 

average and median of line of code per type? Which is higher?  What is the 

calculated difference between them? Answer in one phrase for each question. 

Data:" 

 

The prompt was not able to improve the model correctness, besides increased its 

hallucination, with examples like “Average and median of line of code per type is higher. The 

calculated difference between them is 28.86.” It was an interesting phenomenon that as more 

complex prompt was created it increased GPT-3.5 Turbo hallucinations. It could be explored 

to have separate requests and do first a request to retrieve the data, then compare it, instead of 

an all-in-one request though for GPT-3.5 Turbo this will be left in case of future works 

revisiting this model. 

Due to these results and the difficult prompt engineering to extract a consistent answer 

from GPT-3.5 Turbo and the already mentioned prompt size limitation for this model, it was 

determined that the best fit model for the project would be GPT-4 Turbo. Therefore, from this 

point onwards, this work focuses only on doing experiments and definitions GPT-4 Turbo’s 

usage. 

 

3.2.2.2 GPT-4 Turbo API rate limit and its implications 

 

This subsection explores and contextualizes the limitations that OpenAI’s models have 

on its API usage and its impact on our experiments and future tool. There are important 

considerations on what can be done by the models and how ChatGPT API should be set up to 

reuse this work in the future. 

During the experiments using ChatGPT API with bigger datasets, like type metrics, a 

major challenge is that the amount of token use per request is high, around 15,000 for the project 

analyzed (DR-Tools Metric code itself). The dataset consisted of 128 types and each type had 

10 metrics, therefore the total data amount would be the 128 types multiplied by 11 (10 metrics 

plus the type name), resulting on a dataset of 1,408 data entries. Considering the structure 

already presented, where there is further information than only the metrics itself, tokens would 
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exceed the 1,408 data entries, which should not be an issue as the GPT-4 Turbo model supports 

up to 128,000 tokens. 

Though there is a second limitation to be observed that is the API rate limit, which is 

either the number of tokens requested per minute or the number of requests per minute. This 

heavily impacted this project and generated bottlenecks where the experiments were failing 

with HTTP Error 429, which was already presented on subsection 3.1.5, meaning that the API 

limit was exceeded. 

Based on OpenAI documentation, the Tier 1 usage (which this project was initially 

using) should be able to have 150,000 tokens per minute and 10,000 requests per minute, though 

from the experiment OpenAI was limiting on a much lower volume. On the experiment only 1 

request of 10,000 tokens was successful, if this limit exceeded it the API request would fail. 

To determine what limit was being effectively applied, an experiment with a reduced 

number of metrics was run. From this experiment, it could be inferred that OpenAI was limiting 

to around 10,000 tokens maximum for successful requests for Tier 1 accounts. Though two or 

more requests with 10,000 tokens could not be run multiple times at the same minute as 

illustrated on experiments outcomes below, where both have the same prompt requested and 

only one of them was successful.  

Figure 3.30 - Successful ChatGPT API Request with Type metrics: SLOC, NOM, NPM, WMC, DEP, 

I-DEP and FAN-IN metrics 

 
Source: Elaborated by the author 
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Figure 3.31 - Failed ChatGPT API Request with Type metrics: SLOC, NOM, NPM, WMC, DEP, I-

DEP and FAN-IN metrics 

 
Source: Elaborated by the author 

 

As the experiments are respecting the documented OpenAI limitations, OpenAI’s 

support was engaged, which just provided us with instruction to limit the usage rates or to 

request aditional rate, though no explanation on why the rate was limited below the documented 

rate (full answer attached on appendices) Likely this issue is due to GPT-4 Turbo model be 

constrained, so OpenAI reduces the limit to keep it operationally. 

To progress on this work, the analysis’s scope was reduced to find and determine what 

amount of data it could be consistently run without issues, meaning number of metrics that 

could be used. This would consist of to limit the number of metrics that are compiled into the 

prompt, referred on 3.1.4, so the logic was created to run the process normally, though when 

creating the prompt string from the data, to limit to a hardcoded limit, like illustrated on Figure 

3.32. In future works, better approaches could be investigated, as detailed in section 3.2.4. 

For Type Metric data, experiments determined that one isolated request with 85 types 

would be successful using <DATA> and </DATA> as delimiter tokens. Additionally, when 

run 10 consecutive requests, from this project empirical experience, rate limit was not only 

applied on a per minute base as, as using “Thread.sleep(60000);” to assure less than 1 request 

per minute was also resulting on further rate limitation (HTTP Error 429) than 1 isolated 

request. Therefore, the maximum type metrics would need to be reduced to 50 types to be 

effective to all delimiter tokens (from table 3.3) for experiment allow to run 10 consecutive 

tests, to provide with accurate success rate. This will be initially explored in subsection 3.2.2.3 
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to assure fair testing, in which all the delimiters are tested with the same dataset size (number 

of types/classes).  

Figure 3.32 - Experiment limiting number of types 

 
Source: Elaborated by the author 

 

To avoid issues on the limiting, a sleep between executions was also introduced to assure 

that the experiment does not suffer any limitations. Once the project’s OpenAI account was 

upgraded to Tier 3, the issues were no longer seen for this project size. As projects can be as 

complex as the developers define, keep the current logic of provide a limitation will be needed, 

though at a higher value. This limit is needed independently of rate limitation, as GPT-4 Turbo 

model supports requests up to 128000 tokens, therefore datasets that would generate more than 

this number of tokens would naturally not be supported. 

Project account was upgraded to Tier 3 usage, which for used gpt-4-turbo-preview 

would have 300,000 Tokens per minute and/or 5000 requests per minute. After a period of 

hours after the account upgrade, there were no longer issues with type metrics (observed on 

experiment in Figure 3.33), as rate limitation was higher, only facing issues when multiple runs 

were run without a 1 minute sleep.  
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Figure 3.33 - Experiment to find types with higher than 20 dependencies, with all 128 types 

(successful) 

 
Source: Elaborated by the author 

 

Although the tested project no longer faces issues, as projects can increase its size, there 

will still be a limitation, which will be provided as conclusion of this subsection. To get into 

this conclusion, it was tested the method metrics, which due to its bigger dataset resulted on 

failure when limiting on a very high value (same HTTP 429 error, due to rate limit). 

Figure 3.34 - Experiment limiting number of methods, failing 

 
Source: Elaborated by the author 

 

To determine the maximum acceptable number of methods and by extension the number 

of tokens that OpenAI’s Tier 3 usage would allow it, same experiment for method was executed. 

From the experiment, it was determined that the method limit would be around 985 methods 

and around 66,000-68,000 tokens. This would be our final limits for method on the version 

resulting from this work.  

 

 



69 

 

Figure 3.35 - Experiment to find the longest method, limiting to analyze 985 methods (successful run) 

 
Source: Elaborated by the author 

 

For this proof of concept, this will be a limitation, though it could be explored on future 

works to improve this by applying techniques, like simplifying the method names when sending 

to ChatGPTby creating a dictonary of methods. This could be implemented as following: 

• When creating the prompt data, in the prompt each method is assigned a simpler 

name, like method1, method2… 

• On the prompt to ChatGPT, it is only provided the method1 name, but stored 

locally a dictionnaire with the mapping between the real method name to 

method1; 

• ChatGPT responses need to be processed to replace all method1 name references 

to its real name. There could be 2 ways to do so: 

o Creating a class or classes to hold the logic to scan the text to find this 

occurencies and change it, having the code processed locally; 

o Or, creating a prompt to provide the answer and the conversion structure 

to request ChatGPT to replace all method1 with its real name (which 

needs to be provided on the prompt). 

When tested the approach above, by sending ChatGPT API just the placeholder names, 

it was noticed that there is a reduction on the number of tokens used, going from 65991 tokens 

to 57188 tokens (on 985 method limitation), giving a reduction of 8803 tokens used (or 

13.33%). With this improvement, the ChatGPT is able to analyze the full project on this test 

case (which has 1185 methods), besides also improving the answer correctness as it will be 

presented on subsection 3.2.2.3. 
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Figure 3.36 - Experiment to find the longest method with name placeholder, limiting to provide 985 

methods (successful) 

 
Source: Elaborated by the author 

 

Interesting to note that without this placeholder strategy, which will be called as 

dictionary technique (later it will be present the concept of having a dictionary for this), it is 

expected that as methods tend to have more complex names, method name will be converted 

into higher number of tokens and as there is less metrics per name, also influence on the prompt 

to have higher token per data entry. This was confirmed on experiments, as on type’s metric 

each data entry would be 10.79 tokens/data entry, while on method’s metrics10 tokens/data entry. 

As result, less data could be analyzed on method analysis, though more methods comparing to 

number of types, because types have more metrics than methods.  

In conclusion, this project will work on limiting the size of the entries to not surpass 

around 67,000-68,000 tokens, which would translate on around 56911 types and 985 methods, 

when analyzed separated. Future enhancements on data limitation could be explored, like: 

o token usage improvements, which should be explored via testing. This would just push 

the limit higher; 

o upgrade OpenAI account to a higher usage tier; considering that model has 128,000 

tokens limit per request, this would just push the limit higher; 

o create scalable solution to break the data into blocks and send requests to ChatGPT in 

batches of data, then combine the results into new requests to ChatGPT. For instance, 

send first 100 types and ask which to prioritize, than send the top 1 from each batch to 

a new request. 

 
9 Calculated by the differences on context tokens used on experiment with data from 127 types and experiment 

with data from 128 types, which was 3298 (15169-11871) tokens, giving a 117.78 tokens per type. As each type 

has 6 data entries (5 metrics+name), finally it would give 10.7 tokens/data entry. 
10 Calculated by the differences on context tokens used on experiment with 700 method limitation and experiment 

with 900 method limitation, which was 13864 (60418-46554) tokens, which give us a 69.32 tokens per method. 

As each method has 6 data entries, finally it would give 11.55 tokens/data entry. 
11 Calculated based on the limit of 67,000 context tokens found empirically divided by 117.78 (token/type) found 

empirically. 
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3.2.2.3 Defining data structure for GPT-4 Turbo  

 

This section presents the finalized data structure to be used, the experiments that lead to 

it, its success rate, and a forward-looking vision on areas to improve. Therefore, this section 

also presents more robust testing with bigger dataset and number test runs, so that more 

accurately analyzes the results and provides conclusions. 

As an expansion from experiments on section 3.2.2.1, this session experiments will keep 

focusing on easy-to-validate tests, though experiment on bigger dataset only on GPT-4 Turbo. 

For this purpose, type metrics (referred to in section 2.4.1) are used, and the test is to request 

ChatGPT which types have more than 20 dependencies. 

The experiment is done with all delimiter markers and results are compiled on table 3.4, 

as already done in similar experiments on section 3.2.2.1. Due to initial API rate limitation, 

before the project’s OpenAI account be upgraded to Tier 3, this first experiment was conducted 

limiting to analyze only 50 types as that was the maximum number of types that ChatGPT 

would process for some delimiters token. The result expected was to have 4 specific types 

returned, which were between the 50 first listed types and have more than 20 dependencies. 

The experiment is also time consuming as it was required to wait over a minute for each 

next API call (due to already discussed API rate limitation on Tier 1) and the test consisted of 

10 consecutive test runs, taking over 70 minutes for all delimiters. From each experiment, it 

was read and interpreted the ChatGPT API printed answer on the console (extracts partially 

added to Appendix A) to determine its percentage (from the 10 tests) of correctness and if it 

have the right information amount, to then compile in the Table 3.4. 

Based on the experiment results, it was defined that the best data configuration was 

using <D> and </D> to signalize the begin and end of a data, which responded correctly and 

with precision in all executions as opposed to other configurations. This decision is also 

supported by the fact that it consumes the least context token between other delimiters with 

more than 80% correctness. There are important benefits from this, for instance, being able to 

handle bigger codes (higher number of types), being less expensive (OpenAI charges per token) 

and having faster processing. 
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Table 3.4 - Experiment to determine effectiveness on recognizing types with 20+ dependencies 

Token to 

mark 

beginning of 

data 

Token to mark 

ending of data 

10 consecutive runs 

Nº of types Context tokens 

Answer Quality 

Correctness 
Information 

Amount 

<BEGIN 

DATA 

TOKEN> 

<END DATA 

TOKEN> 
50 8372 90% 100% 

<BEGIN 

TOKEN> 
<END TOKEN> 50 7170 50-100%12 100% 

<DATA> </DATA> 50 5968 80% 100% 

<D> </D> 50 5968 100%13 100% 

| (Vertical bar) | (Vertical bar) 50 3917 50% 100% 

(Single Space) (Single Space) 50 3865 50% 100% 

NO 

SEPARATOR 

NO 

SEPARATOR 
50 3363 70% 100% 

Source: Elaborated by the author 

 

By upgrading OpenAI’s Tier 3 usage (discussed in section 3.2.2.2), the experiment with 

bigger dataset could be run, which was used to validate the effectiveness of the structure or if 

any further prompt engineer could be explored. Therefore, the same experiment was run with 

all project’s types, then the answer should return 5 types (1 was not on first 50 types DR-Tools 

report), though the result was not as good as previous limited scenario, as answer was only 

completely correct on 18 of the 50 executions. 

Figure 3.37 - Experiment to find all types with higher than 20 dependencies (no limit, 128 types) 

(successful) 

 
Source: Elaborated by the author 

 

The low success rate compared to previous experiment required further analysis as the 

experiment is requesting 5 answers and is returning types or substrings of type’s name that do 

have more than 20 dependencies. On table below is presented an illustration of the result divided 

 
12 Can be considered 100%, if “options.OptionsTest” are considered as if it was “selection.options.OptionsTest”. 

Otherwise, 50% as it was referred 5 times to “options.OptionsTest” (which does not exist and has no other type 

with a name close to it). 
13 All answers were the same and precise on the 10 tests. 
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by type that should be reported, highlighting the number of requests that were missed or 

misrepresented on the answer (the console outputs are on Appendix A). 

Table 3.5 – Data analysis success rate by type (100 iteration using <D></D> and real names). 

Type Missing on Misrepresented 
Success 

Rate 

Missed 

alone 

Missed with 

other 

output.MetricResultJSON 6  88% 4 2 

parser.java.visitors.TypeVisitor 2  96%  2 

parser.java.visitors.MethodVisitor 0  100%   

selection.options.Options 0  100%   

selection.options.OptionsTest 18 3 58% 15 2 

Source: Elaborated by the author 

 

The results of the experiment above provide us with a good 88.4% success rate when 

analyzed individually by type listed, because though only 36% of executions listed all types, 3 

types have over 96% success rate. Based on this relatively high success rate for complex and 

large data, this structure could be considered sufficient for this work as a proof of concept as 

good success rate was observed on smaller datasets.  

By analyzing the experiment above’s data, there was a common factor to the types that 

was not being correctly and consistently reported: all of them have other types with similar 

names or that were a substring of them. For example, “selection.options.OptionsTest” has 

another type name as part of its name as it is the case for “selection.options.Options”. It was 

also observed that in some cases there was a type listed that did not exist, though were a 

substring of a type’s name, for instance “selection.options” is not a type but is a substring of 

both types listed above. 

Therefore, if there were issues on identifying what was the name of the type, what could 

help the LLM to correctly identify the data is providing a list of all types in a clear way. Based 

on this idea, a new experiment was run with prompt structured as below: 

• Have a system prompt with: 

o the statement “Act As…”; 

o context of what it will be analyzed with description of data structure; 

o then the list of types separated by “|”; 

• Then a second user prompt with: 

o question/request; 

o answer limitation requirement; 

o metric data; 



74 

 

With the structure above, the same experiment from Figure 3.37 and table 3.5 was 

executed, though this did not prove to have any advantages, even if the number of tokens has 

increased. Therefore, this would not be an effective solution and will not be further investigated.  

Another option already discussed on API rate limitation section (section 3.2.2.2) is to 

simplify the name of the types to avoid this misinterpretation by the model, which is close to 

the human failures to analyze similar words. The concept of this idea would be to create a 

dictionary, assigning to all project’s names (for types, namespaces, or methods) a new unique 

and simpler name and use that unique/simpler name to provide to ChatGPT API request. The 

process would be as follow: 

• DR-Tools run the analysis; 

• MetricResultGPT class would create the placeholder’s name, simple and unique, 

like method1, method2… 

• MetricResultGPT would create the dictionaries with mapping between real name 

and placeholder name, which could be another class and/or part of the prompt 

engineering class; 

• MetricResultGPT would return the prompt data part using only the new simple 

names; 

• ChatGPT API would be called and respond using only the placeholder’s name, 

which will reply using the placeholder’s name; 

• Before providing the answer to the end user, it would be needed to go through a 

process to convert the placeholder’s name back into the original name. When 

implemented, approaches below could be tested: 

o creating a logic inside the DR-Tools project to have the mapping in the 

class and check the ChatGPT API answer for occurrences of the 

placeholder; 

o providing ChatGPT API its previous answer (with placeholder) and the 

mapping list of real names/placeholder and request it to change 

occurrences of placeholder per the real name. 

To confirm the approach above, the placeholder creation and prompt generation were 

tested with it, so that only the placeholder’s name is sent. On this project test, a logic was created 

to when creating the prompt string with DR-Tools’ metric data, all names being replaced with 

a prefix “type” and a counting integer number, so that names resulted on a list starting on type1 

until type 128. 
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Figure 3.38 - Experiment to find all types with higher than 20 dependences using dictionary technique 

(successful) 

 
Source: Elaborated by the author 

 

With the dictionary technique, it was possible to achieve 100% success rate on the 

dependency test, which has proven to be the most effective methodology so far, though it adds 

complexity to the problem as it needs to keep a dictionary and have a logic for the translation. 

To execute the translation, it was ChatGPT API, with instruction to act as a “find and replace 

tool” and replace the answer with values from the placeholder/type name mapping list, which 

showed successful results as on figure 3.39, in which it identifies and translates correctly. 

Figure 3.39 - Experiment to find all types with higher than 20 dependences using dictionary technique 

(successful) 

 
Source: Elaborated by the author 

 

To validate the effectiveness of the dictionary technique, it was tested to run the test 100 

times and the result was impressive, with 100% accuracy and precision. Based on these results, 

it was determined that this will be the structure to be used. Therefore, it was concluded that the 

data structure for this project’s prompt will be: 

• format the data with <D> to signalize the starting of a data or data group; 

• data name (method name, type name or namespace name) to be provided with a 

simple placeholder name, in format like method1, type1 or namespace1; 
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• format the data with </D> to signalize the ending of a data or data group; 

• create a dictionary to be provide on string format, with mapping of placeholder 

to real name; 

• each insight to be generated with 2 ChatGPT API calls: 

o first with data and request using placeholder names; 

o second with first answer and placeholder to real name mapping, 

requesting for replacement. 

Though the methodology already has successfully reach 100% from our testing, in 

future works the below could be evaluated and changed if advantages are proven: 

• using fine-tuning model provided by OpenAI to train the ChatGPT to recognize the 

data, though for GPT-4 Turbo that is currently only on experimental access program 

and would also require data training to be developed; 

• developing a more complex prompt engineering, other techniques could be tested, 

though it might not be possible to determine the success rate without developing and 

testing it; 

• transforming the second API request (for placeholder replacement) into a local 

program logic, though needs to study the investment. 

In conclusion, with the placeholder and dictionary strategy it was possible to reach 

100% accuracy and correctness on the project’s experiments, therefore no open topic would be 

kept on this other than exploration of more efficient techniques to reduce time and/or token 

usage. However, further testing might be needed to assure if this 100% success rate resists 

further testing and investigation to prove it as near perfect. 

 

3.2.3 Prompt Engineering structure 

 

This section summarizes and presents the process to determine the chosen prompt 

structure to the proof of concept by revisiting some previous experiments’ findings. From such 

experiments, there are already a set of findings (or best practices discovered/confirmed) that 

will be used to guide the project prompt engineering and to define the final prompts.  

Before defining the prompt structure and best practices, experiments were performed to 

validate if ChatGPT would understand and have knowledge from software engineering. These 

experiments produced positive results with correct and insightful feedback/advice, though hard 

to read or with very inconsistent ways of answers. To address this issue, the previously 
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discussed best practice to provide with answer requirements, specifically size, was implemented 

and provided great results. 

Furthermore, it was found via experiments more effective to provide the data to be 

analyzed at after the request/question. Otherwise, the model’s answer correctness could be 

negatively impacted by hallucinations. A great example is the previous referred experiment of 

identifying types with more than 20 dependencies, which provided worse answers when prompt 

was changed to provide the type names before the prompt request/question.  

Figure 3.40 - Extract from experiment to extract types with 20+ dependencies though providing data 

before the request 

 
Source: Elaborated by the author 

 

The experiment resulted on an answer containing more types than it should, as opposed 

to every previous iteration of this experiment the model’s answer never provided more than the 

expected 5 types, the issues were when 1 or 2 types were missing. Likely this behavior is due 

to LLMs being statistical models and having the data provided before the question influences 

the model to include the data into the answer to then filter some out. However, when 

request/question is before the data, the model is influenced to start formulating the answer and 

then analyze which data should be included. As this work does not seek to explain ChatGPT 

behaviors but understand how to use them, no further investigation or discussion will be raised 

on the reasons for this behavior. 

Based on findings throughout this project’s experiments, a set of best practices was 

defined as detailed below: 

• Provide the model with context first: 

o Start with the “Act As …” statement. 

▪ Why: helps the model to contextualize what it is receiving and provides 

an answer to the perspective of who he is acting as to better understand 

the words. Because, for example, “SLOC” on software engineering 
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means Source Lines of Code, while for engine technology means 

Specific Lube Oil Consumption14. 

o Clarify the activity the model is performing. 

▪ Why: helps to drive the answer to fulfill the activity. 

o Clarify what will be presented to the model. 

▪ Why: helps to make sure that it will be better interpreted. 

• Provide the model with answer’s requirements: 

o Provide the size desired for the answer (limit its size). 

▪ Why: it provides a more accurate and direct to the point answer. 

o Provide the format for the answer. 

▪ Why: avoid having unnecessary information or difficult to understand 

formatting, like big text blocks. 

• Provide prompt in the following sequence:  

o Start with the context, starting “Act As …”. 

▪ Why: helps the LLM to understand which should be its perspective over 

the remaining of the prompt. 

o Request/question. 

▪ Why: a strong requirement is to have it presented after the context and 

before the data, not necessarily the second item, as context could be 

composed of multiple sentences. 

o Request/question requirements. 

▪ Why: better answers are generated when answer’s requirements are 

established, being after the request/question have been proven to be more 

effective, though not as strongly as having context first and data after 

question. 

o At last, the data. 

▪ Why: in previous experiments, it was noticed if data is provided before 

the request, the answer would be more influenced by the data than what 

was requested, so providing at last improves the quality and avoids a 

prolix answer. 

 
14 Found via https://acronyms.thefreedictionary.com/sloc. 
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Based on the best practices above, the structure of this work prompts will be as the 

following example, which (pending confirmation studies) is also an applicable for other 

projects, tools, or datasets: 

• context: “Act as a Software Architect, providing advice to a new developer on a 

refactoring project, based on the summary metrics provided after <D>.” 

• request/question: “What should be the areas of focus to the developer to refactor 

this code based on the Metrics?” 

• answer requirements: “Answer the top 2 in a list, for each provide one paragraph 

justifying why needs refactoring and another paragraph describing refactoring 

techniques to be used citing references with link.” 

• the structured data. 

As explained on last section, the dictionary technique will be used to convert names to 

placeholders and then convert it back from ChatGPT answer, though all this abstraction is 

implemented directly on chatGPTAPI class, and the dictionary is generated via MetricOutput 

class. This will be transparent for end users and prompt engineering, as the data provided to 

ChatGPT API will only be using the placeholder and chatGPTAPI class will embed the 

translation logic as explained on section 3.1.1.1. 

One important consideration is that due to LLM’s non-deterministic nature, two 

executions with same prompt and data would not produce the same response. This requires 

more testing for validation and prompt engineering improvements to reduce inconsistencies; in 

previous experiences this phenomenon was observed and reduced by better prompt engineering. 

Considering the complex topic that is code refactoring and software engineering, when looking 

from a top-down perspective, it might be harder to determine if advice provided is the best 

decision, therefore the focus will be on if it is good advice. 

These prompt engineering structure’s obtained results, which will be presented and 

explored on chapter 4, demonstrate the value of an integration between ChatGPT and DR-Tools 

to the software engineering community, which was this work’s goals with this proof of concept. 

Therefore, for this work no further investigation and improvements will be explored for prompt 

engineering. 

For future works, it could be further investigated how to assure quality and/or improve 

consistency, though more importantly new prompts could be developed to expand the questions 

answered by the integration. Another research route could be to do a deeper analysis of the 

results to quantify the integration effectiveness and precision. 
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3.2.4 Prompt scope definition 

 

This subsection presents what prompts and outputs were desired in the tool for its final 

version, therefore the context of what was developed is clear to the reader. 

This project goal is to prove that ChatGPT combined with DR-Tools can provide 

valuable insights on refactoring projects to a software engineer as a proof of concept. Therefore, 

no further automation will be explored at this work, and the scope will be limited to answer the 

questions below: 

• What should be focused on the code refactoring? 

• What should be done? 

• What technique should be used? Including some references about the topic to 

the developer to further learn. 

For the proof of concept, it was established that no changes to DR-Tools’ commands 

would be made, so the same commands will be used by end users (which was explained on 

subsection 2.4.1). Thus, when user is running the tool, it will already define which data will be 

analyzed, this project just changes that at the end of the data presentation there is an insight of 

what should be investigated, refactored, and which technique to be used, all provided by 

ChatGPT via this project’s integration.  

Due to ChatGPT API limitations, the scope of this work needs to include limitations to 

what can be analyzed, as currently ChatGPT API provides limitations for longer prompts, due 

to its rate limitation (which sometimes is inconsistent with its documentation). In result, for 

some large java projects, some insights need to have limited amount of data provided to 

ChatGPT model, otherwise the API request would fail.  

As proof of concept, the solution delivered is that all requests will have an insight 

provided from ChatGPT, though if the project number of some entity exceeds what the 

integration can support, the insight will be only based on part of the data types and the user will 

be informed of it. No solution for this challenge was developed to support unlimited data, 

though if there is a need for such, in future works the following options could be studied: 

• segmenting the data into groups of supported amount and multiple requests for each 

group, then take the ones highlighted as needing refactor to run a next interaction and 

repeat the process until it is possible to run for all types; 

• do a cascading analysis by hierarchy, it means the analysis starting on the namespaces, 

which will return which namespaces need refactoring the most. Then just do the analysis 
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of the types from those namespaces. The same interactions could then be done to 

methods; 

• for every analysis, if the number of entities exceeds what ChatGPT API can handle, a 

filter out which entities’ metric data will be provided in the prompt, based on its metrics 

compared to the statistical data, for example. 

 

3.2.5 Prompt Engineering Class 

 

This subsection explores how prompt engineering is coded for integration. The prompts 

content generation is centralized on the promptEngineering class, which is based on the data 

analysis selected by the user as the output, will provide the best prompt to be used for the 

context.  

This approach allowed this project to have a more modular architecture, which 

simplifies improving the prompts and the prompt logic without needing changes to the rest of 

the classes. The class is created with the metrics object and the output option (referred and 

explained on subsection 2.4.1); currently the output option is defining the prompt and the 

metrics object provide the data in its prompt form, developed on subsections 3.1.5 and 3.2.3. In 

addition, having the metrics object within the class allows us to use the metrics data in prompt 

decision making, a powerful enhancement which could add more precise prompts and answers 

when implemented (in future works).  

This class holds the logic to build the prompt, which will be returned by one public 

method, while this method uses other private methods to generate the different sections of the 

prompt, being the context or the request. There is no need to provide information to the class 

after its creation as it is created with the output option requested and the metrics object, what 

allows it to have all info needed for decision making. 

As proof of concept, the final product of this work is subject to future enhancements to 

achieve its full potential, which can be easily explored by the modularity of the class. The 

current format of the class is simple and with limited prompts, though new versions with more 

complex arrangements can be explored in future work. 

The first version of the class used on this project is divided as below: 

• the class constructor: 
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o which receives the output option as a string (values like “-s”) and an instance 

of the class holding the metrics (DR-Tools’ “MetricOutput” class), both are 

stored in the class; 

• a public method “returnPrompt“: returns the full prompt to be used: 

o concatenates parts of the prompt to return in a string: 

▪ prompt’s context part: returned from private method; 

▪ prompt’s request part: returned from a private method; 

▪ metric data: returned via MetricOutput class; 

• private method “promptContext()”: returns the context part “Act As..”: 

o based on output option, provide different contexts; 

o can be improved to already give direction based on some metric; 

• private method “promptInstruction()”: return the request to the model with 

instructions on what format the response should be. 

o based on output option, provide different requests; 

o can be improved to already narrow the request to what data might indicate. 

Currently the class has a very simple structure and limited logic, which is enough for 

this proof of concept and to already provide valuable insights. However, for the future works, 

it was already envisioned two improvements that could be explored as a natural evolution and 

validate if further value can be added, which are: 

• using the data (retrieved via MetricOutput class) to base the prompt generation, 

then providing a more closed set of requests to ChatGPT model; 

• developing a prompt logic to use a previous response from ChatGPT to create 

new prompts, for example: 

o 1st ChatGPT API Call: requesting which types need refactor based on the 

types metric’s data; 

o 2nd ChatGPT API Call: requesting what methods should be refactored 

based on the methods metric’s data, providing only the data from the 

methods of the types appointed by the 1st request’s answer; 

o 3rd ChatGPT API Call: requesting what should be improved and what 

technique to be used, based on the metrics for the method’s appointed on 

2nd request’s answer. 
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3.3 DR-Tools Code Health proof of concept 

 

This section presents the potential of the integration of DR-Tools Code Health with 

ChatGPT API, which will only be possible once DR-Tolls Code Health code is finalized. 

Therefore, the experiments performed are using data generated by DR-Tools Code Health, but 

manually formatted and hard-coded into the ChatGPT integration according to previous 

sections specifications. The section will be divided as following: 

• DR-Tools Code Health data; 

• Prompt engineering for DR-Tools Code Health experiment; 

• Results from DR-Tools Code Health experiment. 

 

3.3.1 DR-Tools Code Health data extract 

 

This subsection presents the data used for this proof of concept experiment and how it 

was obtained. It will also be explained at a high level what the data is and why this was chosen. 

DR-Tools Code Health is the evolution of the already explored DR-Tools Metrics, 

which the biggest enhancement is its code smells detection and ranking, though there are several 

other enhancements, like more metrics, code smells co-occurrence, creation and calculation of 

an indicator, CDI (Code Disease Indicator), etc. For this work, it is explored just one of these 

enhancements, which will be the code smells detection. 

Code smells detection data was selected for this proof of concept as it could be 

interpreted as a direct extension of previous worked metrics and was the initial goal of this 

project. Also, as the integration is manually generated and prompts are being transcript from 

results extracted from the tool, it gives the results on a similar structure from DR-Tools Metrics 

when run for type metrics. 

The data used for the proof of concept experiment was the output of command “lst --top 

5”, which reports the 5 types with code smell that require refactoring the most according to DR-

Tools Code Health computing. This specific data was selected to reduce the amount of manual 

work to later transcript the results into prompt form. 
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Figure 3.41 - Output from DR-Tools Code Health command “lst –top 5” 

 
Source: Elaborated by the author 

 

The data to be used on our experiment is the one presented on Figure 3.41, which was 

also extracted in text form, which will be formatted to be used in the experiment. The prompt 

creation will be explored in the next section. 

 

3.3.2 Prompt Engineering for DR-Tools Code Health data 

 

This section presents the prompt engineering done to have the data extracted in section 

3.3.1, prepared to be fed to ChatGPT via API. It will explain the process and the reasons for the 

decisions. 

The prompt engineering of this experiment is using the knowledge and definitions from 

subsections 3.2.2.3, 3.2.3 and 3.2.4. Therefore, the prompt will be structured as below: 

• “Act as” statement:  

o “Act as a Software Architect, providing advice to a new developer on a 

refactoring project, based on the code smells metrics provided after 

<D>.” 
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• Question/request: 

o “Which types should be the of focus to the developer to refactor this code 

based on the Metrics?” 

• Answer requirements:  

o “Answer the top 2 in a list, for each provide one paragraph justifying 

why needs refactoring and another paragraph describing refactoring 

techniques to be used citing references with link.” 

• Data: 

o Formatted as defined on section 3.2.2, which is to structure with <D> to 

signal begin of a data and </D> for end of a data. On Figure 3.42 it is 

represented the data with extra “new lines” to facilitate reading. 

Figure 3.42 - DR-Tools Code Health command “lst –top 5” data in prompt format (added new lines to 

facilitate reading) 

 
Source: Elaborated by the author 

 

The final prompt for this experiment was hardcoded directly into the code and is 

presented in figure 3.43 with the code used. This prompt will be used to generate the ChatGPT 

answer analyzed in the next subsection. 

Figure 3.43 - Final prompt for DR-Tools Code Health experiment and how it was coded 

 
Source: Elaborated by the author 
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3.3.2 ChatGPT insights for DR-Tools Code Health data 

 

This subsection presents the results from the experiment and gives a brief analysis of 

the results obtained. Based on such results, the subsection finishes by providing a forward-

looking perspective and what is envisioned as potential integrations. 

Using the prompt defined in section 3.3.2, the experiment presented on Figure 3.44 was 

conducted to request for insight from ChatGPT API. The result was consistent with experienced 

with DR-Tools metrics and insightful using the metrics, which are present on both, also using 

the smells detect to corroborate model answer, as can be observed in the response obtained. 

Figure 3.44 - DR-Tools Code Health experiment results 

 
Source: Elaborated by the author 

  

When analyzing the quality of the answer, it is observed that it is consistent with what 

is being observed on other experiments, to be explored on section 4.2, which runs a similar 

experiment, but only with DR-Tools Metrics data. It is important to note that on both requests 

the observations over the metrics are correct and indeed the types are the ones which have more 

complex logic and likely are taking too many responsibilities. 

 Furthermore, when asked about techniques to be used on the refactoring, it provided 

valid and existent techniques and referred to well stablished works on refactoring and software 

engineering, like Fowler (1999) and Kerievsky (2004), both previously mentioned on this work. 

 In conclusion, this experiment proves that the integration between DR-Tools Code 

Health and ChatGPT API holds a lot of potential and already proved to be insightful and provide 
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value to the software engineering community to facilitate data interpretation, especially for less 

experienced developers doing refactoring projects. Any further analysis on the quality or 

implementations will be left for future works as there are multiple possibilities for future 

projects, for instance: 

• performing the same level of integration with DR-Tools Code Health as it was done 

with DR-Tools Metrics; 

• performing a deeper analysis to quantify how precise are the insights provided by 

ChatGPT, looking from the perspective if they were the most effective; 

• designing different prompts to have questions answered or creating a more interactive 

interface, in which end-users could better chose what they want insights on. 
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4 RESULTS: QUALITATIVE ANALYSIS OF USE CASES 

 

This chapter presents the final results of our integration and does a qualitative analysis 

of the results according to the author, to evaluate if it was helpful and insightful. It consists of 

3 use cases: summary metrics (-s), type metrics (-t) and method metrics (-m). 

Due to the non-deterministic characteristic of ChatGPT answers, it was decided to run 

the experiment 4 times consecutively for each scenario, to generate a set of answers that could 

be analyzed and compared. The decision of only 4 executions instead of a higher number is due 

to 2 reasons: 

• time consumed on analyzing multiple answers as well as the time that would be taken 

for the model to generate multiple answers, considering that each execution took 23 

seconds to 185 seconds; 

• costs on generate multiple answers, while not much benefits could be extracted from 

more execution for the result analysis that this project is proposing. Noting that some 

use cases cost $0.5921515 (American Dollar) per execution, and on this project, it was 

invested $120 to get to the results to be presented; 

Each one of the three use cases will be explained in a specific section, presenting a high-

level qualitative analysis of the results obtained. It is important to note that this work will not 

focus on providing a detailed and deep analysis, though it will just provide an analysis about 

correctness, consistency and areas that could be improved in future works. To perform such 

qualitative analysis having multiple answers allows to be checked if the model is answering 

consistently and more accurately.  

A summary of the results presented in this chapter can be found on Table 4.1; its 

meaning and conclusions will be developed through this chapter and on chapter 5. 

Table 4.1 - Proof of Concept results per use case 

Use Case Metric Processing Time Context Tokens Generated Tokens Cost Quality 

Summary 22s-28s 307 570-620 $0.02017-$0.02167 
Consistent  

Good 

Type 62s-85s 14691 695-770 $0.16776-$0.17001 
Consistent 

Good 

Method 82s-143s 57229 536-662 $0.58837-$0.59215 
Inconsistent 

Mixing data 

Source: Elaborated by the author 

 
15 Use case 3 with Method metrics have one execution using 57229 context tokens and 662 generated tokens, 

totaling $0.57229 for the context tokens (rated at $0.01/1K tokens) and $0.01986 for generated tokens (rated at 

$0.03/1K tokens) 
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4.1 Use Case 1: Using Summary metrics to provide insights 

 

This section presents the results obtained by our final integration for the use case that 

the end user is running DR-Tools Metrics to retrieve summary metrics (-s output option). This 

scenario is the one that requests the top 2 focus areas for refactoring based only on the Java 

project’s summary metrics, which is requested via the prompt on figure 4.1. 

Figure 4.1 - Prompt used for ChatGPT’s insights based on summary metrics 

 
Source: Elaborated by the author 

 

With the prompt above, the 4 tests were executed to validate the results, which are 

presented below and will be further analyzed in the next subsection.  

Figure 4.2 - Result from ChatGPT’s insights based on summary metrics (1st request) 

 
Source: Elaborated by the author 
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Figure 4.3 - Result from ChatGPT’s insights based on summary metrics (2nd request) 

 
Source: Elaborated by the author 

 

Figure 4.4 - Result from ChatGPT’s insights based on summary metrics (3rd request) 

 
Source: Elaborated by the author 

 

 

 

 

 

 

 

 

 

 



91 

 

Figure 4.5 - Result from ChatGPT’s insights based on summary metrics (4th request) 

 
Source: Elaborated by the author 

 

When analyzing quantitatively the answer, it took from 22 to 28 seconds and generated 

from 570 to 620 tokens, while context token is constant at 307 tokens as it is defined by the 

prompt provided. From a financial perspective, each request (from experiments above) would 

cost between $0.0217 to $0.02167, which is a reasonable price and could be judged as 

economically viable. 

It is important to note that with the prompt engineering techniques used, there was a 

consistency on the answer size and time to generated, though they were as expected not 

precisely the same. 

 

4.1.1 Qualitative Analysis 

 

Having in mind that the insights were provided based only on the data presented below, 

it would be expected that no types nor what entities should be refactored would be mentioned.  

Figure 4.6 - Data Analyzed 

 
Source: Elaborated by the author 
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The first k point to be noticed is that though each test resulted in a different answer, in 

general all had the same sense that there is a need to simplify the code and more importantly 

the difference of code between the classes and methods. To support these findings the model 

also provided the data which lead to that finding, for example, citing the standard deviation, 

CYCLO or line of code. 

By knowing the code and considering the metrics available for the analysis, it could be 

confirmed that the refactoring advise is accurate, because there are methods on the code that 

are indeed doing a lot of things as well as there are classes that have multiple methods that do 

not interact with each other.  

One interesting point is that on all answers there was good data structured on the answer 

dividing what was the issue, the justification for the refactoring and the techniques to be used 

with references. References that interestingly were also citing authors which based this work, 

like Fowler et al. (1999). 

 

4.2 Use Case 2: Using Type metrics to provide insights 

 

This section presents the results obtained by this work’s final development when 

running DR-Tools Metrics to retrieve type metrics (-t output option). This scenario is the one 

that requests the top 3 types to be refactored based only its metrics, which is requested via the 

prompt on figure 4.7. 

Figure 4.7 - Prompt used for ChatGPT’s insights based on type metrics 

 
Source: Elaborated by the author 
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Figure 4.8 - Result from ChatGPT’s insights based on type metrics (1st request) 

 

 
Source: Elaborated by the author 

 

Figure 4.9 - Result from ChatGPT’s insights based on type metrics (2nd request) 

 

 
Source: Elaborated by the author 
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Figure 4.10 - Result from ChatGPT’s insights based on type metrics (3rd request) 

 
Source: Elaborated by the author 

 

Figure 4.11 - Result from ChatGPT’s insights based on type metrics (4th request) 

 
Source: Elaborated by the author 

 

When analyzing quantitatively the answer, it was taking from 62 to 85 seconds and 

generating from 695 to 770 tokens, while context token is constant at 14691 tokens as it is 

defined by the prompt provided. From a financial perspective, each request (from experiments 

above) would cost between $0.16776 to $0.17001, which is a reasonable price and could be 

judged as economically viable. 

It is important to note that with the prompt engineering techniques used, there was a 

relative consistency on answer size and time to generated, though they were as expected not 

precisely the same. 
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4.2.1 Qualitative Analysis 

 

This subsection analyzes the results from the experiments with ChatGPT insights based 

on type metrics. To start the analysis, it is important to highlight that the amount of data was 

128 types each with 11 metrics. For illustration and better context, Table 4.2 provides the top 5 

biggest types and their metrics. 

 

Table 4.2 - Top 5 biggest types (which includes types pointed to refactoring) 

TYPE SLOC NOM NPM WMC DEP 
I-

DEP 

FAN-

IN 

FAN-

OUT 
NOA LCOM3 

output.MetricResultJSON 377 43 39 64 25 16 4 22 5 0.95 

output.MetricResultGPT 376 24 23 41 17 15 1 20 8 0.85 

structures.results.TypeMetricResult 328 45 31 99 12 3 16 9 8 0.94 

fixtures.output.JSONDataFixture 325 23 19 38 18 11 1 15 3 0.95 

output.MetricResultCSV 285 35 35 46 17 15 4 22 4 0.96 

Source: Elaborated by the author 

 

The first key point that needs to be highlighted is the consistency presented by the model 

when answering using the 3 types needing refactoring the most, because all 4 experiments have 

answered the same list, which is: 

o output.MetricResultJSON; 

o output.MetricResultCSV; 

o structures.results.TypeMetricResult. 

It is also observed that the model has not simply listed the 3 biggest types, proving that 

it is considering more metrics. Furthermore, when analyzed the justification, all of them 

provided metrics supporting the refactoring, interestingly it is referring recurrently to LCOM3 

highlighting the lack of cohesion and that the classes’ methods do too many different things. 

All of which are true, as the classes do different computing on different data/classes, which 

from knowing the code, it indeed could be a problem on those class’s readability. 

Furthermore, the model has not only focused on this metric, but uses other metrics to 

support this as other dependency metrics, like FAN-OUT (for output.MetricResultCSV and 

output.MetricResultJSON) or FAN-IN (structures.results.TypeMetricResult) showing that it 

also understands the problematic metric that each class have. Other metrics are referred to if 

they could indicate issues, like SLOC, NOM, NPM, WMC, etc. 

Then on the techniques, it has provided several good answers like “extract class”, which 

makes sense, because mentioned classes are big and are doing too many unrelated activities. 
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There are over 10 techniques and for them different references are provided, including already 

cited ones like Fowler et al. (1999) and providing links of interesting materials like 

https://refactoring.guru/extract-class. 

In conclusion, the insights provided were very consistent (to ChatGPT nature) and very 

insightful, which could be of tremendous assistance to software developers that do not have 

much knowledge on code refactoring. For future works, it could be explored: 

o investigate if the insights are the best advice or if would have better refactors to be done; 

o cascade from type analysis to a method analysis, limiting methods from types identified 

based on this experiment prompt. 

 

4.3 Use Case 3: Using Method metrics to provide insights 

 

This section presents the results obtained by our final integration for running DR-Tools 

Metrics to retrieve method metrics (-m output option). This scenario requests the top 3 methods 

needing refactoring based only on Java project’s method metrics, methods which are requested 

via the prompt on figure 4.12 sent to ChatGPT API. 

Figure 4.12 - Prompt used for ChatGPT’s insights based on method metrics 

 
Source: Elaborated by the author 

 

With the prompt above, it executed the 4 requests to test the outcome, which provided 

us with the results on Figures 4.13, 4.14, 4.15 and 4.15, which will be further analyzed on 

subsection 4.3.1. 

Figure 4.13 - Result from ChatGPT’s insights based on method metrics (1st request) 

 
Source: Elaborated by the author 
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Figure 4.14 - Result from ChatGPT’s insights based on method metrics (2nd request) 

 
Source: Elaborated by the author 

 

Figure 4.15 - Result from ChatGPT’s insights based on method metrics (3rd request) 

 
Source: Elaborated by the author 
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Figure 4.16 - Result from ChatGPT’s insights based on method metrics (4th request) 

 

 
Source: Elaborated by the author 

 

When analyzing quantitatively the answer, it was taking from 82 to 143 seconds and 

generating from 536 to 662 tokens, while context token is constant at 57229 tokens as it is 

defined by the prompt provided. From a financial perspective, each request (from experiments 

above) would cost between $0.58837 to $0.59215, which could be considered significant cost, 

though could be judged as economically viable considering software engineers as high paid 

professionals. Though for enhancement it could be studied to filter out some methods that do 

not meet some criteria, this would both improve processing times and reduce costs. 

As opposed to the previous use cases, this case has not presented a consistency on the 

refactoring suggested, which will be further discussed on subsection 4.3.1. 

 

4.3.1 Qualitative Analysis 

 

This use case has presented more inconsistency on the answer than previous use cases, 

which is more evident when observed that the top 3 listed methods are not consistently the same 

on the experiment’s 4 iterations. Although there was a less consistent answer, it was still an 

acceptable level of consistency with 3 iterations having the same 3 methods cited, and as 

observed on the Table 4.3 most methods were mentioned consistently: 
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Table 4.3 - Method needing refactoring according to experiments 
Model Test 1 Test 2 Test 3 Test 4 Total 

utils.files.SourceCodeLineCounter.isSourceCodeLine(String line) X X X X 4 

javaProject.com.controller.Type.isSubtype(String dottedSubtype, 

String collectionType) 
 X X X 3 

chatGPTIntegration.GPTintegration.GPTinsight()  X X X 3 

javaProject.com.controller.Type.isSubtype(ClassDescriptor 

subDesc, ClassDescriptor... superDesc) 
X    1 

output.MetricResultGPT.showSummary() X    1 

Source: Elaborated by the author 

 

By reviewing the method metrics, especially for the methods mentioned by ChatGPT’s 

insights (listed on Table 4.3), it is observed that the model is taking multiple metrics into 

consideration for the advice, which is a good indicator. From the metrics, which are presented 

on Table 4.4 for refactoring candidate methods (according to ChatGPT), it can be observed that 

methods highlighted are indeed methods with some metric pointing to an issue. 

Table 4.4 - Metrics from the methods appearing on ChatGPT answers 

Method LOC CYCLO CALLS NBD Param 

utils.files.SourceCodeLineCounter.isSourceCodeLine

(String line) 
42 10 13 4 1 

javaProject.com.controller.Type.isSubtype(String 

dottedSubtype, String collectionType) 
45 7 3 2 2 

chatGPTIntegration.GPTintegration.GPTinsight() 94 5 12 3 0 

output.MetricResultGPT.showSummary() 57 1 70 3 0 

javaProject.com.controller.Type.isSubtype(ClassDes

criptor subDesc, ClassDescriptor... superDesc) 
13 5 2 2 2 

Source: Elaborated by the author 

 

More importantly, on the justification for the refactoring, it is referring to the metrics 

and interpreting what they mean. For example, on method 

utils.files.SourceCodeLineCounter.isSourceCodeLine it is mentioned that cyclomatic 

complexity (CYCLO) of 10 indicates high level of branching as reason for refactoring; on the 

other hand, for output.MetricResultGPT.showSummary(), there is no mention of CYCLO, but 

mentions of high number of calls as a justification for refactoring. 

Through careful review, it was observed that there is an issue on the analysis and likely 

linked to the similar name issue, which is that on figure 4.13, while there is the mention of 

javaProject.com.controller.Type.isSubtype(ClassDescriptor subDesc, ClassDescriptor... 

superDesc), it likely intended to mention fixtures.output.DataFixture.getMethodData(), 

because the metric used matches with that method. 

It was observed that refactoring techniques are good suggestions and provide good 

references, like Fowler et al. (1999) and its website https://refactoring.com. Interestingly, as in 
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type refactoring ChatGPT often refers to the website https://refactoring.guru for further 

information on some refactoring techniques. 

In conclusion, insights generated from ChatGPT are helpful and add value, though 

further refinement is needed, as on this use case specifically some wrong method mentioning 

was observed, likely due to more complex names and bigger dataset to be analyzed. Based on 

this, future work could be done to further investigate and provide a more detailed analysis, 

besides exploring mitigation strategies to have a 100% reliable tool. 
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5 CONCLUSIONS 

 

This chapter presents the conclusions from this case of study, initially presenting 

challenges faced and how to overcome them, then contextualizing what was achieved at our 

design’s level of effectiveness and concluding with a forward-looking vision to this project and 

this new area of knowledge. 

The first challenge that should be highlighted is that currently the ChatGPT API is a 

new feature with a lot of limitations on data volumes and not with a clear deterministic 

limitation. For example, the highlighted API rate limitation, in sections 3.1.1 and 3.2.3, when 

issues were faced, although according to the documentation and known variables of the 

experiments, there should be none.  

Hard-coded limits on data analyzed (number of types, methods, or namespaces) were 

created to overcome ChatGPT API’s rate limitation and data amount constraints because 

projects can have various sizes. Nevertheless, a solution to scale to infinity size of projects was 

not explored at this work. Although ChatGPT API’s data amount challenges are likely to be 

improved as the tool improves on its infrastructure and on new versions supporting further data 

volumes, a future work could also address this problem by developing a strategy to process the 

data in blocks and combine the outputs to have a whole project overview without limiting 

datasets. A possible solution could be to use the statistical data to compare blocks of data in 

reference to the statistics, then having a recurrent process until the priorities are delimited. 

The proof of concept developed on this work is already known to have not 100% 

accuracy as observed on section 4.3 for analysis using method metrics, though its accuracy is 

unknown. To solve this, a future work to analyze the outputs on a qualitative way and quantify 

its accuracy could be performed, which would confirm the tool effectiveness in large scale, in 

a way to certify a certain level of effectiveness as Tornhill et al. (2024) performed on 

CodeScene tool, which claims to have 98% accuracy on its refactoring endeavors.  

This work did not focus on assuring the best quality in the insights, but to prove that 

insights could be generated and how to, as proof of concept, to be a starting point of future 

works on the area. For a proof of concept and an initial investigation in this new area, the results 

obtained are promising and its investigation allowed to progress on defining further best 

practices for this project scope, which expanded and confirmed best practices provided by 

White et al. (2023), such as confirming empirically the value of “Act as” statement. 
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The work resulted on the test cases presented, in which the insights from ChatGPT were 

insightful and could give guidance to the beginning of the refactoring, thus achieving the 

project’s goal. Future works can explore new prompt formats and further customizations in the 

tool to improve the analysis, like having it focused on one area or requesting users what level 

of refactoring they are willing to do. 

This work was developed on DR-Tools Metrics, while the new and more powerful tool 

will be made available in the upcoming months, DR-Tools Code Health. Once available, it 

could open new opportunities to take advantage of integration of DR-Tools with ChatGPT, by 

replicating this work with DR-Tools Code Health to explore its more complete data. This 

integration was already emulated in section 3.3 with positive results. This new integration could 

provide more focused insights on smells already identified instead of insights from the general 

metrics.  

A key finding on this work is some prompt engineering techniques to improve data 

analysis, which proved to generate more accurate responses, like: 

• order the prompt in this way: context, request/question, answer limitation and 

then the data; 

• use a dictionary and replace names on the data for more unique names, such as 

type1 or method2, therefore ChatGPT does not try to interpret names or consider 

or mix similar names; 

o especially important on software engineering, as names tend to be 

explanatory with multiple words and even punctuation, such as 

“isSubtype” or “chatGPTIntegration.GPTintegration.GPTinsight”; 

• provide data on a structured format, so that is identifiable groups of data. 

In summary, this project proves the importance of prompt engineering, develops some 

best practices, and shows how LLMs like ChatGPT are non-deterministic, creating a new area 

of knowledge that is in its infancy, prompt engineering. It proved to be powerful and requires 

much more research like this one to explore its potential, which is evidenced by similar works 

as Tornhill et al. (2024) and White et al. (2023), both being developed in the area recently. 
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APPENDIX A – EXPERIMENTS’ PROMPTS AND RESULTS 

 

This appendix presents the different experiments performed during the work 

investigation that were not directly added to the text but could add value to the reader. It will 

be organized by the same sections to facilitate finding the information. 

Another intention of this appendix is to provide reviewers with the possibility of 

reproducing our results and to have access to full prompts, which are full of data that would not 

be possible to be provided in the main text. There will be some cases where a full prompt will 

be multiple pages of data. 

 

3.1.5 VALIDATING DR-TOOLS'S DATA ON CHATGPT API REQUESTS 

 

This section will present the prompts used during the validations reported on the 

subsection. 

 

Prompts to test ChatGPT API’s understanding of metrics for type, with full prompt printed: 

(prompt with 9172 words): 

======================ChatGPT Insight (built prompt): 

 

 

Prompt used (complete): 

Act as a Software Architect. Provide all types with dependency higher than 

20 dependencies for the code with the following metrics: <BEGIN DATA 

TOKEN>Types metrics: <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.MetricResultJSON<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 374<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 42<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 38<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 63<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 25<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 16<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 22<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 5<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.results.TypeMetricResult<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 328<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

45<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 31<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 99<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 12<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 16<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 9<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 8<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.94<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.JSONDataFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

325<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 23<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 19<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 38<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 18<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 11<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 15<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 
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TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultGPT<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 308<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 23<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 22<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 38<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 17<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 15<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 20<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 7<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.86<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.MetricResultCSV<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 282<END DATA 

TOKEN> <BEGIN DATA TOKEN>NOM: 34<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

34<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 45<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 17<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 15<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

22<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: fixtures.output.DataFixture<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 269<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 17<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 17<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

17<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 17<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 11<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 12<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 10<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.72<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultConsole<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 263<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 23<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 22<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 38<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 17<END 

DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 15<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 19<END DATA 

TOKEN> <BEGIN DATA TOKEN>NOA: 4<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 

0.93<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA 

TOKEN>Type: javaProject.com.controller.Type<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 245<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 35<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 25<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 58<END 

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN 

DATA TOKEN>FAN-OUT: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 13<END DATA 

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.85<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultFile<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 203<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

41<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 41<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 5<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 7<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 21<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

parser.java.visitors.TypeVisitor<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

189<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 19<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 42<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 21<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 3<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 16<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.58<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: parser.java.visitors.MethodVisitor<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 188<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

22<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 16<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 39<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 23<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 9<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 11<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.76<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 
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main.Bootstrapper<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 172<END DATA 

TOKEN> <BEGIN DATA TOKEN>NOM: 16<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 49<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 10<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 9<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

14<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 7<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.80<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: fixtures.output.CSVDataFixture<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 169<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 15<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 15<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 26<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 8<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 8<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 11<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.MetricResultFileTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 164<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 18<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 16<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 18<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 8<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 22<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.38<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.TypeMetric<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 151<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

36<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 36<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 37<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 9<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 11<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 15<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.80<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.StatisticOfType<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 144<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 15<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 13<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 16<END 

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 6<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN 

DATA TOKEN>FAN-OUT: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA 

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.93<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.results.TypeMetricResultTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 135<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 19<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 17<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 23<END 

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 8<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN 

DATA TOKEN>FAN-OUT: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA 

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.97<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultJSONTest<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 131<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 22<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 22<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 22<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 4<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.93<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.MetricResultCSVTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 111<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 18<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 18<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 18<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 5<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.91<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 



108 

 

TOKEN> <BEGIN DATA TOKEN>Type: output.utils.InfoConsole<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 109<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 13<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 9<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

15<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 6<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.OptionsTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

104<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 20<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 19<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 20<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 22<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 19<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 20<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.SourceCodeLineCounter<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 99<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

6<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 29<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.ProjectInfoTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 96<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 17<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 15<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 19<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 10<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 5<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.94<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.results.MethodMetricResult<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 96<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 15<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 14<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 25<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 9<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 

18<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 6<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.93<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.results.NamespaceMetricResult<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 94<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 17<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 16<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 26<END 

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 9<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 15<END DATA TOKEN> <BEGIN 

DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA 

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.94<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.results.MethodMetricResultTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 89<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 10<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 15<END 

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN 

DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA 

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.StatisticOfMethod<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 85<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 10<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 8<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 11<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA TOKEN> 
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<BEGIN DATA TOKEN>LCOM3: 0.94<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.namespaces.StatisticOfNamespaceTest<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 79<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 14<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 14<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.96<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

parser.java.JavaParser<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 74<END DATA 

TOKEN> <BEGIN DATA TOKEN>NOM: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 16<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 7<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

11<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 6<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.50<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: structures.metrics.MethodMetric<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 73<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 18<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 18<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 19<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 11<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 8<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.79<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.results.NamespaceMetricResultTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 72<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 10<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 13<END 

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN 

DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA 

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

chatGPTIntegration.ChatGPTAPI<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

71<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 7<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultFake<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 70<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 21<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 21<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 21<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.ProjectInfo<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 69<END DATA 

TOKEN> <BEGIN DATA TOKEN>NOM: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

9<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 11<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 9<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

10<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 6<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.75<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: utils.calc.StatisticalAnalysis<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 65<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 15<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 14<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 20<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 11<END 
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DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.96<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.results.StatisticMetricResult<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 62<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 14<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 14<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 14<END 

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 8<END DATA TOKEN> <BEGIN 

DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA 

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.96<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.metrics.MetricThreshold<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

62<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 5<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.TypeData<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 61<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 11<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.55<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.StatisticalOperations<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 59<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 16<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 15<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 16<END 

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 6<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN 

DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA 

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.93<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticCallsOfMethodTest<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticCycloOfMethodTest<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticMlocOfMethodTest<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticNbdOfMethodTest<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END 
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DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticParamOfMethodTest<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticDepOfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticFanInOfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticFanOutOfTypeTest<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticIDepOfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticLcom3OfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticNoaOfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 
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DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticNomOfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticNpmOfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticSlocOfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticWmcOfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.StatisticData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

54<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 12<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: utils.calc.OutlierAnalysisTest<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 54<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

11<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 11<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.TypeMetricFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 52<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 12<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.Options<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 50<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 2<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 21<END DATA TOKEN> <BEGIN DATA 
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TOKEN>I-DEP: 19<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 19<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.statistics.StatisticOfTypeFixture<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 48<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 3<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

5<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 10<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 7<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultDOT<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 45<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 7<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

11<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.83<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: fixtures.MethodMetricFixture<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 43<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 10<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

utils.files.StringFormatTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 40<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 8<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

8<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 8<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: utils.files.SystemUtils<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 39<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 3<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.StatisticOfNamespace<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 37<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 5<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 4<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 6<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.NamespaceMetric<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 35<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

8<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 8<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 10<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.86<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.MethodData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

35<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 7<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 7<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END 
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DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 6<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.58<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.NamespaceCouplingData<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 35<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 7<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 7<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 6<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.58<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: chatGPTIntegration.GPTintegration<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 35<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 9<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 9<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 10<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 7<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.MetricThresholdData<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 33<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 7<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 7<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 5<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.MetricDefinition<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 30<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

6<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 6<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 6<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 30<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 5<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.60<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.SummaryData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

30<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 6<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 6<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 6<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 5<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.60<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: utils.calc.StatisticalAnalysisTest<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 30<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

5<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 5<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.88<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.statistics.StatisticOfMethodFixture<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 30<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 3<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.model.Man<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 29<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 5<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 5<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

9<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> <BEGIN DATA 
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TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricOutput<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 28<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

22<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 22<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 22<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 30<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

utils.files.JSONBuilder<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 28<END DATA 

TOKEN> <BEGIN DATA TOKEN>NOM: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

6<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 6<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: javaProject.com.controller.Dispatcher<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 27<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

4<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

utils.files.SourceCodeLineCounterTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 26<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 2<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: parser.java.visitors.NamespaceVisitor<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 24<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 6<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.NamespaceMetricFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

23<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 5<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 5<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: output.utils.Gauge<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 23<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

7<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: utils.files.SystemUtilsTest<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 22<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 
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0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.50<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

utils.files.StringFormat<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 20<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

4<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 9<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 6<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: fixtures.output.data.CyclicDependencyData<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 20<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

4<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.NamespaceData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

20<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 4<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 4<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.TypeResonanceData<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 20<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 4<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.model.Woman<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 16<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

3<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 5<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: fixtures.output.data.NamespaceDependencyData<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 15<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 3<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.MetricFile<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 14<END DATA 

TOKEN> <BEGIN DATA TOKEN>NOM: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

11<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 11<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: 

selection.options.dependencies.TypeCouplingOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 
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TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.general.AllMetricsOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.general.MetricVisualizationOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticAndTypeOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticTypeOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.strutures.TypeOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.model.Human<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 2<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.AllCouplingOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.CyclicDependencyOption<END DATA TOKEN> 
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<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.InternalDependencyOption<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.NamespaceCouplingOption<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticAndNamespaceOption<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticNamespaceOption<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.strutures.NamespaceOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.view.QueueViewer<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.DependencyOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 
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<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.general.SummaryOption<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.general.ThresholdsOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticAndMethodOption<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticMethodOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.strutures.MethodOption<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA 

TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.controller.ClassWithComments<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 8<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.MetricResultNotifier<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 7<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

3<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 3<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.model.Child<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 7<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 
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1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> 

<BEGIN DATA TOKEN>Type: javaProject.com.controller.XClass<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.others.AnalysisContext<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

6<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.others.ClassVertex<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.OptionDefinition<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

5<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 19<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.MetricActivator<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: javaProject.one.A<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.two.B<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 5<END DATA TOKEN> 

<BEGIN DATA TOKEN>NOM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 0<END DATA 

TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 

0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA 

TOKEN>Type: javaProject.com.model.Person<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 



121 

 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: chatGPTIntegration.GPT<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricGPT<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA 

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: parser.TypeParser<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.controller.XMethod<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

3<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> 

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.others.ClassDescriptor<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END 

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> 

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.others.ObjectType<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 3<END 

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA 

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> 

<BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 

0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA 

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <END DATA TOKEN>  

 

GPT Insight: 

Based on the provided data, the types with dependencies (DEP) higher than 

20 are:\n\n1. **Type**: output.MetricResultJSON\n - **DEP**: 25\n\n2. 

**Type**: selection.options.OptionsTest\n - **DEP**: 22\n\n3. **Type**: 

selection.options.Options\n - **DEP**: 21\n\nThese types have a higher 

number of dependencies, indicating they are heavily dependent on other 

types or components in the system. When considering architectural 

decisions, it's important to evaluate whether these high dependencies are 

justified by their responsibilities or if they pose a risk in terms of 

maintainability and potential for change-induced defects. Reducing 

dependencies, where practical, through techniques such as dependency 

inversion, interface segregation, and modular design can improve the 

system's flexibility and maintainability. 
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======================ChatGPT Insight end(built prompt) 

 

3.2.1 IMPORTANCE OF PROMPT ENGINEERING 

 

3.1.1.1 Bird Definition Experiment 

 

This section will present results and prompts, either in its text or figure/screenshot form, 

obtained from experiments executed as part of section 3.2.1.1 which were not used or provided 

in its full form on the main text. 

Figure A.3.1 – Bird definition experiment on latest GPT-3.5 Turbo without context definition 

 

Source: Elaborated by the author 

 

Figure A.3.2 – Bird definition experiment on latest GPT-3.5 Turbo with question first then context 

definition 

 

Source: Elaborated by the author 
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Figure A.3.3 – Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first 

then question 

 

Source: Elaborated by the author 

 

Figure A.3.4 – Bird definition experiment on latest GPT-3.5 Turbo with context definition (human) 

first then question 

 

Source: Elaborated by Author 

 

Bird Experiment on latest GPT-3.5 Turbo (extracted on January 31st): 

 

 

------Prompt Experiment 1:------ 

[1mPrompt: [0mWhat is a bird? 

 

[1mGPT Answer: [0mA bird is a warm-blooded, feathered, egg-laying 

vertebrate animal. They typically have wings and beaks, and are well known 

for their ability to fly (although not all birds can). Birds are found in a 

wide variety of habitats around the world and are known for their diverse 

range of species, sizes, and behaviors. 

[1mGPT processing time: [0m6 seconds 

 

 

------Prompt Experiment 2:------ 

[1mPrompt: [0mWhat is a bird? In one line 

 

[1mGPT Answer: [0mA bird is a warm-blooded vertebrate with feathers and a 

beak, typically able to fly. 

[1mGPT processing time: [0m3 seconds 

 

 

------Prompt Experiment 3:------ 
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[1mPrompt: [0mWhat is a bird? In one word 

 

[1mGPT Answer: [0mAvian 

[1mGPT processing time: [0m2 seconds 

 

 

------Prompt Experiment 4:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective 

 

[1mGPT Answer: [0mA bird is a small, fluttering creature with colorful 

feathers that likes to chirp and fly around. It's also a fun target to 

watch and occasionally chase, but it's always just out of reach. And if I'm 

lucky, I might catch one to bring back as a present for my human. 

[1mGPT processing time: [0m4 seconds 

 

 

------Prompt Experiment 5:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one line. 

 

[1mGPT Answer: [0mA bird is a tantalizing, fluttering creature that I can 

never seem to catch. 

[1mGPT processing time: [0m2 seconds 

 

 

------Prompt Experiment 6:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one word. 

 

[1mGPT Answer: [0mPrey. 

[1mGPT processing time: [0m3 seconds 

 

 

------Prompt Experiment 7:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? 

 

[1mGPT Answer: [0mA bird is a tantalizing, fluttering creature that I can't 

resist chasing and pouncing on. It's a potential meal that satisfies my 

instinctual urge to hunt and capture prey. The sight of a bird is enough to 

make my mouth water and my eyes narrow in anticipation of the chase. I'll 

stalk and creep up on a bird with all the stealth and precision of a true 

predator, and once I have it in my sights, there's no stopping me from 

leaping and swiping at it with my sharp claws. A bird is the ultimate 

temptation for a hungry cat like me, and catching one is a triumph that 

satisfies my hunger and reminds me of my wild, feline nature. 

[1mGPT processing time: [0m7 seconds 

 

 

------Prompt Experiment 8:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one line 

 

[1mGPT Answer: [0mA bird is a tantalizing prey, a delicious meal waiting to 

be caught and devoured with pleasure. 

[1mGPT processing time: [0m3 seconds 

 

 

------Prompt Experiment 9:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one word 

 

[1mGPT Answer: [0mPrey 

[1mGPT processing time: [0m5 seconds 
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------Prompt Experiment 10:------ 

[1mPrompt: [0mAct as a Human. What is a bird for you? 

 

[1mGPT Answer: [0mAs a human, a bird is a beautiful and fascinating 

creature that brings joy and wonder to the natural world. Birds are known 

for their ability to fly, sing, and display vibrant colors, making them a 

source of inspiration and interest for many people. They also play 

important roles in ecosystems, from pollinating plants to controlling 

insect populations. For me, a bird represents freedom, grace, and the 

wonder of the natural world. 

[1mGPT processing time: [0m8 seconds 

 

 

------Prompt Experiment 11:------ 

[1mPrompt: [0mYou are a Human. What is a bird? In one line 

 

[1mGPT Answer: [0mA bird is a warm-blooded, feathered vertebrate known for 

its ability to fly. 

[1mGPT processing time: [0m2 seconds 

 

 

------Prompt Experiment 12:------ 

[1mPrompt: [0mYou are a Human. What is a bird? In one word 

 

[1mGPT Answer: [0mAvian 

[1mGPT processing time: [0m2 seconds 

 

 Bird Experiment on GPT-4 Turbo (extracted on January 31st): 

 

 ------Prompt Experiment 1:------ 
[1mPrompt: [0mWhat is a bird? 

 

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying, vertebrate animal 

characterized by feathers, a beak with no teeth, and the ability to fly, 

although not all species are capable of flight. Birds belong to the class 

Aves and are distinguished by their lightweight skeletons, scaly legs, and, 

most notably, their forelimbs which are evolved into wings. They are found 

worldwide, from the Arctic to the Antarctic, and have adapted to virtually 

every terrestrial and aquatic environment on Earth.\n\nBirds play vital 

roles in ecosystems as pollinators, seed dispersers, and predators of 

insects and rodents. Their feathers serve multiple functions, including 

insulation, camouflage, and courtship displays. Many birds are also known 

for their migrations, some traveling thousands of miles annually between 

breeding and wintering grounds.\n\nBirds are of significant interest to 

humans for various reasons, including their roles in agriculture, as pets, 

and as subjects of scientific research. Moreover, they have held cultural 

and symbolic significance in many societies throughout history. The study 

of birds is known as ornithology, and conservation efforts continue to 

protect endangered birds and their habitats. 

[1mGPT processing time: [0m12 seconds 

 

 

------Prompt Experiment 2:------ 

[1mPrompt: [0mWhat is a bird? In one line 

 

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying vertebrate 

distinguished by feathers, wings, beaks, and typically the ability to fly. 
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[1mGPT processing time: [0m2 seconds 

 

 

------Prompt Experiment 3:------ 

[1mPrompt: [0mWhat is a bird? In one word 

 

[1mGPT Answer: [0mAnimal 

[1mGPT processing time: [0m458 milliseconds 

 

 

------Prompt Experiment 4:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective 

 

[1mGPT Answer: [0mFrom a cat's perspective, a bird represents an 

interesting and often irresistible combination of prey, plaything, and 

puzzle. Here's an imaginative take on how cats might view birds:\n\n1. 

**Enticing Prey**: Cats are natural hunters, and birds, with their quick 

movements and fluttering wings, trigger a cat's hunting instincts. From a 

cat's standpoint, birds are a desirable target for stalking and capturing, 

offering a tantalizing challenge to their predatory skills.\n\n2. 

**Entertaining Plaything**: Aside from the hunt, birds are also seen as an 

engaging toy. The way birds hop around, take off, and land, not to mention 

their singing, can captivate a cat for hours, providing endless 

entertainment and stimulating their keen senses.\n\n3. **Fascinating 

Puzzle**: The ability of birds to fly and perch where cats cannot easily 

reach them adds a layer of intrigue and complexity. For a cat, figuring out 

how to outsmart or catch a bird can be a thrilling puzzle, engaging not 

only their physical prowess but also their mental acuity.\n\n4. **Moving 

Feast**: In the wild or for outdoor cats, birds can also be looked upon as 

a potential food source, offering a fresh, high-protein meal. This aspect 

speaks to the more primal part of a cat's nature.\n\n5. **Inaccessible 

Teasers**: Often, birds are just out of reach, making them even more 

enticing. They might be on the other side of a window or flying just too 

high for a cat to catch. This can be endlessly frustrating yet also 

incredibly stimulating for a cat, who might spend a lot of time watching 

and planning.\n\n6. **Soundtrack of the Outdoor**: For indoor cats, birds 

represent the sounds of the outside world. The chirping and singing of 

birds can stimulate a cat's auditory senses, sometimes sparking excitement 

or even stress, showcasing the complex relationship between the two.\n\n7. 

**Symbols of Freedom**: On a more abstract level, the ability of birds to 

fly and their access to the wide-open skies could be viewed by a cat as a 

symbol of freedom and the vastness of the world outside their immediate 

territory, sparking curiosity and wonder.\n\n8. **Embodiment of Grace**: 

Finally, cats, known for their own agility and grace, might see birds as 

kindred spirits in the animal kingdom. The elegant flight of birds, their 

ability to navigate the skies, and their quick, precise movements could be 

seen as a form of beauty and agility that a cat, in its own way, can 

appreciate.\n\nThis imaginative reflection tries to encapsulate a mixture 

of instinctual behavior, physical attraction, and the more contemplative 

side of what might go on in a cat's mind when they observe or interact with 

birds. 

[1mGPT processing time: [0m26 seconds 

 

 

------Prompt Experiment 5:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one line. 

 

[1mGPT Answer: [0mA fascinating, elusive creature that inspires both my 

hunting instincts and my curiosity, often seen through the window or in the 

garden. 
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[1mGPT processing time: [0m1 seconds 

 

 

------Prompt Experiment 6:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one word. 

 

[1mGPT Answer: [0mPrey. 

[1mGPT processing time: [0m780 milliseconds 

 

 

------Prompt Experiment 7:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? 

 

[1mGPT Answer: [0mMrrrow! Oh, a bird! To me, a bird is an intriguing 

flutter of feathers and a dance of tempting motions. It's the embodiment of 

all things chased but seldom caught, a melody of the wild that calls to my 

primal instincts. Perched so tantalizingly close yet always just a leap 

away, it's a challenge, a game, an adventure. With every sway of its 

colorful plumage and each chirp it sings, it stirs in me a hunger, a 

yearning to engage in the age-old dance of predator and prey. Yes, to this 

hungry cat, a bird is not just a meal, but a mystery, a delight, an elixir 

of life itself, promising satisfaction not just to my stomach, but to my 

feline soul. Purrhaps, today will be the day I catch that elusive symphony 

of feathers... Or maybe just contentedly dream of the chase from a sunlit 

windowsill. Purr. 

[1mGPT processing time: [0m13 seconds 

 

 

------Prompt Experiment 8:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one line 

 

[1mGPT Answer: [0mA bird to me is a tantalizing target for a thrilling 

chase and a delicious feast. 

[1mGPT processing time: [0m1 seconds 

 

 

------Prompt Experiment 9:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one word 

 

[1mGPT Answer: [0mPrey. 

[1mGPT processing time: [0m538 milliseconds 

 

 

------Prompt Experiment 10:------ 

[1mPrompt: [0mAct as a Human. What is a bird for you? 

 

[1mGPT Answer: [0mAs a human, a bird symbolizes many things to me. Firstly, 

it represents the beauty and diversity of nature, showcasing an array of 

species, each with unique traits, colors, and behaviors. Watching birds can 

be a source of joy and peace, reminding me of the simplicity and wonders of 

the natural world.\n\nBirds also evoke a sense of freedom and wonder. The 

ability of birds to fly, to soar through the skies and migrate across 

continents, has long been a subject of human fascination and envy. This 

ability symbolizes freedom, transcending boundaries and exploring the world 

from a perspective we can only imagine.\n\nOn a personal level, birds can 

be companions and part of my daily life. Whether it's the chirping of birds 

that greet me in the morning, signaling the start of a new day, or 

observing them visit my garden, they remind me of the ongoing rhythm of 

life and the interconnectedness of all living things.\n\nFurthermore, birds 

play critical roles in ecosystems, acting as pollinators, seed dispersers, 
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and indicators of environmental health. Their presence and well-being are 

crucial for ecological balance, reminding me of the importance of 

conservation and respecting our environment.\n\nFinally, in cultural and 

symbolic contexts, birds can represent various meanings—from peace, love, 

and hope to power and mystery. Their imagery and symbolism are woven into 

the fabric of human culture, art, and literature, influencing our beliefs, 

stories, and aspirations.\n\nIn essence, a bird is not just an animal to 

me; it is a source of inspiration, a connection to the natural world, a 

companion in my daily life, and a symbol carrying deeper meanings and 

emotions. 

[1mGPT processing time: [0m20 seconds 

 

 

------Prompt Experiment 11:------ 

[1mPrompt: [0mYou are a Human. What is a bird? In one line 

 

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying vertebrate 

distinguished by feathers, wings, a beak with no teeth, and a high 

metabolic rate. 

[1mGPT processing time: [0m1 seconds 

 

 

------Prompt Experiment 12:------ 

[1mPrompt: [0mYou are a Human. What is a bird? In one word 

 

[1mGPT Answer: [0mAnimal 

[1mGPT processing time: [0m616 milliseconds 

 

Bird Experiment on GPT-4 Turbo (extracted on February 2nd): 

 

------Prompt Experiment 1:------ 

[1mPrompt: [0mWhat is a bird? 

 

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying, vertebrate animal 

characterized by feathers, a beak with no teeth, and the ability to fly, 

although not all birds are capable of flight. Birds are members of the 

class Aves and are distinguished by their lightweight skeletons, two legs 

used for walking or perching, and wings which are evolved forelimbs. Their 

feathers provide insulation, waterproofing, and aid in flight. Birds 

breathe through lungs and have a high metabolic rate.\n\nBirds have a wide 

variety in size, shape, and color, and they are found in almost every 

habitat on Earth, from the Arctic tundra to tropical rainforests. They play 

essential roles in ecosystems, such as pollinating plants, dispersing 

seeds, and controlling pests. Birds are also important to humans in many 

ways: as a source of food, as pollinators, in scientific research, and for 

recreation and companionship.\n\nThe study of birds is known as 

ornithology, and those who study birds are called ornithologists. Birds, 

with their rich variety of species (over 10,000 species worldwide) and 

their presence in diverse ecosystems, offer valuable insights into the 

natural world and help scientists understand ecological dynamics, 

evolutionary biology, and climate change impacts. 

[1mGPT processing time: [0m15 seconds [1mGPT Context Tokens: [0m12 [1mGPT 

Generated Tokens: [0m": 256 

 

 

------Prompt Experiment 2:------ 

[1mPrompt: [0mWhat is a bird? In one line 
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[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying vertebrate 

characterized by feathers, wings, and a beak, and most are capable of 

flight. 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15 [1mGPT 

Generated Tokens: [0m": 31 

 

 

------Prompt Experiment 3:------ 

[1mPrompt: [0mWhat is a bird? In one word 

 

[1mGPT Answer: [0mAnimal 

[1mGPT processing time: [0m479 milliseconds [1mGPT Context Tokens: [0m15 

[1mGPT Generated Tokens: [0m": 1 

 

 

------Prompt Experiment 4:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective 

 

[1mGPT Answer: [0mFrom a cat's perspective, a bird could be seen in several 

ways, primarily based on its instincts and natural behaviors:\n\n1. 

**Prey:** Cats, being natural hunters, would primarily view birds as prey. 

The movement, sounds, and appearance of birds can trigger a cat's hunting 

instincts, leading them to stalk, chase, and attempt to capture 

birds.\n\n2. **Entertainment:** Cats are naturally curious and playful, so 

they might find birds interesting to watch. The quick movements and flights 

of birds can capture a cat's attention, providing them with mental 

stimulation and entertainment, much like watching a fast-paced, interactive 

show.\n\n3. **Threat:** While this is less common compared to the first two 

perspectives, if a bird is significantly large (like a hawk or an eagle) or 

if a cat has had a negative experience with a bird (such as being pecked), 

a cat might view birds as a potential threat. This perspective would be 

more about caution and avoidance, rather than curiosity or the drive to 

hunt.\n\n4. **Intrigue:** Birds do things that cats cannot, such as flying. 

This ability, along with their unique sounds (singing, chirping), could 

provoke a sense of intrigue in cats. They may watch birds with a 

fascination due to the birds' abilities to navigate the skies and produce 

varied vocalizations, piquing the cat's interest in something that is 

beyond their own capabilities.\n\n5. **Frustration:** If a cat is indoors 

and unable to reach the birds they see outside the window, this could lead 

to feelings of frustration. The instinct to hunt is strong, and being 

unable to act on these impulses when they see a potential prey item can be 

aggravating for a cat. \n\nIt's essential to remember that while these 

perspectives can help us imagine how a cat might view birds, each cat's 

personality, past experiences, and breed can influence its actual 

perception and behavior toward birds. 

[1mGPT processing time: [0m21 seconds [1mGPT Context Tokens: [0m16 [1mGPT 

Generated Tokens: [0m": 392 

 

 

------Prompt Experiment 5:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one line. 

 

[1mGPT Answer: [0mA bird is a mesmerizing, elusive creature that ignites a 

cat's hunting instincts. 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m21 [1mGPT 

Generated Tokens: [0m": 18 

 

 

------Prompt Experiment 6:------ 

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one word. 
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[1mGPT Answer: [0mPrey 

[1mGPT processing time: [0m700 milliseconds [1mGPT Context Tokens: [0m21 

[1mGPT Generated Tokens: [0m": 2 

 

 

------Prompt Experiment 7:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? 

 

[1mGPT Answer: [0mAs a hungry cat, a bird to me is a tantalizing target, an 

embodiment of my natural instincts to hunt. It's a challenge to my agility 

and stealth skills, a moving feast that promises not only to satisfy my 

hunger but also to engage my predatory instincts. The sight and sound of a 

bird awaken a primal urge within me to stalk, pounce, and ultimately secure 

my prey. Its feathers, the flutter of its wings, and even its chirping or 

squawking, all stimulate my senses, fueling my determination to leap, grab, 

and bite. To me, the bird represents both nourishment and the thrill of the 

chase. It's an opportunity to exercise my feline prowess and satisfy my 

appetite in the most instinctive and satisfying way. 

[1mGPT processing time: [0m9 seconds [1mGPT Context Tokens: [0m20 [1mGPT 

Generated Tokens: [0m": 154 

 

 

------Prompt Experiment 8:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one line 

 

[1mGPT Answer: [0mA tantalizing treat with feathers, just waiting to be 

caught! 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m23 [1mGPT 

Generated Tokens: [0m": 13 

 

 

------Prompt Experiment 9:------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one word 

 

[1mGPT Answer: [0mPrey. 

[1mGPT processing time: [0m825 milliseconds [1mGPT Context Tokens: [0m23 

[1mGPT Generated Tokens: [0m": 3 

 

 

------Prompt Experiment 10:------ 

[1mPrompt: [0mAct as a Human. What is a bird for you? 

 

[1mGPT Answer: [0mFor me, a bird symbolizes a variety of concepts and 

emotions. On one hand, birds represent freedom and the boundlessness of the 

sky. Their ability to fly high above the earth, exploring the vast expanses 

of the sky, often evokes feelings of envy and admiration. The sight of a 

bird soaring effortlessly through the air reminds me of the limitless 

nature of dreams and aspirations, and the desire to explore beyond my 

immediate surroundings.\n\nAdditionally, birds are a symbol of nature's 

incredible diversity and beauty. From the tiny, vibrant hummingbird that 

flits from flower to flower, to the majestic eagle that reigns supreme in 

the sky, each species has its own unique characteristics that contribute to 

the rich tapestry of life on Earth. The myriad colors, songs, and behaviors 

of birds add depth and wonder to the natural world, enriching my daily 

experience and fostering a deep appreciation for the intricacies of the 

ecosystem.\n\nBirds also play a crucial role in many ecosystems, serving as 

pollinators, seed dispersers, and controllers of insect populations. This 

essential role in biodiversity and natural balance imbues them with a sense 

of importance and value that extends beyond their aesthetic appeal. 
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Understanding their ecological importance highlights the interconnectedness 

of all living things and the importance of conserving natural habitats to 

protect bird populations and, by extension, the health of our planet.\n\nOn 

a personal level, birds symbolize change and the passing of time. The 

migratory patterns of birds, marking the change of seasons, serve as a 

reminder of the cyclical nature of life and the constant presence of 

change. The return of certain bird species in spring brings a sense of 

renewal and hope, signaling the end of the cold, barren winter months and 

the beginning of new growth and opportunities.\n\nIn summary, for me, a 

bird is not just a winged creature but a potent symbol of freedom, beauty, 

ecological importance, and change. Their presence enriches my daily life, 

connects me more deeply to the natural world, and provides endless 

fascination and inspiration. 

[1mGPT processing time: [0m28 seconds [1mGPT Context Tokens: [0m19 [1mGPT 

Generated Tokens: [0m": 406 

 

 

------Prompt Experiment 11:------ 

[1mPrompt: [0mYou are a Human. What is a bird? In one line 

 

[1mGPT Answer: [0mA bird is a warm-blooded, feathered vertebrate with 

wings, most species of which are capable of flight. 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m20 [1mGPT 

Generated Tokens: [0m": 24 

 

------Prompt Experiment 12:------ 

[1mPrompt: [0mYou are a Human. What is a bird? In one word 

 

[1mGPT Answer: [0mAnimal 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m20 [1mGPT 

Generated Tokens: [0m": 1 

 

3.2.1.4 Explore multiple API requests vs. Single API request 

 

Bird Experiment on latest GPT-3.5 Turbo using single message, 2 user messages (1 

context other request) and system message (context) + user message (request): 

 Below you can find the results on Figures, after the figures, you can find the text version. 

Figure A.3.5 – Experiment using single message, 2 user messages and 1 system+1 user messages 

 

Source: Elaborated by the author 
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 Text version of the same experiments: 

 

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do to it? In 

one phrases citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english."}]} 

 [1mGPT Answer: [0m\ 

 [1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 20 

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content": 

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and 

using simple english."}]} 

 [1mGPT Answer: [0mBird is food, I chase and catch it. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 10 

[1mSystem Prompt: [0mAct as a hungry cat. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for 

your hungry and what you would do to it? In one phrases citing bird and using simple 

english."}]} 

 [1mGPT Answer: [0mA bird is a tasty snack; I'd pounce and catch it with my sharp 

claws. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 19 

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english."}]} 

 [1mGPT Answer: [0mBird is my prey, I will catch it and eat it. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 13 

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt. 
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[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content": 

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and 

using simple english."}]} 

 [1mGPT Answer: [0mA bird is lunch for me, I'll catch it with my claws and devour it. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 18 

[1mSystem Prompt: [0mAct as a hungry cat. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for 

your hungry and what you would do to it? In one phrases citing bird and using simple 

english."}]} 

 [1mGPT Answer: [0mA bird is a tasty snack, I would pounce on it and gobble it up! 

 [1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 19 

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english."}]} 

 [1mGPT Answer: [0mThe bird is food for my hungry and I would pounce on it and 

catch it in my sharp claws. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 22 

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content": 

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and 

using simple english."}]} 

 [1mGPT Answer: [0mBird is food. Catch and eat. 

 [1mGPT processing time: [0m909 milliseconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 8 

[1mSystem Prompt: [0mAct as a hungry cat. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 
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[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for 

your hungry and what you would do to it? In one phrases citing bird and using simple 

english."}]} 

 [1mGPT Answer: [0mA bird is food, and I would pounce and catch it to satisfy my 

hunger. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 18 

 

Bird Experiment on latest GPT-3.5 Turbo (second execution): 

 

 This is a repeated test from previous one, just to assure that result would be the same. 

Figure A.3.6 - Experiment using single message, 2 user messages and 1 system+1 user messages 

 

Source: Elaborated by the author 

 

 Below the text version of the same experiment: 

 

------Prompt Experiment 15 (1 Message):------ 



135 

 

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english."}]} 

 

 

 [1mGPT Answer: [0m\ 

 [1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 20 

 

 

------Prompt Experiment 16 (2 Messages):------ 

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content": 

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and 

using simple english."}]} 

 

 

 [1mGPT Answer: [0mBird is food, I chase and catch it. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 10 

 

 

------Prompt Experiment 17 (1 System Prompt + 1 Message):------ 

[1mSystem Prompt: [0mAct as a hungry cat. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for 
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your hungry and what you would do to it? In one phrases citing bird and using simple 

english."}]} 

 

 [1mGPT Answer: [0mA bird is a tasty snack; I'd pounce and catch it with my sharp 

claws. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 19 

 

------Prompt Experiment 15 (1 Message):------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english."}]} 

 

 [1mGPT Answer: [0mBird is my prey, I will catch it and eat it. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 13 

 

 

------Prompt Experiment 16 (2 Messages):------ 

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content": 

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and 

using simple english."}]} 

 

 

 [1mGPT Answer: [0mA bird is lunch for me, I'll catch it with my claws and devour it. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 18 
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------Prompt Experiment 17 (1 System Prompt + 1 Message):------ 

[1mSystem Prompt: [0mAct as a hungry cat. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for 

your hungry and what you would do to it? In one phrases citing bird and using simple 

english."}]} 

 

 

 [1mGPT Answer: [0mA bird is a tasty snack, I would pounce on it and gobble it up! 

 [1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 19 

 

 

------Prompt Experiment 15 (1 Message):------ 

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do 

to it? In one phrases citing bird and using simple english."}]} 

 

 

 [1mGPT Answer: [0mThe bird is food for my hungry and I would pounce on it and 

catch it in my sharp claws. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 22 

 

 

------Prompt Experiment 16 (2 Messages):------ 

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt. 
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[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content": 

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and 

using simple english."}]} 

 

 

 [1mGPT Answer: [0mBird is food. Catch and eat. 

 [1mGPT processing time: [0m909 milliseconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 8 

 

 

------Prompt Experiment 17 (1 System Prompt + 1 Message):------ 

[1mSystem Prompt: [0mAct as a hungry cat. 

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases 

citing bird and using simple english. 

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role": 

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for 

your hungry and what you would do to it? In one phrases citing bird and using simple 

english."}]} 

 

 

 [1mGPT Answer: [0mA bird is food, and I would pounce and catch it to satisfy my 

hunger. 

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 18 

 

 

3.2.2 PROMPT ENGINEERING TO PROVIDE DATA TO GPT 

 

Test with <BEGIN DATA TOKEN> and <END DATA TOKEN> 

GPT-3.5 Turbo: 
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Using GPT 3.5 Turbo 

  

 

Prompt to be used: 

Act as a Software Archtect. You are giving advise to a software developer to refactor a code 

with the following metrics: <BEGIN DATA TOKEN>SUMMARY OF METRICS: <BEGIN 

DATA TOKEN>Total of Namespaces: 32<END DATA TOKEN> <BEGIN DATA 

TOKEN>Total of Types: 127<END DATA TOKEN> <BEGIN DATA TOKEN>Number of 

types/namespaces: 3.97 (median: 3.00 - std dev: 2.90')<END DATA TOKEN> <BEGIN 

DATA TOKEN>'Total of SLOC: 7962'<END DATA TOKEN> <BEGIN DATA 

TOKEN>'Number of SLOC/types: 62.69 (median: 37.00 - std dev: 75.57)')<END DATA 

TOKEN> <BEGIN DATA TOKEN>'Total of Methods: 1167<END DATA TOKEN> 

<BEGIN DATA TOKEN>'number of methods/types: 9.19 (median: 3.00 - std dev: 

5.80)'<END DATA TOKEN> <BEGIN DATA TOKEN>'Total of CYCLO: 1513'<END 

DATA TOKEN> <BEGIN DATA TOKEN>'Number of CYCLO/types: 11.91'<END DATA 

TOKEN> <END DATA TOKEN>  

 

GPT Insight: 

Based on the provided metrics, it seems that the codebase may have some complexity and 

maintainability issues. Here's some advice to refactor the code:\n\n1. Reduce the number of 

namespaces: Having 32 namespaces indicates a high level of complexity and may make the 

codebase harder to navigate and understand. Consider consolidating related functionality into 

fewer namespaces to simplify the overall structure.\n\n2. Review the number of types: With 

127 types, it's important to ensure that each type has a clear and distinct responsibility. Look 

for opportunities to consolidate or eliminate redundant or unnecessary types. This will help in 

reducing complexity and improving maintainability.\n\n3. Manage the number of lines of 

code (SLOC): 7962 lines of code can be hard to maintain. Focus on modularizing and 

breaking down the code into smaller, more manageable modules or classes. Aim for a smaller 

number of lines per type to improve readability and ease of maintenance.\n\n4. Reduce the 

number of methods per type: Having 9.19 methods per type on average indicates potential 

code smell. Aim for simpler, more focused classes with fewer methods. Consider splitting 

large classes into smaller ones and applying appropriate design patterns to improve cohesion 

and loose coupling.\n\n5. Address the cyclomatic complexity: A total cyclomatic complexity 
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of 1513 and an average of 11.91 per type suggests the presence of complex and potentially 

error-prone code. Identify methods with high complexity and refactor them into smaller, more 

modular functions. This will make the code easier to understand, test, and maintain.\n\n6. 

Apply code reviews and refactoring techniques: Encourage the developer to perform code 

reviews and refactor the codebase incrementally. Identify and prioritize areas that need 

improvement based on metrics and code quality indicators. Use automated tools and refactor 

safely, ensuring that unit tests are in place to avoid introducing new bugs.\n\nRemember, 

refactoring should be done iteratively and in a controlled manner to minimize the impact on 

the existing functionality. Regularly reassess and measure the impact of the refactoring efforts 

to ensure improvements in metrics and overall code quality. 

 

GPT-4 answer, just providing the SLOC data. 

Prompt used (2314) words/tokens: 

Act as a Software Archtect. You are giving advise to a software developer to refactor a code 

with the following metrics: <BEGIN DATA TOKEN>Types metrics: <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultJSON<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 374<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.results.TypeMetricResult<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 328<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.JSONDataFixture<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 325<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.MetricResultGPT<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

293<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: output.MetricResultCSV<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 282<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.DataFixture<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 269<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.MetricResultConsole<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

263<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: javaProject.com.controller.Type<END DATA TOKEN> <BEGIN 
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DATA TOKEN>SLOC: 245<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultFile<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 203<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

parser.java.visitors.TypeVisitor<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

189<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: parser.java.visitors.MethodVisitor<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 188<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: main.Bootstrapper<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 172<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.CSVDataFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

169<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: output.MetricResultFileTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 164<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.TypeMetric<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 151<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.StatisticOfType<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 144<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.results.TypeMetricResultTest<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 135<END DATA TOKEN> <END 

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.MetricResultJSONTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

131<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: output.MetricResultCSVTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 111<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: output.utils.InfoConsole<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 109<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.OptionsTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

104<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: utils.files.SourceCodeLineCounter<END DATA TOKEN> <BEGIN 
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DATA TOKEN>SLOC: 99<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: selection.ProjectInfoTest<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 96<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.results.MethodMetricResult<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 96<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.results.NamespaceMetricResult<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 94<END DATA TOKEN> <END 

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.results.MethodMetricResultTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 89<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.statistics.StatisticOfMethod<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 85<END DATA TOKEN> <END 

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.namespaces.StatisticOfNamespaceTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 79<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: parser.java.JavaParser<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 74<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.metrics.MethodMetric<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

73<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: structures.results.NamespaceMetricResultTest<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 72<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

chatGPTIntegration.ChatGPTAPI<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

71<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: output.MetricResultFake<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 70<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: selection.ProjectInfo<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 69<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

utils.calc.StatisticalAnalysis<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

65<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 
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DATA TOKEN>Type: structures.results.StatisticMetricResult<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 62<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.metrics.MetricThreshold<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 62<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.TypeData<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 61<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.StatisticalOperations<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 59<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticCallsOfMethodTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticCycloOfMethodTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticMlocOfMethodTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticNbdOfMethodTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.methods.StatisticParamOfMethodTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticDepOfTypeTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticFanInOfTypeTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticFanOutOfTypeTest<END DATA TOKEN> <BEGIN 



144 

 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticIDepOfTypeTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticLcom3OfTypeTest<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticNoaOfTypeTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticNomOfTypeTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticNpmOfTypeTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticSlocOfTypeTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.types.StatisticWmcOfTypeTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.StatisticData<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 54<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

utils.calc.OutlierAnalysisTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

54<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: fixtures.TypeMetricFixture<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 52<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.Options<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 50<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.statistics.StatisticOfTypeFixture<END DATA TOKEN> <BEGIN DATA 
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TOKEN>SLOC: 48<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultDOT<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 45<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.MethodMetricFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

43<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: utils.files.StringFormatTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 40<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.SystemUtils<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 39<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.statistics.StatisticOfNamespace<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 37<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.NamespaceMetric<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 35<END DATA TOKEN> <END 

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.MethodData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

35<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: fixtures.output.data.NamespaceCouplingData<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 35<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

chatGPTIntegration.GPTintegration<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 34<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.MetricThresholdData<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 33<END DATA TOKEN> <END 

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

structures.metrics.MetricDefinition<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 30<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.SummaryData<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 30<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

utils.calc.StatisticalAnalysisTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

30<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 
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DATA TOKEN>Type: fixtures.statistics.StatisticOfMethodFixture<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 30<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.model.Man<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

29<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: output.MetricOutput<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 28<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.JSONBuilder<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 28<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.controller.Dispatcher<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 27<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.SourceCodeLineCounterTest<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 26<END DATA TOKEN> <END 

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

parser.java.visitors.NamespaceVisitor<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 24<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.NamespaceMetricFixture<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 23<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

output.utils.Gauge<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 23<END 

DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA 

TOKEN>Type: utils.files.SystemUtilsTest<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 22<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.StringFormat<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 20<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.CyclicDependencyData<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 20<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.NamespaceData<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 20<END DATA TOKEN> <END 

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.TypeResonanceData<END DATA TOKEN> <BEGIN DATA 



147 

 

TOKEN>SLOC: 20<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.model.Woman<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 16<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

fixtures.output.data.NamespaceDependencyData<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 15<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricFile<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 14<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.TypeCouplingOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.general.AllMetricsOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.general.MetricVisualizationOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticAndTypeOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticTypeOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.strutures.TypeOption<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 11<END DATA TOKEN> <END 

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.model.Human<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

10<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: selection.options.dependencies.AllCouplingOption<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.CyclicDependencyOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN 
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DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.InternalDependencyOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.NamespaceCouplingOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticAndNamespaceOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticNamespaceOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN 

DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.strutures.NamespaceOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.view.QueueViewer<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.dependencies.DependencyOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 9<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.general.SummaryOption<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.general.ThresholdsOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 9<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticAndMethodOption<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 9<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: 

selection.options.statistics.StatisticMethodOption<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 9<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.strutures.MethodOption<END 

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <END DATA 
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TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.controller.ClassWithComments<END DATA TOKEN> <BEGIN DATA 

TOKEN>SLOC: 8<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.MetricResultNotifier<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 7<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.com.model.Child<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

7<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: javaProject.com.controller.XClass<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 6<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.others.AnalysisContext<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 6<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.others.ClassVertex<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

6<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: selection.options.OptionDefinition<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 5<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: structures.MetricActivator<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 5<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.one.A<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 5<END DATA 

TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA 

TOKEN>Type: javaProject.two.B<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

5<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN 

DATA TOKEN>Type: javaProject.com.model.Person<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 4<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: chatGPTIntegration.GPT<END DATA TOKEN> 

<BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <END DATA TOKEN> 

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricGPT<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

parser.TypeParser<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 4<END DATA 

TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA 
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TOKEN>Type: javaProject.com.controller.XMethod<END DATA TOKEN> <BEGIN 

DATA TOKEN>SLOC: 3<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA 

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.others.ClassDescriptor<END DATA 

TOKEN> <BEGIN DATA TOKEN>SLOC: 3<END DATA TOKEN> <END DATA 

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: 

javaProject.others.ObjectType<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 

3<END DATA TOKEN> <END DATA TOKEN> <END DATA TOKEN>  

 

GPT Insight (498 words/tokens): 

Given the data you've provided, it looks like we're dealing with a variety of source code files 

that vary significantly in their SLOC (Source Lines Of Code) counts. This variation suggests 

a diverse codebase with likely varying degrees of complexity and potential refactoring needs 

across different segments.\n\nHere are some broad suggestions tailored to the different types 

of metrics and files indicated by your data:\n\n1. **Prioritize by Complexity and Critical 

Path:**\n - Begin with modules/types that have a high SLOC count, as these are potentially 

more complex and, if part of your critical path, could yield significant performance 

improvements once optimized. Specifically, focus on types such as 

`output.MetricResultJSON`, `structures.results.TypeMetricResult`, and 

`fixtures.output.JSONDataFixture`.\n\n2. **Identify and Refactor Common Patterns:**\n - 

Look for commonality between types, especially those with closely related functionality (e.g., 

different `MetricResult` types like `MetricResultJSON`, `MetricResultCSV`, 

`MetricResultConsole`, etc.). Consider abstracting shared logic into base classes or utility 

methods to reduce redundancy.\n\n3. **Optimize Data Structures and Algorithms:**\n - 

Analyze the data structures and algorithms in the larger types/classes. High SLOC might 

indicate complex logic, which could benefit from optimization. \n\n4. **Ensure Modularity 

and Test Coverage:**\n - Ensure that the segmentation into types/modules reflects logical 

boundaries within your application's domain. Where boundaries are fuzzy, consider 

refactoring to more cleanly separate concerns.\n - Alongside refactoring, either ensure 

existing tests cover the modified paths or write new tests to maintain coverage. This is crucial 

for modules like `output.MetricResultTest` and 

`structures.results.TypeMetricResultTest`.\n\n5. **Look for Opportunities to Integrate Design 

Patterns:**\n - For types with high SLOC, consider if design patterns (e.g., Factory, Strategy, 

Observer) could help modularize the code better, making it easier to maintain and 
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extend.\n\n6. **Simplification and Documentation:**\n - For the most complex parts of the 

system, in addition to refactoring for code efficiency, focus on simplifying the logic where 

possible. This might not always lead to reduced lines of code but will result in more 

maintainable code.\n - Ensure that these areas of the code are well-documented for future 

maintainers.\n\n7. **Utilize Tools for Refactoring:**\n - Utilize static analysis tools and 

Integrated Development Environment (IDE) refactoring tools to help identify code smells, 

duplication, and opportunities for simplification or optimization.\n\n8. **Review Low SLOC 

Modules for Integration or Extension:**\n - Don’t ignore modules with lower SLOC counts 

outright; they might be candidates for extension or could be integrated with other modules to 

streamline the architecture. Modules like `javaProject.com.model.Person` or 

`chatGPTIntegration.GPT` might be simple but key to your system's functionality.\n\n9. 

**Monitor and Measure:**\n - Make changes incrementally and measure their impact through 

performance metrics, code complexity metrics, and by conducting code reviews. Tools that 

measure the impact of refactoring on performance and maintainability can be valuable.\n\n10. 

**Foster a Culture of Continuous Refactoring:**\n - Encourage the team to adopt a mindset 

of continuous refactoring with an emphasis on readability, maintainability, and performance. 

Ensure that refactoring efforts align with overall project timelines and 

priorities.\n\nRemember, refactoring is an ongoing process and should ideally not interfere 

drastically with new feature development. It's about making the codebase healthier over time, 

not perfect overnight. 
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3.2.2.1 Evaluating GPT-3.5 Turbo vs GPT-4 Turbo (with summary data) 

 

 This section will present the data used for finding the correctness of each data delimiter 

presented on table 3.2 on the main text. It will be presented screenshots from each result also 

showing code that is defining model version and delimiter token (beginToken and endToken) 

Figure A.3.7 - Experiment provide difference between average and median (GPT-3.5 Turbo with 

<BEGIN DATA TOKEN><END DATA TOKEN> as delimiter) 

 

Source: Elaborated by the author 
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Figure A.3.8 - Experiment provide difference between average and median (GPT-4 Turbo with 

<BEGIN DATA TOKEN></BEGIN DATA TOKEN> as delimiter) 

 

Source: Elaborated by the author 

Figure A.3.9 - Experiment provide difference between average and median (GPT-3.5 Turbo with 

<BEGIN><END> as delimiter) 

 

Source: Elaborated by the author 
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Figure A.3.10 - Experiment provide difference between average and median (GPT-4 Turbo with 

<BEGIN><END> as delimiter) 

 

Source: Elaborated by the author 

 

Figure A.3.11- Experiment provide difference between average and median (GPT-3.5 Turbo with 

<DATA></DATA> as delimiter) 

 

Source: Elaborated by the author 
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Figure A.3.12 - Experiment provide difference between average and median (GPT-4 Turbo with 

<DATA></DATA> as delimiter) 

 

Source: Elaborated by the author 

 

Figure A.3.13 - Experiment provide difference between average and median (GPT-3.5 Turbo with 

<D></D> as delimiter) 

 

Source: Elaborated by the author 
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Figure A.3.14 - Experiment provide difference between average and median (GPT-4 Turbo with 

<D></D> as delimiter) 

 

Source: Elaborated by the author 

 

Figure A.3.15 - Experiment provide difference between average and median (GPT-3.5 Turbo with “|’ 

as delimiter) 

 

Source: Elaborated by the author 
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Figure A.3.16 - Experiment provide difference between average and median (GPT-4 Turbo with “|” as 

delimiter) 

 
Source: Elaborated by the author 

 

 

Figure A.3.17 - Experiment provide difference between average and median (GPT-3.5 Turbo with 

space as delimiter) 

 
Source: Elaborated by the author 
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Figure A.3.18 - Experiment provide difference between average and median (GPT-4 Turbo with space 

as delimiter) 

 
Source: Elaborated by the author 

 

Figure A.3.19 - Experiment provide difference between average and median (GPT-3.5 Turbo no 

delimiter) 

 
Source: Elaborated by the author 
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Figure A.3.20 – Experiment provide difference between average and median (GPT-3.5 Turbo with 

space as separator) 

 
Source: Elaborated by the author 

 

Experiment Average vs. Median (50 request to more accuracy): 

 

Test with 50 requests to have % correctness. 

 

 

GPT-3.5 Turbo testing prompt for improve comparation 

 

Starting 

Directory valid 

------------------ 

SUMMARY OF METRICS 

------------------ 

Total of Namespaces: 32 

Total of Types: 128 - 4.00 (number of types/namespaces - median: 3.00 - std 

dev: 2.89) 

Total of SLOC: 8558 - 66.86 (number of SLOC/types - median: 38.00 - std 

dev: 84.46) 

Total of Methods: 1181 - 9.23 (number of methods/types - median: 3.00 - std 

dev: 16.51) 

Total of CYCLO: 1592 - 12.44 (number of CYCLO/types) 

Processing time: 4 seconds 

 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 710): 

Act as a Software Architect. You are giving advice for refactoring a code 

with the following metrics beginning after the questions: what is the 
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average and median of line of code per type? Which is higher? What is the 

calculated difference between them? Answer in one phrase for each question. 

Data:|SUMMARY OF METRICS: |Total of Namespaces: 32||Total of Types: 

128||Number of types/namespaces|Average: 4.00||Median: 3.00||Standard 

Deviation: 2.89|||Total of SLOC: 8558||Number of SLOC/types|Average: 

66.86||Median: 38.00||Standard deviation: 84.46|||Total of Methods: 

1181||Number of methods/types:|Average: 9.23||Median: 3.00||Standard 

deviation: 16.51|||Total of CYCLO: 1592||Number of CYCLO/type ... 

 

GPT Insight : 

Average SLOC per type is higher than median SLOC per type. The calculated 

difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 25 

 

 

GPT Insight(2nd test) : 

Average SLOC per type is 66.86, median SLOC per type is 38.00, the average 

is higher. The calculated difference between them is 28.86.\nAverage 

methods per type is 9.23, median methods per type is 3.00, the average is 

higher. The calculated difference between them is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 74 

 

 

GPT Insight(3rd test) : 

The average line of code per type is higher for SLOC at 66.86 compared to 

the median of 38.00, with a calculated difference of 28.86.\nThe average 

number of methods per type is higher at 9.23 compared to the median of 

3.00, with a calculated difference of 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 71 

 

 

GPT Insight(4th test) : 

Average SLOC per type is higher than median.\nThe calculated difference 

between average and median SLOC per type is 28.86.\nMedian number of 

methods per type is higher than average.\nThe calculated difference between 

average and median number of methods per type is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 56 

 

 

GPT Insight(5th test) : 

Average line of code per type is 66.86, median line of code per type is 

38.00, the median is higher than the average with a difference of 28.86. 

 

======================ChatGPT Insight end(built prompt) 
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GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 40 

 

 

GPT Insight(6th test) : 

Average line of code per type: 66.86 SLOC\nMedian line of code per type: 

38.00 SLOC\nThe average is higher than the median by 28.86 SLOC. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 43 

 

 

GPT Insight(7th test) : 

- The average and median of line of code per type are: Average: 66.86 and 

Median: 38.00. Average is higher\n- The calculated difference between them 

is 28.86\n- The average and median of number of methods per type are: 

Average: 9.23 and Median: 3.00. Average is higher 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 73 

 

 

GPT Insight(8th test) : 

The average SLOC per type is higher than the median. The calculated 

difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 23 

 

 

GPT Insight(9th test) : 

- The average line of code per type is higher.\n- The calculated difference 

between the average and median is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 26 

 

 

GPT Insight(10th test) : 

Average of LOC per type is higher.\nThe calculated difference between 

average and median of LOC per type is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 852 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 25 

 

 

GPT Insight : 

Average SLOC per type is higher.\nThe calculated difference between average 

and median SLOC per type is 28.86. 
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======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 768 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 25 

 

 

GPT Insight(12nd test) : 

The average number of lines of code per type is higher than the 

median.\nThe calculated difference between the average and median number of 

lines of code per type is 28.86.\nThe average number of methods per type is 

higher than the median. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 49 

 

 

GPT Insight(13rd test) : 

Average SLOC per type is 66.86 and median is 38.00. Median is 

higher.\n\nThe calculated difference between the average and median SLOC 

per type is 28.86.\n\nAverage number of methods per type is 9.23 and median 

is 3.00. Median is higher. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 63 

 

 

GPT Insight(14th test) : 

- Average and Median of SLOC per type: Average SLOC per type is 66.86, 

Median SLOC per type is 38.00\n- SLOC per type median is higher\n- The 

calculated difference between average and median SLOC per type is 28.86 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 58 

 

 

GPT Insight(15th test) : 

Average line of code per type is higher than the median.\nThe calculated 

difference between average and median line of code per type is 

28.86.\nHigher standard deviation indicates greater variability in the 

number of lines of code per type. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 46 

 

 

GPT Insight(16th test) : 

Average and median of line of code per type: \nAverage: 66.86 \nMedian: 

38.00\n\nThe higher value is the average. \nThe calculated difference 

between them is 28.86, indicating a considerable variation in the line of 

code per type. \n\nAs a Software Architect, my advice for refactoring the 

code would be to focus on standardizing the size and complexity of each 
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type by identifying and addressing outliers, and ensuring consistent coding 

practices are being followed to maintain a more uniform and maintainable 

codebase. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 108 

 

 

GPT Insight(17th test) : 

The average number of lines of code per type is higher than the median. The 

calculated difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 26 

 

 

GPT Insight(18th test) : 

- The average line of code per type is higher than the median.\n- The 

calculated difference between the average and median line of code per type 

is 28.86.\n- The average number of methods per type is higher than the 

median. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 48 

 

 

GPT Insight(19th test) : 

The average line of code per type is higher than the median. The calculated 

difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 24 

 

 

GPT Insight(20th test) : 

Average and median of lines of code per type: average is 66.86, median is 

38.00. Average is higher. The calculated difference between them is 

28.86.\nAverage and median of methods per type: average is 9.23, median is 

3.00. Average is higher. The calculated difference between them is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 76 

 

 

GPT Insight (21st test): 

The average and median of lines of code per type is higher than the average 

and median of methods per type. The calculated difference between them is 

57.86 SLOC. 

 

======================ChatGPT Insight end(built prompt) 
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GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 35 

 

 

GPT Insight(22nd test) : 

Average SLOC per type is higher than the median. The calculated difference 

between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 904 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 22 

 

 

GPT Insight(23rd test) : 

Average and median of line of code per type is higher. The calculated 

difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 23 

 

 

GPT Insight(24th test) : 

Average and median of line of code per type: Average SLOC per type is 

66.86, while the median SLOC per type is 38.00. \nThe average is higher 

than the median. \nThe calculated difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 55 

 

 

GPT Insight(25th test) : 

Average SLOC per type is higher.\nThe calculated difference between average 

and median of SLOC per type is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 841 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 26 

 

 

GPT Insight(26th test) : 

Average number of lines of code per type is higher than the median. The 

calculated difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 794 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 25 

 

 

GPT Insight(27th test) : 

Average and median of line of code per type: \nAverage: 66.86 \nMedian: 

38.00\nHigher metric: Average\nCalculated difference: 28.86 
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======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 38 

 

 

GPT Insight(28th test) : 

Average and median of line of code per type: \nAverage: 66.86 SLOC\nMedian: 

38.00 SLOC\nThe average is higher than the median by 28.86 SLOC.\n\nAs a 

Software Architect, I would advise refactoring the code to reduce the 

average lines of code per type to bring it closer to the median, in order 

to improve consistency and maintainability. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 82 

 

 

GPT Insight(29th test) : 

1. Average SLOC per type is 66.86, median SLOC per type is 38.00. Average 

is higher.\n\n2. The calculated difference between average and median SLOC 

per type is 28.86.\n\n3. Average number of methods per type is 9.23, median 

is 3.00. Average is higher.\n\n4. The calculated difference between average 

and median number of methods per type is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 92 

 

 

GPT Insight(30th test) : 

Average SLOC per type is higher than median.\nThe calculated difference 

between average SLOC per type and median SLOC per type is 28.86.\nMedian 

methods per type is higher than average.\nThe calculated difference between 

average methods per type and median methods per type is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 59 

 

 

GPT Insight (31th test: 

The average SLOC per type is higher than the median SLOC per type. The 

calculated difference between them is 28.86.\nThe average number of methods 

per type is higher than the median number of methods per type. The 

calculated difference between them is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 56 

 

 

GPT Insight(32nd test) : 

Average SLOC per type is higher than the median. The calculated difference 

between them is 28.86.\nAverage methods per type is higher than the median. 

The calculated difference between them is 6.23. 
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======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 43 

 

 

GPT Insight(33rd test) : 

Average and median of lines of code per type: 66.86 and 38.00, the average 

is higher. The calculated difference between them is 28.86.\nAverage and 

median of methods per type: 9.23 and 3.00, the average is higher. The 

calculated difference between them is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 70 

 

 

GPT Insight(34th test) : 

The average number of lines of code per type is higher than the median. The 

calculated difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 935 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 26 

 

 

GPT Insight(35th test) : 

Average and median of line of code per type: \nAverage SLOC per type is 

66.86, median SLOC per type is 38.00. Average is higher than median by 

28.86.\n\nAverage and median of number of methods per type: \nAverage 

number of methods per type is 9.23, median number of methods per type is 

3.00. Average is higher than median by 6.23.\n\nAdvice for refactoring: 

\nConsider refactoring types with higher SLOC and number of methods to 

improve maintainability and readability of the codebase. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 119 

 

 

GPT Insight(36th test) : 

Average and median of line of code per type: \n- Average: 66.86 SLOC\n- 

Median: 38.00 SLOC\n- The average is higher than the median.\n- The 

calculated difference between them is 28.86 SLOC. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 54 

 

 

GPT Insight(37th test) : 

Average SLOC per type is higher than median, with a calculated difference 

of 28.86.\nMedian number of methods per type is higher than average. 

 

======================ChatGPT Insight end(built prompt) 
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GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 31 

 

 

GPT Insight(38th test) : 

Average and median of lines of code per type is higher than average and 

median of methods per type\nThe calculated difference between average and 

median of lines of code per type is 28.86\nThe calculated difference 

between average and median of methods per type is 6.23 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 56 

 

 

GPT Insight(39th test) : 

Average SLOC per type is higher than the median.\nThe calculated difference 

between the average and median SLOC per type is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 846 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 29 

 

 

GPT Insight(40th test) : 

Average SLOC per type is higher\nThe calculated difference between average 

and median SLOC per type is 28.86\nMedian number of methods per type is 

higher 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 926 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 33 

 

 

GPT Insight(41st test): 

The average and median of line of code per type is higher than the average 

and median of method per type. The calculated difference between them is 

57.86 SLOC. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 942 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 35 

 

 

GPT Insight(42nd test) : 

1. The average and median of line of code per type is 66.86 and 38.00, 

respectively.\n2. The average is higher than the median.\n3. The calculated 

difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 48 
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GPT Insight(43rd test) : 

Average SLOC per type is higher.\nThe calculated difference between average 

and median SLOC per type is 28.86.\nMedian number of methods per type is 

higher. \nThe calculated difference between average and median number of 

methods per type is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 53 

 

 

GPT Insight(44th test) : 

Average SLOC per type is 66.86, median is 38.00, with a calculated 

difference of 28.86. Median SLOC per type is higher. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 931 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 36 

 

 

GPT Insight(45th test) : 

Average SLOC per type is higher.\nThe calculated difference between average 

and median SLOC per type is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 909 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 25 

 

 

GPT Insight(46th test) : 

Average SLOC per type is higher. \nThe calculated difference between 

average and median SLOC per type is 28.86. \nMedian methods per type is 

higher. \nThe calculated difference between average and median methods per 

type is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 989 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 51 

 

 

GPT Insight(47th test) : 

The average number of lines of code per type is 66.86, while the median is 

38.00. The calculated difference between them is 28.86. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 841 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 35 

 

 

GPT Insight(48th test) : 

Average and median of line of code per type: Average is 66.86 and median is 

38.00. \n\nThe calculated difference between them: 28.86\n\nThe average 

line of code per type is higher. 

 

======================ChatGPT Insight end(built prompt) 
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GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 46 

 

 

GPT Insight(49th test) : 

Average SLOC per type is higher than median. The calculated difference 

between them is 28.86.\nMedian methods per type is lower than average. The 

calculated difference between them is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 41 

 

 

GPT Insight(50th test) : 

1. The average of SLOC per type is higher than the median.\n2. The 

calculated difference between the average and median of SLOC per type is 

28.86. \n3. The average of methods per type is higher than the median.\n4. 

The calculated difference between the average and median of methods per 

type is 6.23. 

 

======================ChatGPT Insight end(built prompt) 

 

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT 

Generated Tokens: [0m": 71 

 

3.2.2.2 GPT-4 Turbo API Rate Limits and its implications 

 

Below follow several tests were done to explore the limit and at the end the answer that 

OpenAI support provides us when asked about the limit. 

Figure A.3.21 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC and DEP metrics 

 

Source: Elaborated by the author 
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Figure A.3.22 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP and I-DEP 

metrics 

 

Source: Elaborated by the author 

 

More data increase the number of tokens, which extrapolate the limit of tokens per 

minute that OpenAI is limiting. 

Figure A.3.23 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP, I-DEP and 

FAN-IN metrics 

 

Source: Elaborated by the author 
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Figure A.3.24 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP and I-DEP 

metrics 

 

Source: Elaborated by the author 

 

Figure A.3.25 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP, I-DEP, FAN-

IN and FAN-OUT metrics (fail) 

 

Source: Elaborated by the author 
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Figure A.3.26 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP and I-DEP 

metrics (Successful) 

 

Source: Elaborated by the author 

 

Figure A.3.27 – ChatGPT with all type metrics, limiting data to 10 types (classes) 

 

Source: Elaborated by the author 
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Figure A.3.28 – ChatGPT with all type metrics, limiting data to 50 types (classes) 

 

Source: Elaborated by the author 

 

Figure A.3.29 – ChatGPT with all type metrics, limiting data to 80 types (classes) 

 

 

Source: Elaborated by the author 
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Figure A.3.30 – ChatGPT with all type metrics, limiting data to 80 types (classes) 

 

Source: Elaborated by the author 

 

Figure A.3.31 – ChatGPT with all type metrics, limiting data to 90 types (classes) (failing) 

 

Source: Elaborated by the author 
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Figure A.3.32 – ChatGPT with all type metrics, limiting data to 85 types (classes) 

 

Source: Elaborated by the author 

 

The OpenAI support was contacted, which was a chat bot, which provided us with the 

answer below and no solution: 

“Hi there, Sorry you're running into issues regarding rate limits! Rate limits, which are 

restrictions we place on the number of API calls you can make, exist so we can make sure 

everyone has fair access to the API. If you're bumping up against these limits, here are some 

strategies you might try: Reduce max_tokens : Reducing max_tokens to match the size of your 

completions. Since max_tokens factor into your rate limit calculation, this adjustment might 

resolve the issue if your Current tokens used are exceeding your token Limit. Optimize Your 

Requests: Batch requests and employ strategies like exponential backoff along with other error 

mitigation tactics. Wait for 48 Hours: If you're a new pay-as-you-go user, be aware that we 

place daily rate limits during the first 48 hours. More details on your specific rate limits can be 

found here. Check Your Quota: Ensure you're not exceeding your monthly spending quota. If 

you need adjustments, you can do so through the quota increase form. Ensure you're on our 

Pay-As-You-Go-Plan: Update your billing with credit card details for the API Platform (not 

ChatGPT) here. Explore (or free trial users) are heavily restricted, regardless if you already 

have credits or grants in your account. Still encountering issues? You can request a rate limit 
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increase by filling out our Rate Limit Increase form. Please note that this applies only to certain 

models, as gpt-4 and gpt-3.5-turbo-16k are currently capacity constrained and we can't offer 

increases today. If these steps don't resolve your issue, please provide more details, and I'll be 

glad to assist you further. Best, 

OpenAI Team” 

Following the test of the limit of the method that can be analyzed using <D> </D>: 

Figure A.3.33 – Experiment to find the longest method, limiting to provide 700 methods (successful) 

 

Source: Elaborated by the author 

Figure A.3.34 – Experiment to find the longest method, limiting to provide 900 methods (successful) 

 

Source: Elaborated by the author 

 

Figure A.3.35 – Experiment to find the longest method, limiting to provide 950 methods (successful) 

 

Source: Elaborated by the author 
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Figure A.3.36 – Experiment to find the longest method, limiting to provide 700 methods (successful) 

 

Source: Elaborated by the author 

Figure A.3.37 – Experiment to find the longest method, limiting to provide 985 methods (successful) 

 

Source: Elaborated by the author 

Figure A.3.38 – Experiment to find the longest method, limiting to provide 100 methods (fail due to 

rate limit) 

 

Source: Elaborated by the author 

Figure A.3.39 – Experiment to find types with higher than 20 dependencies, limiting to provide 100 

types (successful) 
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Source: Elaborated by the author 

 

Figure A.3.40– Experiment to find the longest method, limiting to provide 700 methods (successful) 

 

Source: Elaborated by the author 

Figure A.3.41 – Experiment to find the longest method, limiting to provide 900 methods (successful) 

 

Source: Elaborated by the author 

Figure A.3.42 – Experiment to find the longest method, limiting to provide 950 methods (successful) 

 

Source: Elaborated by the author 

Figure A.3.43 – Experiment to find the longest method, limiting to provide 700 methods (successful) 

 

Source: Elaborated by the author 
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Figure A.3.44 – Experiment to find the longest method, limiting to provide 985 methods (successful) 

 

Source: Elaborated by the author 

Figure A.3.45 – Experiment to find the longest method, limiting to provide 1000 methods (fail due to 

rate limit) 

 

Source: Elaborated by the author 

Figure A.3.46 – Experiment to find the longest method with name placeholder, limiting to provide 985 

methods (successful) 

 

Source: Elaborated by the author 

Figure A.3.47– Experiment to find the longest method with name placeholder, limiting to provide 

1100 methods (successful) 

 

Source: Elaborated by the author 
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Figure A.3.48 – Experiment to find the longest method with name placeholder, no number of method 

limitation (successful) 

 

Source: Elaborated by the author 

 

3.2.2.3 Defining data structure for GPT-4 Turbo 

 

Below follows the console generated from the experiments to determine the best data 

structure for GPT-4 Turbo. 

 

Experiment using <BEGIN DATA TOKEN> <END DATA TOKEN> 

---------------------------------------------------------------------------

------------------------------------------------------------------ 

TYPES SLOC NOM NPM WMC DEP I-DEP FAN-IN FAN-OUT NOA LCOM3 

---------------------------------------------------------------------------

------------------------------------------------------------------ 

output.MetricResultJSON 374 42 38 63 25 16 4 22 5 0.95 

output.MetricResultGPT 361 23 22 39 17 15 1 20 7 0.86 

structures.results.TypeMetricResult 328 45 31 99 12 3 16 9 8 0.94 

fixtures.output.JSONDataFixture 325 23 19 38 18 11 1 15 3 0.95 

output.MetricResultCSV 282 34 34 45 17 15 4 22 4 0.95 

fixtures.output.DataFixture 269 17 17 17 17 11 2 12 10 0.72 

output.MetricResultConsole 263 23 22 38 17 15 3 19 4 0.93 

javaProject.com.controller.Type 245 35 25 58 7 2 0 9 13 0.85 

output.MetricResultFile 203 41 41 56 5 5 2 7 21 0.75 

parser.java.visitors.TypeVisitor 189 19 12 42 21 3 1 9 16 0.58 

parser.java.visitors.MethodVisitor 188 22 16 39 23 3 1 9 11 0.76 

chatGPTIntegration.ChatGPTAPI 174 15 8 29 7 0 4 8 6 0.82 

main.Bootstrapper 173 16 1 49 10 9 0 14 7 0.80 

fixtures.output.CSVDataFixture 169 15 15 26 8 8 1 11 1 1.00 

output.MetricResultFileTest 164 18 16 18 8 1 0 3 22 0.38 

structures.metrics.TypeMetric 151 36 36 37 9 2 11 5 15 0.80 

structures.statistics.StatisticOfType 144 15 13 16 6 4 5 6 3 0.93 

structures.results.TypeMetricResultTest 135 19 17 23 8 3 0 6 2 0.97 

output.MetricResultJSONTest 131 22 22 22 5 2 0 2 4 0.93 

output.MetricResultCSVTest 111 18 18 18 5 2 0 2 4 0.91 

output.utils.InfoConsole 109 13 9 15 0 0 6 3 1 1.00 

selection.options.OptionsTest 104 20 19 20 22 19 0 20 0 0.00 

utils.files.SourceCodeLineCounter 99 6 2 29 3 0 3 2 0 0.00 

selection.ProjectInfoTest 96 17 15 19 10 5 0 6 3 0.94 

structures.results.MethodMetricResult 96 15 14 25 9 2 18 6 3 0.93 

structures.results.NamespaceMetricResult 94 17 16 26 9 2 15 5 3 0.94 

structures.results.MethodMetricResultTest 89 12 10 15 7 3 0 4 2 0.95 

structures.statistics.StatisticOfMethod 85 10 8 11 5 3 5 5 2 0.94 
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structures.statistics.namespaces.StatisticOfNamespaceTest 79 14 12 14 7 4 0 

5 2 0.96 

parser.java.JavaParser 74 6 2 7 16 7 1 11 6 0.50 

structures.metrics.MethodMetric 73 18 18 19 1 0 11 2 8 0.79 

structures.results.NamespaceMetricResultTest 72 12 10 13 7 3 0 4 2 0.95 

output.MetricResultFake 70 21 21 21 3 3 0 4 0 0.00 

selection.ProjectInfo 69 11 9 12 11 9 5 10 6 0.75 

chatGPTIntegration.GPTintegration 68 4 2 11 9 9 1 15 7 0.00 

utils.calc.StatisticalAnalysis 65 15 14 20 1 0 11 5 2 0.96 

structures.results.StatisticMetricResult 62 14 14 14 0 0 8 0 2 0.96 

structures.metrics.MetricThreshold 62 3 3 5 2 0 5 1 1 1.00 

fixtures.output.data.TypeData 61 12 12 12 0 0 3 1 11 0.55 

structures.statistics.StatisticalOperations 59 16 15 16 6 4 3 5 3 0.93 

structures.statistics.methods.StatisticCallsOfMethodTest 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.methods.StatisticCycloOfMethodTest 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.methods.StatisticMlocOfMethodTest 56 12 12 12 4 1 0 2 

0 0.00 

structures.statistics.methods.StatisticNbdOfMethodTest 56 12 12 12 4 1 0 2 

0 0.00 

structures.statistics.methods.StatisticParamOfMethodTest 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.types.StatisticDepOfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

structures.statistics.types.StatisticFanInOfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

structures.statistics.types.StatisticFanOutOfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

structures.statistics.types.StatisticIDepOfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

structures.statistics.types.StatisticLcom3OfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

 

Type limit exceeded, limiting type data to 50 types 

Processing time: 5 seconds 

 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 26770): 

Act as a Software Architect. You are giving advice for refactoring a code 

with the metrics that begins after the questions: Provide all types with 

dependency higher than 20 dependencies? Answer only the type names in a 

enumerated list. Data:<BEGIN DATA TOKEN>Types metrics:<BEGIN DATA 

TOKEN><BEGIN DATA TOKEN>Type: output.MetricResultJSON<END DATA TOKEN><BEGIN 

DATA TOKEN>SLOC: 374<END DATA TOKEN><BEGIN DATA TOKEN>NOM: 42<END DATA 

TOKEN><BEGIN DATA TOKEN>NPM: 38<END DATA TOKEN><BEGIN DATA TOKEN>WMC: 

63<END DATA TOKEN><BEGIN DATA TOKEN>DEP: 25<END DATA TOKEN><BEGIN DATA 

TOKEN>I-DEP: 16<END DATA TOKEN><BEGIN DATA TOKEN>FAN-IN: 4<END DATA 

TOKEN><BEGIN DATA TOKEN>FAN-OUT: 22<END DATA TOKEN><BEGIN D ... 

 

GPT Insight(Test 1): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 32 
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[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 2): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 3): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 4): 

Based on the provided data, here are all types with dependencies higher 

than 20:\n\n1. output.MetricResultJSON\n2. 

parser.java.visitors.MethodVisitor\n3. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 40 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 5): 

1. parser.java.visitors.TypeVisitor\n2. 

parser.java.visitors.MethodVisitor\n3. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 6): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 7): 
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1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 8): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 9): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m7 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 10): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selections.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT 

Generated Tokens: [0m": 32 

 

Experiment using <DATA> limited 50 types using 

---------------------------------------------------------------------------

------------------------------------------------------------------ 

TYPES SLOC NOM NPM WMC DEP I-DEP FAN-IN FAN-OUT NOA LCOM3 

---------------------------------------------------------------------------

------------------------------------------------------------------ 

output.MetricResultJSON 374 42 38 63 25 16 4 22 5 0.95 

output.MetricResultGPT 361 23 22 39 17 15 1 20 7 0.86 

structures.results.TypeMetricResult 328 45 31 99 12 3 16 9 8 0.94 

fixtures.output.JSONDataFixture 325 23 19 38 18 11 1 15 3 0.95 

output.MetricResultCSV 282 34 34 45 17 15 4 22 4 0.95 

fixtures.output.DataFixture 269 17 17 17 17 11 2 12 10 0.72 

output.MetricResultConsole 263 23 22 38 17 15 3 19 4 0.93 

javaProject.com.controller.Type 245 35 25 58 7 2 0 9 13 0.85 

output.MetricResultFile 203 41 41 56 5 5 2 7 21 0.75 

parser.java.visitors.TypeVisitor 189 19 12 42 21 3 1 9 16 0.58 

parser.java.visitors.MethodVisitor 188 22 16 39 23 3 1 9 11 0.76 

chatGPTIntegration.ChatGPTAPI 174 15 8 29 7 0 4 8 6 0.82 

main.Bootstrapper 173 16 1 49 10 9 0 14 7 0.80 
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fixtures.output.CSVDataFixture 169 15 15 26 8 8 1 11 1 1.00 

output.MetricResultFileTest 164 18 16 18 8 1 0 3 22 0.38 

structures.metrics.TypeMetric 151 36 36 37 9 2 11 5 15 0.80 

structures.statistics.StatisticOfType 144 15 13 16 6 4 5 6 3 0.93 

structures.results.TypeMetricResultTest 135 19 17 23 8 3 0 6 2 0.97 

output.MetricResultJSONTest 131 22 22 22 5 2 0 2 4 0.93 

output.MetricResultCSVTest 111 18 18 18 5 2 0 2 4 0.91 

output.utils.InfoConsole 109 13 9 15 0 0 6 3 1 1.00 

selection.options.OptionsTest 104 20 19 20 22 19 0 20 0 0.00 

utils.files.SourceCodeLineCounter 99 6 2 29 3 0 3 2 0 0.00 

selection.ProjectInfoTest 96 17 15 19 10 5 0 6 3 0.94 

structures.results.MethodMetricResult 96 15 14 25 9 2 18 6 3 0.93 

structures.results.NamespaceMetricResult 94 17 16 26 9 2 15 5 3 0.94 

structures.results.MethodMetricResultTest 89 12 10 15 7 3 0 4 2 0.95 

structures.statistics.StatisticOfMethod 85 10 8 11 5 3 5 5 2 0.94 

structures.statistics.namespaces.StatisticOfNamespaceTest 79 14 12 14 7 4 0 

5 2 0.96 

parser.java.JavaParser 74 6 2 7 16 7 1 11 6 0.50 

structures.metrics.MethodMetric 73 18 18 19 1 0 11 2 8 0.79 

structures.results.NamespaceMetricResultTest 72 12 10 13 7 3 0 4 2 0.95 

output.MetricResultFake 70 21 21 21 3 3 0 4 0 0.00 

selection.ProjectInfo 69 11 9 12 11 9 5 10 6 0.75 

utils.calc.StatisticalAnalysis 65 15 14 20 1 0 11 5 2 0.96 

structures.results.StatisticMetricResult 62 14 14 14 0 0 8 0 2 0.96 

structures.metrics.MetricThreshold 62 3 3 5 2 0 5 1 1 1.00 

fixtures.output.data.TypeData 61 12 12 12 0 0 3 1 11 0.55 

chatGPTIntegration.GPTintegration 61 4 2 9 9 9 1 15 7 0.00 

structures.statistics.StatisticalOperations 59 16 15 16 6 4 3 5 3 0.93 

structures.statistics.methods.StatisticCallsOfMethodTest 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.methods.StatisticCycloOfMethodTest 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.methods.StatisticMlocOfMethodTest 56 12 12 12 4 1 0 2 

0 0.00 

structures.statistics.methods.StatisticNbdOfMethodTest 56 12 12 12 4 1 0 2 

0 0.00 

structures.statistics.methods.StatisticParamOfMethodTest 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.types.StatisticDepOfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

structures.statistics.types.StatisticFanInOfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

structures.statistics.types.StatisticFanOutOfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

structures.statistics.types.StatisticIDepOfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

structures.statistics.types.StatisticLcom3OfTypeTest 56 12 12 12 4 1 0 2 0 

0.00 

 

Type limit exceeded, limiting type data to 50 types 

Processing time: 4 seconds 

 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 14148): 

Act as a Software Architect. You are giving advice for refactoring a code 

with the metrics that begins after the questions: Provide all types with 

dependency higher than 20 dependencies? Answer only the type names in a 

enumerated list. Data:<DATA>Types metrics:<DATA><DATA>Type: 
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output.MetricResultJSON</DATA><DATA>SLOC: 374</DATA><DATA>NOM: 

42</DATA><DATA>NPM: 38</DATA><DATA>WMC: 63</DATA><DATA>DEP: 

25</DATA><DATA>I-DEP: 16</DATA><DATA>FAN-IN: 4</DATA><DATA>FAN-OUT: 

22</DATA><DATA>NOA: 5</DATA><DATA>LCOM3: 

0.95</DATA></DATA><DATA><DATA>Type: 

output.MetricResultGPT</DATA><DATA>SLOC: 361</DATA><DATA>NOM: 

23</DATA><DATA>NPM: 22</DATA><DATA>WMC: 39</DATA><DATA>DEP: 

17</DATA><DATA>I-DEP: 15</DATA> ... 

 

GPT Insight(Test 1): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

 

GPT Insight(Test 2): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

 

GPT Insight(Test 3): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

 

GPT Insight(Test 4): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

 

GPT Insight(Test 5): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

 

GPT Insight(Test 6): 

1. parser.java.visitors.TypeVisitor\n2. 

parser.java.visitors.MethodVisitor\n3. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 
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[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 24 

 

 

GPT Insight(Test 7): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

 

GPT Insight(Test 8): 

1. parser.java.visitors.MethodVisitor\n2. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 15 

 

 

GPT Insight(Test 9): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

 

GPT Insight(Test 10): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

Experiment using <D></D> for 50 types using 

 

Type limit exceeded, limiting type data to 50 types 

Processing time: 5 seconds 

 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 10543): 

Act as a Software Architect. You are giving advice for refactoring a code 

with the metrics that begins after the questions: Provide all types with 

dependency higher than 20 dependencies? Answer only the type names in a 

enumerated list. Data:<D>Types metrics:<D><D>Type: 

output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM: 42</D><D>NPM: 

38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN: 4</D><D>FAN-

OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type: 

output.MetricResultGPT</D><D>SLOC: 361</D><D>NOM: 23</D><D>NPM: 

22</D><D>WMC: 39</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1</D><D>FAN-

OUT: 20</D><D>NOA: 7</D><D>LCOM3: 0.86</D></D><D><D>Type: 

structures.results.TypeMetricResult</D> ... 
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GPT Insight(Test 1): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 2): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 3): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 4): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 5): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 6): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 
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[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 7): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 8): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 9): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 10): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m5968 [1mGPT 

Generated Tokens: [0m": 32 

 

Experiment using separator “|” for 50 types: 

Type limit exceeded, limiting type data to 50 types 

Processing time: 4 seconds 

 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 7538): 

Act as a Software Architect. You are giving advice for refactoring a code 

with the metrics that begins after the questions: Provide all types with 

dependency higher than 20 dependencies? Answer only the type names in a 
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enumerated list. Data:|Types metrics:||Type: output.MetricResultJSON||SLOC: 

374||NOM: 42||NPM: 38||WMC: 63||DEP: 25||I-DEP: 16||FAN-IN: 4||FAN-OUT: 

22||NOA: 5||LCOM3: 0.95||||Type: output.MetricResultGPT||SLOC: 361||NOM: 

23||NPM: 22||WMC: 39||DEP: 17||I-DEP: 15||FAN-IN: 1||FAN-OUT: 20||NOA: 

7||LCOM3: 0.86||||Type: structures.results.TypeMetricResult||SLOC: 

328||NOM: 45||NPM: 31||WMC: 99||DEP: 12||I-DEP: 3||FAN-IN: 16||FAN-OUT: 

9||NOA: 8||LCOM3: 0.94||||Type: fixtures.output.JS ... 

 

GPT Insight(Test 1): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m30 seconds 

 

 

GPT Insight(Test 2): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m30 seconds 

 

 

GPT Insight(Test 3): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 16 

 

[1mWaited time: [0m30 seconds 

 

 

GPT Insight(Test 4): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m30 seconds 

 

 

GPT Insight(Test 5): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m30 seconds 
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GPT Insight(Test 6): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m30 seconds 

 

 

GPT Insight(Test 7): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m30 seconds 

 

 

GPT Insight(Test 8): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m30 seconds 

 

 

GPT Insight(Test 9): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m30 seconds 

 

 

GPT Insight(Test 10): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT 

Generated Tokens: [0m": 32 

 

Experiment using “ “ (space) as separator for 50 types using: 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 7538): 
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Act as a Software Architect. You are giving advice for refactoring a code 

with the metrics that begins after the questions: Provide all types with 

dependency higher than 20 dependencies? Answer only the type names in a 

enumerated list. Data: Types metrics: Type: output.MetricResultJSON SLOC: 

374 NOM: 42 NPM: 38 WMC: 63 DEP: 25 I-DEP: 16 FAN-IN: 4 FAN-OUT: 22 NOA: 5 

LCOM3: 0.95 Type: output.MetricResultGPT SLOC: 361 NOM: 23 NPM: 22 WMC: 39 

DEP: 17 I-DEP: 15 FAN-IN: 1 FAN-OUT: 20 NOA: 7 LCOM3: 0.86 Type: 

structures.results.TypeMetricResult SLOC: 328 NOM: 45 NPM: 31 WMC: 99 DEP: 

12 I-DEP: 3 FAN-IN: 16 FAN-OUT: 9 NOA: 8 LCOM3: 0.94 Type: 

fixtures.output.JS ... 

 

GPT Insight(Test 1): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 2): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 3): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 4): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 5): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 
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[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 6): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 7): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 8): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 9): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m10 seconds 

 

 

GPT Insight(Test 10): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT 

Generated Tokens: [0m": 32 
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Experiment not using any separator: 

Type limit exceeded, limiting type data to 50 types 

Processing time: 5 seconds 

 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 6336): 

Act as a Software Architect. You are giving advice for refactoring a code 

with the metrics that begins after the questions: Provide all types with 

dependency higher than 20 dependencies? Answer only the type names in a 

enumerated list. Data:Types metrics:Type: output.MetricResultJSONSLOC: 

374NOM: 42NPM: 38WMC: 63DEP: 25I-DEP: 16FAN-IN: 4FAN-OUT: 22NOA: 5LCOM3: 

0.95Type: output.MetricResultGPTSLOC: 361NOM: 23NPM: 22WMC: 39DEP: 17I-DEP: 

15FAN-IN: 1FAN-OUT: 20NOA: 7LCOM3: 0.86Type: 

structures.results.TypeMetricResultSLOC: 328NOM: 45NPM: 31WMC: 99DEP: 12I-

DEP: 3FAN-IN: 16FAN-OUT: 9NOA: 8LCOM3: 0.94Type: 

fixtures.output.JSONDataFixtureSLOC: 325NOM: 23NPM: 19WMC: 38DEP: 18I-DEP: 

11FAN-IN: 1FAN-OUT ... 

 

GPT Insight(Test 1): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 2): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 3): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 4): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 
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[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 5): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 6): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 7): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 8): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m60 seconds 

 

 

GPT Insight(Test 9): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m60 seconds 
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GPT Insight(Test 10): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT 

Generated Tokens: [0m": 32 

 

 

Extended test with 50 executions for <D></D>: 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 26310): 

Act as a Software Architect. You are giving advice for refactoring a code 

with the metrics that begins after the questions: Provide all types with 

dependency higher than 20 dependencies? Answer only the type names in a 

enumerated list. Data:<D>Types metrics:<D><D>Type: 

output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM: 42</D><D>NPM: 

38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN: 4</D><D>FAN-

OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type: 

output.MetricResultGPT</D><D>SLOC: 361</D><D>NOM: 23</D><D>NPM: 

22</D><D>WMC: 39</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1</D><D>FAN-

OUT: 20</D><D>NOA: 7</D><D>LCOM3: 0.86</D></D><D><D>Type: 

structures.results.TypeMetricResult</D> ... 

 

GPT Insight(Test 1): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m6 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 2): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 3): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 
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[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 4): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 5): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 6): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 7): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 8): 

1. parser.java.visitors.TypeVisitor\n2. 

parser.java.visitors.MethodVisitor\n3. selection.options.Options\n4. 

output.MetricResultJSON\n 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 32 

 

[1mWaited time: [0m4 seconds 
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GPT Insight(Test 9): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m6 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 10): 

1. parser.java.visitors.MethodVisitor\n2. 

parser.java.visitors.TypeVisitor\n3. selections.options.Options\n4. 

selections.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 30 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 11): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 22 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 12): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 13): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 
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GPT Insight(Test 14): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m11 seconds [1mGPT Context Tokens: [0m15163 

[1mGPT Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 15): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m9 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 16): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m7 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 17): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 18): 

1. parser.java.visitors.TypeVisitor\n2. 

parser.java.visitors.MethodVisitor\n3. selection.options.Options\n4. 

output.MetricResultJSON 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 19): 
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1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m6 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 20): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 21): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 22): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 23): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 24): 
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1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 25): 

1. parser.java.visitors.MethodVisitor\n2. 

parser.java.visitors.TypeVisitor\n3. selection.options.Options\n4. 

output.MetricResultJSON 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 26): 

1. parser.java.visitors.TypeVisitor\n2. 

parser.java.visitors.MethodVisitor\n3. selection.options.Options\n4. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 30 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 27): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 28): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 29): 
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1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 37 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 30): 

1. parser.java.visitors.TypeVisitor\n2. 

parser.java.visitors.MethodVisitor\n3. selection.options.Options\n4. 

output.MetricResultJSON 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 31): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 32): 

1. parser.java.visitors.TypeVisitor\n2. 

parser.java.visitors.MethodVisitor\n3. selection.options.OptionsTest\n4. 

selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 30 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 33): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 34): 



202 

 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selections.options.Options\n5. 

selections.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 35): 

1. parser.java.visitors.MethodVisitor\n2. selection.options.Options\n3. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 21 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 36): 

1. parser.java.visitors.MethodVisitor\n2. 

parser.java.visitors.TypeVisitor\n3. selection.options.Options\n4. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 30 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 37): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 38): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 39): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 
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======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 40): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 41): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

options.Selection 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 36 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 42): 

1. parser.java.visitors.MethodVisitor\n2. selection.options.Options\n3. 

parser.java.visitors.TypeVisitor 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 23 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 43): 

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3. 

selection.options.Options\n4. parser.java.visitors.TypeVisitor 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 44): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 
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[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 45): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 46): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m7 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 47): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 36 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 48): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 31 

 

[1mWaited time: [0m4 seconds 

 

 

GPT Insight(Test 49): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

[1mWaited time: [0m4 seconds 
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GPT Insight(Test 50): 

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3. 

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5. 

selection.options.OptionsTest 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT 

Generated Tokens: [0m": 38 

 

Experiment counting types with more than 20 dependencies: 

 

Prompt: 

   this.gpt.setSystemPrompt("Act as a Software Architect 

giving refactoring advice by answering the user questions based on the 

following code metric(The metrics are structured with <D> to start the data 

structure and </D>):"  

     + output.returnPromptData()); 

   prompt = "How many types have dependency (DEP) higher 

than 20? Reply just the number."; 

  

 

 

======================ChatGPT Insight: 

 

 

Prompt used (complete): 

How many types have dependency (DEP) higher than 20? Reply just the number. 

 

 

GPT Insight(Test 1): 

5 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15177 [1mGPT 

Generated Tokens: [0m": 1 

 

[1mWaited time: [0m70 seconds 

 

 

GPT Insight(Test 2): 

5 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15177 [1mGPT 

Generated Tokens: [0m": 1 

 

[1mWaited time: [0m70 seconds 

 

 

GPT Insight(Test 3): 

4 

======================ChatGPT Insight end(built prompt) 
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[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m15177 [1mGPT 

Generated Tokens: [0m": 1 

 

[1mWaited time: [0m70 seconds 

 

 

GPT Insight(Test 4): 

4 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15177 [1mGPT 

Generated Tokens: [0m": 1 

 

[1mWaited time: [0m70 seconds 

 

 

GPT Insight(Test 5): 

4 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15177 [1mGPT 

Generated Tokens: [0m": 1 

 

[1mWaited time: [0m70 seconds 

 

 

Final experiment using placeholder technique, which pushed the result to 100% success rate: 

Starting 

Directory valid 

 

 

---------------------------------------------------------------------------

------------------------------------------------------------------ 

TYPES SLOC NOM NPM WMC DEP I-DEP FAN-IN FAN-OUT NOA LCOM3 

---------------------------------------------------------------------------

------------------------------------------------------------------ 

output.MetricResultJSON type1 374 42 38 63 25 16 4 22 5 0.95 

output.MetricResultGPT type2 374 24 23 41 17 15 1 20 8 0.85 

structures.results.TypeMetricResult type3 328 45 31 99 12 3 16 9 8 0.94 

fixtures.output.JSONDataFixture type4 325 23 19 38 18 11 1 15 3 0.95 

output.MetricResultCSV type5 282 34 34 45 17 15 4 22 4 0.95 

fixtures.output.DataFixture type6 269 17 17 17 17 11 2 12 10 0.72 

output.MetricResultConsole type7 263 23 22 38 17 15 3 19 4 0.93 

javaProject.com.controller.Type type8 245 35 25 58 7 2 0 9 13 0.85 

output.MetricResultFile type9 203 41 41 56 5 5 2 7 21 0.75 

parser.java.visitors.TypeVisitor type10 189 19 12 42 21 3 1 9 16 0.58 
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parser.java.visitors.MethodVisitor type11 188 22 16 39 23 3 1 9 11 0.76 

main.Bootstrapper type12 176 16 1 50 10 9 0 14 7 0.80 

chatGPTIntegration.ChatGPTAPI type13 176 15 8 30 7 0 4 8 6 0.82 

fixtures.output.CSVDataFixture type14 169 15 15 26 8 8 1 11 1 1.00 

output.MetricResultFileTest type15 164 18 16 18 8 1 0 3 22 0.38 

structures.metrics.TypeMetric type16 151 36 36 37 9 2 11 5 15 0.80 

structures.statistics.StatisticOfType type17 144 15 13 16 6 4 5 6 3 0.93 

structures.results.TypeMetricResultTest type18 135 19 17 23 8 3 0 6 2 0.97 

output.MetricResultJSONTest type19 131 22 22 22 5 2 0 2 4 0.93 

output.MetricResultCSVTest type20 111 18 18 18 5 2 0 2 4 0.91 

output.utils.InfoConsole type21 109 13 9 15 0 0 6 3 1 1.00 

selection.options.OptionsTest type22 104 20 19 20 22 19 0 20 0 0.00 

utils.files.SourceCodeLineCounter type23 99 6 2 29 3 0 3 2 0 0.00 

selection.ProjectInfoTest type24 96 17 15 19 10 5 0 6 3 0.94 

structures.results.MethodMetricResult type25 96 15 14 25 9 2 18 6 3 0.93 

structures.results.NamespaceMetricResult type26 94 17 16 26 9 2 15 5 3 0.94 

structures.results.MethodMetricResultTest type27 89 12 10 15 7 3 0 4 2 0.95 

structures.statistics.StatisticOfMethod type28 85 10 8 11 5 3 5 5 2 0.94 

chatGPTIntegration.GPTintegration type29 83 5 2 15 9 9 1 15 7 0.25 

structures.statistics.namespaces.StatisticOfNamespaceTest type30 79 14 12 

14 7 4 0 5 2 0.96 

parser.java.JavaParser type31 74 6 2 7 16 7 1 11 6 0.50 

structures.metrics.MethodMetric type32 73 18 18 19 1 0 11 2 8 0.79 

structures.results.NamespaceMetricResultTest type33 72 12 10 13 7 3 0 4 2 

0.95 

output.MetricResultFake type34 70 21 21 21 3 3 0 4 0 0.00 

selection.ProjectInfo type35 69 11 9 12 11 9 5 10 6 0.75 

utils.calc.StatisticalAnalysis type36 65 15 14 20 1 0 11 5 2 0.96 

structures.results.StatisticMetricResult type37 62 14 14 14 0 0 8 0 2 0.96 

structures.metrics.MetricThreshold type38 62 3 3 5 2 0 5 1 1 1.00 

fixtures.output.data.TypeData type39 61 12 12 12 0 0 3 1 11 0.55 

structures.statistics.StatisticalOperations type40 59 16 15 16 6 4 3 5 3 

0.93 

structures.statistics.methods.StatisticCallsOfMethodTest type41 56 12 12 12 

4 1 0 2 0 0.00 

structures.statistics.methods.StatisticCycloOfMethodTest type42 56 12 12 12 

4 1 0 2 0 0.00 

structures.statistics.methods.StatisticMlocOfMethodTest type43 56 12 12 12 

4 1 0 2 0 0.00 

structures.statistics.methods.StatisticNbdOfMethodTest type44 56 12 12 12 4 

1 0 2 0 0.00 

structures.statistics.methods.StatisticParamOfMethodTest type45 56 12 12 12 

4 1 0 2 0 0.00 

structures.statistics.types.StatisticDepOfTypeTest type46 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.types.StatisticFanInOfTypeTest type47 56 12 12 12 4 1 

0 2 0 0.00 

structures.statistics.types.StatisticFanOutOfTypeTest type48 56 12 12 12 4 

1 0 2 0 0.00 

structures.statistics.types.StatisticIDepOfTypeTest type49 56 12 12 12 4 1 

0 2 0 0.00 

structures.statistics.types.StatisticLcom3OfTypeTest type50 56 12 12 12 4 1 

0 2 0 0.00 

structures.statistics.types.StatisticNoaOfTypeTest type51 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.types.StatisticNomOfTypeTest type52 56 12 12 12 4 1 0 

2 0 0.00 

structures.statistics.types.StatisticNpmOfTypeTest type53 56 12 12 12 4 1 0 

2 0 0.00 
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structures.statistics.types.StatisticSlocOfTypeTest type54 56 12 12 12 4 1 

0 2 0 0.00 

structures.statistics.types.StatisticWmcOfTypeTest type55 56 12 12 12 4 1 0 

2 0 0.00 

fixtures.output.data.StatisticData type56 54 12 12 12 0 0 3 0 2 0.95 

utils.calc.OutlierAnalysisTest type57 54 11 11 11 3 0 0 0 2 0.95 

fixtures.TypeMetricFixture type58 52 12 12 12 2 1 2 1 1 1.00 

selection.options.Options type59 50 2 2 2 21 19 2 19 1 1.00 

fixtures.statistics.StatisticOfTypeFixture type60 48 3 0 3 7 5 10 7 2 0.75 

chatGPTIntegration.promptEngineer type61 46 4 2 12 1 1 1 2 2 0.83 

output.MetricResultDOT type62 45 7 2 11 3 2 2 4 3 0.83 

fixtures.MethodMetricFixture type63 43 10 10 10 1 1 2 1 1 1.00 

utils.files.StringFormatTest type64 40 8 8 8 2 0 0 0 0 0.00 

utils.files.SystemUtils type65 39 3 2 3 7 0 4 4 0 0.00 

structures.statistics.StatisticOfNamespace type66 37 5 4 6 5 3 5 5 3 0.75 

structures.metrics.NamespaceMetric type67 35 8 8 10 0 0 10 2 3 0.86 

fixtures.output.data.MethodData type68 35 7 7 7 0 0 3 0 6 0.58 

fixtures.output.data.NamespaceCouplingData type69 35 7 7 7 0 0 3 0 6 0.58 

fixtures.output.data.MetricThresholdData type70 33 7 7 7 0 0 3 0 5 0.67 

structures.metrics.MetricDefinition type71 30 6 6 6 0 0 30 0 5 0.60 

fixtures.output.data.SummaryData type72 30 6 6 6 0 0 3 0 5 0.60 

utils.calc.StatisticalAnalysisTest type73 30 5 5 5 3 0 0 0 2 0.88 

fixtures.statistics.StatisticOfMethodFixture type74 30 3 0 3 4 4 5 5 2 0.75 

output.MetricOutput type75 29 23 23 23 3 3 31 3 0 0.00 

javaProject.com.model.Man type76 29 5 5 9 1 0 1 2 0 0.00 

utils.files.JSONBuilder type77 28 6 6 6 2 0 2 0 1 1.00 

javaProject.com.controller.Dispatcher type78 27 4 4 4 4 4 1 4 3 0.67 

utils.files.SourceCodeLineCounterTest type79 26 2 2 2 7 0 0 0 0 0.00 

parser.java.visitors.NamespaceVisitor type80 24 3 3 6 5 3 1 5 1 1.00 

fixtures.NamespaceMetricFixture type81 23 5 5 5 1 1 2 1 1 1.00 

output.utils.Gauge type82 23 3 3 7 2 2 1 3 1 1.00 

utils.files.SystemUtilsTest type83 22 2 2 2 5 0 0 1 2 0.50 

utils.files.StringFormat type84 20 4 4 9 0 0 6 1 0 0.00 

fixtures.output.data.CyclicDependencyData type85 20 4 4 4 0 0 3 0 3 0.67 

fixtures.output.data.NamespaceData type86 20 4 4 4 0 0 3 0 3 0.67 

fixtures.output.data.TypeResonanceData type87 20 4 4 4 0 0 2 0 3 0.67 

javaProject.com.model.Woman type88 16 3 3 5 0 0 1 1 0 0.00 

fixtures.output.data.NamespaceDependencyData type89 15 3 3 3 0 0 2 0 2 0.75 

output.MetricFile type90 14 11 11 11 0 0 3 0 0 0.00 

selection.options.dependencies.TypeCouplingOption type91 11 1 1 1 2 2 2 3 0 

0.00 

selection.options.general.AllMetricsOption type92 11 1 1 1 2 2 2 3 0 0.00 

selection.options.general.MetricVisualizationOption type93 11 1 1 1 2 2 2 3 

0 0.00 

selection.options.statistics.StatisticAndTypeOption type94 11 1 1 1 2 2 2 3 

0 0.00 

selection.options.statistics.StatisticTypeOption type95 11 1 1 1 2 2 2 3 0 

0.00 

selection.options.strutures.TypeOption type96 11 1 1 1 2 2 2 3 0 0.00 

javaProject.com.model.Human type97 10 2 2 2 0 0 2 1 1 1.00 

selection.options.dependencies.AllCouplingOption type98 10 1 1 1 2 2 2 3 0 

0.00 

selection.options.dependencies.CyclicDependencyOption type99 10 1 1 1 2 2 2 

3 0 0.00 

selection.options.dependencies.InternalDependencyOption type100 10 1 1 1 2 

2 2 3 0 0.00 

selection.options.dependencies.NamespaceCouplingOption type101 10 1 1 1 2 2 

2 3 0 0.00 

selection.options.statistics.StatisticAndNamespaceOption type102 10 1 1 1 2 

2 2 3 0 0.00 
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selection.options.statistics.StatisticNamespaceOption type103 10 1 1 1 2 2 

2 3 0 0.00 

selection.options.strutures.NamespaceOption type104 10 1 1 1 2 2 2 3 0 0.00 

javaProject.com.view.QueueViewer type105 10 0 1 2 1 1 0 2 0 0.00 

selection.options.dependencies.DependencyOption type106 9 1 1 1 2 2 2 3 0 

0.00 

selection.options.general.SummaryOption type107 9 1 1 1 2 2 2 3 0 0.00 

selection.options.general.ThresholdsOption type108 9 1 1 1 2 2 2 3 0 0.00 

selection.options.statistics.StatisticAndMethodOption type109 9 1 1 1 2 2 2 

3 0 0.00 

selection.options.statistics.StatisticMethodOption type110 9 1 1 1 2 2 2 3 

0 0.00 

selection.options.strutures.MethodOption type111 9 1 1 1 2 2 2 3 0 0.00 

javaProject.com.controller.ClassWithComments type112 8 1 1 1 0 0 0 0 0 0.00 

structures.MetricResultNotifier type113 7 3 3 3 1 0 3 0 0 0.00 

javaProject.com.model.Child type114 7 1 1 1 0 0 1 1 1 0.00 

javaProject.com.controller.XClass type115 6 1 1 1 0 0 0 0 0 0.00 

javaProject.others.AnalysisContext type116 6 1 1 1 0 0 0 0 0 0.00 

javaProject.others.ClassVertex type117 6 1 1 1 0 0 1 0 0 0.00 

selection.options.OptionDefinition type118 5 1 1 1 1 1 19 1 0 0.00 

structures.MetricActivator type119 5 1 1 1 0 0 3 0 0 0.00 

javaProject.one.A type120 5 0 0 1 1 1 1 1 1 0.00 

javaProject.two.B type121 5 0 0 1 1 1 1 1 1 0.00 

javaProject.com.model.Person type122 4 1 1 1 0 0 3 0 0 0.00 

chatGPTIntegration.GPT type123 4 1 1 1 0 0 1 0 0 0.00 

output.MetricGPT type124 4 1 1 1 0 0 1 0 0 0.00 

parser.TypeParser type125 4 1 1 1 0 0 2 0 0 0.00 

javaProject.com.controller.XMethod type126 3 0 0 1 0 0 0 0 0 0.00 

javaProject.others.ClassDescriptor type127 3 0 0 1 0 0 1 0 0 0.00 

javaProject.others.ObjectType type128 3 0 0 1 0 0 0 0 0 0.00 

 

All types analyzed, totalling 128 types 

Processing time: 8 seconds 

 

 

Experiment with replacing type names with placeholder (dictionary technique). 

 

 On attempt to improve the results of the data analysis, it was used a technique to replace 

the name with a placeholder of format typeX, which x will be an increasing integer. Below is a 

test with 100 iterations to have this technique effectiveness measured (which was 100% of the 

100 successful). 

 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 22804): 

Act as a Software Architect, providing advice to a new developer on what to 

do on a refactoring, based on the Data provided after the requestsProvide 

all types with dependency higher than 20 dependencies? Answer only the type 

names in a enumerated list.Metrics data:<D>Types metrics:<D><D>Method: 

type1</D><D>SLOC: 374</D><D>NOM: 42</D><D>NPM: 38</D><D>WMC: 63</D><D>DEP: 

25</D><D>I-DEP: 16</D><D>FAN-IN: 4</D><D>FAN-OUT: 22</D><D>NOA: 

5</D><D>LCOM3: 0.95</D></D><D><D>Method: type2</D><D>SLOC: 374</D><D>NOM: 

24</D><D>NPM: 23</D><D>WMC: 41</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 
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1</D><D>FAN-OUT: 20</D><D>NOA: 8</D><D>LCOM3: 0.85</D></D><D><D>Method: 

type3</D><D>SLOC: 328</D><D>NOM: 45</D><D>N ... 

 

GPT Insight(Test 1): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 2): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 3): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 4): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 5): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 6): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 7): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 8): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 9): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 10): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 11): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 12): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 13): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 14): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 15): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 16): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 



214 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 17): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 18): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 19): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 20): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 21): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 22): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 23): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 24): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 25): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 26): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 27): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 28): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 29): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1000 milliseconds 

 

 

GPT Insight(Test 30): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 31): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 32): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 33): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 34): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 35): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 36): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 37): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 38): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 39): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 40): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 41): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 42): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 43): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 44): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 45): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 46): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 47): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 48): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 
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[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 49): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

[1mWaited time: [0m1 seconds 

 

 

GPT Insight(Test 50): 

1. type1 

2. type10 

3. type11 

4. type22 

5. type59 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT 

Generated Tokens: [0m": 24 

 

 

 

3.2.3 PROMPT ENGINEERING STRUCTURE 

 

Experiment without answer limitation, which showed prolix answer 

Figure A.3.49 – Extract from experiment on DR-Tools data on prompt that shows need to limit the 

answer 
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Source: Elaborated by the author 

 

When limited the size of the answer, it gives the answer directly as in the extract “The 

average of lines of code per type is higher.” Therefore, it will always be specified a size of an 

answer that is consistent with the size expected of the advice that would be considered the best. 

 

First experiment with request advice using summary metrics 

 

 The first experiment with request for refactoring advise was simply to ask repeated 

time refactoring advice based on summary metrics: 

Figure A.3.50 – Experiment request areas of focus for the refactoring based on summary metrics 
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Source: Elaborated by the author 

 

 Below follows the text version of the extract: 

------------------ 

SUMMARY OF METRICS 

------------------ 

Total of Namespaces: 32 

Total of Types: 128 - 4.00 (number of types/namespaces - median: 3.00 - std 

dev: 2.89) 

Total of SLOC: 8233 - 64.32 (number of SLOC/types - median: 38.00 - std 

dev: 78.08) 

Total of Methods: 1185 - 9.26 (number of methods/types - median: 3.00 - std 

dev: 6.57) 

Total of CYCLO: 1560 - 12.19 (number of CYCLO/types) 

Processing time: 10 seconds 

 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 840): 

Act as a Software Architect, providing advice to a new developer on a 

refactoring project, based on the summary metrics provided after <D>. 

Provide which activity should be the focus of the refactoringWhat should be 

the areas of focus to the developer to refactor this code based on the 

Metrics? Answer breaked into 2 linesMetrics data:<D>SUMMARY OF METRICS: 

<D>Total of Namespaces: 32</D><D>Total of Types: 128</D><D>Number of 

types/namespaces<D>Average: 4.00</D><D>Median: 3.00</D><D>Standard 

Deviation: 2.89</D></D><D>Total of SLOC: 8233</D><D>Number of 

SLOC/types<D>Average: 64.32</D><D>Median: 38.00</D><D>Standard deviation: 

78.08</D></D><D>Total of Methods: 1185</D><D>Number of methods/types: ... 

 

GPT Insight: 

Based on the provided summary metrics, there are several insights that can 

guide the refactoring focus for the developer. Breaking them down: 
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1. **Code Organization and Modularity**: 

- With an **average of 4 types per namespace** but a median of 3, there's a 

hint that while most namespaces contain a manageable number of types, there 

are potentially a few namespaces with a significantly higher count. This 

disparity can indicate uneven distribution and potential issues with 

modularity and separation of concerns. 

- **Action**: Evaluate the namespaces with a higher than average number of 

types for potential refactoring into more cohesive and smaller namespaces, 

enhancing modularity and maintainability. 

 

2. **Source Lines of Code (SLOC) Concerns**: 

- The **average SLOC per type is 64.32**, with a median of 38 but a large 

standard deviation (78.08). This suggests a wide variation in the size of 

types, with some types possibly being too large and complex, potentially 

violating the Single Responsibility Principle (SRP). 

- **Action**: Focus on types with significantly higher SLOC than the 

median, breaking down complex types into more manageable and focused 

components, potentially improving readability, testability, and 

maintainability. 

 

3. **Methodological Refinement**: 

- The metrics suggest an **average of 9.26 methods per type**, but with a 

median of just 3 and a standard deviation of 6.57. This discrepancy implies 

that while most types have a few methods, some have a greatly inflated 

number, which can be a red flag for types taking on too many 

responsibilities. 

- **Action**: Identify types with a high number of methods to evaluate 

their responsibilities. Consider applying principles like SRP to refactor 

types, possibly by splitting them into smaller, well-defined types or by 

extracting methods into new types. 

 

4. **Cyclomatic Complexity (CYCLO)**: 

- An average of **12.19 CYCLO per type** might indicate that some methods 

or types are too complex, making them hard to understand, test, and 

maintain. 

- **Action**: Prioritize examining types and methods with high cyclomatic 

complexity scores for simplification. Refactor complex conditional logic 

into smaller, more manageable methods, utilize design patterns where 

appropriate to handle complex behavior, and aim to reduce branching as much 

as possible. 

 

**Overall Refactoring Strategy**: 

A balanced approach targeting both organizational structure (namespaces and 

types) and code quality (SLOC, methods per type, and cyclomatic complexity) 

should be the developer's focus during the refactoring process. Special 

attention should be given to identifying outliers that significantly 

deviate from the median values, as these are likely candidates for 

immediate improvement. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m290 [1mGPT 

Generated Tokens: [0m": 550 
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Initial experiment with type metrics analysis: 

 

Then it was tested the same with type metrics, below follows the console answer to type 

metrics. 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 26346): 

Act as a Software Architect, providing advice to a new developer on what to 

do on a refactoring, based on the Data provided after the requestsWhat 

should be the areas of focus to the developer to refactor this code based 

on the Metrics? Answer breaked into 2 linesMetrics data:<D>Types 

metrics:<D><D>Type: output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM: 

42</D><D>NPM: 38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN: 

4</D><D>FAN-OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type: 

output.MetricResultGPT</D><D>SLOC: 366</D><D>NOM: 24</D><D>NPM: 

23</D><D>WMC: 40</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1</D><D>FAN-

OUT: 20</D><D>NOA: 8</D><D>LCOM3: 0.85</D></D><D><D>Type: str ... 

 

GPT Insight(Test 1): 

Given the comprehensive metrics data provided, the refactoring efforts 

should target the following areas to enhance code quality, maintainability, 

and performance: 

 

1. **High Lack of Cohesion (LCOM3 values close to 1)**: Focus on types such 

as `fixtures.output.CSVDataFixture`, `TypeMetricFixture`, 

`NamespaceVisitor`, and several types with LCOM3 = 1.00. This suggests that 

the methods within these types are not working together, which may indicate 

that the type is doing too much or its responsibilities are not well 

aligned. Consider splitting these types into more cohesive units or 

reevaluating their responsibilities.  

 

2. **High Number of Methods (NOM) and Weighted Method Count (WMC)**: 

Inspect types such as `structures.results.TypeMetricResult` and 

`output.MetricResultFile` which have high NOM and WMC values. This could 

indicate complex classes that are trying to do too much. Applying the 

Single Responsibility Principle (SRP) can help in breaking down these 

classes into smaller, more focused classes.  

 

Refactoring these areas will likely have a significant positive impact on 

the maintainability and understandability of the codebase. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m12 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 238 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 2): 

Based on the provided metrics data from various types, here are the key 

takeaways and areas of focus for refactoring: 

 

1. **Reduce High Cyclomatic Complexity (WMC):** Look for types with high 

Weighted Methods per Class (WMC) values, indicating complex code that could 
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benefit from simplification. Examples include `Type: 

structures.results.TypeMetricResult` with `WMC: 99` and `Type: 

javaProject.com.controller.Type` with `WMC: 58`. Reducing complexity makes 

the code more maintainable and easier to understand. 

 

2. **Address High Lack of Cohesion of Methods (LCOM3):** High LCOM3 values 

suggest that classes could be doing too much or the class’s methods and 

fields are not related closely enough, which can lead to poor class 

cohesion. For example, `Type: structures.results.TypeMetricResultTest` and 

`Type: output.MetricResultFake` both have `LCOM3: 0.95`. Consider 

refactoring these classes by segregating unrelated functionalities into 

separate classes or by enhancing the existing methods and fields to work 

more harmoniously. 

 

--- 

 

3. **Optimize Fan-Out and Dependency Metrics:** High Fan-Out values, such 

as those seen in `Type: output.MetricResultJSON` (`FAN-OUT: 22`) and `Type: 

output.MetricResultCSV` (`FAN-OUT: 22`), indicate that a type depends on 

many other types. This could signify overly tight coupling. Look into 

possibilities to introduce interfaces, or perhaps dependency inversion 

principles, to reduce direct dependencies. 

 

4. **Improve Method and Class Design:** Examine types with a high Number of 

Methods (NOM) but low usage of class fields (NOA), e.g., `Type: 

output.MetricResultFile` (`NOM: 41, NOA: 21`) and `Type: 

structures.metrics.TypeMetric` (`NOM: 36, NOA: 15`). It may indicate 

methods could be refactored into more cohesive, smaller classes, or there 

are opportunities to make better use of class-level fields, reducing 

parameter passing and improving encapsulation. 

 

Refactoring with these focus areas not only aims at enhancing code 

readability and maintainability but also at improving the overall 

architecture's scalability and robustness. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m34 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 468 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 3): 

Given the complexity and volume of metrics provided for various types, the 

first line of advice would revolve around understanding and identifying key 

areas where refactoring could yield significant improvements in 

maintainability, performance, and code quality. With this extensive data, 

certain metrics immediately stand out and should guide the initial focus of 

refactoring efforts: 

 

1. **Cohesion (LCOM3):** Types with high LCOM3 values close to 1 (e.g., 

`fixtures.output.data.CSVDataFixture` with LCOM3 of 1.00, and several 

others) indicate poor cohesion, meaning that the methods within these types 

are not well related. Focusing on increasing cohesion by ensuring that 

classes have a single responsibility can significantly improve the 

codebase. Refactoring suggestions include splitting large classes into 

smaller, more focused ones or moving methods to classes where they are more 

relevant. 
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2. **Cyclomatic Complexity (WMC):** Types with high Weighted Methods per 

Class (WMC) indicate complex logic that can be hard to understand and test 

(e.g., `structures.results.TypeMetricResult` with a WMC of 99). Refactoring 

efforts should aim to simplify complex methods, possibly by breaking them 

down into smaller methods that are easier to understand and test. 

Techniques such as applying the Extract Method refactoring or simplifying 

conditional logic can be particularly useful here. 

 

For the second line of advice, attention should be shifted towards 

dependencies and method metrics: 

 

1. **Dependencies (DEP, I-DEP, FAN-IN, FAN-OUT):** High dependency metrics, 

especially FAN-OUT values, suggest that the type is overly dependent on 

many other types or components (e.g., `output.MetricResultJSON` with FAN-

OUT of 22). This can make the system brittle and difficult to change. To 

minimize dependency issues, consider applying the Dependency Inversion 

Principle by refactoring towards depending on abstractions rather than 

concrete implementations. Additionally, look into partitioning the system 

into more decoupled, independently deployable units or modules. 

 

2. **Method Metrics (NOM, NPM):** Types with a high Number of Methods (NOM) 

or Number of Public Methods (NPM) are indicative of potential \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m49 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 564 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 4): 

Given the comprehensive metrics data provided, the focus of refactoring 

should be on the areas of high Lack of Cohesion of Methods (LCOM3), high 

Source Lines of Code (SLOC), high Weighted Method Count (WMC), and 

excessive dependencies (DEP and I-DEP). To start, areas with a high LCOM3 

value close to 1 indicate poor cohesion within a class, suggesting that the 

class is doing too much or the class's methods are not well related. High 

SLOC indicates potential complexity and difficulty in maintenance, while 

high WMC points towards complex classes that may be trying to perform too 

many actions, increasing the risk of bugs. 

 

Firstly, attention should be directed towards reducing the complexity and 

enhancing the maintainability of the classes with high SLOC counted above. 

Refactoring strategies might include the extraction of methods or classes 

(if a class is performing too many functions), modularizing the code 

better, and identifying common patterns or behaviors that can be abstracted 

or unified. 

 

Secondly, reducing the Lack of Cohesion of Methods (LCOM3) by ensuring that 

methods within a class are more tightly related to each other should be a 

priority. This often involves rethinking the responsibilities assigned to 

each class and possibly redistributing methods among classes or introducing 

new classes to group related functionalities together more logically.  

 

In refactoring efforts targeting these areas, unit tests play a crucial 

role in ensuring that behavior is preserved. Automated tests should be in 

place before starting the refactoring process to detect any inadvertent 
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changes or regressions in functionality. It's also prudent to tackle these 

refactoring efforts incrementally, applying small, manageable changes and 

validating through testing after each modification. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m30 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 339 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 5): 

Given the comprehensive list of metric data for various types, here are key 

recommendations for areas of focus during refactoring: 

 

1. **High Lack of Cohesion (LCOM3):** Several types exhibit a high Lack of 

Cohesion of Methods (LCOM3) score, close to 1.0, such as 

`fixtures.output.CSVDataFixture`, 

`structures.results.TypeMetricResultTest`, and `output.MetricResultFake`. 

These types should be refactored to improve cohesion. Aim to modularize 

functionality such that each class focuses on a single purpose or closely 

related purposes. 

 

2. **High Fan-Out:** Certain types have a high Fan-Out, such as 

`output.MetricResultJSON` and `output.MetricResultCSV` with Fan-Outs of 22. 

High Fan-Out indicates a type's high dependency on other types, suggesting 

a potential need for decoupling and encapsulation improvements. Extract 

interfaces, use design patterns like Dependency Injection, or apply the 

Facade Pattern to reduce direct dependencies. 

 

--- 

 

Continued areas of focus: 

 

3. **Complexity Metrics (WMC) and Size Metrics (SLOC, NOM):** Types like 

`structures.results.TypeMetricResult` with WMC of 99, SLOC of 328, and NOM 

of 45 are likely to be complex and large, suggesting potential refactoring 

to break down large classes into smaller, more manageable ones. Aim for 

single responsibility and lower complexity to improve maintainability. 

 

4. **High Internal Dependency (DEP & I-DEP):** Consider types with high 

external and internal dependencies, such as 

`parser.java.visitors.MethodVisitor` with DEP of 23 and 

`selection.options.Options` with I-DEP of 19. It's vital to assess these 

dependencies for possible reduction through architectural redesign, 

possibly by introducing more abstract layers or utilizing patterns that 

favor loose coupling. 

 

By addressing these areas, the software architecture can evolve towards a 

more maintainable, scalable, and loosely coupled system. Refactoring 

efforts should prioritize readability, simplicity, and encapsulation, 

applying solid principles and design patterns where appropriate. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 424 
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[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 6): 

Given the comprehensive set of metrics provided for a variety of types, the 

key focus areas for refactoring should prioritize addressing high 

complexity, reducing tight coupling, enhancing cohesion, and reducing code 

duplication. Specifically: 

 

1. **High Complexity & Tight Coupling**: Target types with high WMC 

(Weighted Method Count) and high FAN-OUT values as they indicate complexity 

and tight coupling. For example, the `structures.results.TypeMetricResult` 

has a WMC of 99 and a FAN-OUT of 9, suggesting it could benefit from 

simplification and breaking down into smaller, more focused components. 

 

2. **Low Cohesion**: Look for types with high LCOM3 (Lack of Cohesion of 

Methods) values, as this indicates that the methods within a class do not 

share much in common. Types like `output.MetricResultFake` with LCOM3 of 

1.00 and `fixtures.TypeMetricFixture` with LCOM3 of 1.00 are prime 

candidates for refactoring to improve cohesion. 

 

--- 

 

Continuing with guidance based on the provided metrics: 

 

1. **Reduce Dependencies**: Types with high DEP (Direct dependencies) and 

I-DEP (Indirect dependencies) like `selection.options.Options` with DEP of 

21 and I-DEP of 19, indicate a high reliance on other components, making 

the system more fragile and harder to maintain. Work on reducing these 

dependencies, possibly through interface abstraction or by applying the 

Dependency Inversion Principle. 

 

2. **Improve Encapsulation**: NOA (Number of Attributes) figures suggest 

how many state variables a type is managing. For better encapsulation and 

to facilitate easier unit testing, consider refactoring types with a high 

NOA, like `output.MetricResultFile` with NOA of 21, by perhaps breaking 

them down into smaller classes each responsible for a more specific subset 

of functionality. 

 

This strategic approach to refactoring should lead to improved 

maintainability, readability, and scalability of your codebase. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m29 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 404 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 7): 

Based on the provided metrics data, here are the key areas you should focus 

on for refactoring: 

 

1. **Reduce High Complexity and Interdependence**: Look into types with 

high Weighted Method Count (WMC) and high dependence (DEP and I-DEP). For 

example, refactoring the types with the highest WMC like 

`structures.results.TypeMetricResult` (WMC: 99) and 
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`structures.metrics.TypeMetric` (WMC: 37) could improve maintainability. 

Aim to simplify complex methods and reduce coupling where possible. 

 

2. **Address High Lack of Cohesion (LCOM3)**: Types with high Lack of 

Cohesion of Methods version 3 (LCOM3) values, near or equal to 1.00, 

indicate that the class methods and fields are not well related. Examples 

are `fixtures.output.data.CSVDataFixture` and `fixtures.TypeMetricFixture`, 

both with LCOM3 of 1.00, and several others. Consider breaking these types 

into smaller, more cohesive ones. 

 

Continued in the next part... 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m20 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 218 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 8): 

Given the substantial amount of metrics data for various types, the areas 

for refactoring can be effectively identified by focusing on certain key 

metrics indicative of code quality and maintainability. These metrics 

include SLOC (Source Lines of Code), NOM (Number of Methods), WMC (Weighted 

Methods per Class), DEP (Dependencies), FAN-IN/FAN-OUT, NOA (Number of 

Attributes), and notably LCOM3 (Lack of Cohesion of Methods version 3). 

Identifying these metrics helps in determining the complexity, coupling, 

and cohesion of the code, which are significant factors in software 

maintainability. 

 

To start, the primary areas of focus for the developer to refactor, based 

on the metrics are: 

 

1. **Reduce Complexity and Size:** Look for types with high SLOC and WMC 

values, as these are indicators of complexity. For example, 

`structures.results.TypeMetricResult` and `output.MetricResultJSON` have 

high SLOC and WMC values, meaning they could be made more maintainable by 

breaking them down into smaller, more focused units, thus reducing 

complexity and potentially duplicating code. 

 

2. **Improve Cohesion:** Types with high LCOM3 values, like 

`fixtures.output.CSVDataFixture`, 

`structures.results.TypeMetricResultTest`, and 

`structures.results.NamespaceMetricResultTest`, indicate low cohesion, 

meaning the methods and attributes of these types are not working well 

together. Refactoring towards more cohesive designs will likely involve 

segregating functionality into well-defined classes that have clear 

responsibilities, which can improve understandability and reusability. 

 

3. **Reduce Coupling:** High values of DEP (Dependencies), FAN-IN, and 

especially FAN-OUT suggest a high level of coupling. For instance, 

`javaProject.com.controller.Type` has a high FAN-OUT, making it heavily 

dependent on many other types. Lowering these metrics through the use of 

interfaces, dependency injection, or event patterns can help decrease 

coupling, making the system more modular and easier to modify or extend. 

 

4. **Consolidate Data Structures:** Observing the NOA metric can reveal 

classes that might be acting more as data structures rather than providing 
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behavior, such as `output.MetricResultFile` with high NOA. Evaluating 

whether these attributes can be enclosed within more functional objects or 

whether such classes can be simplified or merged with others might result 

in a more concise and maintainable codebase.  

 

By targeting these areas based on the provided metrics, the developer can 

systematically address issues of complexity, cohesion, and coupling in the 

codebase, leading towards an overall improvement in code quality and 

maintainability. These refactorings should be done iteratively and tested 

thoroughly to ensure system integrity is maintained throughout the process. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m40 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 551 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 9): 

Given the provided metrics data, here are key areas the developer should 

focus on for refactoring: 

 

1. **Cohesion and Coupling**: High LCOM (Lack of Cohesion of Methods) 

values (close to 1) suggest poor cohesion within types, meaning the class 

methods are not well related in their purpose. For instance, types with 

LCOM3 values of 0.95 or higher should be carefully reviewed to see if they 

can be decomposed into more cohesive classes. Coupling metrics, including 

both FAN-IN and FAN-OUT, offer insight into how interdependent the classes 

are. Types with high FAN-OUT values, such as 22, suggest a class is highly 

dependent on many other classes and might benefit from refactoring to 

reduce dependencies. 

 

2. **Size Metrics**: SLOC (Source Lines of Code) provides a quick way of 

identifying large classes that might be doing too much. For instance, types 

with the highest SLOC such as `374` might be good candidates for 

decomposition. Breaking down large classes into smaller, more manageable 

pieces can make the codebase more understandable and easier to maintain. 

 

Given these two areas of focus, the developer should aim to: 

- Improve cohesion within classes by ensuring that methods within a class 

are closely related in their functionality. If a class has methods that 

seem unrelated, consider splitting these into separate classes. 

- Reduce coupling between classes by minimizing the number of dependencies 

a class has on other classes. This might involve using design patterns such 

as Facade to simplify interactions or adopting Dependency Injection to 

manage class dependencies better. 

- Break down large classes into smaller ones. If a class has an unusually 

high SLOC, it's likely doing too much and should be decomposed into 

smaller, more focused classes that each handle a single responsibility. 

 

By tackling these areas, the developer can work towards a more modular, 

maintainable, and understandable codebase. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 384 
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[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 10): 

Given the extensive metric data provided, focusing on key areas can 

significantly improve code quality during the refactoring process. Here are 

the primary focus areas for refactoring: 

 

1. **Reduce High Cyclomatic Complexity (WMC):** Look for types with high 

Weighted Methods per Class (WMC) values as these are indicators of complex 

classes. High complexity may make maintenance and understanding difficult. 

`structures.results.TypeMetricResult` and `main.Bootstrapper` are examples 

with high WMC values, suggesting that the methods in these classes are 

complex and potentially doing too much. Consider breaking down complex 

methods into smaller, more manageable ones. 

 

2. **Address High Lack of Cohesion of Methods (LCOM3):** High LCOM3 values 

(approaching 1) indicate that the class’s methods are not related to each 

other in terms of accessing the same class attributes. In general, a high 

LCOM3 suggests that the class could be split into multiple, more cohesive 

classes. Types like `output.MetricResultJSON`, 

`structures.results.TypeMetricResultTest`, and 

`fixtures.output.CSVDataFixture` demonstrate high LCOM3 values, suggesting 

potential refactoring into more cohesive units. 

 

--- 

 

3. **Minimize Fan-out Complexity:** Types with high Fan-Out, such as 

`output.MetricResultJSON` and `structures.results.TypeMetricResult`, are 

highly dependent on other classes or modules. Reducing these dependencies 

can make the system easier to understand, test, and maintain. Consider 

applying the Dependency Inversion Principle or breaking down classes to 

reduce their responsibilities. 

 

4. **Improve Method Responsiveness by Reducing High NOM and NPM Values:** 

High Numbers of Methods (NOM) and Numbers of Public Methods (NPM) within a 

class might indicate classes with too many responsibilities. Types like 

`structures.results.TypeMetricResult` and `output.MetricResultFile` 

demonstrate high values, suggesting a violation of the Single 

Responsibility Principle. Try to segregate responsibilities into separate, 

focused classes. 

Refocusing on these areas during the refactoring process should contribute 

to a more maintainable, understandable, and cohesive codebase. Always 

remember to unit test your changes to ensure that refactoring does not 

affect the existing functionality. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 447 

 

 

Second experiment with type metrics analysis 

The same experiment from the previous one was executed, to further analyze the response. 
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Prompt used (first 700 characters of 26346): 

Act as a Software Architect, providing advice to a new developer on what to 

do on a refactoring, based on the Data provided after the requestsWhat 

should be the areas of focus to the developer to refactor this code based 

on the Metrics? Answer breaked into 2 linesMetrics data:<D>Types 

metrics:<D><D>Type: output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM: 

42</D><D>NPM: 38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN: 

4</D><D>FAN-OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type: 

output.MetricResultGPT</D><D>SLOC: 366</D><D>NOM: 24</D><D>NPM: 

23</D><D>WMC: 40</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1</D><D>FAN-

OUT: 20</D><D>NOA: 8</D><D>LCOM3: 0.85</D></D><D><D>Type: str ... 

 

GPT Insight(Test 1): 

Given the comprehensive metrics data provided, the refactoring efforts 

should target the following areas to enhance code quality, maintainability, 

and performance: 

 

1. **High Lack of Cohesion (LCOM3 values close to 1)**: Focus on types such 

as `fixtures.output.CSVDataFixture`, `TypeMetricFixture`, 

`NamespaceVisitor`, and several types with LCOM3 = 1.00. This suggests that 

the methods within these types are not working together, which may indicate 

that the type is doing too much or its responsibilities are not well 

aligned. Consider splitting these types into more cohesive units or 

reevaluating their responsibilities.  

 

2. **High Number of Methods (NOM) and Weighted Method Count (WMC)**: 

Inspect types such as `structures.results.TypeMetricResult` and 

`output.MetricResultFile` which have high NOM and WMC values. This could 

indicate complex classes that are trying to do too much. Applying the 

Single Responsibility Principle (SRP) can help in breaking down these 

classes into smaller, more focused classes.  

 

Refactoring these areas will likely have a significant positive impact on 

the maintainability and understandability of the codebase. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m12 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 238 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 2): 

Based on the provided metrics data from various types, here are the key 

takeaways and areas of focus for refactoring: 

 

1. **Reduce High Cyclomatic Complexity (WMC):** Look for types with high 

Weighted Methods per Class (WMC) values, indicating complex code that could 

benefit from simplification. Examples include `Type: 

structures.results.TypeMetricResult` with `WMC: 99` and `Type: 

javaProject.com.controller.Type` with `WMC: 58`. Reducing complexity makes 

the code more maintainable and easier to understand. 

 

2. **Address High Lack of Cohesion of Methods (LCOM3):** High LCOM3 values 

suggest that classes could be doing too much or the class’s methods and 

fields are not related closely enough, which can lead to poor class 

cohesion. For example, `Type: structures.results.TypeMetricResultTest` and 
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`Type: output.MetricResultFake` both have `LCOM3: 0.95`. Consider 

refactoring these classes by segregating unrelated functionalities into 

separate classes or by enhancing the existing methods and fields to work 

more harmoniously. 

 

--- 

 

3. **Optimize Fan-Out and Dependency Metrics:** High Fan-Out values, such 

as those seen in `Type: output.MetricResultJSON` (`FAN-OUT: 22`) and `Type: 

output.MetricResultCSV` (`FAN-OUT: 22`), indicate that a type depends on 

many other types. This could signify overly tight coupling. Look into 

possibilities to introduce interfaces, or perhaps dependency inversion 

principles, to reduce direct dependencies. 

 

4. **Improve Method and Class Design:** Examine types with a high Number of 

Methods (NOM) but low usage of class fields (NOA), e.g., `Type: 

output.MetricResultFile` (`NOM: 41, NOA: 21`) and `Type: 

structures.metrics.TypeMetric` (`NOM: 36, NOA: 15`). It may indicate 

methods could be refactored into more cohesive, smaller classes, or there 

are opportunities to make better use of class-level fields, reducing 

parameter passing and improving encapsulation. 

 

Refactoring with these focus areas not only aims at enhancing code 

readability and maintainability but also at improving the overall 

architecture's scalability and robustness. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m34 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 468 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 3): 

Given the complexity and volume of metrics provided for various types, the 

first line of advice would revolve around understanding and identifying key 

areas where refactoring could yield significant improvements in 

maintainability, performance, and code quality. With this extensive data, 

certain metrics immediately stand out and should guide the initial focus of 

refactoring efforts: 

 

1. **Cohesion (LCOM3):** Types with high LCOM3 values close to 1 (e.g., 

`fixtures.output.data.CSVDataFixture` with LCOM3 of 1.00, and several 

others) indicate poor cohesion, meaning that the methods within these types 

are not well related. Focusing on increasing cohesion by ensuring that 

classes have a single responsibility can significantly improve the 

codebase. Refactoring suggestions include splitting large classes into 

smaller, more focused ones or moving methods to classes where they are more 

relevant. 

 

2. **Cyclomatic Complexity (WMC):** Types with high Weighted Methods per 

Class (WMC) indicate complex logic that can be hard to understand and test 

(e.g., `structures.results.TypeMetricResult` with a WMC of 99). Refactoring 

efforts should aim to simplify complex methods, possibly by breaking them 

down into smaller methods that are easier to understand and test. 

Techniques such as applying the Extract Method refactoring or simplifying 

conditional logic can be particularly useful here. 
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For the second line of advice, attention should be shifted towards 

dependencies and method metrics: 

 

1. **Dependencies (DEP, I-DEP, FAN-IN, FAN-OUT):** High dependency metrics, 

especially FAN-OUT values, suggest that the type is overly dependent on 

many other types or components (e.g., `output.MetricResultJSON` with FAN-

OUT of 22). This can make the system brittle and difficult to change. To 

minimize dependency issues, consider applying the Dependency Inversion 

Principle by refactoring towards depending on abstractions rather than 

concrete implementations. Additionally, look into partitioning the system 

into more decoupled, independently deployable units or modules. 

 

2. **Method Metrics (NOM, NPM):** Types with a high Number of Methods (NOM) 

or Number of Public Methods (NPM) are indicative of potential \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m49 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 564 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 4): 

Given the comprehensive metrics data provided, the focus of refactoring 

should be on the areas of high Lack of Cohesion of Methods (LCOM3), high 

Source Lines of Code (SLOC), high Weighted Method Count (WMC), and 

excessive dependencies (DEP and I-DEP). To start, areas with a high LCOM3 

value close to 1 indicate poor cohesion within a class, suggesting that the 

class is doing too much or the class's methods are not well related. High 

SLOC indicates potential complexity and difficulty in maintenance, while 

high WMC points towards complex classes that may be trying to perform too 

many actions, increasing the risk of bugs. 

 

Firstly, attention should be directed towards reducing the complexity and 

enhancing the maintainability of the classes with high SLOC counted above. 

Refactoring strategies might include the extraction of methods or classes 

(if a class is performing too many functions), modularizing the code 

better, and identifying common patterns or behaviors that can be abstracted 

or unified. 

 

Secondly, reducing the Lack of Cohesion of Methods (LCOM3) by ensuring that 

methods within a class are more tightly related to each other should be a 

priority. This often involves rethinking the responsibilities assigned to 

each class and possibly redistributing methods among classes or introducing 

new classes to group related functionalities together more logically.  

 

In refactoring efforts targeting these areas, unit tests play a crucial 

role in ensuring that behavior is preserved. Automated tests should be in 

place before starting the refactoring process to detect any inadvertent 

changes or regressions in functionality. It's also prudent to tackle these 

refactoring efforts incrementally, applying small, manageable changes and 

validating through testing after each modification. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m30 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 339 
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[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 5): 

Given the comprehensive list of metric data for various types, here are key 

recommendations for areas of focus during refactoring: 

 

1. **High Lack of Cohesion (LCOM3):** Several types exhibit a high Lack of 

Cohesion of Methods (LCOM3) score, close to 1.0, such as 

`fixtures.output.CSVDataFixture`, 

`structures.results.TypeMetricResultTest`, and `output.MetricResultFake`. 

These types should be refactored to improve cohesion. Aim to modularize 

functionality such that each class focuses on a single purpose or closely 

related purposes. 

 

2. **High Fan-Out:** Certain types have a high Fan-Out, such as 

`output.MetricResultJSON` and `output.MetricResultCSV` with Fan-Outs of 22. 

High Fan-Out indicates a type's high dependency on other types, suggesting 

a potential need for decoupling and encapsulation improvements. Extract 

interfaces, use design patterns like Dependency Injection, or apply the 

Facade Pattern to reduce direct dependencies. 

 

--- 

 

Continued areas of focus: 

 

3. **Complexity Metrics (WMC) and Size Metrics (SLOC, NOM):** Types like 

`structures.results.TypeMetricResult` with WMC of 99, SLOC of 328, and NOM 

of 45 are likely to be complex and large, suggesting potential refactoring 

to break down large classes into smaller, more manageable ones. Aim for 

single responsibility and lower complexity to improve maintainability. 

 

4. **High Internal Dependency (DEP & I-DEP):** Consider types with high 

external and internal dependencies, such as 

`parser.java.visitors.MethodVisitor` with DEP of 23 and 

`selection.options.Options` with I-DEP of 19. It's vital to assess these 

dependencies for possible reduction through architectural redesign, 

possibly by introducing more abstract layers or utilizing patterns that 

favor loose coupling. 

 

By addressing these areas, the software architecture can evolve towards a 

more maintainable, scalable, and loosely coupled system. Refactoring 

efforts should prioritize readability, simplicity, and encapsulation, 

applying solid principles and design patterns where appropriate. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 424 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 6): 

Given the comprehensive set of metrics provided for a variety of types, the 

key focus areas for refactoring should prioritize addressing high 

complexity, reducing tight coupling, enhancing cohesion, and reducing code 

duplication. Specifically: 
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1. **High Complexity & Tight Coupling**: Target types with high WMC 

(Weighted Method Count) and high FAN-OUT values as they indicate complexity 

and tight coupling. For example, the `structures.results.TypeMetricResult` 

has a WMC of 99 and a FAN-OUT of 9, suggesting it could benefit from 

simplification and breaking down into smaller, more focused components. 

 

2. **Low Cohesion**: Look for types with high LCOM3 (Lack of Cohesion of 

Methods) values, as this indicates that the methods within a class do not 

share much in common. Types like `output.MetricResultFake` with LCOM3 of 

1.00 and `fixtures.TypeMetricFixture` with LCOM3 of 1.00 are prime 

candidates for refactoring to improve cohesion. 

 

--- 

 

Continuing with guidance based on the provided metrics: 

 

1. **Reduce Dependencies**: Types with high DEP (Direct dependencies) and 

I-DEP (Indirect dependencies) like `selection.options.Options` with DEP of 

21 and I-DEP of 19, indicate a high reliance on other components, making 

the system more fragile and harder to maintain. Work on reducing these 

dependencies, possibly through interface abstraction or by applying the 

Dependency Inversion Principle. 

 

2. **Improve Encapsulation**: NOA (Number of Attributes) figures suggest 

how many state variables a type is managing. For better encapsulation and 

to facilitate easier unit testing, consider refactoring types with a high 

NOA, like `output.MetricResultFile` with NOA of 21, by perhaps breaking 

them down into smaller classes each responsible for a more specific subset 

of functionality. 

 

This strategic approach to refactoring should lead to improved 

maintainability, readability, and scalability of your codebase. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m29 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 404 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 7): 

Based on the provided metrics data, here are the key areas you should focus 

on for refactoring: 

 

1. **Reduce High Complexity and Interdependence**: Look into types with 

high Weighted Method Count (WMC) and high dependence (DEP and I-DEP). For 

example, refactoring the types with the highest WMC like 

`structures.results.TypeMetricResult` (WMC: 99) and 

`structures.metrics.TypeMetric` (WMC: 37) could improve maintainability. 

Aim to simplify complex methods and reduce coupling where possible. 

 

2. **Address High Lack of Cohesion (LCOM3)**: Types with high Lack of 

Cohesion of Methods version 3 (LCOM3) values, near or equal to 1.00, 

indicate that the class methods and fields are not well related. Examples 

are `fixtures.output.data.CSVDataFixture` and `fixtures.TypeMetricFixture`, 

both with LCOM3 of 1.00, and several others. Consider breaking these types 

into smaller, more cohesive ones. 
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Continued in the next part... 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m20 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 218 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 8): 

Given the substantial amount of metrics data for various types, the areas 

for refactoring can be effectively identified by focusing on certain key 

metrics indicative of code quality and maintainability. These metrics 

include SLOC (Source Lines of Code), NOM (Number of Methods), WMC (Weighted 

Methods per Class), DEP (Dependencies), FAN-IN/FAN-OUT, NOA (Number of 

Attributes), and notably LCOM3 (Lack of Cohesion of Methods version 3). 

Identifying these metrics helps in determining the complexity, coupling, 

and cohesion of the code, which are significant factors in software 

maintainability. 

 

To start, the primary areas of focus for the developer to refactor, based 

on the metrics are: 

 

1. **Reduce Complexity and Size:** Look for types with high SLOC and WMC 

values, as these are indicators of complexity. For example, 

`structures.results.TypeMetricResult` and `output.MetricResultJSON` have 

high SLOC and WMC values, meaning they could be made more maintainable by 

breaking them down into smaller, more focused units, thus reducing 

complexity and potentially duplicating code. 

 

2. **Improve Cohesion:** Types with high LCOM3 values, like 

`fixtures.output.CSVDataFixture`, 

`structures.results.TypeMetricResultTest`, and 

`structures.results.NamespaceMetricResultTest`, indicate low cohesion, 

meaning the methods and attributes of these types are not working well 

together. Refactoring towards more cohesive designs will likely involve 

segregating functionality into well-defined classes that have clear 

responsibilities, which can improve understandability and reusability. 

 

3. **Reduce Coupling:** High values of DEP (Dependencies), FAN-IN, and 

especially FAN-OUT suggest a high level of coupling. For instance, 

`javaProject.com.controller.Type` has a high FAN-OUT, making it heavily 

dependent on many other types. Lowering these metrics through the use of 

interfaces, dependency injection, or event patterns can help decrease 

coupling, making the system more modular and easier to modify or extend. 

 

4. **Consolidate Data Structures:** Observing the NOA metric can reveal 

classes that might be acting more as data structures rather than providing 

behavior, such as `output.MetricResultFile` with high NOA. Evaluating 

whether these attributes can be enclosed within more functional objects or 

whether such classes can be simplified or merged with others might result 

in a more concise and maintainable codebase.  

 

By targeting these areas based on the provided metrics, the developer can 

systematically address issues of complexity, cohesion, and coupling in the 

codebase, leading towards an overall improvement in code quality and 
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maintainability. These refactorings should be done iteratively and tested 

thoroughly to ensure system integrity is maintained throughout the process. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m40 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 551 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 9): 

Given the provided metrics data, here are key areas the developer should 

focus on for refactoring: 

 

1. **Cohesion and Coupling**: High LCOM (Lack of Cohesion of Methods) 

values (close to 1) suggest poor cohesion within types, meaning the class 

methods are not well related in their purpose. For instance, types with 

LCOM3 values of 0.95 or higher should be carefully reviewed to see if they 

can be decomposed into more cohesive classes. Coupling metrics, including 

both FAN-IN and FAN-OUT, offer insight into how interdependent the classes 

are. Types with high FAN-OUT values, such as 22, suggest a class is highly 

dependent on many other classes and might benefit from refactoring to 

reduce dependencies. 

 

2. **Size Metrics**: SLOC (Source Lines of Code) provides a quick way of 

identifying large classes that might be doing too much. For instance, types 

with the highest SLOC such as `374` might be good candidates for 

decomposition. Breaking down large classes into smaller, more manageable 

pieces can make the codebase more understandable and easier to maintain. 

 

Given these two areas of focus, the developer should aim to: 

- Improve cohesion within classes by ensuring that methods within a class 

are closely related in their functionality. If a class has methods that 

seem unrelated, consider splitting these into separate classes. 

- Reduce coupling between classes by minimizing the number of dependencies 

a class has on other classes. This might involve using design patterns such 

as Facade to simplify interactions or adopting Dependency Injection to 

manage class dependencies better. 

- Break down large classes into smaller ones. If a class has an unusually 

high SLOC, it's likely doing too much and should be decomposed into 

smaller, more focused classes that each handle a single responsibility. 

 

By tackling these areas, the developer can work towards a more modular, 

maintainable, and understandable codebase. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 384 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 10): 

Given the extensive metric data provided, focusing on key areas can 

significantly improve code quality during the refactoring process. Here are 

the primary focus areas for refactoring: 
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1. **Reduce High Cyclomatic Complexity (WMC):** Look for types with high 

Weighted Methods per Class (WMC) values as these are indicators of complex 

classes. High complexity may make maintenance and understanding difficult. 

`structures.results.TypeMetricResult` and `main.Bootstrapper` are examples 

with high WMC values, suggesting that the methods in these classes are 

complex and potentially doing too much. Consider breaking down complex 

methods into smaller, more manageable ones. 

 

2. **Address High Lack of Cohesion of Methods (LCOM3):** High LCOM3 values 

(approaching 1) indicate that the class’s methods are not related to each 

other in terms of accessing the same class attributes. In general, a high 

LCOM3 suggests that the class could be split into multiple, more cohesive 

classes. Types like `output.MetricResultJSON`, 

`structures.results.TypeMetricResultTest`, and 

`fixtures.output.CSVDataFixture` demonstrate high LCOM3 values, suggesting 

potential refactoring into more cohesive units. 

 

--- 

 

3. **Minimize Fan-out Complexity:** Types with high Fan-Out, such as 

`output.MetricResultJSON` and `structures.results.TypeMetricResult`, are 

highly dependent on other classes or modules. Reducing these dependencies 

can make the system easier to understand, test, and maintain. Consider 

applying the Dependency Inversion Principle or breaking down classes to 

reduce their responsibilities. 

 

4. **Improve Method Responsiveness by Reducing High NOM and NPM Values:** 

High Numbers of Methods (NOM) and Numbers of Public Methods (NPM) within a 

class might indicate classes with too many responsibilities. Types like 

`structures.results.TypeMetricResult` and `output.MetricResultFile` 

demonstrate high values, suggesting a violation of the Single 

Responsibility Principle. Try to segregate responsibilities into separate, 

focused classes. 

Refocusing on these areas during the refactoring process should contribute 

to a more maintainable, understandable, and cohesive codebase. Always 

remember to unit test your changes to ensure that refactoring does not 

affect the existing functionality. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15174 

[1mGPT Generated Tokens: [0m": 447 

 

Experiment with type metrics request Top 3 types needing refactoring 

This experiment was to provide a more valuable insight, so that integration provides which 

classes on our project should be refactored. 
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Figure A.3.51 – Result from insight request based on type metrics 

 

Source: Elaborated by the author 

 

Figure A.3.52– Result from insight request based on type metrics (2nd Request) 

 

Source: Elaborated by the author 

 

Figure A.3.53 – Result from insight request based on type metrics (3rd Request) 

 

Source: Elaborated by the author 
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Figure A.3.54 – Result from insight request based on type metrics (4th Request) 

 

Source: Elaborated by the author 

 

Figure A.3.55 – Prompt used for the results above 

 

Source: Elaborated by the author 

 

Text version of the results (with all 10 executions): 

======================ChatGPT Insight: 

 

 

Prompt used (first 700 characters of 26418): 

Act as a Software Architect, providing advice to a new developer on what to 

do on a refactoring, based on the Data provided after the requestsWhat is 

the top 3 types that need refactoring? Answer only the type name, then one 

paragraph explain what should be refactored and which technique to be used, 

providing reference documentation.Metrics data:<D>Types metrics:<D><D>Type: 

output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM: 42</D><D>NPM: 

38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN: 4</D><D>FAN-

OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type: 

output.MetricResultGPT</D><D>SLOC: 366</D><D>NOM: 24</D><D>NPM: 

23</D><D>WMC: 40</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1< ... 

 

GPT Insight(Test 1): 

The top 3 types that need refactoring based on the provided metrics data 

are: 

 

1. structures.results.TypeMetricResult 

2. output.MetricResultJSON 

3. output.MetricResultGPT 

 

The `structures.results.TypeMetricResult` type has a high Weighted Method 

Count (WMC) of 99, which implies complex methods possibly doing too much 

work or having too many responsibilities. A high LCOM3 value of 0.94 

suggests low cohesion, indicating that the methods are not well-related in 

functionality, leading to difficulties in maintenance and understanding. To 

refactor, extract methods or even classes from this type to reduce 

complexity and increase cohesion. Techniques such as Extract Class or 

Extract Method, as described in Fowler's \ 

 

 

======================ChatGPT Insight end(built prompt) 
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[1mGPT processing time: [0m30 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 422 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 2): 

The top 3 types that need refactoring based on the provided metrics data 

are: 

 

1. structures.results.TypeMetricResult 

2. output.MetricResultJSON 

3. output.MetricResultCSV 

 

The `structures.results.TypeMetricResult` type shows a high Weighted Method 

Count (WMC) at 99, indicating a high complexity and potentially multiple 

responsibilities violating the Single Responsibility Principle. This type 

also has a high Lack of Cohesion in Methods 3 (LCOM3) at 0.94, suggesting 

that the methods of the class are not cohesive and could probably be 

separated into multiple, more focused classes. Refactoring strategies could 

include applying the Extract Class refactoring technique to create more 

cohesive classes, and breaking down complex methods into smaller ones, 

potentially using the Extract Method refactoring technique. For reference 

and further reading on these refactoring techniques, see Martin Fowler's 

book \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 453 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 3): 

Top 3 Types that need refactoring: 

1. ```structures.results.TypeMetricResult``` 

2. ```output.MetricResultJSON``` 

3. ```output.MetricResultGPT``` 

 

For the `structures.results.TypeMetricResult` type, the high Weighted 

Method Count (WMC) of 99 and the high Lack of Cohesion in Methods 3 (LCOM3) 

of 0.94 suggest that this class has too many responsibilities and its 

methods do not share enough common data. Extract Class and Extract Method 

refactorings [Fowler] should be considered to reduce the class size, 

improve cohesion, and separate concerns. Splitting this class into smaller, 

more focused classes can help manage complexity and improve 

maintainability. Additionally, reviewing the use of instance variables 

across methods to identify opportunities for Extract Method refactoring can 

lead to more cohesive and modular code. 

 

For `output.MetricResultJSON`, a Source Lines of Code (SLOC) of 374 and a 

high method count (NOM of 42) indicate that this class might be doing too 

much and could benefit from decomposition. Applying the Extract Class 

refactoring technique can help in separating concerns, simplifying future 

maintenance, and improving readability. For instance, if this class is 

handling both JSON formatting and data manipulation, these responsibilities 

could be divided into separate classes. 
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With `output.MetricResultGPT`, similar to `output.MetricResultJSON`, the 

SLOC of 366 and the NOM of 24 suggest that refactoring techniques such as 

Extract Class or Method should be applied to break down responsibilities 

into smaller, more manageable pieces. The aim should be to enhance the 

Single Responsibility Principle (SRP) and make the codebase more 

maintainable. 

 

Reference documentation for these refactorings can be found in Martin 

Fowler's refactoring book and catalog, which provides comprehensive 

guidance on how to apply these techniques effectively [Fowler, Martin. \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m40 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 406 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 4): 

The top 3 types that need refactoring are: 

 

1. structures.results.TypeMetricResult 

2. output.MetricResultJSON 

3. output.MetricResultGPT 

 

For **structures.results.TypeMetricResult**, the high Weighted Method Count 

(WMC) of 99 and Number of Methods (NOM) of 45 suggest a complex class with 

too much functionality crammed into a single class. This class should be 

refactored to adhere to the Single Responsibility Principle (SRP), possibly 

by splitting it into smaller, more cohesive classes. The Extract Class 

refactoring method can be applied here. Moreover, a high Lack of Cohesion 

in Methods 3 (LCOM3) value of 0.94 indicates that the methods within the 

class do not share much data, further suggesting the need for class 

splitting. The Extract Method refactoring can also be applied to reduce the 

complexity of methods, making them do one thing only as suggested by SRP. 

Reference: Martin Fowler's \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m42 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 485 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 5): 

The top 3 types that need refactoring are: 

 

1. structures.results.TypeMetricResult 

2. output.MetricResultJSON 

3. output.MetricResultGPT 

 

These types show indications of high complexity and potential design 

issues, highlighted by metrics like Source Lines of Code (SLOC), Weighted 

Methods per Class (WMC), and Lack of Cohesion of Methods (LCOM3). 
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For the `structures.results.TypeMetricResult` type, with the highest WMC 

(99) suggesting complex class methods, and a high LCOM3 (0.94) indicating 

low cohesion, refactoring towards simplifying these methods and improving 

cohesion is advised. Techniques could include Extract Method to reduce 

complexity of individual methods, and Extract Class to improve cohesion by 

grouping related functionalities together. 

 

The `output.MetricResultJSON` type has a relatively high SLOC (374) and a 

high WMC (63), pointing to complex and potentially uncohesive methods. This 

type could benefit from refactoring techniques like Extract Method to break 

down complex methods into simpler ones, making it easier to understand and 

modify. 

 

The `output.MetricResultGPT` type has a high LCOM3 value (0.85) alongside 

substantial SLOC (366) and WMC (40), indicating a need for better cohesion 

and possible method complexity issues. Implementing refactoring strategies 

such as Extract Class can help in dividing responsibilities into more 

cohesive units, while Extract Method can address complex methods by 

dividing them into more manageable segments. 

 

Reference documentation for these techniques can be found in Martin 

Fowler's \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m25 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 347 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 6): 

Top 3 types that need refactoring: 

 

1. `structures.results.TypeMetricResult` 

2. `output.MetricResultJSON` 

3. `output.MetricResultCSV` 

 

The `structures.results.TypeMetricResult` type shows a high complexity with 

a Weighted Method Count (WMC) of 99 and a high Lack of Cohesion of Methods 

3 (LCOM3) score of 0.94, alongside a significant number of methods (NOM) at 

45. This indicates that the class likely has multiple responsibilities that 

could be broken down into smaller, more cohesive classes. Refactoring 

techniques such as Extract Class or Extract Method could be beneficial in 

reducing complexity and increasing cohesion.  

 

For `output.MetricResultJSON`, it also suffers from high complexity with a 

WMC of 63, a high LCOM3 score of 0.95, and a rather large number of methods 

(NOM of 42). Similar to `structures.results.TypeMetricResult`, applying 

Extract Class and Extract Method could help. Additionally, considering its 

function, applying patterns like Data Transfer Objects (DTO) could 

encapsulate the data better. 

 

Lastly, `output.MetricResultCSV` has a high LCOM3 of 0.95 and a 

considerable number of non-private methods (NPM of 34) with a WMC of 45. 

This suggests a lack of method cohesion and potential for method-level 

refactoring. Extract Method could be used here too for better 

modularization of the code. 
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For reference documentation on these refactoring techniques, \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 371 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 7): 

The top 3 types that need refactoring based on the provided metrics are: 

 

1. structures.results.TypeMetricResult 

2. output.MetricResultJSON 

3. output.MetricResultGPT 

 

For the type `structures.results.TypeMetricResult`, it has a very high 

Weighted Method Count (WMC) of 99, indicating that the methods in this type 

are quite complex. To tackle this, methods should be broken down into 

smaller, more manageable pieces. Applying the Extract Method refactoring 

technique could be a good starting point, as described in Martin Fowler's \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m33 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 449 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 8): 

Top 3 types that need refactoring: 

 

1. structures.results.TypeMetricResult 

2. output.MetricResultJSON 

3. output.MetricResultConsole 

 

The class `structures.results.TypeMetricResult` stands out primarily due to 

its very high Weighted Methods per Class (WMC) value of 99, which typically 

indicates a high level of complexity and possibly a large number of 

responsibilities. Such complexity can often lead to difficulties in 

maintenance and understanding the class. Refactoring techniques that could 

be applied here include **Extract Class** to create more cohesive classes 

with fewer responsibilities, and **Extract Method** to reduce complexity 

within methods. Focusing on reducing its high complexity will likely 

improve maintainability and readability. Reference for these techniques can 

be found in Martin Fowler's \ 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m24 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 367 

 

[1mWaited time: [0m80 seconds 
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GPT Insight(Test 9): 

The top 3 types that need refactoring are: 

 

1. structures.results.TypeMetricResult 

2. output.MetricResultJSON 

3. output.MetricResultGPT 

 

For **structures.results.TypeMetricResult**, the Weighted Method Count 

(WMC) stands out as significantly high at 99, indicating complex methods 

which might be doing too much or are too complicated. Refactoring this 

would likely involve breaking these methods into smaller, more manageable 

pieces. Applying the Extract Method refactoring technique, as described in 

Martin Fowler’s “Refactoring: Improving the Design of Existing Code”, could 

be quite effective here. This would not only help in reducing the 

complexity but might also improve the modularity and reusability of the 

code. 

 

For **output.MetricResultJSON**, the class has a high Source Lines of Code 

(SLOC) and Number of Methods (NOM), which suggests that it might be 

handling too many responsibilities. A potential refactoring strategy could 

involve applying the Single Responsibility Principle (SRP). This principle, 

part of the SOLID principles detailed by Robert C. Martin, advises that a 

class should have only one reason to change. Segregating responsibilities 

into different classes could improve coherence and maintainability. 

 

Finally, **output.MetricResultGPT** shows a combination of high SLOC and 

high Number of Public Methods (NPM). This might indicate that the class is 

offering too many services or functionalities, potentially complicating the 

use and maintenance of the class. Refactoring by applying the Interface 

Segregation Principle (ISP), another of the SOLID principles, by splitting 

the functionality into multiple, more specific interfaces, could make the 

class more manageable and adaptable to change. Reducing the class size and 

separating concerns would likely make the codebase more flexible and easier 

to understand. 

 

Reference documentation for these techniques and principles can be found in 

Martin Fowler’s “Refactoring: Improving the Design of Existing Code” for 

practical refactoring techniques and Robert C. Martin’s “Clean 

Architecture” and “Agile Software Development, Principles, Patterns, and 

Practices” for SOLID principles application. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 421 

 

[1mWaited time: [0m80 seconds 

 

 

GPT Insight(Test 10): 

Top 3 types that need refactoring: 

 

1. structures.results.TypeMetricResult 

2. output.MetricResultJSON 

3. output.MetricResultGPT 

 

For the `structures.results.TypeMetricResult`, given its high Weighted 

Method Count (WMC) of 99 and its high Lack of Cohesion in Methods (LCOM3) 

of 0.94, it suggests that the class is doing too much, with methods not 
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closely related in functionality. Refactoring strategies for this class 

should include **Extract Class** to separate responsibilities into other 

classes, improving cohesion, and potentially **Extract Method** to break 

down large methods into smaller, cohesive ones. Additionally, evaluating 

the necessity and usage of class-level variables (with a NOA of 8) could 

identify opportunities for **Move Field** to relocate some fields to more 

relevant classes. The **Martin's Principles of Package Design** can provide 

further guidance on modularizing the system more effectively. 

 

The `output.MetricResultJSON` and `output.MetricResultGPT` share similar 

issues, with high SLOC (374 and 366 respectively), high NOM (42 and 24 

respectively), and very high LCOM3 scores (0.95 and 0.85, indicating low 

cohesion). For both types, applying **Extract Method** for lengthy methods 

and **Extract Class** for unrelated functionalities within these types 

could greatly improve maintainability. For example, handling JSON in 

multiple formats or contexts might be spread across various methods that 

could be better organized in separate classes. Considering the **Single 

Responsibility Principle** from SOLID principles could be beneficial in 

guiding these extractions, ensuring each class or method has one reason to 

change. 

 

Reference documentation includes: 

- Fowler, M. (2018). Refactoring: Improving the Design of Existing Code. 

Addison-Wesley Professional. This book covers a wide range of refactoring 

techniques, including Extract Method and Extract Class. 

- Martin, R. (2009). Clean Code: A Handbook of Agile Software 

Craftsmanship. Prentice Hall. This provides an in-depth look at writing 

clean, maintainable code which is vital during and after refactoring. 

- Martin, R. C. (2003). Agile Software Development, Principles, Patterns, 

and Practices. Prentice Hall. Offers insights into principles like Single 

Responsibility to guide the refactoring process. 

 

 

======================ChatGPT Insight end(built prompt) 

 

[1mGPT processing time: [0m38 seconds [1mGPT Context Tokens: [0m15187 

[1mGPT Generated Tokens: [0m": 476 

 

3.3 DR-TOOLS CODE HEALTH EXPERIMENT 

3.3.2 PROMPT ENGINEERING FOR DR-TOOLS CODE HEALTH DATA 

 

 This section presents the full data in its raw format from the information presented in 

section 3.3.2. 

 

Full data on prompt format: 

“<D>Code Smell Metric:<D><D>TYPE: 

structures.metrics.TypeMetric<\D><D>SLOC: 151 <\D><D>NOM: 36 <\D><D>NPM: 

36 <\D><D>WMC: 38<\D><D>DEP: 9 <\D><D>I-DEP: 2 <\D><D>FAN-IN: 11 

<\D><D>FAN-OUT: 5 <\D><D>NOA: 15 <\D><D>LCOM3: 0.80 <\D><D>DIT: 1.0 
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<\D><D>CHILD: 0.0 <\D><D>NPA: 0.0<\D><D>List of smells 

detected:<D>Insufficient Modularization<\D><D>Multifaceted 

Abstraction<\D><\D><D>TOTAL OF SMELLS DETECTED: 2<\D><\D><D><D>TYPE: 

output.MetricResultGPT<\D><D>SLOC: 377 <\D><D>NOM: 24 <\D><D>NPM: 23 

<\D><D>WMC: 41<\D><D>DEP: 17 <\D><D>I-DEP: 15 <\D><D>FAN-IN: 1 

<\D><D>FAN-OUT: 20 <\D><D>NOA: 8 <\D><D>LCOM3: 0.85 <\D><D>DIT: 1.0 

<\D><D>CHILD: 0.0 <\D><D>NPA: 2.0<\D><D>List of smells 

detected:<D>Insufficient Modularization<\D><D>Multifaceted 

Abstraction<\D><D>Deficient Encapsulation<\D><D>TOTAL OF SMELLS DETECTED: 

3<\D><\D><D><D>TYPE: structures.results.TypeMetricResult<\D><D>SLOC: 328 

<\D><D>NOM: 45 <\D><D>NPM: 31 <\D><D>WMC: 99<\D><D>DEP: 12 

<\D><D>I-DEP: 3 <\D><D>FAN-IN: 16 <\D><D>FAN-OUT: 9 <\D><D>NOA: 8 

<\D><D>LCOM3: 0.94 <\D><D>DIT: 1.0 <\D><D>CHILD: 0.0 <\D><D>NPA: 

0.0<\D><D>List of smells detected:<D>Insufficient Modularization<\D><D>Multifaceted 

Abstraction<\D><\D><D>TOTAL OF SMELLS DETECTED: 2<\D><\D><D><D>TYPE: 

javaProject.one.A<\D><D>SLOC: 5 <\D><D>NOM: 0 <\D><D>NPM: 0 

<\D><D>WMC: 1<\D><D>DEP: 1 <\D><D>I-DEP: 1 <\D><D>FAN-IN: 1 

<\D><D>FAN-OUT: 1 <\D><D>NOA: 1 <\D><D>LCOM3: 0.00 <\D><D>DIT: 1.0 

<\D><D>CHILD: 0.0 <\D><D>NPA: 0.0<\D><D>List of smells detected:<D>Cyclically-

dependent Modularization<\D><\D><D>TOTAL OF SMELLS DETECTED: 

1<\D><\D><D><D>TYPE: javaProject.com.controller.Type<\D><D>SLOC: 245 

<\D><D>NOM: 35 <\D><D>NPM: 25 <\D><D>WMC: 58<\D><D>DEP: 7 

<\D><D>I-DEP: 2 <\D><D>FAN-IN: 0 <\D><D>FAN-OUT: 9 <\D><D>NOA: 13 

<\D><D>LCOM3: 0.85 <\D><D>DIT: 1.0 <\D><D>CHILD: 0.0 <\D><D>NPA: 

0.0<\D><D>List of smells detected:<D>Insufficient Modularization<\D><D>Multifaceted 

Abstraction<\D><\D><D>TOTAL OF SMELLS DETECTED: 2<\D><\D><D>TOTAL OF 

TYPES WITH SMELLS: 5<\D><\D>” 

 

4. QUALITATIVE ANALYSIS OF USE CASES 

4.3 USE CASE 3: USING METHOD METRICS TO PROVIDE INSIGHTS 
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 Just for reader information, below are the metrics of the code analyzed in section 4.3, 

once in the main text was just provided a small part of the methods. Here as well is just 

presented the methods with over 15 LOC as total number would be unnecessary. 

Table A.4.1 – Method metrics from the methods used on subsection 4.3’s analysis (only 

methods over 15 LOC, just 79 of 1185 methods)  

method LOC CYCLO CALLS NBD PARAM 

chatGPTIntegration.GPTintegration.GPTinsight() 94 5 12 3 0 

fixtures.output.DataFixture.getMethodData() 59 1 56 0 0 

output.MetricResultGPT.showSummary() 57 1 70 3 0 

fixtures.output.DataFixture.getThresholdData() 51 1 25 0 0 

output.MetricResultJSON.generateSummary() 49 1 57 2 0 

structures.metrics.MetricThreshold.MetricThreshol

d() 
49 1 25 1 0 

javaProject.com.controller.Type.isSubtype(String 

dottedSubtype, String collectionType) 
45 7 3 2 2 

utils.files.SourceCodeLineCounter.isSourceCodeLi

ne(String line) 
42 10 13 4 1 

output.MetricResultGPT.showTypes() 42 3 46 3 0 

fixtures.output.DataFixture.getTypesResonance() 37 1 23 0 0 

javaProject.com.controller.Type.addClassAndGetCl

assVertex(XClass xclass) 
32 6 5 2 1 

output.MetricResultGPT.showDependencies() 31 4 16 3 0 

output.MetricResultCSV.generateSummary() 31 1 53 1 0 

structures.results.TypeMetricResultTest.createType

s() 
31 1 46 1 0 

fixtures.statistics.StatisticOfTypeFixture.createTyp

es() 
31 1 46 0 0 

output.MetricResultGPT.showInternalDependencie

s() 
30 4 19 3 0 

output.MetricResultGPT.showMethods() 30 3 22 3 0 

output.utils.InfoConsole.printCommands() 30 1 28 0 0 

utils.files.SourceCodeLineCounter.getNumberOfLi

nes(BufferedReader bReader) 
28 8 10 4 1 

output.MetricResultConsole.showSummary() 28 1 38 2 0 

output.MetricResultGPT.showNamespaceCoupling

() 
27 2 21 3 0 

utils.files.SourceCodeLineCounter.commentBegan(

String line) 
25 5 9 4 1 

chatGPTIntegration.ChatGPTAPI.requesttoGPT(Str

ing body, HttpURLConnection connection) 
25 2 12 2 2 

chatGPTIntegration.ChatGPTAPI.createChatGPTA

PIConnection() 
25 1 8 2 0 

javaProject.com.controller.Type.traverseSupertypes

(ClassDescriptor start) 
24 2 5 2 1 

output.utils.InfoConsole.printMetrics() 24 1 23 0 0 

output.MetricResultConsole.showInternalDependen

cies() 
23 4 15 2 0 

chatGPTIntegration.ChatGPTAPI.requestGPTClos

ure(String body, HttpURLConnection connection) 
23 4 10 2 2 
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chatGPTIntegration.ChatGPTAPI.requestGPTKeep

Open(String body, HttpURLConnection 

connection) 

23 4 8 2 2 

utils.files.SourceCodeLineCounter.commentEnded(

String line) 
22 4 5 4 1 

main.Bootstrapper.verifyInvalidOptions() 21 4 4 2 0 

javaProject.com.controller.Type.computeKnownSu

btypes(ClassDescriptor classDescriptor) 
21 2 3 2 1 

selection.options.Options.Options() 21 1 19 0 0 

output.MetricResultGPT.showCyclicDependencies(

) 
20 3 7 3 0 

fixtures.output.JSONDataFixture.generateTypes() 20 2 27 1 0 

fixtures.output.JSONDataFixture.getDependencies(

) 
20 1 18 1 0 

fixtures.output.JSONDataFixture.getInternalDepen

dencies() 
20 1 18 1 0 

fixtures.output.DataFixture.getTypeData() 20 1 17 0 0 

main.Bootstrapper.getOutputFormat(long 

startTime) 
19 5 8 2 1 

output.MetricResultConsole.showNamespaceCoupl

ing() 
19 2 18 2 0 

fixtures.output.CSVDataFixture.generateStatistical

Method() 
19 2 35 1 0 

fixtures.output.CSVDataFixture.generateStatistical

Namespace() 
19 2 35 1 0 

fixtures.output.CSVDataFixture.generateStatistical

Type() 
19 2 35 1 0 

fixtures.output.JSONDataFixture.generateStatistical

Method() 
19 2 24 1 0 

fixtures.output.JSONDataFixture.generateStatistical

Namespace() 
19 2 24 1 0 

fixtures.output.JSONDataFixture.generateStatistical

Type() 
19 2 24 1 0 

structures.results.TypeMetricResult.cleanListOf(Set

<String> typesWithCyclos) 
18 6 5 3 1 

chatGPTIntegration.GPTintegration.printGPTResp

onse(String prompt) 
18 4 10 3 1 

structures.results.TypeMetricResult.getCyclicDepe

ndencies() 
18 3 7 3 0 

output.MetricResultGPT.showNamespaces() 18 2 18 3 0 

output.MetricResultJSON.generateNamespaceCoup

ling() 
18 2 22 2 0 

output.MetricResultCSV.generateNamespaceCoupl

ing() 
18 2 17 1 0 

output.MetricResultFile.show() 18 1 16 0 0 

structures.results.TypeMetricResult.getTotalOfVari

ablesUsedInMethods(TypeMetric type) 
17 5 5 3 1 

chatGPTIntegration.ChatGPTAPI.chatGPTConvers

ation(String[] prompt) 
17 4 4 2 1 

output.MetricResultCSV.getStatisticalMetrics(List

<StatisticMetricResult> list) 
17 2 34 1 1 

structures.statistics.StatisticOfType.compute() 17 2 14 1 0 

parser.java.visitors.TypeVisitor.visit(TypeDeclarati

on node) 
16 3 11 2 1 

output.MetricResultJSON.getStatisticalMetrics(List

<StatisticMetricResult> list) 
16 2 23 2 1 
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output.MetricResultConsole.showTypes() 16 2 20 2 0 

fixtures.output.JSONDataFixture.generateMethods(

) 
16 2 16 1 0 

fixtures.output.JSONDataFixture.generateNamespa

ceCoupling() 
16 2 16 1 0 

fixtures.output.JSONDataFixture.generateThreshol

ds() 
16 2 14 1 0 

structures.results.StatisticMetricResult.StatisticMetr

icResult(String acronym, double average, double 

median, double amplitude, double firstQuartile, 

double thirdQuartile, double standardDeviation, 

double lowerFence, double upperFence, double 

interQuartileRange, double minValue, double 

maxValue, double threshold) 

16 1 0 0 13 

structures.results.TypeMetricResult.getInternalImp

ortsBy(String namespace) 
15 6 8 3 1 

structures.results.TypeMetricResult.getTotalOfAbst

ractTypesIn(String namespace) 
15 6 6 3 1 

javaProject.com.model.Man.foo() 15 5 1 1 0 

chatGPTIntegration.promptEngineer.promptContex

t() 
15 5 0 0 0 

chatGPTIntegration.promptEngineer.promptInstruct

ion() 
15 5 0 0 0 

output.MetricResultConsole.showDependencies() 15 4 12 2 0 

chatGPTIntegration.ChatGPTAPI.printExperiment

MultipleRequest(String prompt, String[] prompts) 
15 4 10 2 2 

parser.java.visitors.MethodVisitor.defineParameters

() 
15 3 11 2 0 

fixtures.output.JSONDataFixture.generateSummary

() 
15 2 14 1 0 

output.MetricResultFileTest.deleteFiles() 15 1 14 1 0 

output.MetricResultFileTest.setUp() 15 1 14 1 0 

Source: Elaborated by the author 
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Abstract. Develop and analyze the efficiency of integrating ChatGPT (and how
to use it efficiently) to a software analyzing suite for code ”Smells” detection and
code quality evaluation, so that the integration provides guidance to software
engineers or even some level of automation on its refactoring work.

Resumo. Desenvolver e analisar a eficiência de integrar o Chat GPT (e como
usá-lo de maneira mais eficaz) à uma suı́te de ferramentas de analise de código
(métricas, indicadores) sobre code smells e qualidade de código, de maneira
que tal integração produza orientações para o engenheiro de software ou até
mesmo algum nı́vel de automação no seu trabalho de refactoring.

1. Introduction

Software maintenance and constant updates are currently a big part of the software
development, as it is needed to comply with new regulatory requirements or corrections
to adapt to new needs. Currently we are at a point that much of our codes used through
out applications are over 10 years old and on some cases more than 25 years old, so that
software maintenance becomes by each day a more fundamental part of our society.

On the near future, there will be needed some major maintenance such as add
support to addition of digits to US phone number or US Social Security numbers. We
already have similar situations in the past, like the Year 2000 software bug, which is
estimated that over 75 percent of all software applications were affected by the issue.

This highlights the importance of keeping the software easy to maintain and have
tools and automation to help to keep legacy code with quality. A study from 2014
[Jones 2006] estimates that soon the number of professionals working on maintenance
comparing to new developments would top 75 percent of all IT professionals working
with software engineering.

By mid-21st century, maintenance costs could tops five trillion dollars in overall,
which makes clear the need for better maintenance tools and technologies to support these
activities.

The predecessor work explored on this project covered analytical part of software
maintenance through smells and refactoring metrics, which lead to Dr. Tools Suite
presented on [Guilherme Lacerda 2023], where the tool presents data that provides
statistics about software Smells and refactoring opportunities for more efficient code
maintenance.



At the same time that we have this growing need for software maintenance, we
see new advances on a different area which can be brought to assist on it, AI and Large
Language models, like ChatGPT.

ChatGPT is a interactive AI released on 2022 and that in a few months proved to
be a powerful tool to problem solving and creative creation through a precise prompt
engineer to guide it. Such tool were already used on multiple creative activities
automation with different success rate, though we see potentially to assist on the software
maintenance through provide insights on maintenance or even provide automation.

On this work, we will integrate the two technologies referred above to provide
with the software engineering community with a guidance to how to leverage both and
take the best synergy possible from them, either by using ChatGPT with the provided
statics from DR-Tool to provide insights to what software engineer should look into and
what could be done, to even scenarios in which some automation could be implemented.

2. Biographical Review

Through this section, we will review similar and predecessor researches to develop the
tools that this project will be studying on how to best integrating the two technologies,
DR-Tools and ChatGPT.

2.1. Code Smells and Refactoring

2.1.1. Code Smells

Smell is a concept that is used on software engineering for a software problem that is
not the same as a bug that would generate a failure, but is a problem that can impact
the software maintenance and future enhancements through increased complexity, for
example [Guilherme Lacerda 2020].

The term ”smells” became popular initially with the agile software development
and was popularized due to the original work of [Fowler 1999], which was pioneer in the
come smell identification and provided techniques to solve them.

Smells can be divided on lower level, known as code level [Fowler 1999], or
higher level, known as design level [Brown 1998].

[Fowler 1999] has presented originally 22 code smells with proposed ways to have
it refactored, later the list was extended by researches like [Fowler 2018]. On Table 1, are
presented the referred smells from the original work and the 6 additions proposed.

[Brown 1998] on his work presented anti-patterns that could be divided in on
development, architecture and project management design smells. The anti-patterns
describe the common occurrences that could result in negative consequences through out
the code life-cycle. On table 2 is presented a list of the main design smells according to
[Brown 1998].

There are sub-sequential works, for example, [Wake 2003] and [Kerievsky 2004]
that expanded with addition of other smells and different perspectives, though this will
not be further detailed as the main smells and perspective were covered already and we
will initially focus on them.



Table 1. List of code smells presented by [Fowler 1999] and [Fowler 2018].

Table 2. List of design smells presented by [Brown 1998].

2.1.2. Refactoring

Refactoring, as defined by [Guilherme Lacerda 2020], is the primary approach to remove
smells. Refactoring is the reorganization strategies to support change in software to help
to improve code quality by making it more readable, efficient and/or eliminating possible
problems, these strategies were introduced by [Opdyke 1992].

Refactoring can be done on different levels of abstraction and on different software
entities. For example, it can be done a refactoring on the UML models, database
schemes, software architecture, requirements and language structure [Mens 2003]. As
the refactoring does not change the purpose or the behavior of the software, it can be done
on different levels to achieve the best results to have the code supported in the future,
which means that different techniques can be used and often be used in a sequence to
improve the quality, though its sequence is arbitrary.

Refactoring is usually divided at two levels as smells: high-level (composite



refactoring) and low-level (primitive refactoring). High-level refactoring consist on
significant and structural design changes at a macro or architectural level, while low-
level are small and specific code changes. [Opdyke 1992] work defined that to do a
high-level refactoring a low-level refactoring will be required, as well as for both it
was introduced the fundamental element for the refactoring that is precondition. The
concept of precondition is that you need to establish preconditions that are checked
before applying the transformations and after applied, these conditions are rechecked to
guarantee that the behavior of the code is not altered by the refactoring changes, having
the same preconditions.

The key importance of performing refactoring on code that do not present bugs,
is that 40 percent of the time invested in software maintenance is the cost to understand
the code and its architecture [Telea 2011]. One key strategy is to invest on automation
and provide tools for developers to detect refactoring opportunities (or smells), so that the
process can be optimized.

2.2. DR-Tools Suite

DR-Tools Suite is a set of lightweight open-source tools that provide resources and
information to improve source code quality, supporting the developer in his daily work.
DR-Tools Suite was inspired by the medicine metaphor [Guilherme Lacerda 2023].

DR-Tools Suite consist of 2 tools: DR-Tools Metric, which is a command-line
Interface (CLI) tool that collects and shows different source code metrics, and DR-
Tools Metric Visualization, which is a tool to provide a visual feedback through different
graphical formats from the data generated by DR-Tools Metric. DR-Tools Metric will be
the tool that will be the focus of this work and for that reason we will only further develop
on it.

2.2.1. DR-Tools Metric

DR-Tools Metric is designed to provide a well-known set of combined metrics from
software metrics research as well as define a set of heuristics for the combination of
metric based on relationships and thresholds. With this the tool calculates metrics and
provides insights from the source code, so that this can help developers to learn about
software complexity, smells and refactoring opportunities.

To better understand the source code, a key point is to have the code metrics and
its correlations clear, as shown on studies like [D. Radjenovic 2013]. For example, the
relation between size metrics and Object Orientation metrics help analyze aspects of code
maintainability. Also according to [M. A. Bigonha 2019], when a metric is associated
with some threshold, it facilitates its use and understanding.

DR-Tools Metric analyzes the source code and provides the results in different
formats (line command, CSV, and JSON) to be used in different contexts. There is no
necessary any configuration or installation of any complementary software or plug-in to
use the tool.

DR-Tools Metric provides 33 metrics contextualized by project summary,
namespaces (packages), types (classes), methods, dependencies, and coupling



(namespace and type). The following is the list of metrics by context:
• Summary (9): Total of namespaces, total of types, mean number of

types/namespaces, total of lines of code (SLOC), mean number of SLOC/types,
total of methods, mean number of methods/types, total of complexity (CYCLO),
and mean number of complexity/types;

• Namespaces (2): Number of classes/types (NOC) and number of abstract classes
(NAC);

• Types (9): Lines of code (SLOC), number of methods (NOM), number of
public methods (NPM), class complexity (WMC), number of dependencies(DEP),
number of internal dependencies (I-DEP), number of other types that depend on
a given type (FAN-IN), number of other types referenced by a type (FAN-OUT),
and number of fields/attributes (NOA);

• Methods (5): Lines of code (MLOC), cyclomatic complexity (CYCLO), number
of invocations (CALLS), nested block depth (NBD), and number of parameters
(PARAM);

• Namespace Coupling (5): Afferent coupling (CA), efferent coupling (CE),
instability (I), abstractness degree (A), and normalized distance (D);

• Type Coupling (4): number of dependencies (DEP), number of internal
dependencies (I-DEP), number of other types that depend on a given type (FAN-
IN), and number of other types referenced by a type (FAN-OUT);

• Dependencies (3): General dependencies (DEP), internal dependencies (I-DEP),
and cyclic dependencies.
The tool also provides its users with the flexibility to combine and query

contextual information, from general information (summary), information about
packages, classes, methods, dependency types, couplings, and reference thresholds of
metrics. When presenting the results, the data are sorted according to the context. For
example, when presenting information about classes, data is sorted by lines of code,
complexity, and number of methods or when presenting about methods, the combination
is cyclomatic complexity, nested blocks, lines code, and invocations.

It is also possible to filter contextualized results using the –top option. Like this,
it is easier for developers to analyze the source code and filter out the most problematic
elements. As presented in Figure 1, it is possible to have a view on summary and
packages, more complex classes, and methods (showing the first 5), in a single option.

The tool is currently only developed to analyze Java code, but its architecture is
designed to allow simple enhancement to other languages by developing a parser and
corresponding visitor to the new language.

DR-Tools Metric is designed to be independent of environments and platforms,
facilitating interoperability. Its open architecture allows both the functionalities and the
resulting data in known standardized formats being integrated with other tools, without
additional installation or configuration. The tool research is a work in progress and is
intended to be expanded with new tools, like refactoring recommendation and other tools
to support code review. At this place that this work will be connected.

2.3. Chat GPT
ChatGPT, released by OpenAI in November 2022, is a large-scale language model that
once made available reached 100 milion users in 3 months and have over 25 milion daily



users.

OpenAI’s GPT (generative pre-trained transformer) models, the tool behind
ChatGPT, have been trained to understand natural language and code, in a way that when
provided with a text input, it provides a text output in response. These inputs are referred
to as ”prompts” and its designing is essentially how you extract the answers from a GPT
model, which will directly influence on its answer and accuracy.

According to OpenAI, GPTs can be used across a great variety of tasks including
content or code generation, summarization, conversation, creative writing, and more.

2.3.1. Chat GPT APIs

OpenAI, through its site makes available to developers an public API (application
programming interface) that can be used to access the GPT resources. It works by
sending a request containing the inputs and the developer API key, and receive a response
containing the model’s output. The latest models, gpt-4 and gpt-3.5-turbo, are accessed
through the chat completions API endpoint.

With the key generated at https://platform.openai.com (Figure 1 below), it possible
to can send requests using https://api.openai.com/v1/chat/completions endpoint through
HTTP requests from any language.

Figure 1. ChatGPT API Key

2.3.2. Chat GPT on Development

Currently is being studied the implications and the applicability of ChatGPT to code
development and to support software activities. According to studies and recent
results of the ChatGPT, increased interest is on the area of automation of software
development tasks in a way to improve the developers to make their tasks more efficiently
[Tyna Eloundou and Rock 2023].

Tools like ChatGPT are leading impressive results, on both quantity and quality,
producing outcomes (e.g., code) that are in some cases comparable levels to what humans
produce. For example, [Mehdi Golzadeh and Chidambaram 2023] investigations in large



open-source projects on GitHub concluded that bots are among the biggest and most
active contributors, without being labeled as bots.

On the empirical study done over quality of code between developers and
tools like ChatGPT performed by [Nathalia Nascimento 2023], the result was that in
certain scenarios the performance of ChatGPT has outperformed new software engineers
in specific tasks, though this was more specific on solving easy to medium-level
tasks/problems, when the ChatGPT consistently outperformed the new software engineer.

On the other hand, the same study has concluded that there is decisive evidence to
support the theory that ChatGPT would outperform an experienced developer in terms of
solution performance. In summary, the study reveal a dynamic interplay between human
and AI performance and the need to a collaborative approach to fine-tone the AI inputs
based on the developer expertise at the same time that improve efficiency via automatons
through the AI.

2.3.3. ChatGPT Prompt Patterns for Improving Code Quality

As already stated by OpenAI itself, a key point of good usage of Large Language Models
(LLM), like ChatGPT, is to provide a good prompt and context to the request. So this is
an area of study that is being developed and we will explore in this research.

Though there is several patterns and they can take various forms, to perform
software engineering tasks, according to [Jules White 2023], it is typically better to start
with a scoping statement, like ”from now on”, act as a X”, ”for the next four prompts”.
On [Jules White 2023], it was investigated and proposed 13 prompt patterns for different
software engineering tasks. They were documented, tested and analysed with the below
format:

• A name and classification: provides a clear name to be identified and classified
the pattern based on the type of problem to be solved. The prompt patterns
proposed can be view on Table 3;

• The intent and context: summarises of the problem to be solved and its goal;
• Motivation: explains the importance of the problem to be solved;
• The structure and key ideas: describes the fundamentals of the pattern and the

context that need to be provided to the LLM to achieve the expected resolution;
• Example implementation: shows an example of the patter implemented and

discusses it;
• Consequences: evaluates the pros and cons of using the pattern and how to adapt

the pattern to other scenarios.

On this research our focus will be more specifically on the Refactoring piece as
the goal is to integrate ChatGPT to provide the refactoring technique to be followed
and study what can be provided by ChatGPT. The research already done on the topic
by [Jules White 2023] supports the intention of our project as according to it, tools like
ChatGPT have a surprisingly powerful understanding of abstract coding constructs and
can delivery innovative approaches to code refactoring.

• The Pseudo-code Refactoring Pattern:



Table 3. Classifying Prompt Patterns for Automating Software Engineering Tasks
by [Jules White 2023].

This method consists in basically provide the LLM (ChatGPT) with the pseudo-
code structure desired and have the AI refactor to adapt to the specific situation. The
pattern will follow as the below Figure 2.

Figure 2. Pseudo-code Refactoring Patter by [Jules White 2023]

One important considerations is that in case the pseudo-code requires an extensive
description and precising code, the usage of the LLM could be not advantageous as
its benefits will be reduced by the required coding of the pseudo-code to specify the
refactoring. This pattern can also lead to substantial refactoring and because of that
requires to the code to be split or have functions removed, which could impact on its
public interface be changed and require further refactoring.

Important to note that this methodology would not be the best fit for this research,
as we will be integrating with a data generating tool and not a pseudo-code tool.

• The Data-guided Refactoring Pattern:

On this pattern, the idea is that to provide the data that needs to be changed and
the LLM will do the refactoring to have the data the closest to the requested. Though it is
not exactly to have it matching the smells and source code metrics, but code results and
formats, we believe this might be the best pattern to fit our scenario. Figure 3 shows how
this pattern would be structured.

The results from the [Jules White 2023], indicate that this pattern reduces the
manual effort to refactor many types of code changes. On many cases the refactor can



Figure 3. Data-guided Refactoring Patter by [Jules White 2023]

be completed automatically or at least be a booster and speed up the refactor causing
potentially a cost reduction on the change of data formats for example.

In general this last study concluded that the depth of the capabilities of LLMs,
like ChatGPT, are not fully understood or appreciated as the tool holds a lot of potential
to software engineering automation through out the software life-cycle. The conclusion is
that the key to leverage all this capabilities is to codify an effective catalog of prompts and
guidance on how to combine this patterns to improve the software engineering through
automation. At the same time, it is highlighted the significance of human involvement and
expertise as currently ChatGPT has a tendency to ”hallucinate” confidently, so guidance
and scrutiny is required to mitigate these possible issues.

In conclusion, the tools have a lot of potential, but it is required much research
and development on prompt pattern engineering to have the best results provided and all
potential be fulfilled.

3. Proposed Work
As highlighted through the Introduction and the literature review, the goal of this project is
to investigate and develop a integration of the DR-Tools with ChatGPT, both introduced
and explained earlier. Therefore it will be studied how to use the data provided from
DR-Tools and how to better deliver value to the software engineering on the process of
refactoring through these technologies.

The simple integration and asking to ChatGPT is not the solution as studies
reviewed show that the prompt engineering plays an important role on the quality of the
ChatGPT responses and problem solving capability. With this in mind, we will design
how that integration is going to be done and evaluate the results of it through out this
work, to at the end provide a case study and a possible best practice for similar future
works.

To follow best practices on the tool integration development, we already are
starting from a high-level idea of architecture, which is presented on Figure 4.

3.1. Schedule of Activities

To do so, we will divide this work on the 8 parts below (which might be further change
through the research process):

1. Developing the Class/Component to handle the API calls to ChatGPT;
2. Developing the Prompt engineering Class/Component to create the prompts that

will be used to call ChatGPT;
3. Developing the integration Class/Component to retrieve data from Dr. Tool and

provide it to the prompt engineering;



Figure 4. Initial proposed high-level architecture for ChatGPT Integration

4. Developing the UI integration Class/Component;
5. Testing and interactively improving on the different elements of this project;
6. Describing and detailing design and architecture with explanation on what could

be achieved and the reasons for the decision;
7. Analyzing the end results and provide a overview of the success and leanings;
8. Thesis writing;
9. Presentation preparation;

For development parts (1 through 5), we will approach on the following steps:

1. Reviewing previous works and established best practices;
2. Defining high-level architecture and concepts to be used on the activity;
3. Code Development and testing;
4. Validating results;

We will consider the implementation phase starting on second week of August,
calendar week 31 (CW31), taking 16 weeks and ending on calendar week 48 (CW45), as
planned schedule on figure 5.

Figure 5. Proposed work schedule



4. Conclusion
On this report, we introduced the problem/opportunity, reviewed literature on the relevant
subjects of this study and presented the proposed solution and its methodology. On our
review we started by reviewing and introducing the concepts of Smells and Refactoring,
to later connect with the tool that we will be working on, Dr-Tools.

We introduced and reviewed the concept of Large Language Models (LLM) and
ChatGPT, also contextualized the importance and the concept of prompt engineering,
which will be the biggest challenge of this project and as such we expect to have it taking
majority of the project time. We tied together the two areas by the proposal work of
integrating the existing Dr-Tools and its data to provide refactoring though use ChatGPT
with the correct prompt engineering, which our review presented as key to effectiveness
of the ChatGPT.

We expect that at the end of this work, we will be able to:

• Provide a best practice to prompt engineering for refactoring and smell removal;
• Improve DR-Tools capability with a new automation with ChatGPT;
• Evaluate the effectiveness of ChatGPT and if the tool is able to accomplish this

proposed task;
• Provide a forward view on how ChatGPT can be further explored;
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