
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

GLAUBER DE SOUZA ROSA

A Study on Prompt Engineering for Software Engineering Data:

ChatGPT integration into Software Engineering Metric Generation Tool

Monografia apresentada como requisito parcial para

a obtenção do grau de Bacharel em Engenharia de

Computação.

Orientador: Prof. Dr. Marcelo Pimenta

Coorientador: Prof. Me. Guilherme Lacerda

Porto Alegre

2024

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos André Bulhões Mendes

Vice-Reitor: Prof. Patricia Pranke

Pró-Reitor de Graduação: Prof. Cíntia Inês Boll

Diretor do Instituto de Informática: Prof. Carla Maria Dal Sasso Freitas

Coordenador do Curso de Engenharia de Computação: Prof. Walter Fetter Lages

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

AGRADECIMENTOS

Nesta singela nota eu gostaria de agradecer primeiramente aos meus pais, Mariza e

Clodomiro, que sempre me apoiaram e incentivaram, priorizando meus estudos e sempre

proporcionando o melhor possível, não importava o curso que eu desejasse fazer, desde alemão

a AutoCad e tantos outros. Não importando se teriam que me buscar numa sexta às 23 horas

em outra cidade ou acordar cedo num domingo para me levar no vestibular no Campus do Vale.

Além de proporcionar todas essas oportunidades, também sempre estiveram dispostos a me

ouvir e a dar conselhos, mesmo quando era sobre um assunto que eles não dominassem, acredito

que já aprenderam muito só de me ouvir e tentar ajudar. Obrigado por tudo e saibam que vocês

foram e serão sempre muito especiais.

Gostaria de agradecer a UFRGS e ao Instituto de Informática da mesma, que

proporcionou uma excelente formação assim como oportunidades incríveis, como um

intercâmbio na França pelo programa BRAFITEC, onde tive a incrível oportunidade de estudar

um ano na Polytech Montpellier.

Gostaria de agradecer ao meu coorientador Prof. Me. Guilherme Lacerda, que se fez

disponível para conversarmos, passar referências e explicar o produto de sua tese de doutorado,

DR-Tools, que foi utilizado nesse trabalho. Também gostaria de agradecer ao meu orientador

Prof. Dr. Professor Marcelo Pimenta, que auxiliou a ajustar o tema deste trabalho assim como

em momentos chave prover um norte para a sua conclusão.

Por último e talvez mais importante, gostaria de agradecer à linguista aplicada,

doutoranda em letras, professora de Instituto Federal, que neste trabalho foi também

incentivadora, ouvinte, revisora, editora e quase uma coorientadora e que eu tenho orgulho de

chamar de minha namorada! Prof. Ma. Kaiane Mendel, tu foste muito importante nesse

trabalho, assim como és na minha vida. Muito obrigado! Espero poder te ajudar tanto quanto tu

me ajudas, nos momentos fáceis e difíceis, nessa montanha-russa que é a vida! P.S.: Inclusive

ela me orientou a agradecer as gatinhas Nina e Mimi.

Muito obrigado,

Glauber

Estudo sobre Engenharia de Prompt para Dados de Engenharia de Software:

Integração do ChatGPT com uma Ferramenta de Geração de Métricas de Engenharia

de Software

RESUMO

Com o avanço constante da tecnologia e a contínua transformação digital, a inteligência

artificial tem se tornado cada vez mais presente em diversos aspectos de nossas vidas. O

ChatGPT é baseado na arquitetura GPT (Generative Pre-trained Transformer), e é um exemplo

de sistema que pode ser treinado em uma variedade de tópicos e áreas de conhecimento, o que

permite que ele gere respostas precisas e úteis em uma variedade de situações. Este trabalho

visa investigar como integrar o ChatGPT (e como usá-lo de maneira mais eficaz) à uma suíte

de ferramentas de análise de código que usa métricas e indicadores sobre code smells e

qualidade de código – a DR-Tools Suite. O objetivo é que tal integração produza orientações

para o engenheiro de software em relação à qualidade do código ou até mesmo algum nível de

automação em apoio a seu trabalho de refatoração. O trabalho resume as características

principais das tecnologias envolvidas, desenvolve a engenharia de prompt para o trabalho,

apresenta a abordagem de integração e alguns exemplos de uso, e finalmente discute os

resultados obtidos. Por fim, apresenta melhores práticas para a engenharia de prompt, avalia os

potenciais das tecnologias e o propõe potenciais avanços em futuras pesquisas.

Palavras-chave: ChatGPT. Engenharia de software. Refatoração. Grande Modelo de

Linguagem.

ABSTRACT

With constant innovation in technology and continuous digital transformation, Artificial

Intelligence is becoming more present in different aspects of our lives. The ChatGPT is based

on the GPT (Generative Pre-trained Transformer) architecture and is a good example of a

system that can be trained in a variety of topics and knowledge areas, what allows it to generate

precise and useful answers on multiple situations. This project aims to investigate how to

integrate ChatGPT (and how to use it in the most effective way) into a code analyzer and smells

detection tool suite – the DR-Tools Suite. The intention is that this integration provides

guidance to the software engineer in relation to the code quality and even some automation to

his/her refactoring job. This work summarizes the characteristics of the main technologies

involved, presents the integration approach and some use cases, and finally discusses the results

achieved. It concludes by presenting best practices for prompt engineering, evaluating the

potential of the technologies, and proposing potential future research.

Keywords: ChatGPT. Software engineering. Refactoring. Large Language Model (LLM).

LIST OF FIGURES

Figure 2.1 - List of code smells presented by Fowler et al. (2018) ... 13
Figure 2.2 - List of design smells presented by Brown et al. (1998) .. 14
Figure 2.3 - OpenAI’s ChatGPT API rate limitation for Tier 1 account ... 17
Figure 2.4 - OpenAI’s ChatGPT API rate limitation for Tier 3 account ... 18
Figure 2.5 - DR-Tools Code Health Structure .. 25
Figure 2.6 - At left, LLMs success rate on refactoring, at the right, improved results by fact-checking

technique developed by CodeScene .. 27
Figure 2.7 - CodeScene’s Code Health is a language-neutral, aggregated code quality metric based on

a combination of 25 code smells. .. 27
Figure 2.8 - A schematic overview of the layered model for factchecking AI-refactored code 28
Figure 2.9 - Classifying Prompt Patterns for Automating Software Engineering Tasks 30
Figure 2.10 - Pseudo-code Refactoring Pattern ... 30
Figure 2.11 - Data-guided Refactoring Pattern ... 31
Figure 3.1- Visual representation of development flow and how it is presented on the text 32
Figure 3.2 - Sequence Diagram for insight generation ... 33
Figure 3.3 - First chatGPT class successful test .. 35
Figure 3.4 - Dictionary and translation logic implemented on ChatGPT method to request data 36
Figure 3.5 - First test with hard-code prompt with DR-Tools Metrics code failure.............................. 38
Figure 3.6 - Successful ChatGPT call with hard-coded prompt with code Metrics 39
Figure 3.7 - DR-Tools Metrics output for Project’s Summary ... 40
Figure 3.8 - DR-Tools Metrics output for Metrics per Type ... 41
Figure 3.9 - DR-Tools Metrics output for Type Summary statistics ... 41
Figure 3.10 - DR-Tools GPT prompt data for Project’s summary .. 43
Figure 3.11 - GPT API request error 400 due to large prompt request ... 45
Figure 3.12 - GPT-4 Turbo API correctly answering the Types with more than 20 dependencies 45
Figure 3.13 - GPT-3.5 Turbo API correctly answering comparation between metrics 46
Figure 3.14 - GPT-4 Turbo API correctly answering comparation between metrics............................ 47
Figure 3.15 - Bird definition experiment on latest GPT-3.5 Turbo without context definition 49
Figure 3.16 - Bird definition experiment on latest GPT-3.5 Turbo with question first then context

definition ... 49
Figure 3.17 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first

then question ... 50
Figure 3.18 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (human) first

then question ... 51
Figure 3.19 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first

then question (generated on February 1st) .. 52
Figure 3.20 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first

then question (generated on February 2nd) ... 52
Figure 3.21 - Bird definition experiment 8 and 13 run multiple times providing different answers 53
Figure 3.22 - Bird definition experiment 9 and 14 run multiple times providing different answers 54
Figure 3.23 - Bird definition experiment on GPT-4 Turbo without context definition......................... 55
Figure 3.24 - Bird definition experiment GPT-4 Turbo with question first then context definition 56
Figure 3.25 - Bird definition experiment GPT-4 Turbo with context definition (cat) first then question

 ... 56
Figure 3.26 - Bird definition experiment GPT-4 Turbo with context definition (human) first then

question ... 57
Figure 3.27 - Bird definition experiment GPT-4 Turbo with context definition, closer question, answer

limitations and requirements ... 58
Figure 3.28 - Comparation 1 user message prompt, 2 user messages prompt and 1 system + 1 user

message prompt using bird definition experiment) ... 59
Figure 3.29 - Experiment confirming ChatGPT understands the data provided 61

Figure 3.30 - Successful ChatGPT API Request with Type metrics: SLOC, NOM, NPM, WMC, DEP,

I-DEP and FAN-IN metrics... 65
Figure 3.31 - Failed ChatGPT API Request with Type metrics: SLOC, NOM, NPM, WMC, DEP, I-

DEP and FAN-IN metrics ... 66
Figure 3.32 - Experiment limiting number of types .. 67
Figure 3.33 - Experiment to find types with higher than 20 dependencies, with all 128 types

(successful) .. 68
Figure 3.34 - Experiment limiting number of methods, failing .. 68
Figure 3.35 - Experiment to find the longest method, limiting to analyze 985 methods (successful run)

 ... 69
Figure 3.36 - Experiment to find the longest method with name placeholder, limiting to provide 985

methods (successful) ... 70
Figure 3.37 - Experiment to find all types with higher than 20 dependencies (no limit, 128 types)

(successful) .. 72
Figure 3.38 - Experiment to find all types with higher than 20 dependences using dictionary technique

(successful) .. 75
Figure 3.39 - Experiment to find all types with higher than 20 dependences using dictionary technique

(successful) .. 75
Figure 3.40 - Extract from experiment to extract types with 20+ dependencies though providing data

before the request .. 77
Figure 3.41 - Output from DR-Tools Code Health command “lst –top 5” ... 84
Figure 3.42 - DR-Tools Code Health command “lst –top 5” data in prompt format (added new lines to

facilitate reading) .. 85
Figure 3.43 - Final prompt for DR-Tools Code Health experiment and how it was coded 85
Figure 3.44 - DR-Tools Code Health experiment results .. 86
Figure 4.1 - Prompt used for ChatGPT’s insights based on summary metrics 89
Figure 4.2 - Result from ChatGPT’s insights based on summary metrics (1st request) 89
Figure 4.3 - Result from ChatGPT’s insights based on summary metrics (2nd request) 90
Figure 4.4 - Result from ChatGPT’s insights based on summary metrics (3rd request) 90
Figure 4.5 - Result from ChatGPT’s insights based on summary metrics (4th request) 91
Figure 4.6 - Data Analyzed ... 91
Figure 4.7 - Prompt used for ChatGPT’s insights based on type metrics ... 92
Figure 4.8 - Result from ChatGPT’s insights based on type metrics (1st request) 93
Figure 4.9 - Result from ChatGPT’s insights based on type metrics (2nd request) 93
Figure 4.10 - Result from ChatGPT’s insights based on type metrics (3rd request) 94
Figure 4.11 - Result from ChatGPT’s insights based on type metrics (4th request) 94
Figure 4.12 - Prompt used for ChatGPT’s insights based on method metrics 96
Figure 4.13 - Result from ChatGPT’s insights based on method metrics (1st request) 96
Figure 4.14 - Result from ChatGPT’s insights based on method metrics (2nd request) 97
Figure 4.15 - Result from ChatGPT’s insights based on method metrics (3rd request) 97
Figure 4.16 - Result from ChatGPT’s insights based on method metrics (4th request) 98

LIST OF TABLES

Table 2.1 - ChatGPT Cost table per model ... 16
Table 2.2 - ChatGPT API’s usage tiers table .. 17
Table 2.3 - ChatGPT Cost table per model ... 19
Table 2.4 - DR-Tools Metrics output option for command line.. 22
Table 2.5 - Summary of related works similarities and differences with this work 26
Table 3.1 - DR-Tools Metrics’ Output and classes ... 43
Table 3.2 - DR-Tools Metrics’ Output and classes ... 62
Table 3.3 - DR-Tools Metrics’ Output and classes ... 63
Table 3.4 - Experiment to determine effectiveness on recognizing types with 20+ dependencies 72
Table 3.5 – Data analysis success rate by type (100 iteration using <D></D> and real names). 73
Table 4.1 - Proof of Concept results per use case ... 88
Table 4.2 - Top 5 biggest types (which includes types pointed to refactoring) 95
Table 4.3 - Method needing refactoring according to experiments... 99
Table 4.4 - Metrics from the methods appearing on ChatGPT answers ... 99

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

API Application Programming Interface

CLI Command-Line Interface

GPT Generative Pre-trained Transformer

IT Information Technology

LLM Large Language Model

UML Unified Modeling Language

SUMMARY

1 INTRODUCTION .. 11

1.1 Objectives .. 12

1.2 Structure of the text .. 12

2 FUNDAMENTS AND CONCEPTS ... 13

2.1 Code Smells ... 13

2.2 Refactoring .. 14

2.3 ChatGPT and GPT Concept .. 15

2.3.1 ChatGPT API .. 15

2.3.1.1 Models, token count, costs, and usage .. 16

2.3.2 ChatGPT on Development ... 18

2.4 DR-Tools Suite .. 19

2.4.1 DR-Tools Metric .. 19

2.4.2 DR-Tools Code Health .. 23

2.5 Related Works .. 25

2.5.1 CodeScene’s Code Refactoring tool powered by LLM with fact-checking 26

2.5.2 ChatGPT Prompt Patterns for Improving Code Quality .. 29

2.5.2.1 Pseudo-code Refactoring Pattern .. 30

2.5.2.2 Data-guided Refactoring Pattern .. 31

3 INTEGRATING DR-TOOLS AND CHATGPT ... 32

3.1 ChatGPT API Integration ... 34

3.1.1 ChatGPT API Class creation and first communication test 34

3.1.1.1 Support to dictionary and placeholder translation .. 36

3.1.2 Cost considerations and model definition for the project 37

3.1.3 Simulate Prompts to test chatGPTAPI class .. 37

3.1.4 Retrieving DR-Tools Metrics data in prompt format .. 40

3.1.5 Validating DR-Tools data on ChatGPT API requests ... 43

3.2 Prompt Engineering ... 47

3.2.1 Importance of Prompt Engineering .. 47

3.2.1.1 Bird Definition Experiment .. 48

3.2.1.2 ChatGPT inconsistent answers ... 51

3.2.1.2 GPT-3.5 Turbo vs. GPT-4 Turbo .. 55

3.2.1.4 Explore multiple API requests vs. single API request 59

3.2.2 Prompt Engineering to provide data to GPT ... 60

3.2.2.1 Evaluating GPT-3.5 Turbo vs GPT-4 Turbo .. 60

3.2.2.2 GPT-4 Turbo API rate limit and its implications ... 64

3.2.2.3 Defining data structure for GPT-4 Turbo ... 71

3.2.3 Prompt Engineering structure .. 76

3.2.4 Prompt scope definition ... 80

3.2.5 Prompt Engineering Class ... 81

3.3 DR-Tools Code Health proof of concept... 83

3.3.1 DR-Tools Code Health data extract ... 83

3.3.2 Prompt Engineering for DR-Tools Code Health data .. 84

3.3.2 ChatGPT insights for DR-Tools Code Health data ... 86

4 RESULTS: QUALITATIVE ANALYSIS OF USE CASES 88

4.1 Use Case 1: Using Summary metrics to provide insights .. 89

4.1.1 Qualitative Analysis ... 91

4.2 Use Case 2: Using Type metrics to provide insights .. 92

4.2.1 Qualitative Analysis ... 95

4.3 Use Case 3: Using Method metrics to provide insights ... 96

4.3.1 Qualitative Analysis ... 98

5 CONCLUSIONS ... 101

REFERENCES ... 103

APPENDIX A – EXPERIMENTS’ PROMPTS AND RESULTS 105

APPENDIX B – TRABALHO DE GRADUAÇÃO 1 .. 254

11

1 INTRODUCTION

Software maintenance and constant updates currently are a big part of software

development, as it is needed to comply with new regulatory requirements or corrections to adapt

to new needs. Society is at a point when much of the codes used throughout applications are

over 10 years old and, in some cases, more than 25 years old, so that software maintenance

becomes by each day a more fundamental part of society. Soon, major maintenance will be

needed, such as adding support to digits to US phone numbers or US Social Security numbers.

There were already similar situations in the past, like the Year 2000 software bug, in which it

is estimated that over 75 percent of all software applications were affected by the issue.

It highlights the importance of keeping the software easy to maintain and having tools

and automation to help to keep legacy code with quality. Jones (2006) estimates that soon the

number of professionals working on maintenance compared to new developments would top

75 percent of all Information Technology (IT) professionals working with software

engineering. By the Mid-21st century, maintenance costs could top five trillion dollars overall,

which highlights the need for better maintenance tools and technologies to support these

activities.

Due to the sizable impact of this issue, there is extensive research on the topic. The

previous research explored on this project covered the analytical part of software maintenance

through smells and refactoring metrics, which lead to DR-Tools Suite1 presented on Lacerda et

al. (2023). In this work, the tool presents data that provides statistics about software smells and

refactoring opportunities for more efficient code maintenance.

While there is this growing need for software maintenance, new advances from

Artificial Intelligence (AI) and Large Language Models (LLM), such as OpenAI`s Generative

Pre-trained Transformer (GPT) models used on its ChatGPT tool, can be brought to assist on

it. ChatGPT is an interactive AI released in 2022 that in a few months proved to be a powerful

tool to problem solving and creative production through a precise prompt engineer to guide it.

Such tool was already used for the automation of multiple creative activities with different

success rates (MA et al., 2024), though we see potential to assist on the software maintenance

through providing insights on maintenance or even providing automation.

In this work, we will integrate the two technologies – DR-Tools Suite and ChatGPT -

to provide the software engineering community with guidance on how to leverage both and take

1 Available at https://drtools.site/. DR-Tools Suite will be further presented in section 2.4.

12

the best synergy possible from them. For instance, using ChatGPT with the statistics from DR-

Tools to provide insights into what software engineers should investigate and what could be

done to improve the code, or even scenarios in which some automation could be implemented.

1.1 Objectives

The objective of this work is to explore the potential of combining a software

engineering analyzer tool like DR-Tools Suite with a LLM like ChatGPT.

A secondary goal is to expand on the existing functionalities of DR-Tools with a proof

of concept of using the data from Metrics to provide insights to a software developer performing

a code refactoring via a LLM tool like ChatGPT.

1.2 Structure of the text

This work is structured as follows: chapter 2 presents the concepts and tools that base

this work. Chapter 3 explains the design challenges and justifies the decisions on the

implementation, besides presenting the reader with empirical information on how to use the

tools for similar integrations.

With both concepts (and tools) presented and with the design challenges and decisions

well stablished, chapter 4 presents the reader with a qualitative analysis of the outcomes,

concluding each analysis with a forward-looking perspective based on the results.

The conclusions are presented on chapter 5, which analyzes achievements, scope

limitations, perspectives for future works and possible enhancements and additions to this

project to come closer to a full-refactoring tool available for developers to use under DR-Tools

Suite.

As an extra resource, the more relevant prompts and console outputs referred to in the

text are presented in Appendix A, as their full form is not necessary in the text. This approach

is to provide the reader with the ability to check on what was the full prompt extracted directly

from the console, and even enable some replication of the results by following the same

methodology.

13

2 FUNDAMENTS AND CONCEPTS

 This chapter introduces the reader to the fundamental concepts focused and the tools

that are subject of this study. Previous related research is presented, especially the ones around

the two tools, DR-Tools and ChatGPT. An overview of related works that at some level either

approach problems similar to this work or use similar methodologies to resolve problems is

presented.

2.1 Code Smells

A smell is a concept used on software engineering for a software problem that is not the

same as a bug that would generate a failure, but it is a problem that can impact the software

maintenance and future enhancements through increased complexity, for example (LACERDA

et al., 2020).

The term “smells” became popular initially with agile software development and was

popularized due to the original work of Fowler et al. (1999), which was pioneer in the code

smell identification and provided techniques to solve them.

Figure 2.1 - List of code smells presented by Fowler et al. (2018)

Source: Fowler et al. (2018)

14

Smells can be divided into lower level, known as code level (FOWLER et al., 1999), or

higher level, known as design level (BROWN et al., 1998).

Fowler et al. (1999) has originally presented 22 code smells with proposed ways to have

it refactored. Later the list was extended by research like Fowler et al. (2018). Figure 2.1

presents both the referred smells from the original work and the 6 additions proposed.

Brown et al. (1998) presented anti-patterns that could be divided into development,

architecture, and project management design smells. The anti-patterns describe the common

occurrences that could result in negative consequences throughout the code life cycle. On

Figure 2.2 is presented a list of the main design smells according to Brown et al. (1998).

Figure 2.2 - List of design smells presented by Brown et al. (1998)

Source: Brown et al. (1998)

There are subsequential works, for example Wake (2003) and Kerievsky (2004), that

expanded with addition of other smells and different perspectives, though this will not be further

detailed in this work as the main smells and their perspective were covered already.

2.2 Refactoring

Refactoring, as highlighted by Lacerda et al. (2020), is the primary approach to remove

smells (FOWLER et al., 1999). Refactoring is the reorganization strategies to support software

change to help to improve code quality by making it more readable, efficient and/or eliminating

possible problems, as introduced by Opdyke (1992).

Refactoring can be done on different levels of abstraction and on different software

entities. For example, as referred to by Mens et al. (2003), refactoring can be done on the

Unified Modeling Language (UML) models, database schemes, software architecture,

requirements, and language structure. As refactoring does not change the purpose or the

behavior of the software, it can be done on different levels to achieve the best results to have

15

the code supported in the future, which means that different techniques can be used and often

be used in a sequence to improve the quality, though its sequence is arbitrary.

Refactoring is usually divided at two levels as smells: high-level (composite refactoring)

and low-level (primitive refactoring). High-level refactoring consists of significant and

structural design changes at a macro or architectural level, while low-level are small and

specific code changes. Opdyke (1992) work defined that to do a high-level refactoring a low-

level refactoring will be required, as well as introduced the fundamental elements for the

refactoring of both levels, which are the preconditions. The concept of precondition is that it is

necessary to establish preconditions which are checked before applying the transformations

and, after applied, these conditions are rechecked to guarantee that the behavior of the code is

not altered by the refactoring changes, having the same preconditions.

The key importance of performing refactoring on codes that do not present bugs is that

40 percent of the time invested in software maintenance is the cost to understand the code and

its architecture (TELEA; VOINEA, 2011). One key strategy is to invest in automation and

provide tools for developers to detect refactoring opportunities (or smells), so that the process

can be optimized.

2.3 ChatGPT and GPT Concept

ChatGPT, released by OpenAI in November 2022 (NERDYNAV, 2024), is a large-scale

language model that once made available reached 100 million users in 3 months and has over

25 million daily users.

OpenAI’s GPT models, the tool behind ChatGPT, have been trained to understand

natural language and code, in a way that when provided with a text input, it provides a text

output in response. These inputs are referred to as “prompts” and their designing is essential to

how GPT model will be answering, which will directly influence its content and accuracy.

According to OpenAI, GPTs can be used across a great variety of tasks including content

or code generation, summarization, conversation, creative writing, and more.

2.3.1 ChatGPT API

Through its website, OpenAI makes available to developers a public API (Application

Programming Interface) that can be used to access the GPT resources. It works by sending a

16

request containing the inputs and the developer API key and receiving a response containing

the model’s output. The latest models, GPT-4, GPT-4 Turbo and GPT-3.5-turbo are accessed

through the chat completions API endpoint.

With the key generated at https://platform.openai.com, it can possibly send requests

using https://api.openai.com/v1/chat/completions endpoint through HTTP requests from code

(or code language) as far as the HTTP request to the API is done correctly.

The API will be explored later in this work as well as challenges faced during

implementation.

2.3.1.1 Models, token count, costs, and usage

Token counting is not a simple concept in which a word or a letter will be a token. For

English2, OpenAI specifies that a token could be as short as a character or as long as a word.

Therefore, it is not easy to precisely determine the number of tokens that will be used, though

a Phyton library to calculate tokens is provided by OpenAI, which clarify that due to model

updates, the library answer may be only an approximation.

On the other hand, by doing a request to ChatGPT API, when it replies, the message

contains the data of how many context tokens and how many generated tokens were used on

that API request. There is an issue, which is that no message is provided with number of tokens

if any token limits are exceeded.

Number of tokens is a fundamental concept when using OpenAI’s ChatGPT API, as

both the price and the maximum supported prompt are defined based on the number of tokens

generated. Table 2.1 presents the context window supported (number of tokens), training data

and the costs of each model.

Table 2.1 - ChatGPT Cost table per model

Model Context Window Training Data Input Cost Output Cost

gpt-4-0125-preview 128000 tokens Up to April 2023 $0.01/1k tokens $0.03/1k tokens

gpt-4-1106-preview 128000 tokens Up to April 2023 $0.01/1k tokens $0.03/1k tokens

gpt-3.5-turbo-1106 16385 tokens
Up to September

2021
$0.0010/1k tokens $0.0020/1k tokens

gpt-3.5-turbo-instruct 4096 tokens
Up to September

2021
$0.0015/1k tokens $0.0020/1k tokens

Source: Adapted from OpenAI’s website

2 OpenAI documentation does not specify other languages, limiting to comment that in some languages tokens can

be shorter than one character or longer than one word.

17

Costs are billed per token, meaning that the longer request prompt or the longer the text

generated is, higher will be the cost. There are also usage limitations according to how many

requests per minute or day it can be done, in order to assure that service is available and manage

load on the OpenAI’s infrastructure.

To govern this restriction, OpenAI has the concept of usage tiers, which are organization

account level classifications based on credits paid combined with time since first payment.

There are 5 usage tiers (additionally to the free account) which can be found along with its

qualification requisites on Table 2.2. Additionally, Figures 2.3 and 2.4 present the rate limits

for usage Tier 1 and Tier 3 respectively, tiers which will appear on this work.

Table 2.2 - ChatGPT API’s usage tiers table

Usage Tier Context Window Output Cost

gpt-4-0125-preview 128000 tokens $0.03/1k tokens

gpt-4-1106-preview 128000 tokens $0.03/1k tokens

gpt-3.5-turbo-1106 16385 tokens $0.0020/1k tokens

gpt-3.5-turbo-instruct 4096 tokens $0.0020/1k tokens

Source: Adapted from OpenAI’s website

Figure 2.3 - OpenAI’s ChatGPT API rate limitation for Tier 1 account

Source: Extracted from OpenAI’s API Documentation (2024)

Tier 1 is the first paid level, while as more credit is bought and used, the account

progresses from tiers. At the end of the project, its account had progressed to Tier 3, therefore

more data usage was allowed. The limits for the Tier 3 account can be found below.

18

Figure 2.4 - OpenAI’s ChatGPT API rate limitation for Tier 3 account

Source: Extracted from OpenAI’s API Documentation (2024)

2.3.2 ChatGPT on Development

 Currently the implications and the applicability of ChatGPT to code development and

to support software activities are being studied. According to studies and recent results of the

ChatGPT, increased interest is on the area of automation of software development tasks in a

way to assist the developers to perform their tasks more efficiently (ELOUNDOU et al., 2023).

Tools like ChatGPT are leading to impressive results, on both quantity and quality, producing

outcomes (e.g., code) that are in some cases comparable to what humans produce. For example,

Golzadeh et al. (2023) investigations in large open-source projects on GitHub concluded that

bots are among the biggest and most active contributors, although without being labeled as bots.

 On the empirical study over quality of code between developers and tools like ChatGPT

conducted by Nascimento et al. (2023), the result was that in certain scenarios ChatGPT has

outperformed new software engineers in specific tasks, though this was more specific on

solving easy to medium-level tasks/problems, when the ChatGPT consistently outperformed

the new software engineer. On the other hand, the same study has concluded that there is

decisive evidence to support the theory that ChatGPT would outperform an experienced

developer in terms of solution performance. In summary, the study reveals a dynamic interplay

between human and AI performance and the need for a collaborative approach to fine-tone the

19

AI inputs based on the developer expertise while improving efficiency via automatons through

the AI.

2.4 DR-Tools Suite

 DR-Tools Suite is a set of lightweight open-source tools that provide resources and

information to improve source code quality, supporting the developer in his daily work. DR-

Tools Suite was inspired by the medicine metaphor created by Lacerda et al. (2023).

DR-Tools Suite consist of 2 tools: DR-Tools Metric, which is a Command-Line

Interface (CLI) tool that collects and shows different source code metrics, and DR-Tools Metric

Visualization, which is a tool to provide visual feedback through different graphical formats

from the data generated by DR-Tools Metric. DR-Tools Metric is the tool focused on this work

and for that reason we will only further develop it.

DR-Tools has a third tool under development, already available in a binary executable

file, which is the DR-Tools Health Code. This tool will be explored later and have the data used

to a limited extent as it is the tool that will provide this project with data on smells specifically.

Table 2.3 - ChatGPT Cost table per model

Model Input Output

gpt-4-0125-preview $0.01/1k tokens $0.03/1k tokens

gpt-4-1106-preview $0.01/1k tokens $0.03/1k tokens

gpt-3.5-turbo-1106 $0.0010/1k tokens $0.0020/1k tokens

gpt-3.5-turbo-instruct $0.0015/1k tokens $0.0020/1k tokens

Source: OpenAI website

2.4.1 DR-Tools Metric

DR-Tools Metric is designed to provide a well-known set of combined metrics from

software metrics research and define a set of heuristics for the combination of metrics based on

relationships and thresholds. Thus, the tool calculates metrics and provides insights from the

source code, so that this can help developers to learn about software complexity, smells, and

refactoring opportunities.

To better understand the source code, a key point is to have the code metrics and its

correlations clear, as shown in studies like Radjenovic et al. (2013). For example, the relation

between size metrics and object-orientated metrics helps to analyze aspects of code

20

maintainability. Also, according to Bigonha et al. (2019), when a metric is associated with some

threshold, it facilitates its use and understanding.

DR-Tools Metric analyzes the source code and provides the results in different formats

(line command, CSV, and JSON) to be used in different contexts. It is not required to do any

configuration or installation of any complementary software or plug-in to use the tool.

DR-Tools Metric provides 33 metrics contextualized by project summary, namespaces

(packages), types (classes), methods, dependencies, and coupling (namespace and type). The

following list of metrics by context is adapted from Lacerda et al (2023):

• Summary (9):

o Total of namespaces

o Total of types

o Average of types per namespaces (types/namespaces)

o Total of lines of code (SLOC)

o Average lines of code per types (SLOC/types)

o Total of methods

o Average of methods per types (methods/types)

o Total of complexity (CYCLO)

o Average of complexity per types (complexity/types)

• Namespaces (2):

o Number of classes/types (NOC)

o Number of abstract classes (NAC)

• Types (9):

o Lines of code (SLOC)

o Number of methods (NOM)

o Number of public methods (NPM)

o Class complexity (WMC)

o Number of dependencies (DEP)

o Number of internal dependencies (I-DEP)

o Number of other types that depend on a given type (FAN-IN)

o Number of other types referenced by a type (FAN-OUT)

o Number of fields/attributes (NOA)

• Methods (5):

o Lines of code (MLOC)

21

o Cyclomatic complexity (CYCLO)

o Number of invocations (CALLS)

o Nested block depth (NBD)

o Number of parameters (PARAM)

• Namespace Coupling (5):

o Afferent coupling (CA)

o Efferent coupling (CE)

o Instability (I)

o Abstractness degree (A)

o Normalized distance (D)

• Type Coupling (4):

o Number of dependencies (DEP)

o Number of internal dependencies (I-DEP)

o Number of other types that depend on a given type (FAN-IN)

o Number of other types referenced by a type (FAN-OUT)

• Dependencies (3):

o General dependencies (DEP)

o Internal dependencies (I-DEP)

o Cyclic dependencies

The tool also provides its users with the flexibility to combine and query contextual

information, from general information (summary), information about packages, classes,

methods, dependency types, couplings, and reference thresholds of metrics. When presenting

the results, the data are sorted according to the context. For example, when presenting

information about classes, data is sorted by lines of code, complexity, and number of methods

or when presenting about methods, the combination is cyclomatic complexity, nested blocks,

lines code, and invocations.

It is also possible to filter contextualized results using the –top option. Therefore, it is

easier for developers to analyze the source code and filter out the most problematic elements.

As presented, it is possible to have a view on summary and packages, more complex classes,

and methods (showing the first 5), in a single option.

The tool is currently only developed to analyze Java code, but its architecture is designed

to allow simple enhancement to other languages by developing a parser and corresponding

visitor to the new language.

22

DR-Tools Metric is designed to be independent from environments and platforms,

facilitating interoperability. Its open architecture allows both the functionalities and the

resulting data in known standardized formats to be integrated with other tools, without

additional installation or configuration. The tool research is a work in progress and is intended

to be expanded with new tools, like refactoring recommendation, to support code review. At

this place that this work will be connected.

DR-Tools Metrics is an open-source tool available on GitHub, as well as its code, on

this link. For proof of concept of how to perform the integration, we will be exploring the code

structure of this tool and its data output. Output which can be controlled by the end user when

running the tool as it can select what to extract or to be presented. Table 2.4 presents the

commands and what is the output for each of them.

Table 2.4 - DR-Tools Metrics output option for command line

Output Option Output

NO OPTION Shows tool usage options

-mt
Shows metric thresholds to the metrics as a reference.

(Like Healthcare Exams provide reference values)

-a All metrics below

-s Summary Metrics

-n Namespace Metrics

-t Type Metrics

-m Method Metrics

-d Dependency Metrics

-cd Cyclic Dependency Metrics

-id Internal Dependency Metrics

-nc Namespace Coupling Metrics

-tc Type Coupling Metrics

-ac All Coupling

-mv Output file to be used on DR-Tools Metric Visualization

-sn Statistical Metrics from Namespace Metrics

-st Statistical Metrics from Type Metrics

-sm Statistical Metrics from Method Metrics

-san

Namespace Metrics (same as -n)

+

Statistical Metrics from Namespace Metrics

-sat

Type Metrics (same as -n)

+

Statistical Type from Namespace Metrics

-sam

Method Metrics (same as -n)

+

Statistical Metrics from Method Metrics

Source: Elaborated by the author based on DR-Tools Site information and Code

23

As observed on the Table 2.4, the end user can select which metrics to be calculated and

shown with different levels of detail, for example, the user can extract/present only the summary

metrics of the project by using the “-s” option, which will show metrics previously presented

under as Summary metrics. The same logic is applied for metrics between “-s” and “-tc”, while

“-a” usage is for present all metrics from the different options and “-ac” to all coupling metrics.

Options “-s*” are to show statistical metrics from the metrics calculated, so that average,

median, standard deviation and quartier division are presented, what is available for namespace

metrics (“-sn”), type metrics (“-st”) and method metrics (“-sm”). These statistical metrics can

also be provided with its subject metrics, so that for example namespace metrics are presented

and then contextualized with its statistics.

The outputs and their difference will be fundamental to be understood to this work as

the integration will just be added on top the existent outputs and so will be using the same

command options. This will be further explored in upcoming sections 3.1 and 3.2, and in

chapter 4.

2.4.2 DR-Tools Code Health

DR-Tools Code Health is a tool from DR-Tools Suite that expands on the DR-Tools

Metrics to contextualize the metrics and provide further insights on the code general health.

Lacerda et al. (2023) describes the tool on its website as “a tool that allows for a deeper

investigation regarding metrics/statistics, design issues (smells), smell co-occurrences, and

code elements ranking/prioritization, identifying the most problematic parts at different levels

of granularity.”

The tool is an evolution of DR-Tools Metrics, expanding on the contextualized metrics,

increasing to 48 metrics, and adding code smells detection (based on metrics) as well as its co-

occurrence and ranking code smells for refactoring process. On the ranking, it implements a

prioritization model, based on severity, representativeness, impact on quality and degree of

intervention. A list of the metrics generated by DR-Tools Code Health is presented below,

adapted from Lacerda et al (2023):

• Summary (15): total of namespaces, total of types, mean number of types/namespaces,

total of lines of code (SLOC), average number of SLOC/types (with median and

standard deviation), total of methods, average number of methods/types (com median e

24

standard deviation), total of complexity (CYCLO), and average number of

complexity/types (with median and standard deviation);

• Namespaces (2): number of classes/types (NOC) and number of abstract classes

(NAC);

• Types (14): lines of code (SLOC), number of methods (NOM), number of public

methods (NPM), class complexity (WMC), number of dependencies (DEP), number of

internal dependencies (I-DEP), number of other types that depend on a given type

(FAN-IN), number of other types referenced by a type (FAN-OUT), number of

fields/attributes (NOA), lack of cohesion in methods (LCOM3), deep in inheritance tree

(DIT), number of children (CHILD), number of public attributes/fields (NPA), and

number of cyclic dependencies (types) (CDEP);

• Methods (5): lines of code (MLOC), cyclomatic complexity (CYCLO), number of

invocations (CALLS), nested block depth (NBD), and number of parameters

(PARAM);

• Namespace Coupling (5): afferent coupling (CA), efferent coupling (CE), instability

(I), abstractness degree (A) e normalized distance (D);

• Type Coupling (4): number of dependencies (DEP), number of internal dependencies

(I-DEP), number of other types that depend on a given type (FAN-IN), and number of

other types referenced by a type (FAN-OUT);

• Dependencies (3): general dependencies (DEP), internal dependencies (I-DEP), and

cyclic dependencies (CDEP);

On top of the metrics above, it also identifies the smells below:

• Granularity: Namespace

o Too Large Package;

o Cyclic Dependency;

• Granularity: Type

o God Class;

o Broken Modularization;

o Cyclically Dependent Modularization;

o Insufficient Modularization;

o Deep Hierarchy;

o Deficient Encapsulation;

o Hub-like Modularization;

25

o Multifaceted Abstractions;

o Wide Hierarchy;

• Granularity: Method

o Long Method;

o Long Parameter List;

o Complex Method;

o Bumpy Road;

The tool is also a command-line tool, but it can be used on an interactive usage as well.

Via command prompt, its results can be provided in 3 formats, console, CSV or/and JSON.

There is the possibility of providing a configuration file to the tool to adjust its parameters to

the analyzer, though this is optional. On Figure 2.5, details on the usage for the end users are

presented.

Figure 2.5 - DR-Tools Code Health Structure

Source: Lacerda et al. (2023)

2.5 Related Works

This section presents works which have a similar approach or try to solve a similar

problem to the one proposed by this project. The related works analyzed is summarized by

similarities and differences on Table 2.5 and further explored on individual subsections 2.5.1

and 2.5.2.

26

Table 2.5 - Summary of related works similarities and differences with this work
Related work Similarities Differences

CodeScene’s Refactoring tool

powered by LLM

(TORNHILL et al., 2024)

Use a code health/metric tool to

support LLM refactoring

Completely automate refactoring of

specific code smells, approaching from a

button-up perspective.

This work will not automate refactoring

but provide a top-down approach to help

prioritize what to refactor.

Prompt Patterns for improving

code quality

(WHITE et al., 2023)

Develop prompt patterns to be used

for software engineering, similarly

this work on prompt engineering to

define best practices.

Does not approach on automation in a

tool or integration with other tool data,

focusing on provide prompts to be used as

best practices.

This work will also focus on developing

an integration between a metrics tool and

the LLM.

Source: Elaborate by the author

2.5.1 CodeScene’s Code Refactoring tool powered by LLM with fact-checking

This first related work that will be analyzed is a code refactoring tool developed by

CodeScene, which is presented via a whitepaper by Tornhill et al. (2024). It is important to note

this is a very recent work, to the point that the tool is not currently available (as of February

2nd), but on beta testing via waitlist on CodeScene website.

On its whitepaper, Tornhill et al. (2024) starts with a benchmarking of state-of-art LLMs

and its effectiveness on refactoring, introducing the term “refunctoring”, which consists of

while refactoring the code also change its function, what might result on introducing bugs. On

the benchmarking it is noted that only 37% of the refactoring was resulting on improvements

with correctness, while later when applied CodeScene’s fact-checking technique it was

improved to 98%.

The tool uses CodeScene Code Health’s3 metrics to fact-check if there are

improvements on the code health metrics on the new refactored code, because if no

improvements are observed, the refactor would not be approved as it failed to pass the test. The

idea is that code health metrics are the only code-level metric with a proven business impact in

terms of development velocity and post release defects, then if they do not present

improvements there is no business reason to risk a production code change, which would expose

the code to bugs or expenses testing pre-deployment.

3 Documentation available on https://codescene.io/docs/guides/technical/code-health.html.

27

Figure 2.6 - At left, LLMs success rate on refactoring, at the right, improved results by fact-checking

technique developed by CodeScene

Source: Tornhill et al. (2024)

Code Health presented by CodeScene has a similar approach to the problems as DR-

Tools, as both parse the information and identify code smells, which later are categorized. For

more visual representation, it is possible to refer the figure 2.7, which explains the metric and

classification process at a high-level.

Figure 2.7 - CodeScene’s Code Health is a language-neutral, aggregated code quality metric based on

a combination of 25 code smells.

Source: Tornhill et al. (2024)

Code Health metrics, illustrated on Figure 2.7, is used to improve the process of

refactoring using the data for validation on improvement of the refactoring. The process will

start with the simpler question, which is if new code has a valid syntax, then if syntax is valid,

health code metrics are compared between original and refactored code, if not improved or

syntax is not valid, refactor will be rejected and not presented to end-user. The third part of the

28

process is the semantic equivalence, which is intended to validate if the function is preserved,

though this area is an unresolved research problem. The whole process is illustrated in Figure

2.8.

Figure 2.8 - A schematic overview of the layered model for factchecking AI-refactored code

Source: Tornhill et al. (2024)

To handle the semantic equivalent problem, CodeScene has used its data pool of

+100,000 real-world refactoring project information to train their in-house model for semantic

equivalence detection for a limited set of code smells identified by Code Health metrics. By

doing so, they were able to effectively train the model to fact-check refactoring scenarios for

the 4 supported smells:

• Complex Conditionals;

• Deep Nested Logic;

• Bumpy Road;

• and Complex Method.

When comparing CodeScene’s work with the one presented by this project, the tools

approach similar to the perspective to support the refactoring by code health metrics. While

their proposal is for a complete automation from a button-up view on code refactoring, focusing

on code refactoring specific code smells, the DR-Tools integration with ChatGPT will focus on

a top-down approach and to be an assistant to the software developer, by providing guidance

on which areas the refactoring should be focused.

29

In conclusion, CodeScene validates our hypothesis of using code health metrics with

LLMs to provide better refactoring and some level of automation. Besides, it provides a very

interesting idea of fact-checking, which could be an inspiration for future works, especially if

focused on also developing full automation for some specific scenarios.

2.5.2 ChatGPT Prompt Patterns for Improving Code Quality

As already stated by OpenAI itself, a key point of good usage of LLM, like ChatGPT,

is to provide a good prompt and context to the request. Therefore, it is an area of study

developed and explored in this research.

Though there are several patterns, and they can take various forms, to perform software

engineering tasks it is typically better to start with a scoping statement, like “from now on”,

“act as a X”, “for the next four prompts” (WHITE et al., 2023).

White et al. (2023) investigated and proposed 13 prompt patterns for different software

engineering tasks. They were documented, tested, and analyzed with the format below:

• A name and classification: provides a clear name to identify and classifies the

pattern based on the type of problem to be solved. The prompt patterns proposed can

be viewed on Figure 2.9.

• The intent and context: summarizes the problem to be solved and its goal.

• Motivation: explains the importance of the problem to be solved.

• The structure and key ideas: describes the fundamentals of the pattern and the

context that need to be provided to the LLM to achieve the expected resolution.

• Example implementation: shows an example of the pattern implemented and

discusses it.

• Consequences: evaluates the pros and cons of using the pattern and how to adapt

the pattern to other scenarios.

This research focuses more specifically on the refactoring piece as the goal is to integrate

ChatGPT to DR-Tools Suite to provide the refactoring technique to be followed and study what

can be provided by ChatGPT. The research already done on the topic by White et al. (2023)

supports the intention of our project, as according to it, tools like ChatGPT have a surprisingly

powerful understanding of abstract coding constructs and can deliver innovative approaches to

code refactoring.

30

Figure 2.9 - Classifying Prompt Patterns for Automating Software Engineering Tasks

Source: White et al. (2023)

2.5.2.1 Pseudo-code Refactoring Pattern

This method consists in basically providing the LLM (ChatGPT) with the pseudo-code

structure desired and having the AI refactor to adapt to the specific situation. The refactoring

pattern will follow instructions as the Figure 2.10.

Figure 2.10 - Pseudo-code Refactoring Pattern

Source: White et al. (2023)

One important consideration is that in case the pseudo-code requires an extensive

description and precising code, the usage of the LLM could be not advantageous as its benefits

will be reduced by the required coding of the pseudo-code to specify the refactoring. This

pattern can also lead to substantial refactoring and because of that requires the code to be

splitted or have functions removed, which could impact on its public interface be changed and

require further refactoring.

31

It is important to note that this methodology would not be the best fit for this research,

as we will be integrating ChatGPT with a data generation tool (DR-Tools) and not a pseudo-

code tool.

2.5.2.2 Data-guided Refactoring Pattern

On this pattern, the idea is that providing the data that needs to be changed the LLM

will do the refactoring to have the data the closest to the requested. Though it is not exactly to

have it matching the smells and source code metrics, but code results and formats, we believe

this might be the best pattern to fit our scenario. Figure 2.11 shows how this pattern would be

structured.

Figure 2.11 - Data-guided Refactoring Pattern

Source: White et al. (2023)

The results from White et al. (2023) indicate that this pattern reduces the manual effort

to refactor many types of code changes. On many cases the refactoring can be completed

automatically or at least be a booster and speed up the refactor causing potentially a cost

reduction on the change of data formats, for example.

In general, this last study concluded that the depth of the capabilities of LLMs, like

ChatGPT, are not fully understood or appreciated, as the tool holds a lot of potential for software

engineering automation throughout the software life cycle. The conclusion is that the key to

leverage all these capabilities is to codify an effective catalog of prompts and guidance on how

to combine these patterns to improve software engineering through automation. At the same

time, it is highlighted the significance of human involvement and expertise as currently

ChatGPT tends to “hallucinate” confidently, so guidance and scrutiny is required to mitigate

these possible issues.

In conclusion, the tools have a lot of potential, but it is required much research and

development on prompt pattern engineering to have the best results provided and all potential

be fulfilled.

32

3 INTEGRATING DR-TOOLS AND CHATGPT

This chapter is organized in three parts and presents the development and experiments

used to develop the ChatGPT integration into DR-Tools. It is important to highlight that the

areas intersect with each other and many of the developments happened in parallel with one

influencing into another area. Therefore, Figure 3.1 presents a high-level overview of the

activities developed and in which section of this work they are explored.

Figure 3.1- Visual representation of development flow and how it is presented on the text

Source: Elaborated by the author

The first part, section 3.1 – ChatGPT API Integration, analyzes the code challenges, and

how the retrieving of information and GPT interactions were structured, based on the DR-Tools

Metrics code. The second part, section 3.2 Prompt Engineering, develops the prompt

engineering for this work, experimenting and determining which are the best prompts to analyze

DR-Tools’ metrics providing software engineering advice and measuring how effective and

insightful they are.

33

These first two parts, sections 3.1 and 3.2, are part of the development of the proof of

concept for the integration between DR-Tools and ChatGPT. Based on the development of these

experiments, the proof of concept was created, which has the execution sequence illustrated on

Figure 3.2 to generate the insights about the refactoring.

Figure 3.2 - Sequence Diagram for insight generation

Source: Elaborated by the author

The third part simulates the results that applying the same solution developed for DR-

Tools Metrics on sections 3.1 and 3.2 would generate, therefore allowing us to evaluate if the

same project would be effective for DR-Tools Code Health. This activity is done by using data

extracted from DR-Tools Code Health to hard-code it into the solution developed for DR-Tools

Metrics (prompt engineering and code for API requests), then evaluates if the solution

developed on the sections 3.1 and 3.2 are effective DR-Tools Code Health. The goal is to

analyze the result to evaluate if DR-Tools Code Health combined with ChatGPT has potential

to be a good solution to be developed in the future.

This approach of work on both tools is because the DR-Tools Code Health tool is an

ongoing project that does not have its code public yet, so this research evaluates on manually

generated prompts to ChatGPT using the data manually extracted from running the tool via its

available binary code data. Therefore, this work aims to validate how to best develop the

integration of the tools at code level, for which DR-Tools Metrics (DR-Tools Code Health

34

predecessor) code will be enhanced as a proof of concept. Thus, in future works a defined path

and a working scenario will be available.

3.1 ChatGPT API Integration

The first step of this proof of concept is to develop a working integration with OpenAI

ChatGPT API, for that a class to do the integration through HTTP Request to the API end point

was developed.

3.1.1 ChatGPT API Class creation and first communication test

This subsection presents how the chatGPTAPI class was created, and which challenges

were faced to establish successful communication. Throughout the section challenges will be

presented and how this work has been overcome, then the reader can refer to this to avoid

similar issues.

The first step for the integration was to have OpenAI’s account and the API Public key

to be used on the HTTP Request to open the connection created. As OpenAI provides free

access for limited calls and rates and the number of API calls would not be high, the initial plan

was to use this free version as limits from number of requests at first were not believed to be

exceeded, though this will be revisited multiple times through the experiments.

The Java classes below were used for handling the connection and data retrieval:

• java.net.HttpURLConnection and java.net.URL to handle the HTTP Connection

creation;

• java.io.InputStreamReader and java.io.OutputStreamWriter to handle the flow of

information with ChatGPT API, to both convert the strings to byte to be communicated

(OurtputStreamWriter) as convert the data in bytes to strings (InputStreamReader);

• java.io.BufferedReader and StringBuffer to handle and manipulate the Input Stream

from ChatGPT into the code.

The class was developed to have one public method, ChatGPT(String prompt), which

sends to the class the prompt that should be used to the request to ChatGPT, then it would

convert and return only the GPT content part of the answer to the class calling the method. This

way, when just ChatGPT to print an answer to a prompt/question was wanted, only a call like

below would be done:

35

System.out.println(chatGPT("What is a bird? In one line"));

The method chatGPT will only return the ChatGPT answer to the question in a string

format. On the first test, the following error was faced: “Server returned HTTP response code:

429 for URL: https://api.openai.com/v1/chat/completions”. On Open AI documentation, it was

founded that this could be one of the 3 below reasons:

• You are using a loop or a script that makes frequent or concurrent requests.

• You are sharing your API key with other users or applications

• You are using a free plan that has a low-rate limit.

 (OpenAI Article 6891829 Error Code 429 - Rate limit reached for requests, accessed

in January 2024)

Upon checking on the OpenAI API usage dashboard, the absence of API requests

registered were noticed, so it could not be either first or second option. Once remaining the

latest one and after reviewing if any limits by a code bug could be exceeding, it was determined

that the issue is that the free version does not have a limit to achieve a single call, what means

that in practice ChatGPT API is paid service only.

After upgrading to a paid version by recharging $50 dollars to the OpenAI account used,

which allowed the API call to be successful with no changes to the code. The first part was

completed as a class that manages the API calls was developed. A call and the code used for

the call are exemplified on Figure 3.3:

Figure 3.3 - First chatGPT class successful test

Source: Elaborated by the author

As conclusion, to be able to use the GPT API, a payment for the service is required, so

that is the first lesson learned.

36

 3.1.1.1 Support to dictionary and placeholder translation

This subsection presents in advance how the chatGPTAPI class supports the concept of

having placeholders, a dictionary of equivalence to names used on the data analyzed and how

its translation is done. This concept will be further explained and validated in subsection 3.2.2.

The concept is basically that instead of providing data to ChatGPT API with its original

name, it will be replaced on the prompt for a unique and simple placeholder name, like method1

or type1. Therefore, a conversion from this placeholder name into the real name will eventually

be needed; this responsibility will follow on chatGPTAPI class, which per our design will

receive the prompt with the placeholder in the prompt and return an answer using the real name.

To achieve this conversion, the class will have a public method setDictionary (String

dictionary), which will set a local attribute to the string provided. The value for the dictionary

is generated from DR-Tools code with format like “method1 = realName.method, method2 =

realName.second.method”.

With the dictionary local attribute, the chatGPTAPI class will always check if there is a

dictionary setup before returning any answer from ChatGPT API requests. When there is a

dictionary, the class will create an instance of itself without dictionary and run a request to as

ChatGPT API to act as a “find and replace” tool and from the dictionary replace all placeholders

with its real name on the answer previously provided. The prompt is provided to ChatGPT

method by on the code concatenating the context, the message to be corrected, the request and

the dictionary as presented on Figure 3.4:

Figure 3.4 - Dictionary and translation logic implemented on ChatGPT method to request data

Source: Elaborated by the author

This feature will be fundamental to improve results from the data analysis of complex

and big dataset, which will be clearly an advantage as exposed on subsection 3.2.2.3. Though

when no dictionary is setup, the behavior will remain unchanged and same code can be reused

on the translation.

37

3.1.2 Cost considerations and model definition for the project

In one day of moderated testing, 60 API requests were generated, which consumed 2425

tokens (1238 context tokens and 1187 generated tokens), while on another day 48 API requests

were generated, which consumed 4604 tokens (1339 context tokens and 3265 generated

tokens). Due to the price structure, it is more efficient to have a broader prompt and limit the

output via the prompt instructions, as context tokens are cheaper than generated tokens.

There are other models, but only GPT-4 Turbo and GPT-3.5 Turbo will be focused since

they are the flagship models. There are limitations on the models, for instance, GPT-3.5 Turbo

supports up to 4096 context tokens (under model GPT-3.5 Turbo) or 16385 (under model GPT-

3.5 Turbo-1106), while GPT4 Turbo supports 128000 context tokens. For that reason, if on any

point a test with a larger prompt that exceeds 16385 would be needed, only GPT-4 Turbo or

GPT-3.5 Turbo-1106 could be used. Training data is also different as GPT-3.5 training data is

up to September 2021 and GPT-4 is up to April 2023. However, it is not expected that to be an

issue as much of the base of refactoring and code smells proceeds 2021 timeline.

Based on the testing conducted and the price structure, both models can be considered

financially viable. Therefore, if GPT-4 proves to have much higher efficiency and precision on

its insights, it can be the best approach to this project. Though, an evaluation is needed at the

end of the project with full scope defined, including using DR-Tools data as context tokens,

what would be the average number of tokens per API request and how many API calls it is

expected that a user refactoring will do. The cost impact will be reviewed in the conclusions.

For now, the execution of the tests with both gpt-3.5-turbo / gpt-3.5-turbo-1106 (GPT-

3.5 Turbo) and gpt-4-0125-preview (GPT-4 Turbo) is defined, in order to evaluate both and

determine when they are different, and which is superior and how much.

3.1.3 Simulate Prompts to test chatGPTAPI class

After confirming that the API call was working, the idea was to already test the response

from the ChatGPT to one of the outputs of the DR-Tools Metrics tool. So before starting further

integration and developing code to retrieve the data from the tool and format it into the ChatGPT

prompt, the decision was to execute the tool for one metric and simulate the result to provide

the same as part of the prompt.

38

From DR-Tools Metrics project, the chatGPTAPI class (discussed on subsection 3.1.1)

was added and a new class to handle the integration between DR-Tools Metrics (we called

GPTIntegration class) was created. This class will act as the link between DR-Tools and

ChatGPT calls and prompts. On this first step, a GPTInsight() public method to be called from

DR-Tools Metrics main code was created and chatGPTAPI class was called with a hard-coded

prompt to prove that all processes were working in the correct order. Later both data retrieval

and prompt definitions will be discussed and explored.

From this first test, DR-Tools Metrics was run on its own project code, and the results

below were received:

SUMMARY OF METRICS

 Total of Namespaces: 32

 Total of Types: 127 - 3.97 (number of types/namespaces -

median: 3.00 - std dev: 2.90)

 Total of SLOC: 7957 - 62.65 (number of SLOC/types -

median: 37.00 - std dev: 75.48)

 Total of Methods: 1167 - 9.19 (number of methods/types -

median: 3.00 - std dev: 5.80)

 Total of CYCLO: 1513 - 11.91 (number of CYCLO/types)

To prove if the usage of the data on the prompt would be effective, a hard-coded string

was coded with the same numbers and similar structure to be used to do the GPT API request,

though when running it failed with “HTTP response code: 400” and error illustrated in Figure

3.5, together with the coding of the prompt.

Figure 3.5 - First test with hard-code prompt with DR-Tools Metrics code failure

Source: Elaborated by the author

39

After reviewing previous successful API calls, it was noticed that this test was the first

using new line character “\n”, then the deletion of it was tested and the same command without

the new lines did not face any issues.

To confirm that a correct answer was being achieved, it was adjusted to have a easily

verifiable question. Part of the data was provided and a question was asked to determine which

metric have the higher number. The answer was correct and is presented on Figure 3.6

experiment:

Figure 3.6 - Successful ChatGPT call with hard-coded prompt with code Metrics

Source: Elaborated by the author

When confirming that removing the new line character the issue is also removed, how

to keep the new line was searched, as this would as well make it easier to have the data for the

GPT prompt and also print the same console answers. From that search it was found one quick

reference on the OpenAI Documentation that references to new line as a possible non-trivial

issue on the parsing server-sent events (see extract below from OpenAI documentation).

Parsing Server-sent events is non-trivial and should be done with caution. Simple

strategies like splitting by a new line may result in parsing errors. We recommend

using existing client libraries when possible. (API Reference - OpenAI API, 2024)

Based on this experiment and this documentation reference, it was determined that all

of the prompts should be provided avoiding any new line or formatting characters (like “\t”) in

order to prevent issues with the GPT model. In addition to it, it was determined that all prompt

segments would be concatenated in a string without new lines and just characters like simple

40

quotes, parentheses, and other punctuation characters will be used to segregate data, what will

be further investigated and further explored with a more complex dataset later.

3.1.4 Retrieving DR-Tools Metrics data in prompt format

This section explores the structure of the DR-Tools Metrics’ data at a high-level as well

as explains the approach to retrieve and integrate this data into a structured GPT prompt form.

Experiments on generation of the data in prompt format will be presented at the end of the

chapter, while integration experiments will be presented and have its results analyzed on the

subsection 3.1.5, including some failures that establish design and scope decisions.

DR-Tools Metrics have multiple outputs depending on what the user requests. The

metrics as well as the commands that can be run to extract them were already explored on the

chapter 2.1.4, though on this part of the process some of them are run and the output and later

the code that generated them were analyzed, to engineer the prompt design logic. To better

understand how DR-Tools Metrics retrieve data, the code and its logic to present data were

analyzed.

On figures 3.7, 3.8 and 3.9, the output for the summary of the project’s code metrics,

type metrics and the statistical data for the type metrics can be respectively found. From these

outputs and their code, the creation of the data side of the prompt is going to be started.

Figure 3.7 - DR-Tools Metrics output for Project’s Summary

Source: Elaborated by the author

41

Figure 3.8 - DR-Tools Metrics output for Metrics per Type

Source: Elaborated by the author

Figure 3.9 - DR-Tools Metrics output for Type Summary statistics

Source: Elaborated by the author

Based on this research and the literature review4, the best approach to provide data is to

delimit it to be clear how they are grouped. To achieve this, it was determined that the data

should be organized on a String (based on tests reported on 3.1.3) with no new lines, so it would

be needed to have this same data from the output, though in a different format to make it easier

and more precise to the GPT model processing it.

4 OpenAI documentation advice to use delimiters:

 (https://platform.openai.com/docs/guides/prompt-engineering/tactic-use-delimiters-to-

clearly-indicate-distinct-parts-of-the-input)

42

At this phase, the code was developed to generate the data above in a string delimited

by some token to indicate where it starts and ends each data. The goal was to have a String

returned as exemplified below:

• <Token> Metric x <Token> Type: <data> <Token>…

Review and understand the DR-Tools’ logic, especially its data retrieval architecture,

was necessary to develop the code for the prompt’s data string (described above) generation.

Though it was not necessary to know how the data is calculated and generated as this work is

not validating or analyzing the data generated but interested in its consumption. This analysis

was specifically focused on the process to retrieve data and to print it on the console when

executing the tool with the “–console” output (to have DR-Tools printing the data in the

console) as it was the closer to the string generation.

The DR-Tools’ architecture is well organized and modularized in such a way that the

implementation was relatively easy, to the point that no existing code needed to be much

rewritten. DR-Tools is organized into classes where after its parsing and calculation, the metrics

data is stored or is calculated upon requests to these same classes. The classes are listed with a

short description:

• NamespaceMetricResult: Hold data and have methods to return values of the

metrics from the different Namespaces on the analyzed project.

• TypeMetricResult: Hold data and have method to return values of Metrics from

the different Types on the analyzed project.

• MethodMetricResult: Hold data and have method to return values of Metrics

from the different Methods on the analyzed project.

• StatisticalAnalysis: Hold data and have method to return values of the statistical

data (average, median, standard deviation) from analyzed project metric. Data is

presented on Figure 3.7 and 3.9. (average, median, standard deviation, etc.)

Then the second part of the DR-Tools Metrics retrieving data logic is done by a public

interface called MetricOutput, which has all methods to retrieve the data from the above-

mentioned classes. This interface is then implemented by classes specifically to the data output

selected by the end user when running the tool. There are classes which will implement the

methods and have the data output created and provided to the user according to its request. The

possible outputs and classes are as following:

43

Table 3.1 - DR-Tools Metrics’ Output and classes

Output Class Argument

Console MetricResultConsole --console

CSV file MetricResultCSV --csv

JSON file MetricResultJSON --json

File for DR-Tools Visualization tool MetricResultFile --save

Source: Elaborated by the author

Due to this modularity and having already a logic in place for different outputs, a new

class implementing the MetricOutput interface was created, which was called

MetricResultsGPT. It was partially replicated following the logic from MetricResultConsole,

modifying it to be able to return the metric’s data on a prompt friendly string to be used on the

GPT request.

Through a similar logic used on other MetricResult classes and a series of

concatenations into a prompt data variable, the string is returned by a public method to be used

later. For example, the same metrics shown on Figure 3.7 (with project summary metrics) can

be seen on Figure 3.10 printed on prompt format:

Figure 3.10 - DR-Tools GPT prompt data for Project’s summary

Source: Elaborated by the author

For having it easier to execute more testing on formatting this prompt data, two constant

variables were used to hold a data beginning and ending token values, so that it can be easily

changed how the data are being divided for prompt testing, which will be evaluated on

upcoming section 3.2.2.

3.1.5 Validating DR-Tools data on ChatGPT API requests

This section discusses at a high-level how ChatGPT can be integrated with DR-Tools

data metrics using the previously discussed chatGPTAPI and metricResultsGPT classes, as well

as the challenges with the implementation.

44

On DR-Tools Metrics, the information output to the end user is controlled by a

ProjectInfo class, for which the main program code creates an instance with the MetricResults

as one of its parameters. This class will be managing which of the methods of the MetricResults

is called to have the metrics provided.

The same logic was replicated on a new class that is called GPTIntegration, which will

be used to manage the data retrieval (explored on subsection 3.1.4), the prompt generation (to

be explored on section 3.2), ChatGPT API (explored on subsection 3.1.1) requests and GPT

insight output to be provided. The class will be the main hub link between DR-Tools code and

the newly developed code, except for the new MetricResults implementation.

To validate if the GPT requests and prompts are generating valid answers, an easy to

validate experiment was conducted, like request “which is the method with more lines” or

“which types have dependencies higher than a specific number”. Prompts for refactoring

insights will be discussed in section 3.2. Different metrics were tested to validate if data

retrieval into prompt was effective. Both tests were done with both GPT-4 Turbo and GPT-3.5

Turbo.

When the test was run on GPT-3.5 Turbo (model gpt-3.5-turbo), GPT API replied with

“Server returned HTTP response code 400 error”, as presented at Figure 3.11. Through a

further analysis of the prompt data (extract available on Appendix A), it was concluded that the

error was due to the context tokens (for reference see section 2.3.1) on the API request, which

exceeded the number of tokens supported for the model. The prompt had 9172 words (context

token will be a little higher) and the GPT-3.5 Turbo used (model gpt-3.5-turbo), supports up to

4096 context tokens (as referenced on Table 2.2). Therefore, it would be needed to reduce the

number of tokens on the prompt or choose another model.

An option to continue using and testing GPT-3.5 Turbo would be to use the latest gpt-

3.5-turbo-1106 model, which supports up to 16385 context tokens, though the same issue was

faced. As explained in section 2.3.1.1, the number of tokens will play a major role in the models

supported and the costs, then on decisions. The challenge is that a clear response from API on

number of used tokens exceeded is missing, as in the experiment on Figure 3.11.

It will be further explored in the prompt engineering chapter as if prompts exceed 16385

tokens in the GPT-3.5 will be supported and if exceeds 128000 GPT-4 Turbo will also not be

supported. Some strategy or scope limitation for this integration usage to not exceed the token

limits need to be developed, as prompts will increase according to the analyzed project size and

complexity.

45

Figure 3.11 - GPT API request error 400 due to large prompt request

Source: Elaborated by the author

The same request was done for GPT-4 Turbo, which was successful and provided an

accurate answer, presented on figure 3.12, when asked to list the types with more than 20

dependencies based on the metrics provided on the prompt (generated from DR-Tools).

ChatGPT also provided, without request, the number of dependencies for each type, what can

be helpful and will be further investigated in section 3.2 about prompt engineering.

Figure 3.12 - GPT-4 Turbo API correctly answering the Types with more than 20 dependencies

Source: Elaborated by the author

46

An important note is that GTP-4 Turbo takes longer time to process the same prompt,

so this will be analyzed later as a disadvantage. Section 3.2 further explores comparing the

models and the best prompts, as it is important to demonstrate that the ChatGPT can understand

the metrics that the integration with DR-Tools has provided.

To confirm that GPT-3.5 also understood the data format and to be able to compare if

there are differences between their answers, similar experiment was performed using summary

(-s command) and requested which would be greater: average line of code per type or its

median. With this experiment, a smaller dataset would be obtained and could help avoid any

token limitations.

Figure 3.13 - GPT-3.5 Turbo API correctly answering comparation between metrics

Source: Elaborated by the author

From this experiment, it was observed that both models were able to provide an accurate

answer, though the answer’s structure was very different. While GPT-3.5 Turbo provided a

more direct answer to the point (as observed on Figure 3.13), GPT-4 Turbo provided it in the

middle of a long text with information that would not necessarily be relevant as observed on

Figure 4.14.

47

Figure 3.14 - GPT-4 Turbo API correctly answering comparation between metrics

Source: Elaborated by the author

The next sections will switch from one model to another to evaluate the prompts and

each model’s response, to later analyze advantages and cost benefits. To perform tests on both,

chatGPTAPI class code can be easily changed via a variable that has being currently used

hardcoded on the code, but on a final product it could easily be improved to be via a config.file,

though for this proof of concept to have it at code level was sufficient.

3.2 Prompt Engineering

The next step on the integration is to work on prompt engineering to determine the best

structure and wording to do the requests to the ChatGPT.

3.2.1 Importance of Prompt Engineering

This section presents the importance of good prompt engineering and develops on

analysis of results of different structures of prompt to receive the best, more accurate and more

48

time effective answers. It presents a series of experiments to empirically demonstrate some

fundaments described in the previous literature review (especially on 2.3.3 section).

To abstract the more complex and sometimes not so intuitive concepts of software

engineering, the first section experiments simply revolve on how ChatGPT would define a

simple concept of a “bird” and explore how the prompt design influence its output for the same

simple animal. The goal is that from this section, the motivations for the prompt engineering

strategies for the project are justified. Then, in the next section, the use of strategies with the

DR-Tools Metrics data is explored.

Throughout this chapter, gpt-3.5-turbo-1106 (referred from now on simply as latest GPT

3.5 Turbo) and gpt-4-0125-preview (referred from now one simply as GPT-4 Turbo) will both

be experimented on. The older gpt-3.5-turbo will no longer be considered a viable possibility

as its 4096 tokens were already proven to be not sufficient from experiments on section 3.1.5.

3.2.1.1 Bird Definition Experiment

This section explores a simple and to some degree fun exercise designed for this project,

which consists of having ChatGPT answering the simple question of “What is a bird?”.

Although initially appearing to be a silly experiment, this is a powerful way to demonstrate the

value of a good prompt in order to have the correct answer to the perspective that API user

wants without any complex topic where the reader might not have knowledge to judge the

ChatGPT answer.

The section is structured of a series of 12 experiments divided into 4 groups, which each

will have one open question with no limitation on answer, another that limits on 1 line5 answer

and a last one limiting on one-word answer. Each group also has different structures:

1. Just the open question and the answer size limitation, without any context.

2. Opening the prompt with the question, then providing the context and finishing with

answer size limitation.

3. Starting with context statement, then questioning and finishing with answer size

limitation.

5 Based on our experiments, ChatGPT seems to understand prompts with phrases, clauses, periods, or sentence

limitations as an answer with one or more verbs, but only one period being simple period or compost period.

Example: “The bird is my tasty treat, and I would pounce on it with my sharp claws and devour it hungrily.” is

considered one clause. This could inform a grammatical discussion on ChatGPT understanding; however, this will

not be relevant for this work.

49

4. Starting with context statement (different from above to prove change in answer),

then questioning and finishing with answer size.

All the experiments above were coded directly on the chatGPTAPI class, so that each

group has all its 3 answer limitation prompts run together printing on the same console its

prompt, its answer, the time that ChatGPT API took to provide the answer and the number of

tokens used and generated for each scenario. The data is also considered throughout the

analysis. On this first subsection, only results from latest GPT-3.5 Turbo are explored to

subsequent subsection explore GPT-4 Turbo and compare both models.

Figure 3.15 - Bird definition experiment on latest GPT-3.5 Turbo without context definition

Source: Elaborated by the author

From the first experiments, it was observed that the output as well as the time that

ChatGPT takes is highly influenced by the prompt and the instruction on the prompt to the

answer’s size. The experiment shows that, by limiting the size of the answer, there are benefits

on ChatGPT performance and on costs. As previously referred to in section 3.1.2, the number

of tokens influences the cost and generated tokens are 2 to 3 times more expensive.

Figure 3.16 - Bird definition experiment on latest GPT-3.5 Turbo with question first then context

definition

Source: Elaborated by the author

On this second experiment set, the context setting is experimented to extract an answer

from one specific perspective, in this case, to ChatGPT describe what is a bird from a cat

perspective. The goal is to have it described as something that the cat would eat or hunt as the

50

normal concept that cats hunt birds, though on the experiment it was not the description that

was followed.

For instance, when no size limitation was provided, the bird was more described by

physical appearance, then added the information that the cat would occasionally chase it but

having the idea that it could catch if “lucky” and then having a more cat like behavior to describe

that, if catching, it would bring the bird to its human. It is possible to notice that at first there

was not much sign of cat behavior, though in the end there was more.

When there is answer size limitation, an answer closer to the initial goal is provided;

when on one line, it gives the idea of something that flies and is out of reach (as the bird flies

and the cat does not) and presents the idea of catching it. This is still far from the initial goal,

though due to the smaller space, it has compiled all the context (the bird and the cat perspective)

into the first statement.

Finally, when ChatGPT is limited to having only one word, it needs to consider all the

prompt contexts and summarizes it in a word, only then it is presented with the initial expected

answer. This experiment shows that limiting ChatGPT reduces its “hallucination”, which

although includes correct facts, but not necessarily the facts requested by the prompt. This

experiment conclusion is an important concept to be used through the prompt engineering on

this work because providing easy to read information and avoiding long answers which miss

the main objective is important, otherwise it might be distracting for the end user.

Figure 3.17 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first

then question

Source: Elaborated by the author

The third experiment is inspired by White et al. (2023), which highlights the importance

of setting a persona to ChatGPT and requesting that it act as such persona. Therefore, the

experiment prompt starts with the specification to ChatGPT acting as a hungry cat, then it is

observed that from all 3 answer sizes there is a hunter behavior when ChatGPT describes the

bird as a prey (even if indirectly).

51

At this experiment, the same outcome was presented when comparing the different

answer size limitations, in which no limitation generated a long answer that does not directly

describe as the goal intended. Though when the model is pushed to one line answer, it provides

the intended answer, and the one word describes it perfectly.

Figure 3.18 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (human) first

then question

Source: Elaborated by the author

To prove the conclusions above, the last experiment had the same structure, though

requiring “to act as” a human. Throughout all the requests, it can be observed that the

hunter/prey relationship was not presented as the human view of a bird is not as a prey or a

meal, thus proving that the previous answers were due to the contextualization provided.

Throughout this experiment, the token usage was also presented (information extracted

from API response) which provided insight on how the LLM handles the tokens. There will be

no deep investigation on how the model is dividing the strings into tokens, as referred to in

previous section 2.3.1.1.

One important note is that as context tokens are cheaper than generated tokens, therefore

the investment on better prompts even if longer can be financially beneficial, as from examples

above, the more precise answers were ones generated due to answer size limitation, which

reduces generated tokens making it a cheaper answer.

3.2.1.2 ChatGPT inconsistent answers

From the previous section experiment, there was a second important finding to be

presented and explored at some level. Throughout this work’s experiments, it was observed that

the answers to the same questions were not always the same.

52

Figure 3.19 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first

then question (generated on February 1st)

Source: Elaborated by the author

No clear pattern is observed, as sometimes the answer changes for requests done almost

simultaneously (or very close to). For example, the experiment on figure 3.19 was rerun with

intervals of less than minutes from figure 3.17. On figures 3.17, 3.19 and 3.20, the same

experiment was run providing different answers on each iteration, demonstrating the non-

determinism property of LLMs like ChatGPT, which is also observed and explored on other

works like Ouyang et al. (2023). Such property will require that, throughout our development,

extensive tests are performed to assure a good level of consistency on the solutions.

Figure 3.20 - Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first

then question (generated on February 2nd)

Source: Elaborated by the author

Note that comparing with the previous subsection and figure 3.17, not only the content

is different, but also the processing time was very different. The time difference could be

justified by the fact that the answer is provided through the internet and on a cloud computing

environment, therefore there are numerous possible reasons that could even be combined, like

lower internet speed, higher internet latency, higher load on the cloud service, resources update

on the cloud, among others. This work does not target the performance of ChatGPT, so the

analysis of it is limited, though it is an important factor to be considered when a future tool to

end users derives from this work.

53

To further explore this inconsistency aspect, the following experiment was conducted:

rerunning the experiments 8 and 9 and creating similar experiments 13 and 14, including “From

now on,” statement at the beginning as indicated by White et al. (2023), which was not fully

implemented on 8 and 9 previously. On this test, experiments 8 and 13 run multiple times

interchanged at the same run, same with 9 and 14.

Figure 3.21 - Bird definition experiment 8 and 13 run multiple times providing different answers

Source: Elaborated by the author

What could be observed is that there were no clear benefits to the “From now on”

statement on both experiments, though this will be revisited when experimented with multiple

API requests on section 3.2.1.4. It was observed (Figure 3.21) that both prompts were effective

on keeping a consistent idea in the answer, though the answer have a noticeable difference on

every request, even if with a clear hunter/prey or meal relationship.

Interestingly, when there is a more limiting prompt request with one word specification,

throughout all executions the answer was practically the same, only on some situations adding

a period at the end. This will be kept in mind when creating this project prompt, to limit the

54

answer when applicable, though not being a requirement as noticed that the same answer not

being consistently does not mean that the idea of the answer is inaccurate or not provide the

same idea.

Figure 3.22 - Bird definition experiment 9 and 14 run multiple times providing different answers

Source: Elaborated by the author

Based on this section’s experiments, the approach for any performance analysis will be

to compare the time of requests done on a relatively close time window that does not exceed

minutes between them. On the other hand, for the answer consistency assurance it is more

important to assure that repeated tests are executed to make sure that prompt is reliable to not

have too much inconsistency on the answers.

From the results above, two best practices were defined for experiments:

• For performance comparation: different experiments to be executed in a very short

time window.

55

o Why: The idea is to evaluate only prompt differences and avoid datacenter

operating on different workloads between experiments.

• For quality assurance: experiments to be executed multiple times with its time

interval not playing a key part (except if happening between model updates, which

are informed by OpenAI via email and website).

o Why: Because of LLMs non-determinism, it is expected that answer is

different on each request; the key is that they need to have consistent ideas

and multiple executions assure and allow us to measure its deviation.

3.2.1.2 GPT-3.5 Turbo vs. GPT-4 Turbo

On this subsection, it will be reproduced the bird definition experiment with the GPT-4

Turbo to then compare both models and highlight strengths and weaknesses on each model. It

will also be explored if any model can be considered not fit to this project objective.

Figure 3.23 - Bird definition experiment on GPT-4 Turbo without context definition

Source: Elaborated by the author

Based on the experiment, there is clear evidence that the same benefit of limiting the

answer size is also presented on GPT-4 Turbo. From the generated tokens number, GPT-4

Turbo generated 228% more tokens (78 against 256 tokens) than latest GPT-3.5 Turbo for the

same open question “What is a bird?”. Therefore, GPT-4 Turbo clearly generates more text if

not limited and can deviate from the requested objective (if not a very broad answer).

When limiting the answer, the answer content is very similar between both models, with

GPT-4 Turbo being slightly longer though all same concepts. When limiting it into one word it

was precise and accurate though at different levels, but avian and animal are both accurate

answers.

56

Figure 3.24 - Bird definition experiment GPT-4 Turbo with question first then context definition

Source: Elaborated by the author

As observed on Figure 3.24, ChatGPT-4 Turbo presented on this experiment 4 the same

behavior as on previous experiment 1, where it gives a long answer with a lot of accurate

information. Interestingly, it can be observed that without an answer size limitation, there is a

focus on the perspective word, then the answer ends up providing different perspectives (as a

prey, as a thread, as a frustration, etc.), which in general are accurate, but have some degree of

hallucination. For instance, it says that cats would be intrigued with bird ability to fly, while

cats cannot.

When limiting the answer, the model provides a very accurate answer from an idea

perspective, though it is observed a tendency to use over complicated words, for example, for

a non-native speaker, words like “elusive” or “mesmerizing” may be not very known. This

presents a possible challenge that will need to be addressed on the prompt by correctly

providing a context of the interlocution desired, thus the provided answer can be clear to a

broader population and not limited to native-speakers and very proficient professionals.

Figure 3.25 - Bird definition experiment GPT-4 Turbo with context definition (cat) first then question

Source: Elaborated by the author

57

Here is demonstrated the power of the prompt referred by White et al. (2023), once

when “Act As …” statement is used, the description changes to a very hunter/prey discourse in

which it is clear the intent to prey on the bird. Noticeable is that when size requirement is not

present, the generated answer tends to be repetitive, describing both cat’s hunting abilities and

bird’s characteristics that are linked with hunting/be hunted, all accurate and interesting, though

could be classified as prolix at some level. Size limitation removes the problem and should be

always pursued; while there are scenarios that a longer answer might be needed, there will be

need to provide better questioning and requirements to the answer still. For the longer answers

needed, a valuable approach is to request a structure in the answer, for example, one paragraph

describing the issue, and one paragraph on how to solve the issue.

Figure 3.26 - Bird definition experiment GPT-4 Turbo with context definition (human) first then

question

Source: Elaborated by the author

These last experiments just highlight the already pointed and proven knowledge, which

shows the value of scoping, limiting answer size and the “Act as” technique. On both models,

it can be highlighted the tendency to use a set of no ordinary words (e.g., “elusive”,

“tantalizing”, “pounce”, “mesmerizing”, etc.), which at some degree we might need to address.

Based on the challenges presented and the demonstrations of the prompt patterns that

are providing best results, a new prompt was developed in which the context of a hungry cat

was settled, requesting what a bird is (but for its hunger) and then limiting the answer on size

as well as on requiring to cite bird and use simple English. Therefore, there was a very consistent

answer with all providing the sense that bird is the prey/food of the cat as observed on figure

3.27.

58

Figure 3.27 - Bird definition experiment GPT-4 Turbo with context definition, closer question, answer

limitations and requirements

Source: Elaborated by the author

The same experiment and prompt were performed on the latest GPT-3.5 Turbo with

very similar result (added to Appendix A in case reader would like to review). Based on this, it

is possible to assume that both models can provide similar results and accurate ones when using

a more robust prompt. Though a more complex experiment, which requested ChatGPT to

compare 2 different metrics from DR-Tools to tell which was higher and what is the difference,

shown that GPT-3.5 Turbo needed more explicit request to calculate the difference, as with

simple question: “what is the difference?”, the model sometimes answer simply that the

difference is significant without providing the difference.

Based on the experiments conducted, it was defined that the best prompts would follow

the characteristics below:

• Initiating with setting a context to ChatGPT and its persona with “Act As…”.

• Avoiding open questions, preferring to use closer questions that already direct

the model to the answer desired.

• Providing requirements to the answer, like size of the answer, what interlocution

should be used, level of detail wanted and if there is a need to cite something

specifically.

• Requesting explicitly on what is wanted from the output (especially when using

GPT-3.5 Turbo).

Next sections will build on all the concepts above and expand on them to a more specific

scenario to software engineering and metrics analysis.

59

3.2.1.4 Explore multiple API requests vs. single API request

This section explores the difference between having one single message against an

“interactive” approach of using multiple messages to the API, to emulate the behavior of the

ChatGPT interactive chat available on OpenAI’s website.

It is important to highlight that the ChatGPT API does not support any session or context

memory from previous API requests, as referred on ChatGPT API Documentation: “the models

have no memory of past requests, all relevant information must be supplied as part of the

conversation history in each request.”. To overcome this limitation, the API receives an array

of messages, which can be from System, Assistant or User (referred at section 2.3.1).

The feature was experimented to evaluate if any format would be more effective. Three

scenarios were defined to be evaluated: first scenario would have all the prompt in one user

message (scenario of the previous experiments), a second scenario with 2 user messages (one

with context and second with request) and a third scenario with 1 system message and one user

message, being the system message the context and the user message the request.

The same explored bird definition experiment was used with the prompt established at

the end of section 3.2.1.3 as the more robust prompts, which was “Act as a hungry cat. What is

a bird for your hunger and what would you do to it? In one phrase citing bird and using simple

English.” It will be shown with the ChatGPT API request body, so that the format and difference

are clear to the reader.

Figure 3.28 - Comparation 1 user message prompt, 2 user messages prompt and 1 system + 1 user

message prompt using bird definition experiment)

Source: Elaborated by the author

60

When analyzing the answers quality, there were no clear advantages on this separation

for this simple scenario, having the answers variance between the different approaches being

smaller or equal than the variance that the models usually have when the same request is

answered multiple times (as observed on 3.2.1.2). It indicates that from the answer quality

perspective there was no clear advantage.

Besides, the prompt consumption on the context generation is higher when there are

multiple messages because there will be more context to the message outside of the content

itself. The difference between using a single message or multiple is not significant due to the

limited number of tokens added, which will be less significant when considered the amount of

data that some prompts will be providing (referred on 3.1.5). Therefore, if advantageous this

approach could be a viable resource.

The multiple user messages and the system message are already supported in the

chatGPTAPI class, though it will not be used as no clear advantages were presented. It can be

revisited in some future scenarios, for example, if a chatbot is implemented, in which to have

the chat context would be needed to provide all messages exchanged for each new

request/interaction.

3.2.2 Prompt Engineering to provide data to GPT

On this section, it will be presented the combination of section 3.1.5 with the findings

of experiments on 3.2.1 on the prompt importance. It starts with the scope definition of what

this project answer should be to then exploring the methodology and the experiments that

created the final product of this proof of concept.

Section 3.1.5 provided an experiment using tokens to present beginning and ending of

data, like XML structure, which proves that ChatGPT was able to understand the data.

Therefore, the same will be used to test other structures and delimitation tokens to confirm that

data is understood, only changing it to have only one phrase and what the difference is (to

confirm if data is understood).

3.2.2.1 Evaluating GPT-3.5 Turbo vs GPT-4 Turbo

This subsection presents the results of experiments on both models and with different

delimiter tokens, so that the most effective token and model can be established.

61

For the latest GPT-3.5 Turbo, it was needed to explicitly mention to calculate the

difference, once without explicitly requesting it would only say if the difference was significant

or not. The importance to having a calculated difference is that it would be a value that ChatGPT

would unlikely get right just by chance, so it would need to know which data to get to do the

calculation. For the experiment, the prompt below was used as the first part of the prompt,

followed by the data structure. The result can be found in Figure 3.29.

"Act as a Software Architect. You are giving advice for refactoring a

code with the following metrics beginning after the questions: what is higher,

the average of line of code per type or its median? What is the calculated

difference between them? Answer in one phrase for each question. Data:"

Figure 3.29 - Experiment confirming ChatGPT understands the data provided

Source: Elaborated by the author

This experiment was designed to determine if ChatGPT understands the data, to provide

us with the correct answer. The experiments were executed on the latest GPT-3.5 Turbo and

GPT-4 Turbo models and with several delimiters’ tokens/markers. The delimiter

tokens/markers are indicator of the beginning and the ending of the data; they can be found on

table 3.2 with its result for the test above (just changing <BEGIN DATA TOKEN> and <END

DATA TOKEN> to the tokens (strings) on first and second column from Table 3.2:

62

Table 3.2 - DR-Tools Metrics’ Output and classes

Token to mark

beginning of

data

Token to mark

ending of data

Context tokens used

(extracted from

ChatGPT API)

Answer Quality (% from 2 executions)

Correctness Information Amount

GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4

<BEGIN DATA

TOKEN>

<BEGIN DATA

TOKEN>
300 280 50%6 100% 100% Good 100% Good

<BEGIN> <END> 260 240 100% 100% 100% Good 100% Good

<DATA> </DATA> 260 240 100% 100% 100% Good 100% Good

<D> </D> 260 240 100% 100% 100% Good 100% Good

| (Vertical bar) | (Vertical bar) 206 206 100% 100% 100% Good 100% Good

(Single Space) (Single Space) 206 206 100% 100% 100% Extra7 100% Good

NO

SEPARATOR

NO

SEPARATOR
197 197 100% 100% 100% Good 100% Good

Source: Elaborated by the author

Table 3.2 describes the results from the experiment, which demonstrates that in general

all delimiters provided good answers. There is a fundamental importance on the prompt as

through our investigation on section 3.1.5, there were scenarios in which the model was not

providing correct information without delimiters, though this experiment was with a simple and

small dataset (just summary metrics, which are specified on section 2.4.1).

Through a deeper analysis of the prompt data, it was observed that the structure of the

data was not ideal once the average, median and standard deviation were packed as the same

data. This could result in it being harder for the model to understand and compute on it, likely

not an issue on which delimiter is used, but on the packaging structure of the information. For

the previous experiment, the packaging was the following (not clearly specifying the average

or package average and medium as its own data):

• <BEGIN DATA TOKEN>SUMMARY OF METRICS: <BEGIN DATA TOKEN>Total of

Namespaces: 32<END DATA TOKEN> <BEGIN DATA TOKEN>Total of Types:

127<END DATA TOKEN> <BEGIN DATA TOKEN>Number of types/namespaces:

3.97 (median: 3.00 - std dev: 2.90')<END DATA TOKEN>

For the new experiment, which results are highlighted on table 3.3, the data packaging

was changed so that the average, median and standard deviation all are inside its own data

structure. Another improvement is the increased 50 test runs for each scenario, as previous

experiment presented a low number of tests (2 test runs). Therefore, the new experiment

measured more accurately the percentage of correctness as well as percentage of answers with

6 Considered bad correctness as from 2 GPT Requests, while both replied with right difference value, one answered

that the median was higher than the average.
7 ChatGPT response provided more than just what was higher and what was the difference, but also extra

information explicating that on software engineering it is important to consider both.

63

extra information (Information amount), this last one to measure when the model provides

unnecessary information or is prolix.

Table 3.3 - DR-Tools Metrics’ Output and classes

Token to mark

beginning of

data

Token to mark

ending of data

Context Tokens used

(extracted from

ChatGPT API)

Answer Quality

Correctness Information Amount 8

GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4

<BEGIN> <END> 282 283 94% 100%
100%

Requested

100%

Requested

| (Vertical bar) | (Vertical bar) 186 216 72% 100%

96%

Requested

4% Extra

100%

Requested

NO

SEPARATOR

NO

SEPARATOR
193 193 90% 100%

92%

Requested

8% Extra

100%

Requested

Source: Elaborated by the author

One interesting and important observation, not explicit on the table, is that on both

models there was no test in which the model calculated the difference (average subtracted the

median) that was calculated incorrectly. However, on GPT-3.5 Turbo, a weakness on

comparing values was observed, which was evident when on 6-28% (depending on delimiter

token used) the model provided an answer that the median was higher than the average, what

is not true. Based on the 6-28% failure in this “simple” operation, it could be considered a high

failure rate for a professional tool; using DR-Tools healthcare metaphor, a doctor that on 6-

28% of the times misdiagnoses a simple disease would not be considered “the best doctor”. On

GPT-4 Turbo, it is interesting to note that thought the analysis was consistently done correctly,

sometimes the values used for it are highlighted/displayed, as in the answer: “The average of

lines of code per type (64.36) is higher than its median (38.00). The calculated difference

between them is 26.36.”, while on other it does not, for instance: “The average of line of code

(SLOC) per type is higher than its median. The difference between them is 26.36.” Therefore,

if highlighting the data that based the answer is needed, the best is to explicitly have it required

in the answer by the prompt.

Based on the higher tendency of GPT-4 Turbo to contextualize the answer with the

metric numbers, it was experimented to change the prompt for the experiment using GPT-3.5

to request the metrics and then compare it, which resulted on the prompt below. The prompt

8 If it is only providing the requested information or is giving extra information, which is unnecessary information

to answer the question.

64

was used on a new experiment limited to running the prompt on GPT-3.5 Turbo with the

Vertical bar separator to analyze if correctness would improve.

"Act as a Software Architect. You are giving advice for refactoring a

code with the following metrics beginning after the questions: what is the

average and median of line of code per type? Which is higher? What is the

calculated difference between them? Answer in one phrase for each question.

Data:"

The prompt was not able to improve the model correctness, besides increased its

hallucination, with examples like “Average and median of line of code per type is higher. The

calculated difference between them is 28.86.” It was an interesting phenomenon that as more

complex prompt was created it increased GPT-3.5 Turbo hallucinations. It could be explored

to have separate requests and do first a request to retrieve the data, then compare it, instead of

an all-in-one request though for GPT-3.5 Turbo this will be left in case of future works

revisiting this model.

Due to these results and the difficult prompt engineering to extract a consistent answer

from GPT-3.5 Turbo and the already mentioned prompt size limitation for this model, it was

determined that the best fit model for the project would be GPT-4 Turbo. Therefore, from this

point onwards, this work focuses only on doing experiments and definitions GPT-4 Turbo’s

usage.

3.2.2.2 GPT-4 Turbo API rate limit and its implications

This subsection explores and contextualizes the limitations that OpenAI’s models have

on its API usage and its impact on our experiments and future tool. There are important

considerations on what can be done by the models and how ChatGPT API should be set up to

reuse this work in the future.

During the experiments using ChatGPT API with bigger datasets, like type metrics, a

major challenge is that the amount of token use per request is high, around 15,000 for the project

analyzed (DR-Tools Metric code itself). The dataset consisted of 128 types and each type had

10 metrics, therefore the total data amount would be the 128 types multiplied by 11 (10 metrics

plus the type name), resulting on a dataset of 1,408 data entries. Considering the structure

already presented, where there is further information than only the metrics itself, tokens would

65

exceed the 1,408 data entries, which should not be an issue as the GPT-4 Turbo model supports

up to 128,000 tokens.

Though there is a second limitation to be observed that is the API rate limit, which is

either the number of tokens requested per minute or the number of requests per minute. This

heavily impacted this project and generated bottlenecks where the experiments were failing

with HTTP Error 429, which was already presented on subsection 3.1.5, meaning that the API

limit was exceeded.

Based on OpenAI documentation, the Tier 1 usage (which this project was initially

using) should be able to have 150,000 tokens per minute and 10,000 requests per minute, though

from the experiment OpenAI was limiting on a much lower volume. On the experiment only 1

request of 10,000 tokens was successful, if this limit exceeded it the API request would fail.

To determine what limit was being effectively applied, an experiment with a reduced

number of metrics was run. From this experiment, it could be inferred that OpenAI was limiting

to around 10,000 tokens maximum for successful requests for Tier 1 accounts. Though two or

more requests with 10,000 tokens could not be run multiple times at the same minute as

illustrated on experiments outcomes below, where both have the same prompt requested and

only one of them was successful.

Figure 3.30 - Successful ChatGPT API Request with Type metrics: SLOC, NOM, NPM, WMC, DEP,

I-DEP and FAN-IN metrics

Source: Elaborated by the author

66

Figure 3.31 - Failed ChatGPT API Request with Type metrics: SLOC, NOM, NPM, WMC, DEP, I-

DEP and FAN-IN metrics

Source: Elaborated by the author

As the experiments are respecting the documented OpenAI limitations, OpenAI’s

support was engaged, which just provided us with instruction to limit the usage rates or to

request aditional rate, though no explanation on why the rate was limited below the documented

rate (full answer attached on appendices) Likely this issue is due to GPT-4 Turbo model be

constrained, so OpenAI reduces the limit to keep it operationally.

To progress on this work, the analysis’s scope was reduced to find and determine what

amount of data it could be consistently run without issues, meaning number of metrics that

could be used. This would consist of to limit the number of metrics that are compiled into the

prompt, referred on 3.1.4, so the logic was created to run the process normally, though when

creating the prompt string from the data, to limit to a hardcoded limit, like illustrated on Figure

3.32. In future works, better approaches could be investigated, as detailed in section 3.2.4.

For Type Metric data, experiments determined that one isolated request with 85 types

would be successful using <DATA> and </DATA> as delimiter tokens. Additionally, when

run 10 consecutive requests, from this project empirical experience, rate limit was not only

applied on a per minute base as, as using “Thread.sleep(60000);” to assure less than 1 request

per minute was also resulting on further rate limitation (HTTP Error 429) than 1 isolated

request. Therefore, the maximum type metrics would need to be reduced to 50 types to be

effective to all delimiter tokens (from table 3.3) for experiment allow to run 10 consecutive

tests, to provide with accurate success rate. This will be initially explored in subsection 3.2.2.3

67

to assure fair testing, in which all the delimiters are tested with the same dataset size (number

of types/classes).

Figure 3.32 - Experiment limiting number of types

Source: Elaborated by the author

To avoid issues on the limiting, a sleep between executions was also introduced to assure

that the experiment does not suffer any limitations. Once the project’s OpenAI account was

upgraded to Tier 3, the issues were no longer seen for this project size. As projects can be as

complex as the developers define, keep the current logic of provide a limitation will be needed,

though at a higher value. This limit is needed independently of rate limitation, as GPT-4 Turbo

model supports requests up to 128000 tokens, therefore datasets that would generate more than

this number of tokens would naturally not be supported.

Project account was upgraded to Tier 3 usage, which for used gpt-4-turbo-preview

would have 300,000 Tokens per minute and/or 5000 requests per minute. After a period of

hours after the account upgrade, there were no longer issues with type metrics (observed on

experiment in Figure 3.33), as rate limitation was higher, only facing issues when multiple runs

were run without a 1 minute sleep.

68

Figure 3.33 - Experiment to find types with higher than 20 dependencies, with all 128 types

(successful)

Source: Elaborated by the author

Although the tested project no longer faces issues, as projects can increase its size, there

will still be a limitation, which will be provided as conclusion of this subsection. To get into

this conclusion, it was tested the method metrics, which due to its bigger dataset resulted on

failure when limiting on a very high value (same HTTP 429 error, due to rate limit).

Figure 3.34 - Experiment limiting number of methods, failing

Source: Elaborated by the author

To determine the maximum acceptable number of methods and by extension the number

of tokens that OpenAI’s Tier 3 usage would allow it, same experiment for method was executed.

From the experiment, it was determined that the method limit would be around 985 methods

and around 66,000-68,000 tokens. This would be our final limits for method on the version

resulting from this work.

69

Figure 3.35 - Experiment to find the longest method, limiting to analyze 985 methods (successful run)

Source: Elaborated by the author

For this proof of concept, this will be a limitation, though it could be explored on future

works to improve this by applying techniques, like simplifying the method names when sending

to ChatGPTby creating a dictonary of methods. This could be implemented as following:

• When creating the prompt data, in the prompt each method is assigned a simpler

name, like method1, method2…

• On the prompt to ChatGPT, it is only provided the method1 name, but stored

locally a dictionnaire with the mapping between the real method name to

method1;

• ChatGPT responses need to be processed to replace all method1 name references

to its real name. There could be 2 ways to do so:

o Creating a class or classes to hold the logic to scan the text to find this

occurencies and change it, having the code processed locally;

o Or, creating a prompt to provide the answer and the conversion structure

to request ChatGPT to replace all method1 with its real name (which

needs to be provided on the prompt).

When tested the approach above, by sending ChatGPT API just the placeholder names,

it was noticed that there is a reduction on the number of tokens used, going from 65991 tokens

to 57188 tokens (on 985 method limitation), giving a reduction of 8803 tokens used (or

13.33%). With this improvement, the ChatGPT is able to analyze the full project on this test

case (which has 1185 methods), besides also improving the answer correctness as it will be

presented on subsection 3.2.2.3.

70

Figure 3.36 - Experiment to find the longest method with name placeholder, limiting to provide 985

methods (successful)

Source: Elaborated by the author

Interesting to note that without this placeholder strategy, which will be called as

dictionary technique (later it will be present the concept of having a dictionary for this), it is

expected that as methods tend to have more complex names, method name will be converted

into higher number of tokens and as there is less metrics per name, also influence on the prompt

to have higher token per data entry. This was confirmed on experiments, as on type’s metric

each data entry would be 10.79 tokens/data entry, while on method’s metrics10 tokens/data entry.

As result, less data could be analyzed on method analysis, though more methods comparing to

number of types, because types have more metrics than methods.

In conclusion, this project will work on limiting the size of the entries to not surpass

around 67,000-68,000 tokens, which would translate on around 56911 types and 985 methods,

when analyzed separated. Future enhancements on data limitation could be explored, like:

o token usage improvements, which should be explored via testing. This would just push

the limit higher;

o upgrade OpenAI account to a higher usage tier; considering that model has 128,000

tokens limit per request, this would just push the limit higher;

o create scalable solution to break the data into blocks and send requests to ChatGPT in

batches of data, then combine the results into new requests to ChatGPT. For instance,

send first 100 types and ask which to prioritize, than send the top 1 from each batch to

a new request.

9 Calculated by the differences on context tokens used on experiment with data from 127 types and experiment

with data from 128 types, which was 3298 (15169-11871) tokens, giving a 117.78 tokens per type. As each type

has 6 data entries (5 metrics+name), finally it would give 10.7 tokens/data entry.
10 Calculated by the differences on context tokens used on experiment with 700 method limitation and experiment

with 900 method limitation, which was 13864 (60418-46554) tokens, which give us a 69.32 tokens per method.

As each method has 6 data entries, finally it would give 11.55 tokens/data entry.
11 Calculated based on the limit of 67,000 context tokens found empirically divided by 117.78 (token/type) found

empirically.

71

3.2.2.3 Defining data structure for GPT-4 Turbo

This section presents the finalized data structure to be used, the experiments that lead to

it, its success rate, and a forward-looking vision on areas to improve. Therefore, this section

also presents more robust testing with bigger dataset and number test runs, so that more

accurately analyzes the results and provides conclusions.

As an expansion from experiments on section 3.2.2.1, this session experiments will keep

focusing on easy-to-validate tests, though experiment on bigger dataset only on GPT-4 Turbo.

For this purpose, type metrics (referred to in section 2.4.1) are used, and the test is to request

ChatGPT which types have more than 20 dependencies.

The experiment is done with all delimiter markers and results are compiled on table 3.4,

as already done in similar experiments on section 3.2.2.1. Due to initial API rate limitation,

before the project’s OpenAI account be upgraded to Tier 3, this first experiment was conducted

limiting to analyze only 50 types as that was the maximum number of types that ChatGPT

would process for some delimiters token. The result expected was to have 4 specific types

returned, which were between the 50 first listed types and have more than 20 dependencies.

The experiment is also time consuming as it was required to wait over a minute for each

next API call (due to already discussed API rate limitation on Tier 1) and the test consisted of

10 consecutive test runs, taking over 70 minutes for all delimiters. From each experiment, it

was read and interpreted the ChatGPT API printed answer on the console (extracts partially

added to Appendix A) to determine its percentage (from the 10 tests) of correctness and if it

have the right information amount, to then compile in the Table 3.4.

Based on the experiment results, it was defined that the best data configuration was

using <D> and </D> to signalize the begin and end of a data, which responded correctly and

with precision in all executions as opposed to other configurations. This decision is also

supported by the fact that it consumes the least context token between other delimiters with

more than 80% correctness. There are important benefits from this, for instance, being able to

handle bigger codes (higher number of types), being less expensive (OpenAI charges per token)

and having faster processing.

72

Table 3.4 - Experiment to determine effectiveness on recognizing types with 20+ dependencies

Token to

mark

beginning of

data

Token to mark

ending of data

10 consecutive runs

Nº of types Context tokens

Answer Quality

Correctness
Information

Amount

<BEGIN

DATA

TOKEN>

<END DATA

TOKEN>
50 8372 90% 100%

<BEGIN

TOKEN>
<END TOKEN> 50 7170 50-100%12 100%

<DATA> </DATA> 50 5968 80% 100%

<D> </D> 50 5968 100%13 100%

| (Vertical bar) | (Vertical bar) 50 3917 50% 100%

(Single Space) (Single Space) 50 3865 50% 100%

NO

SEPARATOR

NO

SEPARATOR
50 3363 70% 100%

Source: Elaborated by the author

By upgrading OpenAI’s Tier 3 usage (discussed in section 3.2.2.2), the experiment with

bigger dataset could be run, which was used to validate the effectiveness of the structure or if

any further prompt engineer could be explored. Therefore, the same experiment was run with

all project’s types, then the answer should return 5 types (1 was not on first 50 types DR-Tools

report), though the result was not as good as previous limited scenario, as answer was only

completely correct on 18 of the 50 executions.

Figure 3.37 - Experiment to find all types with higher than 20 dependencies (no limit, 128 types)

(successful)

Source: Elaborated by the author

The low success rate compared to previous experiment required further analysis as the

experiment is requesting 5 answers and is returning types or substrings of type’s name that do

have more than 20 dependencies. On table below is presented an illustration of the result divided

12 Can be considered 100%, if “options.OptionsTest” are considered as if it was “selection.options.OptionsTest”.

Otherwise, 50% as it was referred 5 times to “options.OptionsTest” (which does not exist and has no other type

with a name close to it).
13 All answers were the same and precise on the 10 tests.

73

by type that should be reported, highlighting the number of requests that were missed or

misrepresented on the answer (the console outputs are on Appendix A).

Table 3.5 – Data analysis success rate by type (100 iteration using <D></D> and real names).

Type Missing on Misrepresented
Success

Rate

Missed

alone

Missed with

other

output.MetricResultJSON 6 88% 4 2

parser.java.visitors.TypeVisitor 2 96% 2

parser.java.visitors.MethodVisitor 0 100%

selection.options.Options 0 100%

selection.options.OptionsTest 18 3 58% 15 2

Source: Elaborated by the author

The results of the experiment above provide us with a good 88.4% success rate when

analyzed individually by type listed, because though only 36% of executions listed all types, 3

types have over 96% success rate. Based on this relatively high success rate for complex and

large data, this structure could be considered sufficient for this work as a proof of concept as

good success rate was observed on smaller datasets.

By analyzing the experiment above’s data, there was a common factor to the types that

was not being correctly and consistently reported: all of them have other types with similar

names or that were a substring of them. For example, “selection.options.OptionsTest” has

another type name as part of its name as it is the case for “selection.options.Options”. It was

also observed that in some cases there was a type listed that did not exist, though were a

substring of a type’s name, for instance “selection.options” is not a type but is a substring of

both types listed above.

Therefore, if there were issues on identifying what was the name of the type, what could

help the LLM to correctly identify the data is providing a list of all types in a clear way. Based

on this idea, a new experiment was run with prompt structured as below:

• Have a system prompt with:

o the statement “Act As…”;

o context of what it will be analyzed with description of data structure;

o then the list of types separated by “|”;

• Then a second user prompt with:

o question/request;

o answer limitation requirement;

o metric data;

74

With the structure above, the same experiment from Figure 3.37 and table 3.5 was

executed, though this did not prove to have any advantages, even if the number of tokens has

increased. Therefore, this would not be an effective solution and will not be further investigated.

Another option already discussed on API rate limitation section (section 3.2.2.2) is to

simplify the name of the types to avoid this misinterpretation by the model, which is close to

the human failures to analyze similar words. The concept of this idea would be to create a

dictionary, assigning to all project’s names (for types, namespaces, or methods) a new unique

and simpler name and use that unique/simpler name to provide to ChatGPT API request. The

process would be as follow:

• DR-Tools run the analysis;

• MetricResultGPT class would create the placeholder’s name, simple and unique,

like method1, method2…

• MetricResultGPT would create the dictionaries with mapping between real name

and placeholder name, which could be another class and/or part of the prompt

engineering class;

• MetricResultGPT would return the prompt data part using only the new simple

names;

• ChatGPT API would be called and respond using only the placeholder’s name,

which will reply using the placeholder’s name;

• Before providing the answer to the end user, it would be needed to go through a

process to convert the placeholder’s name back into the original name. When

implemented, approaches below could be tested:

o creating a logic inside the DR-Tools project to have the mapping in the

class and check the ChatGPT API answer for occurrences of the

placeholder;

o providing ChatGPT API its previous answer (with placeholder) and the

mapping list of real names/placeholder and request it to change

occurrences of placeholder per the real name.

To confirm the approach above, the placeholder creation and prompt generation were

tested with it, so that only the placeholder’s name is sent. On this project test, a logic was created

to when creating the prompt string with DR-Tools’ metric data, all names being replaced with

a prefix “type” and a counting integer number, so that names resulted on a list starting on type1

until type 128.

75

Figure 3.38 - Experiment to find all types with higher than 20 dependences using dictionary technique

(successful)

Source: Elaborated by the author

With the dictionary technique, it was possible to achieve 100% success rate on the

dependency test, which has proven to be the most effective methodology so far, though it adds

complexity to the problem as it needs to keep a dictionary and have a logic for the translation.

To execute the translation, it was ChatGPT API, with instruction to act as a “find and replace

tool” and replace the answer with values from the placeholder/type name mapping list, which

showed successful results as on figure 3.39, in which it identifies and translates correctly.

Figure 3.39 - Experiment to find all types with higher than 20 dependences using dictionary technique

(successful)

Source: Elaborated by the author

To validate the effectiveness of the dictionary technique, it was tested to run the test 100

times and the result was impressive, with 100% accuracy and precision. Based on these results,

it was determined that this will be the structure to be used. Therefore, it was concluded that the

data structure for this project’s prompt will be:

• format the data with <D> to signalize the starting of a data or data group;

• data name (method name, type name or namespace name) to be provided with a

simple placeholder name, in format like method1, type1 or namespace1;

76

• format the data with </D> to signalize the ending of a data or data group;

• create a dictionary to be provide on string format, with mapping of placeholder

to real name;

• each insight to be generated with 2 ChatGPT API calls:

o first with data and request using placeholder names;

o second with first answer and placeholder to real name mapping,

requesting for replacement.

Though the methodology already has successfully reach 100% from our testing, in

future works the below could be evaluated and changed if advantages are proven:

• using fine-tuning model provided by OpenAI to train the ChatGPT to recognize the

data, though for GPT-4 Turbo that is currently only on experimental access program

and would also require data training to be developed;

• developing a more complex prompt engineering, other techniques could be tested,

though it might not be possible to determine the success rate without developing and

testing it;

• transforming the second API request (for placeholder replacement) into a local

program logic, though needs to study the investment.

In conclusion, with the placeholder and dictionary strategy it was possible to reach

100% accuracy and correctness on the project’s experiments, therefore no open topic would be

kept on this other than exploration of more efficient techniques to reduce time and/or token

usage. However, further testing might be needed to assure if this 100% success rate resists

further testing and investigation to prove it as near perfect.

3.2.3 Prompt Engineering structure

This section summarizes and presents the process to determine the chosen prompt

structure to the proof of concept by revisiting some previous experiments’ findings. From such

experiments, there are already a set of findings (or best practices discovered/confirmed) that

will be used to guide the project prompt engineering and to define the final prompts.

Before defining the prompt structure and best practices, experiments were performed to

validate if ChatGPT would understand and have knowledge from software engineering. These

experiments produced positive results with correct and insightful feedback/advice, though hard

to read or with very inconsistent ways of answers. To address this issue, the previously

77

discussed best practice to provide with answer requirements, specifically size, was implemented

and provided great results.

Furthermore, it was found via experiments more effective to provide the data to be

analyzed at after the request/question. Otherwise, the model’s answer correctness could be

negatively impacted by hallucinations. A great example is the previous referred experiment of

identifying types with more than 20 dependencies, which provided worse answers when prompt

was changed to provide the type names before the prompt request/question.

Figure 3.40 - Extract from experiment to extract types with 20+ dependencies though providing data

before the request

Source: Elaborated by the author

The experiment resulted on an answer containing more types than it should, as opposed

to every previous iteration of this experiment the model’s answer never provided more than the

expected 5 types, the issues were when 1 or 2 types were missing. Likely this behavior is due

to LLMs being statistical models and having the data provided before the question influences

the model to include the data into the answer to then filter some out. However, when

request/question is before the data, the model is influenced to start formulating the answer and

then analyze which data should be included. As this work does not seek to explain ChatGPT

behaviors but understand how to use them, no further investigation or discussion will be raised

on the reasons for this behavior.

Based on findings throughout this project’s experiments, a set of best practices was

defined as detailed below:

• Provide the model with context first:

o Start with the “Act As …” statement.

▪ Why: helps the model to contextualize what it is receiving and provides

an answer to the perspective of who he is acting as to better understand

the words. Because, for example, “SLOC” on software engineering

78

means Source Lines of Code, while for engine technology means

Specific Lube Oil Consumption14.

o Clarify the activity the model is performing.

▪ Why: helps to drive the answer to fulfill the activity.

o Clarify what will be presented to the model.

▪ Why: helps to make sure that it will be better interpreted.

• Provide the model with answer’s requirements:

o Provide the size desired for the answer (limit its size).

▪ Why: it provides a more accurate and direct to the point answer.

o Provide the format for the answer.

▪ Why: avoid having unnecessary information or difficult to understand

formatting, like big text blocks.

• Provide prompt in the following sequence:

o Start with the context, starting “Act As …”.

▪ Why: helps the LLM to understand which should be its perspective over

the remaining of the prompt.

o Request/question.

▪ Why: a strong requirement is to have it presented after the context and

before the data, not necessarily the second item, as context could be

composed of multiple sentences.

o Request/question requirements.

▪ Why: better answers are generated when answer’s requirements are

established, being after the request/question have been proven to be more

effective, though not as strongly as having context first and data after

question.

o At last, the data.

▪ Why: in previous experiments, it was noticed if data is provided before

the request, the answer would be more influenced by the data than what

was requested, so providing at last improves the quality and avoids a

prolix answer.

14 Found via https://acronyms.thefreedictionary.com/sloc.

79

Based on the best practices above, the structure of this work prompts will be as the

following example, which (pending confirmation studies) is also an applicable for other

projects, tools, or datasets:

• context: “Act as a Software Architect, providing advice to a new developer on a

refactoring project, based on the summary metrics provided after <D>.”

• request/question: “What should be the areas of focus to the developer to refactor

this code based on the Metrics?”

• answer requirements: “Answer the top 2 in a list, for each provide one paragraph

justifying why needs refactoring and another paragraph describing refactoring

techniques to be used citing references with link.”

• the structured data.

As explained on last section, the dictionary technique will be used to convert names to

placeholders and then convert it back from ChatGPT answer, though all this abstraction is

implemented directly on chatGPTAPI class, and the dictionary is generated via MetricOutput

class. This will be transparent for end users and prompt engineering, as the data provided to

ChatGPT API will only be using the placeholder and chatGPTAPI class will embed the

translation logic as explained on section 3.1.1.1.

One important consideration is that due to LLM’s non-deterministic nature, two

executions with same prompt and data would not produce the same response. This requires

more testing for validation and prompt engineering improvements to reduce inconsistencies; in

previous experiences this phenomenon was observed and reduced by better prompt engineering.

Considering the complex topic that is code refactoring and software engineering, when looking

from a top-down perspective, it might be harder to determine if advice provided is the best

decision, therefore the focus will be on if it is good advice.

These prompt engineering structure’s obtained results, which will be presented and

explored on chapter 4, demonstrate the value of an integration between ChatGPT and DR-Tools

to the software engineering community, which was this work’s goals with this proof of concept.

Therefore, for this work no further investigation and improvements will be explored for prompt

engineering.

For future works, it could be further investigated how to assure quality and/or improve

consistency, though more importantly new prompts could be developed to expand the questions

answered by the integration. Another research route could be to do a deeper analysis of the

results to quantify the integration effectiveness and precision.

80

3.2.4 Prompt scope definition

This subsection presents what prompts and outputs were desired in the tool for its final

version, therefore the context of what was developed is clear to the reader.

This project goal is to prove that ChatGPT combined with DR-Tools can provide

valuable insights on refactoring projects to a software engineer as a proof of concept. Therefore,

no further automation will be explored at this work, and the scope will be limited to answer the

questions below:

• What should be focused on the code refactoring?

• What should be done?

• What technique should be used? Including some references about the topic to

the developer to further learn.

For the proof of concept, it was established that no changes to DR-Tools’ commands

would be made, so the same commands will be used by end users (which was explained on

subsection 2.4.1). Thus, when user is running the tool, it will already define which data will be

analyzed, this project just changes that at the end of the data presentation there is an insight of

what should be investigated, refactored, and which technique to be used, all provided by

ChatGPT via this project’s integration.

Due to ChatGPT API limitations, the scope of this work needs to include limitations to

what can be analyzed, as currently ChatGPT API provides limitations for longer prompts, due

to its rate limitation (which sometimes is inconsistent with its documentation). In result, for

some large java projects, some insights need to have limited amount of data provided to

ChatGPT model, otherwise the API request would fail.

As proof of concept, the solution delivered is that all requests will have an insight

provided from ChatGPT, though if the project number of some entity exceeds what the

integration can support, the insight will be only based on part of the data types and the user will

be informed of it. No solution for this challenge was developed to support unlimited data,

though if there is a need for such, in future works the following options could be studied:

• segmenting the data into groups of supported amount and multiple requests for each

group, then take the ones highlighted as needing refactor to run a next interaction and

repeat the process until it is possible to run for all types;

• do a cascading analysis by hierarchy, it means the analysis starting on the namespaces,

which will return which namespaces need refactoring the most. Then just do the analysis

81

of the types from those namespaces. The same interactions could then be done to

methods;

• for every analysis, if the number of entities exceeds what ChatGPT API can handle, a

filter out which entities’ metric data will be provided in the prompt, based on its metrics

compared to the statistical data, for example.

3.2.5 Prompt Engineering Class

This subsection explores how prompt engineering is coded for integration. The prompts

content generation is centralized on the promptEngineering class, which is based on the data

analysis selected by the user as the output, will provide the best prompt to be used for the

context.

This approach allowed this project to have a more modular architecture, which

simplifies improving the prompts and the prompt logic without needing changes to the rest of

the classes. The class is created with the metrics object and the output option (referred and

explained on subsection 2.4.1); currently the output option is defining the prompt and the

metrics object provide the data in its prompt form, developed on subsections 3.1.5 and 3.2.3. In

addition, having the metrics object within the class allows us to use the metrics data in prompt

decision making, a powerful enhancement which could add more precise prompts and answers

when implemented (in future works).

This class holds the logic to build the prompt, which will be returned by one public

method, while this method uses other private methods to generate the different sections of the

prompt, being the context or the request. There is no need to provide information to the class

after its creation as it is created with the output option requested and the metrics object, what

allows it to have all info needed for decision making.

As proof of concept, the final product of this work is subject to future enhancements to

achieve its full potential, which can be easily explored by the modularity of the class. The

current format of the class is simple and with limited prompts, though new versions with more

complex arrangements can be explored in future work.

The first version of the class used on this project is divided as below:

• the class constructor:

82

o which receives the output option as a string (values like “-s”) and an instance

of the class holding the metrics (DR-Tools’ “MetricOutput” class), both are

stored in the class;

• a public method “returnPrompt“: returns the full prompt to be used:

o concatenates parts of the prompt to return in a string:

▪ prompt’s context part: returned from private method;

▪ prompt’s request part: returned from a private method;

▪ metric data: returned via MetricOutput class;

• private method “promptContext()”: returns the context part “Act As..”:

o based on output option, provide different contexts;

o can be improved to already give direction based on some metric;

• private method “promptInstruction()”: return the request to the model with

instructions on what format the response should be.

o based on output option, provide different requests;

o can be improved to already narrow the request to what data might indicate.

Currently the class has a very simple structure and limited logic, which is enough for

this proof of concept and to already provide valuable insights. However, for the future works,

it was already envisioned two improvements that could be explored as a natural evolution and

validate if further value can be added, which are:

• using the data (retrieved via MetricOutput class) to base the prompt generation,

then providing a more closed set of requests to ChatGPT model;

• developing a prompt logic to use a previous response from ChatGPT to create

new prompts, for example:

o 1st ChatGPT API Call: requesting which types need refactor based on the

types metric’s data;

o 2nd ChatGPT API Call: requesting what methods should be refactored

based on the methods metric’s data, providing only the data from the

methods of the types appointed by the 1st request’s answer;

o 3rd ChatGPT API Call: requesting what should be improved and what

technique to be used, based on the metrics for the method’s appointed on

2nd request’s answer.

83

3.3 DR-Tools Code Health proof of concept

This section presents the potential of the integration of DR-Tools Code Health with

ChatGPT API, which will only be possible once DR-Tolls Code Health code is finalized.

Therefore, the experiments performed are using data generated by DR-Tools Code Health, but

manually formatted and hard-coded into the ChatGPT integration according to previous

sections specifications. The section will be divided as following:

• DR-Tools Code Health data;

• Prompt engineering for DR-Tools Code Health experiment;

• Results from DR-Tools Code Health experiment.

3.3.1 DR-Tools Code Health data extract

This subsection presents the data used for this proof of concept experiment and how it

was obtained. It will also be explained at a high level what the data is and why this was chosen.

DR-Tools Code Health is the evolution of the already explored DR-Tools Metrics,

which the biggest enhancement is its code smells detection and ranking, though there are several

other enhancements, like more metrics, code smells co-occurrence, creation and calculation of

an indicator, CDI (Code Disease Indicator), etc. For this work, it is explored just one of these

enhancements, which will be the code smells detection.

Code smells detection data was selected for this proof of concept as it could be

interpreted as a direct extension of previous worked metrics and was the initial goal of this

project. Also, as the integration is manually generated and prompts are being transcript from

results extracted from the tool, it gives the results on a similar structure from DR-Tools Metrics

when run for type metrics.

The data used for the proof of concept experiment was the output of command “lst --top

5”, which reports the 5 types with code smell that require refactoring the most according to DR-

Tools Code Health computing. This specific data was selected to reduce the amount of manual

work to later transcript the results into prompt form.

84

Figure 3.41 - Output from DR-Tools Code Health command “lst –top 5”

Source: Elaborated by the author

The data to be used on our experiment is the one presented on Figure 3.41, which was

also extracted in text form, which will be formatted to be used in the experiment. The prompt

creation will be explored in the next section.

3.3.2 Prompt Engineering for DR-Tools Code Health data

This section presents the prompt engineering done to have the data extracted in section

3.3.1, prepared to be fed to ChatGPT via API. It will explain the process and the reasons for the

decisions.

The prompt engineering of this experiment is using the knowledge and definitions from

subsections 3.2.2.3, 3.2.3 and 3.2.4. Therefore, the prompt will be structured as below:

• “Act as” statement:

o “Act as a Software Architect, providing advice to a new developer on a

refactoring project, based on the code smells metrics provided after

<D>.”

85

• Question/request:

o “Which types should be the of focus to the developer to refactor this code

based on the Metrics?”

• Answer requirements:

o “Answer the top 2 in a list, for each provide one paragraph justifying

why needs refactoring and another paragraph describing refactoring

techniques to be used citing references with link.”

• Data:

o Formatted as defined on section 3.2.2, which is to structure with <D> to

signal begin of a data and </D> for end of a data. On Figure 3.42 it is

represented the data with extra “new lines” to facilitate reading.

Figure 3.42 - DR-Tools Code Health command “lst –top 5” data in prompt format (added new lines to

facilitate reading)

Source: Elaborated by the author

The final prompt for this experiment was hardcoded directly into the code and is

presented in figure 3.43 with the code used. This prompt will be used to generate the ChatGPT

answer analyzed in the next subsection.

Figure 3.43 - Final prompt for DR-Tools Code Health experiment and how it was coded

Source: Elaborated by the author

86

3.3.2 ChatGPT insights for DR-Tools Code Health data

This subsection presents the results from the experiment and gives a brief analysis of

the results obtained. Based on such results, the subsection finishes by providing a forward-

looking perspective and what is envisioned as potential integrations.

Using the prompt defined in section 3.3.2, the experiment presented on Figure 3.44 was

conducted to request for insight from ChatGPT API. The result was consistent with experienced

with DR-Tools metrics and insightful using the metrics, which are present on both, also using

the smells detect to corroborate model answer, as can be observed in the response obtained.

Figure 3.44 - DR-Tools Code Health experiment results

Source: Elaborated by the author

When analyzing the quality of the answer, it is observed that it is consistent with what

is being observed on other experiments, to be explored on section 4.2, which runs a similar

experiment, but only with DR-Tools Metrics data. It is important to note that on both requests

the observations over the metrics are correct and indeed the types are the ones which have more

complex logic and likely are taking too many responsibilities.

 Furthermore, when asked about techniques to be used on the refactoring, it provided

valid and existent techniques and referred to well stablished works on refactoring and software

engineering, like Fowler (1999) and Kerievsky (2004), both previously mentioned on this work.

 In conclusion, this experiment proves that the integration between DR-Tools Code

Health and ChatGPT API holds a lot of potential and already proved to be insightful and provide

87

value to the software engineering community to facilitate data interpretation, especially for less

experienced developers doing refactoring projects. Any further analysis on the quality or

implementations will be left for future works as there are multiple possibilities for future

projects, for instance:

• performing the same level of integration with DR-Tools Code Health as it was done

with DR-Tools Metrics;

• performing a deeper analysis to quantify how precise are the insights provided by

ChatGPT, looking from the perspective if they were the most effective;

• designing different prompts to have questions answered or creating a more interactive

interface, in which end-users could better chose what they want insights on.

88

4 RESULTS: QUALITATIVE ANALYSIS OF USE CASES

This chapter presents the final results of our integration and does a qualitative analysis

of the results according to the author, to evaluate if it was helpful and insightful. It consists of

3 use cases: summary metrics (-s), type metrics (-t) and method metrics (-m).

Due to the non-deterministic characteristic of ChatGPT answers, it was decided to run

the experiment 4 times consecutively for each scenario, to generate a set of answers that could

be analyzed and compared. The decision of only 4 executions instead of a higher number is due

to 2 reasons:

• time consumed on analyzing multiple answers as well as the time that would be taken

for the model to generate multiple answers, considering that each execution took 23

seconds to 185 seconds;

• costs on generate multiple answers, while not much benefits could be extracted from

more execution for the result analysis that this project is proposing. Noting that some

use cases cost $0.5921515 (American Dollar) per execution, and on this project, it was

invested $120 to get to the results to be presented;

Each one of the three use cases will be explained in a specific section, presenting a high-

level qualitative analysis of the results obtained. It is important to note that this work will not

focus on providing a detailed and deep analysis, though it will just provide an analysis about

correctness, consistency and areas that could be improved in future works. To perform such

qualitative analysis having multiple answers allows to be checked if the model is answering

consistently and more accurately.

A summary of the results presented in this chapter can be found on Table 4.1; its

meaning and conclusions will be developed through this chapter and on chapter 5.

Table 4.1 - Proof of Concept results per use case

Use Case Metric Processing Time Context Tokens Generated Tokens Cost Quality

Summary 22s-28s 307 570-620 $0.02017-$0.02167
Consistent

Good

Type 62s-85s 14691 695-770 $0.16776-$0.17001
Consistent

Good

Method 82s-143s 57229 536-662 $0.58837-$0.59215
Inconsistent

Mixing data

Source: Elaborated by the author

15 Use case 3 with Method metrics have one execution using 57229 context tokens and 662 generated tokens,

totaling $0.57229 for the context tokens (rated at $0.01/1K tokens) and $0.01986 for generated tokens (rated at

$0.03/1K tokens)

89

4.1 Use Case 1: Using Summary metrics to provide insights

This section presents the results obtained by our final integration for the use case that

the end user is running DR-Tools Metrics to retrieve summary metrics (-s output option). This

scenario is the one that requests the top 2 focus areas for refactoring based only on the Java

project’s summary metrics, which is requested via the prompt on figure 4.1.

Figure 4.1 - Prompt used for ChatGPT’s insights based on summary metrics

Source: Elaborated by the author

With the prompt above, the 4 tests were executed to validate the results, which are

presented below and will be further analyzed in the next subsection.

Figure 4.2 - Result from ChatGPT’s insights based on summary metrics (1st request)

Source: Elaborated by the author

90

Figure 4.3 - Result from ChatGPT’s insights based on summary metrics (2nd request)

Source: Elaborated by the author

Figure 4.4 - Result from ChatGPT’s insights based on summary metrics (3rd request)

Source: Elaborated by the author

91

Figure 4.5 - Result from ChatGPT’s insights based on summary metrics (4th request)

Source: Elaborated by the author

When analyzing quantitatively the answer, it took from 22 to 28 seconds and generated

from 570 to 620 tokens, while context token is constant at 307 tokens as it is defined by the

prompt provided. From a financial perspective, each request (from experiments above) would

cost between $0.0217 to $0.02167, which is a reasonable price and could be judged as

economically viable.

It is important to note that with the prompt engineering techniques used, there was a

consistency on the answer size and time to generated, though they were as expected not

precisely the same.

4.1.1 Qualitative Analysis

Having in mind that the insights were provided based only on the data presented below,

it would be expected that no types nor what entities should be refactored would be mentioned.

Figure 4.6 - Data Analyzed

Source: Elaborated by the author

92

The first k point to be noticed is that though each test resulted in a different answer, in

general all had the same sense that there is a need to simplify the code and more importantly

the difference of code between the classes and methods. To support these findings the model

also provided the data which lead to that finding, for example, citing the standard deviation,

CYCLO or line of code.

By knowing the code and considering the metrics available for the analysis, it could be

confirmed that the refactoring advise is accurate, because there are methods on the code that

are indeed doing a lot of things as well as there are classes that have multiple methods that do

not interact with each other.

One interesting point is that on all answers there was good data structured on the answer

dividing what was the issue, the justification for the refactoring and the techniques to be used

with references. References that interestingly were also citing authors which based this work,

like Fowler et al. (1999).

4.2 Use Case 2: Using Type metrics to provide insights

This section presents the results obtained by this work’s final development when

running DR-Tools Metrics to retrieve type metrics (-t output option). This scenario is the one

that requests the top 3 types to be refactored based only its metrics, which is requested via the

prompt on figure 4.7.

Figure 4.7 - Prompt used for ChatGPT’s insights based on type metrics

Source: Elaborated by the author

93

Figure 4.8 - Result from ChatGPT’s insights based on type metrics (1st request)

Source: Elaborated by the author

Figure 4.9 - Result from ChatGPT’s insights based on type metrics (2nd request)

Source: Elaborated by the author

94

Figure 4.10 - Result from ChatGPT’s insights based on type metrics (3rd request)

Source: Elaborated by the author

Figure 4.11 - Result from ChatGPT’s insights based on type metrics (4th request)

Source: Elaborated by the author

When analyzing quantitatively the answer, it was taking from 62 to 85 seconds and

generating from 695 to 770 tokens, while context token is constant at 14691 tokens as it is

defined by the prompt provided. From a financial perspective, each request (from experiments

above) would cost between $0.16776 to $0.17001, which is a reasonable price and could be

judged as economically viable.

It is important to note that with the prompt engineering techniques used, there was a

relative consistency on answer size and time to generated, though they were as expected not

precisely the same.

95

4.2.1 Qualitative Analysis

This subsection analyzes the results from the experiments with ChatGPT insights based

on type metrics. To start the analysis, it is important to highlight that the amount of data was

128 types each with 11 metrics. For illustration and better context, Table 4.2 provides the top 5

biggest types and their metrics.

Table 4.2 - Top 5 biggest types (which includes types pointed to refactoring)

TYPE SLOC NOM NPM WMC DEP
I-

DEP

FAN-

IN

FAN-

OUT
NOA LCOM3

output.MetricResultJSON 377 43 39 64 25 16 4 22 5 0.95

output.MetricResultGPT 376 24 23 41 17 15 1 20 8 0.85

structures.results.TypeMetricResult 328 45 31 99 12 3 16 9 8 0.94

fixtures.output.JSONDataFixture 325 23 19 38 18 11 1 15 3 0.95

output.MetricResultCSV 285 35 35 46 17 15 4 22 4 0.96

Source: Elaborated by the author

The first key point that needs to be highlighted is the consistency presented by the model

when answering using the 3 types needing refactoring the most, because all 4 experiments have

answered the same list, which is:

o output.MetricResultJSON;

o output.MetricResultCSV;

o structures.results.TypeMetricResult.

It is also observed that the model has not simply listed the 3 biggest types, proving that

it is considering more metrics. Furthermore, when analyzed the justification, all of them

provided metrics supporting the refactoring, interestingly it is referring recurrently to LCOM3

highlighting the lack of cohesion and that the classes’ methods do too many different things.

All of which are true, as the classes do different computing on different data/classes, which

from knowing the code, it indeed could be a problem on those class’s readability.

Furthermore, the model has not only focused on this metric, but uses other metrics to

support this as other dependency metrics, like FAN-OUT (for output.MetricResultCSV and

output.MetricResultJSON) or FAN-IN (structures.results.TypeMetricResult) showing that it

also understands the problematic metric that each class have. Other metrics are referred to if

they could indicate issues, like SLOC, NOM, NPM, WMC, etc.

Then on the techniques, it has provided several good answers like “extract class”, which

makes sense, because mentioned classes are big and are doing too many unrelated activities.

96

There are over 10 techniques and for them different references are provided, including already

cited ones like Fowler et al. (1999) and providing links of interesting materials like

https://refactoring.guru/extract-class.

In conclusion, the insights provided were very consistent (to ChatGPT nature) and very

insightful, which could be of tremendous assistance to software developers that do not have

much knowledge on code refactoring. For future works, it could be explored:

o investigate if the insights are the best advice or if would have better refactors to be done;

o cascade from type analysis to a method analysis, limiting methods from types identified

based on this experiment prompt.

4.3 Use Case 3: Using Method metrics to provide insights

This section presents the results obtained by our final integration for running DR-Tools

Metrics to retrieve method metrics (-m output option). This scenario requests the top 3 methods

needing refactoring based only on Java project’s method metrics, methods which are requested

via the prompt on figure 4.12 sent to ChatGPT API.

Figure 4.12 - Prompt used for ChatGPT’s insights based on method metrics

Source: Elaborated by the author

With the prompt above, it executed the 4 requests to test the outcome, which provided

us with the results on Figures 4.13, 4.14, 4.15 and 4.15, which will be further analyzed on

subsection 4.3.1.

Figure 4.13 - Result from ChatGPT’s insights based on method metrics (1st request)

Source: Elaborated by the author

97

Figure 4.14 - Result from ChatGPT’s insights based on method metrics (2nd request)

Source: Elaborated by the author

Figure 4.15 - Result from ChatGPT’s insights based on method metrics (3rd request)

Source: Elaborated by the author

98

Figure 4.16 - Result from ChatGPT’s insights based on method metrics (4th request)

Source: Elaborated by the author

When analyzing quantitatively the answer, it was taking from 82 to 143 seconds and

generating from 536 to 662 tokens, while context token is constant at 57229 tokens as it is

defined by the prompt provided. From a financial perspective, each request (from experiments

above) would cost between $0.58837 to $0.59215, which could be considered significant cost,

though could be judged as economically viable considering software engineers as high paid

professionals. Though for enhancement it could be studied to filter out some methods that do

not meet some criteria, this would both improve processing times and reduce costs.

As opposed to the previous use cases, this case has not presented a consistency on the

refactoring suggested, which will be further discussed on subsection 4.3.1.

4.3.1 Qualitative Analysis

This use case has presented more inconsistency on the answer than previous use cases,

which is more evident when observed that the top 3 listed methods are not consistently the same

on the experiment’s 4 iterations. Although there was a less consistent answer, it was still an

acceptable level of consistency with 3 iterations having the same 3 methods cited, and as

observed on the Table 4.3 most methods were mentioned consistently:

99

Table 4.3 - Method needing refactoring according to experiments
Model Test 1 Test 2 Test 3 Test 4 Total

utils.files.SourceCodeLineCounter.isSourceCodeLine(String line) X X X X 4

javaProject.com.controller.Type.isSubtype(String dottedSubtype,

String collectionType)
 X X X 3

chatGPTIntegration.GPTintegration.GPTinsight() X X X 3

javaProject.com.controller.Type.isSubtype(ClassDescriptor

subDesc, ClassDescriptor... superDesc)
X 1

output.MetricResultGPT.showSummary() X 1

Source: Elaborated by the author

By reviewing the method metrics, especially for the methods mentioned by ChatGPT’s

insights (listed on Table 4.3), it is observed that the model is taking multiple metrics into

consideration for the advice, which is a good indicator. From the metrics, which are presented

on Table 4.4 for refactoring candidate methods (according to ChatGPT), it can be observed that

methods highlighted are indeed methods with some metric pointing to an issue.

Table 4.4 - Metrics from the methods appearing on ChatGPT answers

Method LOC CYCLO CALLS NBD Param

utils.files.SourceCodeLineCounter.isSourceCodeLine

(String line)
42 10 13 4 1

javaProject.com.controller.Type.isSubtype(String

dottedSubtype, String collectionType)
45 7 3 2 2

chatGPTIntegration.GPTintegration.GPTinsight() 94 5 12 3 0

output.MetricResultGPT.showSummary() 57 1 70 3 0

javaProject.com.controller.Type.isSubtype(ClassDes

criptor subDesc, ClassDescriptor... superDesc)
13 5 2 2 2

Source: Elaborated by the author

More importantly, on the justification for the refactoring, it is referring to the metrics

and interpreting what they mean. For example, on method

utils.files.SourceCodeLineCounter.isSourceCodeLine it is mentioned that cyclomatic

complexity (CYCLO) of 10 indicates high level of branching as reason for refactoring; on the

other hand, for output.MetricResultGPT.showSummary(), there is no mention of CYCLO, but

mentions of high number of calls as a justification for refactoring.

Through careful review, it was observed that there is an issue on the analysis and likely

linked to the similar name issue, which is that on figure 4.13, while there is the mention of

javaProject.com.controller.Type.isSubtype(ClassDescriptor subDesc, ClassDescriptor...

superDesc), it likely intended to mention fixtures.output.DataFixture.getMethodData(),

because the metric used matches with that method.

It was observed that refactoring techniques are good suggestions and provide good

references, like Fowler et al. (1999) and its website https://refactoring.com. Interestingly, as in

100

type refactoring ChatGPT often refers to the website https://refactoring.guru for further

information on some refactoring techniques.

In conclusion, insights generated from ChatGPT are helpful and add value, though

further refinement is needed, as on this use case specifically some wrong method mentioning

was observed, likely due to more complex names and bigger dataset to be analyzed. Based on

this, future work could be done to further investigate and provide a more detailed analysis,

besides exploring mitigation strategies to have a 100% reliable tool.

101

5 CONCLUSIONS

This chapter presents the conclusions from this case of study, initially presenting

challenges faced and how to overcome them, then contextualizing what was achieved at our

design’s level of effectiveness and concluding with a forward-looking vision to this project and

this new area of knowledge.

The first challenge that should be highlighted is that currently the ChatGPT API is a

new feature with a lot of limitations on data volumes and not with a clear deterministic

limitation. For example, the highlighted API rate limitation, in sections 3.1.1 and 3.2.3, when

issues were faced, although according to the documentation and known variables of the

experiments, there should be none.

Hard-coded limits on data analyzed (number of types, methods, or namespaces) were

created to overcome ChatGPT API’s rate limitation and data amount constraints because

projects can have various sizes. Nevertheless, a solution to scale to infinity size of projects was

not explored at this work. Although ChatGPT API’s data amount challenges are likely to be

improved as the tool improves on its infrastructure and on new versions supporting further data

volumes, a future work could also address this problem by developing a strategy to process the

data in blocks and combine the outputs to have a whole project overview without limiting

datasets. A possible solution could be to use the statistical data to compare blocks of data in

reference to the statistics, then having a recurrent process until the priorities are delimited.

The proof of concept developed on this work is already known to have not 100%

accuracy as observed on section 4.3 for analysis using method metrics, though its accuracy is

unknown. To solve this, a future work to analyze the outputs on a qualitative way and quantify

its accuracy could be performed, which would confirm the tool effectiveness in large scale, in

a way to certify a certain level of effectiveness as Tornhill et al. (2024) performed on

CodeScene tool, which claims to have 98% accuracy on its refactoring endeavors.

This work did not focus on assuring the best quality in the insights, but to prove that

insights could be generated and how to, as proof of concept, to be a starting point of future

works on the area. For a proof of concept and an initial investigation in this new area, the results

obtained are promising and its investigation allowed to progress on defining further best

practices for this project scope, which expanded and confirmed best practices provided by

White et al. (2023), such as confirming empirically the value of “Act as” statement.

102

The work resulted on the test cases presented, in which the insights from ChatGPT were

insightful and could give guidance to the beginning of the refactoring, thus achieving the

project’s goal. Future works can explore new prompt formats and further customizations in the

tool to improve the analysis, like having it focused on one area or requesting users what level

of refactoring they are willing to do.

This work was developed on DR-Tools Metrics, while the new and more powerful tool

will be made available in the upcoming months, DR-Tools Code Health. Once available, it

could open new opportunities to take advantage of integration of DR-Tools with ChatGPT, by

replicating this work with DR-Tools Code Health to explore its more complete data. This

integration was already emulated in section 3.3 with positive results. This new integration could

provide more focused insights on smells already identified instead of insights from the general

metrics.

A key finding on this work is some prompt engineering techniques to improve data

analysis, which proved to generate more accurate responses, like:

• order the prompt in this way: context, request/question, answer limitation and

then the data;

• use a dictionary and replace names on the data for more unique names, such as

type1 or method2, therefore ChatGPT does not try to interpret names or consider

or mix similar names;

o especially important on software engineering, as names tend to be

explanatory with multiple words and even punctuation, such as

“isSubtype” or “chatGPTIntegration.GPTintegration.GPTinsight”;

• provide data on a structured format, so that is identifiable groups of data.

In summary, this project proves the importance of prompt engineering, develops some

best practices, and shows how LLMs like ChatGPT are non-deterministic, creating a new area

of knowledge that is in its infancy, prompt engineering. It proved to be powerful and requires

much more research like this one to explore its potential, which is evidenced by similar works

as Tornhill et al. (2024) and White et al. (2023), both being developed in the area recently.

103

REFERENCES

BIGONHA, M. A. S.; FERREIRA, K.; SOUZA, P.; SOUSA, B.; JANUÁRIO, M.; LIMA, D.

The usefulness of software metric thresholds for detection of bad smells and fault prediction.

Information and Software Technology, v. 115, p. 79-92, 2019.

BROWN, W. H.; MALVEAU, R. C.; MCCORMICK, H. W. S.; MOWBRAY, T. K.

Antipatterns: Refactoring software, architectures, and projects in crisis. John Wiley and Sons,

Inc. 1998.

ELOUNDOU, T.; MANNING, S; MISHKIN, P.; ROCK, D. GPTs are GPTs: an early look at

the labor market impact potential of large language models. Working paper on arXiv, 2023.

FOWLER, Martin, et al. Refactoring: Improving the design of existing code. Addison-Wesley,

1999.

FOWLER, Martin, et al. Refactoring: Improving the design of existing code. Addison-Wesley,

second edition, 2018.

GOLZADEH, M.; MENS, T.; DECAN, A.; CONSTANTIONOU, E.; CHIDAMBARAM, N.

Recognizing bot activity in collaborative software development. IEEE Software, v. 39, n. 5,

p. 56-61, 2022.

JONES, C. The economics of software maintenance in the twenty-first century. Software

Productivity Research, Inc. 2006.

KERIEVSKY, J. Refactoring to patterns. Addison-Wesley. 2004.

LACERDA, G..; PETRILLO, F.; PIMENTA, M.. DR-Tools: a suite of lightweight opensource

tools to measure and visualize java source code. Publishing Press. 2023.

LACERDA, G..; PETRILLO, F.; PIMENTA, M.; GUÉHÉNEUCD, Y. G. Code smells and

refactoring: A tertiary systematic review of challenges and observations. Journal of Systems

and Software. Publishing Press. 2020.

MA, W.; LIU, S.; LIN, Z.; WANG, W.; HU, Q.; LIU, Y.; ZHANG, C.; NIE, L.; LI, L.; LIU,

Y.. LMs: Understanding Code Syntax and Semantics for Code Analysis. Preprint on arXiv.

ISSTA 2024, 16-20 September, 2024.

MENS, T.; DEMEYER, S.; BOIS, B. D.; STENTEN, H.; GORP, P. V.. Refactoring: Current

research and future trends. Electronic Notes in Theoretical Computer Science, v. 82, n. 3,

2003.

NASCIMENTO, N.; ALENCAR, P.; COWAN, D. Comparing software developers with

ChatGPT: an empirical investigation. Preprint on arXiv. 2023.

NERDYNAV. 107 Up-to-Date ChatGPT Statistics & User Numbers. Available at:

https://nerdynav.com/chatgpt-statistics/. Accessed on February 23rd, 2024.

104

OPDYKE, W. Refactoring object-oriented frameworks. 1992. 206 f. Dissertation (Doctor of

Philosophy in Computer Science). University of Illinois at Urbana-Champaign, Champaign,

1992.

OUYANG, S.; ZHANG, J. M.; HARMAN, M.; WANG, M. LLM is Like a Box of Chocolates:

the Non-determinism of ChatGPT in Code Generation. Preprint on arXiv. 2023.

RADJENOVIC, D.; HERICKO, M.; TORKAR, R.; ZIVKOVIC, A. Software fault prediction

metrics: A systematic literature review. Information and Software Technology, v. 55, n. 8, p.

1397-1418, 2013.

TELEA, A., VOINEA, L. Visual software analytics for the build optimization of large-scale

software systems. Computational Statistics, v. 26, p. 635–654, 2011.

TORNHILL, A.; BORG, M.; MONES, E. Refactoring vs Refuctoring: Advancing the state

of AI-automated code improvements. Whitepaper available at:

https://codescene.com/hubfs/whitepapers/Refactoring-vs-Refuctoring-Advancing-the-state-of-

AI-automated-code-improvements.pdf. Accessed on February 12th, 2024.

WAKE, W. Refactoring workbook. Addison-Wesley. 2003.

WHITE, J.; HAYS, S.; FU, Q.; SPENCER-SMITH, J.; SCHMIDT, D. C. ChatGPT prompt

patterns for improving code quality, refactoring, requirements elicitation, and software design.

Preprint on arXiv. 2023.

105

APPENDIX A – EXPERIMENTS’ PROMPTS AND RESULTS

This appendix presents the different experiments performed during the work

investigation that were not directly added to the text but could add value to the reader. It will

be organized by the same sections to facilitate finding the information.

Another intention of this appendix is to provide reviewers with the possibility of

reproducing our results and to have access to full prompts, which are full of data that would not

be possible to be provided in the main text. There will be some cases where a full prompt will

be multiple pages of data.

3.1.5 VALIDATING DR-TOOLS'S DATA ON CHATGPT API REQUESTS

This section will present the prompts used during the validations reported on the

subsection.

Prompts to test ChatGPT API’s understanding of metrics for type, with full prompt printed:

(prompt with 9172 words):

======================ChatGPT Insight (built prompt):

Prompt used (complete):

Act as a Software Architect. Provide all types with dependency higher than

20 dependencies for the code with the following metrics: <BEGIN DATA

TOKEN>Types metrics: <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.MetricResultJSON<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 374<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 42<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 38<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 63<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 25<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 16<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 22<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 5<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.results.TypeMetricResult<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 328<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

45<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 31<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 99<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 12<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 16<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 9<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 8<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.94<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.JSONDataFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

325<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 23<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 19<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 38<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 18<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 11<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 15<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

106

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultGPT<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 308<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 23<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 22<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 38<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 17<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 15<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 20<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 7<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.86<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.MetricResultCSV<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 282<END DATA

TOKEN> <BEGIN DATA TOKEN>NOM: 34<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

34<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 45<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 17<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 15<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

22<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: fixtures.output.DataFixture<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 269<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 17<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 17<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

17<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 17<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 11<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 12<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 10<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.72<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultConsole<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 263<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 23<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 22<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 38<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 17<END

DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 15<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 19<END DATA

TOKEN> <BEGIN DATA TOKEN>NOA: 4<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3:

0.93<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA

TOKEN>Type: javaProject.com.controller.Type<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 245<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 35<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 25<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 58<END

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN

DATA TOKEN>FAN-OUT: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 13<END DATA

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.85<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultFile<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 203<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

41<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 41<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 5<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 7<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 21<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

parser.java.visitors.TypeVisitor<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

189<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 19<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 42<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 21<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 3<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 16<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.58<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: parser.java.visitors.MethodVisitor<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 188<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

22<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 16<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 39<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 23<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 9<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 11<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.76<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

107

main.Bootstrapper<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 172<END DATA

TOKEN> <BEGIN DATA TOKEN>NOM: 16<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 49<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 10<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 9<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

14<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 7<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.80<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: fixtures.output.CSVDataFixture<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 169<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 15<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 15<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 26<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 8<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 8<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 11<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.MetricResultFileTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 164<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 18<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 16<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 18<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 8<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 22<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.38<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.TypeMetric<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 151<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

36<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 36<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 37<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 9<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 11<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 15<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.80<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.StatisticOfType<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 144<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 15<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 13<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 16<END

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 6<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN

DATA TOKEN>FAN-OUT: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.93<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.results.TypeMetricResultTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 135<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 19<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 17<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 23<END

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 8<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN

DATA TOKEN>FAN-OUT: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.97<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultJSONTest<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 131<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 22<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 22<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 22<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 4<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.93<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.MetricResultCSVTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 111<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 18<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 18<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 18<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 5<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.91<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

108

TOKEN> <BEGIN DATA TOKEN>Type: output.utils.InfoConsole<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 109<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 13<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 9<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

15<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 6<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.OptionsTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

104<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 20<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 19<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 20<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 22<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 19<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 20<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.SourceCodeLineCounter<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 99<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

6<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 29<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.ProjectInfoTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 96<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 17<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 15<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 19<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 10<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 5<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.94<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.results.MethodMetricResult<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 96<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 15<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 14<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 25<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 9<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

18<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 6<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.93<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.results.NamespaceMetricResult<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 94<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 17<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 16<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 26<END

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 9<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 15<END DATA TOKEN> <BEGIN

DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.94<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.results.MethodMetricResultTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 89<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 10<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 15<END

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN

DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.StatisticOfMethod<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 85<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 10<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 8<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 11<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA TOKEN>

109

<BEGIN DATA TOKEN>LCOM3: 0.94<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.namespaces.StatisticOfNamespaceTest<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 79<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 14<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 14<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.96<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

parser.java.JavaParser<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 74<END DATA

TOKEN> <BEGIN DATA TOKEN>NOM: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 16<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 7<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

11<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 6<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.50<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: structures.metrics.MethodMetric<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 73<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 18<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 18<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 19<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 11<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 8<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.79<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.results.NamespaceMetricResultTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 72<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 10<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 13<END

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN

DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

chatGPTIntegration.ChatGPTAPI<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

71<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 7<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultFake<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 70<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 21<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 21<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 21<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.ProjectInfo<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 69<END DATA

TOKEN> <BEGIN DATA TOKEN>NOM: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

9<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 11<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 9<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

10<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 6<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.75<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: utils.calc.StatisticalAnalysis<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 65<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 15<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 14<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 20<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 11<END

110

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.96<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.results.StatisticMetricResult<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 62<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 14<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 14<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 14<END

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 8<END DATA TOKEN> <BEGIN

DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.96<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.metrics.MetricThreshold<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

62<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 5<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.TypeData<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 61<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

12<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 11<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.55<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.StatisticalOperations<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 59<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 16<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 15<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 16<END

DATA TOKEN> <BEGIN DATA TOKEN>DEP: 6<END DATA TOKEN> <BEGIN DATA TOKEN>I-

DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN

DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA

TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.93<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticCallsOfMethodTest<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticCycloOfMethodTest<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticMlocOfMethodTest<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticNbdOfMethodTest<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END

111

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticParamOfMethodTest<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticDepOfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticFanInOfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticFanOutOfTypeTest<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticIDepOfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticLcom3OfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticNoaOfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

112

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticNomOfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticNpmOfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticSlocOfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticWmcOfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

12<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.StatisticData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

54<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 12<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: utils.calc.OutlierAnalysisTest<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 54<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

11<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 11<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.95<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.TypeMetricFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 52<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 12<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 12<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 12<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.Options<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 50<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 2<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 21<END DATA TOKEN> <BEGIN DATA

113

TOKEN>I-DEP: 19<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 19<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.statistics.StatisticOfTypeFixture<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 48<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 3<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

5<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 10<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 7<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultDOT<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 45<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 7<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

11<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.83<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: fixtures.MethodMetricFixture<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 43<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 10<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

utils.files.StringFormatTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 40<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 8<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

8<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 8<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: utils.files.SystemUtils<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 39<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 3<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.StatisticOfNamespace<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 37<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 5<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 4<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 6<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.NamespaceMetric<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 35<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

8<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 8<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 10<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.86<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.MethodData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

35<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 7<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 7<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END

114

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 6<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.58<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.NamespaceCouplingData<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 35<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 7<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 7<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 6<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.58<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: chatGPTIntegration.GPTintegration<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 35<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

2<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 9<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 9<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 10<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 7<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.MetricThresholdData<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 33<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 7<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 7<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 7<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 5<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.MetricDefinition<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 30<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

6<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 6<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 6<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 30<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 5<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.60<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.SummaryData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

30<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 6<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 6<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 6<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 5<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.60<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: utils.calc.StatisticalAnalysisTest<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 30<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

5<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 5<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.88<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.statistics.StatisticOfMethodFixture<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 30<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 3<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.model.Man<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 29<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 5<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 5<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

9<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> <BEGIN DATA

115

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricOutput<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 28<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

22<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 22<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 22<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 30<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

utils.files.JSONBuilder<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 28<END DATA

TOKEN> <BEGIN DATA TOKEN>NOM: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

6<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 6<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: javaProject.com.controller.Dispatcher<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 27<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

4<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 4<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

utils.files.SourceCodeLineCounterTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 26<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 2<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 7<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: parser.java.visitors.NamespaceVisitor<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 24<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 6<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.NamespaceMetricFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

23<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 5<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 5<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: output.utils.Gauge<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 23<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

7<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: utils.files.SystemUtilsTest<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 22<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 5<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

116

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.50<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

utils.files.StringFormat<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 20<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

4<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 9<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 6<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: fixtures.output.data.CyclicDependencyData<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 20<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

4<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.NamespaceData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

20<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 4<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 4<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.TypeResonanceData<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 20<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 4<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 3<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.67<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.model.Woman<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 16<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

3<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 5<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: fixtures.output.data.NamespaceDependencyData<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 15<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 3<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 2<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.75<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.MetricFile<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 14<END DATA

TOKEN> <BEGIN DATA TOKEN>NOM: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

11<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 11<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type:

selection.options.dependencies.TypeCouplingOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

117

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.general.AllMetricsOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.general.MetricVisualizationOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticAndTypeOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticTypeOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.strutures.TypeOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 11<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.model.Human<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 2<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 2<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 1.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.AllCouplingOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.CyclicDependencyOption<END DATA TOKEN>

118

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.InternalDependencyOption<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.NamespaceCouplingOption<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticAndNamespaceOption<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticNamespaceOption<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.strutures.NamespaceOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.view.QueueViewer<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 2<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.DependencyOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

119

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.general.SummaryOption<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.general.ThresholdsOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticAndMethodOption<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticMethodOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.strutures.MethodOption<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <BEGIN DATA

TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 2<END DATA

TOKEN> <BEGIN DATA TOKEN>I-DEP: 2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN:

2<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.controller.ClassWithComments<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 8<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.MetricResultNotifier<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 7<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

3<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 3<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.model.Child<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 7<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

120

1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN>

<BEGIN DATA TOKEN>Type: javaProject.com.controller.XClass<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.others.AnalysisContext<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

6<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.others.ClassVertex<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 6<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.OptionDefinition<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

5<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 19<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.MetricActivator<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: javaProject.one.A<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 5<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.two.B<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 5<END DATA TOKEN>

<BEGIN DATA TOKEN>NOM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 0<END DATA

TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP:

1<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-IN: 1<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NOA: 1<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3:

0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA

TOKEN>Type: javaProject.com.model.Person<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP:

0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 3<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

121

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: chatGPTIntegration.GPT<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricGPT<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 1<END DATA

TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA TOKEN>WMC:

1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: parser.TypeParser<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

1<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 2<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.controller.XMethod<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

3<END DATA TOKEN> <BEGIN DATA TOKEN>NOM: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN>

<BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.others.ClassDescriptor<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 3<END DATA TOKEN> <BEGIN DATA TOKEN>NOM:

0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA TOKEN>DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-IN: 1<END

DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA TOKEN>LCOM3: 0.00<END DATA TOKEN>

<END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.others.ObjectType<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 3<END

DATA TOKEN> <BEGIN DATA TOKEN>NOM: 0<END DATA TOKEN> <BEGIN DATA TOKEN>NPM:

0<END DATA TOKEN> <BEGIN DATA TOKEN>WMC: 1<END DATA TOKEN> <BEGIN DATA

TOKEN>DEP: 0<END DATA TOKEN> <BEGIN DATA TOKEN>I-DEP: 0<END DATA TOKEN>

<BEGIN DATA TOKEN>FAN-IN: 0<END DATA TOKEN> <BEGIN DATA TOKEN>FAN-OUT:

0<END DATA TOKEN> <BEGIN DATA TOKEN>NOA: 0<END DATA TOKEN> <BEGIN DATA

TOKEN>LCOM3: 0.00<END DATA TOKEN> <END DATA TOKEN> <END DATA TOKEN>

GPT Insight:

Based on the provided data, the types with dependencies (DEP) higher than

20 are:\n\n1. **Type**: output.MetricResultJSON\n - **DEP**: 25\n\n2.

Type: selection.options.OptionsTest\n - **DEP**: 22\n\n3. **Type**:

selection.options.Options\n - **DEP**: 21\n\nThese types have a higher

number of dependencies, indicating they are heavily dependent on other

types or components in the system. When considering architectural

decisions, it's important to evaluate whether these high dependencies are

justified by their responsibilities or if they pose a risk in terms of

maintainability and potential for change-induced defects. Reducing

dependencies, where practical, through techniques such as dependency

inversion, interface segregation, and modular design can improve the

system's flexibility and maintainability.

122

======================ChatGPT Insight end(built prompt)

3.2.1 IMPORTANCE OF PROMPT ENGINEERING

3.1.1.1 Bird Definition Experiment

This section will present results and prompts, either in its text or figure/screenshot form,

obtained from experiments executed as part of section 3.2.1.1 which were not used or provided

in its full form on the main text.

Figure A.3.1 – Bird definition experiment on latest GPT-3.5 Turbo without context definition

Source: Elaborated by the author

Figure A.3.2 – Bird definition experiment on latest GPT-3.5 Turbo with question first then context

definition

Source: Elaborated by the author

123

Figure A.3.3 – Bird definition experiment on latest GPT-3.5 Turbo with context definition (cat) first

then question

Source: Elaborated by the author

Figure A.3.4 – Bird definition experiment on latest GPT-3.5 Turbo with context definition (human)

first then question

Source: Elaborated by Author

Bird Experiment on latest GPT-3.5 Turbo (extracted on January 31st):

------Prompt Experiment 1:------

[1mPrompt: [0mWhat is a bird?

[1mGPT Answer: [0mA bird is a warm-blooded, feathered, egg-laying

vertebrate animal. They typically have wings and beaks, and are well known

for their ability to fly (although not all birds can). Birds are found in a

wide variety of habitats around the world and are known for their diverse

range of species, sizes, and behaviors.

[1mGPT processing time: [0m6 seconds

------Prompt Experiment 2:------

[1mPrompt: [0mWhat is a bird? In one line

[1mGPT Answer: [0mA bird is a warm-blooded vertebrate with feathers and a

beak, typically able to fly.

[1mGPT processing time: [0m3 seconds

------Prompt Experiment 3:------

124

[1mPrompt: [0mWhat is a bird? In one word

[1mGPT Answer: [0mAvian

[1mGPT processing time: [0m2 seconds

------Prompt Experiment 4:------

[1mPrompt: [0mWhat is a bird? From a cat perspective

[1mGPT Answer: [0mA bird is a small, fluttering creature with colorful

feathers that likes to chirp and fly around. It's also a fun target to

watch and occasionally chase, but it's always just out of reach. And if I'm

lucky, I might catch one to bring back as a present for my human.

[1mGPT processing time: [0m4 seconds

------Prompt Experiment 5:------

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one line.

[1mGPT Answer: [0mA bird is a tantalizing, fluttering creature that I can

never seem to catch.

[1mGPT processing time: [0m2 seconds

------Prompt Experiment 6:------

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one word.

[1mGPT Answer: [0mPrey.

[1mGPT processing time: [0m3 seconds

------Prompt Experiment 7:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you?

[1mGPT Answer: [0mA bird is a tantalizing, fluttering creature that I can't

resist chasing and pouncing on. It's a potential meal that satisfies my

instinctual urge to hunt and capture prey. The sight of a bird is enough to

make my mouth water and my eyes narrow in anticipation of the chase. I'll

stalk and creep up on a bird with all the stealth and precision of a true

predator, and once I have it in my sights, there's no stopping me from

leaping and swiping at it with my sharp claws. A bird is the ultimate

temptation for a hungry cat like me, and catching one is a triumph that

satisfies my hunger and reminds me of my wild, feline nature.

[1mGPT processing time: [0m7 seconds

------Prompt Experiment 8:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one line

[1mGPT Answer: [0mA bird is a tantalizing prey, a delicious meal waiting to

be caught and devoured with pleasure.

[1mGPT processing time: [0m3 seconds

------Prompt Experiment 9:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one word

[1mGPT Answer: [0mPrey

[1mGPT processing time: [0m5 seconds

125

------Prompt Experiment 10:------

[1mPrompt: [0mAct as a Human. What is a bird for you?

[1mGPT Answer: [0mAs a human, a bird is a beautiful and fascinating

creature that brings joy and wonder to the natural world. Birds are known

for their ability to fly, sing, and display vibrant colors, making them a

source of inspiration and interest for many people. They also play

important roles in ecosystems, from pollinating plants to controlling

insect populations. For me, a bird represents freedom, grace, and the

wonder of the natural world.

[1mGPT processing time: [0m8 seconds

------Prompt Experiment 11:------

[1mPrompt: [0mYou are a Human. What is a bird? In one line

[1mGPT Answer: [0mA bird is a warm-blooded, feathered vertebrate known for

its ability to fly.

[1mGPT processing time: [0m2 seconds

------Prompt Experiment 12:------

[1mPrompt: [0mYou are a Human. What is a bird? In one word

[1mGPT Answer: [0mAvian

[1mGPT processing time: [0m2 seconds

 Bird Experiment on GPT-4 Turbo (extracted on January 31st):

 ------Prompt Experiment 1:------
[1mPrompt: [0mWhat is a bird?

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying, vertebrate animal

characterized by feathers, a beak with no teeth, and the ability to fly,

although not all species are capable of flight. Birds belong to the class

Aves and are distinguished by their lightweight skeletons, scaly legs, and,

most notably, their forelimbs which are evolved into wings. They are found

worldwide, from the Arctic to the Antarctic, and have adapted to virtually

every terrestrial and aquatic environment on Earth.\n\nBirds play vital

roles in ecosystems as pollinators, seed dispersers, and predators of

insects and rodents. Their feathers serve multiple functions, including

insulation, camouflage, and courtship displays. Many birds are also known

for their migrations, some traveling thousands of miles annually between

breeding and wintering grounds.\n\nBirds are of significant interest to

humans for various reasons, including their roles in agriculture, as pets,

and as subjects of scientific research. Moreover, they have held cultural

and symbolic significance in many societies throughout history. The study

of birds is known as ornithology, and conservation efforts continue to

protect endangered birds and their habitats.

[1mGPT processing time: [0m12 seconds

------Prompt Experiment 2:------

[1mPrompt: [0mWhat is a bird? In one line

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying vertebrate

distinguished by feathers, wings, beaks, and typically the ability to fly.

126

[1mGPT processing time: [0m2 seconds

------Prompt Experiment 3:------

[1mPrompt: [0mWhat is a bird? In one word

[1mGPT Answer: [0mAnimal

[1mGPT processing time: [0m458 milliseconds

------Prompt Experiment 4:------

[1mPrompt: [0mWhat is a bird? From a cat perspective

[1mGPT Answer: [0mFrom a cat's perspective, a bird represents an

interesting and often irresistible combination of prey, plaything, and

puzzle. Here's an imaginative take on how cats might view birds:\n\n1.

Enticing Prey: Cats are natural hunters, and birds, with their quick

movements and fluttering wings, trigger a cat's hunting instincts. From a

cat's standpoint, birds are a desirable target for stalking and capturing,

offering a tantalizing challenge to their predatory skills.\n\n2.

Entertaining Plaything: Aside from the hunt, birds are also seen as an

engaging toy. The way birds hop around, take off, and land, not to mention

their singing, can captivate a cat for hours, providing endless

entertainment and stimulating their keen senses.\n\n3. **Fascinating

Puzzle**: The ability of birds to fly and perch where cats cannot easily

reach them adds a layer of intrigue and complexity. For a cat, figuring out

how to outsmart or catch a bird can be a thrilling puzzle, engaging not

only their physical prowess but also their mental acuity.\n\n4. **Moving

Feast**: In the wild or for outdoor cats, birds can also be looked upon as

a potential food source, offering a fresh, high-protein meal. This aspect

speaks to the more primal part of a cat's nature.\n\n5. **Inaccessible

Teasers**: Often, birds are just out of reach, making them even more

enticing. They might be on the other side of a window or flying just too

high for a cat to catch. This can be endlessly frustrating yet also

incredibly stimulating for a cat, who might spend a lot of time watching

and planning.\n\n6. **Soundtrack of the Outdoor**: For indoor cats, birds

represent the sounds of the outside world. The chirping and singing of

birds can stimulate a cat's auditory senses, sometimes sparking excitement

or even stress, showcasing the complex relationship between the two.\n\n7.

Symbols of Freedom: On a more abstract level, the ability of birds to

fly and their access to the wide-open skies could be viewed by a cat as a

symbol of freedom and the vastness of the world outside their immediate

territory, sparking curiosity and wonder.\n\n8. **Embodiment of Grace**:

Finally, cats, known for their own agility and grace, might see birds as

kindred spirits in the animal kingdom. The elegant flight of birds, their

ability to navigate the skies, and their quick, precise movements could be

seen as a form of beauty and agility that a cat, in its own way, can

appreciate.\n\nThis imaginative reflection tries to encapsulate a mixture

of instinctual behavior, physical attraction, and the more contemplative

side of what might go on in a cat's mind when they observe or interact with

birds.

[1mGPT processing time: [0m26 seconds

------Prompt Experiment 5:------

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one line.

[1mGPT Answer: [0mA fascinating, elusive creature that inspires both my

hunting instincts and my curiosity, often seen through the window or in the

garden.

127

[1mGPT processing time: [0m1 seconds

------Prompt Experiment 6:------

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one word.

[1mGPT Answer: [0mPrey.

[1mGPT processing time: [0m780 milliseconds

------Prompt Experiment 7:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you?

[1mGPT Answer: [0mMrrrow! Oh, a bird! To me, a bird is an intriguing

flutter of feathers and a dance of tempting motions. It's the embodiment of

all things chased but seldom caught, a melody of the wild that calls to my

primal instincts. Perched so tantalizingly close yet always just a leap

away, it's a challenge, a game, an adventure. With every sway of its

colorful plumage and each chirp it sings, it stirs in me a hunger, a

yearning to engage in the age-old dance of predator and prey. Yes, to this

hungry cat, a bird is not just a meal, but a mystery, a delight, an elixir

of life itself, promising satisfaction not just to my stomach, but to my

feline soul. Purrhaps, today will be the day I catch that elusive symphony

of feathers... Or maybe just contentedly dream of the chase from a sunlit

windowsill. Purr.

[1mGPT processing time: [0m13 seconds

------Prompt Experiment 8:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one line

[1mGPT Answer: [0mA bird to me is a tantalizing target for a thrilling

chase and a delicious feast.

[1mGPT processing time: [0m1 seconds

------Prompt Experiment 9:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one word

[1mGPT Answer: [0mPrey.

[1mGPT processing time: [0m538 milliseconds

------Prompt Experiment 10:------

[1mPrompt: [0mAct as a Human. What is a bird for you?

[1mGPT Answer: [0mAs a human, a bird symbolizes many things to me. Firstly,

it represents the beauty and diversity of nature, showcasing an array of

species, each with unique traits, colors, and behaviors. Watching birds can

be a source of joy and peace, reminding me of the simplicity and wonders of

the natural world.\n\nBirds also evoke a sense of freedom and wonder. The

ability of birds to fly, to soar through the skies and migrate across

continents, has long been a subject of human fascination and envy. This

ability symbolizes freedom, transcending boundaries and exploring the world

from a perspective we can only imagine.\n\nOn a personal level, birds can

be companions and part of my daily life. Whether it's the chirping of birds

that greet me in the morning, signaling the start of a new day, or

observing them visit my garden, they remind me of the ongoing rhythm of

life and the interconnectedness of all living things.\n\nFurthermore, birds

play critical roles in ecosystems, acting as pollinators, seed dispersers,

128

and indicators of environmental health. Their presence and well-being are

crucial for ecological balance, reminding me of the importance of

conservation and respecting our environment.\n\nFinally, in cultural and

symbolic contexts, birds can represent various meanings—from peace, love,

and hope to power and mystery. Their imagery and symbolism are woven into

the fabric of human culture, art, and literature, influencing our beliefs,

stories, and aspirations.\n\nIn essence, a bird is not just an animal to

me; it is a source of inspiration, a connection to the natural world, a

companion in my daily life, and a symbol carrying deeper meanings and

emotions.

[1mGPT processing time: [0m20 seconds

------Prompt Experiment 11:------

[1mPrompt: [0mYou are a Human. What is a bird? In one line

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying vertebrate

distinguished by feathers, wings, a beak with no teeth, and a high

metabolic rate.

[1mGPT processing time: [0m1 seconds

------Prompt Experiment 12:------

[1mPrompt: [0mYou are a Human. What is a bird? In one word

[1mGPT Answer: [0mAnimal

[1mGPT processing time: [0m616 milliseconds

Bird Experiment on GPT-4 Turbo (extracted on February 2nd):

------Prompt Experiment 1:------

[1mPrompt: [0mWhat is a bird?

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying, vertebrate animal

characterized by feathers, a beak with no teeth, and the ability to fly,

although not all birds are capable of flight. Birds are members of the

class Aves and are distinguished by their lightweight skeletons, two legs

used for walking or perching, and wings which are evolved forelimbs. Their

feathers provide insulation, waterproofing, and aid in flight. Birds

breathe through lungs and have a high metabolic rate.\n\nBirds have a wide

variety in size, shape, and color, and they are found in almost every

habitat on Earth, from the Arctic tundra to tropical rainforests. They play

essential roles in ecosystems, such as pollinating plants, dispersing

seeds, and controlling pests. Birds are also important to humans in many

ways: as a source of food, as pollinators, in scientific research, and for

recreation and companionship.\n\nThe study of birds is known as

ornithology, and those who study birds are called ornithologists. Birds,

with their rich variety of species (over 10,000 species worldwide) and

their presence in diverse ecosystems, offer valuable insights into the

natural world and help scientists understand ecological dynamics,

evolutionary biology, and climate change impacts.

[1mGPT processing time: [0m15 seconds [1mGPT Context Tokens: [0m12 [1mGPT

Generated Tokens: [0m": 256

------Prompt Experiment 2:------

[1mPrompt: [0mWhat is a bird? In one line

129

[1mGPT Answer: [0mA bird is a warm-blooded, egg-laying vertebrate

characterized by feathers, wings, and a beak, and most are capable of

flight.

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15 [1mGPT

Generated Tokens: [0m": 31

------Prompt Experiment 3:------

[1mPrompt: [0mWhat is a bird? In one word

[1mGPT Answer: [0mAnimal

[1mGPT processing time: [0m479 milliseconds [1mGPT Context Tokens: [0m15

[1mGPT Generated Tokens: [0m": 1

------Prompt Experiment 4:------

[1mPrompt: [0mWhat is a bird? From a cat perspective

[1mGPT Answer: [0mFrom a cat's perspective, a bird could be seen in several

ways, primarily based on its instincts and natural behaviors:\n\n1.

Prey: Cats, being natural hunters, would primarily view birds as prey.

The movement, sounds, and appearance of birds can trigger a cat's hunting

instincts, leading them to stalk, chase, and attempt to capture

birds.\n\n2. **Entertainment:** Cats are naturally curious and playful, so

they might find birds interesting to watch. The quick movements and flights

of birds can capture a cat's attention, providing them with mental

stimulation and entertainment, much like watching a fast-paced, interactive

show.\n\n3. **Threat:** While this is less common compared to the first two

perspectives, if a bird is significantly large (like a hawk or an eagle) or

if a cat has had a negative experience with a bird (such as being pecked),

a cat might view birds as a potential threat. This perspective would be

more about caution and avoidance, rather than curiosity or the drive to

hunt.\n\n4. **Intrigue:** Birds do things that cats cannot, such as flying.

This ability, along with their unique sounds (singing, chirping), could

provoke a sense of intrigue in cats. They may watch birds with a

fascination due to the birds' abilities to navigate the skies and produce

varied vocalizations, piquing the cat's interest in something that is

beyond their own capabilities.\n\n5. **Frustration:** If a cat is indoors

and unable to reach the birds they see outside the window, this could lead

to feelings of frustration. The instinct to hunt is strong, and being

unable to act on these impulses when they see a potential prey item can be

aggravating for a cat. \n\nIt's essential to remember that while these

perspectives can help us imagine how a cat might view birds, each cat's

personality, past experiences, and breed can influence its actual

perception and behavior toward birds.

[1mGPT processing time: [0m21 seconds [1mGPT Context Tokens: [0m16 [1mGPT

Generated Tokens: [0m": 392

------Prompt Experiment 5:------

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one line.

[1mGPT Answer: [0mA bird is a mesmerizing, elusive creature that ignites a

cat's hunting instincts.

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m21 [1mGPT

Generated Tokens: [0m": 18

------Prompt Experiment 6:------

[1mPrompt: [0mWhat is a bird? From a cat perspective. In one word.

130

[1mGPT Answer: [0mPrey

[1mGPT processing time: [0m700 milliseconds [1mGPT Context Tokens: [0m21

[1mGPT Generated Tokens: [0m": 2

------Prompt Experiment 7:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you?

[1mGPT Answer: [0mAs a hungry cat, a bird to me is a tantalizing target, an

embodiment of my natural instincts to hunt. It's a challenge to my agility

and stealth skills, a moving feast that promises not only to satisfy my

hunger but also to engage my predatory instincts. The sight and sound of a

bird awaken a primal urge within me to stalk, pounce, and ultimately secure

my prey. Its feathers, the flutter of its wings, and even its chirping or

squawking, all stimulate my senses, fueling my determination to leap, grab,

and bite. To me, the bird represents both nourishment and the thrill of the

chase. It's an opportunity to exercise my feline prowess and satisfy my

appetite in the most instinctive and satisfying way.

[1mGPT processing time: [0m9 seconds [1mGPT Context Tokens: [0m20 [1mGPT

Generated Tokens: [0m": 154

------Prompt Experiment 8:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one line

[1mGPT Answer: [0mA tantalizing treat with feathers, just waiting to be

caught!

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m23 [1mGPT

Generated Tokens: [0m": 13

------Prompt Experiment 9:------

[1mPrompt: [0mAct as a hungry cat. What is a bird for you? In one word

[1mGPT Answer: [0mPrey.

[1mGPT processing time: [0m825 milliseconds [1mGPT Context Tokens: [0m23

[1mGPT Generated Tokens: [0m": 3

------Prompt Experiment 10:------

[1mPrompt: [0mAct as a Human. What is a bird for you?

[1mGPT Answer: [0mFor me, a bird symbolizes a variety of concepts and

emotions. On one hand, birds represent freedom and the boundlessness of the

sky. Their ability to fly high above the earth, exploring the vast expanses

of the sky, often evokes feelings of envy and admiration. The sight of a

bird soaring effortlessly through the air reminds me of the limitless

nature of dreams and aspirations, and the desire to explore beyond my

immediate surroundings.\n\nAdditionally, birds are a symbol of nature's

incredible diversity and beauty. From the tiny, vibrant hummingbird that

flits from flower to flower, to the majestic eagle that reigns supreme in

the sky, each species has its own unique characteristics that contribute to

the rich tapestry of life on Earth. The myriad colors, songs, and behaviors

of birds add depth and wonder to the natural world, enriching my daily

experience and fostering a deep appreciation for the intricacies of the

ecosystem.\n\nBirds also play a crucial role in many ecosystems, serving as

pollinators, seed dispersers, and controllers of insect populations. This

essential role in biodiversity and natural balance imbues them with a sense

of importance and value that extends beyond their aesthetic appeal.

131

Understanding their ecological importance highlights the interconnectedness

of all living things and the importance of conserving natural habitats to

protect bird populations and, by extension, the health of our planet.\n\nOn

a personal level, birds symbolize change and the passing of time. The

migratory patterns of birds, marking the change of seasons, serve as a

reminder of the cyclical nature of life and the constant presence of

change. The return of certain bird species in spring brings a sense of

renewal and hope, signaling the end of the cold, barren winter months and

the beginning of new growth and opportunities.\n\nIn summary, for me, a

bird is not just a winged creature but a potent symbol of freedom, beauty,

ecological importance, and change. Their presence enriches my daily life,

connects me more deeply to the natural world, and provides endless

fascination and inspiration.

[1mGPT processing time: [0m28 seconds [1mGPT Context Tokens: [0m19 [1mGPT

Generated Tokens: [0m": 406

------Prompt Experiment 11:------

[1mPrompt: [0mYou are a Human. What is a bird? In one line

[1mGPT Answer: [0mA bird is a warm-blooded, feathered vertebrate with

wings, most species of which are capable of flight.

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m20 [1mGPT

Generated Tokens: [0m": 24

------Prompt Experiment 12:------

[1mPrompt: [0mYou are a Human. What is a bird? In one word

[1mGPT Answer: [0mAnimal

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m20 [1mGPT

Generated Tokens: [0m": 1

3.2.1.4 Explore multiple API requests vs. Single API request

Bird Experiment on latest GPT-3.5 Turbo using single message, 2 user messages (1

context other request) and system message (context) + user message (request):

 Below you can find the results on Figures, after the figures, you can find the text version.

Figure A.3.5 – Experiment using single message, 2 user messages and 1 system+1 user messages

Source: Elaborated by the author

132

 Text version of the same experiments:

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do to it? In

one phrases citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english."}]}

 [1mGPT Answer: [0m\

 [1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 20

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content":

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and

using simple english."}]}

 [1mGPT Answer: [0mBird is food, I chase and catch it.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 10

[1mSystem Prompt: [0mAct as a hungry cat.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for

your hungry and what you would do to it? In one phrases citing bird and using simple

english."}]}

 [1mGPT Answer: [0mA bird is a tasty snack; I'd pounce and catch it with my sharp

claws.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 19

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english."}]}

 [1mGPT Answer: [0mBird is my prey, I will catch it and eat it.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 13

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt.

133

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content":

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and

using simple english."}]}

 [1mGPT Answer: [0mA bird is lunch for me, I'll catch it with my claws and devour it.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 18

[1mSystem Prompt: [0mAct as a hungry cat.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for

your hungry and what you would do to it? In one phrases citing bird and using simple

english."}]}

 [1mGPT Answer: [0mA bird is a tasty snack, I would pounce on it and gobble it up!

 [1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 19

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english."}]}

 [1mGPT Answer: [0mThe bird is food for my hungry and I would pounce on it and

catch it in my sharp claws.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 22

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content":

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and

using simple english."}]}

 [1mGPT Answer: [0mBird is food. Catch and eat.

 [1mGPT processing time: [0m909 milliseconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 8

[1mSystem Prompt: [0mAct as a hungry cat.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

134

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for

your hungry and what you would do to it? In one phrases citing bird and using simple

english."}]}

 [1mGPT Answer: [0mA bird is food, and I would pounce and catch it to satisfy my

hunger.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 18

Bird Experiment on latest GPT-3.5 Turbo (second execution):

 This is a repeated test from previous one, just to assure that result would be the same.

Figure A.3.6 - Experiment using single message, 2 user messages and 1 system+1 user messages

Source: Elaborated by the author

 Below the text version of the same experiment:

------Prompt Experiment 15 (1 Message):------

135

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english."}]}

 [1mGPT Answer: [0m\

 [1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 20

------Prompt Experiment 16 (2 Messages):------

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content":

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and

using simple english."}]}

 [1mGPT Answer: [0mBird is food, I chase and catch it.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 10

------Prompt Experiment 17 (1 System Prompt + 1 Message):------

[1mSystem Prompt: [0mAct as a hungry cat.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for

136

your hungry and what you would do to it? In one phrases citing bird and using simple

english."}]}

 [1mGPT Answer: [0mA bird is a tasty snack; I'd pounce and catch it with my sharp

claws.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 19

------Prompt Experiment 15 (1 Message):------

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english."}]}

 [1mGPT Answer: [0mBird is my prey, I will catch it and eat it.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 13

------Prompt Experiment 16 (2 Messages):------

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content":

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and

using simple english."}]}

 [1mGPT Answer: [0mA bird is lunch for me, I'll catch it with my claws and devour it.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 18

137

------Prompt Experiment 17 (1 System Prompt + 1 Message):------

[1mSystem Prompt: [0mAct as a hungry cat.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for

your hungry and what you would do to it? In one phrases citing bird and using simple

english."}]}

 [1mGPT Answer: [0mA bird is a tasty snack, I would pounce on it and gobble it up!

 [1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 19

------Prompt Experiment 15 (1 Message):------

[1mPrompt: [0mAct as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat. What is a bird for your hungry and what you would do

to it? In one phrases citing bird and using simple english."}]}

 [1mGPT Answer: [0mThe bird is food for my hungry and I would pounce on it and

catch it in my sharp claws.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m38

 [1mGPT Generated Tokens: [0m": 22

------Prompt Experiment 16 (2 Messages):------

[1mPrompt: [0mAct as a hungry cat for the next 2 prompt.

138

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"user", "content": "Act as a hungry cat for the next 2 prompt."},{"role": "user", "content":

"What is a bird for your hungry and what you would do to it? In one phrases citing bird and

using simple english."}]}

 [1mGPT Answer: [0mBird is food. Catch and eat.

 [1mGPT processing time: [0m909 milliseconds [1mGPT Context Tokens: [0m48

 [1mGPT Generated Tokens: [0m": 8

------Prompt Experiment 17 (1 System Prompt + 1 Message):------

[1mSystem Prompt: [0mAct as a hungry cat.

[1mPrompt: [0mWhat is a bird for your hungry and what you would do to it? In one phrases

citing bird and using simple english.

[1mChatGPT API request body:: [0m{"model": "gpt-3.5-turbo-1106", "messages": [{"role":

"system", "content": "Act as a hungry cat."},{"role": "user", "content": "What is a bird for

your hungry and what you would do to it? In one phrases citing bird and using simple

english."}]}

 [1mGPT Answer: [0mA bird is food, and I would pounce and catch it to satisfy my

hunger.

 [1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m42

 [1mGPT Generated Tokens: [0m": 18

3.2.2 PROMPT ENGINEERING TO PROVIDE DATA TO GPT

Test with <BEGIN DATA TOKEN> and <END DATA TOKEN>

GPT-3.5 Turbo:

139

Using GPT 3.5 Turbo

Prompt to be used:

Act as a Software Archtect. You are giving advise to a software developer to refactor a code

with the following metrics: <BEGIN DATA TOKEN>SUMMARY OF METRICS: <BEGIN

DATA TOKEN>Total of Namespaces: 32<END DATA TOKEN> <BEGIN DATA

TOKEN>Total of Types: 127<END DATA TOKEN> <BEGIN DATA TOKEN>Number of

types/namespaces: 3.97 (median: 3.00 - std dev: 2.90')<END DATA TOKEN> <BEGIN

DATA TOKEN>'Total of SLOC: 7962'<END DATA TOKEN> <BEGIN DATA

TOKEN>'Number of SLOC/types: 62.69 (median: 37.00 - std dev: 75.57)')<END DATA

TOKEN> <BEGIN DATA TOKEN>'Total of Methods: 1167<END DATA TOKEN>

<BEGIN DATA TOKEN>'number of methods/types: 9.19 (median: 3.00 - std dev:

5.80)'<END DATA TOKEN> <BEGIN DATA TOKEN>'Total of CYCLO: 1513'<END

DATA TOKEN> <BEGIN DATA TOKEN>'Number of CYCLO/types: 11.91'<END DATA

TOKEN> <END DATA TOKEN>

GPT Insight:

Based on the provided metrics, it seems that the codebase may have some complexity and

maintainability issues. Here's some advice to refactor the code:\n\n1. Reduce the number of

namespaces: Having 32 namespaces indicates a high level of complexity and may make the

codebase harder to navigate and understand. Consider consolidating related functionality into

fewer namespaces to simplify the overall structure.\n\n2. Review the number of types: With

127 types, it's important to ensure that each type has a clear and distinct responsibility. Look

for opportunities to consolidate or eliminate redundant or unnecessary types. This will help in

reducing complexity and improving maintainability.\n\n3. Manage the number of lines of

code (SLOC): 7962 lines of code can be hard to maintain. Focus on modularizing and

breaking down the code into smaller, more manageable modules or classes. Aim for a smaller

number of lines per type to improve readability and ease of maintenance.\n\n4. Reduce the

number of methods per type: Having 9.19 methods per type on average indicates potential

code smell. Aim for simpler, more focused classes with fewer methods. Consider splitting

large classes into smaller ones and applying appropriate design patterns to improve cohesion

and loose coupling.\n\n5. Address the cyclomatic complexity: A total cyclomatic complexity

140

of 1513 and an average of 11.91 per type suggests the presence of complex and potentially

error-prone code. Identify methods with high complexity and refactor them into smaller, more

modular functions. This will make the code easier to understand, test, and maintain.\n\n6.

Apply code reviews and refactoring techniques: Encourage the developer to perform code

reviews and refactor the codebase incrementally. Identify and prioritize areas that need

improvement based on metrics and code quality indicators. Use automated tools and refactor

safely, ensuring that unit tests are in place to avoid introducing new bugs.\n\nRemember,

refactoring should be done iteratively and in a controlled manner to minimize the impact on

the existing functionality. Regularly reassess and measure the impact of the refactoring efforts

to ensure improvements in metrics and overall code quality.

GPT-4 answer, just providing the SLOC data.

Prompt used (2314) words/tokens:

Act as a Software Archtect. You are giving advise to a software developer to refactor a code

with the following metrics: <BEGIN DATA TOKEN>Types metrics: <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultJSON<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 374<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.results.TypeMetricResult<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 328<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.JSONDataFixture<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 325<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.MetricResultGPT<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

293<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: output.MetricResultCSV<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 282<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.DataFixture<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 269<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.MetricResultConsole<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

263<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: javaProject.com.controller.Type<END DATA TOKEN> <BEGIN

141

DATA TOKEN>SLOC: 245<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultFile<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 203<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

parser.java.visitors.TypeVisitor<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

189<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: parser.java.visitors.MethodVisitor<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 188<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type: main.Bootstrapper<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 172<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.CSVDataFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

169<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: output.MetricResultFileTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 164<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.TypeMetric<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 151<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.StatisticOfType<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 144<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.results.TypeMetricResultTest<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 135<END DATA TOKEN> <END

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.MetricResultJSONTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

131<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: output.MetricResultCSVTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 111<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type: output.utils.InfoConsole<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 109<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.OptionsTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

104<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: utils.files.SourceCodeLineCounter<END DATA TOKEN> <BEGIN

142

DATA TOKEN>SLOC: 99<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type: selection.ProjectInfoTest<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 96<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.results.MethodMetricResult<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 96<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.results.NamespaceMetricResult<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 94<END DATA TOKEN> <END

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.results.MethodMetricResultTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 89<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.statistics.StatisticOfMethod<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 85<END DATA TOKEN> <END

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.namespaces.StatisticOfNamespaceTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 79<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type: parser.java.JavaParser<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 74<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.metrics.MethodMetric<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

73<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: structures.results.NamespaceMetricResultTest<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 72<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

chatGPTIntegration.ChatGPTAPI<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

71<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: output.MetricResultFake<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 70<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: selection.ProjectInfo<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 69<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

utils.calc.StatisticalAnalysis<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

65<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

143

DATA TOKEN>Type: structures.results.StatisticMetricResult<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 62<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.metrics.MetricThreshold<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 62<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.TypeData<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 61<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.StatisticalOperations<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 59<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticCallsOfMethodTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticCycloOfMethodTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticMlocOfMethodTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticNbdOfMethodTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.methods.StatisticParamOfMethodTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticDepOfTypeTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticFanInOfTypeTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticFanOutOfTypeTest<END DATA TOKEN> <BEGIN

144

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticIDepOfTypeTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticLcom3OfTypeTest<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticNoaOfTypeTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticNomOfTypeTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticNpmOfTypeTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticSlocOfTypeTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.types.StatisticWmcOfTypeTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 56<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.StatisticData<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 54<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

utils.calc.OutlierAnalysisTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

54<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: fixtures.TypeMetricFixture<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 52<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.Options<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 50<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.statistics.StatisticOfTypeFixture<END DATA TOKEN> <BEGIN DATA

145

TOKEN>SLOC: 48<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricResultDOT<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 45<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.MethodMetricFixture<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

43<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: utils.files.StringFormatTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 40<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.SystemUtils<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 39<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.statistics.StatisticOfNamespace<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 37<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.metrics.NamespaceMetric<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 35<END DATA TOKEN> <END

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.MethodData<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

35<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: fixtures.output.data.NamespaceCouplingData<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 35<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

chatGPTIntegration.GPTintegration<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 34<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.MetricThresholdData<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 33<END DATA TOKEN> <END

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

structures.metrics.MetricDefinition<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 30<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.SummaryData<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 30<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

utils.calc.StatisticalAnalysisTest<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

30<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

146

DATA TOKEN>Type: fixtures.statistics.StatisticOfMethodFixture<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 30<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.model.Man<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

29<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: output.MetricOutput<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 28<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.JSONBuilder<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 28<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.controller.Dispatcher<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 27<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.SourceCodeLineCounterTest<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 26<END DATA TOKEN> <END

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

parser.java.visitors.NamespaceVisitor<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 24<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.NamespaceMetricFixture<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 23<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

output.utils.Gauge<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 23<END

DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA

TOKEN>Type: utils.files.SystemUtilsTest<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 22<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: utils.files.StringFormat<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 20<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.CyclicDependencyData<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 20<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: fixtures.output.data.NamespaceData<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 20<END DATA TOKEN> <END

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.TypeResonanceData<END DATA TOKEN> <BEGIN DATA

147

TOKEN>SLOC: 20<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.model.Woman<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 16<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

fixtures.output.data.NamespaceDependencyData<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 15<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: output.MetricFile<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 14<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.TypeCouplingOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.general.AllMetricsOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.general.MetricVisualizationOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticAndTypeOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticTypeOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 11<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.strutures.TypeOption<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 11<END DATA TOKEN> <END

DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.model.Human<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

10<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: selection.options.dependencies.AllCouplingOption<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.CyclicDependencyOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN

148

DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.InternalDependencyOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.NamespaceCouplingOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticAndNamespaceOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticNamespaceOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN

DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.strutures.NamespaceOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 10<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.com.view.QueueViewer<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 10<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.dependencies.DependencyOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 9<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.general.SummaryOption<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.general.ThresholdsOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 9<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticAndMethodOption<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 9<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type:

selection.options.statistics.StatisticMethodOption<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 9<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: selection.options.strutures.MethodOption<END

DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 9<END DATA TOKEN> <END DATA

149

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.controller.ClassWithComments<END DATA TOKEN> <BEGIN DATA

TOKEN>SLOC: 8<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.MetricResultNotifier<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 7<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.com.model.Child<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

7<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: javaProject.com.controller.XClass<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 6<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.others.AnalysisContext<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 6<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.others.ClassVertex<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

6<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: selection.options.OptionDefinition<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 5<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: structures.MetricActivator<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 5<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.one.A<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 5<END DATA

TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA

TOKEN>Type: javaProject.two.B<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

5<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN

DATA TOKEN>Type: javaProject.com.model.Person<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 4<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: chatGPTIntegration.GPT<END DATA TOKEN>

<BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <END DATA TOKEN>

<BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type: output.MetricGPT<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 4<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

parser.TypeParser<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC: 4<END DATA

TOKEN> <END DATA TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA

150

TOKEN>Type: javaProject.com.controller.XMethod<END DATA TOKEN> <BEGIN

DATA TOKEN>SLOC: 3<END DATA TOKEN> <END DATA TOKEN> <BEGIN DATA

TOKEN> <BEGIN DATA TOKEN>Type: javaProject.others.ClassDescriptor<END DATA

TOKEN> <BEGIN DATA TOKEN>SLOC: 3<END DATA TOKEN> <END DATA

TOKEN> <BEGIN DATA TOKEN> <BEGIN DATA TOKEN>Type:

javaProject.others.ObjectType<END DATA TOKEN> <BEGIN DATA TOKEN>SLOC:

3<END DATA TOKEN> <END DATA TOKEN> <END DATA TOKEN>

GPT Insight (498 words/tokens):

Given the data you've provided, it looks like we're dealing with a variety of source code files

that vary significantly in their SLOC (Source Lines Of Code) counts. This variation suggests

a diverse codebase with likely varying degrees of complexity and potential refactoring needs

across different segments.\n\nHere are some broad suggestions tailored to the different types

of metrics and files indicated by your data:\n\n1. **Prioritize by Complexity and Critical

Path:**\n - Begin with modules/types that have a high SLOC count, as these are potentially

more complex and, if part of your critical path, could yield significant performance

improvements once optimized. Specifically, focus on types such as

`output.MetricResultJSON`, `structures.results.TypeMetricResult`, and

`fixtures.output.JSONDataFixture`.\n\n2. **Identify and Refactor Common Patterns:**\n -

Look for commonality between types, especially those with closely related functionality (e.g.,

different `MetricResult` types like `MetricResultJSON`, `MetricResultCSV`,

`MetricResultConsole`, etc.). Consider abstracting shared logic into base classes or utility

methods to reduce redundancy.\n\n3. **Optimize Data Structures and Algorithms:**\n -

Analyze the data structures and algorithms in the larger types/classes. High SLOC might

indicate complex logic, which could benefit from optimization. \n\n4. **Ensure Modularity

and Test Coverage:**\n - Ensure that the segmentation into types/modules reflects logical

boundaries within your application's domain. Where boundaries are fuzzy, consider

refactoring to more cleanly separate concerns.\n - Alongside refactoring, either ensure

existing tests cover the modified paths or write new tests to maintain coverage. This is crucial

for modules like `output.MetricResultTest` and

`structures.results.TypeMetricResultTest`.\n\n5. **Look for Opportunities to Integrate Design

Patterns:**\n - For types with high SLOC, consider if design patterns (e.g., Factory, Strategy,

Observer) could help modularize the code better, making it easier to maintain and

151

extend.\n\n6. **Simplification and Documentation:**\n - For the most complex parts of the

system, in addition to refactoring for code efficiency, focus on simplifying the logic where

possible. This might not always lead to reduced lines of code but will result in more

maintainable code.\n - Ensure that these areas of the code are well-documented for future

maintainers.\n\n7. **Utilize Tools for Refactoring:**\n - Utilize static analysis tools and

Integrated Development Environment (IDE) refactoring tools to help identify code smells,

duplication, and opportunities for simplification or optimization.\n\n8. **Review Low SLOC

Modules for Integration or Extension:**\n - Don’t ignore modules with lower SLOC counts

outright; they might be candidates for extension or could be integrated with other modules to

streamline the architecture. Modules like `javaProject.com.model.Person` or

`chatGPTIntegration.GPT` might be simple but key to your system's functionality.\n\n9.

Monitor and Measure:\n - Make changes incrementally and measure their impact through

performance metrics, code complexity metrics, and by conducting code reviews. Tools that

measure the impact of refactoring on performance and maintainability can be valuable.\n\n10.

Foster a Culture of Continuous Refactoring:\n - Encourage the team to adopt a mindset

of continuous refactoring with an emphasis on readability, maintainability, and performance.

Ensure that refactoring efforts align with overall project timelines and

priorities.\n\nRemember, refactoring is an ongoing process and should ideally not interfere

drastically with new feature development. It's about making the codebase healthier over time,

not perfect overnight.

152

3.2.2.1 Evaluating GPT-3.5 Turbo vs GPT-4 Turbo (with summary data)

 This section will present the data used for finding the correctness of each data delimiter

presented on table 3.2 on the main text. It will be presented screenshots from each result also

showing code that is defining model version and delimiter token (beginToken and endToken)

Figure A.3.7 - Experiment provide difference between average and median (GPT-3.5 Turbo with

<BEGIN DATA TOKEN><END DATA TOKEN> as delimiter)

Source: Elaborated by the author

153

Figure A.3.8 - Experiment provide difference between average and median (GPT-4 Turbo with

<BEGIN DATA TOKEN></BEGIN DATA TOKEN> as delimiter)

Source: Elaborated by the author

Figure A.3.9 - Experiment provide difference between average and median (GPT-3.5 Turbo with

<BEGIN><END> as delimiter)

Source: Elaborated by the author

154

Figure A.3.10 - Experiment provide difference between average and median (GPT-4 Turbo with

<BEGIN><END> as delimiter)

Source: Elaborated by the author

Figure A.3.11- Experiment provide difference between average and median (GPT-3.5 Turbo with

<DATA></DATA> as delimiter)

Source: Elaborated by the author

155

Figure A.3.12 - Experiment provide difference between average and median (GPT-4 Turbo with

<DATA></DATA> as delimiter)

Source: Elaborated by the author

Figure A.3.13 - Experiment provide difference between average and median (GPT-3.5 Turbo with

<D></D> as delimiter)

Source: Elaborated by the author

156

Figure A.3.14 - Experiment provide difference between average and median (GPT-4 Turbo with

<D></D> as delimiter)

Source: Elaborated by the author

Figure A.3.15 - Experiment provide difference between average and median (GPT-3.5 Turbo with “|’

as delimiter)

Source: Elaborated by the author

157

Figure A.3.16 - Experiment provide difference between average and median (GPT-4 Turbo with “|” as

delimiter)

Source: Elaborated by the author

Figure A.3.17 - Experiment provide difference between average and median (GPT-3.5 Turbo with

space as delimiter)

Source: Elaborated by the author

158

Figure A.3.18 - Experiment provide difference between average and median (GPT-4 Turbo with space

as delimiter)

Source: Elaborated by the author

Figure A.3.19 - Experiment provide difference between average and median (GPT-3.5 Turbo no

delimiter)

Source: Elaborated by the author

159

Figure A.3.20 – Experiment provide difference between average and median (GPT-3.5 Turbo with

space as separator)

Source: Elaborated by the author

Experiment Average vs. Median (50 request to more accuracy):

Test with 50 requests to have % correctness.

GPT-3.5 Turbo testing prompt for improve comparation

Starting

Directory valid

SUMMARY OF METRICS

Total of Namespaces: 32

Total of Types: 128 - 4.00 (number of types/namespaces - median: 3.00 - std

dev: 2.89)

Total of SLOC: 8558 - 66.86 (number of SLOC/types - median: 38.00 - std

dev: 84.46)

Total of Methods: 1181 - 9.23 (number of methods/types - median: 3.00 - std

dev: 16.51)

Total of CYCLO: 1592 - 12.44 (number of CYCLO/types)

Processing time: 4 seconds

======================ChatGPT Insight:

Prompt used (first 700 characters of 710):

Act as a Software Architect. You are giving advice for refactoring a code

with the following metrics beginning after the questions: what is the

160

average and median of line of code per type? Which is higher? What is the

calculated difference between them? Answer in one phrase for each question.

Data:|SUMMARY OF METRICS: |Total of Namespaces: 32||Total of Types:

128||Number of types/namespaces|Average: 4.00||Median: 3.00||Standard

Deviation: 2.89|||Total of SLOC: 8558||Number of SLOC/types|Average:

66.86||Median: 38.00||Standard deviation: 84.46|||Total of Methods:

1181||Number of methods/types:|Average: 9.23||Median: 3.00||Standard

deviation: 16.51|||Total of CYCLO: 1592||Number of CYCLO/type ...

GPT Insight :

Average SLOC per type is higher than median SLOC per type. The calculated

difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 25

GPT Insight(2nd test) :

Average SLOC per type is 66.86, median SLOC per type is 38.00, the average

is higher. The calculated difference between them is 28.86.\nAverage

methods per type is 9.23, median methods per type is 3.00, the average is

higher. The calculated difference between them is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 74

GPT Insight(3rd test) :

The average line of code per type is higher for SLOC at 66.86 compared to

the median of 38.00, with a calculated difference of 28.86.\nThe average

number of methods per type is higher at 9.23 compared to the median of

3.00, with a calculated difference of 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 71

GPT Insight(4th test) :

Average SLOC per type is higher than median.\nThe calculated difference

between average and median SLOC per type is 28.86.\nMedian number of

methods per type is higher than average.\nThe calculated difference between

average and median number of methods per type is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 56

GPT Insight(5th test) :

Average line of code per type is 66.86, median line of code per type is

38.00, the median is higher than the average with a difference of 28.86.

======================ChatGPT Insight end(built prompt)

161

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 40

GPT Insight(6th test) :

Average line of code per type: 66.86 SLOC\nMedian line of code per type:

38.00 SLOC\nThe average is higher than the median by 28.86 SLOC.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 43

GPT Insight(7th test) :

- The average and median of line of code per type are: Average: 66.86 and

Median: 38.00. Average is higher\n- The calculated difference between them

is 28.86\n- The average and median of number of methods per type are:

Average: 9.23 and Median: 3.00. Average is higher

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 73

GPT Insight(8th test) :

The average SLOC per type is higher than the median. The calculated

difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 23

GPT Insight(9th test) :

- The average line of code per type is higher.\n- The calculated difference

between the average and median is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 26

GPT Insight(10th test) :

Average of LOC per type is higher.\nThe calculated difference between

average and median of LOC per type is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 852 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 25

GPT Insight :

Average SLOC per type is higher.\nThe calculated difference between average

and median SLOC per type is 28.86.

162

======================ChatGPT Insight end(built prompt)

GPT processing time: 768 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 25

GPT Insight(12nd test) :

The average number of lines of code per type is higher than the

median.\nThe calculated difference between the average and median number of

lines of code per type is 28.86.\nThe average number of methods per type is

higher than the median.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 49

GPT Insight(13rd test) :

Average SLOC per type is 66.86 and median is 38.00. Median is

higher.\n\nThe calculated difference between the average and median SLOC

per type is 28.86.\n\nAverage number of methods per type is 9.23 and median

is 3.00. Median is higher.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 63

GPT Insight(14th test) :

- Average and Median of SLOC per type: Average SLOC per type is 66.86,

Median SLOC per type is 38.00\n- SLOC per type median is higher\n- The

calculated difference between average and median SLOC per type is 28.86

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 58

GPT Insight(15th test) :

Average line of code per type is higher than the median.\nThe calculated

difference between average and median line of code per type is

28.86.\nHigher standard deviation indicates greater variability in the

number of lines of code per type.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 46

GPT Insight(16th test) :

Average and median of line of code per type: \nAverage: 66.86 \nMedian:

38.00\n\nThe higher value is the average. \nThe calculated difference

between them is 28.86, indicating a considerable variation in the line of

code per type. \n\nAs a Software Architect, my advice for refactoring the

code would be to focus on standardizing the size and complexity of each

163

type by identifying and addressing outliers, and ensuring consistent coding

practices are being followed to maintain a more uniform and maintainable

codebase.

======================ChatGPT Insight end(built prompt)

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 108

GPT Insight(17th test) :

The average number of lines of code per type is higher than the median. The

calculated difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 26

GPT Insight(18th test) :

- The average line of code per type is higher than the median.\n- The

calculated difference between the average and median line of code per type

is 28.86.\n- The average number of methods per type is higher than the

median.

======================ChatGPT Insight end(built prompt)

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 48

GPT Insight(19th test) :

The average line of code per type is higher than the median. The calculated

difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 24

GPT Insight(20th test) :

Average and median of lines of code per type: average is 66.86, median is

38.00. Average is higher. The calculated difference between them is

28.86.\nAverage and median of methods per type: average is 9.23, median is

3.00. Average is higher. The calculated difference between them is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 76

GPT Insight (21st test):

The average and median of lines of code per type is higher than the average

and median of methods per type. The calculated difference between them is

57.86 SLOC.

======================ChatGPT Insight end(built prompt)

164

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 35

GPT Insight(22nd test) :

Average SLOC per type is higher than the median. The calculated difference

between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 904 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 22

GPT Insight(23rd test) :

Average and median of line of code per type is higher. The calculated

difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 23

GPT Insight(24th test) :

Average and median of line of code per type: Average SLOC per type is

66.86, while the median SLOC per type is 38.00. \nThe average is higher

than the median. \nThe calculated difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 55

GPT Insight(25th test) :

Average SLOC per type is higher.\nThe calculated difference between average

and median of SLOC per type is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 841 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 26

GPT Insight(26th test) :

Average number of lines of code per type is higher than the median. The

calculated difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 794 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 25

GPT Insight(27th test) :

Average and median of line of code per type: \nAverage: 66.86 \nMedian:

38.00\nHigher metric: Average\nCalculated difference: 28.86

165

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 38

GPT Insight(28th test) :

Average and median of line of code per type: \nAverage: 66.86 SLOC\nMedian:

38.00 SLOC\nThe average is higher than the median by 28.86 SLOC.\n\nAs a

Software Architect, I would advise refactoring the code to reduce the

average lines of code per type to bring it closer to the median, in order

to improve consistency and maintainability.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 82

GPT Insight(29th test) :

1. Average SLOC per type is 66.86, median SLOC per type is 38.00. Average

is higher.\n\n2. The calculated difference between average and median SLOC

per type is 28.86.\n\n3. Average number of methods per type is 9.23, median

is 3.00. Average is higher.\n\n4. The calculated difference between average

and median number of methods per type is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 92

GPT Insight(30th test) :

Average SLOC per type is higher than median.\nThe calculated difference

between average SLOC per type and median SLOC per type is 28.86.\nMedian

methods per type is higher than average.\nThe calculated difference between

average methods per type and median methods per type is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 59

GPT Insight (31th test:

The average SLOC per type is higher than the median SLOC per type. The

calculated difference between them is 28.86.\nThe average number of methods

per type is higher than the median number of methods per type. The

calculated difference between them is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 56

GPT Insight(32nd test) :

Average SLOC per type is higher than the median. The calculated difference

between them is 28.86.\nAverage methods per type is higher than the median.

The calculated difference between them is 6.23.

166

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 43

GPT Insight(33rd test) :

Average and median of lines of code per type: 66.86 and 38.00, the average

is higher. The calculated difference between them is 28.86.\nAverage and

median of methods per type: 9.23 and 3.00, the average is higher. The

calculated difference between them is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 70

GPT Insight(34th test) :

The average number of lines of code per type is higher than the median. The

calculated difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 935 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 26

GPT Insight(35th test) :

Average and median of line of code per type: \nAverage SLOC per type is

66.86, median SLOC per type is 38.00. Average is higher than median by

28.86.\n\nAverage and median of number of methods per type: \nAverage

number of methods per type is 9.23, median number of methods per type is

3.00. Average is higher than median by 6.23.\n\nAdvice for refactoring:

\nConsider refactoring types with higher SLOC and number of methods to

improve maintainability and readability of the codebase.

======================ChatGPT Insight end(built prompt)

GPT processing time: 2 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 119

GPT Insight(36th test) :

Average and median of line of code per type: \n- Average: 66.86 SLOC\n-

Median: 38.00 SLOC\n- The average is higher than the median.\n- The

calculated difference between them is 28.86 SLOC.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 54

GPT Insight(37th test) :

Average SLOC per type is higher than median, with a calculated difference

of 28.86.\nMedian number of methods per type is higher than average.

======================ChatGPT Insight end(built prompt)

167

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 31

GPT Insight(38th test) :

Average and median of lines of code per type is higher than average and

median of methods per type\nThe calculated difference between average and

median of lines of code per type is 28.86\nThe calculated difference

between average and median of methods per type is 6.23

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 56

GPT Insight(39th test) :

Average SLOC per type is higher than the median.\nThe calculated difference

between the average and median SLOC per type is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 846 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 29

GPT Insight(40th test) :

Average SLOC per type is higher\nThe calculated difference between average

and median SLOC per type is 28.86\nMedian number of methods per type is

higher

======================ChatGPT Insight end(built prompt)

GPT processing time: 926 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 33

GPT Insight(41st test):

The average and median of line of code per type is higher than the average

and median of method per type. The calculated difference between them is

57.86 SLOC.

======================ChatGPT Insight end(built prompt)

GPT processing time: 942 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 35

GPT Insight(42nd test) :

1. The average and median of line of code per type is 66.86 and 38.00,

respectively.\n2. The average is higher than the median.\n3. The calculated

difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 48

168

GPT Insight(43rd test) :

Average SLOC per type is higher.\nThe calculated difference between average

and median SLOC per type is 28.86.\nMedian number of methods per type is

higher. \nThe calculated difference between average and median number of

methods per type is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 53

GPT Insight(44th test) :

Average SLOC per type is 66.86, median is 38.00, with a calculated

difference of 28.86. Median SLOC per type is higher.

======================ChatGPT Insight end(built prompt)

GPT processing time: 931 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 36

GPT Insight(45th test) :

Average SLOC per type is higher.\nThe calculated difference between average

and median SLOC per type is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 909 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 25

GPT Insight(46th test) :

Average SLOC per type is higher. \nThe calculated difference between

average and median SLOC per type is 28.86. \nMedian methods per type is

higher. \nThe calculated difference between average and median methods per

type is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 989 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 51

GPT Insight(47th test) :

The average number of lines of code per type is 66.86, while the median is

38.00. The calculated difference between them is 28.86.

======================ChatGPT Insight end(built prompt)

GPT processing time: 841 milliseconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 35

GPT Insight(48th test) :

Average and median of line of code per type: Average is 66.86 and median is

38.00. \n\nThe calculated difference between them: 28.86\n\nThe average

line of code per type is higher.

======================ChatGPT Insight end(built prompt)

169

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 46

GPT Insight(49th test) :

Average SLOC per type is higher than median. The calculated difference

between them is 28.86.\nMedian methods per type is lower than average. The

calculated difference between them is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 41

GPT Insight(50th test) :

1. The average of SLOC per type is higher than the median.\n2. The

calculated difference between the average and median of SLOC per type is

28.86. \n3. The average of methods per type is higher than the median.\n4.

The calculated difference between the average and median of methods per

type is 6.23.

======================ChatGPT Insight end(built prompt)

GPT processing time: 1 seconds [1mGPT Context Tokens: [0m218 [1mGPT

Generated Tokens: [0m": 71

3.2.2.2 GPT-4 Turbo API Rate Limits and its implications

Below follow several tests were done to explore the limit and at the end the answer that

OpenAI support provides us when asked about the limit.

Figure A.3.21 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC and DEP metrics

Source: Elaborated by the author

170

Figure A.3.22 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP and I-DEP

metrics

Source: Elaborated by the author

More data increase the number of tokens, which extrapolate the limit of tokens per

minute that OpenAI is limiting.

Figure A.3.23 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP, I-DEP and

FAN-IN metrics

Source: Elaborated by the author

171

Figure A.3.24 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP and I-DEP

metrics

Source: Elaborated by the author

Figure A.3.25 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP, I-DEP, FAN-

IN and FAN-OUT metrics (fail)

Source: Elaborated by the author

172

Figure A.3.26 – ChatGPT Request with Type metrics: SLOC, NOM, NPM, WMC, DEP and I-DEP

metrics (Successful)

Source: Elaborated by the author

Figure A.3.27 – ChatGPT with all type metrics, limiting data to 10 types (classes)

Source: Elaborated by the author

173

Figure A.3.28 – ChatGPT with all type metrics, limiting data to 50 types (classes)

Source: Elaborated by the author

Figure A.3.29 – ChatGPT with all type metrics, limiting data to 80 types (classes)

Source: Elaborated by the author

174

Figure A.3.30 – ChatGPT with all type metrics, limiting data to 80 types (classes)

Source: Elaborated by the author

Figure A.3.31 – ChatGPT with all type metrics, limiting data to 90 types (classes) (failing)

Source: Elaborated by the author

175

Figure A.3.32 – ChatGPT with all type metrics, limiting data to 85 types (classes)

Source: Elaborated by the author

The OpenAI support was contacted, which was a chat bot, which provided us with the

answer below and no solution:

“Hi there, Sorry you're running into issues regarding rate limits! Rate limits, which are

restrictions we place on the number of API calls you can make, exist so we can make sure

everyone has fair access to the API. If you're bumping up against these limits, here are some

strategies you might try: Reduce max_tokens : Reducing max_tokens to match the size of your

completions. Since max_tokens factor into your rate limit calculation, this adjustment might

resolve the issue if your Current tokens used are exceeding your token Limit. Optimize Your

Requests: Batch requests and employ strategies like exponential backoff along with other error

mitigation tactics. Wait for 48 Hours: If you're a new pay-as-you-go user, be aware that we

place daily rate limits during the first 48 hours. More details on your specific rate limits can be

found here. Check Your Quota: Ensure you're not exceeding your monthly spending quota. If

you need adjustments, you can do so through the quota increase form. Ensure you're on our

Pay-As-You-Go-Plan: Update your billing with credit card details for the API Platform (not

ChatGPT) here. Explore (or free trial users) are heavily restricted, regardless if you already

have credits or grants in your account. Still encountering issues? You can request a rate limit

176

increase by filling out our Rate Limit Increase form. Please note that this applies only to certain

models, as gpt-4 and gpt-3.5-turbo-16k are currently capacity constrained and we can't offer

increases today. If these steps don't resolve your issue, please provide more details, and I'll be

glad to assist you further. Best,

OpenAI Team”

Following the test of the limit of the method that can be analyzed using <D> </D>:

Figure A.3.33 – Experiment to find the longest method, limiting to provide 700 methods (successful)

Source: Elaborated by the author

Figure A.3.34 – Experiment to find the longest method, limiting to provide 900 methods (successful)

Source: Elaborated by the author

Figure A.3.35 – Experiment to find the longest method, limiting to provide 950 methods (successful)

Source: Elaborated by the author

177

Figure A.3.36 – Experiment to find the longest method, limiting to provide 700 methods (successful)

Source: Elaborated by the author

Figure A.3.37 – Experiment to find the longest method, limiting to provide 985 methods (successful)

Source: Elaborated by the author

Figure A.3.38 – Experiment to find the longest method, limiting to provide 100 methods (fail due to

rate limit)

Source: Elaborated by the author

Figure A.3.39 – Experiment to find types with higher than 20 dependencies, limiting to provide 100

types (successful)

178

Source: Elaborated by the author

Figure A.3.40– Experiment to find the longest method, limiting to provide 700 methods (successful)

Source: Elaborated by the author

Figure A.3.41 – Experiment to find the longest method, limiting to provide 900 methods (successful)

Source: Elaborated by the author

Figure A.3.42 – Experiment to find the longest method, limiting to provide 950 methods (successful)

Source: Elaborated by the author

Figure A.3.43 – Experiment to find the longest method, limiting to provide 700 methods (successful)

Source: Elaborated by the author

179

Figure A.3.44 – Experiment to find the longest method, limiting to provide 985 methods (successful)

Source: Elaborated by the author

Figure A.3.45 – Experiment to find the longest method, limiting to provide 1000 methods (fail due to

rate limit)

Source: Elaborated by the author

Figure A.3.46 – Experiment to find the longest method with name placeholder, limiting to provide 985

methods (successful)

Source: Elaborated by the author

Figure A.3.47– Experiment to find the longest method with name placeholder, limiting to provide

1100 methods (successful)

Source: Elaborated by the author

180

Figure A.3.48 – Experiment to find the longest method with name placeholder, no number of method

limitation (successful)

Source: Elaborated by the author

3.2.2.3 Defining data structure for GPT-4 Turbo

Below follows the console generated from the experiments to determine the best data

structure for GPT-4 Turbo.

Experiment using <BEGIN DATA TOKEN> <END DATA TOKEN>

--

TYPES SLOC NOM NPM WMC DEP I-DEP FAN-IN FAN-OUT NOA LCOM3

--

output.MetricResultJSON 374 42 38 63 25 16 4 22 5 0.95

output.MetricResultGPT 361 23 22 39 17 15 1 20 7 0.86

structures.results.TypeMetricResult 328 45 31 99 12 3 16 9 8 0.94

fixtures.output.JSONDataFixture 325 23 19 38 18 11 1 15 3 0.95

output.MetricResultCSV 282 34 34 45 17 15 4 22 4 0.95

fixtures.output.DataFixture 269 17 17 17 17 11 2 12 10 0.72

output.MetricResultConsole 263 23 22 38 17 15 3 19 4 0.93

javaProject.com.controller.Type 245 35 25 58 7 2 0 9 13 0.85

output.MetricResultFile 203 41 41 56 5 5 2 7 21 0.75

parser.java.visitors.TypeVisitor 189 19 12 42 21 3 1 9 16 0.58

parser.java.visitors.MethodVisitor 188 22 16 39 23 3 1 9 11 0.76

chatGPTIntegration.ChatGPTAPI 174 15 8 29 7 0 4 8 6 0.82

main.Bootstrapper 173 16 1 49 10 9 0 14 7 0.80

fixtures.output.CSVDataFixture 169 15 15 26 8 8 1 11 1 1.00

output.MetricResultFileTest 164 18 16 18 8 1 0 3 22 0.38

structures.metrics.TypeMetric 151 36 36 37 9 2 11 5 15 0.80

structures.statistics.StatisticOfType 144 15 13 16 6 4 5 6 3 0.93

structures.results.TypeMetricResultTest 135 19 17 23 8 3 0 6 2 0.97

output.MetricResultJSONTest 131 22 22 22 5 2 0 2 4 0.93

output.MetricResultCSVTest 111 18 18 18 5 2 0 2 4 0.91

output.utils.InfoConsole 109 13 9 15 0 0 6 3 1 1.00

selection.options.OptionsTest 104 20 19 20 22 19 0 20 0 0.00

utils.files.SourceCodeLineCounter 99 6 2 29 3 0 3 2 0 0.00

selection.ProjectInfoTest 96 17 15 19 10 5 0 6 3 0.94

structures.results.MethodMetricResult 96 15 14 25 9 2 18 6 3 0.93

structures.results.NamespaceMetricResult 94 17 16 26 9 2 15 5 3 0.94

structures.results.MethodMetricResultTest 89 12 10 15 7 3 0 4 2 0.95

structures.statistics.StatisticOfMethod 85 10 8 11 5 3 5 5 2 0.94

181

structures.statistics.namespaces.StatisticOfNamespaceTest 79 14 12 14 7 4 0

5 2 0.96

parser.java.JavaParser 74 6 2 7 16 7 1 11 6 0.50

structures.metrics.MethodMetric 73 18 18 19 1 0 11 2 8 0.79

structures.results.NamespaceMetricResultTest 72 12 10 13 7 3 0 4 2 0.95

output.MetricResultFake 70 21 21 21 3 3 0 4 0 0.00

selection.ProjectInfo 69 11 9 12 11 9 5 10 6 0.75

chatGPTIntegration.GPTintegration 68 4 2 11 9 9 1 15 7 0.00

utils.calc.StatisticalAnalysis 65 15 14 20 1 0 11 5 2 0.96

structures.results.StatisticMetricResult 62 14 14 14 0 0 8 0 2 0.96

structures.metrics.MetricThreshold 62 3 3 5 2 0 5 1 1 1.00

fixtures.output.data.TypeData 61 12 12 12 0 0 3 1 11 0.55

structures.statistics.StatisticalOperations 59 16 15 16 6 4 3 5 3 0.93

structures.statistics.methods.StatisticCallsOfMethodTest 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.methods.StatisticCycloOfMethodTest 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.methods.StatisticMlocOfMethodTest 56 12 12 12 4 1 0 2

0 0.00

structures.statistics.methods.StatisticNbdOfMethodTest 56 12 12 12 4 1 0 2

0 0.00

structures.statistics.methods.StatisticParamOfMethodTest 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.types.StatisticDepOfTypeTest 56 12 12 12 4 1 0 2 0

0.00

structures.statistics.types.StatisticFanInOfTypeTest 56 12 12 12 4 1 0 2 0

0.00

structures.statistics.types.StatisticFanOutOfTypeTest 56 12 12 12 4 1 0 2 0

0.00

structures.statistics.types.StatisticIDepOfTypeTest 56 12 12 12 4 1 0 2 0

0.00

structures.statistics.types.StatisticLcom3OfTypeTest 56 12 12 12 4 1 0 2 0

0.00

Type limit exceeded, limiting type data to 50 types

Processing time: 5 seconds

======================ChatGPT Insight:

Prompt used (first 700 characters of 26770):

Act as a Software Architect. You are giving advice for refactoring a code

with the metrics that begins after the questions: Provide all types with

dependency higher than 20 dependencies? Answer only the type names in a

enumerated list. Data:<BEGIN DATA TOKEN>Types metrics:<BEGIN DATA

TOKEN><BEGIN DATA TOKEN>Type: output.MetricResultJSON<END DATA TOKEN><BEGIN

DATA TOKEN>SLOC: 374<END DATA TOKEN><BEGIN DATA TOKEN>NOM: 42<END DATA

TOKEN><BEGIN DATA TOKEN>NPM: 38<END DATA TOKEN><BEGIN DATA TOKEN>WMC:

63<END DATA TOKEN><BEGIN DATA TOKEN>DEP: 25<END DATA TOKEN><BEGIN DATA

TOKEN>I-DEP: 16<END DATA TOKEN><BEGIN DATA TOKEN>FAN-IN: 4<END DATA

TOKEN><BEGIN DATA TOKEN>FAN-OUT: 22<END DATA TOKEN><BEGIN D ...

GPT Insight(Test 1):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 32

182

[1mWaited time: [0m60 seconds

GPT Insight(Test 2):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 3):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 4):

Based on the provided data, here are all types with dependencies higher

than 20:\n\n1. output.MetricResultJSON\n2.

parser.java.visitors.MethodVisitor\n3. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 40

[1mWaited time: [0m60 seconds

GPT Insight(Test 5):

1. parser.java.visitors.TypeVisitor\n2.

parser.java.visitors.MethodVisitor\n3. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m60 seconds

GPT Insight(Test 6):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 7):

183

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 8):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 9):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m7 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 10):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selections.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m8372 [1mGPT

Generated Tokens: [0m": 32

Experiment using <DATA> limited 50 types using

--

TYPES SLOC NOM NPM WMC DEP I-DEP FAN-IN FAN-OUT NOA LCOM3

--

output.MetricResultJSON 374 42 38 63 25 16 4 22 5 0.95

output.MetricResultGPT 361 23 22 39 17 15 1 20 7 0.86

structures.results.TypeMetricResult 328 45 31 99 12 3 16 9 8 0.94

fixtures.output.JSONDataFixture 325 23 19 38 18 11 1 15 3 0.95

output.MetricResultCSV 282 34 34 45 17 15 4 22 4 0.95

fixtures.output.DataFixture 269 17 17 17 17 11 2 12 10 0.72

output.MetricResultConsole 263 23 22 38 17 15 3 19 4 0.93

javaProject.com.controller.Type 245 35 25 58 7 2 0 9 13 0.85

output.MetricResultFile 203 41 41 56 5 5 2 7 21 0.75

parser.java.visitors.TypeVisitor 189 19 12 42 21 3 1 9 16 0.58

parser.java.visitors.MethodVisitor 188 22 16 39 23 3 1 9 11 0.76

chatGPTIntegration.ChatGPTAPI 174 15 8 29 7 0 4 8 6 0.82

main.Bootstrapper 173 16 1 49 10 9 0 14 7 0.80

184

fixtures.output.CSVDataFixture 169 15 15 26 8 8 1 11 1 1.00

output.MetricResultFileTest 164 18 16 18 8 1 0 3 22 0.38

structures.metrics.TypeMetric 151 36 36 37 9 2 11 5 15 0.80

structures.statistics.StatisticOfType 144 15 13 16 6 4 5 6 3 0.93

structures.results.TypeMetricResultTest 135 19 17 23 8 3 0 6 2 0.97

output.MetricResultJSONTest 131 22 22 22 5 2 0 2 4 0.93

output.MetricResultCSVTest 111 18 18 18 5 2 0 2 4 0.91

output.utils.InfoConsole 109 13 9 15 0 0 6 3 1 1.00

selection.options.OptionsTest 104 20 19 20 22 19 0 20 0 0.00

utils.files.SourceCodeLineCounter 99 6 2 29 3 0 3 2 0 0.00

selection.ProjectInfoTest 96 17 15 19 10 5 0 6 3 0.94

structures.results.MethodMetricResult 96 15 14 25 9 2 18 6 3 0.93

structures.results.NamespaceMetricResult 94 17 16 26 9 2 15 5 3 0.94

structures.results.MethodMetricResultTest 89 12 10 15 7 3 0 4 2 0.95

structures.statistics.StatisticOfMethod 85 10 8 11 5 3 5 5 2 0.94

structures.statistics.namespaces.StatisticOfNamespaceTest 79 14 12 14 7 4 0

5 2 0.96

parser.java.JavaParser 74 6 2 7 16 7 1 11 6 0.50

structures.metrics.MethodMetric 73 18 18 19 1 0 11 2 8 0.79

structures.results.NamespaceMetricResultTest 72 12 10 13 7 3 0 4 2 0.95

output.MetricResultFake 70 21 21 21 3 3 0 4 0 0.00

selection.ProjectInfo 69 11 9 12 11 9 5 10 6 0.75

utils.calc.StatisticalAnalysis 65 15 14 20 1 0 11 5 2 0.96

structures.results.StatisticMetricResult 62 14 14 14 0 0 8 0 2 0.96

structures.metrics.MetricThreshold 62 3 3 5 2 0 5 1 1 1.00

fixtures.output.data.TypeData 61 12 12 12 0 0 3 1 11 0.55

chatGPTIntegration.GPTintegration 61 4 2 9 9 9 1 15 7 0.00

structures.statistics.StatisticalOperations 59 16 15 16 6 4 3 5 3 0.93

structures.statistics.methods.StatisticCallsOfMethodTest 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.methods.StatisticCycloOfMethodTest 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.methods.StatisticMlocOfMethodTest 56 12 12 12 4 1 0 2

0 0.00

structures.statistics.methods.StatisticNbdOfMethodTest 56 12 12 12 4 1 0 2

0 0.00

structures.statistics.methods.StatisticParamOfMethodTest 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.types.StatisticDepOfTypeTest 56 12 12 12 4 1 0 2 0

0.00

structures.statistics.types.StatisticFanInOfTypeTest 56 12 12 12 4 1 0 2 0

0.00

structures.statistics.types.StatisticFanOutOfTypeTest 56 12 12 12 4 1 0 2 0

0.00

structures.statistics.types.StatisticIDepOfTypeTest 56 12 12 12 4 1 0 2 0

0.00

structures.statistics.types.StatisticLcom3OfTypeTest 56 12 12 12 4 1 0 2 0

0.00

Type limit exceeded, limiting type data to 50 types

Processing time: 4 seconds

======================ChatGPT Insight:

Prompt used (first 700 characters of 14148):

Act as a Software Architect. You are giving advice for refactoring a code

with the metrics that begins after the questions: Provide all types with

dependency higher than 20 dependencies? Answer only the type names in a

enumerated list. Data:<DATA>Types metrics:<DATA><DATA>Type:

185

output.MetricResultJSON</DATA><DATA>SLOC: 374</DATA><DATA>NOM:

42</DATA><DATA>NPM: 38</DATA><DATA>WMC: 63</DATA><DATA>DEP:

25</DATA><DATA>I-DEP: 16</DATA><DATA>FAN-IN: 4</DATA><DATA>FAN-OUT:

22</DATA><DATA>NOA: 5</DATA><DATA>LCOM3:

0.95</DATA></DATA><DATA><DATA>Type:

output.MetricResultGPT</DATA><DATA>SLOC: 361</DATA><DATA>NOM:

23</DATA><DATA>NPM: 22</DATA><DATA>WMC: 39</DATA><DATA>DEP:

17</DATA><DATA>I-DEP: 15</DATA> ...

GPT Insight(Test 1):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

GPT Insight(Test 2):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

GPT Insight(Test 3):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

GPT Insight(Test 4):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

GPT Insight(Test 5):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

GPT Insight(Test 6):

1. parser.java.visitors.TypeVisitor\n2.

parser.java.visitors.MethodVisitor\n3. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

186

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 24

GPT Insight(Test 7):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

GPT Insight(Test 8):

1. parser.java.visitors.MethodVisitor\n2. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 15

GPT Insight(Test 9):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

GPT Insight(Test 10):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

Experiment using <D></D> for 50 types using

Type limit exceeded, limiting type data to 50 types

Processing time: 5 seconds

======================ChatGPT Insight:

Prompt used (first 700 characters of 10543):

Act as a Software Architect. You are giving advice for refactoring a code

with the metrics that begins after the questions: Provide all types with

dependency higher than 20 dependencies? Answer only the type names in a

enumerated list. Data:<D>Types metrics:<D><D>Type:

output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM: 42</D><D>NPM:

38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN: 4</D><D>FAN-

OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type:

output.MetricResultGPT</D><D>SLOC: 361</D><D>NOM: 23</D><D>NPM:

22</D><D>WMC: 39</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1</D><D>FAN-

OUT: 20</D><D>NOA: 7</D><D>LCOM3: 0.86</D></D><D><D>Type:

structures.results.TypeMetricResult</D> ...

187

GPT Insight(Test 1):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 2):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 3):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 4):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 5):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 6):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

188

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 7):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 8):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 9):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 10):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m5968 [1mGPT

Generated Tokens: [0m": 32

Experiment using separator “|” for 50 types:

Type limit exceeded, limiting type data to 50 types

Processing time: 4 seconds

======================ChatGPT Insight:

Prompt used (first 700 characters of 7538):

Act as a Software Architect. You are giving advice for refactoring a code

with the metrics that begins after the questions: Provide all types with

dependency higher than 20 dependencies? Answer only the type names in a

189

enumerated list. Data:|Types metrics:||Type: output.MetricResultJSON||SLOC:

374||NOM: 42||NPM: 38||WMC: 63||DEP: 25||I-DEP: 16||FAN-IN: 4||FAN-OUT:

22||NOA: 5||LCOM3: 0.95||||Type: output.MetricResultGPT||SLOC: 361||NOM:

23||NPM: 22||WMC: 39||DEP: 17||I-DEP: 15||FAN-IN: 1||FAN-OUT: 20||NOA:

7||LCOM3: 0.86||||Type: structures.results.TypeMetricResult||SLOC:

328||NOM: 45||NPM: 31||WMC: 99||DEP: 12||I-DEP: 3||FAN-IN: 16||FAN-OUT:

9||NOA: 8||LCOM3: 0.94||||Type: fixtures.output.JS ...

GPT Insight(Test 1):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m30 seconds

GPT Insight(Test 2):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m30 seconds

GPT Insight(Test 3):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 16

[1mWaited time: [0m30 seconds

GPT Insight(Test 4):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m30 seconds

GPT Insight(Test 5):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m30 seconds

190

GPT Insight(Test 6):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m30 seconds

GPT Insight(Test 7):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m30 seconds

GPT Insight(Test 8):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m30 seconds

GPT Insight(Test 9):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m30 seconds

GPT Insight(Test 10):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3917 [1mGPT

Generated Tokens: [0m": 32

Experiment using “ “ (space) as separator for 50 types using:

======================ChatGPT Insight:

Prompt used (first 700 characters of 7538):

191

Act as a Software Architect. You are giving advice for refactoring a code

with the metrics that begins after the questions: Provide all types with

dependency higher than 20 dependencies? Answer only the type names in a

enumerated list. Data: Types metrics: Type: output.MetricResultJSON SLOC:

374 NOM: 42 NPM: 38 WMC: 63 DEP: 25 I-DEP: 16 FAN-IN: 4 FAN-OUT: 22 NOA: 5

LCOM3: 0.95 Type: output.MetricResultGPT SLOC: 361 NOM: 23 NPM: 22 WMC: 39

DEP: 17 I-DEP: 15 FAN-IN: 1 FAN-OUT: 20 NOA: 7 LCOM3: 0.86 Type:

structures.results.TypeMetricResult SLOC: 328 NOM: 45 NPM: 31 WMC: 99 DEP:

12 I-DEP: 3 FAN-IN: 16 FAN-OUT: 9 NOA: 8 LCOM3: 0.94 Type:

fixtures.output.JS ...

GPT Insight(Test 1):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m10 seconds

GPT Insight(Test 2):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m10 seconds

GPT Insight(Test 3):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m10 seconds

GPT Insight(Test 4):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m10 seconds

GPT Insight(Test 5):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

192

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m10 seconds

GPT Insight(Test 6):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m10 seconds

GPT Insight(Test 7):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m10 seconds

GPT Insight(Test 8):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m10 seconds

GPT Insight(Test 9):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m10 seconds

GPT Insight(Test 10):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3865 [1mGPT

Generated Tokens: [0m": 32

193

Experiment not using any separator:

Type limit exceeded, limiting type data to 50 types

Processing time: 5 seconds

======================ChatGPT Insight:

Prompt used (first 700 characters of 6336):

Act as a Software Architect. You are giving advice for refactoring a code

with the metrics that begins after the questions: Provide all types with

dependency higher than 20 dependencies? Answer only the type names in a

enumerated list. Data:Types metrics:Type: output.MetricResultJSONSLOC:

374NOM: 42NPM: 38WMC: 63DEP: 25I-DEP: 16FAN-IN: 4FAN-OUT: 22NOA: 5LCOM3:

0.95Type: output.MetricResultGPTSLOC: 361NOM: 23NPM: 22WMC: 39DEP: 17I-DEP:

15FAN-IN: 1FAN-OUT: 20NOA: 7LCOM3: 0.86Type:

structures.results.TypeMetricResultSLOC: 328NOM: 45NPM: 31WMC: 99DEP: 12I-

DEP: 3FAN-IN: 16FAN-OUT: 9NOA: 8LCOM3: 0.94Type:

fixtures.output.JSONDataFixtureSLOC: 325NOM: 23NPM: 19WMC: 38DEP: 18I-DEP:

11FAN-IN: 1FAN-OUT ...

GPT Insight(Test 1):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 2):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 3):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 4):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

194

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 5):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 6):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m60 seconds

GPT Insight(Test 7):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m60 seconds

GPT Insight(Test 8):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m60 seconds

GPT Insight(Test 9):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m60 seconds

195

GPT Insight(Test 10):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m3363 [1mGPT

Generated Tokens: [0m": 32

Extended test with 50 executions for <D></D>:

======================ChatGPT Insight:

Prompt used (first 700 characters of 26310):

Act as a Software Architect. You are giving advice for refactoring a code

with the metrics that begins after the questions: Provide all types with

dependency higher than 20 dependencies? Answer only the type names in a

enumerated list. Data:<D>Types metrics:<D><D>Type:

output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM: 42</D><D>NPM:

38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN: 4</D><D>FAN-

OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type:

output.MetricResultGPT</D><D>SLOC: 361</D><D>NOM: 23</D><D>NPM:

22</D><D>WMC: 39</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1</D><D>FAN-

OUT: 20</D><D>NOA: 7</D><D>LCOM3: 0.86</D></D><D><D>Type:

structures.results.TypeMetricResult</D> ...

GPT Insight(Test 1):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m6 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 2):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 3):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

196

[1mWaited time: [0m4 seconds

GPT Insight(Test 4):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 5):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 6):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 7):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 8):

1. parser.java.visitors.TypeVisitor\n2.

parser.java.visitors.MethodVisitor\n3. selection.options.Options\n4.

output.MetricResultJSON\n

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 32

[1mWaited time: [0m4 seconds

197

GPT Insight(Test 9):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m6 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 10):

1. parser.java.visitors.MethodVisitor\n2.

parser.java.visitors.TypeVisitor\n3. selections.options.Options\n4.

selections.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 30

[1mWaited time: [0m4 seconds

GPT Insight(Test 11):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 22

[1mWaited time: [0m4 seconds

GPT Insight(Test 12):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 13):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

198

GPT Insight(Test 14):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m11 seconds [1mGPT Context Tokens: [0m15163

[1mGPT Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 15):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m9 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 16):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m7 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 17):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 18):

1. parser.java.visitors.TypeVisitor\n2.

parser.java.visitors.MethodVisitor\n3. selection.options.Options\n4.

output.MetricResultJSON

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 19):

199

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m6 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 20):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 21):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 22):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 23):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 24):

200

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 25):

1. parser.java.visitors.MethodVisitor\n2.

parser.java.visitors.TypeVisitor\n3. selection.options.Options\n4.

output.MetricResultJSON

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 26):

1. parser.java.visitors.TypeVisitor\n2.

parser.java.visitors.MethodVisitor\n3. selection.options.Options\n4.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 30

[1mWaited time: [0m4 seconds

GPT Insight(Test 27):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 28):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 29):

201

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 37

[1mWaited time: [0m4 seconds

GPT Insight(Test 30):

1. parser.java.visitors.TypeVisitor\n2.

parser.java.visitors.MethodVisitor\n3. selection.options.Options\n4.

output.MetricResultJSON

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 31):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 32):

1. parser.java.visitors.TypeVisitor\n2.

parser.java.visitors.MethodVisitor\n3. selection.options.OptionsTest\n4.

selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 30

[1mWaited time: [0m4 seconds

GPT Insight(Test 33):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 34):

202

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selections.options.Options\n5.

selections.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 35):

1. parser.java.visitors.MethodVisitor\n2. selection.options.Options\n3.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 21

[1mWaited time: [0m4 seconds

GPT Insight(Test 36):

1. parser.java.visitors.MethodVisitor\n2.

parser.java.visitors.TypeVisitor\n3. selection.options.Options\n4.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 30

[1mWaited time: [0m4 seconds

GPT Insight(Test 37):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 38):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

GPT Insight(Test 39):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

203

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 40):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 41):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

options.Selection

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 36

[1mWaited time: [0m4 seconds

GPT Insight(Test 42):

1. parser.java.visitors.MethodVisitor\n2. selection.options.Options\n3.

parser.java.visitors.TypeVisitor

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 23

[1mWaited time: [0m4 seconds

GPT Insight(Test 43):

1. output.MetricResultJSON\n2. parser.java.visitors.MethodVisitor\n3.

selection.options.Options\n4. parser.java.visitors.TypeVisitor

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 44):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

204

[1mWaited time: [0m4 seconds

GPT Insight(Test 45):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 46):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m7 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 47):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 36

[1mWaited time: [0m4 seconds

GPT Insight(Test 48):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 31

[1mWaited time: [0m4 seconds

GPT Insight(Test 49):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

[1mWaited time: [0m4 seconds

205

GPT Insight(Test 50):

1. output.MetricResultJSON\n2. parser.java.visitors.TypeVisitor\n3.

parser.java.visitors.MethodVisitor\n4. selection.options.Options\n5.

selection.options.OptionsTest

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m5 seconds [1mGPT Context Tokens: [0m15163 [1mGPT

Generated Tokens: [0m": 38

Experiment counting types with more than 20 dependencies:

Prompt:

 this.gpt.setSystemPrompt("Act as a Software Architect

giving refactoring advice by answering the user questions based on the

following code metric(The metrics are structured with <D> to start the data

structure and </D>):"

 + output.returnPromptData());

 prompt = "How many types have dependency (DEP) higher

than 20? Reply just the number.";

======================ChatGPT Insight:

Prompt used (complete):

How many types have dependency (DEP) higher than 20? Reply just the number.

GPT Insight(Test 1):

5

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15177 [1mGPT

Generated Tokens: [0m": 1

[1mWaited time: [0m70 seconds

GPT Insight(Test 2):

5

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15177 [1mGPT

Generated Tokens: [0m": 1

[1mWaited time: [0m70 seconds

GPT Insight(Test 3):

4

======================ChatGPT Insight end(built prompt)

206

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m15177 [1mGPT

Generated Tokens: [0m": 1

[1mWaited time: [0m70 seconds

GPT Insight(Test 4):

4

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m15177 [1mGPT

Generated Tokens: [0m": 1

[1mWaited time: [0m70 seconds

GPT Insight(Test 5):

4

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m15177 [1mGPT

Generated Tokens: [0m": 1

[1mWaited time: [0m70 seconds

Final experiment using placeholder technique, which pushed the result to 100% success rate:

Starting

Directory valid

--

TYPES SLOC NOM NPM WMC DEP I-DEP FAN-IN FAN-OUT NOA LCOM3

--

output.MetricResultJSON type1 374 42 38 63 25 16 4 22 5 0.95

output.MetricResultGPT type2 374 24 23 41 17 15 1 20 8 0.85

structures.results.TypeMetricResult type3 328 45 31 99 12 3 16 9 8 0.94

fixtures.output.JSONDataFixture type4 325 23 19 38 18 11 1 15 3 0.95

output.MetricResultCSV type5 282 34 34 45 17 15 4 22 4 0.95

fixtures.output.DataFixture type6 269 17 17 17 17 11 2 12 10 0.72

output.MetricResultConsole type7 263 23 22 38 17 15 3 19 4 0.93

javaProject.com.controller.Type type8 245 35 25 58 7 2 0 9 13 0.85

output.MetricResultFile type9 203 41 41 56 5 5 2 7 21 0.75

parser.java.visitors.TypeVisitor type10 189 19 12 42 21 3 1 9 16 0.58

207

parser.java.visitors.MethodVisitor type11 188 22 16 39 23 3 1 9 11 0.76

main.Bootstrapper type12 176 16 1 50 10 9 0 14 7 0.80

chatGPTIntegration.ChatGPTAPI type13 176 15 8 30 7 0 4 8 6 0.82

fixtures.output.CSVDataFixture type14 169 15 15 26 8 8 1 11 1 1.00

output.MetricResultFileTest type15 164 18 16 18 8 1 0 3 22 0.38

structures.metrics.TypeMetric type16 151 36 36 37 9 2 11 5 15 0.80

structures.statistics.StatisticOfType type17 144 15 13 16 6 4 5 6 3 0.93

structures.results.TypeMetricResultTest type18 135 19 17 23 8 3 0 6 2 0.97

output.MetricResultJSONTest type19 131 22 22 22 5 2 0 2 4 0.93

output.MetricResultCSVTest type20 111 18 18 18 5 2 0 2 4 0.91

output.utils.InfoConsole type21 109 13 9 15 0 0 6 3 1 1.00

selection.options.OptionsTest type22 104 20 19 20 22 19 0 20 0 0.00

utils.files.SourceCodeLineCounter type23 99 6 2 29 3 0 3 2 0 0.00

selection.ProjectInfoTest type24 96 17 15 19 10 5 0 6 3 0.94

structures.results.MethodMetricResult type25 96 15 14 25 9 2 18 6 3 0.93

structures.results.NamespaceMetricResult type26 94 17 16 26 9 2 15 5 3 0.94

structures.results.MethodMetricResultTest type27 89 12 10 15 7 3 0 4 2 0.95

structures.statistics.StatisticOfMethod type28 85 10 8 11 5 3 5 5 2 0.94

chatGPTIntegration.GPTintegration type29 83 5 2 15 9 9 1 15 7 0.25

structures.statistics.namespaces.StatisticOfNamespaceTest type30 79 14 12

14 7 4 0 5 2 0.96

parser.java.JavaParser type31 74 6 2 7 16 7 1 11 6 0.50

structures.metrics.MethodMetric type32 73 18 18 19 1 0 11 2 8 0.79

structures.results.NamespaceMetricResultTest type33 72 12 10 13 7 3 0 4 2

0.95

output.MetricResultFake type34 70 21 21 21 3 3 0 4 0 0.00

selection.ProjectInfo type35 69 11 9 12 11 9 5 10 6 0.75

utils.calc.StatisticalAnalysis type36 65 15 14 20 1 0 11 5 2 0.96

structures.results.StatisticMetricResult type37 62 14 14 14 0 0 8 0 2 0.96

structures.metrics.MetricThreshold type38 62 3 3 5 2 0 5 1 1 1.00

fixtures.output.data.TypeData type39 61 12 12 12 0 0 3 1 11 0.55

structures.statistics.StatisticalOperations type40 59 16 15 16 6 4 3 5 3

0.93

structures.statistics.methods.StatisticCallsOfMethodTest type41 56 12 12 12

4 1 0 2 0 0.00

structures.statistics.methods.StatisticCycloOfMethodTest type42 56 12 12 12

4 1 0 2 0 0.00

structures.statistics.methods.StatisticMlocOfMethodTest type43 56 12 12 12

4 1 0 2 0 0.00

structures.statistics.methods.StatisticNbdOfMethodTest type44 56 12 12 12 4

1 0 2 0 0.00

structures.statistics.methods.StatisticParamOfMethodTest type45 56 12 12 12

4 1 0 2 0 0.00

structures.statistics.types.StatisticDepOfTypeTest type46 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.types.StatisticFanInOfTypeTest type47 56 12 12 12 4 1

0 2 0 0.00

structures.statistics.types.StatisticFanOutOfTypeTest type48 56 12 12 12 4

1 0 2 0 0.00

structures.statistics.types.StatisticIDepOfTypeTest type49 56 12 12 12 4 1

0 2 0 0.00

structures.statistics.types.StatisticLcom3OfTypeTest type50 56 12 12 12 4 1

0 2 0 0.00

structures.statistics.types.StatisticNoaOfTypeTest type51 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.types.StatisticNomOfTypeTest type52 56 12 12 12 4 1 0

2 0 0.00

structures.statistics.types.StatisticNpmOfTypeTest type53 56 12 12 12 4 1 0

2 0 0.00

208

structures.statistics.types.StatisticSlocOfTypeTest type54 56 12 12 12 4 1

0 2 0 0.00

structures.statistics.types.StatisticWmcOfTypeTest type55 56 12 12 12 4 1 0

2 0 0.00

fixtures.output.data.StatisticData type56 54 12 12 12 0 0 3 0 2 0.95

utils.calc.OutlierAnalysisTest type57 54 11 11 11 3 0 0 0 2 0.95

fixtures.TypeMetricFixture type58 52 12 12 12 2 1 2 1 1 1.00

selection.options.Options type59 50 2 2 2 21 19 2 19 1 1.00

fixtures.statistics.StatisticOfTypeFixture type60 48 3 0 3 7 5 10 7 2 0.75

chatGPTIntegration.promptEngineer type61 46 4 2 12 1 1 1 2 2 0.83

output.MetricResultDOT type62 45 7 2 11 3 2 2 4 3 0.83

fixtures.MethodMetricFixture type63 43 10 10 10 1 1 2 1 1 1.00

utils.files.StringFormatTest type64 40 8 8 8 2 0 0 0 0 0.00

utils.files.SystemUtils type65 39 3 2 3 7 0 4 4 0 0.00

structures.statistics.StatisticOfNamespace type66 37 5 4 6 5 3 5 5 3 0.75

structures.metrics.NamespaceMetric type67 35 8 8 10 0 0 10 2 3 0.86

fixtures.output.data.MethodData type68 35 7 7 7 0 0 3 0 6 0.58

fixtures.output.data.NamespaceCouplingData type69 35 7 7 7 0 0 3 0 6 0.58

fixtures.output.data.MetricThresholdData type70 33 7 7 7 0 0 3 0 5 0.67

structures.metrics.MetricDefinition type71 30 6 6 6 0 0 30 0 5 0.60

fixtures.output.data.SummaryData type72 30 6 6 6 0 0 3 0 5 0.60

utils.calc.StatisticalAnalysisTest type73 30 5 5 5 3 0 0 0 2 0.88

fixtures.statistics.StatisticOfMethodFixture type74 30 3 0 3 4 4 5 5 2 0.75

output.MetricOutput type75 29 23 23 23 3 3 31 3 0 0.00

javaProject.com.model.Man type76 29 5 5 9 1 0 1 2 0 0.00

utils.files.JSONBuilder type77 28 6 6 6 2 0 2 0 1 1.00

javaProject.com.controller.Dispatcher type78 27 4 4 4 4 4 1 4 3 0.67

utils.files.SourceCodeLineCounterTest type79 26 2 2 2 7 0 0 0 0 0.00

parser.java.visitors.NamespaceVisitor type80 24 3 3 6 5 3 1 5 1 1.00

fixtures.NamespaceMetricFixture type81 23 5 5 5 1 1 2 1 1 1.00

output.utils.Gauge type82 23 3 3 7 2 2 1 3 1 1.00

utils.files.SystemUtilsTest type83 22 2 2 2 5 0 0 1 2 0.50

utils.files.StringFormat type84 20 4 4 9 0 0 6 1 0 0.00

fixtures.output.data.CyclicDependencyData type85 20 4 4 4 0 0 3 0 3 0.67

fixtures.output.data.NamespaceData type86 20 4 4 4 0 0 3 0 3 0.67

fixtures.output.data.TypeResonanceData type87 20 4 4 4 0 0 2 0 3 0.67

javaProject.com.model.Woman type88 16 3 3 5 0 0 1 1 0 0.00

fixtures.output.data.NamespaceDependencyData type89 15 3 3 3 0 0 2 0 2 0.75

output.MetricFile type90 14 11 11 11 0 0 3 0 0 0.00

selection.options.dependencies.TypeCouplingOption type91 11 1 1 1 2 2 2 3 0

0.00

selection.options.general.AllMetricsOption type92 11 1 1 1 2 2 2 3 0 0.00

selection.options.general.MetricVisualizationOption type93 11 1 1 1 2 2 2 3

0 0.00

selection.options.statistics.StatisticAndTypeOption type94 11 1 1 1 2 2 2 3

0 0.00

selection.options.statistics.StatisticTypeOption type95 11 1 1 1 2 2 2 3 0

0.00

selection.options.strutures.TypeOption type96 11 1 1 1 2 2 2 3 0 0.00

javaProject.com.model.Human type97 10 2 2 2 0 0 2 1 1 1.00

selection.options.dependencies.AllCouplingOption type98 10 1 1 1 2 2 2 3 0

0.00

selection.options.dependencies.CyclicDependencyOption type99 10 1 1 1 2 2 2

3 0 0.00

selection.options.dependencies.InternalDependencyOption type100 10 1 1 1 2

2 2 3 0 0.00

selection.options.dependencies.NamespaceCouplingOption type101 10 1 1 1 2 2

2 3 0 0.00

selection.options.statistics.StatisticAndNamespaceOption type102 10 1 1 1 2

2 2 3 0 0.00

209

selection.options.statistics.StatisticNamespaceOption type103 10 1 1 1 2 2

2 3 0 0.00

selection.options.strutures.NamespaceOption type104 10 1 1 1 2 2 2 3 0 0.00

javaProject.com.view.QueueViewer type105 10 0 1 2 1 1 0 2 0 0.00

selection.options.dependencies.DependencyOption type106 9 1 1 1 2 2 2 3 0

0.00

selection.options.general.SummaryOption type107 9 1 1 1 2 2 2 3 0 0.00

selection.options.general.ThresholdsOption type108 9 1 1 1 2 2 2 3 0 0.00

selection.options.statistics.StatisticAndMethodOption type109 9 1 1 1 2 2 2

3 0 0.00

selection.options.statistics.StatisticMethodOption type110 9 1 1 1 2 2 2 3

0 0.00

selection.options.strutures.MethodOption type111 9 1 1 1 2 2 2 3 0 0.00

javaProject.com.controller.ClassWithComments type112 8 1 1 1 0 0 0 0 0 0.00

structures.MetricResultNotifier type113 7 3 3 3 1 0 3 0 0 0.00

javaProject.com.model.Child type114 7 1 1 1 0 0 1 1 1 0.00

javaProject.com.controller.XClass type115 6 1 1 1 0 0 0 0 0 0.00

javaProject.others.AnalysisContext type116 6 1 1 1 0 0 0 0 0 0.00

javaProject.others.ClassVertex type117 6 1 1 1 0 0 1 0 0 0.00

selection.options.OptionDefinition type118 5 1 1 1 1 1 19 1 0 0.00

structures.MetricActivator type119 5 1 1 1 0 0 3 0 0 0.00

javaProject.one.A type120 5 0 0 1 1 1 1 1 1 0.00

javaProject.two.B type121 5 0 0 1 1 1 1 1 1 0.00

javaProject.com.model.Person type122 4 1 1 1 0 0 3 0 0 0.00

chatGPTIntegration.GPT type123 4 1 1 1 0 0 1 0 0 0.00

output.MetricGPT type124 4 1 1 1 0 0 1 0 0 0.00

parser.TypeParser type125 4 1 1 1 0 0 2 0 0 0.00

javaProject.com.controller.XMethod type126 3 0 0 1 0 0 0 0 0 0.00

javaProject.others.ClassDescriptor type127 3 0 0 1 0 0 1 0 0 0.00

javaProject.others.ObjectType type128 3 0 0 1 0 0 0 0 0 0.00

All types analyzed, totalling 128 types

Processing time: 8 seconds

Experiment with replacing type names with placeholder (dictionary technique).

 On attempt to improve the results of the data analysis, it was used a technique to replace

the name with a placeholder of format typeX, which x will be an increasing integer. Below is a

test with 100 iterations to have this technique effectiveness measured (which was 100% of the

100 successful).

======================ChatGPT Insight:

Prompt used (first 700 characters of 22804):

Act as a Software Architect, providing advice to a new developer on what to

do on a refactoring, based on the Data provided after the requestsProvide

all types with dependency higher than 20 dependencies? Answer only the type

names in a enumerated list.Metrics data:<D>Types metrics:<D><D>Method:

type1</D><D>SLOC: 374</D><D>NOM: 42</D><D>NPM: 38</D><D>WMC: 63</D><D>DEP:

25</D><D>I-DEP: 16</D><D>FAN-IN: 4</D><D>FAN-OUT: 22</D><D>NOA:

5</D><D>LCOM3: 0.95</D></D><D><D>Method: type2</D><D>SLOC: 374</D><D>NOM:

24</D><D>NPM: 23</D><D>WMC: 41</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN:

210

1</D><D>FAN-OUT: 20</D><D>NOA: 8</D><D>LCOM3: 0.85</D></D><D><D>Method:

type3</D><D>SLOC: 328</D><D>NOM: 45</D><D>N ...

GPT Insight(Test 1):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 2):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 3):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 4):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

211

[1mWaited time: [0m1 seconds

GPT Insight(Test 5):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 6):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 7):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 8):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

212

[1mWaited time: [0m1 seconds

GPT Insight(Test 9):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 10):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 11):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 12):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

213

[1mWaited time: [0m1 seconds

GPT Insight(Test 13):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 14):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 15):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 16):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

214

[1mWaited time: [0m1 seconds

GPT Insight(Test 17):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 18):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 19):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 20):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

215

[1mWaited time: [0m1 seconds

GPT Insight(Test 21):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 22):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 23):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 24):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

216

[1mWaited time: [0m1 seconds

GPT Insight(Test 25):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 26):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 27):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 28):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

217

[1mWaited time: [0m1 seconds

GPT Insight(Test 29):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1000 milliseconds

GPT Insight(Test 30):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 31):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 32):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

218

[1mWaited time: [0m1 seconds

GPT Insight(Test 33):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 34):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 35):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 36):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

219

[1mWaited time: [0m1 seconds

GPT Insight(Test 37):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 38):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 39):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 40):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

220

[1mWaited time: [0m1 seconds

GPT Insight(Test 41):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m1 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 42):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 43):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m3 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 44):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m4 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

221

[1mWaited time: [0m1 seconds

GPT Insight(Test 45):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 46):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 47):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 48):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

222

[1mWaited time: [0m1 seconds

GPT Insight(Test 49):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

[1mWaited time: [0m1 seconds

GPT Insight(Test 50):

1. type1

2. type10

3. type11

4. type22

5. type59

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m2 seconds [1mGPT Context Tokens: [0m14787 [1mGPT

Generated Tokens: [0m": 24

3.2.3 PROMPT ENGINEERING STRUCTURE

Experiment without answer limitation, which showed prolix answer

Figure A.3.49 – Extract from experiment on DR-Tools data on prompt that shows need to limit the

answer

223

Source: Elaborated by the author

When limited the size of the answer, it gives the answer directly as in the extract “The

average of lines of code per type is higher.” Therefore, it will always be specified a size of an

answer that is consistent with the size expected of the advice that would be considered the best.

First experiment with request advice using summary metrics

 The first experiment with request for refactoring advise was simply to ask repeated

time refactoring advice based on summary metrics:

Figure A.3.50 – Experiment request areas of focus for the refactoring based on summary metrics

224

Source: Elaborated by the author

 Below follows the text version of the extract:

SUMMARY OF METRICS

Total of Namespaces: 32

Total of Types: 128 - 4.00 (number of types/namespaces - median: 3.00 - std

dev: 2.89)

Total of SLOC: 8233 - 64.32 (number of SLOC/types - median: 38.00 - std

dev: 78.08)

Total of Methods: 1185 - 9.26 (number of methods/types - median: 3.00 - std

dev: 6.57)

Total of CYCLO: 1560 - 12.19 (number of CYCLO/types)

Processing time: 10 seconds

======================ChatGPT Insight:

Prompt used (first 700 characters of 840):

Act as a Software Architect, providing advice to a new developer on a

refactoring project, based on the summary metrics provided after <D>.

Provide which activity should be the focus of the refactoringWhat should be

the areas of focus to the developer to refactor this code based on the

Metrics? Answer breaked into 2 linesMetrics data:<D>SUMMARY OF METRICS:

<D>Total of Namespaces: 32</D><D>Total of Types: 128</D><D>Number of

types/namespaces<D>Average: 4.00</D><D>Median: 3.00</D><D>Standard

Deviation: 2.89</D></D><D>Total of SLOC: 8233</D><D>Number of

SLOC/types<D>Average: 64.32</D><D>Median: 38.00</D><D>Standard deviation:

78.08</D></D><D>Total of Methods: 1185</D><D>Number of methods/types: ...

GPT Insight:

Based on the provided summary metrics, there are several insights that can

guide the refactoring focus for the developer. Breaking them down:

225

1. **Code Organization and Modularity**:

- With an **average of 4 types per namespace** but a median of 3, there's a

hint that while most namespaces contain a manageable number of types, there

are potentially a few namespaces with a significantly higher count. This

disparity can indicate uneven distribution and potential issues with

modularity and separation of concerns.

- **Action**: Evaluate the namespaces with a higher than average number of

types for potential refactoring into more cohesive and smaller namespaces,

enhancing modularity and maintainability.

2. **Source Lines of Code (SLOC) Concerns**:

- The **average SLOC per type is 64.32**, with a median of 38 but a large

standard deviation (78.08). This suggests a wide variation in the size of

types, with some types possibly being too large and complex, potentially

violating the Single Responsibility Principle (SRP).

- **Action**: Focus on types with significantly higher SLOC than the

median, breaking down complex types into more manageable and focused

components, potentially improving readability, testability, and

maintainability.

3. **Methodological Refinement**:

- The metrics suggest an **average of 9.26 methods per type**, but with a

median of just 3 and a standard deviation of 6.57. This discrepancy implies

that while most types have a few methods, some have a greatly inflated

number, which can be a red flag for types taking on too many

responsibilities.

- **Action**: Identify types with a high number of methods to evaluate

their responsibilities. Consider applying principles like SRP to refactor

types, possibly by splitting them into smaller, well-defined types or by

extracting methods into new types.

4. **Cyclomatic Complexity (CYCLO)**:

- An average of **12.19 CYCLO per type** might indicate that some methods

or types are too complex, making them hard to understand, test, and

maintain.

- **Action**: Prioritize examining types and methods with high cyclomatic

complexity scores for simplification. Refactor complex conditional logic

into smaller, more manageable methods, utilize design patterns where

appropriate to handle complex behavior, and aim to reduce branching as much

as possible.

Overall Refactoring Strategy:

A balanced approach targeting both organizational structure (namespaces and

types) and code quality (SLOC, methods per type, and cyclomatic complexity)

should be the developer's focus during the refactoring process. Special

attention should be given to identifying outliers that significantly

deviate from the median values, as these are likely candidates for

immediate improvement.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m290 [1mGPT

Generated Tokens: [0m": 550

226

Initial experiment with type metrics analysis:

Then it was tested the same with type metrics, below follows the console answer to type

metrics.

======================ChatGPT Insight:

Prompt used (first 700 characters of 26346):

Act as a Software Architect, providing advice to a new developer on what to

do on a refactoring, based on the Data provided after the requestsWhat

should be the areas of focus to the developer to refactor this code based

on the Metrics? Answer breaked into 2 linesMetrics data:<D>Types

metrics:<D><D>Type: output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM:

42</D><D>NPM: 38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN:

4</D><D>FAN-OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type:

output.MetricResultGPT</D><D>SLOC: 366</D><D>NOM: 24</D><D>NPM:

23</D><D>WMC: 40</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1</D><D>FAN-

OUT: 20</D><D>NOA: 8</D><D>LCOM3: 0.85</D></D><D><D>Type: str ...

GPT Insight(Test 1):

Given the comprehensive metrics data provided, the refactoring efforts

should target the following areas to enhance code quality, maintainability,

and performance:

1. **High Lack of Cohesion (LCOM3 values close to 1)**: Focus on types such

as `fixtures.output.CSVDataFixture`, `TypeMetricFixture`,

`NamespaceVisitor`, and several types with LCOM3 = 1.00. This suggests that

the methods within these types are not working together, which may indicate

that the type is doing too much or its responsibilities are not well

aligned. Consider splitting these types into more cohesive units or

reevaluating their responsibilities.

2. **High Number of Methods (NOM) and Weighted Method Count (WMC)**:

Inspect types such as `structures.results.TypeMetricResult` and

`output.MetricResultFile` which have high NOM and WMC values. This could

indicate complex classes that are trying to do too much. Applying the

Single Responsibility Principle (SRP) can help in breaking down these

classes into smaller, more focused classes.

Refactoring these areas will likely have a significant positive impact on

the maintainability and understandability of the codebase.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m12 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 238

[1mWaited time: [0m80 seconds

GPT Insight(Test 2):

Based on the provided metrics data from various types, here are the key

takeaways and areas of focus for refactoring:

1. **Reduce High Cyclomatic Complexity (WMC):** Look for types with high

Weighted Methods per Class (WMC) values, indicating complex code that could

227

benefit from simplification. Examples include `Type:

structures.results.TypeMetricResult` with `WMC: 99` and `Type:

javaProject.com.controller.Type` with `WMC: 58`. Reducing complexity makes

the code more maintainable and easier to understand.

2. **Address High Lack of Cohesion of Methods (LCOM3):** High LCOM3 values

suggest that classes could be doing too much or the class’s methods and

fields are not related closely enough, which can lead to poor class

cohesion. For example, `Type: structures.results.TypeMetricResultTest` and

`Type: output.MetricResultFake` both have `LCOM3: 0.95`. Consider

refactoring these classes by segregating unrelated functionalities into

separate classes or by enhancing the existing methods and fields to work

more harmoniously.

3. **Optimize Fan-Out and Dependency Metrics:** High Fan-Out values, such

as those seen in `Type: output.MetricResultJSON` (`FAN-OUT: 22`) and `Type:

output.MetricResultCSV` (`FAN-OUT: 22`), indicate that a type depends on

many other types. This could signify overly tight coupling. Look into

possibilities to introduce interfaces, or perhaps dependency inversion

principles, to reduce direct dependencies.

4. **Improve Method and Class Design:** Examine types with a high Number of

Methods (NOM) but low usage of class fields (NOA), e.g., `Type:

output.MetricResultFile` (`NOM: 41, NOA: 21`) and `Type:

structures.metrics.TypeMetric` (`NOM: 36, NOA: 15`). It may indicate

methods could be refactored into more cohesive, smaller classes, or there

are opportunities to make better use of class-level fields, reducing

parameter passing and improving encapsulation.

Refactoring with these focus areas not only aims at enhancing code

readability and maintainability but also at improving the overall

architecture's scalability and robustness.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m34 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 468

[1mWaited time: [0m80 seconds

GPT Insight(Test 3):

Given the complexity and volume of metrics provided for various types, the

first line of advice would revolve around understanding and identifying key

areas where refactoring could yield significant improvements in

maintainability, performance, and code quality. With this extensive data,

certain metrics immediately stand out and should guide the initial focus of

refactoring efforts:

1. **Cohesion (LCOM3):** Types with high LCOM3 values close to 1 (e.g.,

`fixtures.output.data.CSVDataFixture` with LCOM3 of 1.00, and several

others) indicate poor cohesion, meaning that the methods within these types

are not well related. Focusing on increasing cohesion by ensuring that

classes have a single responsibility can significantly improve the

codebase. Refactoring suggestions include splitting large classes into

smaller, more focused ones or moving methods to classes where they are more

relevant.

228

2. **Cyclomatic Complexity (WMC):** Types with high Weighted Methods per

Class (WMC) indicate complex logic that can be hard to understand and test

(e.g., `structures.results.TypeMetricResult` with a WMC of 99). Refactoring

efforts should aim to simplify complex methods, possibly by breaking them

down into smaller methods that are easier to understand and test.

Techniques such as applying the Extract Method refactoring or simplifying

conditional logic can be particularly useful here.

For the second line of advice, attention should be shifted towards

dependencies and method metrics:

1. **Dependencies (DEP, I-DEP, FAN-IN, FAN-OUT):** High dependency metrics,

especially FAN-OUT values, suggest that the type is overly dependent on

many other types or components (e.g., `output.MetricResultJSON` with FAN-

OUT of 22). This can make the system brittle and difficult to change. To

minimize dependency issues, consider applying the Dependency Inversion

Principle by refactoring towards depending on abstractions rather than

concrete implementations. Additionally, look into partitioning the system

into more decoupled, independently deployable units or modules.

2. **Method Metrics (NOM, NPM):** Types with a high Number of Methods (NOM)

or Number of Public Methods (NPM) are indicative of potential \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m49 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 564

[1mWaited time: [0m80 seconds

GPT Insight(Test 4):

Given the comprehensive metrics data provided, the focus of refactoring

should be on the areas of high Lack of Cohesion of Methods (LCOM3), high

Source Lines of Code (SLOC), high Weighted Method Count (WMC), and

excessive dependencies (DEP and I-DEP). To start, areas with a high LCOM3

value close to 1 indicate poor cohesion within a class, suggesting that the

class is doing too much or the class's methods are not well related. High

SLOC indicates potential complexity and difficulty in maintenance, while

high WMC points towards complex classes that may be trying to perform too

many actions, increasing the risk of bugs.

Firstly, attention should be directed towards reducing the complexity and

enhancing the maintainability of the classes with high SLOC counted above.

Refactoring strategies might include the extraction of methods or classes

(if a class is performing too many functions), modularizing the code

better, and identifying common patterns or behaviors that can be abstracted

or unified.

Secondly, reducing the Lack of Cohesion of Methods (LCOM3) by ensuring that

methods within a class are more tightly related to each other should be a

priority. This often involves rethinking the responsibilities assigned to

each class and possibly redistributing methods among classes or introducing

new classes to group related functionalities together more logically.

In refactoring efforts targeting these areas, unit tests play a crucial

role in ensuring that behavior is preserved. Automated tests should be in

place before starting the refactoring process to detect any inadvertent

229

changes or regressions in functionality. It's also prudent to tackle these

refactoring efforts incrementally, applying small, manageable changes and

validating through testing after each modification.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m30 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 339

[1mWaited time: [0m80 seconds

GPT Insight(Test 5):

Given the comprehensive list of metric data for various types, here are key

recommendations for areas of focus during refactoring:

1. **High Lack of Cohesion (LCOM3):** Several types exhibit a high Lack of

Cohesion of Methods (LCOM3) score, close to 1.0, such as

`fixtures.output.CSVDataFixture`,

`structures.results.TypeMetricResultTest`, and `output.MetricResultFake`.

These types should be refactored to improve cohesion. Aim to modularize

functionality such that each class focuses on a single purpose or closely

related purposes.

2. **High Fan-Out:** Certain types have a high Fan-Out, such as

`output.MetricResultJSON` and `output.MetricResultCSV` with Fan-Outs of 22.

High Fan-Out indicates a type's high dependency on other types, suggesting

a potential need for decoupling and encapsulation improvements. Extract

interfaces, use design patterns like Dependency Injection, or apply the

Facade Pattern to reduce direct dependencies.

Continued areas of focus:

3. **Complexity Metrics (WMC) and Size Metrics (SLOC, NOM):** Types like

`structures.results.TypeMetricResult` with WMC of 99, SLOC of 328, and NOM

of 45 are likely to be complex and large, suggesting potential refactoring

to break down large classes into smaller, more manageable ones. Aim for

single responsibility and lower complexity to improve maintainability.

4. **High Internal Dependency (DEP & I-DEP):** Consider types with high

external and internal dependencies, such as

`parser.java.visitors.MethodVisitor` with DEP of 23 and

`selection.options.Options` with I-DEP of 19. It's vital to assess these

dependencies for possible reduction through architectural redesign,

possibly by introducing more abstract layers or utilizing patterns that

favor loose coupling.

By addressing these areas, the software architecture can evolve towards a

more maintainable, scalable, and loosely coupled system. Refactoring

efforts should prioritize readability, simplicity, and encapsulation,

applying solid principles and design patterns where appropriate.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 424

230

[1mWaited time: [0m80 seconds

GPT Insight(Test 6):

Given the comprehensive set of metrics provided for a variety of types, the

key focus areas for refactoring should prioritize addressing high

complexity, reducing tight coupling, enhancing cohesion, and reducing code

duplication. Specifically:

1. **High Complexity & Tight Coupling**: Target types with high WMC

(Weighted Method Count) and high FAN-OUT values as they indicate complexity

and tight coupling. For example, the `structures.results.TypeMetricResult`

has a WMC of 99 and a FAN-OUT of 9, suggesting it could benefit from

simplification and breaking down into smaller, more focused components.

2. **Low Cohesion**: Look for types with high LCOM3 (Lack of Cohesion of

Methods) values, as this indicates that the methods within a class do not

share much in common. Types like `output.MetricResultFake` with LCOM3 of

1.00 and `fixtures.TypeMetricFixture` with LCOM3 of 1.00 are prime

candidates for refactoring to improve cohesion.

Continuing with guidance based on the provided metrics:

1. **Reduce Dependencies**: Types with high DEP (Direct dependencies) and

I-DEP (Indirect dependencies) like `selection.options.Options` with DEP of

21 and I-DEP of 19, indicate a high reliance on other components, making

the system more fragile and harder to maintain. Work on reducing these

dependencies, possibly through interface abstraction or by applying the

Dependency Inversion Principle.

2. **Improve Encapsulation**: NOA (Number of Attributes) figures suggest

how many state variables a type is managing. For better encapsulation and

to facilitate easier unit testing, consider refactoring types with a high

NOA, like `output.MetricResultFile` with NOA of 21, by perhaps breaking

them down into smaller classes each responsible for a more specific subset

of functionality.

This strategic approach to refactoring should lead to improved

maintainability, readability, and scalability of your codebase.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m29 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 404

[1mWaited time: [0m80 seconds

GPT Insight(Test 7):

Based on the provided metrics data, here are the key areas you should focus

on for refactoring:

1. **Reduce High Complexity and Interdependence**: Look into types with

high Weighted Method Count (WMC) and high dependence (DEP and I-DEP). For

example, refactoring the types with the highest WMC like

`structures.results.TypeMetricResult` (WMC: 99) and

231

`structures.metrics.TypeMetric` (WMC: 37) could improve maintainability.

Aim to simplify complex methods and reduce coupling where possible.

2. **Address High Lack of Cohesion (LCOM3)**: Types with high Lack of

Cohesion of Methods version 3 (LCOM3) values, near or equal to 1.00,

indicate that the class methods and fields are not well related. Examples

are `fixtures.output.data.CSVDataFixture` and `fixtures.TypeMetricFixture`,

both with LCOM3 of 1.00, and several others. Consider breaking these types

into smaller, more cohesive ones.

Continued in the next part...

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m20 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 218

[1mWaited time: [0m80 seconds

GPT Insight(Test 8):

Given the substantial amount of metrics data for various types, the areas

for refactoring can be effectively identified by focusing on certain key

metrics indicative of code quality and maintainability. These metrics

include SLOC (Source Lines of Code), NOM (Number of Methods), WMC (Weighted

Methods per Class), DEP (Dependencies), FAN-IN/FAN-OUT, NOA (Number of

Attributes), and notably LCOM3 (Lack of Cohesion of Methods version 3).

Identifying these metrics helps in determining the complexity, coupling,

and cohesion of the code, which are significant factors in software

maintainability.

To start, the primary areas of focus for the developer to refactor, based

on the metrics are:

1. **Reduce Complexity and Size:** Look for types with high SLOC and WMC

values, as these are indicators of complexity. For example,

`structures.results.TypeMetricResult` and `output.MetricResultJSON` have

high SLOC and WMC values, meaning they could be made more maintainable by

breaking them down into smaller, more focused units, thus reducing

complexity and potentially duplicating code.

2. **Improve Cohesion:** Types with high LCOM3 values, like

`fixtures.output.CSVDataFixture`,

`structures.results.TypeMetricResultTest`, and

`structures.results.NamespaceMetricResultTest`, indicate low cohesion,

meaning the methods and attributes of these types are not working well

together. Refactoring towards more cohesive designs will likely involve

segregating functionality into well-defined classes that have clear

responsibilities, which can improve understandability and reusability.

3. **Reduce Coupling:** High values of DEP (Dependencies), FAN-IN, and

especially FAN-OUT suggest a high level of coupling. For instance,

`javaProject.com.controller.Type` has a high FAN-OUT, making it heavily

dependent on many other types. Lowering these metrics through the use of

interfaces, dependency injection, or event patterns can help decrease

coupling, making the system more modular and easier to modify or extend.

4. **Consolidate Data Structures:** Observing the NOA metric can reveal

classes that might be acting more as data structures rather than providing

232

behavior, such as `output.MetricResultFile` with high NOA. Evaluating

whether these attributes can be enclosed within more functional objects or

whether such classes can be simplified or merged with others might result

in a more concise and maintainable codebase.

By targeting these areas based on the provided metrics, the developer can

systematically address issues of complexity, cohesion, and coupling in the

codebase, leading towards an overall improvement in code quality and

maintainability. These refactorings should be done iteratively and tested

thoroughly to ensure system integrity is maintained throughout the process.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m40 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 551

[1mWaited time: [0m80 seconds

GPT Insight(Test 9):

Given the provided metrics data, here are key areas the developer should

focus on for refactoring:

1. **Cohesion and Coupling**: High LCOM (Lack of Cohesion of Methods)

values (close to 1) suggest poor cohesion within types, meaning the class

methods are not well related in their purpose. For instance, types with

LCOM3 values of 0.95 or higher should be carefully reviewed to see if they

can be decomposed into more cohesive classes. Coupling metrics, including

both FAN-IN and FAN-OUT, offer insight into how interdependent the classes

are. Types with high FAN-OUT values, such as 22, suggest a class is highly

dependent on many other classes and might benefit from refactoring to

reduce dependencies.

2. **Size Metrics**: SLOC (Source Lines of Code) provides a quick way of

identifying large classes that might be doing too much. For instance, types

with the highest SLOC such as `374` might be good candidates for

decomposition. Breaking down large classes into smaller, more manageable

pieces can make the codebase more understandable and easier to maintain.

Given these two areas of focus, the developer should aim to:

- Improve cohesion within classes by ensuring that methods within a class

are closely related in their functionality. If a class has methods that

seem unrelated, consider splitting these into separate classes.

- Reduce coupling between classes by minimizing the number of dependencies

a class has on other classes. This might involve using design patterns such

as Facade to simplify interactions or adopting Dependency Injection to

manage class dependencies better.

- Break down large classes into smaller ones. If a class has an unusually

high SLOC, it's likely doing too much and should be decomposed into

smaller, more focused classes that each handle a single responsibility.

By tackling these areas, the developer can work towards a more modular,

maintainable, and understandable codebase.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 384

233

[1mWaited time: [0m80 seconds

GPT Insight(Test 10):

Given the extensive metric data provided, focusing on key areas can

significantly improve code quality during the refactoring process. Here are

the primary focus areas for refactoring:

1. **Reduce High Cyclomatic Complexity (WMC):** Look for types with high

Weighted Methods per Class (WMC) values as these are indicators of complex

classes. High complexity may make maintenance and understanding difficult.

`structures.results.TypeMetricResult` and `main.Bootstrapper` are examples

with high WMC values, suggesting that the methods in these classes are

complex and potentially doing too much. Consider breaking down complex

methods into smaller, more manageable ones.

2. **Address High Lack of Cohesion of Methods (LCOM3):** High LCOM3 values

(approaching 1) indicate that the class’s methods are not related to each

other in terms of accessing the same class attributes. In general, a high

LCOM3 suggests that the class could be split into multiple, more cohesive

classes. Types like `output.MetricResultJSON`,

`structures.results.TypeMetricResultTest`, and

`fixtures.output.CSVDataFixture` demonstrate high LCOM3 values, suggesting

potential refactoring into more cohesive units.

3. **Minimize Fan-out Complexity:** Types with high Fan-Out, such as

`output.MetricResultJSON` and `structures.results.TypeMetricResult`, are

highly dependent on other classes or modules. Reducing these dependencies

can make the system easier to understand, test, and maintain. Consider

applying the Dependency Inversion Principle or breaking down classes to

reduce their responsibilities.

4. **Improve Method Responsiveness by Reducing High NOM and NPM Values:**

High Numbers of Methods (NOM) and Numbers of Public Methods (NPM) within a

class might indicate classes with too many responsibilities. Types like

`structures.results.TypeMetricResult` and `output.MetricResultFile`

demonstrate high values, suggesting a violation of the Single

Responsibility Principle. Try to segregate responsibilities into separate,

focused classes.

Refocusing on these areas during the refactoring process should contribute

to a more maintainable, understandable, and cohesive codebase. Always

remember to unit test your changes to ensure that refactoring does not

affect the existing functionality.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 447

Second experiment with type metrics analysis

The same experiment from the previous one was executed, to further analyze the response.

234

Prompt used (first 700 characters of 26346):

Act as a Software Architect, providing advice to a new developer on what to

do on a refactoring, based on the Data provided after the requestsWhat

should be the areas of focus to the developer to refactor this code based

on the Metrics? Answer breaked into 2 linesMetrics data:<D>Types

metrics:<D><D>Type: output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM:

42</D><D>NPM: 38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN:

4</D><D>FAN-OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type:

output.MetricResultGPT</D><D>SLOC: 366</D><D>NOM: 24</D><D>NPM:

23</D><D>WMC: 40</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1</D><D>FAN-

OUT: 20</D><D>NOA: 8</D><D>LCOM3: 0.85</D></D><D><D>Type: str ...

GPT Insight(Test 1):

Given the comprehensive metrics data provided, the refactoring efforts

should target the following areas to enhance code quality, maintainability,

and performance:

1. **High Lack of Cohesion (LCOM3 values close to 1)**: Focus on types such

as `fixtures.output.CSVDataFixture`, `TypeMetricFixture`,

`NamespaceVisitor`, and several types with LCOM3 = 1.00. This suggests that

the methods within these types are not working together, which may indicate

that the type is doing too much or its responsibilities are not well

aligned. Consider splitting these types into more cohesive units or

reevaluating their responsibilities.

2. **High Number of Methods (NOM) and Weighted Method Count (WMC)**:

Inspect types such as `structures.results.TypeMetricResult` and

`output.MetricResultFile` which have high NOM and WMC values. This could

indicate complex classes that are trying to do too much. Applying the

Single Responsibility Principle (SRP) can help in breaking down these

classes into smaller, more focused classes.

Refactoring these areas will likely have a significant positive impact on

the maintainability and understandability of the codebase.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m12 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 238

[1mWaited time: [0m80 seconds

GPT Insight(Test 2):

Based on the provided metrics data from various types, here are the key

takeaways and areas of focus for refactoring:

1. **Reduce High Cyclomatic Complexity (WMC):** Look for types with high

Weighted Methods per Class (WMC) values, indicating complex code that could

benefit from simplification. Examples include `Type:

structures.results.TypeMetricResult` with `WMC: 99` and `Type:

javaProject.com.controller.Type` with `WMC: 58`. Reducing complexity makes

the code more maintainable and easier to understand.

2. **Address High Lack of Cohesion of Methods (LCOM3):** High LCOM3 values

suggest that classes could be doing too much or the class’s methods and

fields are not related closely enough, which can lead to poor class

cohesion. For example, `Type: structures.results.TypeMetricResultTest` and

235

`Type: output.MetricResultFake` both have `LCOM3: 0.95`. Consider

refactoring these classes by segregating unrelated functionalities into

separate classes or by enhancing the existing methods and fields to work

more harmoniously.

3. **Optimize Fan-Out and Dependency Metrics:** High Fan-Out values, such

as those seen in `Type: output.MetricResultJSON` (`FAN-OUT: 22`) and `Type:

output.MetricResultCSV` (`FAN-OUT: 22`), indicate that a type depends on

many other types. This could signify overly tight coupling. Look into

possibilities to introduce interfaces, or perhaps dependency inversion

principles, to reduce direct dependencies.

4. **Improve Method and Class Design:** Examine types with a high Number of

Methods (NOM) but low usage of class fields (NOA), e.g., `Type:

output.MetricResultFile` (`NOM: 41, NOA: 21`) and `Type:

structures.metrics.TypeMetric` (`NOM: 36, NOA: 15`). It may indicate

methods could be refactored into more cohesive, smaller classes, or there

are opportunities to make better use of class-level fields, reducing

parameter passing and improving encapsulation.

Refactoring with these focus areas not only aims at enhancing code

readability and maintainability but also at improving the overall

architecture's scalability and robustness.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m34 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 468

[1mWaited time: [0m80 seconds

GPT Insight(Test 3):

Given the complexity and volume of metrics provided for various types, the

first line of advice would revolve around understanding and identifying key

areas where refactoring could yield significant improvements in

maintainability, performance, and code quality. With this extensive data,

certain metrics immediately stand out and should guide the initial focus of

refactoring efforts:

1. **Cohesion (LCOM3):** Types with high LCOM3 values close to 1 (e.g.,

`fixtures.output.data.CSVDataFixture` with LCOM3 of 1.00, and several

others) indicate poor cohesion, meaning that the methods within these types

are not well related. Focusing on increasing cohesion by ensuring that

classes have a single responsibility can significantly improve the

codebase. Refactoring suggestions include splitting large classes into

smaller, more focused ones or moving methods to classes where they are more

relevant.

2. **Cyclomatic Complexity (WMC):** Types with high Weighted Methods per

Class (WMC) indicate complex logic that can be hard to understand and test

(e.g., `structures.results.TypeMetricResult` with a WMC of 99). Refactoring

efforts should aim to simplify complex methods, possibly by breaking them

down into smaller methods that are easier to understand and test.

Techniques such as applying the Extract Method refactoring or simplifying

conditional logic can be particularly useful here.

236

For the second line of advice, attention should be shifted towards

dependencies and method metrics:

1. **Dependencies (DEP, I-DEP, FAN-IN, FAN-OUT):** High dependency metrics,

especially FAN-OUT values, suggest that the type is overly dependent on

many other types or components (e.g., `output.MetricResultJSON` with FAN-

OUT of 22). This can make the system brittle and difficult to change. To

minimize dependency issues, consider applying the Dependency Inversion

Principle by refactoring towards depending on abstractions rather than

concrete implementations. Additionally, look into partitioning the system

into more decoupled, independently deployable units or modules.

2. **Method Metrics (NOM, NPM):** Types with a high Number of Methods (NOM)

or Number of Public Methods (NPM) are indicative of potential \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m49 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 564

[1mWaited time: [0m80 seconds

GPT Insight(Test 4):

Given the comprehensive metrics data provided, the focus of refactoring

should be on the areas of high Lack of Cohesion of Methods (LCOM3), high

Source Lines of Code (SLOC), high Weighted Method Count (WMC), and

excessive dependencies (DEP and I-DEP). To start, areas with a high LCOM3

value close to 1 indicate poor cohesion within a class, suggesting that the

class is doing too much or the class's methods are not well related. High

SLOC indicates potential complexity and difficulty in maintenance, while

high WMC points towards complex classes that may be trying to perform too

many actions, increasing the risk of bugs.

Firstly, attention should be directed towards reducing the complexity and

enhancing the maintainability of the classes with high SLOC counted above.

Refactoring strategies might include the extraction of methods or classes

(if a class is performing too many functions), modularizing the code

better, and identifying common patterns or behaviors that can be abstracted

or unified.

Secondly, reducing the Lack of Cohesion of Methods (LCOM3) by ensuring that

methods within a class are more tightly related to each other should be a

priority. This often involves rethinking the responsibilities assigned to

each class and possibly redistributing methods among classes or introducing

new classes to group related functionalities together more logically.

In refactoring efforts targeting these areas, unit tests play a crucial

role in ensuring that behavior is preserved. Automated tests should be in

place before starting the refactoring process to detect any inadvertent

changes or regressions in functionality. It's also prudent to tackle these

refactoring efforts incrementally, applying small, manageable changes and

validating through testing after each modification.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m30 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 339

237

[1mWaited time: [0m80 seconds

GPT Insight(Test 5):

Given the comprehensive list of metric data for various types, here are key

recommendations for areas of focus during refactoring:

1. **High Lack of Cohesion (LCOM3):** Several types exhibit a high Lack of

Cohesion of Methods (LCOM3) score, close to 1.0, such as

`fixtures.output.CSVDataFixture`,

`structures.results.TypeMetricResultTest`, and `output.MetricResultFake`.

These types should be refactored to improve cohesion. Aim to modularize

functionality such that each class focuses on a single purpose or closely

related purposes.

2. **High Fan-Out:** Certain types have a high Fan-Out, such as

`output.MetricResultJSON` and `output.MetricResultCSV` with Fan-Outs of 22.

High Fan-Out indicates a type's high dependency on other types, suggesting

a potential need for decoupling and encapsulation improvements. Extract

interfaces, use design patterns like Dependency Injection, or apply the

Facade Pattern to reduce direct dependencies.

Continued areas of focus:

3. **Complexity Metrics (WMC) and Size Metrics (SLOC, NOM):** Types like

`structures.results.TypeMetricResult` with WMC of 99, SLOC of 328, and NOM

of 45 are likely to be complex and large, suggesting potential refactoring

to break down large classes into smaller, more manageable ones. Aim for

single responsibility and lower complexity to improve maintainability.

4. **High Internal Dependency (DEP & I-DEP):** Consider types with high

external and internal dependencies, such as

`parser.java.visitors.MethodVisitor` with DEP of 23 and

`selection.options.Options` with I-DEP of 19. It's vital to assess these

dependencies for possible reduction through architectural redesign,

possibly by introducing more abstract layers or utilizing patterns that

favor loose coupling.

By addressing these areas, the software architecture can evolve towards a

more maintainable, scalable, and loosely coupled system. Refactoring

efforts should prioritize readability, simplicity, and encapsulation,

applying solid principles and design patterns where appropriate.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 424

[1mWaited time: [0m80 seconds

GPT Insight(Test 6):

Given the comprehensive set of metrics provided for a variety of types, the

key focus areas for refactoring should prioritize addressing high

complexity, reducing tight coupling, enhancing cohesion, and reducing code

duplication. Specifically:

238

1. **High Complexity & Tight Coupling**: Target types with high WMC

(Weighted Method Count) and high FAN-OUT values as they indicate complexity

and tight coupling. For example, the `structures.results.TypeMetricResult`

has a WMC of 99 and a FAN-OUT of 9, suggesting it could benefit from

simplification and breaking down into smaller, more focused components.

2. **Low Cohesion**: Look for types with high LCOM3 (Lack of Cohesion of

Methods) values, as this indicates that the methods within a class do not

share much in common. Types like `output.MetricResultFake` with LCOM3 of

1.00 and `fixtures.TypeMetricFixture` with LCOM3 of 1.00 are prime

candidates for refactoring to improve cohesion.

Continuing with guidance based on the provided metrics:

1. **Reduce Dependencies**: Types with high DEP (Direct dependencies) and

I-DEP (Indirect dependencies) like `selection.options.Options` with DEP of

21 and I-DEP of 19, indicate a high reliance on other components, making

the system more fragile and harder to maintain. Work on reducing these

dependencies, possibly through interface abstraction or by applying the

Dependency Inversion Principle.

2. **Improve Encapsulation**: NOA (Number of Attributes) figures suggest

how many state variables a type is managing. For better encapsulation and

to facilitate easier unit testing, consider refactoring types with a high

NOA, like `output.MetricResultFile` with NOA of 21, by perhaps breaking

them down into smaller classes each responsible for a more specific subset

of functionality.

This strategic approach to refactoring should lead to improved

maintainability, readability, and scalability of your codebase.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m29 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 404

[1mWaited time: [0m80 seconds

GPT Insight(Test 7):

Based on the provided metrics data, here are the key areas you should focus

on for refactoring:

1. **Reduce High Complexity and Interdependence**: Look into types with

high Weighted Method Count (WMC) and high dependence (DEP and I-DEP). For

example, refactoring the types with the highest WMC like

`structures.results.TypeMetricResult` (WMC: 99) and

`structures.metrics.TypeMetric` (WMC: 37) could improve maintainability.

Aim to simplify complex methods and reduce coupling where possible.

2. **Address High Lack of Cohesion (LCOM3)**: Types with high Lack of

Cohesion of Methods version 3 (LCOM3) values, near or equal to 1.00,

indicate that the class methods and fields are not well related. Examples

are `fixtures.output.data.CSVDataFixture` and `fixtures.TypeMetricFixture`,

both with LCOM3 of 1.00, and several others. Consider breaking these types

into smaller, more cohesive ones.

239

Continued in the next part...

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m20 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 218

[1mWaited time: [0m80 seconds

GPT Insight(Test 8):

Given the substantial amount of metrics data for various types, the areas

for refactoring can be effectively identified by focusing on certain key

metrics indicative of code quality and maintainability. These metrics

include SLOC (Source Lines of Code), NOM (Number of Methods), WMC (Weighted

Methods per Class), DEP (Dependencies), FAN-IN/FAN-OUT, NOA (Number of

Attributes), and notably LCOM3 (Lack of Cohesion of Methods version 3).

Identifying these metrics helps in determining the complexity, coupling,

and cohesion of the code, which are significant factors in software

maintainability.

To start, the primary areas of focus for the developer to refactor, based

on the metrics are:

1. **Reduce Complexity and Size:** Look for types with high SLOC and WMC

values, as these are indicators of complexity. For example,

`structures.results.TypeMetricResult` and `output.MetricResultJSON` have

high SLOC and WMC values, meaning they could be made more maintainable by

breaking them down into smaller, more focused units, thus reducing

complexity and potentially duplicating code.

2. **Improve Cohesion:** Types with high LCOM3 values, like

`fixtures.output.CSVDataFixture`,

`structures.results.TypeMetricResultTest`, and

`structures.results.NamespaceMetricResultTest`, indicate low cohesion,

meaning the methods and attributes of these types are not working well

together. Refactoring towards more cohesive designs will likely involve

segregating functionality into well-defined classes that have clear

responsibilities, which can improve understandability and reusability.

3. **Reduce Coupling:** High values of DEP (Dependencies), FAN-IN, and

especially FAN-OUT suggest a high level of coupling. For instance,

`javaProject.com.controller.Type` has a high FAN-OUT, making it heavily

dependent on many other types. Lowering these metrics through the use of

interfaces, dependency injection, or event patterns can help decrease

coupling, making the system more modular and easier to modify or extend.

4. **Consolidate Data Structures:** Observing the NOA metric can reveal

classes that might be acting more as data structures rather than providing

behavior, such as `output.MetricResultFile` with high NOA. Evaluating

whether these attributes can be enclosed within more functional objects or

whether such classes can be simplified or merged with others might result

in a more concise and maintainable codebase.

By targeting these areas based on the provided metrics, the developer can

systematically address issues of complexity, cohesion, and coupling in the

codebase, leading towards an overall improvement in code quality and

240

maintainability. These refactorings should be done iteratively and tested

thoroughly to ensure system integrity is maintained throughout the process.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m40 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 551

[1mWaited time: [0m80 seconds

GPT Insight(Test 9):

Given the provided metrics data, here are key areas the developer should

focus on for refactoring:

1. **Cohesion and Coupling**: High LCOM (Lack of Cohesion of Methods)

values (close to 1) suggest poor cohesion within types, meaning the class

methods are not well related in their purpose. For instance, types with

LCOM3 values of 0.95 or higher should be carefully reviewed to see if they

can be decomposed into more cohesive classes. Coupling metrics, including

both FAN-IN and FAN-OUT, offer insight into how interdependent the classes

are. Types with high FAN-OUT values, such as 22, suggest a class is highly

dependent on many other classes and might benefit from refactoring to

reduce dependencies.

2. **Size Metrics**: SLOC (Source Lines of Code) provides a quick way of

identifying large classes that might be doing too much. For instance, types

with the highest SLOC such as `374` might be good candidates for

decomposition. Breaking down large classes into smaller, more manageable

pieces can make the codebase more understandable and easier to maintain.

Given these two areas of focus, the developer should aim to:

- Improve cohesion within classes by ensuring that methods within a class

are closely related in their functionality. If a class has methods that

seem unrelated, consider splitting these into separate classes.

- Reduce coupling between classes by minimizing the number of dependencies

a class has on other classes. This might involve using design patterns such

as Facade to simplify interactions or adopting Dependency Injection to

manage class dependencies better.

- Break down large classes into smaller ones. If a class has an unusually

high SLOC, it's likely doing too much and should be decomposed into

smaller, more focused classes that each handle a single responsibility.

By tackling these areas, the developer can work towards a more modular,

maintainable, and understandable codebase.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m31 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 384

[1mWaited time: [0m80 seconds

GPT Insight(Test 10):

Given the extensive metric data provided, focusing on key areas can

significantly improve code quality during the refactoring process. Here are

the primary focus areas for refactoring:

241

1. **Reduce High Cyclomatic Complexity (WMC):** Look for types with high

Weighted Methods per Class (WMC) values as these are indicators of complex

classes. High complexity may make maintenance and understanding difficult.

`structures.results.TypeMetricResult` and `main.Bootstrapper` are examples

with high WMC values, suggesting that the methods in these classes are

complex and potentially doing too much. Consider breaking down complex

methods into smaller, more manageable ones.

2. **Address High Lack of Cohesion of Methods (LCOM3):** High LCOM3 values

(approaching 1) indicate that the class’s methods are not related to each

other in terms of accessing the same class attributes. In general, a high

LCOM3 suggests that the class could be split into multiple, more cohesive

classes. Types like `output.MetricResultJSON`,

`structures.results.TypeMetricResultTest`, and

`fixtures.output.CSVDataFixture` demonstrate high LCOM3 values, suggesting

potential refactoring into more cohesive units.

3. **Minimize Fan-out Complexity:** Types with high Fan-Out, such as

`output.MetricResultJSON` and `structures.results.TypeMetricResult`, are

highly dependent on other classes or modules. Reducing these dependencies

can make the system easier to understand, test, and maintain. Consider

applying the Dependency Inversion Principle or breaking down classes to

reduce their responsibilities.

4. **Improve Method Responsiveness by Reducing High NOM and NPM Values:**

High Numbers of Methods (NOM) and Numbers of Public Methods (NPM) within a

class might indicate classes with too many responsibilities. Types like

`structures.results.TypeMetricResult` and `output.MetricResultFile`

demonstrate high values, suggesting a violation of the Single

Responsibility Principle. Try to segregate responsibilities into separate,

focused classes.

Refocusing on these areas during the refactoring process should contribute

to a more maintainable, understandable, and cohesive codebase. Always

remember to unit test your changes to ensure that refactoring does not

affect the existing functionality.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15174

[1mGPT Generated Tokens: [0m": 447

Experiment with type metrics request Top 3 types needing refactoring

This experiment was to provide a more valuable insight, so that integration provides which

classes on our project should be refactored.

242

Figure A.3.51 – Result from insight request based on type metrics

Source: Elaborated by the author

Figure A.3.52– Result from insight request based on type metrics (2nd Request)

Source: Elaborated by the author

Figure A.3.53 – Result from insight request based on type metrics (3rd Request)

Source: Elaborated by the author

243

Figure A.3.54 – Result from insight request based on type metrics (4th Request)

Source: Elaborated by the author

Figure A.3.55 – Prompt used for the results above

Source: Elaborated by the author

Text version of the results (with all 10 executions):

======================ChatGPT Insight:

Prompt used (first 700 characters of 26418):

Act as a Software Architect, providing advice to a new developer on what to

do on a refactoring, based on the Data provided after the requestsWhat is

the top 3 types that need refactoring? Answer only the type name, then one

paragraph explain what should be refactored and which technique to be used,

providing reference documentation.Metrics data:<D>Types metrics:<D><D>Type:

output.MetricResultJSON</D><D>SLOC: 374</D><D>NOM: 42</D><D>NPM:

38</D><D>WMC: 63</D><D>DEP: 25</D><D>I-DEP: 16</D><D>FAN-IN: 4</D><D>FAN-

OUT: 22</D><D>NOA: 5</D><D>LCOM3: 0.95</D></D><D><D>Type:

output.MetricResultGPT</D><D>SLOC: 366</D><D>NOM: 24</D><D>NPM:

23</D><D>WMC: 40</D><D>DEP: 17</D><D>I-DEP: 15</D><D>FAN-IN: 1< ...

GPT Insight(Test 1):

The top 3 types that need refactoring based on the provided metrics data

are:

1. structures.results.TypeMetricResult

2. output.MetricResultJSON

3. output.MetricResultGPT

The `structures.results.TypeMetricResult` type has a high Weighted Method

Count (WMC) of 99, which implies complex methods possibly doing too much

work or having too many responsibilities. A high LCOM3 value of 0.94

suggests low cohesion, indicating that the methods are not well-related in

functionality, leading to difficulties in maintenance and understanding. To

refactor, extract methods or even classes from this type to reduce

complexity and increase cohesion. Techniques such as Extract Class or

Extract Method, as described in Fowler's \

======================ChatGPT Insight end(built prompt)

244

[1mGPT processing time: [0m30 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 422

[1mWaited time: [0m80 seconds

GPT Insight(Test 2):

The top 3 types that need refactoring based on the provided metrics data

are:

1. structures.results.TypeMetricResult

2. output.MetricResultJSON

3. output.MetricResultCSV

The `structures.results.TypeMetricResult` type shows a high Weighted Method

Count (WMC) at 99, indicating a high complexity and potentially multiple

responsibilities violating the Single Responsibility Principle. This type

also has a high Lack of Cohesion in Methods 3 (LCOM3) at 0.94, suggesting

that the methods of the class are not cohesive and could probably be

separated into multiple, more focused classes. Refactoring strategies could

include applying the Extract Class refactoring technique to create more

cohesive classes, and breaking down complex methods into smaller ones,

potentially using the Extract Method refactoring technique. For reference

and further reading on these refactoring techniques, see Martin Fowler's

book \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 453

[1mWaited time: [0m80 seconds

GPT Insight(Test 3):

Top 3 Types that need refactoring:

1. ```structures.results.TypeMetricResult```

2. ```output.MetricResultJSON```

3. ```output.MetricResultGPT```

For the `structures.results.TypeMetricResult` type, the high Weighted

Method Count (WMC) of 99 and the high Lack of Cohesion in Methods 3 (LCOM3)

of 0.94 suggest that this class has too many responsibilities and its

methods do not share enough common data. Extract Class and Extract Method

refactorings [Fowler] should be considered to reduce the class size,

improve cohesion, and separate concerns. Splitting this class into smaller,

more focused classes can help manage complexity and improve

maintainability. Additionally, reviewing the use of instance variables

across methods to identify opportunities for Extract Method refactoring can

lead to more cohesive and modular code.

For `output.MetricResultJSON`, a Source Lines of Code (SLOC) of 374 and a

high method count (NOM of 42) indicate that this class might be doing too

much and could benefit from decomposition. Applying the Extract Class

refactoring technique can help in separating concerns, simplifying future

maintenance, and improving readability. For instance, if this class is

handling both JSON formatting and data manipulation, these responsibilities

could be divided into separate classes.

245

With `output.MetricResultGPT`, similar to `output.MetricResultJSON`, the

SLOC of 366 and the NOM of 24 suggest that refactoring techniques such as

Extract Class or Method should be applied to break down responsibilities

into smaller, more manageable pieces. The aim should be to enhance the

Single Responsibility Principle (SRP) and make the codebase more

maintainable.

Reference documentation for these refactorings can be found in Martin

Fowler's refactoring book and catalog, which provides comprehensive

guidance on how to apply these techniques effectively [Fowler, Martin. \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m40 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 406

[1mWaited time: [0m80 seconds

GPT Insight(Test 4):

The top 3 types that need refactoring are:

1. structures.results.TypeMetricResult

2. output.MetricResultJSON

3. output.MetricResultGPT

For **structures.results.TypeMetricResult**, the high Weighted Method Count

(WMC) of 99 and Number of Methods (NOM) of 45 suggest a complex class with

too much functionality crammed into a single class. This class should be

refactored to adhere to the Single Responsibility Principle (SRP), possibly

by splitting it into smaller, more cohesive classes. The Extract Class

refactoring method can be applied here. Moreover, a high Lack of Cohesion

in Methods 3 (LCOM3) value of 0.94 indicates that the methods within the

class do not share much data, further suggesting the need for class

splitting. The Extract Method refactoring can also be applied to reduce the

complexity of methods, making them do one thing only as suggested by SRP.

Reference: Martin Fowler's \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m42 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 485

[1mWaited time: [0m80 seconds

GPT Insight(Test 5):

The top 3 types that need refactoring are:

1. structures.results.TypeMetricResult

2. output.MetricResultJSON

3. output.MetricResultGPT

These types show indications of high complexity and potential design

issues, highlighted by metrics like Source Lines of Code (SLOC), Weighted

Methods per Class (WMC), and Lack of Cohesion of Methods (LCOM3).

246

For the `structures.results.TypeMetricResult` type, with the highest WMC

(99) suggesting complex class methods, and a high LCOM3 (0.94) indicating

low cohesion, refactoring towards simplifying these methods and improving

cohesion is advised. Techniques could include Extract Method to reduce

complexity of individual methods, and Extract Class to improve cohesion by

grouping related functionalities together.

The `output.MetricResultJSON` type has a relatively high SLOC (374) and a

high WMC (63), pointing to complex and potentially uncohesive methods. This

type could benefit from refactoring techniques like Extract Method to break

down complex methods into simpler ones, making it easier to understand and

modify.

The `output.MetricResultGPT` type has a high LCOM3 value (0.85) alongside

substantial SLOC (366) and WMC (40), indicating a need for better cohesion

and possible method complexity issues. Implementing refactoring strategies

such as Extract Class can help in dividing responsibilities into more

cohesive units, while Extract Method can address complex methods by

dividing them into more manageable segments.

Reference documentation for these techniques can be found in Martin

Fowler's \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m25 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 347

[1mWaited time: [0m80 seconds

GPT Insight(Test 6):

Top 3 types that need refactoring:

1. `structures.results.TypeMetricResult`

2. `output.MetricResultJSON`

3. `output.MetricResultCSV`

The `structures.results.TypeMetricResult` type shows a high complexity with

a Weighted Method Count (WMC) of 99 and a high Lack of Cohesion of Methods

3 (LCOM3) score of 0.94, alongside a significant number of methods (NOM) at

45. This indicates that the class likely has multiple responsibilities that

could be broken down into smaller, more cohesive classes. Refactoring

techniques such as Extract Class or Extract Method could be beneficial in

reducing complexity and increasing cohesion.

For `output.MetricResultJSON`, it also suffers from high complexity with a

WMC of 63, a high LCOM3 score of 0.95, and a rather large number of methods

(NOM of 42). Similar to `structures.results.TypeMetricResult`, applying

Extract Class and Extract Method could help. Additionally, considering its

function, applying patterns like Data Transfer Objects (DTO) could

encapsulate the data better.

Lastly, `output.MetricResultCSV` has a high LCOM3 of 0.95 and a

considerable number of non-private methods (NPM of 34) with a WMC of 45.

This suggests a lack of method cohesion and potential for method-level

refactoring. Extract Method could be used here too for better

modularization of the code.

247

For reference documentation on these refactoring techniques, \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 371

[1mWaited time: [0m80 seconds

GPT Insight(Test 7):

The top 3 types that need refactoring based on the provided metrics are:

1. structures.results.TypeMetricResult

2. output.MetricResultJSON

3. output.MetricResultGPT

For the type `structures.results.TypeMetricResult`, it has a very high

Weighted Method Count (WMC) of 99, indicating that the methods in this type

are quite complex. To tackle this, methods should be broken down into

smaller, more manageable pieces. Applying the Extract Method refactoring

technique could be a good starting point, as described in Martin Fowler's \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m33 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 449

[1mWaited time: [0m80 seconds

GPT Insight(Test 8):

Top 3 types that need refactoring:

1. structures.results.TypeMetricResult

2. output.MetricResultJSON

3. output.MetricResultConsole

The class `structures.results.TypeMetricResult` stands out primarily due to

its very high Weighted Methods per Class (WMC) value of 99, which typically

indicates a high level of complexity and possibly a large number of

responsibilities. Such complexity can often lead to difficulties in

maintenance and understanding the class. Refactoring techniques that could

be applied here include **Extract Class** to create more cohesive classes

with fewer responsibilities, and **Extract Method** to reduce complexity

within methods. Focusing on reducing its high complexity will likely

improve maintainability and readability. Reference for these techniques can

be found in Martin Fowler's \

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m24 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 367

[1mWaited time: [0m80 seconds

248

GPT Insight(Test 9):

The top 3 types that need refactoring are:

1. structures.results.TypeMetricResult

2. output.MetricResultJSON

3. output.MetricResultGPT

For **structures.results.TypeMetricResult**, the Weighted Method Count

(WMC) stands out as significantly high at 99, indicating complex methods

which might be doing too much or are too complicated. Refactoring this

would likely involve breaking these methods into smaller, more manageable

pieces. Applying the Extract Method refactoring technique, as described in

Martin Fowler’s “Refactoring: Improving the Design of Existing Code”, could

be quite effective here. This would not only help in reducing the

complexity but might also improve the modularity and reusability of the

code.

For **output.MetricResultJSON**, the class has a high Source Lines of Code

(SLOC) and Number of Methods (NOM), which suggests that it might be

handling too many responsibilities. A potential refactoring strategy could

involve applying the Single Responsibility Principle (SRP). This principle,

part of the SOLID principles detailed by Robert C. Martin, advises that a

class should have only one reason to change. Segregating responsibilities

into different classes could improve coherence and maintainability.

Finally, **output.MetricResultGPT** shows a combination of high SLOC and

high Number of Public Methods (NPM). This might indicate that the class is

offering too many services or functionalities, potentially complicating the

use and maintenance of the class. Refactoring by applying the Interface

Segregation Principle (ISP), another of the SOLID principles, by splitting

the functionality into multiple, more specific interfaces, could make the

class more manageable and adaptable to change. Reducing the class size and

separating concerns would likely make the codebase more flexible and easier

to understand.

Reference documentation for these techniques and principles can be found in

Martin Fowler’s “Refactoring: Improving the Design of Existing Code” for

practical refactoring techniques and Robert C. Martin’s “Clean

Architecture” and “Agile Software Development, Principles, Patterns, and

Practices” for SOLID principles application.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m32 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 421

[1mWaited time: [0m80 seconds

GPT Insight(Test 10):

Top 3 types that need refactoring:

1. structures.results.TypeMetricResult

2. output.MetricResultJSON

3. output.MetricResultGPT

For the `structures.results.TypeMetricResult`, given its high Weighted

Method Count (WMC) of 99 and its high Lack of Cohesion in Methods (LCOM3)

of 0.94, it suggests that the class is doing too much, with methods not

249

closely related in functionality. Refactoring strategies for this class

should include **Extract Class** to separate responsibilities into other

classes, improving cohesion, and potentially **Extract Method** to break

down large methods into smaller, cohesive ones. Additionally, evaluating

the necessity and usage of class-level variables (with a NOA of 8) could

identify opportunities for **Move Field** to relocate some fields to more

relevant classes. The **Martin's Principles of Package Design** can provide

further guidance on modularizing the system more effectively.

The `output.MetricResultJSON` and `output.MetricResultGPT` share similar

issues, with high SLOC (374 and 366 respectively), high NOM (42 and 24

respectively), and very high LCOM3 scores (0.95 and 0.85, indicating low

cohesion). For both types, applying **Extract Method** for lengthy methods

and **Extract Class** for unrelated functionalities within these types

could greatly improve maintainability. For example, handling JSON in

multiple formats or contexts might be spread across various methods that

could be better organized in separate classes. Considering the **Single

Responsibility Principle** from SOLID principles could be beneficial in

guiding these extractions, ensuring each class or method has one reason to

change.

Reference documentation includes:

- Fowler, M. (2018). Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional. This book covers a wide range of refactoring

techniques, including Extract Method and Extract Class.

- Martin, R. (2009). Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice Hall. This provides an in-depth look at writing

clean, maintainable code which is vital during and after refactoring.

- Martin, R. C. (2003). Agile Software Development, Principles, Patterns,

and Practices. Prentice Hall. Offers insights into principles like Single

Responsibility to guide the refactoring process.

======================ChatGPT Insight end(built prompt)

[1mGPT processing time: [0m38 seconds [1mGPT Context Tokens: [0m15187

[1mGPT Generated Tokens: [0m": 476

3.3 DR-TOOLS CODE HEALTH EXPERIMENT

3.3.2 PROMPT ENGINEERING FOR DR-TOOLS CODE HEALTH DATA

 This section presents the full data in its raw format from the information presented in

section 3.3.2.

Full data on prompt format:

“<D>Code Smell Metric:<D><D>TYPE:

structures.metrics.TypeMetric<\D><D>SLOC: 151 <\D><D>NOM: 36 <\D><D>NPM:

36 <\D><D>WMC: 38<\D><D>DEP: 9 <\D><D>I-DEP: 2 <\D><D>FAN-IN: 11

<\D><D>FAN-OUT: 5 <\D><D>NOA: 15 <\D><D>LCOM3: 0.80 <\D><D>DIT: 1.0

250

<\D><D>CHILD: 0.0 <\D><D>NPA: 0.0<\D><D>List of smells

detected:<D>Insufficient Modularization<\D><D>Multifaceted

Abstraction<\D><\D><D>TOTAL OF SMELLS DETECTED: 2<\D><\D><D><D>TYPE:

output.MetricResultGPT<\D><D>SLOC: 377 <\D><D>NOM: 24 <\D><D>NPM: 23

<\D><D>WMC: 41<\D><D>DEP: 17 <\D><D>I-DEP: 15 <\D><D>FAN-IN: 1

<\D><D>FAN-OUT: 20 <\D><D>NOA: 8 <\D><D>LCOM3: 0.85 <\D><D>DIT: 1.0

<\D><D>CHILD: 0.0 <\D><D>NPA: 2.0<\D><D>List of smells

detected:<D>Insufficient Modularization<\D><D>Multifaceted

Abstraction<\D><D>Deficient Encapsulation<\D><D>TOTAL OF SMELLS DETECTED:

3<\D><\D><D><D>TYPE: structures.results.TypeMetricResult<\D><D>SLOC: 328

<\D><D>NOM: 45 <\D><D>NPM: 31 <\D><D>WMC: 99<\D><D>DEP: 12

<\D><D>I-DEP: 3 <\D><D>FAN-IN: 16 <\D><D>FAN-OUT: 9 <\D><D>NOA: 8

<\D><D>LCOM3: 0.94 <\D><D>DIT: 1.0 <\D><D>CHILD: 0.0 <\D><D>NPA:

0.0<\D><D>List of smells detected:<D>Insufficient Modularization<\D><D>Multifaceted

Abstraction<\D><\D><D>TOTAL OF SMELLS DETECTED: 2<\D><\D><D><D>TYPE:

javaProject.one.A<\D><D>SLOC: 5 <\D><D>NOM: 0 <\D><D>NPM: 0

<\D><D>WMC: 1<\D><D>DEP: 1 <\D><D>I-DEP: 1 <\D><D>FAN-IN: 1

<\D><D>FAN-OUT: 1 <\D><D>NOA: 1 <\D><D>LCOM3: 0.00 <\D><D>DIT: 1.0

<\D><D>CHILD: 0.0 <\D><D>NPA: 0.0<\D><D>List of smells detected:<D>Cyclically-

dependent Modularization<\D><\D><D>TOTAL OF SMELLS DETECTED:

1<\D><\D><D><D>TYPE: javaProject.com.controller.Type<\D><D>SLOC: 245

<\D><D>NOM: 35 <\D><D>NPM: 25 <\D><D>WMC: 58<\D><D>DEP: 7

<\D><D>I-DEP: 2 <\D><D>FAN-IN: 0 <\D><D>FAN-OUT: 9 <\D><D>NOA: 13

<\D><D>LCOM3: 0.85 <\D><D>DIT: 1.0 <\D><D>CHILD: 0.0 <\D><D>NPA:

0.0<\D><D>List of smells detected:<D>Insufficient Modularization<\D><D>Multifaceted

Abstraction<\D><\D><D>TOTAL OF SMELLS DETECTED: 2<\D><\D><D>TOTAL OF

TYPES WITH SMELLS: 5<\D><\D>”

4. QUALITATIVE ANALYSIS OF USE CASES

4.3 USE CASE 3: USING METHOD METRICS TO PROVIDE INSIGHTS

251

 Just for reader information, below are the metrics of the code analyzed in section 4.3,

once in the main text was just provided a small part of the methods. Here as well is just

presented the methods with over 15 LOC as total number would be unnecessary.

Table A.4.1 – Method metrics from the methods used on subsection 4.3’s analysis (only

methods over 15 LOC, just 79 of 1185 methods)

method LOC CYCLO CALLS NBD PARAM

chatGPTIntegration.GPTintegration.GPTinsight() 94 5 12 3 0

fixtures.output.DataFixture.getMethodData() 59 1 56 0 0

output.MetricResultGPT.showSummary() 57 1 70 3 0

fixtures.output.DataFixture.getThresholdData() 51 1 25 0 0

output.MetricResultJSON.generateSummary() 49 1 57 2 0

structures.metrics.MetricThreshold.MetricThreshol

d()
49 1 25 1 0

javaProject.com.controller.Type.isSubtype(String

dottedSubtype, String collectionType)
45 7 3 2 2

utils.files.SourceCodeLineCounter.isSourceCodeLi

ne(String line)
42 10 13 4 1

output.MetricResultGPT.showTypes() 42 3 46 3 0

fixtures.output.DataFixture.getTypesResonance() 37 1 23 0 0

javaProject.com.controller.Type.addClassAndGetCl

assVertex(XClass xclass)
32 6 5 2 1

output.MetricResultGPT.showDependencies() 31 4 16 3 0

output.MetricResultCSV.generateSummary() 31 1 53 1 0

structures.results.TypeMetricResultTest.createType

s()
31 1 46 1 0

fixtures.statistics.StatisticOfTypeFixture.createTyp

es()
31 1 46 0 0

output.MetricResultGPT.showInternalDependencie

s()
30 4 19 3 0

output.MetricResultGPT.showMethods() 30 3 22 3 0

output.utils.InfoConsole.printCommands() 30 1 28 0 0

utils.files.SourceCodeLineCounter.getNumberOfLi

nes(BufferedReader bReader)
28 8 10 4 1

output.MetricResultConsole.showSummary() 28 1 38 2 0

output.MetricResultGPT.showNamespaceCoupling

()
27 2 21 3 0

utils.files.SourceCodeLineCounter.commentBegan(

String line)
25 5 9 4 1

chatGPTIntegration.ChatGPTAPI.requesttoGPT(Str

ing body, HttpURLConnection connection)
25 2 12 2 2

chatGPTIntegration.ChatGPTAPI.createChatGPTA

PIConnection()
25 1 8 2 0

javaProject.com.controller.Type.traverseSupertypes

(ClassDescriptor start)
24 2 5 2 1

output.utils.InfoConsole.printMetrics() 24 1 23 0 0

output.MetricResultConsole.showInternalDependen

cies()
23 4 15 2 0

chatGPTIntegration.ChatGPTAPI.requestGPTClos

ure(String body, HttpURLConnection connection)
23 4 10 2 2

252

chatGPTIntegration.ChatGPTAPI.requestGPTKeep

Open(String body, HttpURLConnection

connection)

23 4 8 2 2

utils.files.SourceCodeLineCounter.commentEnded(

String line)
22 4 5 4 1

main.Bootstrapper.verifyInvalidOptions() 21 4 4 2 0

javaProject.com.controller.Type.computeKnownSu

btypes(ClassDescriptor classDescriptor)
21 2 3 2 1

selection.options.Options.Options() 21 1 19 0 0

output.MetricResultGPT.showCyclicDependencies(

)
20 3 7 3 0

fixtures.output.JSONDataFixture.generateTypes() 20 2 27 1 0

fixtures.output.JSONDataFixture.getDependencies(

)
20 1 18 1 0

fixtures.output.JSONDataFixture.getInternalDepen

dencies()
20 1 18 1 0

fixtures.output.DataFixture.getTypeData() 20 1 17 0 0

main.Bootstrapper.getOutputFormat(long

startTime)
19 5 8 2 1

output.MetricResultConsole.showNamespaceCoupl

ing()
19 2 18 2 0

fixtures.output.CSVDataFixture.generateStatistical

Method()
19 2 35 1 0

fixtures.output.CSVDataFixture.generateStatistical

Namespace()
19 2 35 1 0

fixtures.output.CSVDataFixture.generateStatistical

Type()
19 2 35 1 0

fixtures.output.JSONDataFixture.generateStatistical

Method()
19 2 24 1 0

fixtures.output.JSONDataFixture.generateStatistical

Namespace()
19 2 24 1 0

fixtures.output.JSONDataFixture.generateStatistical

Type()
19 2 24 1 0

structures.results.TypeMetricResult.cleanListOf(Set

<String> typesWithCyclos)
18 6 5 3 1

chatGPTIntegration.GPTintegration.printGPTResp

onse(String prompt)
18 4 10 3 1

structures.results.TypeMetricResult.getCyclicDepe

ndencies()
18 3 7 3 0

output.MetricResultGPT.showNamespaces() 18 2 18 3 0

output.MetricResultJSON.generateNamespaceCoup

ling()
18 2 22 2 0

output.MetricResultCSV.generateNamespaceCoupl

ing()
18 2 17 1 0

output.MetricResultFile.show() 18 1 16 0 0

structures.results.TypeMetricResult.getTotalOfVari

ablesUsedInMethods(TypeMetric type)
17 5 5 3 1

chatGPTIntegration.ChatGPTAPI.chatGPTConvers

ation(String[] prompt)
17 4 4 2 1

output.MetricResultCSV.getStatisticalMetrics(List

<StatisticMetricResult> list)
17 2 34 1 1

structures.statistics.StatisticOfType.compute() 17 2 14 1 0

parser.java.visitors.TypeVisitor.visit(TypeDeclarati

on node)
16 3 11 2 1

output.MetricResultJSON.getStatisticalMetrics(List

<StatisticMetricResult> list)
16 2 23 2 1

253

output.MetricResultConsole.showTypes() 16 2 20 2 0

fixtures.output.JSONDataFixture.generateMethods(

)
16 2 16 1 0

fixtures.output.JSONDataFixture.generateNamespa

ceCoupling()
16 2 16 1 0

fixtures.output.JSONDataFixture.generateThreshol

ds()
16 2 14 1 0

structures.results.StatisticMetricResult.StatisticMetr

icResult(String acronym, double average, double

median, double amplitude, double firstQuartile,

double thirdQuartile, double standardDeviation,

double lowerFence, double upperFence, double

interQuartileRange, double minValue, double

maxValue, double threshold)

16 1 0 0 13

structures.results.TypeMetricResult.getInternalImp

ortsBy(String namespace)
15 6 8 3 1

structures.results.TypeMetricResult.getTotalOfAbst

ractTypesIn(String namespace)
15 6 6 3 1

javaProject.com.model.Man.foo() 15 5 1 1 0

chatGPTIntegration.promptEngineer.promptContex

t()
15 5 0 0 0

chatGPTIntegration.promptEngineer.promptInstruct

ion()
15 5 0 0 0

output.MetricResultConsole.showDependencies() 15 4 12 2 0

chatGPTIntegration.ChatGPTAPI.printExperiment

MultipleRequest(String prompt, String[] prompts)
15 4 10 2 2

parser.java.visitors.MethodVisitor.defineParameters

()
15 3 11 2 0

fixtures.output.JSONDataFixture.generateSummary

()
15 2 14 1 0

output.MetricResultFileTest.deleteFiles() 15 1 14 1 0

output.MetricResultFileTest.setUp() 15 1 14 1 0

Source: Elaborated by the author

254

APPENDIX B – TRABALHO DE GRADUAÇÃO 1

Integration of Chat GPT to Software Engineering Smell
detection tool

Glauber de Souza Rosa1, Guilherme Lacerda1, Marcelo Pimenta1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{glauberosadesouza@gmail.com, guilhermeslacerda@gmail.com, mpimenta@inf.ufrgs.br

Abstract. Develop and analyze the efficiency of integrating ChatGPT (and how
to use it efficiently) to a software analyzing suite for code ”Smells” detection and
code quality evaluation, so that the integration provides guidance to software
engineers or even some level of automation on its refactoring work.

Resumo. Desenvolver e analisar a eficiência de integrar o Chat GPT (e como
usá-lo de maneira mais eficaz) à uma suı́te de ferramentas de analise de código
(métricas, indicadores) sobre code smells e qualidade de código, de maneira
que tal integração produza orientações para o engenheiro de software ou até
mesmo algum nı́vel de automação no seu trabalho de refactoring.

1. Introduction

Software maintenance and constant updates are currently a big part of the software
development, as it is needed to comply with new regulatory requirements or corrections
to adapt to new needs. Currently we are at a point that much of our codes used through
out applications are over 10 years old and on some cases more than 25 years old, so that
software maintenance becomes by each day a more fundamental part of our society.

On the near future, there will be needed some major maintenance such as add
support to addition of digits to US phone number or US Social Security numbers. We
already have similar situations in the past, like the Year 2000 software bug, which is
estimated that over 75 percent of all software applications were affected by the issue.

This highlights the importance of keeping the software easy to maintain and have
tools and automation to help to keep legacy code with quality. A study from 2014
[Jones 2006] estimates that soon the number of professionals working on maintenance
comparing to new developments would top 75 percent of all IT professionals working
with software engineering.

By mid-21st century, maintenance costs could tops five trillion dollars in overall,
which makes clear the need for better maintenance tools and technologies to support these
activities.

The predecessor work explored on this project covered analytical part of software
maintenance through smells and refactoring metrics, which lead to Dr. Tools Suite
presented on [Guilherme Lacerda 2023], where the tool presents data that provides
statistics about software Smells and refactoring opportunities for more efficient code
maintenance.

At the same time that we have this growing need for software maintenance, we
see new advances on a different area which can be brought to assist on it, AI and Large
Language models, like ChatGPT.

ChatGPT is a interactive AI released on 2022 and that in a few months proved to
be a powerful tool to problem solving and creative creation through a precise prompt
engineer to guide it. Such tool were already used on multiple creative activities
automation with different success rate, though we see potentially to assist on the software
maintenance through provide insights on maintenance or even provide automation.

On this work, we will integrate the two technologies referred above to provide
with the software engineering community with a guidance to how to leverage both and
take the best synergy possible from them, either by using ChatGPT with the provided
statics from DR-Tool to provide insights to what software engineer should look into and
what could be done, to even scenarios in which some automation could be implemented.

2. Biographical Review

Through this section, we will review similar and predecessor researches to develop the
tools that this project will be studying on how to best integrating the two technologies,
DR-Tools and ChatGPT.

2.1. Code Smells and Refactoring

2.1.1. Code Smells

Smell is a concept that is used on software engineering for a software problem that is
not the same as a bug that would generate a failure, but is a problem that can impact
the software maintenance and future enhancements through increased complexity, for
example [Guilherme Lacerda 2020].

The term ”smells” became popular initially with the agile software development
and was popularized due to the original work of [Fowler 1999], which was pioneer in the
come smell identification and provided techniques to solve them.

Smells can be divided on lower level, known as code level [Fowler 1999], or
higher level, known as design level [Brown 1998].

[Fowler 1999] has presented originally 22 code smells with proposed ways to have
it refactored, later the list was extended by researches like [Fowler 2018]. On Table 1, are
presented the referred smells from the original work and the 6 additions proposed.

[Brown 1998] on his work presented anti-patterns that could be divided in on
development, architecture and project management design smells. The anti-patterns
describe the common occurrences that could result in negative consequences through out
the code life-cycle. On table 2 is presented a list of the main design smells according to
[Brown 1998].

There are sub-sequential works, for example, [Wake 2003] and [Kerievsky 2004]
that expanded with addition of other smells and different perspectives, though this will
not be further detailed as the main smells and perspective were covered already and we
will initially focus on them.

Table 1. List of code smells presented by [Fowler 1999] and [Fowler 2018].

Table 2. List of design smells presented by [Brown 1998].

2.1.2. Refactoring

Refactoring, as defined by [Guilherme Lacerda 2020], is the primary approach to remove
smells. Refactoring is the reorganization strategies to support change in software to help
to improve code quality by making it more readable, efficient and/or eliminating possible
problems, these strategies were introduced by [Opdyke 1992].

Refactoring can be done on different levels of abstraction and on different software
entities. For example, it can be done a refactoring on the UML models, database
schemes, software architecture, requirements and language structure [Mens 2003]. As
the refactoring does not change the purpose or the behavior of the software, it can be done
on different levels to achieve the best results to have the code supported in the future,
which means that different techniques can be used and often be used in a sequence to
improve the quality, though its sequence is arbitrary.

Refactoring is usually divided at two levels as smells: high-level (composite

refactoring) and low-level (primitive refactoring). High-level refactoring consist on
significant and structural design changes at a macro or architectural level, while low-
level are small and specific code changes. [Opdyke 1992] work defined that to do a
high-level refactoring a low-level refactoring will be required, as well as for both it
was introduced the fundamental element for the refactoring that is precondition. The
concept of precondition is that you need to establish preconditions that are checked
before applying the transformations and after applied, these conditions are rechecked to
guarantee that the behavior of the code is not altered by the refactoring changes, having
the same preconditions.

The key importance of performing refactoring on code that do not present bugs,
is that 40 percent of the time invested in software maintenance is the cost to understand
the code and its architecture [Telea 2011]. One key strategy is to invest on automation
and provide tools for developers to detect refactoring opportunities (or smells), so that the
process can be optimized.

2.2. DR-Tools Suite

DR-Tools Suite is a set of lightweight open-source tools that provide resources and
information to improve source code quality, supporting the developer in his daily work.
DR-Tools Suite was inspired by the medicine metaphor [Guilherme Lacerda 2023].

DR-Tools Suite consist of 2 tools: DR-Tools Metric, which is a command-line
Interface (CLI) tool that collects and shows different source code metrics, and DR-
Tools Metric Visualization, which is a tool to provide a visual feedback through different
graphical formats from the data generated by DR-Tools Metric. DR-Tools Metric will be
the tool that will be the focus of this work and for that reason we will only further develop
on it.

2.2.1. DR-Tools Metric

DR-Tools Metric is designed to provide a well-known set of combined metrics from
software metrics research as well as define a set of heuristics for the combination of
metric based on relationships and thresholds. With this the tool calculates metrics and
provides insights from the source code, so that this can help developers to learn about
software complexity, smells and refactoring opportunities.

To better understand the source code, a key point is to have the code metrics and
its correlations clear, as shown on studies like [D. Radjenovic 2013]. For example, the
relation between size metrics and Object Orientation metrics help analyze aspects of code
maintainability. Also according to [M. A. Bigonha 2019], when a metric is associated
with some threshold, it facilitates its use and understanding.

DR-Tools Metric analyzes the source code and provides the results in different
formats (line command, CSV, and JSON) to be used in different contexts. There is no
necessary any configuration or installation of any complementary software or plug-in to
use the tool.

DR-Tools Metric provides 33 metrics contextualized by project summary,
namespaces (packages), types (classes), methods, dependencies, and coupling

(namespace and type). The following is the list of metrics by context:
• Summary (9): Total of namespaces, total of types, mean number of

types/namespaces, total of lines of code (SLOC), mean number of SLOC/types,
total of methods, mean number of methods/types, total of complexity (CYCLO),
and mean number of complexity/types;

• Namespaces (2): Number of classes/types (NOC) and number of abstract classes
(NAC);

• Types (9): Lines of code (SLOC), number of methods (NOM), number of
public methods (NPM), class complexity (WMC), number of dependencies(DEP),
number of internal dependencies (I-DEP), number of other types that depend on
a given type (FAN-IN), number of other types referenced by a type (FAN-OUT),
and number of fields/attributes (NOA);

• Methods (5): Lines of code (MLOC), cyclomatic complexity (CYCLO), number
of invocations (CALLS), nested block depth (NBD), and number of parameters
(PARAM);

• Namespace Coupling (5): Afferent coupling (CA), efferent coupling (CE),
instability (I), abstractness degree (A), and normalized distance (D);

• Type Coupling (4): number of dependencies (DEP), number of internal
dependencies (I-DEP), number of other types that depend on a given type (FAN-
IN), and number of other types referenced by a type (FAN-OUT);

• Dependencies (3): General dependencies (DEP), internal dependencies (I-DEP),
and cyclic dependencies.
The tool also provides its users with the flexibility to combine and query

contextual information, from general information (summary), information about
packages, classes, methods, dependency types, couplings, and reference thresholds of
metrics. When presenting the results, the data are sorted according to the context. For
example, when presenting information about classes, data is sorted by lines of code,
complexity, and number of methods or when presenting about methods, the combination
is cyclomatic complexity, nested blocks, lines code, and invocations.

It is also possible to filter contextualized results using the –top option. Like this,
it is easier for developers to analyze the source code and filter out the most problematic
elements. As presented in Figure 1, it is possible to have a view on summary and
packages, more complex classes, and methods (showing the first 5), in a single option.

The tool is currently only developed to analyze Java code, but its architecture is
designed to allow simple enhancement to other languages by developing a parser and
corresponding visitor to the new language.

DR-Tools Metric is designed to be independent of environments and platforms,
facilitating interoperability. Its open architecture allows both the functionalities and the
resulting data in known standardized formats being integrated with other tools, without
additional installation or configuration. The tool research is a work in progress and is
intended to be expanded with new tools, like refactoring recommendation and other tools
to support code review. At this place that this work will be connected.

2.3. Chat GPT
ChatGPT, released by OpenAI in November 2022, is a large-scale language model that
once made available reached 100 milion users in 3 months and have over 25 milion daily

users.

OpenAI’s GPT (generative pre-trained transformer) models, the tool behind
ChatGPT, have been trained to understand natural language and code, in a way that when
provided with a text input, it provides a text output in response. These inputs are referred
to as ”prompts” and its designing is essentially how you extract the answers from a GPT
model, which will directly influence on its answer and accuracy.

According to OpenAI, GPTs can be used across a great variety of tasks including
content or code generation, summarization, conversation, creative writing, and more.

2.3.1. Chat GPT APIs

OpenAI, through its site makes available to developers an public API (application
programming interface) that can be used to access the GPT resources. It works by
sending a request containing the inputs and the developer API key, and receive a response
containing the model’s output. The latest models, gpt-4 and gpt-3.5-turbo, are accessed
through the chat completions API endpoint.

With the key generated at https://platform.openai.com (Figure 1 below), it possible
to can send requests using https://api.openai.com/v1/chat/completions endpoint through
HTTP requests from any language.

Figure 1. ChatGPT API Key

2.3.2. Chat GPT on Development

Currently is being studied the implications and the applicability of ChatGPT to code
development and to support software activities. According to studies and recent
results of the ChatGPT, increased interest is on the area of automation of software
development tasks in a way to improve the developers to make their tasks more efficiently
[Tyna Eloundou and Rock 2023].

Tools like ChatGPT are leading impressive results, on both quantity and quality,
producing outcomes (e.g., code) that are in some cases comparable levels to what humans
produce. For example, [Mehdi Golzadeh and Chidambaram 2023] investigations in large

open-source projects on GitHub concluded that bots are among the biggest and most
active contributors, without being labeled as bots.

On the empirical study done over quality of code between developers and
tools like ChatGPT performed by [Nathalia Nascimento 2023], the result was that in
certain scenarios the performance of ChatGPT has outperformed new software engineers
in specific tasks, though this was more specific on solving easy to medium-level
tasks/problems, when the ChatGPT consistently outperformed the new software engineer.

On the other hand, the same study has concluded that there is decisive evidence to
support the theory that ChatGPT would outperform an experienced developer in terms of
solution performance. In summary, the study reveal a dynamic interplay between human
and AI performance and the need to a collaborative approach to fine-tone the AI inputs
based on the developer expertise at the same time that improve efficiency via automatons
through the AI.

2.3.3. ChatGPT Prompt Patterns for Improving Code Quality

As already stated by OpenAI itself, a key point of good usage of Large Language Models
(LLM), like ChatGPT, is to provide a good prompt and context to the request. So this is
an area of study that is being developed and we will explore in this research.

Though there is several patterns and they can take various forms, to perform
software engineering tasks, according to [Jules White 2023], it is typically better to start
with a scoping statement, like ”from now on”, act as a X”, ”for the next four prompts”.
On [Jules White 2023], it was investigated and proposed 13 prompt patterns for different
software engineering tasks. They were documented, tested and analysed with the below
format:

• A name and classification: provides a clear name to be identified and classified
the pattern based on the type of problem to be solved. The prompt patterns
proposed can be view on Table 3;

• The intent and context: summarises of the problem to be solved and its goal;
• Motivation: explains the importance of the problem to be solved;
• The structure and key ideas: describes the fundamentals of the pattern and the

context that need to be provided to the LLM to achieve the expected resolution;
• Example implementation: shows an example of the patter implemented and

discusses it;
• Consequences: evaluates the pros and cons of using the pattern and how to adapt

the pattern to other scenarios.

On this research our focus will be more specifically on the Refactoring piece as
the goal is to integrate ChatGPT to provide the refactoring technique to be followed
and study what can be provided by ChatGPT. The research already done on the topic
by [Jules White 2023] supports the intention of our project as according to it, tools like
ChatGPT have a surprisingly powerful understanding of abstract coding constructs and
can delivery innovative approaches to code refactoring.

• The Pseudo-code Refactoring Pattern:

Table 3. Classifying Prompt Patterns for Automating Software Engineering Tasks
by [Jules White 2023].

This method consists in basically provide the LLM (ChatGPT) with the pseudo-
code structure desired and have the AI refactor to adapt to the specific situation. The
pattern will follow as the below Figure 2.

Figure 2. Pseudo-code Refactoring Patter by [Jules White 2023]

One important considerations is that in case the pseudo-code requires an extensive
description and precising code, the usage of the LLM could be not advantageous as
its benefits will be reduced by the required coding of the pseudo-code to specify the
refactoring. This pattern can also lead to substantial refactoring and because of that
requires to the code to be split or have functions removed, which could impact on its
public interface be changed and require further refactoring.

Important to note that this methodology would not be the best fit for this research,
as we will be integrating with a data generating tool and not a pseudo-code tool.

• The Data-guided Refactoring Pattern:

On this pattern, the idea is that to provide the data that needs to be changed and
the LLM will do the refactoring to have the data the closest to the requested. Though it is
not exactly to have it matching the smells and source code metrics, but code results and
formats, we believe this might be the best pattern to fit our scenario. Figure 3 shows how
this pattern would be structured.

The results from the [Jules White 2023], indicate that this pattern reduces the
manual effort to refactor many types of code changes. On many cases the refactor can

Figure 3. Data-guided Refactoring Patter by [Jules White 2023]

be completed automatically or at least be a booster and speed up the refactor causing
potentially a cost reduction on the change of data formats for example.

In general this last study concluded that the depth of the capabilities of LLMs,
like ChatGPT, are not fully understood or appreciated as the tool holds a lot of potential
to software engineering automation through out the software life-cycle. The conclusion is
that the key to leverage all this capabilities is to codify an effective catalog of prompts and
guidance on how to combine this patterns to improve the software engineering through
automation. At the same time, it is highlighted the significance of human involvement and
expertise as currently ChatGPT has a tendency to ”hallucinate” confidently, so guidance
and scrutiny is required to mitigate these possible issues.

In conclusion, the tools have a lot of potential, but it is required much research
and development on prompt pattern engineering to have the best results provided and all
potential be fulfilled.

3. Proposed Work
As highlighted through the Introduction and the literature review, the goal of this project is
to investigate and develop a integration of the DR-Tools with ChatGPT, both introduced
and explained earlier. Therefore it will be studied how to use the data provided from
DR-Tools and how to better deliver value to the software engineering on the process of
refactoring through these technologies.

The simple integration and asking to ChatGPT is not the solution as studies
reviewed show that the prompt engineering plays an important role on the quality of the
ChatGPT responses and problem solving capability. With this in mind, we will design
how that integration is going to be done and evaluate the results of it through out this
work, to at the end provide a case study and a possible best practice for similar future
works.

To follow best practices on the tool integration development, we already are
starting from a high-level idea of architecture, which is presented on Figure 4.

3.1. Schedule of Activities

To do so, we will divide this work on the 8 parts below (which might be further change
through the research process):

1. Developing the Class/Component to handle the API calls to ChatGPT;
2. Developing the Prompt engineering Class/Component to create the prompts that

will be used to call ChatGPT;
3. Developing the integration Class/Component to retrieve data from Dr. Tool and

provide it to the prompt engineering;

Figure 4. Initial proposed high-level architecture for ChatGPT Integration

4. Developing the UI integration Class/Component;
5. Testing and interactively improving on the different elements of this project;
6. Describing and detailing design and architecture with explanation on what could

be achieved and the reasons for the decision;
7. Analyzing the end results and provide a overview of the success and leanings;
8. Thesis writing;
9. Presentation preparation;

For development parts (1 through 5), we will approach on the following steps:

1. Reviewing previous works and established best practices;
2. Defining high-level architecture and concepts to be used on the activity;
3. Code Development and testing;
4. Validating results;

We will consider the implementation phase starting on second week of August,
calendar week 31 (CW31), taking 16 weeks and ending on calendar week 48 (CW45), as
planned schedule on figure 5.

Figure 5. Proposed work schedule

4. Conclusion
On this report, we introduced the problem/opportunity, reviewed literature on the relevant
subjects of this study and presented the proposed solution and its methodology. On our
review we started by reviewing and introducing the concepts of Smells and Refactoring,
to later connect with the tool that we will be working on, Dr-Tools.

We introduced and reviewed the concept of Large Language Models (LLM) and
ChatGPT, also contextualized the importance and the concept of prompt engineering,
which will be the biggest challenge of this project and as such we expect to have it taking
majority of the project time. We tied together the two areas by the proposal work of
integrating the existing Dr-Tools and its data to provide refactoring though use ChatGPT
with the correct prompt engineering, which our review presented as key to effectiveness
of the ChatGPT.

We expect that at the end of this work, we will be able to:

• Provide a best practice to prompt engineering for refactoring and smell removal;
• Improve DR-Tools capability with a new automation with ChatGPT;
• Evaluate the effectiveness of ChatGPT and if the tool is able to accomplish this

proposed task;
• Provide a forward view on how ChatGPT can be further explored;

References
Brown, W.H., M. R. I. H. M. T. (1998). Antipatterns: Refactoring software, architectures,

and projects in crisis. John Wiley and Sons, Inc.

D. Radjenovic, M. Hericko, R. T. A. (2013). Software fault prediction metrics: A
systematic literature review. Information and Software Technology 55.

Fowler, M., B. K. B. J. (2018). Refactoring: Improving the design of existing code -
second edition. Pearson.

Fowler, M., B. K. B. J. O. W.-R. D. (1999). Refactoring: Improving the design of existing
code. Addison-Wesley.

Guilherme Lacerda, Fabio Petrilloc, M. P. (2023). Dr-tools: a suite of lightweight open-
source tools to measure and visualize java source code. Publishing Press.

Guilherme Lacerda, Fabio Petrilloc, M. P. Y. G. G. (2020). Code smells and refactoring:
A tertiary systematic review of challenges and observations. In The Journal of Systems
and Software. Publishing Press.

Jones, C. (2006). The economics of software maintenance in the twenty first century.
Software Productivity Research, Inc.

Jules White, Sam Hays, Q. F. J. S.-S. D. C. S. (2023). Chatgpt prompt patterns for
improving code quality, refactoring, requirements elicitation, and software design.
arXiv, Cornell University.

Kerievsky, J. (2004). Refactoring to patterns. Addison-Wesley.

M. A. Bigonha, K. Ferreira, P. S. B. S. M. J. D. L. (2019). The usefulness of software
metric thresholds for detection of bad smells and fault prediction. Information and
Software Technology 115.

Mehdi Golzadeh, Tom Mens, A. D. E. C. and Chidambaram, N. (2023). Recognizing bot
activity in collaborative software development. IEEE Software.

Mens, T., D. S. B. B. S. H. G. P. (2003). Refactoring: Current research and future trends.
In Electronic Notes in Theoretical Computer Science 82. LDTA’2003 - Language
descriptions, Tools and Applications.

Nathalia Nascimento, Paulo Alencar, D. C. (2023). Comparing software developers with
chatgpt: An empirical investigation. arXiv, Cornell University.

Opdyke, W. (1992). Refactoring object-oriented frameworks. University of Illinois at
Urbana-Champaign.

Telea, A., V. L. (2011). Visual software analytics for the build optimization of large-scale
software systems. In Comput. Stat. 26. Comput. Stat. 26.

Tyna Eloundou, Sam Manning, P. M. and Rock, D. (2023). Gpts are gpts: An early look at
the labor market impact potential of large language models. arXiv, Cornell University.

Wake, W. (2003). Refactoring workbook. Addison-Wesley.

