UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

Geologia das formações Pós Gondwânicas Santa Tecla e Tupanciretã – RS

KELVYN MIKAEL VACCARI RUPPEL

ORIENTADOR - Prof. Dr. Norberto Dani

Porto Alegre, 2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

Geologia das formações Pós Gondwânicas Santa Tecla e Tupanciretã – RS

KELVYN MIKAEL VACCARI RUPPEL

ORIENTADOR – Prof. Dr. Norberto Dani

BANCA EXAMINADORA

Prof. Dr. Clódis de Oliveira Andrades Filho - Departamento de Geodésia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul

Prof^a. Dr^a. Karin Goldberg - Departamento de Geologia, Kansas State University, Estados Unidos da América

Prof^a. Dr^a. Maria Lidia Medeiros Vignol-Lelarge – Pesquisadora do Centro de Estudos em Petrologia e Geoquímica, Instituto de Geociências, Universidade Federal do Rio Grande do Sul

Tese de Doutorado apresentada como requisito parcial para a obtenção do Título de Doutor em Geociências

Porto Alegre, 2023

CIP - Catalogação na Publicação

```
Vaccari Ruppel, Kelvyn Mikael
Geologia das formações Pós Gondwânicas Santa Tecla
e Tupanciretã - RS / Kelvyn Mikael Vaccari Ruppel. --
2023.
235 f.
Orientador: Norberto Dani.
Tese (Doutorado) -- Universidade Federal do Rio
Grande do Sul, Instituto de Geociências, Programa de
Pós-Graduação em Geociências, Porto Alegre, BR-RS,
2023.
1. Geomorfologia. 2. Proveniência. 3. Bacia do
Paraná. 4. Formação Tupanciretã. 5. Formação Santa
Tecla. I. Dani, Norberto, orient. II. Título.
```

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os dados fornecidos pelo(a) autor(a).

A sabedoria é a coisa principal; adquire pois a sabedoria, emprega tudo o que possuis na aquisição de entendimento - Provérbios 4:7

AGRADECIMENTOS

Esta pesquisa foi financiada pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), número de bolsa 88882.345540/2019-01. Parte das atividades de campo foram apoiadas pelo Instituto de Geociências (IGEO) da Universidade Federal do Rio Grande do Sul.

Agradeço ao Prof. Dr. Norberto Dani pela orientação e parceria durante o desenvolvimento desta tese. Nossas conversas, explanações e discussões científicas foram sempre construtivas e enriqueceram de maneira singular minha vida acadêmica. Ao apoio durante os trabalhos de campo e as boas lembranças que restarão das desbravações geológicas.

Agradeço ao Prof. Dr. Marcus Remus por todo auxílio na aquisição dos dados geoquímicos, pelas discussões geológicas e pelo incentivo, estando sempre disponível a me receber e ajudar. Agradeço também ao Prof. Nelson Lisboa pelo apoio e companhia em campo e por compartilhar seu extenso conhecimento geológico, estando sempre disponível para mais uma seção de discussões científicas.

Ao amigo Henrique de Mamam Anzolin pela parceria e infindáveis caronas durante a difícil época de preparação de amostras e separação mineral. Ao amigo Guilherme Sonntag Hoerlle que tanto contribuiu com o trabalho, estando sempre disponível para ajudar e dividir os fardos. Também ao téc. Gilberto Silveira dos Santos que esteve sempre de prontidão, compartilhando conhecimento junto ao CECO, e também aos técnicos Susan, Lucas, Edgar, Rafael, Denise, Prof^a. Dr. Márcia e Dr. Lucas Gomes o meu obrigado.

Por fim agradeço a minha família por todo apoio, aos meus pais que nunca mediram esforços para me apoiarem, meus sogros que me deram guarida em Porto Alegre e em especial minha esposa Ana Júlia por estar sempre ao meu lado, me incentivando e apoiando incondicionalmente. A Deus, porque Dele, e por Ele, e para Ele são todas as coisas.

RESUMO

A história deposicional e evolução da sedimentação intracratônica Pós Gondwânica ocorrida na Bacia do Paraná no sul do Brasil está preservada no registro das formações Tupanciretã e Santa Tecla, Rio Grande do Sul. Elas representam deposições de paleodrenagens desenvolvidas a partir de um domo de soerguimento do Escudo Sul-Riograndense/Uruguaio no período de separação do Supercontinente Gondwana. Estes processos são hoje verificados a partir da extensa drenagem megaradial do tipo flanco-cúpula que ocorre no Rio Grande do Sul delimitando a Bacia Coletora do Rio Uruguai, posicionando ambas as formações no flanco deste meio domo. As formações Tupanciretã e Santa Tecla estão inseridas nas Superfícies Cimeiras de Vacaria e Caçapava do Sul permitindo assumir que durante o Neocretáceo já houvesse a deposição destas unidades, tendo havido posteriormente processos de inversão de relevo ao longo do Terciário. Na Fm. Tupanciretã foram obtidas 388 idades U-Pb em grãos de zircão, 1.481 análises químicas de turmalina em 751 grãos, e medida do arredondamento de 739 grãos de turmalina e 589 grãos de zircão da Seção Tipo e arredores. As idades mais antigas de zircão indicam proveniência compartilhada entre rochas ígneas e metamórficas dos ciclos orogênicos Transamazônico, Grenvilliano e Brasiliano do ESRG. As idades mais jovens apontam para os eventos ígneos Choiyoi e Serra Geral, sendo a idade máxima de deposição de 127 Ma. A química das turmalinas também aponta como a fonte mais primitiva o ESRG, com origens metapelítica/metapsmítica e granítica. Os graus de arredondamento elevados asseguram significante evidência de reciclagem de sedimentos a partir de rochas pretéritas da Bacia do Paraná, com importante retrabalhamento eólico envolvido. A assinatura U-Pb dos zircões é compatível com o encontrado no setor Leste da Formação Botucatu no RS, indicando esta como fonte imediata dos sedimentos da Formação Tupanciretã. Repositórios intermediários entre o Escudo e a Fm. Tupanciretã foram unidades sedimentares Gondwânicas da Bacia do Paraná, e possível participação da Bacia do Camaquã. Já a Fm. Santa Tecla esteve submetida a um regime de maior estagnação e proximidade do ESRG, o que lhe propiciou maior aporte de coloides, desenvolvendo calcretes, dolocretes e silcretes, análoga à outras unidades da Supersequência Bauru. Ambas as formações possuem representatividade na escala desta supersequência.

Palavras-chave: Geomorfologia; Proveniência; Bacia do Paraná.

ABSTRACT

The Post Gondwanan intracratonic's sedimentation depositional history and evolution that occurred in the Paraná Basin in southern Brazil is preserved in the record of the Tupanciretã and Santa Tecla formations, in Rio Grande do Sul. They represent protodrainage depositions developed from a Sul-Riograndense/Uruguay Shield uplift dome in the period of separation of the Gondwana supercontinent. These processes are today verified from the extensive mega-radial drainage of the flank-dome type that occurs in Rio Grande do Sul, delimiting Uruguay River's Collecting Basin, positioning both formations on the flank of this half-dome. The Tupanciretã and Santa Tecla formations are inserted in the Vacaria and Cacapava do Sul Summit Surface, allowing us to assume that during the Neo-cretaceous there had already been deposition of these units, with later processes of relief inversion throughout the Tertiary. On Tupanciretã Formation, 388 U-Pb ages in zircon grains, 1,481 chemical analyzes of tourmaline in 751 grains, roundness measurements of 739 tourmaline grains and 589 zircon grains from the Section Type and surroundings were obtained. The oldest zircon ages indicate shared provenance between igneous and metamorphic rocks from the Transamazonian's, Grenvillian's, and Brasiliano's orogenic cycles of the Sul-Riograndense Shield. The youngest ages point to the Choiyoi's and Serra Geral's igneous events, with the maximum age of deposition being 127 Ma. The tourmalines' chemistry also points to Sul-Riograndense Shield as the most primitive source, with metapelitic/metapsmitic and granitic origins. The high degrees of roundness ensure significant evidence of sediment recycling from past Paraná Basin's rock, with important aeolian reworking involved. The U-Pb signature of the zircons is compatible with that found in the eastern sector of the Botucatu Formation in Rio Grande do Sul, indicating this as an immediate source of the sediments from the Tupanciretã Formation. Intermediate repositories between Shield and Tupanciretã Formation were Paraná Basin's Gondwanan sedimentary units, and possible participation of the Camaquã Basin. As for Santa Tecla Formation, it was subjected to a regime of greater stagnation and proximity to the Sul-Riograndense Shield, which provided with a greater supply of colloids, developing calcretes, dolocretes and silcretes, analogous to other units of the Bauru Supersequence. Both formations have representativeness in the scale of this supersequence.

Keywords: Geomorphology; Provenance; Paraná Basin.

LISTA DE FIGURAS

Figura 1: Localização da Formação Santa Tecla. Sua maior proximidade é em relação aos centros urbanos dos municípios de Bagé e Hulha Negra. Modificado de Wildner et al., 2006. Figura 2: Localização da Formação Tupanciretã. Sua maior concentração é em relação aos centros urbanos dos municípios de Tupanciretã, Cruz Alta e Boa Vista do Incra. Modificado Figura 3: a) Mapa geológico do entorno da Seção-Tipo da Formação Tupanciretã e a disposição de amostras analisadas neste trabalho. b) Localização das amostras ao longo da Formação Tupanciretã com enfoque na Seção-Tipo localizada a cerca de 1 Km a Leste da cidade de Tupanciretã-RS, conforme Menegotto et al. (1968). Modificado de Wildner et al., Figura 4: Geologia da área de distribuição da Fm. Santa Tecla. É possível observar que ela possui contato com muitas unidades de idades e características distintas e não é afetada por Figura 5: Perfil da Formação Santa Tecla descrito por Leinz (1942) nas proximidades da Figura 6: Feição comum da fácies arenítica da Formação Santa Tecla. Arenito fino, calcrete, bem selecionado, maciço, de coloração rosa-esbranquiçada. Bagé, estrada vicinal Corredor Figura 7: Fácies conglomerática da Formação Santa Tecla. Bagé, estrada para o Forte Santa Figura 8: Pedotúbulos encontrados em algumas porcões da Formação Santa Tecla. Bagé, Figura 9: Crostas silicosas métricas no topo da unidade. Bagé, estrada vicinal Corredor dos Figura 10: Vista geral da Formação Santa Tecla na região de Bagé, formando elevações em mesas resultante da silicificação e deposição discordante sobre rochas do embasamento. É Figura 11: Geologia da área de distribuição da Fm. Tupanciretã. É possível observar que ela possui contato restrito com os derrames vulcânicos da Fm. Serra Geral, recobrindo estas Figura 12: Perfil longitudinal e coluna estratigráfica da Seção-Tipo da Formação Tupanciretã, localizada na vocoroca da antiga invernada da extinta Cooperativa Rural Serrana Ltda, a 1 Figura 13: Arenito fino silto argiloso com estrutura plano-paralela representativo de fácies mais Figura 14: Arenito avermelhado alterado e friável, de textura média com intensa alteração para Figura 15: Característica da Fm. Tupanciretã em campo. Rocha predominantemente arenítica, intensamente alterada e friável, com porcões com estruturas de origem fluvial, como Figura 16: Ocorrência de litoclastos basálticos angulosos intensamente alterados com matriz Figura 17: Uso intenso do solo para cultivo agrícola refletindo em baixa exposição de afloramentos. Visada de NE para SW, próximo ao TUP-07, linha da Seção-Tipo, Fm. Tupanciretã. Relevo em colinas rasas. Do autor. 42 Figura 18: Afloramento típico da Formação Tupanciretã evidenciando a grande suscetibilidade aos processos erosivos devido seu caráter friável, pouco cimentado e intensamente alterado.

Figura 19: Diferentes superfícies geomorfológicas. A- Superfícies estruturais (S), relacionadas unicamente à influência das características geológicas. B- Superfícies de aplainamento (P), relacionadas aos processos de denudação independente da resistência das diferentes litologias afetadas (Small, 1986)......46 Figura 20: Diferentes graus de dissecação em superfícies de aplainamento com litologias Figura 21: Superfícies de aplainamento no Rio Grande do Sul segundo (Ab'Sáber, 1969). a) Perfil esquemático NE-SW do Rio Grande do Sul identificando as superfícies de aplainamento mais antigas (de cimeira) e mais recentes, e suas cotas típicas. Modificado de Ab'Sáber (1969). b) Localização da seção esquemática NE-SW no Rio Grande do Sul em relação às unidades morfotectônicas do estado. Modificado de Bertê, 2021...... 48 Figura 22: As três grandes bacias coletoras do estado do Rio Grande do Sul e suas bacias hidrográficas. Destague para a relevância da Bacia do Rio Uruguai (Bertê et al., 2021). 50 Figura 23: Estrutura cristalina da turmalina, complexa, com diversos sítios cristalográficos que favorecem grande diversidade de composição química. A esquerda, projeção e (001). A direita, visão oblíqua (Hawthorne & Dirlam, 2011).....53 Figura 24: Representação da estrutura cristalina da turmalina mostrando uma porção de sua estrutura vista perpendicularmente ao eixo c. Os ápices dos tetraedros (TO₄) compreendendo o anel de seis membros apontam na mesma direção, --c, para produzir assimetria cristalográfica típica da turmalina. Os poliedros e locais importantes estão rotulados. Octaedros, YO₆ e ZO₆, são mostrados juntamente com o triângulo BO₃ e o sítio X (Henry & Figura 25: Representação da estrutura cristalina do zircão. a) Uma visão da estrutura do zircão projetada do eixo a no plano definido pelos eixos b e c. Os tetraedros de SiO₄ são amarelos e os dodecaedros de ZrO₈ são em tons de azul. Um dodecaedro não está sombreado para revelar sua subestrutura que consiste em dois tetraedros ZrO₄ distorcidos. Os tetraedros de ZrO₄ alongados compartilham as bordas superior e inferior com os tetraedros de SiO₄, b) Uma visão da estrutura do zircão projetada a partir do eixo a, despojado do tetraedro ZrO4 encurtado para destacar as cadeias de compartilhamento de borda, alternando tetraedros SiO₄-ZrO₄ paralelos ao eixo c. Os tetraedros SiO₄ são amarelos e os tetraedros ZrO₄ alongados, azuis (Harley & Kelly, 2007).....55 Figura 26: Método de Wadell (1935) para estimar o arredondamento, raio dos cantos e círculo inscrito projetado......57 Figura 27: Escala qualitativa de arredondamento (Powers, 1953). 58 Figura 28: Representação esquemática da evolução da margem passiva através do rifteamento ativo mostrando o estágio inicial de soerguimento e rifteamento (A) e margem passiva nascente (B). Modificado de Summerfield (2013). Figura 29: Vista em planta da seguência de fragmentação continental e formação de margem passiva sob rifteamento ativo: (A) estágio de rifteamento; (B) estágio de margem passiva nascente com a formação de uma margem rifteada, onde o movimento ao longo do novo limite da placa é amplamente divergente, e a criação de uma margem cisalhada onde o movimento é amplamente transformante; (C) estágio de margem passiva madura com braços de rift abortados (aulacógenos) atingindo a nova margem continental. As seções transversais X-Y indicam a natureza geral dos movimentos verticais associados ao longo da margem e as linhas tracejadas indicam esquematicamente os contornos. Modificado de Summerfield Figura 30: Exemplo de populações de turmalinas detríticas encontradas na Fm. Tupanciretã. Possuem variadas formas e pleocroismos compondo turmalinas dos tipos azuis, verdes, marrons e pretas. Amostra TUP 2A. Do autor......65 Figura 31: Este diagrama considerando Ca-Fe-Mg divide composicionalmente (em proporção molar) a variação composicional de turmalinas para diferentes tipos de rochas. Nele estão plotados um total de 1.481 pontos divididos entre centros e bordas de 6 amostras da Fm.

Tupanciretã. Campos: 1- Rochas graníticas ricas em Li. 2- Rochas graníticas pobres em Li. 3-Metapelitos, metapsamitos e rochas calci-silicáticas ricas em Ca. 4- Metapelitos, metapsamitos e rochas quartzo-turmalinas pobres em Ca. 5-Metacarbonatos. 6- Ultramáficas. Figura 32: Exemplo de populações de zircões detríticos encontrados na Fm. Tupanciretã. Figura 33: Resultados da geocronologia U-Pb em zircões detríticos da Formação Tupanciretã apresentados em KDE. Dados obtidos através da metodologia de LA-ICP-MS a partir de concórdias >90% de concordância. A distribuição das idades é representativa dos eventos ocorridos os quais delimitam as áreas-fonte. Estão bem representados os eventos ígneos extrusivos Choivoi e Serra Geral e os tectônicos Transamazônico, Grenvilliano e Brasiliano. Figura 34: Arcabouço estratigráfico e principais estruturas da Bacia do Paraná e suas superseguências. a) Localização da Bacia do Paraná na América do Sul. b) Mapa geológico simplificado da Bacia do Paraná com as estruturas e posicionamento da Supersequência Bauru ao norte e unidades correlatas ao sul. As formações Santa Tecla e Tupanciretã possuem representatividade na escala da Bacia do Paraná como pertencentes a Supersequência Bauru. Modificado de Milani & Ramos, 1998; Wildner et al., 2006; Petry et

LISTA DE TABELAS

LISTA DE ABREVIAÇÕES

CAPES: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

CECO: Centro de Estudos de Geologia Costeira e Oceânica

CPGq: Centro de Estudos em Petrologia e Geoquímica

DRX: Difratometria de raios-X

ESRG: Escudo Sul-Riograndense

Fig.: Figura

Fm.: Formação

IGEO: Instituto de Geociências

I-M: Ilita-montmorilonita

LA-ICP-MS: Ablação a *laser* acoplada a espectrômetro de massa com indução por plasma

Ma: Milhões de anos

RS: Rio Grande do Sul

UFOP: Universidade Federal de Ouro Preto

UFRGS: Universidade Federal do Rio Grande do Sul

ZTR: Zircão-Turmalina-Rutilo

SUMÁRIO

RESUMO	6
ABSTRACT	7
LISTA DE FIGURAS	8
LISTA DE TABELAS	10
LISTA DE ABREVIAÇÕES	10
ESTRUTURA DA TESE	15
PARTE I – TEXTO INTEGRADOR	16
1 INTRODUÇÃO	16
2 OBJETIVO	17
3 MATERIAIS E MÉTODOS	18
4 ÁREAS DE ESTUDO	19
4.1 Formação Santa Tecla	19
4.2 Formação Tupanciretã	20
5 CONTEXTO GEOLÓGICO	22
5.1 Formação Santa Tecla	22
5.2 Formação Tupanciretã	34
6 ESTADO DA ARTE	45
6.1 Superfícies de Aplainamento	45
6.1.1 Drenagens	49
6.2 Proveniência Sedimentar e Mineralogia Detrítica	51
6.2.1 Turmalina	52
6.2.2 Zircão	55
6.2.3 Arredondamento	56
7 RESULTADOS	59
7.1 Contexto Morfotectônico e Análise da Drenagem	59
7.2 Relação com Superfícies de Aplainamento e Datação Relativa	62
7.3 Enquadramento na Supersequência Bauru	63
7.4 Turmalinas Detríticas da Fm. Tupanciretã	64
7.5 Zircões Detríticos da Fm. Tupanciretã e Datação Absoluta	66
7.6 Maturidade Textural dos Minerais Pesados	69
8 CONCLUSÃO	70
REFERÊNCIAS BIBLIOGRÁFICAS	75
PARTE II - ARTIGOS	86
ARTIGO I (Publicado)	86
1 INTRODUÇÃO	89

2 ÁREA DE ESTUDO E CARACTERIZAÇÃO DAS FORMAÇÕES TUPANCIRETÃ E S TECLA	SANTA 90
2.1 Formação Santa Tecla	90
2.2 Formação Tupanciretã	92
3 CONTEXTO GEOTECTÔNICO E ANÁLISE DA DRENAGEM	94
4 SUPERFÍCIES DE APLAINAMENTO E A INSERÇÃO DAS FORMAÇÕES TUPANC E SANTA TECLA	;IRETÃ 99
5 OUTROS ELEMENTOS TECTÔNICOS, EVOLUÇÃO DAS FORMAÇÕ CORRELAÇÃO COM UNIDADES DA SUPERSEQUÊNCIA BAURU (BACIA DO PA	ES E RANÁ) 103
5.1 A Importância do Arco de Rio Grande	103
5.2 Paleoclima e Relevo	106
5.3 Enquadramento das Formações Santa Tecla e Tupanciretã na Supersequência (Bacia do Paraná) e paralelo com o Grupo Bauru e Rochas Uruguaias do Cretáceo S	ι Bauru uperior 110
6 CONCLUSÕES	114
REFERÊNCIAS	117
ARTIGO II (Submetido)	129
1 INTRODUCTION	131
2 STUDY AREA	132
2.1 Tupanciretã Formation	132
3 POTENTIAL SOURCE AREAS FOR THE TUPANCIRETÃ FORMATION	134
3.1 Sul-Riograndense shield	134
3.2 Paraná Basin volcanic rocks	136
4 MATERIALS AND METHODS	137
5 USING TOURMALINE AND ZIRCON IN SEDIMENT PROVENANCE ANALYSES	139
6 RESULTS	141
6.1 Provenance diagrams for detrital tourmaline grains	141
6.2 Detrital zircon ages	144
6.3 Textural maturity of tourmaline and zircon grains	146
6.3.1 Tourmaline	147
6.3.2 Zircon	149
7 DISCUSSION	150
7.1 Comparison of heavy minerals from the Tupanciretã Formation with adjacent are	as 150
7.1.1 Potential source rocks for detrital tourmalines	150
7.1.2 Potential source rocks for detrital zircons	152
7.2 Evidence of sediment reclycling	154
7.3 Tectonic significance of the Tupanciretã Formation	156
8 CONCLUSIONS	159
REFERENCES	161

	ANEXOS
MPROVANTES DE SUBMISSÃO DOS ARTIGOS CIENTÍFICOS	ANEXO
TERIAL SUPLEMENTAR DO ARTIGO II	ANEXO

ESTRUTURA DA TESE

Esta tese de doutorado está estruturada em dois artigos, sendo o primeiro publicado e o segundo submetido em periódicos classificados nos estratos Qualis-CAPES como A1. A sua organização compreende as seguintes partes principais:

TEXTO INTEGRADOR:

Texto Integrador composto pelos seguintes capítulos: a) introdução com a formulação do problema de investigação e a hipótese; b) objetivos da pesquisa; c) os materiais e métodos utilizados; d) o contexto geológico da área; e) o estado da arte do tema da pesquisa; f) resumo dos principais resultados obtidos, interpretações desenvolvidas nos artigos e discussão integradora dos resultados; g) conclusões; h) referências bibliográficas.

ARTIGOS:

Corpo Principal da Tese, constituído de um artigo publicado e um submetido conforme o item 1.2 da Norma 118 do Programa de Pós-Graduação em Geociências:

Artigo I (A1): Evolução Morfotectônica e Megageomorfológica das Formações
 Pós Gondwânicas Santa Tecla e Tupanciretã no Rio Grande do
 Sul.

Autores: Ruppel, K.M.V., Dani, N., Lisboa, N. A.

Artigo publicado na Revista Brasileira de Geomorfologia, v. 24, nº 1, 2023

Artigo II (A1): Detrital zircon and tourmaline unravelling provenance and polycyclic origin of Cretaceous Tupanciretã Subbasin, south Brazil.

Autores: Ruppel, K.M.V., Dani, N., Remus, M.V.D., Hoerlle, G.S., Lana, C.C., Anzolin, H.M.

Artigo submetido à Basin Research

1 INTRODUÇÃO

A bacia intracratônica do Paraná é uma das principais exposições geológicas do Estado do Rio Grande do Sul, compondo mais da metade da área de superfície do estado. Ela abriga em seu depocentro localizado no estado de São Paulo, um pacote sedimentar-magmático da ordem de 7.000 metros de espessura. O registro tectonoestratigráfico da bacia sugere a interação de fenômenos orogênicos nas bordas da placa Sul-Americana, com eventos epirogênicos marcados por épocas de subsidência, soerguimento e magmatismo no interior da placa (Milani & Ramos, 1998).

No Rio Grande do Sul, estes fenômenos evidenciam-se no flanco leste da bacia, na região entre o sudoeste do Estado e o Uruguai, tendo modelado profundamente por erosão este setor em função do soerguimento crustal associado ao rifte do Atlântico Sul (Milani *et al.*, 2007).

Milani (1997) reconheceu no registro estratigráfico da Bacia do Paraná seis unidades de ampla escala ou Supersequências, na forma de pacotes rochosos materializando cada um desses intervalos temporais com algumas dezenas de milhões de anos de duração e envelopados por superfícies de discordância de caráter inter-regional: Rio Ivaí (Ordoviciano-Siluriano), Paraná (Devoniano), Gondwana I (Carbonífero-Eotriássico), Gondwana II (Meso a Neotriássico), Gondwana III (Neojurássico-Eocretáceo) e Bauru (Eocretáceo-Neocretáceo).

Após o rompimento do Supercontinente Gondwana e abertura do Oceano Atlântico, cessadas as atividades vulcânicas e promovidos os ajustes isostáticos, definiu-se uma depressão sobre o pacote basáltico onde, a partir do Eocretáceo, haveria espaço para a acomodação da última supersequência na área da Bacia do Paraná, a Supersequência Bauru.

Esta Supersequência tem contato basal discordante sobretudo com os basaltos da Fm. Serra Geral. As suas características são condições semiáridas nas bordas à áridas no interior, com depósitos proximais areno-conglomeráticos de leques aluviais e sistemas fluviais efêmeros, com avanço da sedimentação levando ao soterramento do substrato basáltico com extensas mantas de lençóis de areia e alguns lamitos como depósitos de *loess*, retidos em baixios eventualmente úmidos/aquosos (Milani *et al.*, 2007).

Esta fase final de sedimentação Pós Gondwânica na bacia é bem definida nos grupos Caiuá (tratos eólicos desérticos) e Bauru (tratos de sistemas fluvio-eólicos de clima semiárido), onde são correlatos. Esta fase de ocorrência de unidades sedimentares continentais pós basálticas ocorre também no Rio Grande do Sul, até então sem estudos aprofundados, sendo que estes podem fornecer melhor compreensão da sedimentação Pós Gondwânica ocorrida na Bacia do Paraná em sua porção sul.

2 OBJETIVO

Considerando o abordado acima, esta tese tem como objetivo principal retomar os estudos das formações de cobertura Santa Tecla e Tupanciretã, voltado para um melhor entendimento da paleogeografia, história deposicional e evolução da sedimentação Pós Gondwânica ocorrida no setor sul da Bacia do Paraná a partir da geologia das formações Santa Tecla e Tupanciretã. Dentro deste contexto os objetivos específicos da pesquisa são:

- Melhor compreensão da gênese das formações Santa Tecla e Tupanciretã a partir de indicativos paleogeomorfológicos e elementos morfotectônicos envolvidos;
- Identificação de indicativos paleoclimáticos, sua relação com as características deposicionais destas unidades e história evolutiva;
- Avaliar a viabilidade de aplicação de métodos absolutos de datação nas unidades, ponto crucial para o posicionamento estratigráfico das formações; assim como busca de informações complementares para melhorar a avaliação das idades relativas e checagem de seus posicionamentos estratigráficos;
- Contribuir com modelo de proveniência coerente com o estágio de quiescência tectônica em que se encontrava a margem passiva Pós Gondwânica na borda leste da América do Sul;
- Verificar a possibilidade de enquadramento das formações como participantes no registro estratigráfico da Bacia do Paraná.

3 MATERIAIS E MÉTODOS

Os métodos e técnicas analíticas utilizadas para levantamento e aquisição de dados desta tese incluem (i) levantamentos de campo; (ii) análises bibliográficas; (iii) análises de Sistemas de Informações Geográficas (SIG) e Geoprocessamento; (iv) separações de frações granulométricas em via úmida entre 0.062 mm e 0.250 mm; (v) separação de frações magnéticas em Separador Magnético Isodinâmico Frantz em 0,4 A, 0,8 A e 1,2 A; (vi) obtenção de minerais pesados não magnéticos através do líquido denso bromofórmio (d= 2,89 g/cm³); (vii) catação manual randômica de minerais pesados em lupa e montagem e polimento em mounts de resina com 1 polegada; (viii) análises de química mineral por Microssonda Eletrônica com metalização a carbono; (ix) refinamento cristaloquímico e estequiométrico de turmalinas através do software WinTcac (Yavuz et al., 2014); (x) análise de zircões através de catodoluminescência; (xi) datações radiométricas U-Pb em zircão por ablação a laser acoplada a espectrômetro de massa com indução por plasma (LA-ICP-MS); (xii) modelamento de dados de zircão através dos softwares Saturn (Silva et al., 2022) e IsoplotR (Vermeesch, 2018); e (xiii) análises de arredondamento de grãos através do software AnalyZr (Scharf et al., 2022).

A Tabela 1 a seguir apresenta as técnicas analíticas utilizadas, laboratórios e equipamentos. Maiores detalhamentos são apresentados ao longo dos artigos científicos na Parte II.

Técnica	Laboratório	Instituto	Universidade	Equipamento
Microssonda Eletrônica	Laboratório de Microssonda Eletrônica	Instituto de Geociências	UFRGS	CAMECA SX Five
Metalizadora	Laboratório de Microssonda Eletrônica	Instituto de Geociências	UFRGS	Jeol JEE 4B
Datação U-Pb por LA-ICP-MS	Laboratório de Geoquímica Isotópica	Departamento de Geologia	UFOP	ThermoScientific Element 2 (SF)

Tabela 1: Síntese de técnicas, laboratórios e equipamentos utilizados nesta tese e suas respectivas instituições.

Microscopia	Laboratório de	Instituto de	LIERGS	LEICA S8AP0
Ótica	Termocronologia	Geociências	01103	
Microscopia Ótica	Laboratório de Petrografia Metamórfica	Instituto de Geociências	UFRGS	LEICA DM4500 e S6D

4 ÁREAS DE ESTUDO

As áreas de estudo desta pesquisa se concentram nas principais zonas de ocorrência das formações Santa Tecla e Tupanciretã, elencando as proximidades do município de Bagé-RS à Lavras do Sul-RS como principal área de investigação da Formação Santa Tecla e a Seção-Tipo no município de Tupanciretã-RS e arredores para a Formação Tupanciretã.

4.1 Formação Santa Tecla

A Formação Santa Tecla ocorre de maneira restrita ao estado do Rio Grande do Sul (RS), e está localizada ao norte das áreas urbanas das cidades de Bagé e Hulha Negra, a leste de Dom Pedrito e oeste de Lavras do Sul. Sua distribuição acorre em domínios dos municípios de Bagé, Hulha Negra, Candiota, Dom Pedrito, Lavras do Sul e São Gabriel, conforme Fig. 1, sendo que sua ocorrência se dá como quatro principais áreas de contornos irregulares além de inúmeras ocorrências pontuais estando restrita à porção sul do Bloco Tectônico São Gabriel no Escudo Sul-Riograndense (ESRG).

Figura 1: Localização da Formação Santa Tecla. Sua maior proximidade é em relação aos centros urbanos dos municípios de Bagé e Hulha Negra. Modificado de Wildner *et al.,* 2006.

4.2 Formação Tupanciretã

A Formação Tupanciretã ocorre de maneira restrita ao estado do RS, e está localizada nos municípios de Tupanciretã, Júlio de Castilhos, Pinhal Grande, Cruz Alta, Boa Vista do Incra, Fortaleza dos Valos, Salto do Jacuí, Pejuçara, Santa Bárbara do Sul, Ibirubá, Palmeiras das Missões, Chapada, Saldanha Marinho, Colorado, Carazinho, Almirante Tamandaré do Sul, Coqueiro do Sul, Santo Antônio do Planalto, Pontão e Passo Fundo (Fig. 2), tendo sua distribuição em grande parte do Planalto das Missões. Ela ocorre de maneira dispersa ao longo destes municípios em áreas de contornos irregulares, com duas principais áreas de ocorrência nas proximidades da área urbana das cidades de Tupanciretã, ao oeste de Pinhal Grande, ao sul de Cruz Alta e sudoeste de Boa Vista do Incra.

Figura 2: Localização da Formação Tupanciretã. Sua maior concentração é em relação aos centros urbanos dos municípios de Tupanciretã, Cruz Alta e Boa Vista do Incra. Modificado de Wildner *et al.*, 2006.

Para a Formação Tupanciretã foi escolhida para amostragem a Seção-Tipo (Fig. 3a), uma vez que a mesma é considerada a porção mais representativa da formação, onde seus estratos representam as fácies passíveis de serem encontradas ao longo da unidade (Boggs, 2014). Além disso, devido ao caráter pouco cimentado da formação e ao avanço da erosão e das áreas de agricultura na região, existe uma grande dificuldade de afloramentos com boa exposição. Seis amostras representativas foram analisadas da Seção-Tipo e seus arredores (Fig. 3b).

Figura 3: a) Mapa geológico do entorno da Seção-Tipo da Formação Tupanciretã e a disposição de amostras analisadas neste trabalho. b) Localização das amostras ao longo da Formação Tupanciretã com enfoque na Seção-Tipo localizada a cerca de 1 Km a Leste da cidade de Tupanciretã-RS, conforme Menegotto *et al.* (1968). Modificado de Wildner *et al.*, 2006.

5 CONTEXTO GEOLÓGICO

A seguir é apresentado o contexto geológico a partir dos estudos prévios das formações Santa Tecla e Tupanciretã, suas distribuições e ocorrências, caracterização geológica, contextos geomorfológicos e estratigráficos e ambientes de sedimentação.

5.1 Formação Santa Tecla

A Formação Santa Tecla cobre uma área de aproximadamente 527,2 km² (Wildner *et al.*, 2006) estando em contato tanto com litologias pertencentes ao ESRG quanto a rochas da Bacia do Paraná (Fig. 4), com pacote muito variável sendo que sua espessura máxima varia em torno de 32 a 50,80 m (esta última na região da Bolena) (Formoso & Willig, 1966; Tessari & Giffoni, 1970; Ramgrab & Wildner, 1999; Camozzatto *et al*, 2017).

Figura 4: Geologia da área de distribuição da Fm. Santa Tecla. É possível observar que ela possui contato com muitas unidades de idades e características distintas e não é afetada por falhas ou zonas de cisalhamento. Modificado de Wildner *et al.*, 2006.

A Formação Santa Tecla foi primeiramente designada por Carvalho (1932), tendo sido identificada sua ocorrência na localidade da Serra de Santa Tecla (tendo a sudeste variações de denominações locais como Coxilha do Olho D'água, Coxilha da Bolena e Coxilha do Baú), a norte e leste da cidade de Bagé sendo classificada como "Serie Santa Tecla". Distinguiu sua peculiaridade geomorfológica em relação à outras unidades, já que essas coxilhas formavam topos planos e arenosos. Ele identificou uma sequência de arenitos cavernosos, por vezes brancos e endurecidos por silicificação, e por vezes friáveis e ferruginosos. Haviam também seixos de quartzo que, segundo suas observações, encontravam-se assentados sobre um folhelho finamente estratificado, bastante alterado e de cor cinza a amarela quando fresco, enquanto suas porções alteradas eram ricas em óxidos de ferro. O autor não propôs um ponto como Seção-Tipo, deixando como área-tipo a Serra de Santa Tecla.

Em 1942, em pesquisa por materiais geológicos refratários para uso em siderurgia, Leinz descreveu um perfil desta unidade (Fig. 5) nas proximidades da Estação São Domingos, situada a 8 quilômetros a noroeste de Bagé. Segundo suas observações, a Serie Santa Tecla no local apresentava uma sequência de vinte metros de arenitos finos e conglomeráticos, silicificados e calcificados onde o topo das elevações resiste à erosão devido à silicificação. Nos setores silicificados, os grãos clásticos, arredondados à angulosos, estariam cimentados por calcedônia.

Figura 5: Perfil da Formação Santa Tecla descrito por Leinz (1942) nas proximidades da Estação São Domingos, situada a 8 quilômetros a noroeste de Bagé.

Nos anos seguintes outras pesquisas de interesse econômico para mineração e metalurgia e melhor descrição das formações Gondwânicas no Rio Grande do Sul levaram Martins & Sena Sobrinho (1949) e Beurlen *et al.* (1955) a concluir que a "Serie Santa Tecla" correspondia a uma formação local restrita a região norte e leste de Bagé, porém relativamente espessa, depositada em uma bacia relativamente profunda tendo sua área alocada pela erosão dos granitos do embasamento local, na qual teriam sedimentado materiais de degelo de um *inlandsis* (manto de gelo ou uma massa de gelo glacial que cobre mais de 50.000 km² de um terreno), estando desta forma correlacionada aos depósitos do Grupo Itararé. Dentro desta perspectiva, a idade desta unidade seria carbonífera, e relativa à base da Bacia do Paraná, por volta de 300 Ma, tendo seus traços gerais mascarados por uma silicificação secundária.

Formoso & Willig (1966), trabalhando nas áreas de Olhos D'Água, Quebracho e Bolena ao longo dos contrafortes da Serra Geral no município de Bagé, localizada a norte-nordeste de Hulha Negra, definiram a Serie Santa Tecla como sendo constituída por conglomerados e arenitos. Reconheceram nestes conglomerados seixos arredondados à sub-arredondados de quartzo e de rochas graníticas e metamórficas. Nesta região, a formação encontra-se em discordância paralela erosional sobre a Formação Palermo, sendo caracterizada esta evidência geológica também em outras localidades como na Serra do Arbolito, nas cabeceiras do Arroio Jaguarão e na estrada Olhos D'Água-Bagé. Para os autores a deposição preferencial do Santa Tecla sobre o Palermo ocorreu pois a Formação Palermo é facilmente erosionável, tendo constituído as áreas mais baixas no relevo pré-Santa Tecla, acomodando a sedimentação destes conglomerados e arenitos posteriores. Ainda puderam observar que o sistema de falhas de direção NE, que afetou todas as formações Permocarboníferas locais, não atingiu a Serie Santa Tecla, postulando que a formação seria "bastante posterior ao Permiano". Assumiram então uma redefinição da unidade, sempre tratando-a como "Formação Santa Tecla".

A partir da discordância e definições descritas por Formoso & Willig (1966), Tessari & Giffoni (1970) ratificaram a redefinição da unidade antes tratada como "Serie Santa Tecla" recomendado expressamente enquadrá-la na categoria de "formação", dado que Carvalho (1932) não havia observado a discordância Santa Tecla-Palermo, tendo erroneamente incluído os folhelhos carbonosos da Formação Palermo nessa sequência sedimentar assim como os demais autores. Sendo assim a unidade passou a enquadrar-se na categoria de "formação". Os autores registram que do ponto de vista tectônico, a formação é posterior a qualquer falhamento conhecido, sendo que uma das particularidades é a completa ausência de diaclasamento.

Ramgrab & Wildner (1999) em mapeamento da Folha Pedro Osório (SH.22- Y-C, 1:250.000) estabelecem a Fm. Santa Tecla como uma cobertura terciária de sedimentos continentais que se sobrepõem às rochas cristalinas da porção central do escudo e às rochas gondwânicas. A mesma definição foi adotada por Wildner *et al.* (2006) na composição da coluna estratigráfica do mapa geológico do RS.

Litologicamente a formação acha-se representada por arenitos e conglomerados, sendo produtos de sedimentos clásticos das rochas pré-existentes. Os arenitos apresentam tipicamente coloração avermelhada, e mais raramente rosa-avermelhada, branca e amarelada. Possuem granulação média a fina, raramente grosseira com seixos de quartzo e raros seixos de rochas sedimentares, bem

selecionados, por vezes friáveis, porosos, de aspecto cavernoso e predominantemente sem estratificações (Fig. 6).

Figura 6: Feição comum da fácies arenítica da Formação Santa Tecla. Arenito fino, calcrete, bem selecionado, maciço, de coloração rosa-esbranquiçada. Bagé, estrada vicinal Corredor dos Leiteiros. Do autor.

Estes arenitos possuem predominância de grãos subarredondados a arredondados de esfericidade baixa a moderada, de quartzo, e mais raramente microclínio, por vezes caulinizados e de matriz argilosa e possuindo acessórios como zircão, turmalina, hornblenda, opacos e granadas sendo cimentados por óxidos de ferro, sílica e carbonatos (Formoso & Willig, 1966; Francescatto & Lisboa, 1979; Ramgrab & Wildner, 1999; Camozzatto *et al.*, 2017). Esta cimentação silicosa é composta principalmente por calcedônia, de coloração esbranquiçada, amarelada ou rósea, bastante resistente (Ramgrab & Wildner, 1999). Estes arenitos foram classificados como quartzoarenitos (Horbach *et al.*, 1986).

Na base da unidade são encontrados ortoconglomerados de coloração amarelada ou esbranquiçada-rosada, constituídos por seixos predominantemente arredondados composto por quartzo e subordinadamente fragmentos líticos de rochas graníticas e metamórficas com tamanho médio de cerca de 10 cm (Fig. 7). Possuem matriz arenosa de textura grossa a muito grossa ou caulínica que envolve os grânulos e seixos (Ramgrab & Wildner, 1999; Camozzatto *et al.*, 2017). Estes conglomerados são cimentados por sílica ou carbonatos (Horbach *et al.*, 1986). O conjunto possui

aparência grosseira, imatura, com os seixos dispersos caoticamente (Tessari & Giffoni, 1970).

Figura 7: Fácies conglomerática da Formação Santa Tecla. Bagé, estrada para o Forte Santa Tecla. Do autor.

Já Dani (2013) ao descrever seções da Fm. Santa Tecla nas localidades de Corredor dos Leiteiros e Fazenda Bela Vista no município de Bagé encontrou conglomerados com predominância de grânulos e seixos angulosos e de baixa esfericidade. Os arenitos finos a grossos (dominantemente médios) apresentam estrutura maciça ou estratificação cruzada, com grãos angulosos a subangulosos e de baixa esfericidade. Ocorrem níveis centimétricos ricos em intraclastos argilosos de até 2 cm, e crostas silicosas de até 1 m de espessura dominantemente sobre os arenitos mais finos e bem selecionados.

Em seu estudo faciológico e petrográfico da Fm. Santa Tecla, Dani (2013) reconheceu três diferentes fácies sedimentares granodecrescentes ascendentes compostas por conglomerados maciços, matriz-suportado; arenitos finos a grossos com grânulos e seixos dispersos; e arenitos finos bem selecionados. As principais macrofeições identificadas foram a presença de pedotúbulos (Fig. 8), cimentação nodular e textura maciça (em calcretes e dolocretes) e crostas com diferentes graus de cimentação (silcretes). As microfeições incluem cimento e nódulos de calcita e

dolomita predominantemente microcristalinos. Foram reconhecidas evidências de possível paligorskita em DRX associada às calcretes, indicativo de ambientes áridos. Neste estudo foram identificados presença de horizontes de paleossolos, marcados pelas acumulações carbonáticas e silicosas (calcretes, dolocretes e silcretes). Também foram identificadas marcas de raízes, o que tornou possível concluir que de fato a formação passou por processos pedogenéticos. Na formação foram reconhecidos depósitos continentais fluviais/aluviais que foram submetidos a processos de pedogênese, com paleossolos calcários (calcretes e dolocretes) e silicosos (silcretes) sob clima árido. Os processos de ferruginação provavelmente remetem a alterações intempéricas posteriores, já em clima úmido.

Figura 8: Pedotúbulos encontrados em algumas porções da Formação Santa Tecla. Bagé, estrada para o Forte Santa Tecla. Do autor.

Como citado acima, as fácies da Fm. Santa Tecla foram afetadas por eventos posteriores de carbonatação, silicificação e ferrificação (Ramgrab & Wildner, 1999; Dani, 2013; Camozzatto *et al.*, 2018), sendo comuns finas lentes de sílica com 1 mm a 3 mm de espessura, sub-horizontalizadas, como um gel que permeou pelo depósito sedimentar e cimentou a rocha. Também são comuns concreções silicosas de hábito mamelonar, preferencialmente concentradas na superfície, formando crostas de espessura variável de centimétricas a métricas (Fig. 9), ajudando a sustentar a topografia (Klein, 2017). Em lâminas petrográficas, se verifica uma fase inicial de cimentação carbonática, que corrói os bordos e clivagens dos grãos de feldspato presentes, seguida por uma intensa fase de silicificação representada por calcedônia

fibrorradiada e, nas cavidades geradas pela dissolução do cimento calcítico, cristais de quartzo euédricos (Camozzatto *et al.*, 2017).

Figura 9: Crostas silicosas métricas no topo da unidade. Bagé, estrada vicinal Corredor dos Leiteiros. Do autor.

Os calcretes e dolocretes ocorrem macroscopicamente como nódulos, pedotúbulos (resultantes do crescimento de raízes) ou crostas. Microscopicamente, ocorrem como cimento (principal forma de ocorrência), normalmente nodular, de calcita ou dolomita deslocante e/ou parcialmente substitutiva. As feições identificadas foram formadas por precipitação inorgânica cuja formação está relacionada a sistemas aquíferos rasos. Todas as micromorfologias também remetem a calcretes freáticos. Outra evidência do controle freático para a classificação destes calcretes são a ocorrência da existência de calcrete, dolocrete e silcrete no mesmo perfil, o que demonstra uma mudança composicional das águas intersticiais no sistema, o que é típico de acumulações do tipo freáticas (Dani, 2013).

Os silcretes encontrados na Fm. Santa Tecla apresentam estreita associação com as acumulações carbonáticas. Elas ocorrem tipicamente no topo dos perfis e provavelmente são posteriores à formação dos calcretes e dolocretes, formando-se durante flutuações do nível freático, oscilações do pH e temperatura. Microscopicamente são formados por cimentos de opala, calcedônia e raramente quartzo preenchendo poros (Dani, 2013).

Essas associações de concreções e acumulações calcárias e silicosas é um importante indicador paleoclimático, sugerindo uma condição de clima semiárido, elevadas taxas de evaporação e um sistema poro/fluidos com elevada alcalinidade (Dani, 2013; Andriotti, 2018).

A Formação Santa Tecla sobrepõe-se, discordantemente, a todas as outras unidades com que faz contato ao sul do Bloco São Gabriel no Escudo Sul-Riograndense.

A partir de seus dois maiores blocos localizados a norte dos municípios de Bagé e Hulha Negra, a formação sobrepõe-se discordantemente sobre as rochas mais jovens da região, pertencentes à Bacia do Paraná, ao sul. A norte, recobre de forma discordante as rochas mais antigas do escudo na região, sobrepondo discordantemente rochas ígneas e metamórficas do embasamento. Já levando em conta seus dois blocos menores, a Formação Santa Tecla faz contato discordante a leste, sobrepondo as rochas da Bacia do Camaquã (Horbach *et al.*, 1986).

Até o presente momento não foram identificados fósseis, não permitindo interpretação mais precisa de sua colocação temporal. Carvalho (1932) situou a formação como pós-permiana, devido sua situação estratigráfica. Leinz (1942) considerou a unidade como de idade cretácea, estando acima das efusivas basálticas. Já durante a década de 50 a unidade foi considerada de idade carbonífera, dado sua interpretação como pertencente ao Grupo Itararé como já mencionado.

Porém com o importante avanço de Formoso & Willig (1966), concluíram que a formação teria de ser bem mais jovem que o Permocarbonífero devido a sua discordância, mas também levaram em conta que a Fm. Santa Tecla não se encontra afetada pelos diversos falhamentos que afetaram o Escudo Sul-Riograndense (como pode ser observado na figura 4). Dado as suas relações geomorfológicas, estratigráficas e estruturais, concordavam com Carvalho (1932) que a formação teria idade pós-permiana.

Tessari & Giffoni (1970) postularam que a formação seria posterior ao vulcanismo basáltico da Bacia do Paraná, assim como aos eventos tectônicos

relacionados a esta fase de instabilidade crustal, concluindo que seria posterior ao Cretáceo, datando provavelmente como Terciário Inferior (Paleógeno).

Ramgrab & Wildner (1999) demonstraram em 3 furos de sondagem na região do Arroio do Tigre, próximo a Hulha Negra, que de fato a cobertura da Fm. Santa Tecla assenta-se de forma discordante em relação às unidades gondwânicas (desconformidade) e pré-gondwânicas (não conformidade) (Camozzatto *et al.*, 2018), levantando a hipótese de tratar-se de uma cobertura Cenozóica.

Na região de Hulha Negra seu contato basal é por discordância erosiva sobrepondo-se às formações Rio Bonito e Palermo de idade permiana, ao Gabro Estância do Tigre de idade cretácea inferior, aos arenitos conglomeráticos e conglomerados do Mb. Vargas da Fm. Arroio dos Nobres e Granito Santo Afonso de idade ediacarana e aos gnaisses do Complexo Granulítico Santa Maria Chico de idade paleoproterozoica (Camozzatto *et al.*, 2017). Na região próxima a Lavras do Sul e Ibaré se assenta discordantemente sobre rochas da Formação Sanga da Cachoeira e granitos Jaguari e Saibro (embasamento pré-gondwânico) (Klein, 2017). Na região de Bagé seu contato basal é por discordância erosiva (desconformidade) sobre as formações Rio Bonito e Palermo, da Bacia do Paraná, e por não conformidade com as rochas cristalinas das suítes Cerro Preto e Santo Afonso, de idade Neoproterozoica, ao Complexo Cambaí e localmente com megaxenólitos do Complexo Granulítico Santa Maria Chico.

A ordenação taxonômica e hierarquização geomorfológica da Fm. Santa Tecla segue a compartimentação nos táxons de Domínio Morfoestrutural, Região Morfológica e Unidade Morfológica, conforme proposto por Justus *et al.* (1986). A formação enquadra-se no domínio morfoestrutural relacionado a Província Mantiqueira, onde está localizada. Estes domínios morfoestruturais ocupam grandes áreas, e por vezes comportam grandes diferenciações geomorfológicas. Os fatores que geram estes grandes arranjos regionais de relevo relacionados entre si então ligados principalmente a elementos climáticos atuais ou passados. É por este motivo que esse domínio pode ser compartimentado nos outros dois táxons supracitados. Desta maneira, a Fm. Santa Tecla enquadra-se no Domínio Morfoestrutural dos Embasamentos em Estilos Complexos.

O Domínio Morfoestrutural dos Embasamentos em Estilos Complexos referese às áreas de exposição das rochas pré-cambrianas do embasamento cristalino do Estado. A presença da Fm. Santa Tecla inserida dentro deste domínio sobre estas rochas do embasamento evidencia que uma cobertura mais jovem recobria extensivamente toda a área. A complexidade geológica da área se revela através do relevo, apresentando uma heterogeneidade de tipos dissecados sem predominâncias. As drenagens geralmente são encaixadas, orientadas ao longo de estruturas tectônicas regionais. Ela subdivide-se nas regiões geomorfológicas Planalto Sul-Riograndense e Serras do Leste Catarinense. De maneira geral, as regiões geomorfológicas se caracterizam por uma compartimentação reconhecida regionalmente, correlacionadas com aspectos fitoecológicos e pedológicos que sejam bastante evidentes.

A Região Morfológica onde a formação se encontra pode ser classificada como Planalto Sul-Riograndense e essa região corresponde à ocorrência do Escudo Sul-Riograndense. Ela dispõe-se a partir do centro do RS em direção ao sul, estendendo-se por cerca de 46.742 km². É de grande complexidade geológica, com paisagens com relevo dissecado, topo convexo e vales profundos e tendência de alinhamento tectônico. Junto disso ocorrem áreas menos dissecadas, que correspondem a restos de superfícies pediplanas.

As regiões podem apresentar compartimentações bastante individualizas quanto ao tipo de modelamento do relevo, formação superficial e comportamento das drenagens, o que permite a subdivisão em unidades geomorfológicas. A Fm. Santa Tecla enquadra-se na Unidade Geomorfológica Planaltos Residuais Canguçu-Caçapava do Sul. Esta unidade corresponde aos relevos mais elevados que ocorrem nesta região geomorfológica, e ocupam cerca de 15.070 km². Genericamente o relevo se apresenta dissecado em formas de colinas, ocorrendo também áreas de topo plano ou incipientemente dissecado, remanescente de antiga superfície de aplanamento.

A Fm. Santa Tecla possui como característica ser facilmente identificável em imagens de satélite e aerofotos, dado seu contraste com o relevo suavemente ondulado da porção sul do Escudo Sul-Riograndense onde está inserida. Suas exposições evidenciam suas características tabulares devido à natureza e horizontalidade de seus estratos, compondo pequenas elevações de topo achatado e vertentes íngremes (Horbach *et al.*, 1986) sustentando os relevos (Fig. 10) e resistindo aos ciclos de denudação e erosão devido aos seus processos de calcificação e silificação.

Figura 10: Vista geral da Formação Santa Tecla na região de Bagé, formando elevações em mesas resultante da silicificação e deposição discordante sobre rochas do embasamento. É possível verificar ao fundo os blocos silicosos da formação. Do autor.

Morfologicamente predomina como platôs com drenagem dendrítica pouco encaixada e grande número de lagos, o que também a torna característica em fotografias aéreas (Formoso & Willig, 1966; Tessari & Giffoni, 1970). Nas bordas desses platôs tende a desenvolver feições tabulares onde a erosão seccionou mais profundamente seus sedimentos, motivo pelo qual forma suas pequenas elevações de topo achatado e vertentes íngremes em cotas entre 300 e 400 m. Estas feições representam a mais antiga superfície de erosão cimeira do Estado, a Superfície de Caçapava do Sul. Desta maneira a Fm. Santa Tecla pode representar processos deposicionais associados a uma protodrenagem ou drenagem ancestral caracterizada por uma paleogeografia (Potter, 1997; Rodrigues *et al.*, 2009). Porém os arenitos da Fm. Rio Bonito podem apresentar feições similares, o que requer detalhamento das interpretações (Tessari & Giffoni, 1970; Ramgrab & Wildner, 1999).

Na região de Olhos D'Água, Palmas e Bolena (Folha Hulha Negra), conforma feições características sob a forma de *cuestas* contínuas ou então como morros testemunhos sustentando o interflúvio entre as bacias dos arroios locais (Camozzatto *et al.*, 2017; Camozzatto *et al.*, 2018).

A partir das características litológicas da Fm. Santa Tecla, torna-se muito complexo o estudo de seu ambiente de sedimentação dado a inexistência de

associações litológicas até o presente momento, assim como a dificuldade de verificar feições primárias que norteiem este paleoambiente devido aos processos superimpostos sofridos.

A Fm. Santa Tecla é litologicamente representada por conglomerados e arenitos que se apresentam em pacotes maciços, sem estratificação ou com a mesma pouco evidente, podendo isto ser resultado dos processos secundários que afetaram esta unidade.

Martins & Sena Sobrinho (1949) e Beurlen *et al.* (1955) admitiram que a formação possuía sedimentação de origem lacustre, associada a eventos glaciais e flúvio-glaciais.

Tessari & Giffoni (1970) revisando as várias hipóteses em relação à formação, sugeriram um ambiente de deposição subaquoso, provavelmente lacustre. A falta de estruturas primárias fluviais/torrenciais estaria relacionada a ausência das mesmas devido a um ambiente de clima árido ou semiárido, com a atuação fluvial secundária, predominando o transporte eólico devido a boa seleção de sedimentos de tamanho médio e transportando os finos para uma região distante (*loess*). A ausência de evaporitos seria indício da interligação deste ambiente lacustre com outros corpos d'água, compensando a taxa de evaporação. Essa rede de corpos d'água provavelmente seriam as bacias cretáceo-terciárias do centro, sul e oeste da República Oriental do Uruguai.

Issler *et al.* (1972) levantaram a hipótese de que as litologias da Fm. Santa Tecla representariam pequenas bacias localizadas em um clima quente.

Dani (2013) definiu que as fáceis da Fm. Santa Tecla foram depositadas em sistemas fluviais/aluviais desenvolvidos em ambiente continental de clima árido. A sedimentação clástica tanto de conglomerados como arenitos provêm de blocos continentais de interior cratônico e, subordinadamente, de reciclagem orogênica.

5.2 Formação Tupanciretã

A Formação Tupanciretã cobre uma área de aproximadamente 2.325,66 km² (Wildner *et al.*, 2006) estando em contato com litologias pertencentes à Fm. Serra

Geral (Fig. 11), com espessuras máximas entre 60 e 80 m (Menegotto *et al.*, 1968; Horbach *et al.*, 1986).

Figura 11: Geologia da área de distribuição da Fm. Tupanciretã. É possível observar que ela possui contato restrito com os derrames vulcânicos da Fm. Serra Geral, recobrindo estas unidades, mas sendo afetada por falhas locais. Modificado de Wildner *et al.*, 2006.

A Formação Tupanciretã foi primeiramente caracterizada por Menegotto *et al.* (1968), em mapeamento de escala 1:250.000, como sedimentos que recobriam a Formação Serra Geral e que antes eram considerados como sendo janelas do Arenito Botucatu. A área de estudo ocorreu na região de Tupanciretã, onde está localizada a Seção-Tipo (Fig. 12) englobando conglomerados basais, arenitos quartzosos e feldspáticos e algumas intercalações argilosas que apresentam tênue estratificação

plano-paralela. Ocorre diaclasamento na formação, principalmente na fácies conglomerática. A Seção-Tipo definida pelos autores foi estabelecida na invernada da Cooperativa Rural Serrana Ltda a cerca de 1 km a leste da cidade de Tupanciretã (Fig. 3). Os autores consideraram que a fonte dos sedimentos eram os próprios basaltos da Fm. Serra Geral, mesmo com a grande quantidade de quartzo presente.

Figura 12: Perfil longitudinal e coluna estratigráfica da Seção-Tipo da Formação Tupanciretã, localizada na voçoroca da antiga invernada da extinta Cooperativa Rural Serrana Ltda, a 1 km a leste do centro urbano de Tupanciretã-RS (Menegotto *et al.*, 1968).

Menegotto (1971), realizando análises sedimentológicas, chegou a novas conclusões a respeito da gênese da formação, e a partir disto sugeriu que a proveniência destes sedimentos também tinha como áreas-fonte o Escudo Sul-Riograndense. Ele reconheceu uma variação faciológica lateral na Fm. Tupanciretã, onde os conglomerados seriam mais abundantes no setor Sul, dando lugar a sedimentos mais finos, arenitos e raros siltitos, nas demais direções. Mesmo assim, o aspecto geral da Fm. Tupanciretã foi descrito como essencialmente arenoso, com
ocorrências de conglomerados e argilas muito esporádicas. Os grãos possuem predominantemente aspecto mamelonado brilhante, característico de transporte por água, enquanto grãos foscos são secundários. O sub-arredondamento predominante nos grãos poderia indicar que o transporte não foi longo, ou que ocorreu em suspensão. Ao identificar minerais pesados provavelmente de origem metamórfica, o autor interpretou que esses sedimentos foram carreados por drenagens de sentido sul para norte, tendo então como áreas-fonte os basaltos, o embasamento na Depressão Central e o Arenito Botucatu.

Posteriormente Gamermann *et al.* (1973) expandiram a ocorrência da formação como exposições isoladas que ocorrem muitas vezes sem continuidade física através de uma grande área principalmente a NE da Seção-Tipo. Observaram que em muitas localidades a ocorrência da formação era apenas marcada pela presença de solos arenosos sobre basaltos alterados.

Coulon *et al.* (1973), verificando a baixa possibilidade da contribuição dos basaltos da Fm. Serra Geral como única fonte dos sedimentos para a deposição da Fm. Tupanciretã, iniciaram estudos relacionados à gênese da formação. Constataram que na base da formação ocorrem conglomerados constituídos por fragmentos angulosos a sub-arredondados de basaltos e, com mais raridade, quartzo. A presença de fragmentos basálticos ocorre de forma restrita a esta porção basal da formação. Sobrepostos, encontram-se arenitos finos a muito finos, com grãos angulares a bem arredondados, comumente cobertos por uma película de óxido de ferro e ocorrência de fragmentos líticos. Segundo os autores, os fragmentos líticos não puderam ser devidamente descritos e identificados devido a textura muito fina e alto grau de alteração.

Desta maneira, litologicamente a formação é composta por conglomerados basais, arenitos e finas camadas de argilas em direção ao topo (Fig. 13). Os arenitos, litologia predominante, possuem cores majoritariamente avermelhadas, de textura fina a média, mal selecionados, com grãos dominantemente subangulosos a subarredondados, e eventualmente conglomeráticos. A mineralogia principal nos arenitos é representada por quartzo e feldspato alterado para caulinita. Menegotto (1971) identificou grãos de quartzo com textura fosca, sugerindo que os depósitos tiveram alguma contribuição de origem eólica. Os minerais acessórios são magnetita, turmalina, zircão, estaurolita e raras granadas, monazita, distênio, titanita, epidoto, ilmenita, micas alteradas e matriz caulinítica abundante (Fig. 14). Os arenitos são friáveis e avermelhados, devido à presença de óxidos de ferro, assim como os corpos lamíticos maciços que intercalam a sequência arenítica principalmente próximo ao topo. Foram observados níveis maciços nos arenitos, mas também estratificações plano-paralelas, cruzadas acanaladas e cruzadas de baixo ângulo (Fig. 15) nitidamente fluviais (Coulon *et al.*, 1973; Horbach *et al.*, 1986).

Figura 13: Arenito fino silto argiloso com estrutura plano-paralela representativo de fácies mais distal, intensamente alterado e friável. Amostra TUP 09B. Do autor.

Figura 14: Arenito avermelhado alterado e friável, de textura média com intensa alteração para caulinita. Amostra TUP 2A. Do autor.

Figura 15: Característica da Fm. Tupanciretã em campo. Rocha predominantemente arenítica, intensamente alterada e friável, com porções com estruturas de origem fluvial, como estratificação cruzada de baixo ângulo. Amostra TUP 03B. Do autor.

Os conglomerados ocorrem na base da sequência e possuem matriz arenosa e as vezes areno-argilosa, de coloração comumente avermelhada, contendo seixos e blocos de basalto (Fig. 16) amigdaloide e/ou efusivas ácidas (Menegotto, 1971; Coulon *et al.*, 1973).

Figura 16: Ocorrência de litoclastos basálticos angulosos intensamente alterados com matriz arenosa fina nos conglomerados basais da Seção-Tipo, amostra TUP-07. Do autor.

Na caracterização através de difratometria de raios-X por Coulon *et al.* (1973), foi verificado que de fato a caulinita é o argilomineral dominante, constituindo a matriz e também a alteração dos feldspatos. Também foram encontradas clorita, lepidocrocita e principalmente o interestratificado ilita-montmorilonita (I-M). A ocorrência do I-M, segundo os autores, remete a fontes plutônico-metamórficas através da alteração da sericita ou ilita, dada a baixa concentração de celadonita nos basaltos, que seria a única fonte para este interestratificado a partir das rochas basálticas. Assim, concluíram que a fonte dos sedimentos da Fm. Tupanciretã seriam rochas ígneas plutônicas, metamórficas de alto grau ou sedimentares quartzo-feldspáticas retrabalhadas. Os fragmentos líticos também poderiam indicar participação de outras fontes, porém mais restritas às porções basais.

Nowatzki *et al.* (1999) realizando levantamentos de campo em busca de registros fósseis nas localidades dos trechos entre Santa Maria-Júlio de Castilhos, Tupanciretã-Cruz Alta e Santa Bárbara do Sul-Ijuí constataram que a formação é afossilífera e que é muito propensa a erosão devido ao seu caráter pouco litificado e intensamente alterado, aparecendo muitas vezes como solos arenosos sobre os basaltos (Gass *et al.*, 2009).

Os sedimentos da Formação Tupanciretã assentam-se discordantemente sobre as rochas efusivas da Fm. Serra Geral (Horbach *et al.*, 1986). Menegotto *et al.* (1968) foram os primeiros a reconhecerem a Fm. Tupanciretã como sendo pós-Serra Geral, afirmando que a formação era seguramente pós Jurássico, principalmente pela boa compactação das litologias e a deposição em uma bacia anterior à formação da atual topografia, tornando possível uma datação relativa cretácea ou terciária.

Coulon *et al.* (1973) pontuou que ocorrem depósitos Cretáceo-Terciários que formam a região Chaco-Pampeana da Argentina e que possuem suas origens nos flancos da Cordilheira dos Andes e nas Serras Pampeanas, distribuindo-se amplamente para Leste penetrando no Uruguai e desaparecendo antes dos limites territoriais do Rio Grande do Sul. Isso sugeriria que a Fm. Tupanciretã poderia ser um contínuo destes depósitos sedimentares de coberturas mais recentes com proveniência andina, fragmentados pelas drenagens.

Há indícios de que a Fm. Tupanciretã tenha contribuído com grãos de quartzo para a formação de oxissolos alóctones que recobrem parte das rochas básicas da

Bacia do Paraná, no Planalto das Missões no RS, e que foram gerados durante o Terciário (Oliveira, 1995).

Ainda seguindo a compartimentação nos táxons de Domínio Morfoestrural, Região Morfológica e Unidade Morfológica, proposta por Justus *et al.* (1986), a Fm. Tupanciretã enquadra-se no domínio morfoestrutural relacionado a Província Paraná onde está localizada, enquadrando-se no Domínio Morfoestrutural das Bacias e Coberturas Sedimentares.

Este domínio morfoestrutural engloba rochas da Bacia do Paraná, onde as formas de relevo foram esculpidas tanto em litologias da fase de sedimentação paleozóica como mesozóica, quanto da fase predominantemente efusiva, jurocretácica, quanto de coberturas posteriores. As rochas vulcânicas da Fm. Serra Geral predominam largamente neste domínio, geomorfologicamente traduzindo-se por um vasto planalto do tipo monocinal cujas cotas altimétricas decaem para oeste em direção ao Rio Uruguai, com variação de 1.200 m para 100 m neste sentido. Os relevos planálticos encontrados neste domínio subdividem-se em três regiões geomorfológicas: Planalto das Araucárias, Planalto das Missões e Planalto da Campanha.

A Fm. Tupanciretã encontra-se na Região Geomorfológica Planalto das Missões. Esta região encontra-se entre as duas outras regiões supracitadas, ocupando a porção central do Domínio Morfoestrutural das Bacias e Coberturas Sedimentares. Esta região geomorfológica corresponde a 19% deste domínio morfoestrutural, e suas formas de relevo são bastante homogêneas apresentando-se como colinas suaves, bem arredondadas (regionalmente chamadas de coxilhas), esculpidas predominantemente em rochas básicas da Fm. Serra Geral, além de rochas sedimentares em menores porções, como a Fm. Tupanciretã. Esta região geomorfológica refere-se a uma das áreas agrícolas mais importantes do RS, e isso reflete a dificuldade de preservação de bons afloramentos rochosos (Fig. 17).

Figura 17: Uso intenso do solo para cultivo agrícola refletindo em baixa exposição de afloramentos. Visada de NE para SW, próximo ao TUP-07, linha da Seção-Tipo, Fm. Tupanciretã. Relevo em colinas rasas. Do autor.

Por ser tão homogênea, a Região Geomorfológica Planalto das Missões apresenta-se indivisa, constituindo uma única unidade geomorfológica, representada pela Unidade Geomorfológica Planalto de Santo Ângelo. Esta unidade caracteriza-se de maneira geral por um relevo de dissecação homogênea, mostrando densidade de drenagem grosseira, em especial, com aprofundamento dos vales fluviais. O relevo traduz-se por colinas rasas chamadas de coxilhas. A ocorrência predominante de áreas de dissecação mais grosseira, com colinas alongadas e menores desníveis entre topo e vale, parecem ter se desenvolvido especialmente em rochas efusivas básicas.

Já no que concerne à Fm. Tupanciretã, de forma geral não se observa identidade entre litologia e um tipo característico de relevo, porém, de modo geral, o relevo moldado em rochas areníticas da Formação Tupanciretã corresponde à formas colinosas suaves. Contudo, as formas de relevo registradas como amplas colinas, com maior entalhamento da drenagem, parecem ultrapassar a área de ocorrência dos arenitos da Formação Tupanciretã.

É possível observar que a Fm. Tupanciretã na Unidade Geomorfológica Planalto de Santo Ângelo atualmente apresenta-se como divisora das águas que se dirigem para o Rio Uruguai daquelas que fluem para o Rio Jacuí, apesar de sua distribuição descontínua. Certamente as rochas desta unidade representam uma superfície anteriormente contínua e mais extensa, estando hoje degradada e erodida pela drenagem, ainda hoje sofrendo retração espacial pelos processos erosivos. Nesta unidade, a Fm. Tupanciretã é quem sofre os maiores problemas de erosão acelerada devido ao seu caráter arenoso não cimentado, resultando em sulcos, ravinas e voçorocas nas vertentes das colinas. Estes intensos problemas de erosão acelerada na Fm. Tupanciretã podem ser considerados os maiores de todo o RS.

Os sedimentos da Fm. Tupanciretã encontram-se sempre elevados na topografia e compondo elevações em avançado estágio de dissecação pelas drenagens, o que lhe confere em imagem de radar uma textura lobular (Horbach *et al.*, 1986). Essa alta posição atual sugere um soerguimento de caráter regional no estado do RS, possivelmente durante o Cretáceo-Terciário (Coulon *et al.*, 1973).

A formação na região da Seção-Tipo apresenta-se como colinas arredondadas com vertentes suaves. Um aspecto característico destas colinas é que possuem comumente profunda erosão, sob formas de grandes voçorocas (Fig. 18) com paisagens ruiniformes (Menegotto *et al.*, 1968).

Figura 18: Afloramento típico da Formação Tupanciretã evidenciando a grande suscetibilidade aos processos erosivos devido seu caráter friável, pouco cimentado e intensamente alterado. Tupanciretã-RS. Do autor.

Norteado principalmente pela sua composição heterogênea e elementos arquiteturais como estratificações plano-paralela, cruzada tangencial de baixo ângulo

e cruzadas acanaladas pode-se avaliar que a Fm. Tupanciretã foi depositada em ambiente flúvio-lacustre, com alguns eventos torrenciais (Menegotto *et al.*, 1968; Menegotto, 1971; Coulon *et al.*, 1973; Horbach *et al.*, 1986; Fúlfaro *et al.*, 1980).

Para explicar esta deposição em ambiente fluvial, com aporte sedimentar provindos de rochas variadas em uma posição atual de alto topográfico, algumas hipóteses foram construídas por diversos autores ao longo das décadas.

Menegotto (1971) e Horbach *et al.* (1986) postulam que após o encerramento do vulcanismo Serra Geral, as rochas efusivas encontravam-se em cotas inferiores ao do Escudo Sul-Riograndense, ao sul. Essa diferença de elevação teria favorecido o estabelecimento de uma rede de drenagem de sentido sul para norte, que carreou sedimentos dos próprios basaltos, do embasamento e dos arenitos gondwânicos, depositando-os em extensas e baixas planícies aluviais. Pontuam também que há presença de muitos arenitos eólicos na região do Planalto das Missões próximos aos depósitos da Fm. Tupanciretã, e que isso explicaria a abundância de material arenoso de composição quartzosa na formação. O registro de conglomerados na porção sul da área de ocorrência sugeriria períodos esporádicos de alta energia neste sistema, intercalados com períodos mais calmos e predominantes em uma paleodrenagem bem diferente da atual.

Já Coulon *et al.* (1973) levantaram a hipótese de que no Terciário, talvez como reflexo dos eventos tectônicos relacionados à separação dos continentes africano e sul-americano, o RS tenha sofrido um soerguimento que o basculou para o Oeste. Esse evento tectônico teria invertido as drenagens que antes transportavam sedimentos no sentido Oeste-Leste e que assim depositavam sedimentos continentais como a Fm. Tupanciretã a partir do desenvolvimento andino do final do período Cretáceo e das serras pampeanas. Essa inversão drástica de sentido Leste-Oeste devido ao basculamento da bacia, supostamente relacionado a um falhamento, fez com que os rios, ao inverterem seus cursos, erodissem profundamente a Fm. Tupanciretã. Segundo os autores, alguns indícios destes eventos seriam a predominância das drenagens atuais para o sentido oeste, como acontece com os rios Pelotas e Canoas que se unem para formar o Rio Uruguai. O mesmo ocorre com outros os rios da fronteira com a Argentina, que se dirigem para o Oeste até desaguarem no Uruguai. Este basculamento provavelmente tenha se estendido até a Argentina na calha do Rio Paraná, o qual parece ter se encaixado no eixo desse

divisor tectono-estrutural. Outra evidência deste evento de basculamento e inversão das drenagens no estado seriam as diferenças de altitude encontradas entre o planalto costeiro, onde ocorrem pontos de mais de 1.000 metros acima do nível do mar, e a região oeste, onde as cotas decrescem para até 70 m na fronteira com a Argentina.

Riccomini *et al.* (2016) consideram a Fm. Tupanciretã como parte do grupo por eles denominado de Grupo Jacuí (Riccomini *et al.*, 2005), o qual teria se estabelecido no Cretáceo Inferior, estando interdigitado com a Fm. Volta Alegre, sendo esta última composta principalmente por tufos vulcanoclásticos e material piroclástico com gênese sin-eruptiva resedimentada e tendo pequena expressão em área e menor espessura dentro do grupo proposto. Segundo as constatações dos autores, a Fm. Tupanciretã domina francamente em direção ao oeste e noroeste, havendo paleocorrentes que indicam que o grupo se depositou com direção geral de sudeste para noroeste ao longo de toda sua ocorrência. Foram observadas evidências de falhas e juntas de cisalhamento como estruturas pós sedimentares. De maneira provisória, os autores atribuíram ao grupo uma idade situada a partir do final do Cretáceo Inferior, correlacionando à idades das formações vulcânicas tardias da Província Etendeka e do subgrupo Santa Maria (tipo Palmas, Fm. Serra Geral) indo de 134,5 ± 2 Ma a 119 Ma (Hartmann *et al.*, 2017; Hartmann *et al.*, 2021).

6 ESTADO DA ARTE

A seguir são apresentadas breves revisões e aspectos científicos a respeito de temas importantes em geomorfologia e proveniência, abordados na pesquisa desta tese e que foram essenciais para a elaboração dos artigos científicos que se apresentarão a seguir, sendo pilares para a melhor compreensão dos mesmos.

6.1 Superfícies de Aplainamento

As superfícies de aplainamento (Davis, 1899) surgiram como interpretações empíricas, a partir das observações da paisagem em campo e mapas topográficos, do desenvolvimento natural do relevo, as quais seriam respostas aos processos de pediplanação.

Assume-se que a denudação de longo prazo no desenvolvimento da paisagem, reflexo de processos de superfície e mudança dos arranjos continentais, conduz a processos de aplainamento capazes de truncar diferentes litologias e rebaixar o relevo regional (Gregory, 2010; Orme, 2013) onde haja momentos de estabilidade tectônica e climática (Corrêa & Monteiro, 2021).

As superfícies de erosão são fundamentais para a compreensão integral da história do modelado pois são fatos da paisagem que representam planos de tempo, funcionando nas paisagens assim como as discordâncias nas bacias sedimentares, com a importante diferença em relação àquelas de que as mais velhas superfícies geralmente ocorrem na parte superior como cimeiras do relevo (motivo pelo qual também são chamadas de Superfícies Cimeiras) (King, 1956; Silva, 2009).

Essas superfícies são associadas então a diferentes níveis de erosão que ocorrem esculpindo o relevo em diferentes tempos geológicos. A sua formação dá-se pelo processo de denudação em diferentes tipos de rochas e em variabilidade de estruturas geológicas levando então a geração de níveis altimétricos diferenciados, não limitados à influência das estruturas geológicas (como por exemplo resistências diferenciais de diferentes litologias). O mecanismo de denudação está diretamente vinculado à noção de aplainamento da paisagem (Fig. 19).

Figura 19: Diferentes superfícies geomorfológicas. A- Superfícies estruturais (S), relacionadas unicamente à influência das características geológicas. B- Superfícies de aplainamento (P), relacionadas aos processos de denudação independente da resistência das diferentes litologias afetadas (Small, 1986).

A paisagem contemporânea tem desenvolvido níveis erosivos definindo superfícies geomorfológicas desde o Cretáceo médio até o Quaternário (King, 1956; Corrêa & Monteiro, 2021), sendo que comumente as superfícies de aplainamento mais antigas apresentam-se como fragmentos descontínuos. A preservação destas superfícies está ligada a resistência e homogeneidade das rochas (Fig. 20), densidade de rede de drenagem e fatores climáticos. Os topos em altitudes semelhantes podem ser interpretados como remanescentes dissecados destas paleosuperfícies planas, frutos de processos denudacionais. Estes processos são controlados pelos níveis de base local (Small, 1986).

Figura 20: Diferentes graus de dissecação em superfícies de aplainamento com litologias distintas (Small, 1986).

As superfícies mais antigas definidas como Cretáceo Superior/Paleógeno estão associadas aos divisores de drenagem das principais bacias hidrográficas brasileiras (Silva, 2009). A inferência da idade de cada superfície geomórfica relaciona-se ante a observância de sua dinâmica para com as litologias afetadas, feições lineares, padrões de rede de drenagem e outros processos geomorfológicos, como existência de outras superfícies de aplainamento regionais que englobam apenas litologias mais novas. Desta maneira, as idades sugeridas para as superfícies de aplainamento são, em geral, relativas, e não absolutas.

É importante ressaltar, porém, que uma mesma superfície pode representar um somatório de processos geológicos e geomorfológicos, fazendo com que o seu

reconhecimento e interpretação evolutiva se dê de maneira complexa com diferentes leituras em termos de origem, idade e história evolutiva (Silva, 2009). Por este motivo deve-se levar em conta os diversos modelos teóricos a respeito da origem destas superfícies, verificando acertos e falhas em cada um deles a partir de uma visão amplificada do tema (Moreira & Perez Filho, 2020).

No modelado da paisagem do Rio Grande do Sul são observadas as seguintes superfícies de aplainamento ou cimeiras (Fig. 21) que recebem as denominações (Ab'Sáber, 1969; Suertegaray, 2010): Vacaria, Caçapava do Sul, Cerro da Cadeia, Campanha e Gravataí.

Figura 21: Superfícies de aplainamento no Rio Grande do Sul segundo (Ab'Sáber, 1969). a) Perfil esquemático NE-SW do Rio Grande do Sul identificando as superfícies de aplainamento mais antigas (de cimeira) e mais recentes, e suas cotas típicas. Modificado de Ab'Sáber (1969). b) Localização da seção esquemática NE-SW no Rio Grande do Sul em relação às unidades morfotectônicas do estado. Modificado de Bertê, 2021.

As mais antigas, desenvolvidas a partir da formação da margem passiva da Placa Sul Americana, são as superfícies de Vacaria e Caçapava do Sul. Elas teriam se estabelecido a partir do Neocretáceo/Terciário Inferior, provavelmente no Paleoceno (Ab'Sáber, 1969; Justus *et al.*, 1986), sendo correlacionáveis com as Superfícies Japi (Almeida, 1964) e Sul Americana (King, 1956). Os resquícios das superfícies de Vacaria, Superfície de Vacaria degradada e Superfície de Caçapava do

Sul formam hoje o teto topográfico das paisagens do Rio Grande do Sul (cimeiras). Sobrepostas a estas ocorrem a Superfície Cerro da Cadeia e da Campanha, formadas pelo consumo das antigas superfícies cimeiras com consequente instalação da Depressão Central. A mais recente, a Superfície de Gravataí, é originada pelas deposições sedimentares mais atuais, sendo penecontemporânea às superfícies alveolares caracterizadas como pequenos trechos alargados representantes das planícies aluviais ocupando um compartimento embutido entre morros (Ab'Sáber *et al.*, 1975).

6.1.1 Drenagens

O comportamento dos sistemas fluviais reflete os processos tectônicos e geodinâmicos da crosta (Cox, 1989), podendo incidir sobre a rede de drenagem fatores como controle estrutural, altos estruturais, erosão diferencial, contatos litológicos entre outros (Moore & Blenkinsop, 2002). Isto ocorre pois os rios são sensíveis em todas as escalas à tectônica contemporânea e, desta maneira, sua idade e localização são guias para atividades tectônicas passadas e disposições da paleogeomorfologia (Potter, 1997).

As drenagens podem ser forte indicativo de anomalias morfoestruturais e estruturas geológicas escondidas (Howard, 1967) como a flexão dômica da crosta, que se reflete pela ocorrência do sistema flanco-cúpula que acaba por ser marcador destes eventos morfotectônicos (Potter & Hamblin, 2006). Em drenagens deste tipo se verificam típicos canais disruptivos (relacionados com a abertura de riftes) e reversos (correm do oceano para o interior do continente).

Nestes sistemas dômicos grande parte dos rios possuem um índice de eficiência muito baixo, tendendo a correr para o interior do continente ao invés de fluírem de forma mais direta para as bacias oceânicas. Grande parte da drenagem da borda leste da América do Sul se desenvolveu após a separação diacrônica do Gondwâna (145 até 100,5 Ma) e apresenta este comportamento disruptivo e reverso (Potter, 1997).

Desta forma, a idade da adaptação da drenagem a esta condição estaria relacionada com o fator morfotectônico capaz de moldar a paisagem e controlar o sistema de drenagem local. Este processo de instalação das drenagens é longo,

porém auxilia a possibilidade de verificação de eventos geológicos relacionados à modelagem do relevo.

Este padrão mega-radial de um sistema flanco-cúpula com evidente controle de drenagem disruptiva e reversa pode ser verificado ao longo do território do Rio Grande do Sul (Fig. 22). Tamanha é sua importância que o mesmo compõe 44% do número de bacias hidrográficas de todo o Estado, e uma área equivalente a 44,92% (126.569 km²) do seu território (Robaina *et al.*, 2010; Trentin *et al.*, 2012; SEMA/FEPAM, 2018).

As bacias hidrográficas que compõem este sistema característico da Bacia Hidrográfica do Rio Uruguai são: do Rio Negro com bacia hidrográfica com área de 2.969 km², Rio Santa Maria com área de 15.741 km², Rio Quaraí com área de 6.659 km², Rio Ibicuí com área de 35.131 km², Rios Butui - Icamaquã com área de 8.008 km², Rio Piratinim com área de 7.656 km², Rio Ijuí com área de 10.766 km², Rios Turvo - Santa Rosa - Santo Cristo com área de 10.793 km², Rio da Várzea com área de 9.479 km², Rio Passo Fundo com área de 4.859 km² e Rios Apuaê -Inhandava com área de 14.508 km² (SEMA/FEPAM, 2018). Isto demonstra a relevância deste sistema de drenagem na área do estado do Rio Grande do Sul.

Figura 22: As três grandes bacias coletoras do estado do Rio Grande do Sul e suas bacias hidrográficas. Destaque para a relevância da Bacia do Rio Uruguai (Bertê *et al.*, 2021).

6.2 Proveniência Sedimentar e Mineralogia Detrítica

Os estudos de proveniência possuem papel fundamental na compreensão da gênese de rochas sedimentares clásticas, pois permitem a determinação da composição do sedimento comparavelmente às suas fontes de origem e distribuição das mesmas.

Conjuntos de minerais pesados são indicadores sensíveis de proveniência do sedimento, principalmente quando são pouco suscetíveis a processos de degradação no ciclo sedimentar. Turmalinas e zircões tem sido um importante índice de maturação de ambientes sedimentares clásticos devido a sua grande estabilidade mecânica e química (Henry & Dutrow, 1996; Henry & Dutrow, 2018). Eles também podem ser analisados junto do rutilo, compondo o índice Zircão-Turmalina-Rutilo (ZTR) de maturidade dos sedimentos clásticos devido a sua também grande estabilidade mecânica e química (Henry & Dutrow, 1996; Henry & Dutrow, 2018). Este índice quantitativo ZTR é a porcentagem destes grãos combinados em relação aos detríticos pesados transparentes, sendo que o índice aumenta com a diminuição de outras espécies de minerais pesados não opacos. ZTR elevado é típico de sedimentos policíclicos advindos de rochas sedimentares recicladas, enquanto baixo ZTR indica sedimentos de primeiro ciclo (Hubert, 1962; Mange & Maurer, 1992).

As composições minerais permitem que as condições de cristalização e consequentemente os ambientes e tempo de formação sejam identificados (van Hinsberg *et al.*, 2011b), assim como as características clásticas de deposição das bacias terrígenas. Combinar essas informações de proveniência a partir da assembleia mineral encontrada na unidade de estudo permite restringir as áreas fontes e processos associados à sua formação, podendo determinar a direção do transporte das rochas fonte para o sítio deposicional (Kowal-Linka & Stawikowski, 2013).

Ao longo da trajetória destes materiais clásticos, diversos processos podem influenciar a composição final dos sedimentos que irão compor a rocha sedimentar futura. A composição deste sedimento é fruto de um sistema complexo o qual engloba a composição das rochas geradoras, a tectônica, a morfologia do relevo, o clima e a energia do sistema de transporte envolvido, sendo que a informação composicional obtida a partir da análise dos componentes dessa rocha reflete toda esta dinâmica (Johnsson, 1993).

Importantes componentes deste sistema clástico são as turmalinas e zircões, os quais representam minerais pesados mecanicamente e quimicamente estáveis. Atuam como repositórios significativos de informações de suas rochas formadoras e assim, consequentemente, sobre a proveniência do sedimento clástico (Morton *et al.*, 2013; Henry & Dutrow, 2018). Este tipo de estudo permite reconstruir as relações entre as áreas fontes dos sedimentos e a rocha ou bacia sedimentar de interesse, permitindo a compreensão da distribuição geográfica dessas áreas, das rotas do material clástico aliado a condições paleoclimáticas, paleorelevo e evolução da paisagem (Remus *et al.*, 2008).

6.2.1 Turmalina

A composição química das turmalinas é utilizada atualmente como importante indicador de proveniência para diferentes litologias (Henry & Guidotti, 1985). Por ser um acessório comum em vários tipos de rochas (ígneas, metamórficas ou sedimentares) e quimicamente e mecanicamente resistente durante seu transporte (devido sua alta dureza - ~7 Mohs - e ausência de clivagens), torna-se um bom indicador petrogenético do material clástico investigado (Dutrow & Henry, 2011; Bosi, 2018; Henry & Dutrow, 2018). Juntamente do zircão e rutilo, a turmalina é um dos minerais pesados mais duráveis em ambientes sedimentares (van Hinsberg *et al.*, 2011a).

As turmalinas são borossilicatos complexos (Fig. 23), pertencendo ao grupo de ciclossilicatos do sistema trigonal, possuindo três sítios octaédricos Y, seis sítios octaédricos Z e um grande sítio poliédrico X (Fig. 24) permitindo assim uma grande variação de composição química (um total de 26 constituintes relevantes) cujos principais cátions costumam ser Mg, Fe²⁺, Mn, Al, Cr e Li (para o sítio Y), Al, Fe³⁺, Cr e Mg (para o sítio Z) e Na, Ca, K e vacâncias (para o sítio X), havendo tetraedros de Si e triângulos de B. Com relação aos ânions estes podem ser O, OH e F (Hawthorne e Dirlam, 2011; Deer *et al.*, 2013; Bosi, 2018) sendo que a grande maioria das turmalinas é dominada por OH (Henry *et al.*, 2011). Esta complexa variabilidade química aliada à ampla faixa de estabilidade de pressão e temperatura torna a turmalina um ótimo indicador do ambiente em que se formou (Henry & Dutrow, 1996; van Hinsberg & Schumacher, 2007; Jia *et al.*, 2010; Slack & Trumbull, 2011; van Hinsberg *et al.*, 2011b), uma vez que há relação entre sua composição e o tipo de rocha formadora preservando esta assinatura com uma taxa desprezível de difusão

dos elementos intracristalinos (Henry & Guidotti, 1985; Dutrow & Henry, 2011; van Hinsberg *et al.*, 2011a; Henry & Dutrow, 2018; Dutrow & Henry, 2018).

Figura 23: Estrutura cristalina da turmalina, complexa, com diversos sítios cristalográficos que favorecem grande diversidade de composição química. A esquerda, projeção e (001). A direita, visão oblíqua (Hawthorne & Dirlam, 2011).

Figura 24: Representação da estrutura cristalina da turmalina mostrando uma porção de sua estrutura vista perpendicularmente ao eixo *c*. Os ápices dos tetraedros (TO₄) compreendendo o anel de seis membros apontam na mesma direção, -c, para produzir assimetria cristalográfica típica da turmalina. Os poliedros e locais importantes estão rotulados. Octaedros, YO₆ e ZO₆, são mostrados juntamente com o triângulo BO₃ e o sítio X (Henry & Dutrow, 2018).

Elas são consideradas hoje um supergrupo mineral com 33 espécies (Bosi, 2018), sendo encontradas abundantemente em pegmatitos e veios graníticos, mas também em rochas afetadas por metamorfismo termal como produto do metassomatismo do boro (Henry & Dutrow, 1996; Deer *et al.*, 2013). Sua cristalização implica diretamente na mudança composicional do ambiente disponível para os demais minerais uma vez que elas sequestram seletivamente os íons do sistema,

arquivando a história da rocha de forma sensível às mudanças de pressão e temperatura (van Hinsberg & Schumacher, 2007).

A estrutura da turmalina resulta de restrições de curto alcance, que depende da carga dos íons, e restrições de longo alcance, que dependem do tamanho dos íons. Desta forma, as ocupações dos sítios dependem essencialmente da carga e tamanho dos átomos formando arranjos específicos. Em minerais, as substituições de cátions em um sítio estrutural são geralmente controladas pelo tamanho dos íons. Nas turmalinas o sítio Y é sempre maior que Z, por isso o Y tenderá a incorporar cátions relativamente maiores que Z (Bosi, 2018).

Devido a sua complexidade, as espécies de turmalina são definidas em termos de sua composição química, sendo o principal critério a dominância de um determinado constituinte químico em certo sítio cristalográfico (Hawthorne e Dirlam, 2011; Henry *et al.*, 2011). Sua divisão primária subdivide as turmalinas em grupos relacionados à ocupação do sítio X por Ca, Na+K e vacâncias, os classificando como vazios, alcalinos ou cálcicos. A divisão secundária é realizada de acordo com a ocupação de Fe, Mg e Li no sítio Y indicando assim a espécie (Henry *et al.*, 2011).

A turmalina no sedimento permanece retendo a assinatura da sua hospedeira original mesmo ante a sucessivos episódios de soterramento e exumação, sendo assim, um bom indicador de proveniência para rochas sedimentares clásticas. A determinação de sua composição química junto à características texturais determinam com assertividade a proveniência de diferentes produtos litológicos (Henry & Guidotti, 1985; van Hinsberg *et al.*, 2011a).

Apesar da complexa cristaloquímica da turmalina, Henry e Guidotti (1985) propuseram diagramas ternários de discriminação, baseados na proporção molar dos subsistemas químicos AI-Fe-Mg e Ca-Fe-Mg capazes de indicar vários ambientes geológicos de formação das turmalinas através de tipos específicos de rochas geradoras. O uso de tais diagramas a partir de análises químicas de precisão permite a interpretação das áreas fontes e modelos de proveniência das turmalinas detríticas, colaborando para a compreensão da formação e evolução de unidades clásticas (Aubrecht e Krištín, 1995; Remus, 2008; van Hinsberg *et al.*, 2011b).

6.2.2 Zircão

O zircão, por sua vez, possui estrutura mais simples onde tetraedros de sílica unem-se à dodecaedros de zircônio (Fig. 25). Elementos como U, P, Th, Hf e outros terras raras (REE) podem compor sua estrutura. Ele é um importante mineral acessório em rochas ígneas. Sua elevada dureza (~7,0 Mohs) e rara clivagem o tornam um relevante componente de mineralogia detrítica, sendo comum que sobreviva a vários ciclos de intemperismo e sedimentação, sendo considerado ultraestável assim como a turmalina (Morton *et al.*, 2005).

Figura 25: Representação da estrutura cristalina do zircão. a) Uma visão da estrutura do zircão projetada do eixo *a* no plano definido pelos eixos *b* e *c*. Os tetraedros de SiO₄ são amarelos e os dodecaedros de ZrO_8 são em tons de azul. Um dodecaedro não está sombreado para revelar sua subestrutura que consiste em dois tetraedros ZrO_4 distorcidos. Os tetraedros de ZrO_4 alongados compartilham as bordas superior e inferior com os tetraedros de SiO₄. b) Uma visão da estrutura do zircão projetada a partir do eixo *a*, despojado do tetraedro ZrO_4 encurtado para destacar as cadeias de compartilhamento de borda, alternando tetraedros SiO₄– ZrO_4 paralelos ao eixo *c*. Os tetraedros SiO₄ são amarelos e os tetraedros ZrO_4 alongados, azuis (Harley & Kelly, 2007).

Sua importância também se dá pela facilidade em incorporar até 1% de U e Th, o que o torna um relevante geocronômetro a partir do decaimento radioativo destes elementos (Vermeesch, 2012). Outras ferramentas composicionais do zircão como a consideração da quantidade de Y e elementos terras raras e o aferimento de seus isótopos de oxigênio podem levar a reconstruções de histórias magmáticas (Deer *et al.*, 2013).

Os zircões podem ser formados por processos de cristalização ígnea ou metamórfica, estando ausentes em muitas rochas máficas e ultramáficas (Corfu *et al.*,

2003; Andersen, 2005; Andersen *et al.*, 2019; Padilha *et al.*, 2022). Eles são úteis em análises de rochas sedimentares pois permitem correlações com suas rochas formadoras, independente do número de ciclos de transporte e sedimentação (Fedo *et al.*, 2003; Barros *et al.*, 2010; Deer *et al.*, 2013; Liu *et al.*, 2013). Estas correlações são estabelecidas a partir das idades U-Pb dos zircões detríticos, comparando-os com as possíveis áreas fontes de contexto regional ou paleogeográfico.

O sistema U-Pb passível de ser utilizado para a datação do zircão é particularmente relevante na geocronologia pois engloba dois sistemas de decaimento: ²³⁸U/²⁰⁶Pb e ²³⁵U/²⁰⁷Pb. Ambos os sistemas possuem meia-vida apropriadas para uso em amplos casos, exceto para idades muito recentes, podendo ser representados graficamente em uma concórdia, onde se avalia a idade, a abertura do sistema e subtração do Pb inicial ou acréscimo de Pb comum (Gehrels, 2012; Andersen *et al.*, 2019). Esta possibilidade de avaliação deste sistema geocronológico permite a verificação dos dados de datação em zircões que estejam mais alinhados com a finalidade do uso como traçadores de proveniência em sistemas sedimentares, o que torna os dados obtidos mais refinados e representativos da área fonte primordial (Padilha *et al.*, 2022).

É importante o conhecimento do arcabouço geológico regional para que estas informações geocronológicas possam ser integradas à informações sobre a constituição litológica da região de origem. Como o zircão é um mineral refratário, a sua datação não reflete dados de reciclagem em sistemas sedimentares mais jovens, mantendo a capacidade de representar uma fonte local diretamente ou por meio de repositórios intermediários – reciclagem (Fedo *et al.*, 2003).

6.2.3 Arredondamento

O grau de arredondamento de uma partícula se refere a nitidez de seus cantos ou arestas. Se estes cantos ou arestas são lisos ou inexistentes, diz-se que o grão é bem arredondado; do contrário o mesmo enquadra-se como mal arredondado (Wadell, 1935; Krynine, 1956; Boggs, 2014). O valor matemático para o arredondamento de grãos foi descrito por Wadell (1935), que chamou de grau de arredondamento sua metodologia para obter o arredondamento de uma partícula utilizando o raio médio dos vértices em relação ao diâmetro do círculo projetado (Fig. 26). Desta forma, para um grão perfeitamente arredondado o índice é 1, enquanto

seus valores fracionários menores são utilizados para classificar partículas menos arredondadas (Rodriguez *et al.*, 2013).

Figura 26: Método de Wadell (1935) para estimar o arredondamento, raio dos cantos e círculo inscrito projetado.

Uma das classificações para este grau de arredondamento é aquela elaborada por Powers (1953), que subdivide os graus de arredondamento em 6 classes (Tabela 2), tendo assim boa abrangência de todos os aspectos de arredondamento (Fig. 27) sem que haja um elevado número de classes.

Intervalos de Classe (Powers, 1953)		
Limites de		
Classe		Classes
Min.	Max.	
0,12	0,17	Muito angular
0,17	0,25	Angular
0,25	0,35	Subangular
0,35	0,49	Subarredondado
0,49	0,70	Arredondado
0,70	1,00	Bem arredondado

Tabela 2: Classes de grau de arredondamento segundo Powers (1953).

Figura 27: Escala qualitativa de arredondamento (Powers, 1953).

É importante salientar que conforme o estudo das formas e medidas das partículas, existe uma diferença conceitual entre arredondamento e esfericidade. Qualquer coisa esférica é redonda, mas não necessariamente algo arredondado é esférico (Krynine, 1956). A esfericidade é a aproximação matemática da forma analisada com um círculo (2D) ou esfera (3D), enquanto o arredondamento relaciona-se com o arredondamento ou eliminação de cantos ou arestas (Rodriguez *et al.*, 2013).

O arredondamento das partículas sedimentares está intimamente ligado a maturidade textural dos sedimentos. A maturidade textural dos grãos durante o ciclo sedimentar está relacionada à avarias mecânicas e processos hidráulicos e eólicos durante o transporte e deposição final. A combinação de fraturamento e abrasão dos grãos durante estes processos permite que mesmo minerais de alta dureza possam adquirir alto grau de arredondamento caso este período for suficientemente longo englobando ciclos sucessivos (Morton & Hallsworth, 1999; Zoleikhaei *et al.*, 2022), refletindo na policiclicidade de eventos de transporte e deposição. Desta forma, grãos com muitos ciclos de transporte tendem a possuir maior grau de arredondamento, enquanto grãos mais imaturos tendem a conservar a forma com que se cristalizaram em seu ambiente de origem.

7 RESULTADOS

Os principais dados e resultados obtidos durante este estudo das formações Santa Tecla e Tupanciretã são apresentados de forma sintetizada a seguir, agrupados nos temas: (i) Contexto Morfotectônico e Análise da Drenagem; (ii) Relação com Superfícies de Aplainamento e Datação Relativa; (iii) Enquadramento na Supersequência Bauru; (iv) Turmalinas Detríticas da Fm. Tupanciretã; (v) Zircões Detríticos da Fm. Tupanciretã e Datação Absoluta; (vi) Maturidade Textural dos Minerais Pesados.

Resultados detalhados e outras implicações são apresentados na seção Parte II ao longo dos respectivos artigos científicos. Material suplementar pode ainda ser encontrado no Anexo B.

7.1 Contexto Morfotectônico e Análise da Drenagem

As formações Santa Tecla e Tupanciretã têm sua ocorrência relacionada a um complexo contexto morfotectônico, o qual está relacionado à evolução geodinâmica do final do Gondwana a partir da distensão da litosfera continental, afinamento, soerguimento, fragmentação, atividade ígnea intensa, abertura e consequente deriva das placas continentais (Fig. 28), sendo a província ígnea gerada impulsionada pelo surgimento de anomalias térmicas do manto inferior, com posterior geração de margem passiva conforme o modelo de rifteamento ativo (Fig. 29) (Aslanian *et al.*, 2009; Beglinger *et al.*, 2012; Mohriak, 2012).

Estes eventos se relacionam a um mecanismo de geração de plumas mantélicas que ascendem do manto e elevam topograficamente a região da pluma afetando a megageomorfologia local e gerando uma zona de vulnerabilidade à erosão superficial. Este foi o mecanismo responsável pelo soerguimento da região do Escudo Sul-Riograndense e Uruguaio, região correspondente da chamada pluma do Alto Uruguai/SW África, e modificação das drenagens locais. Este domo afetou o comportamento dos sistemas fluviais, gerando uma anomalia na rede de drenagem que culminou na atual drenagem da Bacia Coletora do Rio Uruguai (Fig. 22).

Esta rede de drenagem, assim como as drenagens uruguaias até o aulacógeno Rio de la Plata e seus correlatos no sudoeste africano representam um sistema de drenagem mega-radial do tipo flanco-cúpula, possuindo um índice de eficiência muito baixo, tendendo a correr para o interior do continente ao invés de fluírem de forma mais direta para as bacias oceânicas.

Figura 28: Representação esquemática da evolução da margem passiva através do rifteamento ativo mostrando o estágio inicial de soerguimento e rifteamento (A) e margem passiva nascente (B). Modificado de Summerfield (2013).

Figura 29: Vista em planta da sequência de fragmentação continental e formação de margem passiva sob rifteamento ativo: (A) estágio de rifteamento; (B) estágio de margem passiva nascente com a formação de uma margem rifteada, onde o movimento ao longo do novo limite da placa é amplamente divergente, e a criação de uma margem cisalhada onde o movimento é amplamente transformante; (C) estágio de margem passiva madura com braços de *rift* abortados (aulacógenos) atingindo a nova margem continental. As seções transversais X-Y indicam a natureza geral dos movimentos verticais associados ao longo da margem e as linhas tracejadas indicam esquematicamente os contornos. Modificado de Summerfield (2013).

Este padrão de drenagem aliado à elevação causada pela pluma do Alto Uruguai/SW África (que expôs as rochas da Bacia do Paraná e ESRG à erosão) justificam as ocorrências de mineralogia detrítica advinda do ESRG e sedimentares gondwânicas, assim como justifica a ocorrência de paleocorrentes na Fm. Tupanciretã que indicam um transporte a partir do quadrante S-SE para N-NW, sinalizando justamente o escoamento a partir das porções soerguidas do escudo. As formações Santa Tecla e Tupanciretã seriam então sub-bacias que ocorreram nos flancos do meio domo.

Outro elemento importante é a estruturação do Arco de Rio Grande. Há evidências de sua influência no controle da deposição de rochas sedimentares

gondwânicas da Bacia do Paraná, como a Fm. Caturrita (restrita ao norte do arco) e Fm. Guará (restrita ao sul do arco). O arco parece ter tido importante influência sobre a Fm. Botucatu, onde os setores ao leste do arco possuem assinatura detrítica com diferença significativa em relação ao setor oeste, o que indica uma possível influência nas paleodrenagens locais.

7.2 Relação com Superfícies de Aplainamento e Datação Relativa

As formações Santa Tecla e Tupanciretã se enquadram em importantes superfícies de aplainamento que ocorrem no Rio Grande do Sul como superfícies cimeiras.

A Fm. Santa Tecla está inserida na Superfície Cimeira de Caçapava do Sul, que é um extenso pediplano com caimento para W, SW e S que nivela a porção central da abóboda do ESRG por antigos processos de aplainamento cortando de maneira indiferente as mais variadas estruturas e litologias independentemente do seu grau de resistência: variadas suítes graníticas, rochas metamórficas do embasamento, sedimentares e vulcânicas da Bacia do Camaquã. A formação desta superfície seria anterior a fase de circundenudação periférica responsável pela geração da Depressão Central Gaúcha (Ab'Sáber, 1969).

Os perfis atuais da Fm. Santa Tecla se encontram inteiramente dentro da Superfície Cimeira de Caçapava do Sul, compondo pequenas elevações de topo achatado e vertentes íngremes sustentando os relevos e resistindo aos ciclos de denudação e erosão especialmente devido a silificação no topo de seus estratos tabulares. A formação da Superfície Cimeira de Caçapava do Sul se estabeleceu a partir do Neocretáceo/Terciário Inferior, provavelmente no Paleoceno (Ab'Sáber, 1969; Justus, Machado e Franco, 1986), sendo correlacionável com as Superfícies Japi (Almeida, 1964) e Sul Americana (King, 1956).

A Fm. Tupanciretã enquadra-se nos interflúvios da Superfície degradada de Vacaria, já que esta superfície de aplainamento encontra-se melhor preservada na porção nordeste do Rio Grande do Sul, estando bastante dissecada na direção oeste, para onde possui suave basculamento devido aos processos de arqueamento em abóbada provocados pela pluma. A Fm. Tupanciretã possui um caráter residual nesta superfície, uma vez que tem sofrido intenso processo de erosão devido a inversão de relevo constatada.

Diferente da cimentação encontrada nos calcretes, dolocretes e silcretes da Fm. Santa Tecla, a Fm. Tupanciretã tem sido suscetível ao longo do tempo geológico aos processos de erosão e maior entalhamento da drenagem devido ao seu caráter arenítico não cimentado, contrastante também com as rochas vulcânicas sotopostas e circundantes, resultando em sulcos, ravinas e voçorocas. Estes processos são ainda maximizados através da inversão de relevo, os quais situaram a formação no divisor das águas entre a Bacia do Rio Uruguai e a Bacia do Rio Jacuí (ou Bacias Coletora do Guaíba, Fig. 22).

A Superfície de Caçapava do Sul e a Superfície de Vacaria são as superfícies cimeiras mais antigas do estado do Rio Grande do Sul. Ambas enquadram-se num período de quiescência tectônica após a deformação e basculamento pela abóboda da pluma, assim como ambas são tidas como tendo instalado seus processos iniciais de pediplanação a partir do Neocretáceo/Terciário Inferior (Paleoceno). Desta forma, para que ambas as unidades sedimentares tenham sido incorporadas por estas superfícies de aplainamento, ambas deviam estar depositadas ou em concomitância de deposição. Porém levando em consideração que os processos de aplainamento estão diretamente ligados à mecanismos de denudação que correspondem ao aplainamento da paisagem através da erosão, é bastante plausível assumir que durante o Neocretáceo já houvesse a deposição destas unidades, tendo indubitavelmente esta deposição ocorrido antes dos processos de inversão de relevo os quais são também lentos.

7.3 Enquadramento na Supersequência Bauru

A Formação Santa Tecla é correlacionável temporalmente com a Formação Tupanciretã tendo ambas o mesmo contexto geotectônico, paleoclimático e enquadradas nas superfícies cimeiras neocretáceas/paleógenas. Num contexto mais abrangente, assemelham-se também às demais rochas da Supersequência Bauru, tendo sido formadas em ambientes de sedimentação intracratônicos similares, com litologias análogas que se assentam discordantemente sobre as demais rochas da Bacia do Paraná durante o Cretáceo (principalmente Cretáceo Superior) em um paleoambiente semiárido.

A Supersequência Bauru é disposta em um registro não contínuo, fragmentado pelas estruturas morfotectônicas que subdividiram a Bacia do Paraná em um setor

norte e um setor ao sul do planalto meridional brasileiro adentrando parte da Argentina e Uruguai.

Esta fase final de sedimentação Pós Gondwânica na bacia é bem definida no Brasil nos grupos Caiuá (tratos eólicos desérticos) e Bauru (tratos de sistemas fluvioeólicos de clima semiárido), correlatos com seus análogos com áreas de menor extensão na Argentina e Uruguai. As rochas do Grupo Bauru são posicionadas no Cretáceo Inferior a Superior, enquanto os sedimentos Uruguaios do Grupo Paysandú composto pelas formações Guichón e Mercedes possui idade neocretácea.

Litologicamente estes grupos são compostos por unidades conglomeráticas basais e areníticas predominantes, com indicativos paleoclimáticos semiáridos à áridos envolvendo grãos de retrabalhamento eólico e depósitos de enxurradas, preservação de minerais detríticos pesados e desenvolvimento de paleossolos calcários (calcretes e dolocretes). Estas características são análogas àquelas encontradas nas formações Santa Tecla e Tupanciretã.

A preservação destas coberturas neocretáceas neste setor do extremo sul da bacia indica que houve influência na evolução tectônico-sedimentar dos arcos de Assunção e Rio Grande para os depocentros voltados para a Argentina e Uruguai (Alvarez, 2004), e o mesmo parece ter influenciado nas deposições das formações Tupanciretã e Santa Tecla. Ambas as formações do Rio Grande do Sul podem ser correlacionáveis litoestratigraficamente e temporalmente, em nível regional, com as unidades do Grupo Paysandú (Uruguai) e aquelas correlatas do Grupo Bauru.

7.4 Turmalinas Detríticas da Fm. Tupanciretã

A turmalina é um importante mineral pesado detrítico de ocorrência dentro dos ciclos sedimentares devido a sua característica ultraestável. A composição química das turmalinas é utilizada atualmente como importante indicador de proveniência para diferentes litologias.

Na Fm. Tupanciretã foram encontradas turmalinas detríticas em seis amostras, tendo sido validadas 1.481 análises de turmalinas através de microssonda eletrônica (correspondendo a 751 de centros e 730 de bordas de grãos). Foram encontradas turmalinas de variadas formas e pleocroismos (Fig. 30), o que é indicativo de múltiplas fontes de cristalização deste mineral.

Figura 30: Exemplo de populações de turmalinas detríticas encontradas na Fm. Tupanciretã. Possuem variadas formas e pleocroismos compondo turmalinas dos tipos azuis, verdes, marrons e pretas. Amostra TUP 2A. Do autor.

Segundo os diagramas ternários de discriminação da turmalina (Henry & Guidotti, 1985) baseados na proporção molar dos subsistemas químicos AI-Fe-Mg e Ca-Fe-Mg, os ambientes geológicos de formação das turmalinas detríticas encontradas na Fm. Tupanciretã foram definidos, através dos diferentes tipos possíveis de rochas geradoras.

A partir do diagrama AI-Fe-Mg foram definidas turmalinas de gênese ígnea granítica e gênese metamórfica metapelítica/metapsamítica. O mesmo pode ser verificado considerando o diagrama Ca-Fe-Mg (Fig. 31) o qual distingue gênese de turmalinas ígneas (campo 2) e metamórfica metapelítica/ metapsamítica (campos 3 e 4).

Fica comprovada que as turmalinas presentes na Fm. Tupanciretã têm origem no ESRG. Também pode-se afirmar que as rochas metamórficas de baixo a médio grau (metapelitos/metapsamitos) tiveram a principal contribuição como rochas geradoras das turmalinas detríticas. A semelhança composicional das turmalinas encontradas indica que a fonte do material clástico que constituiu a Fm. Tupanciretã era a mesma ao longo da Seção-Tipo e arredores, o que também pode ser observado na distribuição da dominância dos campos de proveniência, que se demonstra consistente com um sistema alimentado pelas mesmas fontes.

Figura 31: Este diagrama considerando Ca-Fe-Mg divide composicionalmente (em proporção molar) a variação composicional de turmalinas para diferentes tipos de rochas. Nele estão plotados um total de 1.481 pontos divididos entre centros e bordas de 6 amostras da Fm. Tupanciretã. Campos: 1- Rochas graníticas ricas em Li. 2- Rochas graníticas pobres em Li. 3- Metapelitos, metapsamitos e rochas calcisilicáticas ricas em Ca. 4- Metapelitos, metapsamitos e rochas quartzo-turmalinas pobres em Ca. 5- Metacarbonatos. 6- Ultramáficas. Modificado de Henry e Guidotti (1985) e van Hinsberg *et al.* (2011a).

7.5 Zircões Detríticos da Fm. Tupanciretã e Datação Absoluta

Assim como a turmalina, o zircão é um importante mineral pesado detrítico encontrado nas rochas sedimentares. É capaz de sobreviver a vários ciclos de intemperismo e sedimentação, sendo também considerado ultraestável. Além disso é um mineral de ampla ocorrência como acessório em rochas ígneas e metamórficas.

Foram encontradas diferentes populações de zircão, com variadas formas e tamanhos (Fig. 32). Foram datados através do método U-P 554 grãos de zircões de cinco amostras, os quais, após os refinamentos nos *softwares* adequados, acabaram por compor populações variando entre 93 a 60 grãos por amostra, considerando-se apenas zircões com concordância >90%.

Figura 32: Exemplo de populações de zircões detríticos encontrados na Fm. Tupanciretã. Possuem variadas formas e tamanhos. Amostra TUP 3B. Do autor.

Os dados apontaram para a ocorrência de três populações principais, com pico nas faixas etárias de 280-250 Ma, 570-530 Ma (pico de maior população) e 1025-1080 Ma. Ocorrem três populações secundárias com picos nas faixas de 134-128 Ma, 630 Ma e 2143-2077 Ma. A idade mais nova obtida foi de 127 Ma e a mais antiga foi de 3296 Ma.

Estes picos de idade representam eventos geológicos ocorridos nas áreas fontes, e são compatíveis com eventos ígneos extrusivos e ciclos tectônicos geradores de granitóides e rochas metamórficas no SW do Gondwana (Fig. 33).

Figura 33: Resultados da geocronologia U-Pb em zircões detríticos da Formação Tupanciretã apresentados em KDE. Dados obtidos através da metodologia de LA-ICP-MS a partir de concórdias >90% de concordância. A distribuição das idades é representativa dos eventos ocorridos os quais delimitam as áreas-fonte. Estão bem representados os eventos ígneos extrusivos Choiyoi e Serra Geral e os tectônicos Transamazônico, Grenvilliano e Brasiliano. Do autor.

Além das assinaturas de idades referentes a estes ciclos orogênicos e eventos ígneos, a datação U-Pb foi utilizada para verificar a idade de cristalização do zircão detrítico mais jovem dentro do sedimento, já que esta idade seria um limite máximo para a idade de deposição, uma vez que a mesma necessariamente precede a deposição do sedimento hospedeiro. A idade mais nova obtida foi de 127 Ma, sendo esta a idade indicada como idade máxima de deposição. Esta idade comparativa, que se encontra no Cretáceo Inferior, é compatível com a idade provisória que Riccomini *et al.* (2016) indicaram para a formação (134,5 \pm 2 Ma a 119 Ma). Esta evidência

cretácea encontrada também é correlacionável à datação radiométrica U-Pb dos carbonatos do topo da Fm. Mercedes (ou Fm. Queguay, Grupo Paysandú, Uruguai), de ~72 Ma (Maastrichtiano, Cretáceo Superior), análogo aos calcretes da Fm. Marília (Grupo Bauru, Brasil) (Veroslavsky *et al.*, 2019). O posicionamento cretáceo também é compatível com os indicativos obtidos através do enquadramento das formações Santa Tecla e Tupanciretã nas superfícies cimeiras de aplainamento de Vacaria e Caçapava do Sul, conforme supracitado.

7.6 Maturidade Textural dos Minerais Pesados

A maturidade textural dos grãos e avaliação da policiclicidade sedimentar dos minerais pesados zircão e turmalina encontrados na Fm. Tupanciretã foram avaliados através do grau de arredondamento destes minerais.

O índice de arredondamento dos grãos de turmalina e zircão foi calculado a partir do *software* AnalyZr (Scharf *et al.*, 2022). A classificação utilizada foi segundo Powers (1953), que subdivide os graus de arredondamento em seis classes (Tabela 2, Fig. 27).

Nas turmalinas predominam os grãos bem arredondados (69,47%-57,26%) a arredondados (35,20%-25,95%), havendo muito poucos subarredondados (9,68%-2,80%) e ainda mais raros subangulares (<0,93%). Já nos zircões são predominantes os grãos arredondados (50,00%-39,81%) a subarredondados (40,74%-22,13%), havendo poucos bem arredondados (27,05%-8,33%) e subangulares (10,19-2,34%) e raros, porém presentes, grãos angulares (<0,93%).

Os arredondamentos observados nas partículas são retratos de ciclos recorrentes de desgaste em sistemas fluviais e em ambientes de alta competência para tal (como eólico e de enxurradas). A acumulação dos efeitos de arredondamento observados aumenta a maturidade textural do sedimento, tanto em função da maior distância percorrida quanto da policiclicidade destes sedimentos, sendo compatível com o retrabalhamento de rochas sedimentares pretéritas e tendo menor participação de sedimentos de origem primária.

8 CONCLUSÃO

Desde as interpretações correntes adotadas para as formações Santa Tecla e Tupanciretã havia uma lacuna de modelo paleogeográfico que comportasse tais interpretações, justificando suas áreas de deposição e dando rumo quanto aos aportes de sedimentos nestas formações. Este trabalho traz um modelo evolutivo e deposicional, que leva em conta a evolução da paisagem ao longo do tempo, considerando uma paleomorfologia, paleodrenagem e influência tectônica que vai de encontro ao modelo de rifteamento ativo adotado para a instalação da abertura do Atlântico Sul e, consequentemente, da Bacia de Pelotas.

Dentro do modelo proposto, a deposição da Fm. Tupanciretã requeria evidências geológicas diretas desta proveniência anterior à importante inversão de relevo, uma vez que a despeito de seu caráter essencialmente arenoso, se encontra depositada distante do embasamento e de outras rochas sedimentares, em setores mais elevados e tendo contato erosivo apenas com as vulcânicas da Fm. Serra Geral. Já a Fm. Santa Tecla, no entanto, possui grande proximidade com o próprio ESRG, tendo contato erosivo com rochas metamórficas e granitóides, mas também com sedimentares da Bacia do Paraná como a Fm. Rio Bonito e Palermo, havendo assim evidências de campo mais claras da sua proveniência.

Nossas descobertas concluem que as formações Tupanciretã e Santa Tecla representam deposições de protodrenagens desenvolvidas a partir de um domo de soerguimento do Escudo Sul-Riograndense/Uruguaio desenvolvido no período de separação do Supercontinente Gondwana pela pluma Alto Uruguai/SW África. Estes processos tectônicos podem ser hoje verificados a partir da extensa drenagem mega-radial do tipo flanco-cúpula que ocorre no Rio Grande do Sul delimitando a Bacia Coletora do Rio Uruguai, posicionando ambas as formações no flanco deste meio domo. Estas regiões atuam agora como divisores de águas, porém no passado formavam sub-bacias que propiciaram a deposição das duas formações, o que representa um importante processo de inversão de relevo.

As formações Tupanciretã e Santa Tecla estão inseridas nas Superfícies Cimeiras de Aplainamento de Vacaria e Caçapava do Sul, o que reforça o caráter de topo da Bacia do Paraná já em período de quiescência tectônica. O seu posicionamento nestes elementos geomorfológicos do relevo permite assumir que durante o Neocretáceo já houvesse a deposição destas unidades, tendo havido posteriormente à estes baixios deposicionais os processos de inversão de relevo os quais são lentos e teriam agido ao longo do Terciário.

Estas evidências indicam que tanto a Fm. Tupanciretã quanto a Fm. Santa Tecla possuem contemporaneidade com os depósitos do Grupo Bauru e Grupo Paysandú (Uruguai), os quais compõem a Superseguência Bauru com depósitos áridos/semiáridos com idades posicionadas no Cretáceo Inferior a Superior, depositando-se discordantemente sobre as demais unidades da Bacia do Paraná, (Fig. 34). Elas foram depositadas em ambientes áridos/semiáridos intracratônicos em episódios de alta energia de rios efêmeros (fluxos de enxurradas) associado ao aporte subordinado de sedimentação eólica. Neste contexto a Fm. Santa Tecla esteve submetida a eventos físico-químicos específicos, gerando cimentações calcíticas, dolomíticas e silicosas sendo esta última resistente à erosão, permitindo a inserção da formação em elementos geomorfológicos típicos que permitem o emprego de idades relativas. Outras unidades da Supersequência Bauru no Grupo Bauru (Fm. Marília) e Grupo Paysandú (Fm. Mercedes, Uruguai) foram submetidas aos mesmos processos formadores de calcretes, dolocretes e silcretes em ambiente semiárido durante o Maastrichtiano, Cretáceo Superior (~72 Ma). Já a Fm. Tupanciretã é análoga à Fm. Guichón (base do Grupo Paysandú, Uruguai) e porções basais do Grupo Bauru (como a Fm. Uberaba e Fm. Vale do Rio do Peixe), sendo essencialmente arenosa, tendo conglomerados subordinados na base com presença de fragmentos de rochas vulcânicas da Fm. Serra Geral e raros pelitos.

Nestas formações ocorrem minerais detríticos pesados marcadores de seus ambientes de transporte e deposição, os quais produzem abrasão e diferentes graus de arredondamento nos minerais clásticos, refletindo na maturidade textural destes sedimentos. Esta maturidade textural indica a ocorrência de processos policíclicos de reciclagem sedimentar.

Na busca de parâmetros para a datação da Formação Tupanciretã, depositada discordantemente sobre as vulcânicas da Formação Serra Geral, além dos estudos geomorfológicos, optou-se pela separação e análise de minerais detríticos pesados, especialmente a turmalina e o zircão. A composição das turmalinas indica derivação de terrenos metassedimentares dominantemente (73,2%) e de rochas graníticas pobres em Li (26,8%) indicando que a fonte mais primitiva destes minerais é o ESRG.

Os zircões analisados possuem diferentes populações de idade com dominância de picos em intervalos em 280-250 Ma, 570-530 Ma e 1025-1080 Ma, com mais raros grãos nas faixas de 134-128 Ma, 630 Ma e 2143-2077 Ma, indicando predomínio de áreas fonte do embasamento, principalmente relativo ao Ciclo Brasiliano, estando presente também o Ciclo Grenvilliano e de forma muito subordinada o Ciclo Transamazônico.

O pico de idade em 134-128 Ma representa zircões cretáceos indicando participação, mesmo que pequena, de sedimentos da Formação Serra Geral como área fonte primária (primeiro ciclo). O pico de idade em 280-250 Ma está relacionado ao Evento Ígneo Choiyoi, sendo este o indício direto de retrabalhamento e da contribuição de rochas sedimentares gondwânicas da própria Bacia do Paraná (formações Rio Bonito, Irati e Rio do Rasto).

Esse retrabalhamento policíclico é muito bem assinalado através da análise da maturidade textural. Foi identificado predomínio de alto grau de arredondamento nas turmalinas da Fm. Tupanciretã, com ocorrência de grãos bem arredondados (69,5%-57,3%) a arredondados (35,2%-26%) onde subangulares são raros e angulares inexistentes. Já nos zircões grãos arredondados (50%-39,8%) a subarredondados (40,7%-22,1%) predominam, havendo subangulares e raros, porém presentes, grãos angulares.

O cruzamento destes dados de arredondamento e idade dos zircões mostra que a ocorrência de zircões menos arredondados tende a se concentrar naqueles mais jovens, ou seja, que passaram por menos ciclos sedimentares de retrabalhamento.

O grau de arredondamento de zircões e turmalinas também evidencia, além de sucessivos ciclos sedimentares de abrasão, um agente transportador de alta competência como o transporte eólico. Isto é corroborado pela verificação da compatibilidade entre a assinatura dos zircões detríticos da Fm. Tupanciretã com o setor Leste da Fm. Botucatu, o que indica ser esta a fonte imediata dos sedimentos retrabalhados.

A comprovação do caráter policíclico da Fm. Tupanciretã também traz novas perspectivas para o entendimento da proveniência da Bacia de Pelotas (Bueno, 2021; Machado *et al.*, 2021). A Fm. Tupanciretã pode ser considerada como equivalente
continental de uma fração da Bacia de Pelotas e o entendimento da proveniência de seus depósitos pode auxiliar na compreensão das áreas-fonte, clima e relevo envolvidos na construção desta última e de seus potenciais reservatórios arenosos nesta bacia marinha Pós Gondwânica.

Os dados apresentados e estudo integrado das formações Tupanciretã e Santa Tecla permitem afirmar de maneira sintetizada que:

- Ambas as formações enquadram-se como participantes no registro estratigráfico da Bacia do Paraná, Supersequência Bauru;
- O enquadramento geomorfológico nas superfícies cimeiras de Caçapava do Sul e Vacaria corroboram para uma idade relativa no Cretáceo Superior;
- A maior parte dos minerais detríticos pesados analisados na Fm. Tupanciretã relaciona-se à eventos sedimentares policíclicos de retrabalhamento dos grãos tendo como última protofonte o ESRG e fonte imediata a Fm. Botucatu, sendo que a idade máxima de deposição nesta sub-bacia é de 127 Ma;
- Houve uma drenagem ancestral percolando os altos do ESRG e NE do Arco de Rio Grande, de Sul para Norte, carreando erosão do pacote de rochas sedimentares da Bacia do Paraná para a sub-bacia da Fm. Tupanciretã, com menor contribuição de sedimentos de primeiro ciclo da Fm. Serra Geral;
- A Fm. Santa Tecla se caracteriza por acrescentar o registro de eventos climáticos caracterizado pela aridez e ambiente de drenagem deficiente, em um regime de maior estagnação e proximidade do ESRG, o que lhe propiciou maior aporte de coloides, desenvolvendo calcretes, dolocretes e silcretes, análoga à outras unidades da Supersequência Bauru;
- Ambas as unidades perderam seu caráter deposicional ao longo do Terciário sofrendo importante inversão de relevo, passando a um regime de erosão, ocupando atualmente posições elevadas do terreno e de interflúvio.

Figura 34: Arcabouço estratigráfico e principais estruturas da Bacia do Paraná e suas supersequências. a) Localização da Bacia do Paraná na América do Sul. b) Mapa geológico simplificado da Bacia do Paraná com as estruturas e posicionamento da Supersequência Bauru ao norte e unidades correlatas ao sul. As formações Santa Tecla e Tupanciretã possuem representatividade na escala da Bacia do Paraná como pertencentes a Supersequência Bauru. Modificado de Milani & Ramos, 1998; Wildner *et al.*, 2006; Petry *et al.*, 2018.

REFERÊNCIAS BIBLIOGRÁFICAS

- Ab'Sáber, A. N. 1969. Participação das Superfícies Aplainadas nas Paisagens do Rio Grande do Sul. *Geomorfologia*, 11: 1-17.
- Ab'Sáber, A.N., Chacel, F.M., Tsukumo, N.M.J. 1975. Tratamento paisagístico: Usina de Paraibuna e Barragem de Paraitinga. *Geografia e Planejamento*, 17: 1-35.
- Almeida, F.F.M. 1964. Fundamentos geológicos do relevo paulista. *Boletim do Instituto de Geográfico e Geológico*, 41: 169-263. DOI: 10.33958/revig.v39i3.600
- Alvarez, H.B.S.A. 2004. Análise tectono-estratigráfica das seqüências Permotriassica e Jurocretácea da Bacia Chacoparanense Uruguaia ("Cuenca Norte"). Rio Claro, 274p. Tese (Doutorado em Geologia) - Curso de Geologia, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista.
- Andersen, T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. *Chemical Geology*, 216: 249-270. DOI: 10.1016/j.chemgeo.2004.11.013
- Andersen, T., Elburg, M.A., Magwaza, B.N. 2019. Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction. *Earth-Science Reviews*, 197: 102899. DOI: 10.1016/j.earscirev.2019.102899
- Andriotti, J.L.S., Castro, J.H.W., Iglesias, C.M.F. 2018. Geoquímica Prospectiva. In:
 Geologia e Recursos Minerais da Folha Aceguá, SH.21-Z-D-VI, escala 1:100.000, Estado do Rio Grande Do Sul. Klein, K., Iglesias, C.M.F., Camozzato, E. (Eds.), Porto Alegre, Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil.
- Aslanian, D., Moulin, M., Olivet, J. L., Unternehr, P., Matias, L., Bache, F., Rabineau, M., Nouzé, N., Klingelheofer, F., Contrucci, I., Labails, C. 2009. Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints. *Tectonophysics*, 468(1): 98-112. DOI: 10.1016/j.tecto.2008.12.016
- Aubrecht, R. & Krištín, J. 1995. Provenance of detrital tourmaline in the Lower Jurassic of the Malé Karpaty Mts. *Mineralia Slovaca*, 27: 37-44.

- Barros, C.E., Nardi, L.V.S., Dillenburg, S.R., Ayup, R., Jarvis, K., Baitelli, R. 2010.
 Detrital Minerals of Modern Beach Sediments in Southern Brazil: A Provenance
 Study Based on the Chemistry of Zircon. *Journal of Coastal Research*, 26: 80-93. DOI: 10.2112/06-0817.1
- Beglinger, S.E., Doust, H., Cloetingh, S. 2012. Relating petroleum system and play development to basin evolution: West African South Atlantic basins. *Marine and Petroleum Geology*, 30(1): 1-25. DOI: 10.1016/j.marpetgeo.2011.08.008
- Bertê, A.M.A., Cargnin, A.P., Lemos, B.O., Silva, C.R., Ferreira, G.S., Mieres, L.S., Pereira, M.S.L., Oliveira, S.B., Marcon, J. 2021. Atlas Socioeconômico do Rio Grande do Sul. 6^a Ed. Porto Alegre, Secretaria de Planejamento, Governança e Gestão, Departamento de Planejamento Governamental, 203 p.
- Beurlen, K., Sena Sobrinho, M., Martins, E.A. 1955. Formações gondwânicas do Rio Grande do Sul. *Boletim do Museu Nacional, Nova Série, Geologia*, Rio de Janeiro, 22: 1-55.
- Boggs, S. Jr. 2014. *Principles of Sedimentology and Stratigraphy*. 5th Edition Revised. Pearson Education Inc., Harlow, 560p.
- Bosi, F. 2018. Tourmaline crystal chemistry. *American Mineralogist*, 103: 298-306. DOI: 10.2138/am-2018-6289
- Bueno, G.V. 2021. Bacia de Pelotas em Retrospectiva. In: Jelinek, R., Sommer, C.A. (Eds.). Contribuições à Geologia do Rio Grande do Sul e de Santa Catarina.
 Porto Alegre: Compasso Lugar-Cultura, p. 389-402. DOI: 10.29327/537860.1-23.
- Camozzatto, E., Philipp, R.P., Lopes, R.C., Klein, C., Sander, A., Ruppel, L.M.V. 2017. Geologia e Recursos Minerais da Folha Hulha Negra, SH.22-Y-C-I, escala 1:100.000, Estado do Rio Grande Do Sul. Lopes, R.C., Philipp, R.P (eds.), Porto Alegre, Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil.
- Camozzatto, E., Klein, C., R.P., Iglesias, C.M.F. 2018. Geologia e Recursos Minerais da Folha Bagé, SH.21-Z-D-III, escala 1:100.000, Estado do Rio Grande Do Sul.
 Klein, C., Iglesias, C.M.F. (eds.), Porto Alegre, Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil.

- Carvalho, P.F. 1932. Reconhecimento geológico no Estado do Rio Grande do Sul. Boletim do Instituto Geológico e Mineralógico do Brasil, Rio de Janeiro, 66: 1-72.
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P. 2003. Atlas of Zircon Textures. *Reviews in Mineralogy and Geochemistry*, 53(1): 469–500. DOI: 10.2113/0530469
- Corrêa, A.C.B., Monteiro, K.A. 2021. Revisitando as superfícies de aplainamento: novos enfoques e implicações para a geomorfologia geográfica. *Humboldt -Revista de Geografia Física e Meio Ambiente*, 1(2): 1-26.
- Coulon, F.K., Gamermann, N., Formoso, M.L.L. 1973. Considerações sobre a Gênese da Formação Tupanciretã. *Pesquisas em Geociências*, 2(1): 78-89.
- COX, K. G. 1989. The role of mantle plumes in the development of continental drainage patterns. *Nature*, 342(21/28): 873-877. DOI: 10.1038/342873a0
- Dani, A.P.O. 2013. Caracterização faciológica e petrográfica da Formação Santa Tecla, RS. Porto Alegre, 77p. Monografia de Conclusão de Curso, Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Davis, W.M. 1899. The Geographical Cycle. Geographical Journal of the Royal *Geographical Society*, London, 14(5): 481-504.
- Deer, W.A., Howie, R.A., Zussman, J. 2013. *An introduction to the rock-forming minerals*. The Mineralogical Society, London, 198p. DOI: 10.1180/DHZ
- Dutrow, B.L. & Henry, D.J. 2011. Tourmaline: A Geologic DVD. *Elements*, 7: 301-306. DOI: 10.2113/gselements.7.5.301
- Dutrow, B.L. & Henry, D.J. 2018. Tourmaline compositions and textures: reflections of the fluid phase. *Journal of Geosciences*, 63: 99–110. DOI: 10.3190/jgeosci.256
- Fedo, C.M., Sircombe, K.N., Rainbird, R.H. 2003. Detrital Zircon Analysis of the Sedimentary Record. *Reviews in Mineralogy and Geochemistry*, 53(1): 277–303. DOI: 10.2113/0530277
- Formoso, M.L.L. & Willig, C.D. 1966. A discordância Palermo-Santa Tecla. *Notas e Estudos da Escola de Geologia-UFRGS*, Porto Alegre, 1(2): 83-91.
- Francescatto, J.A. & Lisboa, P.F.C. 1979. Geologia das cabeceiras do Rio Santa Maria, RGS, escala 1:50.000, área-FL. São Leopoldo, 172p. Monografia de Conclusão de Curso, Curso de Geologia, Universidade do Vale do Rio dos Sinos.

- Fúlfaro, V.J., Gama Júnior, E.G., Soares, P.C. 1980. Revisão estratigráfica da Bacia do Paraná. São Paulo, Paulipetro, 155p. (Relatório BP-008/60).
- Gamermann, N., Carraro, C.C., Eick, N., Bortoluzzi, C.A. 1973. Geotransversal brasileira norte-sul (parcial). Projeto internacional do manto superior - Rio Grande do Sul. *Pesquisas - UFRGS*, 2(1): 49-60.
- Gass, S.L.B., Massola, J.L., Montardo, D.K. 2009. Caracterização Geológico-Geomorfológica da Microbacia do Arroio Varejão, Município de Chapada, Rio Grande do Sul, Brasil. *In*: XIV SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, Natal. Anais..., p. 3833-3840.
- Gehrels, G. 2012. Detrital zircon U-Pb geochronology: current methods and new opportunities. In: Busby, C. e Azor, A. (Eds.). *Tectonics of Sedimentary Basins: Recent Advances.* Blackwell Publishing, First Edition, p. 45-62. DOI: 10.1002/9781444347166.ch2
- Gregory, K.J. 2010. The earth's land surface: Landforms and processes in geomorphology. SAGE Publications Ltd, 360p. https://www.doi.org/10.4135/9781446251621.
- Harley, S.L. & Kelly, N.M. 2007. Zircon Tiny but Timely. *Elements*, 3: 13-18. DOI: 10.2113/gselements.3.1.13
- Hawthorne, F.C. & Dirlam, D.M. 2011. Tourmaline the Indicator Mineral: From Atomic Arrangement to Viking Navigation. *Elements*, 7: 307-3012. DOI: 10.2113/gselements.7.5.307
- Henry, D.J. & Dutrow, B.L. 1996. Metamorphic Tourmaline and Its Petrologic Applications. In: Grew, E.S. e Anovitz, L.M. (Eds.). Boron: Mineralogy, Petrology, and Geochemistry. *Mineralogical Society of America Reviews in Mineralogy*, (33): p. 503-557. DOI: 10.1515/9781501509223-012
- Henry, D.J & Dutrow, B.L. 2018. Tourmaline studies through time: contributions to scientific advancements. *Journal of Geosciences*, 63: 77–98. DOI: 10.3190/jgeosci.255
- Henry, D.J. & Guidotti, C.V. 1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. *American Mineralogist*, 70: 1-15.

- Henry, D.J., Novák, M., Hawthorne, F.C., Ertl,A., Dutrow, B.L., Uher, P., Pezzotta, F.
 2011. Nomenclature of the tourmaline-supergroup minerals. *American Mineralogist*, 96: 895-913. DOI: 10.2138/am.2011.3636
- Horbach, R., Kuck, L., Marimon, R.G., Moreira, H.L., Fuck, G.F., Moreira, M.L.O., Marimon, M.P.C., Pires, J.L., Vivian, O., Marinho, D.A., Teixeira, W. 1986.
 Geologia. In: Projeto RADAMBRASIL, Folha SH.22 Porto Alegre e parte das folhas SH.21 Uruguaiana e SI.22 Lagoa Mirim: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra. Rio de Janeiro: IBGE, Levantamento de Recursos Naturais v.33, p. 29-312.
- Howard, A.D. 1967. Drainage analysis in geologic interpretation; a summation. *Bull. Am. Assoc. Petrol. Geol.* Tulsa Okla., 51(11): 2246-2259.
- Hubert, J.F. 1962. A zircon–tourmaline–rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. *J. Sediment. Petrol.* 32: 440-450. DOI: 10.1306/74D70CE5-2B21-11D7-8648000102C1865D
- Issler, R.S. 1972. Mapa geológico do grau de São Gabriel, RS, Brasil, escala 1:250.000. Porto Alegre, Universidade, Instituto de Geociências.
- Jia, R., Fang, W., Hu, R. 2010. Mineral geochemical compositions of tourmalines and their significance in the Gejiu tin polymetallic deposits, Yunnan, China. Acta Geologica Sinica, 84(1): 155-166. DOI: 10.1111/j.1755-6724.2010.00177.x
- Johnsson M.J. 1993. The system controlling the composition of clastic sediments. In: Johnsson M.J. & Basu A. (Eds.). *Processes Controlling the Composition of Clastic Sediments*. Geol. Soc. Am., Spec. Pap., p. 1-19.
- Justus, J.O., Machado, M.L.A., Franco, M.S.M. 1986. Geomorfologia. In: Projeto RADAMBRASIL, Folha SH.22 Porto Alegre e parte das folhas SH. 21 Uruguaiana e SI. 22 Lagoa Mirim: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra. Rio de Janeiro: IBGE, Levantamento de recursos naturais, v. 33, p. 313-404.
- King, L.C. 1956. A geomorfologia do Brasil Oriental. *Revista Brasileira de Geografia*, 18(2): 147-265.

- Klein, C. 2017. Depósitos Cenozoicos (Paleógeno/Neógeno). In: Laux, J.C. (ed.), Geologia e Recursos Minerais da Folha Lagoa da Meia Lua, SH.21-Z-B-VI, escala 1:100.000, Estado do Rio Grande Do Sul. Porto Alegre, Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil.
- Kowal-Linka, M. & Stawikowski, W. 2013. Garnet and tourmaline as provenance indicators of terrigenous material in epicontinental carbonates (Middle Triassic, S Poland). Sedimentary Geology, 291: 27-47. DOI: 10.1016/j.sedgeo.2013.03.005
- Krynine, P.D. 1956. Sphericity and Roundness Through the Ages. *GSA Bulletin*, 67: 1661-1662. DOI: 10.1130/0016-7606(1956)67[1661:SARTTA]2.0.CO;2
- Leinz, V. 1942. Arenito silicificado de Bagé, Rio Grande do Sul e sua aplicação possível na fabricação de refratários silicosos. *Mineração e Metalurgia*, Rio de Janeiro, 6(33): 137-40.
- Liu, J., Liu, F., Ding, Z., Yang, H., Liu, C., Liu, P., Xiao, L., Zhao, L., Geng, J. 2013. U–
 Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei
 Terrane, North China Craton: Provenance and implications for Precambrian
 crustal growth and recycling. *Precambrian Research*, 235: 230-250. DOI:
 10.1016/j.precamres.2013.06.014
- Machado, J.P.S.L., Stephenson, R., Jelinek, A.R., Abdallah, R. 2021.
 Sismoestratigrafia e evolução da Bacia de Pelotas. In: Jelinek, R., Sommer, C.A. (Eds.). *Contribuições à Geologia do Rio Grande do Sul e de Santa Catarina*.
 Porto Alegre: Compasso Lugar-Cultura, p. 389-402. DOI: 10.29327/537860.1-24.
- Mange, M.A. & Maurer, H.F.W. 1992. *Heavy mineral in colour*. Chapman & Hall, London, 147p. DOI: 10.1007/978-94-011-2308-2
- Martins, E.A. & Sena Sobrinho, M. 1949. Permocarbonífera a Série Santa Tecla. *Mineração e Metalurgia*, Rio de Janeiro, 14(81): 79-80.
- Menegotto, E., Sartori, P.L., Maciel Filho, C.L. 1968. Nova sequência sedimentar sobre a Serra Geral no Rio Grande do Sul. In: Santa Maria, Instituto de Solos e Culturas da Universidade Federal de Santa Maria, Seção de Geologia, Publicação Especial nº 01, 19p.
- Menegotto, E. 1971. Sedimentologia da Formação Tupanciretã. Porto Alegre, 58p. Dissertação de Mestrado, Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.

- Milani, E.J. 1997. Evolução tectono-estratigráfica da Bacia do Paraná e seu relacionamento com a geodinâmica fanerozóica do Gondwana sul-ocidental. Porto Alegre. Tese de Doutorado, Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Milani, E.J. & Ramos, V.A. 1998. Orogenias paleozóicas no domínio sul-ocidental do Gondwana e os ciclos de subsidência da Bacia do Paraná. *Revista Brasileira de Geociências*, São Paulo, 28(4): 527-544.
- Milani, E.J., Melo, J.H.G., Souza, P.A., Fernandes, L.A., França, A.B. 2007. Bacia do Paraná. *Boletim de Geociências da Petrobrás*, Rio de Janeiro, 15(2): 265-287.
- Moore, A. & Blenkinsop, T. 2022. The role of mantle plumes in the development of continental-scale drainage patterns: The southern African example revisited. *South African Journal of Geology*, 105: 353-360. DOI: 10.2113/1050353
- Moreira, V.B. & Perez Filho, A. 2020. Das superfícies de aplainamento aos pulsos climáticos holocênicos: a evolução da paisagem em relevos de chapada. Soc. Nat., 32: 176-195. DOI: 10.14393/SN-v32-2020-46867
- Mohriak, W. 2012. Bacias da Margem Continental Divergente. In: Hasui, Y., Carneiro, C.D.R., Almeida, F.F.M., Bartorelli, A. (Eds.). *Geologia do Brasil*, São Paulo, Beca, p. 466-480.
- Morton, A.C. & Hallsworth, C.R. 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. *Sed. Geol.*, 124: 3-29. DOI: 10.1016/S0037-0738(98)00118-3
- Morton, A., Hounslow, M.W., Frei, D. 2013. Heavy-mineral, mineral-chemical and zircon-age constraints on the provenance of Triassic sandstones from the Devon coast, southern Britain. *GeologosI*, 19: 67-85. DOI: 10.2478/logos-2013-0005
- Morton, A.C., Whitham, A.G., Fanning, C.M. 2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. *Sedimentary Geology*, 182: 3-28. DOI: 10.1016/j.sedgeo.2005.08.007
- Nowatzki, C.H., Dutra, T.L., Fleck, A. 1999. Novas observações sobre a Formação Tupanciretã, Estado do Rio Grande do Sul. *Acta Geologica Leopoldensia*, 49: 39-52.

- Oliveira, M.T.G. 1995. Evolução mineralógica da alteração laterítica em rochas vulcânicas básicas na borda sudeste da Bacia do Paraná (Rio Grande do Sul e Santa Catarina). Porto Alegre, 60p. Tese de Doutorado, Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul e Universidade de Poiters.
- Orme, A.R. 2013. Denudation, Planation, and Cyclicity: Myths, Models, and Reality. *Treatise on Geomorphology*, 1: 205-232. https://doi.org/10.1016/B978-0-12-374739-6.00012-9.
- Padilha, N.L., Bertolini, G., Marques., J.C., Góes, A.M., Nogueira, A.C.R., Medeiros, R.S.P., Andrade, L.S., Sodré, A.A.N., Canarim, D.M., Souza, P.A., Scomazzon, A.K., Oliveira, E.J., Santos, J.M.M. 2022. Zircão, o Guardião do Tempo: Datação U-Pb Aplicada à Proveniência Sedimentar Revisão Metodológica e Utilidade no Projeto Biocronorte. *Revista da Academia de Ciências do Piauí*, 3(3): 157-179. DOI: 10.29327/261865.3.3-11
- Petry, T.S., Philipp, R.P., Gonzatti, C. 2018. Geologia estrutural aplicada à mineração subterrânea de carvão em Araranguá (SC, Brasil). *Pesquisas em Geociências*, 45: e0656. DOI: 10.22456/1807-9806.85644
- Potter, P.E. 1997. The Mesozoic and Cenozoic paleodrainage of South America: a natural history. *Journal of South American Earth Science*, 10: 331-344. DOI: 10.1016/S0895-9811(97)00031-X
- Potter, P.E., Hamblin, W.K. 2006. *Big Rivers Worldwid-Part 1 Origins*. 1^a Ed. Provo-UT, Brigham Young University, 81p.
- Powers, M.C. 1953. A new roundness scale for sedimentary particles. *Journal of Sedimentary Petrology*, 23(2), 117-119.
- Ramgrab, G.E. & Wildner, W. 1999. Geologia. In: Pedro Osório, Folha SH.22-Y-C: estado do Rio Grande do Sul. escala 1:250.000. Brasília: CPRM, Programa Levantamentos Geológicos Básicos do Brasil, p 9-56.
- Ribeiro, D.T.P. 2001. Diagênese das rochas do Membro Serra da Galga, Formação Marília, Grupo Bauru (Cretáceo da Bacia do Paraná), na região de Uberaba, Minas Gerais. *Revista Brasileira de Geociências*, 31: 7-12.

- Riccomini, C., Sant'Anna, L.G., Fambrini, G.L. 2005. Jacuí: Nova Bacia Sedimentar Eocretácea no Sul do Brasil. *In*: X SIMPÓSIO NACIONAL DE ESTUDOS TECTÔNICOS, 2005, Curitiba. Boletim de Resumos Expandidos, SBG, p. 48-50.
- Riccomini, C., Sant'Anna, L.G., Fambrini, G.L. 2016. The Early Cretaceous Jacuí Group, a newly discovered Volcaniclastic - epiclastic accumulation at the top of the Paraná Basin, southern Brazil. *Cretaceous Research*, 59: 111-128. DOI: 10.1016/j.cretres.2015.10.020
- Remus, M.V.D., Souza, R.S., Cupertino, J.A., De Ros, L.F., Dani, N., Vignol-Lelarge, M.L., 2008. Proveniência sedimentar: métodos e técnicas analíticas aplicadas. *Revista Brasileira de Geociências*, 38(2): 166-185. DOI: 10.25249/0375-7536.2008382S166185.
- Robaina, L.E.S., Trentin, R., Bazzan, T., Reckziegel, E.W., Verdum, R., Nardin, D.
 2010. Compartimentação Geomorfológica da Bacia Hidrográfica do Ibicuí, Rio
 Grande do Sul, Brasil: Proposta de Classificação. *Revista Brasileira de Geomorfologia*, 11(2): 11-23. DOI: https://doi.org/10.20502/rbg.v11i2.148
- Rodrigues, F.B., Murádas, K. Formoso, M.L.L., Lisboa, N.A., Dani, N. 2009. Formação
 Santa Tecla, sudoeste do Rio Grande do Sul novos dados e concepções. *In*:
 XXI SALÃO DE INICIAÇÃO CIENTÍFICA, Porto Alegre. Livro de Resumos...
 CNPq, Universidade Federal do Rio Grande do Sul, p. 836.
- Rodriguez, J.M., Edeskär, T., Knutsson, S. 2013. Particle Shape Quantities and Measurement Techniques–A Review. *The Electronic Journal of Geotechnical Engineering*, 18: 169-198.
- Sánchez, J.P., Simões, L.S.A., Martins, L.E.B. 2014. Estratigrafia e estrutura do Cerro do Jarau: nova proposta. *Brazilian Journal of Geology*, 44(2): 265-276.
- SEMA/FEPAM. Secretaria Estadual do Meio Ambiente/Fundação Estadual de Proteção Ambiental. 2018. Base Cartográfica do Estado do Rio Grande do Sul: Bacias Hidrográficas do Rio Grande do Sul. Porto Alegre: Secretaria Estadual do Meio Ambiente do Rio Grande do Sul e Fundação Estadual de Proteção Ambiental Henrique Luiz Röessler. Escala 1:25.000-BCRS25.
- Scharf, T., Kirkland, C.L., Daggitt, M.L., Barham, M. Puzyrev, V. 2022. AnalyZr: A Python application for zircon grain image segmentation and shape analysis. *Computers and Geosciences*, 162: 205057. DOI: 10.1016/j.cageo.2022.105057

- Silva, T.M. 2009. Superfícies geomorfológicas do planalto sudeste brasileiro: revisão teórico-conceitual. *Geo UERJ*, 3(20), 1-22. DOI: 10.12957/geouerj.2009.1426
- Slack, J.F. & Trumbull, R.B. 2011. Tourmaline as a Recorder of Ore-Forming Processes. *Elements*, 7: 321-326. DOI: 10.2113/gselements.7.5.321
- Small, R.J. 1986. The study of planation surfaces. In: The study of landforms A textbook of Geomorphology. Cambridge: University Press., p. 248-272.
- Soto, M., Veroslavsky, G., Rinderknecht, A., Ubilla, M., Lecuona, G. 2009. Nuevos Hallazgos de Restos de Dinosaurios y Consideraciones sobre la Edad de la Formación Guichón. *Sociedad Uruguaya de Geología*, 15: 11-23.
- Suertegaray, D.M.A. 2010. Geomorfologia do Rio Grande do Sul, O Saber de Ab'Sáber. In: Modenesi-Gauttieri, M.C., Bartorelli, A., Mantesso-Neto, V., Carneiro, C.R., Lisboa, M.B.A.L. (Ed.). A Obra de Aziz Nacib Ab'Sáber. 1ª Ed. São Paulo: Beca-BALL. p. 334-343.
- Summerfield, M.A. Landforms and tectonics of plate interiors. In: SUMMERFIELD, M.A. (Ed.). *Global Geomorphology*. 1^a Ed. Nova York: Routledge, 2013a. p. 85-106. DOI: 10.4324/9781315841182
- Tessari, R.I. & Giffoni, L.E. 1970. Geologia da Região de Piratini-Pinheiro Machado-Bagé - Rio Grande do Sul. *Boletim da Divisão de Geologia e Mineralogia*, DNPM, Rio de Janeiro, 246: 66-76.
- Trentin, R., Santos, L.J.C., Robaina, L.E.S. 2012. Compartimentação geomorfológica da bacia hidrográfica do Rio Itu: Oeste do Rio Grande do Sul Brasil. Soc. & Nat., 24: 127-142. DOI: 10.1590/S1982-45132012000100011
- van Hinsberg, V.J. & Schumacher, J.C. 2007. Using estimated thermodynamic properties to model accessory phases: the case of tourmaline. *J. metamorphic* Geol., 25: 769-779. DOI: 10.1111/j.1525-1314.2007.00728.x
- van Hinsberg, V.J., Henry, D.J., Dutrow, B.L. 2011a. Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past. *Elements*, 7: 327-332.
 DOI: 10.2113/gselements.7.5.327
- van Hinsberg, V.J., Henry, D.J., Marschall, H.R. 2011b. Tourmaline: an ideal indicator of its host environment. *The Canadian Mineralogist*, 49: 1-16. DOI: 10.3749/canmin.49.1.1

- Veroslavsky, G., Aubet, N., Martínez, S.A., Heaman, L.M., Cabrera, F., Mesa, V. 2019.
 Late Cretaceous stratigraphy of the southeastern Chaco Paraná Basin ("Norte Basin" Uruguay): the Maastrichtian age of the calcretization process.
 Geociências UNESP, 38(2): 427-449.
- Wadell, H. 1935. Volume, shape, and roundness of quartz particles. *Journal of Geology*, 43: 250-279.
- Wildner, W., Ramgrab, G.E., Lopes, R.C., Iglesias, C.M.F. 2006. Mapa Geológico do Estado do Rio Grande do Sul, escala: 1:750.000. Porto Alegre, Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil.
- Zoleikhaei, Y., Mulder, J.A., Cawood, P.A. 2022. Evaluating sediment recycling through combining inherited petrogenic and acquired sedimentary features of multiple detrital minerals. *Basin Research*, 34: 1055–1083. DOI: 10.1111/bre.12650

ARTIGO I (Publicado)

Evolução Morfotectônica e Megageomorfológica das Formações Pós Gondwânicas Santa Tecla e Tupanciretã no Rio Grande do Sul

Artigo de Pesquisa: **Revista Brasileira de Geomorfologia**, v. 24, n° 1, 2023

Autores: Kelvyn Mikael Vaccari Ruppel ¹, Norberto Dani ² e Nelson Amoretti Lisboa ³

¹ Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Porto Alegre, Brasil. kelvynruppel@gmail.com. ORCID: https://orcid.org/0000-0002-5344-1593

² Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Porto Alegre, Brasil. norberto.dani@ufrgs.br. ORCID: https://orcid.org/0000-0002-0595-2428

³ Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Porto Alegre, Brasil. nelamorettilisboa@gmail.com. ORCID: https://orcid.org/0000-0003-1717-8983

Recebido: 10/03/2022; Aceito: 27/09/2022; Publicado: 16/01/2023

RESUMO

Na estratigrafia do Rio Grande do Sul as formações Santa Tecla e Tupanciretã foram consideradas preliminarmente pós Gondwânicas a partir de datações relativas. São interpretações originadas a partir de um limitado conjunto de dados, de caráter preliminar ou especulativo. Este estudo tem o objetivo de revisar e analisar estes trabalhos dispersos e através de novas observações envolvendo elementos morfotectônicos como a análise das drenagens, condicionantes geotectônicos e paleoclimáticos posicionar estas unidades no panorama geológico do sul do Brasil. Como delimitadores da proveniência e do posicionamento paleogeográfico das formações Santa Tecla e Tupanciretã destaca-se o Arco de Rio Grande e o soerguimento em domo do Escudo Sul-Riograndense. A associação de ambas as formações com as Superfícies Cimeiras de Caçapava e de Vacaria em conjunto com um histórico de inversão do relevo, assegura-lhes uma idade relativa no topo do Cretáceo Inferior a Superior. As caraterísticas litológicas e deposicionais possibilitam a inferência de deposição em ambiente semiárido, com transporte subaquoso e contribuição eólica, típicos de ambientes fluviais efêmeros intracratônicos. Com o conjunto de informações é possível traçar um paralelo com os grupos Bauru (Brasil) e Paisandú (Uruguai), que integram a Supersequência Bauru da Bacia do Paraná. As evidências indicam que as formações Santa Tecla e Tupanciretã pertencem a este contexto.

Palavras-chave: Superfícies de Aplainamento; Domo Alto Uruguai; Bacia do Paraná; Supergrupo Bauru.

ABSTRACT

In the stratigraphy of Rio Grande do Sul, the Santa Tecla and Tupanciretã formations were considered preliminarily post-Gondwana based on relative dating. These are interpretations originated from a limited set of data, of preliminary or speculative nature. This study aims to review and analyze these scattered works and through new observations involving morphotectonic elements such as the analysis of drainage, geotectonic and paleoclimatic constraints to position these units in the geological panorama of southern Brazil. As delimiters of the provenance and paleogeographic positioning of the Santa Tecla and Tupanciretã formations the Rio Grande Arch and the dome uplift of the Sul-Riograndense Shield stand out. The association of both formations with the Caçapava and Vacaria Summit Surfaces in conjunction with a history of relief inversion, assures them a relative at the top of the Lower to Upper Cretaceous relative age. The lithological and depositional characteristics allow the inference of deposition in a semiarid environment, with subaqueous transport and eolian contribution, typical of intracratonic ephemeral fluvial environments. With this set of information, it is possible to draw a parallel with the Bauru (Brazil) and Paisandú (Uruguay) groups, that integrate the Bauru Supersequence of the Paraná Basin. Evidence indicates that the Santa Tecla and Tupanciretã formations belong to this context.

Keywords: Planation Surfaces; Alto Uruguai Dome; Paraná Basin; Bauru Supergroup.

1 INTRODUÇÃO

Na estratigrafia do Rio Grande do Sul existem duas formações sedimentares depositadas em ambiente continental e a priori consideradas pós Gondwânicas e pós Supersequência Gondwana III (Neojurássico-Eocretáceo) da Bacia do Paraná (Milani, 1997; Milani *et al.*, 2007): a Formação Tupanciretã e a Formação Santa Tecla.

O registro tectonoestratigráfico da Bacia do Paraná mostra a interação de fenômenos orogênicos nas bordas da placa Sul-Americana associado com eventos epirogênicos marcados por épocas de subsidência, soerguimento e magmatismo no interior da placa (Milani & Ramos, 1998).

Após o rompimento do supercontinente Gondwana, abertura do Oceano Atlântico e cessadas as atividades vulcânicas e ajustes isostáticos, definiu-se a partir do Cretáceo no setor centro-norte da Bacia do Paraná uma depressão sobre o pacote basáltico. Neste espaço, em condições semiáridas nas bordas à áridas no interior, ocorreu a acomodação da Supersequência Bauru, que se caracteriza por depósitos proximais areno-conglomeráticos de leques aluviais e sistemas fluviais, cujo avanço da sedimentação levou ao soterramento do substrato basáltico com extensos lençóis de areia e alguns lamitos (*loess*), retidos em baixios com maior umidade. Esta última supersequência atribuída à Bacia do Paraná ocorre de maneira fragmentada no Brasil (Minas Gerais, São Paulo, Paraná, Mato Grosso do Sul, Goiás e Mato Grosso), Paraguai, Argentina e Uruguai, não havendo caracterização formal de sua ocorrência ao sul do Brasil (Milani *et al.*, 2007; Veroslavsky *et al.*, 2019).

A Formação Tupanciretã e a Formação Santa Tecla são restritas ao Rio Grande do Sul sendo que a compreensão da disposição e relações destas rochas em escala local e regional é importante para o entendimento da evolução megageomorfológica e o estabelecimento de um modelo macrorregional de todo o conjunto (Ab'Sáber, 1998), favorecendo a compreensão do último estágio deposicional da Bacia do Paraná, traçando com ele um paralelo por intermédio de ambas as formações. O trabalho tem como objetivo comparar estas unidades com base na interpretação de informações existentes, entre os quais os condicionantes geotectônicos, aspectos geomorfológicos e paleoclimáticos que atuaram na evolução da plataforma Sul Americana pós ruptura do Gondwana, traçando um possível paralelo com a Supersequência Bauru.

2 ÁREA DE ESTUDO E CARACTERIZAÇÃO DAS FORMAÇÕES TUPANCIRETÃ E SANTA TECLA

A Formação Santa Tecla se caracteriza por ser uma sequência de cobertura sobre rochas do Escudo Sul-Riograndense e sedimentares da Bacia do Paraná, enquanto a Formação Tupanciretã estende-se sobre as rochas vulcânicas da Formação Serra Geral da Bacia do Paraná. São tratadas separadamente devido sua distribuição espacial em unidades morfotectônicas distintas no Rio Grande do Sul (Fig. 1).

Figura 1: Distribuição dos depósitos de cobertura das formações Santa Tecla e Tupanciretã, em relação às unidades morfotectônicas do Rio Grande do Sul. Modificado de Wildner *et al.*, 2006; Bertê, 2021.

2.1 Formação Santa Tecla

Identificada por Carvalho (1932), na Serra de Santa Tecla, a Norte e Leste da cidade de Bagé, sendo inicialmente classificada como "Serie Santa Tecla" e inclusive propondo esta localidade como área tipo. Descrita como uma sequência de arenitos cavernosos, podendo ser endurecidos por silicificação, ou friáveis e ferruginosos e presença de seixos de quartzo assentados sobre um folhelho alterado.

Leinz (1942) descreve um perfil desta unidade nas proximidades da Estação São Domingos, situada a 8 quilômetros a noroeste de Bagé. Segundo suas observações, a Serie Santa Tecla no local apresenta uma sequência de vinte metros de arenitos finos e conglomeráticos, silicificados e calcificados. Nos setores silicificados, os grãos clásticos, arredondados à angulosos, estariam cimentados por calcedônia, formando um conjunto resistente à erosão.

Martins & Sena Sobrinho (1949) e Beurlen *et al.* (1955) postulam que a unidade corresponde a uma formação local restrita, porém espessa, depositada em uma bacia relativamente profunda tendo sua área associada a erosão dos granitos do embasamento local, na qual teriam sedimentado materiais de degelo de um *inlandsis*, correlacionando-se aos depósitos do Grupo Itararé.

Formoso & Willig (1966), definem a Serie Santa Tecla como sendo constituída por conglomerados e arenitos. Reconhecem nestes conglomerados seixos arredondados à sub-arredondados de quartzo e de rochas graníticas e metamórficas. Observam também que a formação se encontra em discordância paralela erosional sobre a Formação Palermo. Registram que o sistema de falhas de direção NE, que afetam as formações Permocarboníferas locais, não atingem a Serie Santa Tecla, postulando que a formação seria "bastante posterior ao Permiano". Redefinem então a unidade como "Formação Santa Tecla". Tessari & Giffoni (1970) também registram que do ponto de vista tectônico, a formação é posterior a qualquer falhamento conhecido, sendo uma das particularidades a completa ausência de diaclasamento.

Ramgrab & Wildner (1999) em mapeamento da Folha Pedro Osório (SH.22- Y-C, 1:250.000) tratam a Fm. Santa Tecla como uma cobertura terciária de sedimentos continentais que se sobrepõem às rochas cristalinas da porção central do escudo e às rochas gondwânicas.

Litologicamente a formação acha-se representada por arenitos e conglomerados afossilíferos, com espessura de até 20 m (Leinz, 1942). Os arenitos são bem selecionados, classificados como quartzoarenitos (Horbach *et al.*, 1986) tendo tipicamente coloração avermelhada, e mais raramente rosa-avermelhada, branca e amarelada. Possuem granulação média a fina, raramente grosseira com seixos de quartzo e raros seixos de rochas sedimentares, por vezes friáveis a porosos, de aspecto cavernoso e predominantemente sem estratificação.

Os arenitos possuem predominância de grãos subarredondados a arredondados de esfericidade baixa a moderada, compostos por quartzo e mais raramente microclínio, por vezes caulinizados, possuindo acessórios como zircão, turmalina, hornblenda, opacos e granadas cimentados por óxidos de ferro, sílica e carbonatos (Formoso & Willig, 1966; Francescatto & Lisboa, 1979; Ramgrab &

Wildner, 1999; Camozzatto *et al.*, 2017). Esta cimentação silicosa é composta principalmente por calcedônia, de coloração esbranquiçada, amarelada ou rósea (Ramgrab & Wildner, 1999).

Na base da unidade são encontrados ortoconglomerados de coloração amarelada ou esbranquiçada-rosada, constituídos por seixos predominantemente arredondados composto por quartzo e subordinadamente fragmentos líticos de rochas graníticas e metamórficas com tamanho médio de cerca de 10 cm. Possuem matriz arenosa de textura grossa a muito grossa ou caulinítica que envolve os grânulos e seixos (Ramgrab & Wildner, 1999; Camozzatto *et al.*, 2017). Os conglomerados são cimentados por sílica ou carbonatos (Horbach *et al.*, 1986) e o conjunto possui aparência grosseira, imatura, com os seixos dispersos caoticamente (Tessari & Giffoni, 1970).

2.2 Formação Tupanciretã

A Formação Tupanciretã foi primeiramente caracterizada por Menegotto *et al.* (1968) como sedimentos que recobrem a Formação Serra Geral, diferentemente do que era interpretado anteriormente, como sendo janelas do Arenito Botucatu. A Seção-Tipo foi estabelecida no município de Tupanciretã, englobando conglomerados basais, arenitos quartzosos e feldspáticos e algumas intercalações argilosas que apresentam tênue estratificação plano-paralela. Ocorre diaclasamento na formação, principalmente na fácies conglomerática. Os autores consideram que a fonte dos sedimentos seja os próprios basaltos da Fm. Serra Geral.

Embora o aspecto geral da Fm. Tupanciretã seja descrito como essencialmente arenoso, Menegotto (1971) reconheceu uma variação faciológica lateral com conglomerados mais abundantes no setor Sul, passando para sedimentos mais finos, arenitos e raros siltitos nas demais direções. Os grãos possuem predominantemente aspecto mamelonado brilhante, característico de transporte por água, enquanto grãos foscos são raros. O sub-arredondamento predominante nos grãos indica que o transporte não foi longo, ou que ocorreu em suspensão. Através dos minerais pesados, provavelmente de origem metamórfica, Menegotto (1971) interpreta que esses sedimentos foram transportados por drenagens de sentido Sul para Norte, tendo como áreas-fonte o Escudo Sul-Riograndense, os basaltos e o Arenito Botucatu.

Posteriormente a área de ocorrência da formação é ampliada como exposições isoladas que ocorrem muitas vezes sem continuidade física através de uma grande área principalmente a nordeste da Seção-Tipo (Gamermann *et al.*, 1973).

Coulon *et al.* (1973), verificando a baixa possibilidade da contribuição dos basaltos da Fm. Serra Geral como única fonte dos sedimentos para a deposição da Fm. Tupanciretã, realizam estudos relacionados à gênese da formação. Constatam que na base da formação ocorrem conglomerados constituídos por fragmentos angulosos a sub-arredondados de basaltos e, com mais raridade, quartzo. A presença de fragmentos basálticos ocorre de forma restrita a esta porção basal da formação. Sobrepostos, encontram-se arenitos finos a muito finos, com grãos angulares a bem arredondados, comumente cobertos por uma película de óxido de ferro e ocorrência de fragmentos líticos.

Desta maneira, litologicamente a formação é composta por conglomerados basais, arenitos e finas camadas de argilas em direção ao topo, até o momento considerados afossilíferos (Nowatzki et al., 1999), com estimativa de espessura máxima entre 60 e 80 m (Menegotto et al., 1968; Horbach et al., 1986). Os arenitos são predominantes e possuem cores majoritariamente avermelhadas, de textura fina a média, mal selecionados, com grãos subangulosos a sub-arredondados, e eventualmente conglomeráticos. A mineralogia principal nos arenitos é representada por quartzo e feldspato alterado para caulinita. Menegotto (1971) identifica grãos de quartzo com textura fosca, sugerindo alguma contribuição de origem eólica e minerais acessórios como granada, magnetita, turmalina, zircão, estaurolita, monazita, distênio, titanita, epidoto, ilmenita, micas alteradas e uma abundante matriz caulinítica. Os arenitos são friáveis e avermelhados, devido à presença de óxidos de ferro, assim como os corpos lamíticos maciços que intercalam a sequência arenítica, principalmente próximo ao topo. Foram observados níveis maciços nos arenitos, mas também estratificações plano-paralelas e cruzadas acanaladas nitidamente fluviais (Coulon et al., 1973; Horbach et al., 1986).

Riccomini *et al.* (2016) consideram a Fm. Tupanciretã como parte do grupo por eles denominado de Grupo Jacuí (Riccomini *et al.*, 2005), o qual teria se estabelecido no Cretáceo Inferior, estando interdigitado com a Fm. Volta Alegre, composta principalmente por tufos vulcanoclásticos e material piroclástico com gênese sineruptiva resedimentada e tendo pequena expressão em área e menor espessura dentro do grupo proposto. Segundo as constatações dos autores, a Fm. Tupanciretã domina francamente em direção ao oeste e noroeste, havendo paleocorrentes que indicam que o grupo se depositou com direção geral de sudeste para noroeste ao longo de toda sua ocorrência. Foram observadas evidências de falhas e juntas de cisalhamento como estruturas pós sedimentares. De maneira provisória, os autores atribuíram ao grupo uma idade situada a partir do final do Cretáceo Inferior, correlacionando à idades das formações vulcânicas tardias da Província Etendeka e do subgrupo Santa Maria (tipo Palmas, Fm. Serra Geral) indo de 134,5 ± 2 Ma a 119 Ma (Hartmann *et al.*, 2017; Hartmann *et al.*, 2021).

Reis (2020) verificou a existência de fases deformacionais distintas sobre a formação, sendo a primeira de direção NE/SW compatível com reativações de macroestruturas antigas pré-cambrianas, a segunda de direção E/W concordante com as estruturas transcorrentes da abertura do Atlântico Sul e lineamentos morfoestruturais N/S os quais foram relacionados à colisão andina. O autor verificou a ocorrência de controle tectônico em algumas das drenagens associadas à formação, o que também sugere sua idade anterior ao Terciário. De modo semelhante Marin (2022) constatou evidências de que os sedimentos da Fm. Tupanciretã foram afetados por movimentos tectônicos pós-deposicionais, havendo a unidade se depositado antes de reativações tectônicas, com presença de importante lineamento de porte médio (60 km) NE/SW na região da Seção-Tipo, indicativo de falhamento e controle tectônico o qual funcionaria como divisor de águas na região.

3 CONTEXTO GEOTECTÔNICO E ANÁLISE DA DRENAGEM

O mecanismo de geração das províncias basálticas e de ruptura continental é apoiado por modelos de magmatismo associado a plumas mantélicas (Sleep, 1995; Loper, 1997; Segev, 2000; Choudhuri & Nemčok, 2017). Entre as forças geradoras do relevo ao longo de uma margem continental passiva estão os movimentos verticais da crosta com significativa elevação crustal que são atribuídos à instalação de pontos quentes mantélicos (*hot-spots*), e de ajustes isostáticos térmicos (Summerfield, 2013a). Na região sul do Brasil as principais drenagens mostram evidências de soerguimento a partir da instalação de uma pluma mantélica e geração de uma morfoestrutura dômica responsável pela disposição destes padrões (Cox, 1989).

No modelo de White & McKenzie (1989), as plumas ascendem do manto como colunas estreitas com a forma aproximada de um cogumelo (Fig. 2), e se espalham

lateralmente produzindo regiões anomalamente quentes na astenosfera, criando diminuição da densidade da litosfera local pelo material ascendente da pluma e magma que é injetado na base da crosta. O efeito dinâmico e térmico deste processo são soerguimentos em cúpula da superfície com até 2 km de magnitude, afetando uma superfície que pode atingir 800-1200 km de diâmetro (Segev, 2000; Summerfield, 2013a; Choudhuri & Nemčok, 2017). Evidências geológicas diretas deste fenômeno já foram identificadas (He *et al.*, 2003), bem como o fraturamento da cúpula por forças gravitacionais, acompanhado de intenso vulcanismo fissural devido a descompressão do manto.

A evolução geodinâmica das províncias ígneas do Gondwana ocorreu a partir da distensão da litosfera continental, afinamento, soerguimento, fragmentação, atividade ígnea massiva, abertura e consequente deriva da placa, sendo as províncias impulsionadas pelo surgimento de anomalias térmicas do manto inferior. O desenvolvimento deste cenário deu-se por grandes plumas coexistindo através do manto, possivelmente relacionadas a pontos de convecção mantélicos, com possível origem na chamada "Camada D" (manto inferior), onde a ascensão é impulsionada pela flutuabilidade devido à diferença de densidade do ambiente circundante (Loper, 1997; Segev, 2000; Choudhuri & Nemčok, 2017). A região da pluma permanece elevada gerando vulnerabilidade à erosão superficial (Monnereau *et al.*, 1993; Loper, 1997), sendo que o soerguimento cessa quando a anomalia térmica se dissipa.

Figura 2: Modelo de pluma térmica gerada em experimento de laboratório mostrando a estrutura causada pela condução de calor e consequente arrastamento do fluido circundante. A área escura é o material quente da fonte da pluma e o material mais claro é o material arrastado e frio. Modificado de Campbell & Griffiths, 1990.

Cox (1989) observa evidências do soerguimento da crosta por plumas através do comportamento dos sistemas fluviais. Como o espessamento crustal acumula material vulcânico na base da crosta, as províncias vulcânicas tendem a permanecer como altos topográficos ao longo do tempo (Cox, 1980; White & Mckenzie, 1989).

A rede de drenagem pós-Gondwana foi modificada por fatores como controle estrutural, exumação de terrenos antigos e flexão dômica da crosta (Moore & Blenkinsop, 2002), uma vez que os rios são sensíveis em todas as escalas à tectônica contemporânea e, desta maneira, sua idade e localização são guias para atividades tectônicas passadas e disposições da paleogeomorfologia (Potter, 1997). Nos flancos não rifteados da cúpula dômica se instalam sistemas fluviais radiais que drenam da borda do novo continente para seu interior (sistemas flanco-cúpula), enquanto os braços do sistema rifte direcionam o restante da drenagem para o novo oceano (Moore & Blenkinsop, 2002).

A porção sudeste do continente Sul Americano exemplifica uma destas áreas (Sanford e Lange, 1960) afetada por um fluxo basáltico (Formação Serra Geral) relacionado à quebra do Gondwana no final do Mesozóico (Cretáceo Inferior) e a elevação do escudo cristalino, tendo sua metade correspondente no lado africano em Etendeka na Namíbia, chamada de pluma do Alto Uruguai/SW África (Choudhuri e Nemčok, 2017). É possível que sua ascendência tenha sido facilitada devido a raiz cratônica fragmentada que gerou uma zona de fraqueza profunda sob a Bacia do Paraná (Julià *et al.*, 2008).

Na área de estudo as drenagens são marcadores destes eventos (Potter e Hamblin, 2006) identificando-se os canais disruptivos (relacionados com a abertura do rifte) e reversos (correm do oceano para o interior do continente). Do lado africano, apesar da pouca distribuição de rochas basálticas preservadas, há um extenso alto topográfico paralelo à costa, principalmente Namíbia e Angola, que direciona grande parte da drenagem para longe da costa, em direção à Bacia do Kalahari (Fig. 3).

Predominantemente, a atual drenagem da borda leste da América do Sul se desenvolveu após a separação diacrônica do Gondwâna (145 até 100,5 Ma). O Rio Paraná, por exemplo, parece ter se desenvolvido após a efusão das lavas da Fm. Serra Geral no final do Cretáceo Inferior (Potter, 1997; Matos *et al.*, 2021). Desta forma, a idade da adaptação da drenagem a esta condição estaria relacionada com o soerguimento atrelado à entrada e evolução da pluma mantélica que desencadeou a

quebra do Gondwana e o magmatismo Serra Geral, e tal sistema de drenagem continua a se desenvolver até os dias atuais. Este processo de instalação das drenagens é longo, sendo que àqueles relativos ao oeste do Rio Grande do Sul teriam se instalado antes do Neógeno (Ab'Sáber, 1969; Lisboa & Castro, 1998). Tamanha é a importância da drenagem para auxiliar a verificação de eventos geológicos relacionados à modelagem do relevo que este padrão mega-radial ao longo do território do Rio Grande do Sul compõe 44% do número de bacias hidrográficas de todo o Estado, e uma área equivalente a 44,92% (126.569 km²) do seu território (Trentin *et al.*, 2012; Robaina *et al.*, 2010; SEMA/FEPAM, 2018).

Figura 3: Soerguimento Alto Uruguai/SW África. Evidências na drenagem da superfície dômica originada a partir de pluma mantélica nas províncias basálticas Paraná-Etendeka, rifteadas e divididas pelo Oceano Atlântico, identificando-se o padrão de drenagem disruptiva e reversa nos respectivos flancos da estrutura dômica: (a) Delimitação da pluma pelo padrão de drenagem do sul do Brasil, evidenciando o predomínio da drenagem flanco-cúpula. (b) Padrões de drenagem do alto topográfico Cabo-Angola, o qual inclui também a Namíbia. O padrão irregular drenando para o Leste em direção ao Deserto do Kalahari. No desfiladeiro do Rio Orange é possível notar que a drenagem mais antiga corta o soerguimento mais jovem, já que a província vulcânica de Karoo (a direita) é anterior à Etendeka (a esquerda). Modificado de Cox, 1989.

Potter (1997) estabelece seis elevações e cinco aulacógenos ou riftes (Fig. 4) perpendiculares à margem passiva da costa Sul Americana e sua separação da África (Summerfield, 2013b). Estes domos elevados estão normalmente associados a fendas geométricas de 120° (junções tríplices) onde as tensões litosféricas foram acomodadas. Isto se enquadra dentro do modelo de rifte ativo, onde as fendas propagadas ao longo da sequência de cúpulas favoreceram o desmembramento do

continente e o nascimento de um novo oceano, gerando a nova margem passiva. Estas feições são perceptíveis ao longo da costa brasileira, ou seja, aulacógenos associados às feições dômicas (Summerfield, 2013a).

Os soerguimentos dômicos são localizados por meio das drenagens, uma vez que grande parte dos rios próximos a estes sistemas possuem um índice de eficiência muito baixo, tendendo a correr para o interior do continente ao invés de fluírem de forma mais direta para as bacias oceânicas (Potter, 1997). Por exemplo, o Rio Uruguai e o Rio Negro encontram-se estruturalmente controlados nos flancos do domo Alto Uruguai/SW África, centrado no Escudo Sul-Riograndense.

Figura 4: Disposição dos rios e soerguimentos diacrônicos de domos na ruptura da América do Sul-África. Principais riftes e aulacógenos associados à separação do Gondwana. É possível observar rios de importância regional associados aos aulacógenos das junções tríplices dos domeamentos. Modificado de Potter, 1997.

As bacias relacionadas ao Gondwana demonstram que o ambiente deposicional durante o Ordoviciano-Siluriano foi de sedimentação plataformal, como na Bacia do Paraná, Karoo e depósitos Antárticos (Adams *et al.*, 1982; Tankard *et al.*, 1982; Goodge *et al.*, 1991; Milani *et al.*, 2007). Já no Permiano, a Bacia do Paraná

evoluiu gerando ambientes deltaicos e fluviais. Durante o início do Mesozóico, uma vasta área nesta bacia foi transformada em ambiente desértico subaéreo (Formação Botucatu), até que findasse o intenso vulcanismo das lavas da Formação Serra Geral (Petry *et al.*, 2005). Desta forma, durante todo este período na área hoje correspondente ao Rio Grande do Sul, a bacia registrou um comportamento de deposição. Porém, após o vulcanismo, toda a área da Bacia do Paraná adquiriu um comportamento totalmente distinto, com fragmentos soerguidos destas províncias dispersos em ambientes erosivos (Cox, 1989).

Este contexto é importante para a compreensão da geração da exposição do embasamento, erosão de rochas cristalinas, sedimentares e vulcânicas e posterior deposição de unidades sedimentares semiáridas sobrepostas aos basaltos da Fm. Serra Geral, rochas sedimentares da Bacia do Paraná e rochas cristalinas do Escudo Sul-Riograndense, contexto este proposto neste trabalho como cenário da gênese das formações Tupanciretã e Santa Tecla.

4 SUPERFÍCIES DE APLAINAMENTO E A INSERÇÃO DAS FORMAÇÕES TUPANCIRETÃ E SANTA TECLA

No modelado da paisagem do Rio Grande do Sul são observadas superfícies de aplainamento ou cimeiras (Fig. 5), tendo sido identificadas cinco (Ab'Sáber, 1969; Suertegaray, 2010) que recebem as seguintes denominações: Vacaria, Caçapava do Sul, Cerro da Cadeia, Campanha e Gravataí. As superfícies cimeiras são unidades de área que apresentam similaridade nas altitudes e se relacionam a grandes ciclos erosivos (Silva, 2009; Corrêa & Monteiro, 2021).

Figura 5: Perfil esquemático norte-sul do Rio Grande do Sul identificando as superfícies de aplainamento. Em destaque as superfícies cimeiras de Vacaria e Caçapava do Sul (Ab'Sáber, 1969).

A superfície cimeira mais antiga do Escudo Uruguaio-Sul-Riograndense é a Superfície Cimeira de Caçapava do Sul (Fig. 6), sendo constituída por um extenso pediplano com caimento para W, SW e S, vinculado ao soerguimento da pluma mantélica do domo Alto Uruguai/SW da África (Cox, 1989; Potter, 1997). Se constitui numa superfície que nivela a porção central da abóboda do escudo por antigos processos de aplainamento, cortando as mais variadas estruturas e litologias independentemente da sua resistência. Os relevos aplainados desta superfície cimeira paleógena variam de altitudes desde 600 m, no flanco Leste do meio domo a 300 m no flanco Oeste, devido ao basculamento regional de Leste para Oeste (Ab'Sáber, 1964; Lisboa & Schuck, 1990; Klein & Lisboa, 2002). A formação desta superfície seria anterior a fase de circundenudação periférica responsável pela geração da Depressão Central Gaúcha (Ab'Sáber, 1969).

Figura 6: Visualização dos núcleos residuais no Escudo Sul-Riograndense com altitudes superiores a 360 m e suas respectivas denominações realçados a partir do modelo digital do terreno (SRTM/NASA, 2013). Nestes núcleos são encontradas evidências da antiga Superfície Cimeira de Caçapava do Sul (Ab'Sáber, 1964). No flanco oeste da figura (região assinalada pelo perímetro em vermelho) e cobrindo os núcleos residuais Coxilha das Tunas e Cerro do Batovi observa-se em traço mais claro os limites mapeados da Formação Santa Tecla (Wildner *et al.*, 2006). Dos autores.

Os perfis atuais da Formação Santa Tecla se encontram inteiramente dentro da Superfície Cimeira de Caçapava do Sul (Fig. 6), correspondendo à depósitos aluviais correlacionados com o aplainamento, depositados por um sistema de drenagem anterior ao sistema de drenagem atual (Potter, 1997; Potter e Hamblin, 2006). A formação da Superfície Cimeira de Caçapava do Sul se estabeleceu a partir do Neocretáceo/Terciário Inferior, provavelmente no Paleoceno (Ab'Sáber, 1969; Justus *et al.*, 1986), sendo correlacionável com as Superfícies Japi (Almeida, 1964) e Sul Americana (King, 1956).

A Superfície Cimeira de Caçapava do Sul foi submetida a deformação posterior (Ab'Sáber, 1964; Ab'Sáber, 1969), afetando o núcleo do argueamento em abóbada, intensamente erodido com o desenvolvimento da rede de drenagem da Bacia do Rio Camaquã, transversa e superimposta às estruturas (Klein & Lisboa, 2002). Os flancos da Superfície Cimeira de Caçapava do Sul deformada foram erodidos por sistemas de drenagem radiais centrífugos: a Norte representado pelos afluentes da margem direita do Rio Jacuí, a Oeste: pelas cabeceiras do sistema de drenagem Ibicuí, a Sul: e pelas bacias dos rios Negro e Jaguarão. Esta drenagem radial centrífuga foi uma das responsáveis pela abertura da Depressão Periférica Gaúcha a partir do consumo da Superfície Cimeira de Caçapava do Sul no Neógeno, assim como o estabelecimento da Superfície da Campanha (Lisboa & Castro, 1998). Os processos erosivos fragmentaram a Superfície Cimeira de Caçapava do Sul em quatro núcleos residuais (Justus et al., 1986) representados pela Serra das Encantadas (Santana da Boa Vista/Encruzilhada do Sul), Serra de Canguçu (Canguçu/Piratini), Coxilha das Tunas (Bagé) e Cerro do Batovi – Serra do Maricá (Caçapava do Sul/Lavras do Sul), sendo que a Formação Santa Tecla situa-se nos núcleos residuais Coxilha das Tunas e Cerro do Batovi, na parte Oeste da Superfície Cimeira de Caçapava do Sul (Fig. 6).

Pós o término da atividade vulcânica e com o estabelecimento de uma margem continental passiva, a região progride para um estágio de estabilidade tectônica e evolui para um ambiente de baixa energia. Neste estágio, a parte superior da Formação Santa Tecla foi atingida por processos secundários de silicificação, carbonatação e ferrificação (Horbach *et al.*, 1986; Ramgrab & Wildner, 1999; Dani, 2013; Camozzatto *et al.*, 2018), o que lhe permitiu resistir como platôs e testemunhos da superfície de aplainamento (Camozzatto *et al.*, 2017; Camozzatto *et al.*, 2018).

Da mesma maneira que a Superfície de Caçapava do Sul, a Superfície de Vacaria enquadra-se num período de quiescência tectônica após a deformação e

basculamento (Fig. 7) pela abóboda da pluma com seu estabelecimento concomitante àquela, durante o período do Neocretáceo/Paleoceno (Justus *et al.*, 1986). A Formação Tupanciretã enquadra-se nos interflúvios da Superfície de Vacaria degradada.

Figura 7: Distribuição da Superfície de aplainamento de Vacaria no Planalto Meridional Riograndense caracterizada pelo basculamento E-W realçado a partir do modelo digital do terreno (SRTM/NASA, 2013). O relevo assinalado em amarelo corresponde a altitudes no intervalo entre 360 e 700 metros e individualiza a Superfície de Vacaria degradada por um sistema erosivo progradante com sentido geral de Oeste para Leste. O polígono em vermelho marca a região de ocorrência da Formação Tupanciretã (traço claro) (Wildner *et al.*, 2006), que ocupa os interflúvios da Superfície de Vacaria degradada. Dos autores.

A Superfície de Vacaria encontra-se melhor preservada na porção nordeste do Rio Grande do Sul. Em direção oeste apresenta-se bastante dissecada, conferindo um caráter residual para as rochas da Fm. Tupanciretã que foram submetidas a um processo de inversão de relevo e erosão semelhante ao observado na Formação Santa Tecla.

A Superfície de Vacaria decai suavemente para oeste, sudeste e sul (Suertegaray, 2010). A inclinação do planalto vulcânico constitui evidência do sistema de deformações por arqueamento em abóbada também observado no Escudo Sul-Riograndense. Além do mecanismo térmico atuante no basculamento, admite-se a

influência da isostasia flexural em decorrência da denudação sofrida por esta superfície, permitindo que o topo da Superfície de Vacaria tivesse sua erosão acelerada e permanecesse elevada devido a compensação isostática (Summerfield, 2013a). A Superfície de Vacaria provavelmente se desenvolvia através de uma área muito mais extensa, englobando variado número de estruturas e litologias (Ab'Sáber, 1969), entre elas a Fm. Tupanciretã.

É possível que a Superfície de Vacaria tenha sido aplainada durante a fase deposicional da Fm. Mercedes no Uruguai, unidade sedimentar de fácies conglomeráticas e areníticas semiáridas correlata ao Grupo Bauru (Veroslavsky *et al.*, 2019), ao mesmo tempo em que os setores ao sul do planalto meridional brasileiro serviram de maciço divisor entre as áreas cretáceas do setor Norte representadas pelo Grupo Bauru (São Paulo, Mato Grosso do Sul, Mato Grosso, Minas Gerais e Goiás) e setor Sul (Grupo Paysandú-Uruguai) da Bacia do Paraná (Ab'Sáber, 1969), fragmentando a Supersequência Bauru num registro não contínuo.

5 OUTROS ELEMENTOS TECTÔNICOS, EVOLUÇÃO DAS FORMAÇÕES E CORRELAÇÃO COM UNIDADES DA SUPERSEQUÊNCIA BAURU (BACIA DO PARANÁ)

Além da colocação do domo Alto Uruguai/SW África, outros fatores tectônicos e climáticos contribuíram para o posicionamento das unidades e sua preservação. Os fatores que contribuíram para sedimentação e evolução (erosão e posicionamento do relevo atual) de ambas as formações também são elementos de importância para a compreensão macro de suas ocorrências, levando à conexão direta de seu posicionamento estratigráfico e suas possíveis correlações com unidades da Supersequência Bauru.

5.1 A Importância do Arco de Rio Grande

A estruturação do Arco de Rio Grande está condicionada aos sistemas de falhas de direção NW-SE e sua formação parece contemporânea ao Grupo Rosário do Sul (199-251 Ma), sendo que os indicativos nestas unidades sedimentares sugerem o soerguimento do arco até o início do Jurássico (Philipp *et al.*, 2014). Um evento tectônico de pico térmico (~130 Ma) relacionado com a abertura do Gondwana

e movimentação de falhamentos de direção preferencial NW-SE, possivelmente herdados do embasamento, permitiu a intrusão de enxames de diques e soleiras de diabásio no arco. Esta direção de fraqueza atuou como facilitadora da colocação de rochas alcalinas e serviu como conduto principal para a extrusão das lavas da Formação Serra Geral, registrados nos diques, não apenas no Arco de Rio Grande, mas também em outras estruturas de importância regional na Bacia do Paraná (Fig. 8) como o Arco de Ponta Grossa e a Sinclinal de Torres (Frasca, 1996; Franco-Magalhães, 2009; Auler, 2016). Um novo evento tectônico dentro da fase Pós-*Rift* (90-66 Ma) seria o responsável pelo soerguimento regional dos arcos de Rio Grande e Ponta Grossa e ao rebaixamento da Sinclinal de Torres (Gallagher *et al.*, 1995; Karl *et al.*, 2013; Petry *et al.*, 2018).

Figura 8: Arcabouço estratigráfico e estruturas da Bacia do Paraná e suas supersequências. (a) Localização da Bacia do Paraná na América do Sul; (b) Mapa geológico simplificado da Bacia do Paraná com as principias estruturas e posicionamento da Supersequência Bauru ao norte e unidades correlatas na extremidade sul. Os polígonos em vermelho marcam a localização das áreas de ocorrência das formações Santa Tecla e Tupanciretã. Modificado de Milani & Ramos, 1998; Silva *et al.*, 2004; Petry *et al.*, 2018.

O Arco de Rio Grande é um alto estrutural com direção N40-50°W situado entre o Sistema de Falhas Jaguari-Mata (SFJM) ao norte e pelo Sistema de Falhas Alegrete (SFA) e Ibaré (ZCI) ao sul (Fig. 8), tendo dimensão regional onde se destaca o soerguimento do embasamento e o espessamento das camadas das rochas sedimentares da Bacia do Paraná em seu entorno devido a geração de sub-bacias: concomitante ao seu soerguimento ocorreu a deposição da Formação Caturrita (228 Ma) restrita ao norte do arco, e da Formação Guará (199 Ma) ao sul (Philipp *et al.*, 2014). Estas formações são cortadas por falhamentos que evidenciam atividade tectônica sin-deposicional (Philipp *et al.*, 2013a; Philipp *et al.*, 2013b).

Posteriormente, possivelmente ao longo do Cretáceo, o desenvolvimento deste bloco elevado favoreceu a deposição de sedimentação correlativa em áreas deprimidas a sul e a norte do Arco de Rio Grande representadas pelas formações Santa Tecla e Tupanciretã (Fig. 9), enquadradas em altitudes compatíveis com as Superfícies Cimeiras Caçapava-Vacaria (Justus *et al.*, 1986). Desta forma, o tectonismo torna-se um elemento muito importante pois sua dinâmica controla a disposição de depocentros e altos intrabacinais, concentrando muitas vezes sua atuação em áreas restritas dentro da bacia intracratônica (Frasca, 1996) como é a Bacia do Paraná. O soerguimento do Arco de Rio Grande também representou a exumação de porções do embasamento e rochas sedimentares que serviram como áreas fontes para a sedimentação de ambas as formações.

Figura 9: Esboço paleogeográfico no Cretáceo e sua relação com as formações Santa Tecla e Tupanciretã. Modificado de Justus *et al.*, 1986.

5.2 Paleoclima e Relevo

As Formações Santa Tecla e Tupanciretã se estabeleceram num período semiárido, com sedimentos de características imaturas, depositados em ambiente subaquoso com alguma contribuição eólica durante os períodos de maior seca (Menegotto, 1971; Dani, 2013).

A Formação Santa Tecla apresenta arenitos conglomeráticos com estratificação cruzada acanalada com grânulos, seixos e calhaus (Camozzatto *et al.*, 2018) os quais representam um ambiente de deposição subaquoso. A atuação fluvial foi provavelmente efêmera uma vez que são raras as estruturas primárias fluviais/torrenciais possivelmente devido ao caráter semiárido, havendo contribuição eólica de areias médias bem selecionadas (Dani, 2013) em corpos d´água lacustres. A ausência de evaporitos seria indício da baixa salinidade ou interligação deste ambiente endorreico em vários corpos d'água, compensando a taxa de evaporação (Tessari & Giffoni, 1970; Issler *et al.*, 1972).

Dani (2013) definiu que as fácies da Fm. Santa Tecla foram depositadas em sistemas fluviais/aluviais desenvolvidos em ambiente continental de clima semiárido. A posição de estagnação na sub-bacia endorreica da Fm. Santa Tecla era tal que, atrelado ao clima semiárido, acabou gerando um ambiente físico-químico favorável para processos pedogenéticos ou freáticos, com o desenvolvimento de paleossolos calcários (calcretes e dolocretes) e silicosos (silcretes), gerando cimentação carbonática e silicosa, e pedotúbulos (Dani, 2013; Klein, 2017; Camozzatto et al., 2017; Camozzatto et al., 2018). O desenvolvimento destas crostas epigenéticas pode estar ligado à flutuações climáticas, fazendo com que durante os períodos com ambiente de baixa energia a precipitação química era privilegiada, e durante períodos de alta energia ocorria a lixiviação de coloides, dessecamento e degradação lateral. O clima sazonal ou semiárido favorece os mecanismos de precipitação do carbonato de cálcio, já que realiza a evaporação do solvente e consequente supersaturação do meio (Freitas, 1982). A maior resistência à erosão propiciada por estas crostas silicosas favoreceu as condições de inversão de relevo (Justus, Machado e Franco, 1986) apresentando similaridades em sua evolução geomorfológica com a Formação Marília (Grupo Bauru, Cretáceo Superior da Bacia do Paraná).

A Fm. Santa Tecla possui como característica ser identificável em imagens de satélite e aerofotos, dado seu contraste com o relevo suavemente ondulado da porção

sul do Escudo Sul-Riograndense onde está inserida. Suas exposições evidenciam suas características tabulares devido à natureza e horizontalidade de seus estratos, compondo pequenas elevações de topo achatado e vertentes íngremes (Horbach *et al.*, 1986) sustentando os relevos (Fig. 10) e resistindo aos ciclos de denudação e erosão especialmente devido a silificação.

Morfologicamente se apresenta como platôs com drenagem dendrítica pouco encaixada e grande número de lagos, o que também a torna característica em fotografias aéreas (Formoso & Willig, 1966; Tessari & Giffoni, 1970). Nas bordas desses platôs tende a desenvolver feições tabulares onde a erosão seccionou mais profundamente seus sedimentos, motivo pelo qual forma elevações horizontalizadas em cotas entre 300 e 400 m. Na região de Olhos D'Água, Palmas e Bolena (Folha Hulha Negra), apresenta feições características sob a forma de mesas contínuas ou então como morros testemunhos sustentando o interflúvio entre as bacias dos arroios locais (Camozzatto *et al.*, 2017; Camozzatto *et al.*, 2018). Estas feições estão posicionadas na superfície de erosão cimeira de Caçapava do Sul e representam o produto da deposição de uma protodrenagem ou drenagem ancestral em leques desenvolvida a partir do final do Cretáceo Inferior (Potter, 1997).

Figura 10: Vista geral da Formação Santa Tecla na região de Bagé, formando elevações em mesas resultante da silicificação e deposição discordante sobre rochas do embasamento. Do autor.

A Fm. Tupanciretã apresenta mais comumente feições de tênue estratificação plano-paralela, truncadas de baixo ângulo e cruzadas acanaladas, interpretado como um ambiente subaquoso (Menegotto *et al.*, 1968; Horbach *et al.*, 1986) num paleoclima semiárido semelhante ao da Fm. Santa Tecla. Observam-se mais facilmente estruturas primárias na unidade, talvez devido à ausência de processos de calcificação e silicificação comuns na Formação Santa Tecla. A ocorrência de camadas plano-paralelas de níveis de sedimentos distais mais finos (Menegotto *et al.*, 1968; Menegotto, 1971) remetem a uma típica variação lateral granodecrescente ascendente encontrada em sistemas fluvio-lacustre (Coulon *et al.*, 1973; Horbach *et al.*, 1986; Fúlfaro *et al.*, 1980). Porém a ocorrência secundária de grãos foscos bem selecionados demonstra a contribuição de um sistema eólico próprio de um clima semiárido (Menegotto, 1971; Coulon *et al.*, 1973).

Assim como a Formação Santa Tecla, apresenta-se como uma deposição num espaço criado anteriormente à formação da atual topografia, e relacionada com a Superfície Cimeira de Vacaria.

As formas de relevo em que se apresenta a Fm. Tupanciretã são homogêneas enquadrando-se no intensamente dissecado Planalto das Araucárias com decaimento para Oeste, entalhado pelo fronte de erosão que erodiu os divisores de águas (Almeida, 1956). Estas formas de relevo apresentam-se como colinas suaves, arredondadas (regionalmente chamadas de coxilhas) possuindo drenagem com textura grossa. A Fm. Tupanciretã é suscetível a erosão e maior entalhamento da drenagem devido ao seu caráter arenítico não cimentado, contrastante com as rochas vulcânicas sotopostas, resultando em sulcos, ravinas e voçorocas (Nowatzki *et al.*, 1999) nas vertentes das coxilhas (Fig. 11). Devido a sua posição no relevo, a formação está situada no divisor das águas entre a Bacia do Rio Uruguai e a Bacia do Rio Jacuí.

Figura 11: Vista geral (sentido NW-SE) da Formação Tupanciretã na cidade homônima de Tupanciretã, formando coxilhas suaves com forte incisão da drenagem e abertura de voçorocas. Do autor.

O registro sedimentar é o elemento chave que reflete as mudanças paleoambientais e evoluções tectônicas que influenciam no relevo (Frasca, 1996). Em ambas as unidades foram observados minerais detríticos de origem ígnea e metamórficas (Menegotto, 1971), indicando que as drenagens traziam sedimentos do embasamento soerguido. O fato de ambas as formações ocuparem atualmente porções elevadas do relevo em suas respectivas áreas de cobertura demonstra uma importante inversão de relevo, conforme observado em porções do Grupo Bauru (Almeida, 1964).

O próprio arqueamento das Superfícies Cimeiras de Caçapava do Sul e de Vacaria está ligado a continuidade do soerguimento litosférico pela pluma do Alto Uruguai/SW África. Ab'Sáber (1959) observou no pacote basáltico uma inclinação dominante de SSE para NNW que justificaria a geração de sistemas de drenagem com escoamento para o interior do continente. As paleocorrentes de diversas unidades triássicas (Fm. Sanga do Cabral e Membro Passo das Tropas) com sentido N-NE e a composição de zircões detríticos da Fm. Santa Maria indicam este comportamento pretérito, sugerindo que a sedimentação era controlada pelo soerguimento do embasamento ao sul (Zerfass *et al.*, 2004; Phillip *et al.*, 2013b; Phillip *et al.*, 2018).

As Superfícies de Caçapava-Vacaria tiveram seu início sob condições semiáridas, em ambientes de alta energia que evoluíram para condições quentes e

úmidas em ambientes de baixa energia. A deposição da Supersequência Bauru e provavelmente das formações Tupanciretã e Santa Tecla ocorreram durante períodos de alta energia e extensa deposição sedimentar em ambientes fluviais efêmeros. O entalhamento dos rios e instalação das drenagens sobre a pilha basáltica indica que climas plenamente úmidos só se instalariam na região em momentos geológicos mais recentes (Ab'Sáber, 1969).

Aliado ao basculamento das Superfícies Caçapava-Vacaria, a alternância de climas úmidos e secos favoreceu a dissecação da paisagem e aprofundamento da drenagem. A intensa erosão de ambas as formações resultou numa redução do registro geológico de seus depósitos (Justus *et al.*, 1986). As características observadas na Formação Santa Tecla mostram episódios de maior aridez e de restrição para a circulação de soluções (parálico), o que favoreceu a calcificação e silicificação (Freitas, 1982), aspectos que conferiram maior resistência à unidade. Já na Fm. Tupanciretã são observados diaclasamentos, principalmente na fácies conglomerática (Menegotto *et al.*, 1968).

5.3 Enquadramento das Formações Santa Tecla e Tupanciretã na Supersequência Bauru (Bacia do Paraná) e paralelo com o Grupo Bauru e Rochas Uruguaias do Cretáceo Superior

A Formação Santa Tecla é correlacionável temporalmente com a Formação Tupanciretã tendo ambas o mesmo contexto geotectônico, paleoclimático e enquadradas nas superfícies cimeiras neocretáceas/paleógenas. Ambas as unidades foram formadas em ambientes de sedimentação similares e possuem litologias análogas que se assentam discordantemente sobre as demais rochas da Bacia do Paraná. Num contexto mais abrangente da bacia assemelham-se também às demais rochas da Supersequência Bauru.

O registro da Bacia do Paraná não é contínuo, mas sim resultado de sucessivos episódios de sedimentação caracterizando uma sequência policíclica definida por discordâncias regionais que a dividem em suas unidades de segunda ordem chamadas supersequências (Milani *et al.,* 1998; Milani & Ramos, 1998; Philipp *et al.,* 2013b) abrangendo parte do Brasil, Paraguai, Argentina e Uruguai.

Após o rompimento do Supercontinente Gondwana e abertura do Oceano Atlântico, definiu-se uma depressão sobre o pacote basáltico onde, a partir do Cretáceo Inferior/Superior, haveria espaço para a acomodação da última supersequência na área da Bacia do Paraná: a Supersequência Bauru (Milani, 1997). Seu espaço de acomodação estaria ligado aos últimos movimentos crustais e rearranjos térmicos relacionados ao evento magmático da Fm. Serra Geral (Milani *et al.*, 1998; Fernandes & Coimbra, 2000).

A Supersequência Bauru tem contato basal discordante sobretudo com os basaltos da Fm. Serra Geral. As suas características são condições semiáridas nas bordas à áridas no interior, com depósitos proximais areno-conglomeráticos de leques aluviais e sistemas fluviais, com avanço da sedimentação levando ao soterramento do substrato basáltico com extensas mantas de lençóis de areia e alguns lamitos como depósitos de *loess*, retidos em baixios eventualmente úmidos/aquosos (Milani et al., 2007).

Esta fase final de sedimentação Pós Gondwânica na bacia é bem definida no Brasil nos grupos Caiuá (tratos eólicos desérticos) e Bauru (tratos de sistemas fluvioeólicos de clima semiárido), correlatos com seus análogos com áreas de menor extensão na Argentina e Uruguai (Milani e Ramos, 1998; Milani *et al.*, 1998; Milani & Zalán, 1999; Dragone, 2013). Os grupos Caiuá e Bauru possuem contato gradual e lateralizado, ocorrendo de forma transicional e interdigitada (Fernandes & Coimbra, 2000; Fernandes, 2004).

As rochas do Grupo Bauru, posicionadas no Cretáceo Inferior a Superior (Hartmann *et al.*, 2017), desenvolveram-se como uma sub-bacia endorreica assimétrica na Bacia do Paraná após os últimos derrames de lava, que formam o substrato a partir de superfície erosiva regional. A sedimentação do Grupo Bauru estaria relacionada a ciclos de erosão com simultaneidade entre sedimentação na bacia e processos de pediplanação dos quais resultaria a Superfície Japi (Freitas, 1951a; Almeida, 1964). Sendo assim, seu limite superior é erosivo, demarcado pela Superfície Sul-Americana (ou Japi), análoga às Superfícies de Caçapava do Sul e Vacaria (Fernandes & Coimbra, 2000; Silva *et al.*, 2009; Fernandes & Ribeiro, 2015). São depósitos de clima semiárido com forte sazonalidade em que períodos de seca alternaram-se com períodos de chuva intensa, com sedimentação de leques aluviais, lençóis de areia, canais efêmeros e pequenos lagos (áreas paludais endorreicas), em ambiente continental, incluindo clastos de outras formações da bacia e embasamento cristalino (Freitas, 1951b; Freitas, 1982; Milani *et al.*, 1998; Goldberg & Garcia, 2000). O sistema de drenagem responsável por esta sedimentação foi originado a partir da

elevação do embasamento proporcionado pela atividade da pluma mantélica no período Cretáceo (Batezelli, 2015), sendo que o Grupo Bauru apresenta basculamento para o interior do continente (Almeida, 1964). O grupo possui proveniência a partir da borda norte e leste da bacia com seu depocentro estando na mesma área da supersequência anterior (Gondwana III) (Milani *et al.*, 1998; Milani *et al.*, 2007; Fernandes & Ribeiro, 2015).

Unidades do topo do Grupo Bauru como a Fm. Marília possuem litofácies muito similares a Fm. Santa Tecla e Tupanciretã, sendo compostas por arenitos finos a médios, localmente grossos e conglomerados na base, também apresentando localmente estratificações cruzadas acanaladas e cruzadas de pequeno porte. A formação é fossilífera, permitindo ser datada como Maastrichtiano (Cretáceo Superior). Entre as similaridades com a Fm. Santa Tecla, constatam-se a presença de calcretes e silcretes que evidenciam íntima relação com as condições climáticas de semiaridez, assim como a presença de argilas infiltradas (Almeida, 1964; Goldberg & Garcia, 2000; Ribeiro, 2001; Dal' Bó & Ladeira, 2006; Milani *et al.*, 2007; Dani, 2013; Fernandes & Ribeiro, 2015). O processo de infiltração mecânica de argilas está relacionado às condições climáticas secas neste ambiente deposicional durante a eodiagênese, relativo a enxurradas ocasionais (Batezelli *et al.*, 2005).

Para WNW da cidade de Batatais-SP ocorrem derrames basálticos em um relevo de colinas baixas com grandes áreas contínuas de terra roxa, porém nos mais altos interflúvios ocorrem campos arenosos do Grupo Bauru (Almeida, 1964) de forma análoga à maneira de ocorrência da Fm. Tupanciretã nas regiões de Passo Fundo, Carazinho e Chapada no Rio Grande do Sul (Coulon *et al.*, 1973; Gass *et al.*, 2009).

A Bacia do Paraná apresenta continuidade em direção ao Uruguai e Argentina (Milani & Ramos, 1998; Philipp *et al.*, 2013b). O Uruguai está localizado no extremo sul da Bacia do Paraná, estando esta porção também cercada por um cinturão ígneo que envolve a bacia (localmente chamada de Bacia Norte). Neste setor da bacia também ocorrem deposições neocretáceas de sedimentação cíclica intracratônica francamente continentais sobrepostas aos derrames basálticos da Fm. Serra Geral (chamados localmente de Fm. Arapey), sendo então estes depósitos interpretados como pequenas expressões da Supersequência Bauru (Fig. 8).

As unidades representativas destas deposições enquadram-se no Grupo Paysandú que é composto pelas formações Guichón (base) e Mercedes (topo). Assim

como no Grupo Bauru, o Grupo Paysandú possui diferentes tipos de paleossolos e evoluções diagenéticas com litologias depositadas sob condições áridas a semiáridas. Já para Veroslavsky et al. (2019) a Fm. Mercedes é subdividida em duas unidades: a Fm. Asencio e a Fm. Queguay, sobrepostas à Fm. Mercedes e por vezes interdigitando-se com ela, representando arenitos fossilíferos de pequenas espessuras os quais comportam processos em que resultaram calcretes, silcretes e superfícies ferruginosas. Descobertas fósseis em ambas as formações do Grupo Paysandú, posição estratigráfica e datação radiométrica lhes asseguram a idade Cretáceo Superior. Essas associações faunísticas são correlacionáveis com aquelas encontradas no Grupo Bauru. A Fm. Guichón, sobreposta aos basaltos de maneira discordante, é constituída por arenitos finos, arenitos grossos, ocorrência de conglomerados subordinados e raros pelitos. Possuem estrutura maciça, planoparalela ou cruzada de pequeno porte, sendo interpretada como de origem fluvial efêmero e planícies arenosas em ambiente árido a semiárido. É análoga às porções basais do Grupo Bauru (Almeida, 1956; Alvarez, 2004; Soto et al., 2009; Blanco, et al., 2021).

A Fm. Mercedes, de idade cretácea superior, é composta principalmente por conglomerados e arenitos com espessura aproximada de 200 m no Uruguai, predominantemente arenosa, gerada por leques aluviais, fluviais e lagos efêmeros e episódicas contribuições eólicas. Ela se sobrepõe principalmente à Fm. Guichón, e localmente sobre o embasamento cristalino e basaltos da Fm. Arapey e foi afetada por calcretização, silicificação e ferruginização. É considerada equivalente à Fm. Marília (Grupo Bauru) com base nas características morfológicas, litoestratigráficas, cronoestratigráficas e comportamento hidrológico (Gilboa, 1977). A datação radiométrica pelo método U/Pb dos carbonatos do topo da Fm. Mercedes (ou Fm. Queguay) é de ~72 Ma (Maastrichtiano, Cretáceo Superior), análogo aos calcretes da Fm. Marília (Veroslavsky *et al.*, 2019).

A preservação destas coberturas neocretáceas neste setor do extremo sul da bacia indica que houve influência na evolução tectônico-sedimentar dos arcos de Assunção e Rio Grande para os depocentros voltados para a Argentina e Uruguai (Alvarez, 2004), e o mesmo parece ter influenciado nas deposições das formações Tupanciretã e Santa Tecla. Ambas as formações do Rio Grande do Sul podem ser correlacionáveis litoestratigraficamente e temporalmente, em nível regional, com as unidades do Grupo Paysandú (Uruguai) e aquelas correlatas do Grupo Bauru.

6 CONCLUSÕES

De maneira inédita é proposto um estudo em conjunto das Formações Santa Tecla e Tupanciretã encontradas no Rio Grande do Sul. Utilizando informações dispersas de raros estudos das duas unidades em associação com interpretações existentes da evolução da Bacia do Paraná e dos eventos geológicos e geomorfológicos, especialmente entre o Cretáceo Inferior/Superior e Paleógeno, é apresentado um modelo que correlaciona estas formações no cenário do Grupo Bauru e Grupo Paysandú (Uruguai). Outros estudos complementares estão sendo implementados, mas a abordagem apresentada permite visualizar dois aspectos: estabelecimento das Formações Santa Tecla e Tupanciretã como representantes da Supersequência Bauru no Rio Grande do Sul e; mudança do conceito vigente baseado unicamente num modelo de processos erosivos no longo intervalo de tempo entre o estabelecimento das vulcânicas do Serra Geral (Cretáceo Inferior) e a Planície Costeira (Plioceno/Pleistoceno).

A exumação das porções do embasamento aliada ao arrefecimento e subsidência pós derrames basálticos da Fm. Serra Geral favoreceu a criação de novos espaços de acomodação na Bacia do Paraná. A reativação tectônica de estruturas na área da Fm. Tupanciretã também poderia ter aumentado o espaço de acomodação desta unidade sobre os basaltos da Fm. Serra Geral.

Estes eventos ocorridos durante um clima árido à semiárido promoveram taxas de intemperismo e erosão e a deposição de sedimentos siliciclásticos imaturos, representados pelas fácies conglomeráticas na base das formações Santa Tecla e Tupanciretã e ocorrência de minerais pesados nas fácies arenosas.

As informações conduzem à interpretação de que as formações Tupanciretã e Santa Tecla representam deposições de antigas drenagens desenvolvidas a partir de um domo de soerguimento térmico relacionado ao período de separação do Supercontinente Gondwana. No Rio Grande do Sul, os fenômenos de soerguimento do domo Alto Uruguai/SW África evidenciam-se no flanco Leste da Bacia do Paraná, tendo modelado profundamente por erosão este setor em função do soerguimento crustal associado ao rifte do Atlântico Sul (Milani *et al.*, 2007). A posterior estruturação do Arco de Rio Grande propiciou a abertura de espaço para a instalação de sub-bacias que depositaram os sedimentos advindos do domo soerguido e do próprio arco a partir das vulcânicas da Fm. Serra Geral, do embasamento cristalino exposto e reciclagem de outras unidades sedimentares da bacia, semelhante ao observado na Bacia Norte uruguaia, extremo sul da Bacia do Paraná.

Na Supersêquencia Bauru, a presença de estruturas como o Arco de Ponto Grossa forçou o acúmulo assimétrico de lavas na Bacia do Paraná e a criação de uma depressão mais acentuada ao norte, propiciando um espesso acúmulo de sedimentos no Grupo Bauru e Caiuá. Durante o Cretáceo, os esforços tectônicos através de domos e arcos favoreceram a compartimentação da bacia e a sedimentação do Grupo Bauru e Caiuá ao norte do Arco de Ponta Grossa e sedimentação de unidades correlacionáveis da Supersequência Bauru ao sul da bacia.

As análises mineralógicas na Fm. Tupanciretã e Santa Tecla são condizentes com a participação de sedimentos exumados de rochas do escudo em idades inferiores ao Terciário. Os registros de paleocorrentes na Fm. Tupanciretã indicam um transporte a partir do quadrante sul, sinalizando justamente o escoamento a partir das porções soerguidas do escudo (Riccomini *et al.*, 2016).

Os transportes aluviais/fluviais instalados nestes novos espaços intracratônicos dentro da Bacia do Paraná eram episódicos com fluxos com maior energia (representado pelos conglomerados basais), que rapidamente perdiam a competência ao desembocar nas áreas de subsidência. Os termos mais finos (representados por arenitos e raros siltitos) prosseguiam o processo deposicional nestas subbacias, associado ao aporte de sedimentação eólica (Freitas, 1982). É possível vislumbrar então um fluxo clástico de rios efêmeros advindos do Arco de Rio Grande e da borda leste soerguida da bacia que, durante os períodos úmidos, alimentavam lagos que se espalhavam nas planícies de inundação aluviais. Neste ambiente semiárido, durante os períodos de seca, eram favorecidos os processos físico-químicos que controlaram a alcalinização das águas restantes podendo formar solos carbonáticos análogos aos da Fm. Marília do Grupo Bauru e da Fm. Mercedes (Uruguai), conforme observado na Fm. Santa Tecla.

A sedimentação tardia fez com que ambas as formações se depositassem discordantemente sobre as demais unidades da Bacia do Paraná, sendo estratigraficamente correlacionáveis Supersequência Bauru. com а Geomorfologicamente elas se inserem nas Superfícies Caçapava-Vacaria estabelecidas no Cretáceo Superior/Paleógeno, е depositadas antes do estabelecimento do aplainamento. As Formações Santa Tecla e Tupanciretã foram formadas em ambientes de sedimentação similares, condições semiáridas intracratônicas, e tendência a características de estabilidade crustal típicas do Cretáceo Inferior a Superior na bacia. Estes elementos são observados no Grupo Bauru e Grupo Paysandú, enquadrados como pertencentes a Supersequência Bauru.

Ao longo do Terciário a área perdeu seu caráter deposicional, e movimentos epirogênicos positivos, aliados a processos diagenéticos, contribuíram para uma condição de inversão do relevo e erosão. O que havia antes sido depositado em áreas deprimidas do relevo passou a atuar como interflúvio, o que facilitou a intensa erosão destas litologias (Fig. 12).

Figura 12: Representação esquemática da evolução dos terrenos para a exumação das áreas fontes, estabelecimento de novos espaços deposicionais e posterior inversão de relevo culminando na erosão parcial das unidades. Cen: Cenozóico, CS: Cretáceo Superior, CI: Cretáceo Inferior, Tr: Triássico, J: Jurássico. Modificado de Fernandes & Ribeiro, 2015.

Contribuições dos Autores: K.M.V. Ruppel: Concepção, metodologia, software, validação, análise formal, pesquisa, recursos, curadoria de dados, redação-versão inicial, redação-revisão e edição, aquisição de financiamento. N.D: Software, validação, análise formal, recursos, curadoria de dados, redação-revisão e edição, supervisão, aquisição de financiamento. N.A.L: Validação, análise formal, redação-revisão e edição.

Financiamento: Esta pesquisa foi financiada pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), número de bolsa 88882.345540/2019-01.

Agradecimentos: As atividades de campo foram apoiadas pelo Instituto de Geociências (IGEO) da Universidade Federal do Rio Grande do Sul. Agradecemos a contribuição dos dois revisores para o aprimoramento do artigo.

Conflito de Interesse: Os autores declaram não haver conflito de interesse.

REFERÊNCIAS

- Ab'sáber, A.N. 1959. Nem todas as escarpas basálticas brasileiras são cuestas. *Notícia Geomorfológica, Campinas*, 2(4): 47-48.
- Ab'sáber, A.N. O relevo brasileiro e seus problemas. In: Azevedo, A. (Ed.). Brasil A terra e o homem. 1ª Ed. São Paulo: Companhia Editora Nacional, 1964, p. 135-250.
- Ab'sáber, A.N. 1969. Participação das Superfícies Aplainadas nas Paisagens do Rio Grande do Sul. *Geomorfologia*, 11: 1-17.
- Ab'sáber, A.N. Megageomorfologia do Território Brasileiro. In: Cunha, S. B. & Guerra,
 A. J. T (Eds.). *Geomorfologia do Brasil*. 1^a Ed. Rio de Janeiro: Bertrand Brasil, 1998, p. 71-106.
- Adams, C.J.D., Gabites, J.E., Grindley, G.W. 1982. Orogenic history of the central Transantarctic Mountains: New K-Ar age data on the Precambrian Lower Paleozoic basement. *Antarctic Geoscience*, UW Press, 817–826.
- Almeida, F.F.M. 1956. O Planalto Basáltico da Bacia do Paraná. *Boletim Paulista de Geografia*, 24: 3-34.
- Almeida, F.F.M. 1964. Fundamentos geológicos do relevo paulista. *Boletim do Instituto de Geográfico e Geológico*, 41: 169-263. DOI: 10.33958/revig.v39i3.600
- Alvarez, H.B.S.A. 2004. Análise tectono-estratigráfica das seqüências Permotriassica e Jurocretácea da Bacia Chacoparanense Uruguaia ("Cuenca Norte"). Rio Claro, 274p. Tese (Doutorado em Geologia) - Curso de Geologia, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista.

- Auler, D. 2016. Caracterização do Arcabouço Geológico-Estrutural da Sinclinal de Torres Através do Método Magnetotelúrico (MT). Porto Alegre. 58p. Monografia (Conclusão de Curso), Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Batezelli, A., Gomes, N.S., Perinotto, J.A.J. 2005. Petrografia e evolução diagenética dos arenitos da porção Norte e Nordeste da Bacia Bauru (Cretáceo Superior).
 Revista Brasileira de Geociências, 35(3): 311-322. DOI: 10.25249/0375-7536.2005353311322
- Batezelli, A. 2015. Continental systems tracts of the Brazilian Cretaceous Bauru Basin and their relationship with the tectonic and climatic evolution of South America. *Basin Research*, 29: 1-25. DOI: 10.1111/bre.12128
- Bertê, A.M.A., Cargnin, A.P., Lemos, B.O., Silva, C.R., Ferreira, G.S., Mieres, L.S., Pereira, M.S.L., Oliveira, S.B., Marcon, J. 2021. Atlas Socioeconômico do Rio Grande do Sul. Departamento de Planejamento Governamental. 6. ED: Porto Alegre. 203p.
- Beurlen, K., Sena Sobrinho, M., Martins, E.A. 1955. Formações Gondwânicas do Rio Grande do Sul. *Boletim do Museu Nacional*, 22(1): 1-55.
- Blanco, G., Abre, P., Ferrizo, H., Gaye, M., Gamazo, P., Ramos, J., Alvareda, E. 2021. Revealing weathering, diagenetic and provenance evolution using petrography and geochemistry: A case of study from the Cretaceous to Cenozoic sedimentary record of the SE Chaco-Paraná basin in Uruguay. *Journal of South American Earth Sciences*, 105: 1-18. DOI: 10.1016/j.jsames.2020.102974
- Camozzatto, E., Philipp, R.P., Lopes, R.C., Klein, C., Sander, A., Ruppel, L.M.V.
 Geologia e Recursos Minerais da Folha Hulha Negra, SH.22-Y-C-I. Porto Alegre:
 Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil,
 2017. Escala 1:100.000.
- Camozzatto, E., Klein, C., R.P., Iglesias, C.M.F. Geologia e Recursos Minerais da Folha Bagé, SH.21-Z-D-III. Porto Alegre: Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil, 2018. Escala 1:100.000.
- Campbell, I.H. & Griffiths, R.W. 1990. Implications of mantle plume structure for the evolution of flood basalts. *Earth Planet Sci Lett*, 99: 79–93. DOI: 10.1016/0012-821X(90)90072-6

- Carvalho, P.F. 1932. Reconhecimento Geológico no Estado do Rio Grande do Sul. Boletim do Instituto Geológico e Mineralógico do Brasil, 66(1): 1-72.
- Choudhuri, M. & Nemčok, M. *Mantle Plumes and Their Effects*. 1^a Ed. Bratislava: Springer, 2017. 137p. DOI: 10.1007/978-3-319-44239-6
- Corrêa, A.C.B. & Monteiro, K.A. 2021. Revisitando as superfícies de aplainamento: novos enfoques e implicações para a geomorfologia geográfica. *Humboldt -Revista de Geografia Física e Meio Ambiente*, 1(2): 1-26.
- Coulon, F.K., Gamermann, N., Formoso, M.L.L. 1973. Considerações sobre a Gênese
 da Formação Tupanciretã. *Pesquisas em Geociências*, 2(1): 78-89. DOI:
 10.22456/1807-9806.21866
- Cox, K.G. 1980. A Model for Flood Basalt Vulcanism. *Journal of Petrology*, 21(4): 629-650. DOI: 10.1093/petrology/21.4.629
- Cox, K.G. 1989. The role of mantle plumes in the development of continental drainage patterns. *Nature*, 342(21/28): 873-877. DOI: 10.1038/342873a0
- Dal' Bó, P.F.F. & Ladeira, F.S.B. 2006. Ambientes paleoclimáticos da Formação Marília baseado em análise paleopedológica na região de Monte Alto (SP). *Geociências* UNESP, 25(1): 127-134.
- Dani, A.P.O. 2013. Caracterização faciológica e petrográfica da Formação Santa Tecla, RS. Porto Alegre, 77p. Monografia (Conclusão de Curso), Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Dragone, G.N. 2013. Estrutura crustal da Bacia Chaco-Paraná a partir de dados gravimétricos. São Paulo, 92p. Dissertação (Mestrado em Geofísica), Departamento de Geofísica, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo.
- Fernandes, L.A. & Coimbra, A.M. 2000. Revisão estratigráfica da parte oriental da Bacia Bauru (Neocretáceo). *Revista Brasileira de Geociências*, 30(4): 717-728. DOI: 10.25249/0375-7536.2000304717728
- Fernandes, L.A. 2004. Mapa litoestratigráfico da parte oriental da Bacia Bauru (PR, SP, MG), Escala 1:1.000.000. *Boletim Paranaense de Geociências*, 55: 53-66. DOI: 10.5380/geo.v55i0.4283

- Fernandes, L.A. & Ribeiro, C.M.M. 2015. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil). *Journal of South American Earth Sciences*, 61: 71-90. DOI: 10.1016/j.jsames.2014.11.007
- Formoso, M.L.L. & Willig, C.D. 1966. A discordância Palermo-Santa Tecla. *Notas e Estudos da Escola de Geologia-UFRGS*, 1(2): 83-91.
- Francescatto, J.A. & Lisboa, P.F.C. 1979. Geologia das cabeceiras do Rio Santa Maria, RGS, Escala 1:50.000, área-FL. São Leopoldo, 67p. Monografia (Conclusão de Curso), Curso de Geologia, Universidade do Vale do Rio dos Sinos.
- Franco-Magalhães, A.O.B. 2009. Exumação Tectônica e Evolução Associada do Relevo no Arco de Ponta Grossa, Sul-Sudeste do Brasil. Rio Claro, 147p. Tese (Doutorado em Geologia) – Curso de Geologia, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista.
- Frasca, A.A.S. 1996. Sensoriamento remoto e geologia estrutural: Aplicações de estudos tectônicos em uma porção da borda sudeste da Bacia do Paraná-RS. Porto Alegre, 138p. Dissertação (Mestrado em Sensoriamento Remoto), Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia, Pós-Graduação em Sensoriamento Remoto, Universidade Federal do Rio Grande do Sul.
- Freitas, R.O. 1951a. Ensaio sobre a tectônica moderna do Brasil. *Boletim da Faculdade de Filosofia*, Ciência e Letras-USP, 130(6): 143p.
- Freitas, R.O. 1951b. Sobre a Origem da Bacia de São Paulo. *Boletim Paulista de Geografia*, 9: 60-64.
- Freitas, R.O. 1982. Definição estratigráfica do Grupo Bauru por Sedimentogramas. *Instituto Geológico de São Paulo*, Boletim 6: 94p.
- Fúlfaro, V.J., Gama Júnior, E.G., Soares, P.C. Revisão estratigráfica da Bacia do Paraná. São Paulo: Paulipetro, 1980. 155p. Relatório BP-008/60.
- Gallagher, K., Hawkesworth, C.J., Mantovani, M.S.M. 1995. Denudation, fission track analysis and long-term evolution of passive margin topography: application to the southeast Brazilian margin. *Journal of South American Earth Sciences*, 8(1): 65-77. DOI: 10.1016/0895-9811(94)00042-Z

- Gamermann, N., Carraro, C.C., Eick, N., Bortoluzzi, C.A. 1973. Geotransversal brasileira norte-sul (parcial). Projeto internacional do manto superior - Rio Grande do Sul. *Pesquisas*, 2(1): 49-60. DOI: 10.22456/1807-9806.21861
- Gass, S.L.B., Massola, J.L., Montardo, D.K. Caracterização Geológico-Geomorfológica da Microbacia do Arroio Varejão, Município de Chapada, Rio Grande do Sul, Brasil. *In*: XIV Simpósio Brasileiro de Sensoriamento Remoto, 2009, Natal. Anais... INPE, 2009. p. 3833-3840.
- Gilboa, Y. 1977. The Groundwater Resources of Uruguay. *Hydrological Sciences Journal*, 22(1): 115-126. DOI: 10.1080/02626667709491697
- Goldberg, K. & Garcia, A.J.V. 2000. Palaeobiogeography of the Bauru Group, a dinosaur-bearing Cretaceous unit, northeastern Parana Basin, Brazil. *Cretaceous Research*, 21: 241-254. DOI: 10.1006/cres.2000.0207
- Goodge, J.W., Borg, S.G., Smith, B.K., Bennett, V.C. 1991. Tectonic significance of Proterozoic ductile shortening and translation along the Antarctic margin of Gondwana. *Earth and Planetary Science Letters*, 104(1): 117-118. DOI: 10.1016/0012-821X(91)90017-C
- Hartmann, L.A., Pertille, J., Duarte, L.C. 2017. Giant-geode endowment of tumuli in the Veia Alta flow, Ametista do Sul. *Journal of South American Earth Sciences*, 77: 51-57. DOI: 10.1016/j.jsames.2017.04.013
- Hartmann, L.A., Pertille, J., Cerva-Alves, T., Duarte, S.K. 2021. Paraná quartz andesite rings and arcs formed by distal imprint of dune design from the Botucatu paleoerg. *Journal of South American Earth Sciences*, 112: 103612. DOI: 10.1016/j.jsames.2021.103612
- He, B., Xu, Y., Chung, S., Xiao, L., Wang, Y. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. *Earth and Planetary Science Letters*, 2013(3-4): 391-405. DOI: 10.1016/S0012-821X(03)00323-6
- Horbach, R., Kuck, L., Marimon, R.G., Moreira, H.L., Fuck, G.F., Moreira, M.L.O., Marimon, M.P.C., Pires, J.L., Vivian, O., Marinho, D.A., Teixeira, W. Geologia. Rio de Janeiro: IBGE, 1986. p. 29-312. Projeto RADAM-BRASIL, Folha SH.22 Porto Alegre e parte das folhas SH.21 Uruguaiana e SI.22 Lagoa Mirim: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra.

- Issler, R.S. Mapa geológico do grau de São Gabriel, RS, Brasil. Porto Alegre: Universidade Federal do Rio Grande do Sul, Instituto de Geociências, 1972. Escala 1:250.000.
- Julià, L., Assumpção, M., Rocha, M.P. 2008. Deep crustal structure of the Paraná Basin from receiver functions and Rayleigh-wave dispersion: Evidence for a fragmented cratonic root. *Journal of Geophysical Research*, 113: B08318. DOI: 10.1029/2007JB005374
- Justus, J.O., Machado, M.L.A., Franco, M.S.M. Geomorfologia. Rio de Janeiro: IBGE, 1986. p. 313-404. Projeto RADAMBRASIL, Folha SH.22 Porto Alegre e parte das folhas SH.21 Uruguaiana e SI.22 Lagoa Mirim: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra.
- Karl, M., Glasmacher, U.A., Kollens, S., Stockli, D.F., Hackspacher, P.C. 2013. Evolutioin of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission track data. *Tectonophysics*, 604: 224-244. DOI: 10.1016/j.tecto.2013.06.017
- King, L.C. 1956. A geomorfologia do Brasil Oriental. *Revista Brasileira de Geografia*, 18(2): 147-265.
- Klein, C. Depósitos Cenozoicos (Paleógeno/Neógeno). In: Laux, J. C. (Ed.), Geologia e Recursos Minerais da Folha Lagoa da Meia Lua, SH.21-Z-B-VI, escala 1:100.000, Estado do Rio Grande Do Sul. Porto Alegre: Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil. 2017. p. 193-196.
- Klein, M.A. & Lisboa, N.A. 2002. Caracterização Morfoestrutural da Região de Quitéria
 Várzea do Capivarita Através da Análise de Produtos de Sensoriamento Remoto. Acta Geologica Leopoldensia, 25: 67-78.
- Leinz, V. 1942. Arenito silicificado de Bagé, Rio Grande do Sul e sua aplicação possível na fabricação de refratários silicosos. *Mineração e Metalurgia*, 6(33): 137-140.
- Lisboa, N.A. & Schuck, M.T.G.O. 1990. Identificação e estudo geomorfológico da Superfície de Aplainamento do Cero da Lagoa, (Santana da Boa Vista), RS, através de técnicas de sensoriamento remoto. *Boletim IG-USP*, Série Científica, 9: 189-199,

- Lisboa, N.A. & Castro, J.H.W. 1998. Captura do Sistema Fluvial Camaquã pelo Sistema Fluvial Jacuí – São Gabriel, RS, Brasil. *Pesquisas em Geociências*, 25(2): 67-71. DOI: https://doi.org/10.22456/1807-9806.21168
- Loper, D.E. 1997. Mantle plumes and their effect on the Earth's surface: a review and synthesis. *Dynamics of Atmospheres and Oceans*, 27(1): 35-51. DOI: 10.1016/S0377-0265(97)00026-2
- Marin, H.D. 2022. Análise Morfoestrutural como ferramenta para a identificação da influência de processos tectônicos associados com a Formação Tupanciretã-RS.
 Porto Alegre, 64p. Monografia (Conclusão de Curso), Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Martins, E.A. & Sena Sobrinho, M. 1949. Permocarbonífera a Série Santa Tecla. *Mineração e Metalurgia*, 81(14): 79-80.
- Matos, R.M.D, Krueger, A., Norton, I., Casey, K. 2021. The fundamental role of the Borborema and Benin–Nigeria provinces of NE Brazil and NW Africa during the development of the South Atlantic Cretaceous Rift system. *Marine and Petroleum Geology*, 127: 104872. DOI: 10.1016/j.marpetgeo.2020.104872
- Menegotto, E., Sartori, P.L., Maciel Filho, C.L. 1968. Nova sequência sedimentar sobre a Serra Geral no Rio Grande do Sul. In: Santa Maria, Instituto de Solos e Culturas da Universidade Federal de Santa Maria, Seção de Geologia, Publicação Especial nº 01, 19p.
- Menegotto, E. Sedimentologia da Formação Tupanciretã. 1971. Porto Alegre, 62p. Dissertação (Mestrado em Geologia) - Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Milani, E.J. 1997. Evolução tectono-estratigráfica da Bacia do Paraná e seu relacionamento com a geodinâmica fanerozóica do Gondwana sul-ocidental. Porto Alegre, 255p. Tese (Doutorado em Geologia) - Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Milani, E.J. & RAMOS, V.A. 1998. Orogenias Paleozóicas no Domínio Sul-Ocidental do Gondwana e os Ciclos de Subsidência da Bacia do Paraná. *Revista Brasileira de Geociências*, 28(4): 473-484. DOI: 10.25249/0375-7536.1998473484

- Milani, E.J., Faccini, U.F., Scherer, C.M., Araújo, L.M., Cupertino, J.A. 1998. Sequences and stratigraphic hierarchy of the Paraná Basin (Ordovician to Cretaceous), southern Brazil. *Boletim IG-USP*, Série Científica, 29: 125-148.
- Milani, E.J., Melo, J.H.G., Souza, P.A., Fernandes, L. A., França, A.B. 2007. Bacia do Paraná. *Boletim de Geociências da Petrobrás*, 15(2): 265-287.
- Monnereau, M., Rabinowicz, M., Arquis, E. 1993. Mechanical erosion and reheating of the lithosphere: A numerical model for hotspot swells. *Journal of Geophysical Research*, 98(B1): 809-823. DOI: 10.1029/92JB01677
- Moore, A. & Blenkinsop, T. 2002. The role of mantle plumes in the development of continental-scale drainage patterns: The southern African example revisited. *South African Journal of Geology*, 105: 353-360. DOI: 10.2113/1050353
- Nasa. NASA Shuttle Radar Topography Mission Global 1 arc second number. Distributed by NASA EOSDIS Land Processes DAAC, 2013. DOI: 10.5067/MEaSUREs/SRTM/SRTMGL1N.003
- Nowatzki, C.H., Dutra, T.L., Fleck, A. 1999. Novas observações sobre a Formação Tupanciretã, Estado do Rio Grande do Sul. *Acta Geologica Leopoldensia*, 49: 39-52.
- Petry, K., Almeida, D.P.M., Zerfass, H. 2005. O vulcanismo Serra Geral em Torres, Rio Grande do Sul, Brasil: empilhamento estratigráfico local e feições de interação vulcano-sedimentar. *Gaea - Journal of Geoscience*, 1(1): 36-47.
- Petry, T.S., Philipp, R.P., Gonzatti, C. 2018. Geologia estrutural aplicada à mineração subterrânea de carvão em Araranguá (SC, Brasil). *Pesquisas em Geociências*, 45: e0656. DOI: 10.22456/1807-9806.85644
- Philipp, R.P., Zvirtes, G., Bruckmann, M.P., Faccini, U.F., Viana, A.R.; Lavina, E., Scherer, C.M.S. Estruturas tectônicas na seção geológica Santana do Livramento Rosário do Sul-Jaguari: evidências do Arco de Rio Grande, Bacia do Paraná, RS. *In*: XIV Simpósio Nacional de Estudos Tectônicos, 2013, Chapada dos Guimarães. Anais... SBG, 2013a.

- Philipp, R.P., Kloss, H.P., Schultz, C.L., Basei, M.A.S., Horn, B.L., Soares, M. Proveniência por U-Pb LA-ICP-MS em zircão detrítico e idade de deposição da Formação Santa Maria, Triássico da Bacia do Paraná, RS: evidências da estruturação do Arco do Rio Grande. *In*: XIV Simpósio Nacional de Estudos Tectônicos, 2013, Chapada dos Guimarães. Anais... SBG, 2013b.
- Philipp, R.P., Rolim, S.B.A., Malta, L., Jelinek, A.R., Viana, A., Lavina, E., Cagliari, J., Faccini, U.F. Estruturação do Arco de Rio Grande e da Sinclinal de Torres, Bacia do Paraná, RS: Evidências por Levantamentos Magnetotelúricos. *In*: VI Simpósio Brasileiro de Geofísica, 2014, Porto Alegre. Anais... SBGf, 2014. DOI: 10.22564/6simbgf2014.026
- Philipp, R.P., Schultz, C.L., Kloss, H.P., Horn, B.L.D., Soares, M.B. 2018. Middle Triassic SW Gondwana paleogeography and sedimentary dispersal revealed by integration of stratigraphy and U-Pb zircon analysis: The Santa Cruz Sequence, Paraná Basin, Brazil. *Journal of South American Earth Sciences*, 88: 216–237. DOI: 10.1016/j.jsames.2018.08.018
- Potter, P.E. 1997. The Mesozoic and Cenozoic Paleodrainage of South America: A Natural History. *Journal of South American Earth Sciences*, 10(5): 331-344. DOI: 10.1016/S0895-9811(97)00031-X
- Potter, P.E. & Hamblin, W.K. *Big Rivers Worldwid-Part 1 Origins*. 1^a Ed. Provo-UT: Brigham Young University, 2006, 81p.
- Ramgrab, G.E., Wildner, W. Pedro Osório, Folha SH.22-Y-C: estado do Rio Grande do Sul. Brasília: CPRM, Programa Levantamentos Geológicos Básicos do Brasil, 1999. Nota Técnica, p. 9-56. Escala 1:250.000.
- Reis, M.S. 2020. Caracterização Morfoestrutural dos Depósitos Sedimentares da Formação Tupanciretã, no Planalto Meridional do Rio Grande do Sul, Brasil. São Francisco de Paula, 78p. Dissertação (Mestrado em Ambiente e Sustentabilidade), Universidade Estadual do Rio Grande do Sul.
- Riccomini, C., Sant'anna, L.G., Fambrini, G.L. Jacuí: nova bacia sedimentar Eocretácea no Sul do Brasil. *In*: Simpósio Nacional de Estudos Tectônicos e International Symposium on Tectonics of the Brazilian Geological Society. Anais... Sociedade Brasileira de Geologia, Curitiba, 2005.

- Riccomini, C., Sant'anna, L.G., Fambrini, G.L. 2016. The Early Cretaceous Jacuí Group, a newly discovered Volcaniclastic - epiclastic accumulation at the top of the Paraná Basin, southern Brazil. *Cretaceous Research*, 59: 111-128. DOI: 10.1016/j.cretres.2015.10.020
- Ribeiro, D.T.P. 2001. Diagênese das rochas do Membro Serra da Galga, Formação Marília, Grupo Bauru (Cretáceo da Bacia do Paraná), na região de Uberaba, Minas Gerais. *Revista Brasileira de Geociências*, 31(1): 7-12. DOI: 10.25249/0375-7536.20013110712
- Robaina, L.E.S., Trentin, R., Bazzan, T., Reckziegel, E.W., Verdum, R., Nardin, D.
 2010. Compartimentação Geomorfológica da Bacia Hidrográfica do Ibicuí, Rio
 Grande do Sul, Brasil: Proposta de Classificação. *Revista Brasileira de Geomorfologia*, 11(2): 1-23. DOI: https://doi.org/10.20502/rbg.v11i2.148
- Sanford, R.M., Lange, F.W. 1960. Basin-study approach to oil evaluation of Paraná Miogeosyncline, South Brazil. *Bulletin of the American Association of Petroleum Geologists*, 44(8): 1316-1370. DOI: 10.1306/0BDA61AF-16BD-11D7-8645000102C1865D
- Segev, A. 2000. Synchronous magmatic cycles during the fragmentation of Gondwana: radiometric ages from the Levant and other provinces. *Geological Survey of Israel*, 325(3/4): 257-277. DOI: 10.1016/S0040-1951(00)00122-0
- SEMA/FEPAM. Base Cartográfica do Estado do Rio Grande do Sul: Bacias Hidrográficas do Rio Grande do Sul. Porto Alegre: Secretaria Estadual do Meio Ambiente do Rio Grande do Sul e Fundação Estadual de Proteção Ambiental Henrique Luiz Röessler, 2018. Escala 1:25.000-BCRS25.
- Silva, F.P., Kiang, C.H., Chang, M.R.C. 2003. Perfis de Referência do Grupo Bauru (K) no Estado de São Paulo. *Geociências UNESP*, 22(Especial): 21-32.
- Silva, M.A.S., Favilla, C.A.C., Wildner, W., Ramgrab, G.E., Lopes, R.C., Sachs, L.L.B., Silva, V.A., Batista, I.H. Carta geológica do Brasil ao milionésimo: folha SH.21-Uruguaiana. Porto Alegre: Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil, 2004. Escala: 1:1.000.000.
- Silva, T.M. 2009. Superfícies geomorfológicas do planalto sudeste brasileiro: revisão teórico-conceitual. *Geo UERJ*, 3(20): 1-22. DOI: 10.12957/geouerj.2009.1426

- Silva, F.P., Kiang, C.H., Chang, M.R.C. 2009. Sedimentation of the Cretaceous Bauru Group in São Paulo, Paraná Basin, Brazil. *Journal of South American Earth Sciences*, 28: 25-39. DOI: 10.1016/j.jsames.2009.02.008
- Sleep, N.H. 1995. A wayward plume?. *Nature*, 378: 19-20. DOI: 10.1038/378019a0
- Soto, M., Perea, D., Veroslavsky, G., Rinderknecht, A., Ubilla, M., Lecuona, G. 2009.
 Nuevos hallazgos de restos de dinosaurios y consideraciones sobre la edad de la Formación Guichón. Sociedad Uruguaya de Geología, 15: 11-23.
- Suertegaray, D.M.A. Geomorfologia do Rio Grande do Sul, O Saber de Ab'Sáber. In: Modenesi-Gauttieri, M.C., Bartorelli, A., Mantesso-Neto, V., Carneiro, C.R., Lisboa, M. B.A.L. (Ed.). A Obra de Aziz Nacib Ab'Sáber. 1ª Ed. São Paulo: Beca-BALL, 2010. p. 334-343.
- Summerfield, M.A. Landforms and tectonics of plate interiors. In: Summerheld, M.A. (Ed.). *Global Geomorphology*. 1^a Ed. Nova York: Routledge, 2013a. p. 85-106.
 DOI: 10.4324/9781315841182
- Summerfield, M.A. Tectonics and Drainage development. In: Summerheld, M.A. (Ed.). *Global Geomorphology*. 1^a Ed. Nova York: Routledge, 2013b. p. 405-432. DOI: 10.4324/9781315841182
- Tankard, A.J., Jackson, M., Eriksson, K.A., Hobday, D.K., Hunter, D.R., Minter, W. E.L. Crustal Evolution of Southern Africa. 1^a Ed. Berlin: Springer-Verlag, 1982. 523p. DOI : 10.1007/978-1-4613-8147-1
- Tessari, R. L. & Giffoni, L.E. 1970. Geologia da Região de Piratini-Pinheiro Machado-Bagé - Rio Grande do Sul. *Boletim da Divisão de Geologia e Mineralogia*-DNPM-RJ, 246: 66-76.
- Trentin, R., Santos, L.J.C., Robaina, L.E.S. 2012. Compartimentação geomorfológica da bacia hidrográfica do Rio Itu: Oeste do Rio Grande do Sul Brasil. Soc. & Nat., 24: 127-142. DOI: 10.1590/S1982-45132012000100011
- Veroslavsky, G., Aubet, N., Martínez, S.A., Heaman, L.M., Cabrera, F., Mesa, V. 2019.
 Late Cretaceous stratigraphy of the southeastern Chaco Paraná Basin ("Norte Basin" Uruguay): the Maastrichtian age of the calcretization process.
 Geociências UNESP, 38(2): 427-449.

- White, R.S., Mckenzie, D.P. 1989. Magmatism and Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. *Journal of Geophysical Research*, 96(B6): 7685-7729. DOI: 10.1029/JB094iB06p07685
- Wildner, W., Ramgrab, G. E., Lopes, R.C., Iglesias, C.M.F. Mapa Geológico do Estado do Rio Grande do Sul. Porto Alegre: Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil, 2006. Escala: 1:750.000.
- Zerfass, H., Chemale, F., Schultz, C.L., Lavina, E., 2004. Tectonics and sedimentation in Southern South America during Triassic. *Sedimentary Geology*, 166: 265–292. DOI: 10.1016/j.sedgeo.2003.12.008

DETRITAL ZIRCON AND TOURMALINE UNRAVELLING PROVENANCE AND POLYCYCLIC ORIGIN OF CRETACEOUS TUPANCIRETÃ SUBBASIN, SOUTH BRAZIL

Artigo de Pesquisa: Revista Basin Research

Autores: Kelvyn Mikael Vaccari Ruppel¹, Norberto Dani¹, Marcus Vinicius Dorneles Remus¹, Guilherme Sonntag Hoerlle¹, Cristiano de Carvalho Lana², Henrique de Mamam Anzolin¹.

¹ Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Porto Alegre, Brasil.

² Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil

Corresponding author:

Kelvyn Mikael Vaccari Ruppel kelvynruppel@gmail.com Av. Bento Gonçalves, 9500 43136/110 Porto Alegre, RS, Brazil Zip code: 91501-970

ABSTRACT

The recognition and evaluation of polycyclic processes in sedimentary units are critical for proper provenance analysis and sedimentary system interpretation. The chemical composition and textural maturity of detrital tourmalines and zircons allow for source area restriction and transport and deposition process identification. This study investigates the origin and history of post-Gondwanan sediments of the Tupanciretã Formation in southern Brazil, which lacks provenance studies. The Tupanciretã Formation is in a similar setting of the Bauru Supersequence at the uppermost portion of the Paraná Basin. Detrital zircon ages indicate sediment provenance from the Transamazonian, Grenvillian, and Brasiliano orogenic cycles of the Rio Grande do Sul Shield and younger grains (280-128 Ma) record contribution from the Choivoi and Serra Geral igneous events, with a maximum deposition age of 127 Ma. Detrital tourmaline chemical analyses points to the Sul-riograndense Shield as the ultimate source, with metapelitic, metapsamitic and granitic origins. The predominant degrees of roundness are well rounded to rounded suggest evidence of sediment recycling from sedimentary units of the Paraná Basin, with important aeolian reworking involved. Zircon U-Pb signatures are compatible with the eastern sector of the Botucatu Formation in Rio Grande do Sul as the immediate source and the northeastern Sulriograndense Shield as the ultimate source. Intermediate sources between the Sulriograndense Shield and the Tupanciretã Formation were Gondwanan sedimentary units of the Paraná Basin, with possible participation from the Camaquã Basin.

Keywords: Source area; Roundness; Recycling; Tupanciretã Formation; Paraná Basin

1 INTRODUCTION

Sediment recycling in clastic systems is a widely accepted process, with estimates suggesting that up to 80% of detrital material in sedimentary systems is provided by pre-existing sedimentary rocks (e.g., Blatt & Jones, 1975; Caracciolo, 2020). Identifying the occurrence of this recycling is a critical component of the correct analysis and interpretation of provenance studies and evaluation of the source area of a sedimentary system. Recycled material undergoes a trajectory of various processes that can influence the final composition of sediments that will form the future sedimentary rock. The composition of the sedimentary rock is the result of a complex system that encompasses the paragenesis of source rocks, tectonics, relief morphology, climate, the energy of the transport system involved, and the possibility of alteration of individual grains along the sediment trajectory. The compositional information obtained from the analysis of the components of this rock reflects all this dynamic (Johnsson, 1993; von Eynatten & Dunkl, 2012). Combining this provenance information from the mineral assembly found in the unit allows the restriction of source areas and processes associated with its formation, determining the direction of transport of source rocks to the depositional site (Kowal-Linka & Stawikowski, 2013).

The result of polycyclic systems reflects directly on the predominance of ultrastable accessory grains such as zircon, tourmaline, and rutile, and on a high textural maturity (high degree of roundness). It is imperative to seek elements such as these that prove sedimentary recycling before its quantification (Moecher *et al.*, 2019). Recognizing polycyclic processes as participants in the formation of sedimentary units allows for more assertive provenance models, and it is important to distinguish between ultimate source and immediate source. The chemical data and dating of detrital minerals indicate their generating proto-source (ultimate source), but the textural maturity data will indicate ancient grains recycled in more modern sedimentary systems (immediate source) (Moecher *et al.*, 2019).

This study aims to investigate the origin and history of the sediments that form the Tupanciretã Formation, elucidating some of the conditions and processes to which it was subjected. From the detrital composition, its chemical analyses, and the textural maturity of representative tourmalines and zircons from the type-section of the Tupanciretã Formation, we defined the proto-sources of its heavy detrital minerals and the degree of reworking of these sediments, indicative of the polycyclic nature of this sedimentary system.

2 STUDY AREA

2.1 Tupanciretã Formation

The Tupanciretã Formation (Menegotto *et al.*, 1968) is a cover sequence related to the accommodation spaces of the Bauru Supersequence (Ruppel *et al.*, 2023), located at the top of the Paraná Basin (Milani *et al.*, 2007). This supersequence is related to the last crustal movements and thermal rearrangements related to the magmatic event of the Serra Geral Formation (Milani *et al.*, 1998; Fernandes & Coimbra, 2000) after the break-up of the Gondwana Supercontinent and the opening of the Atlantic Ocean (Milani, 1997).

The Tupanciretã Formation is restricted to the Rio Grande do Sul State (RS), Brazil, overlying lithologies belonging to the Serra Geral Formation (Fig. 1a), with maximum thicknesses ranging between 60 and 80 m (Menegotto *et al.*, 1968; Horbach *et al.*, 1986). The exposures of the Tupanciretã Formation occur in an isolated and laterally discontinuous manner, mainly in the northeast of the type-section in the municipality of Tupanciretã, RS (Gamermann *et al.*, 1973; Fig. 1b).

Figure 1: a) Geological map of the surroundings of the Tupanciretã Formation type-section and the location of the samples. b) Location of the samples along the Tupanciretã Formation with a focus on the type-section located approximately 1 km east of the city of Tupanciretã-RS, according to Menegotto *et al.* (1968). Modified from Wildner *et al.*, 2006.

The Tupanciretã Formation is predominantly composed of sandstones, locally conglomerates at the base and rare siltstones and mudstones at the top. It presents lateral faciological variation, with conglomerates in the southern portion, and finer sediments, sandstones, and siltstones in other directions. The sandstones are predominantly reddish in color, with fine to medium grainsize, poorly selected, with grains predominantly sub-angular to sub-rounded and occasionally conglomeratic (Menegotto et al., 1968). The dominant grains have a shiny, mamelon-like appearance characteristic of fluvial transport, while dull grains occur subordinately, originating from wind contribution (Menegotto, 1971). The main minerals in the sandstones are represented by quartz and feldspar altered to kaolinite. The sandstones are intensely altered, friable, and reddish due to the presence of iron oxides, as well as rare massive lenticular bodies that intercalate the sandstone sequence, mainly near the top. Massive levels were observed in the sandstones, but also distinct fluvial planar and crossstratifications, including trough and tangential cross-stratifications (Coulon et al., 1973; Horbach et al., 1986; Marin, 2022). No fossil records were found in the formation (Nowatzki et al., 1999).

Riccomini *et al.* (2016) consider the Tupanciretã Formation as part of the group they named the Jacuí Group (Riccomini *et al.*, 2005), which was established in the Lower Cretaceous, interdigitated with the Volta Alegre Formation, mainly composed of resedimented volcanic tuffs and pyroclastic material with syn-eruptive genesis. The Tupanciretã Formation dominates to the west and northwest, with paleocurrents indicating that the Jacuí Group was deposited with a general direction from S-SE to N-NW along its entire occurrence. Provisionally, the authors attributed an age to the group situated from the end of the Lower Cretaceous (134.5 \pm 2 Ma to 119 Ma).

The Tupanciretã Formation was deposited over the volcanic sequences of the Serra Geral Formation due to an important relief inversion, where the previously elevated areas of the Rio Grande Arc and the Alto Uruguai dome (currently represented by the Southern-Rio Grande-Uruguayan Shield) would have delimited the provenance for this new accommodation space during the Cretaceous. In the Tertiary, the area would have lost its depositional character due to geological processes that pushed it into an interfluve condition with intense erosion (Ruppel *et al.*, 2023).

3 POTENTIAL SOURCE AREAS FOR THE TUPANCIRETÂ FORMATION

Previous studies in geomorphology (Ruppel *et al.*, 2023), sedimentology (Menegotto, 1971), and X-ray diffraction (Coulon *et al.*, 1973) have only presented generic conclusions regarding the sediment provenance of the Tupanciretã Formation. These studies have broadly or indirectly connected the sediment to the Southern Rio Grande Shield and the volcanic rocks of the Serra Geral Formation.

3.1 Sul-Riograndense shield

The Sul-Riograndense Shield (SRGS) has a complex history, represented by Archean to Neoproterozoic rocks and the result of studies by various authors over the decades, synthesized by Chemale (2000) and Hartmann *et al.* (2007) and the references cited by them. The Sul-Riograndense Shield is in the central-southern sector of the Rio Grande do Sul state, southern Brazil, at the southern end of the Mantiqueira Province (Laux, 2021), and is the result of continental crust generation and deformation, mainly active during the Transamazonian (2260-2000 Ma) and Brasiliano (1000-470 Ma) orogenic cycles. It comprises various igneous and metamorphic associations of Precambrian age (> 540 Ma), having a direct correspondence with the Uruguayan Shield (Oyhantçabal *et al.*, 2009). Its lithologies are the result of magma generation, mantle fragments, and oceanic crust collision on the continental margins of the primordial shield, whose fragments constitute the current Rio de La Plata craton. These processes resulted in the agglutination of the SW portion of Gondwana in southeastern South America (Soliani, 1986), where the SRGS is inserted, involving complex deformational and compressional stages.

The oldest rocks that make up the Sul-Riograndense Shield are Archean (ca. 2550 Ma), such as gneisses from the Santa Maria Chico Complex, metamorphosed during the Paleoproterozoic (Hartmann, 1987; Hartmann, 1991). The petrotectonic assemblages of the shield were affected by a first tectonic cycle in the Transamazonian Event, which establishes the shield's basement, composed of deformed granitoids and metamorphic rocks.

There are two well-defined cycles between the Neoproterozoic and Eopaleozoic (1000 Ma and 500 Ma) acting on the Sul-Riograndense Shield, and four tectonic terranes or blocks (Fig. 2) that have geophysically defined boundaries. In the Neoproterozoic, all units and terranes are part of the Dom Feliciano Belt, a mobile belt

that aggregates rocks of this age and remnants of older basement (Fernandes *et al.*, 1995). The predominant lithologies for this period are gneisses, metagranitoids, and granitoids, sometimes intruded into metavolcano-sedimentary sequences. The tectonic events of the late Neoproterozoic (640-590 Ma) resulted in a high number of basement septa inserted into the granitic suites of the Pelotas Batholith.

Figure 2: Geological map of Rio Grande do Sul highlighting the Tupanciretã Formation and lithological associations of possible source areas with indication of the main Sul-Riograndense Shield tectonic units. Modified from Wildner *et al.*, 2006 and Hartmann *et al.*, 2007.

The Neoproterozoic era is characterized by several geological events in the Sul-Riograndense Shield. The Brasiliano Cycle was responsible for the construction of the Dom Feliciano Belt, which began around 880 Ma and includes the development of the São Gabriel Terrane (753-680 Ma) and the Dom Feliciano Orogeny, which resulted in the Pelotas Batholith, followed by extensive late- and post-collisional granite intrusions. The Taquarembó Terrane (Soliani, 1986; Hartmann *et al.*, 2011) is composed of granulitic complexes partially reworked granulitic during the Brasiliano Event. It was intruded by Brasiliano granites and, in some areas, is covered by volcanosedimentary rocks from the same period, which are only slightly deformed. The São Gabriel Terrane is composed of juvenile rocks, ranging in age from Mesoproterozoic to Neoproterozoic (950-680 Ma), including plutonic, metavolcanic, and metasedimentary rocks (e.g., Gubert *et al.*, 2016). The Tijucas Terrane has two subdomains, one of Paleoproterozoic age and the other of Neoproterozoic to Early Paleozoic age (2350-780 Ma), with a large association of metasedimentary and metavolcanic rocks ranging from greenschist to amphibolite facies, as well as fragments of Paleoproterozoic basement (e.g., Pertille *et al.*, 2015).

The Pelotas Batholith is predominantly composed of granitic suites with ages ranging from 650 to 540 Ma (e.g., Philipp *et al.*, 2002; 2003; Philipp & Machado, 2005) and occurrences of ancient juvenile and crustal fragments of 2300-1500 Ma. The enclaves in the batholith's granitoids are of gneissic and metasedimentary origin, possibly representing remobilized Transamazonian basement. The entire SRGS area was affected by deformational events, culminating in the collapse of the Dom Feliciano Belt and the formation of the initial deposits of the Camaquã Basin, following the stabilization of the Gondwana Supercontinent.

The Camaquã Basin is considered by some authors as a retroarc basin (e.g., Borba *et al.*, 2008) and contributed to the reworking of minerals from the SRGS. The sedimentary units of the Paraná Basin, which were deposited during the Paleozoic-Mesozoic interval, are later than those of the Camaquã Basin.

3.2 Paraná Basin volcanic rocks

The basaltic and acidic rocks of the Paraná Basin occur in the Serra Geral Formation (Fig. 2). They belong to the Paraná-Etendeka Igneous Province and were formed in the Lower Cretaceous, associated with the western fragmentation of the Gondwana Supercontinent. In Brazil, the lava sequence has an age range from 136 Ma to a minimum of 119 Ma (Wildner *et al.*, 2006; Hartmann *et al.*, 2017).

The Serra Geral volcanic package covers an area of approximately 917,000 km² (Frank *et al.*, 2009) in the southern portion of South America, with 80% of the outcropping area located in Brazil and the remaining in Argentina, Paraguay, and

Uruguay. In this portion, basaltic rocks predominate, with subordinate andesites. The interdigitation of acidic and basic flows is frequent in the middle portion up to the top of the volcanic pile. Lenses of aeolian sandstones with metric to decametric thicknesses, which intercalate with the first basic flows and may appear less frequently in the upper levels of the volcanic pile, are also common (Roisenberg & Viero, 2000).

The age of the acidic volcanism determined by the Ar-Ar method is 132.1 ± 0.19 Ma (Wildner *et al.*, 2006), which is approximately the same as the most voluminous period of basic volcanism, with which it is interdigitated.

4 MATERIALS AND METHODS

The type-section was selected as the sampling area as it is considered the most representative portion of the formation, where its strata represent the possible facies that can be found throughout the unit (Boggs, 2014). In addition, due to the typical incoherent nature of the formation, intense weathering, and the advance of erosion and agriculture areas in the region, there is a great difficulty in locating outcrops with good exposure.

Six representative samples were collected from individual sedimentary structures (Fig. 3) at the type-section and its surroundings (Fig. 1). Portions with small-scale cross-beddings, planar stratifications, and variations in grain size were selected for sampling. Sedimentary facies closer to neutral compositions were privileged, i.e., without sediment classification effects, and those that reflected the interaction of external forces with the environment and the predominance of the most representative grain size of the unit (Caracciolo, 2020), which is fine to medium sand (Menegotto *et al.*, 1968). The selected samples used in this study were the following samples: TUP 1B, TUP 2A, TUP 3B, TUP 7A, TUP 8A, and TUP 9B.

Figure 3: Position of the sampled facies along the type-section and surroundings, and schematic illustration of the strata. TUP 8A: Fine sandstone with planar bedding. TUP 7A: Clast-supported conglomerate with fine sandy matrix and basaltic clasts up to 15 cm. TUP 1B: Medium sandstone with small-scale cross-bedding marked by basalt pebbles of 1 to 2 cm. TUP 2A and 3B: Medium sandstone with small-scale cross-bedding. TUP 9B: Fine sandstone with clay, planar bedding.

Samples were wet sieved without crushing due to the unconsolidated nature, selecting the grain size fraction between 0.062 mm and 0.250 mm (Fedo *et al.*, 2003). After separation of the fraction of interest, samples were dried in an oven at 80°C. Samples were processed in the Frantz Isodynamic Magnetic Separator to separate garnet, tourmaline, and monazite. The magnetic fractions of interest were concentrated at 0.4 A (for garnet), 0.8 A (for tourmaline) - lateral inclination of 20° - and 1.2 A (for monazite) - lateral inclination of 5° (Rosenblum & Brownfield, 2000). Of these, only tourmaline was found in the samples. Another heavy mineral listed was zircon, but it is not magnetic. The zircon separation was done using heavy liquids, i.e., bromoform (d = 2.89 g/cm3). From the processed samples, it was possible to separate tourmaline and zircon in six of them, while garnet and monazite are absent.

For the chemical analysis of tourmaline grains, random manual separation was carried out under a binocular loupe, followed by mounting and polishing on 1-inch resin mounts. Chemical analyses were performed on a Cameca SXFive Electron Microprobe with metallization in a Jeol JEE 4B Metalizer at the Electronic Microprobe Laboratory of the CPGq-UFRGS. The analytical conditions used were 15 keV 10 nA with a 1 μ m beam. The crystal-chemical and stoichiometric refinement of tourmalines from their chemical analyses was performed using the WinTcac software (Yavuz *et al.*, 2014). A total of 1,481 tourmaline analyses were obtained (751 core and 730 border analyses).

LA-ICP-MS U-Pb dating of detrital zircon grains was performed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a ThermoScientific Element 2 (SF) ICP-MS coupled to a CETAC LSX-213 G2+ laser system (IGL-UFOP). The GJ-1 zircon (Jackson *et al.*, 2004) was used as the primary standard and the Blue Berry zircon (Santos *et al.*, 2017) as the secondary standard. The Saturn software for laser ablation was used for data reduction (Silva *et al.*, 2022). Kernel Density Estimates (KDE) diagrams were elaborated using the IsoplotR software (Vermeesch, 2018). The internal structure of zircon crystals was analyzed through cathodoluminescence (CL) images using a JEOL JSM-6610LV scanning electron microscope (DEGEO-UFOP). In total, 557 zircon grains were analyzed from random manual selection, ranging from a maximum of 126 grains (sample TUP 1B) to a minimum of 98 grains (sample TUP 8A). Of these, 388 grains were validated with a degree of concordance >90%, ranging from populations with 93 grains (sample TUP 2A).

The roundness measurements of tourmaline and zircon grains were obtained using the AnalyZr software (Scharf *et al.*, 2022). All chemical analyses, U-Pb data, roundness analyses, and images are presented in the supplementary material.

5 USING TOURMALINE AND ZIRCON IN SEDIMENT PROVENANCE ANALYSES

Heavy mineral associations are sensitive indicators of sediment provenance, particularly when they are less susceptible to degradation processes in the sedimentary cycle and can represent multiple cycles (e.g., Hubert, 1962; Mange & Maurer, 1992; Morton & Hallsworth, 1994, Remus *et al.*, 2008). Zircon, tourmaline, and rutile (ZTR) are considered ultra-stable minerals and constitute a maturity index of clastic sediments due to their high mechanical and chemical stability (Hubert, 1962, Henry & Dutrow, 1996; Henry & Dutrow, 2018). Generally, high ZTR is typical of polycyclic sediments derived from recycled sedimentary rocks, while low ZTR indicates first-cycle sediments.

Through separations of magnetic and dense liquid fractions, heavy minerals such as tourmaline and zircon were concentrated. They provide substantial data for the analysis of the provenance and cyclic nature of the sediments forming the Tupanciretã Formation.

The chemical composition of tourmalines is currently used as an important provenance indicator for different lithologies (Henry & Guidotti, 1985). Being a common accessory in various rock types (igneous, metamorphic, or sedimentary) and chemically and mechanically resistant during transport (due to its high hardness - ~7 Mohs - and absence of cleavages), it becomes a good petrogenetic indicator of the investigated clastic material (Dutrow & Henry, 2011; Bosi, 2018; Henry & Dutrow, 2018). Together with zircon and rutile, tourmaline is one of the most durable heavy minerals in sedimentary environments (van Hinsberg *et al.*, 2011a).

Its complex chemical variability, combined with a wide range of pressure and temperature stability, makes it an excellent indicator of the environment in which it formed (Henry & Dutrow, 1996; van Hinsberg & Schumacher, 2007; Jia *et al.*, 2010; Slack & Trumbull, 2011; van Hinsberg *et al.*, 2011b), as there is a relationship between its composition and the type of rock formation, preserving this signature with a negligible diffusion rate of intracrystalline elements (Henry & Guidotti, 1985; Dutrow & Henry, 2011; van Hinsberg *et al.*, 2011a; Henry & Dutrow, 2018; Dutrow & Henry, 2018). They are commonly found in pegmatites and granitic veins, but also in rocks affected by thermal metamorphism as a product of boron metasomatism (Henry & Dutrow, 1996; Deer *et al.*, 2013).

Tourmaline in sediment retains the signature of its original host, even after successive episodes of burial and exhumation, making it a good indicator of provenance for clastic sedimentary rocks. The determination of its chemical composition together with textural characteristics reliably determine the provenance of different lithological products (Henry & Guidotti, 1985; van Hinsberg *et al.*, 2011a), while the degree of grain roundness provides general information on sedimentation and transport cycles experienced by the clasts (Krynine, 1946; Folk, 1980).

Zircon is an important accessory mineral in igneous and metamorphic rocks and is absent from many mafic and ultramafic rocks (Corfu *et al.*, 2003; Andersen, 2005; Andersen *et al.*, 2019; Padilha *et al.*, 2022). Its high hardness (~7.0 Mohs) and rare cleavage make it an important component of detrital mineralogy, as it often survives multiple cycles of weathering and sedimentation, and is considered ultra-stable, just like tourmaline (Morton *et al.*, 2005). Its importance also lies in its ability to incorporate up to 1% U and Th, which makes it a relevant geochronometer through the radioactive decay of these elements (Vermeesch, 2012).

Zircon data is useful in analyzing sedimentary rocks because it allows correlations with their source rocks, regardless of the number of transport and sedimentation cycles (Fedo *et al.*, 2003; Barros *et al.*, 2010; Deer *et al.*, 2013; Liu *et al.*, 2013). These correlations are established from the U-Pb ages of detrital zircons,

comparing them with the possible source areas of regional or paleogeographic context. The established method for results with geological significance in acquiring this potential correlation information is the random selection of zircon grains that represent the sediment of interest in a population of at least 35-70 grains (Andersen, 2005).

The possibility of evaluating this geochronological system allows the verification of zircon dating data that are more aligned with the purpose of use as provenance tracers in sedimentary systems, making the obtained data more refined and representative of the primary source area. For this reason, in terms of provenance analysis, only concordant zircons (when >90% of the U-Pb system coincides with the concordia line) are indicated for this purpose (Nemchin & Cawood, 2006; Moore *et al.*, 2012; Zeh *et al.*, 2016; Padilha *et al.*, 2022).

6 RESULTS

6.1 Provenance diagrams for detrital tourmaline grains

Henry & Guidotti (1985) proposed ternary discrimination diagrams for tourmaline, based on the molar proportion of the chemical subsystems AI-Fe-Mg and Ca-Fe-Mg. These diagrams can indicate various geological environments of tourmaline formation through specific types of source rocks. The use of such diagrams allows for the interpretation of source areas and models of provenance of detrital tourmalines, contributing to the understanding of the formation and evolution of clastic units (e.g., Aubrecht & Krištín, 1995; Remus, 2008; van Hinsberg *et al.*, 2011b).

From the chemical analyses of tourmalines from the Tupanciretã Formation, 1,481 analyses were used for the AI-Fe-Mg and Ca-Fe-Mg subsystems, with 751 representing cores and 730 representing grain borders. These diagrams make it possible to identify granitic igneous tourmalines, represented in the field 2 of the AI-Fe-Mg diagram, as well as metamorphic metapelitic/metapsamitic tourmalines in fields 4, 5, and 6 (rare) (Fig. 4). This is also confirmed by considering the Ca-Fe-Mg diagram (synthesized in Fig. 5 and presented in the supplementary material).

Figure 4: This diagram, considering Al-Fe-Mg, compositionally divides (in molar proportion) the compositional variation of tourmalines for different rock types. It includes a total of 1,481 points plotted between centers and rims of six samples from the Tupanciretã Formation. Fields: 1- Li-rich granitic rocks. 2- Li-poor granitic rocks. 3- Fe3+-rich granitic rocks (hydrothermally altered granites). 4- Al-rich metapelites and metasandstones. 5- Al-poor metapelites and metasandstones. 6- Fe3+-rich quartz-tourmaline rocks, calc-silicate rocks, and metapelites. 7- Low-Ca ultramafic and Cr-V-rich metasedimentary rocks. 8- Metacarbonates and metapyroxenites. Modified from Henry & Guidotti (1985) and van Hinsberg *et al.* (2011a).

Figure 5: Synthesis of the fields from the AI-Fe-Mg and Ca-Fe-Mg diagrams (Henry & Guidotti, 1985) representing the compositional signature of tourmalines from the Tupanciretã Formation and the correlation of their chemical origins with the geology of multiple granitic and metapelitic/metapsamitic rocks of the SRGS northeast of the Rio Grande Arc.

Most of the tourmalines found vary between alkaline group tourmalines of the Buergerite/Schorl types (predominance of Na, Fe, and Al), and calcic group tourmalines of the Dravite type (predominance of Na, Mg, and Al). There were samples that tended towards the vacancy-X group of the Foitite type, also called "Oxy-schorl," where vacancies predominate over Na. This Schorl-Dravite series represents a complete solid solution (Henry & Guidotti, 1985; Deer *et al.*, 2013).

Turmalines observed under the optical microscope appear homogeneous and do not exhibit distinct zoning. Similarly, it is possible to observe that the main trend in provenance diagrams is that cores and rims tend to exhibit very similar chemical equilibria, and overall, zoning is rare and does not provide new information about growth environments (Henry & Guidotti, 1985; Pezzotta & Laurs, 2011; van Hinsberg *et al.*, 2011a).

Poorly zoned tourmalines indicate that their development probably occurred under nearly constant PT conditions, while chemical zoning indicates compositional changes caused by progressive metamorphism or compositional changes of igneous fluids, responding chemically to different stages during their crystallization (Henry & Guidotti, 1985; Henry & Dutrow, 1996; van Hinsberg & Schumacher, 2007; Marschall & Jiang, 2011). These compositional variations, if present, would have been preserved even when the grains are weathered and transferred to sediment (van Hinsberg *et al.*, 2011a). It should be noted that most grains are rounded, indicating significant abrasion, and therefore, many of them may have lost their signature edges.

6.2 Detrital zircon ages

Radiometric dating of zircon populations is an important component of provenance studies. When these geochronological data can be integrated with information about the lithologies of the source region (such as the data obtained from tourmalines), it is possible to reconstruct an important and comprehensive part of the history of the source areas.

The number of randomly sampled zircons was TUP 1B = 127 grains, TUP 2A = 121, TUP 3B = 112, TUP 8A = 98, and TUP 9B = 96, ensuring populations with high representativeness of the samples. However, only concordant zircons were used in the final U-Pb age histograms, avoiding discordant or uncertain data regarding Pb loss in the system (e.g., Gehrels, 2012). Considering only concordant zircons, the populations varied from 60 to 93 grains in the samples, ensuring a probability of more than 95% that a population with representativeness below 5% in the entire sample has been included (Andersen, 2005; Morton *et al.*, 2005).

Thus, there is clustering in three main populations, with peaks in the age ranges of 280-250 Ma, 570-530 Ma (peak of the largest population), and 1025-1080 Ma (Fig. 6). There are three secondary populations with peaks in the ranges of 134-128 Ma, 630 Ma, and 2143-2077 Ma. The youngest age obtained was 127 Ma whereas the oldest was 3296 Ma. The populations can also be exemplified in CL images (Fig. 7).

Figure 6: U-Pb geochronology data for detrital zircons from the Tupanciretã Formation presented in KDE (Kernel Density Estimation). Data obtained through LA-ICP-MS methodology using zircons with >90% concordance.

Figure 7: Representative cathodoluminescence images of detrital zircon grains from the Tupanciretã Formation. Red circles represent the location of the analyzed spot through U-Pb LA-ICP-MS. Red numbers correspond to the age obtained for each spot, and white numbers correspond to the spot number.

6.3 Textural maturity of tourmaline and zircon grains

The textural maturity of grains during the sedimentary cycle is related to mechanical damages and hydraulic and aeolian processes during transport and final deposition. The combination of fracturing and abrasion of the grains during these processes allows even minerals with high hardness to acquire a high degree of roundness if the period is long enough to encompass successive cycles (Morton & Hallsworth, 1999; e.g., Zoleikhaei *et al.*, 2022).

The degree of roundness of a particle refers to the sharpness of its corners or edges. If these corners or edges are smooth or nonexistent, the grain is said to be well-rounded, otherwise it falls into the category of poorly-rounded (Wadell, 1935; Krynine, 1956; Boggs, 2014). The mathematical value for grain roundness was described by Wadell (1935), who called it the roundness coefficient, where for a perfectly rounded grain the index is 1, while fractional values are used to classify less rounded particles (Rodriguez *et al.*, 2013).

The roundness coefficient of tourmaline and zircon grains was calculated using the AnalyZr software (Scharf *et al.*, 2022). The classification used was based on Powers (1953), which subdivides the degrees of roundness into 6 classes (Table 1).

Class Intervals								
(Powers, 1953)								
Cla	ass limits	Grade						
Min.	Max.	Terms						
0,12	0,17	Very angular						
0,17	0,25	Angular						
0,25	0,35	Subangular						
0,35	0,49	Subrounded						
0,49	0,70	Rounded						
0,70	1,00	Well rounded						

Table 1: Roundness classes according to Powers (1953).

6.3.1 Tourmaline

The roundness degree of the turmaline grains (Fig. 8a) is distributed into four roundness classes with slightly different distributions among them (Fig. 9a). The grains are predominantly well-rounded (69.5%-57.3%) to rounded (35.2%-26%), with very few subrounded (9.7%-2.8%) and even rarer subangular grains (<0.93%) (Table 2).

Figure 8: Examples of the roundness degree of detrital tourmaline and zircon grains in the Tupanciretã Formation according to Powers' classification (1953). a) Strong tendency towards rounding of tourmaline grains, with rare subangular grains and no angular grains observed. a1) TUP 3B: 0.28 = subangular. a2) TUP 7A: 0.30 = subangular. a3) TUP 7A: 0.38 = subrounded. a4) TUP 9B: 0.47 = subrounded. a5) TUP 3B: 0.49 = rounded. a6) TUP 8A: 0.59 = rounded. a7) TUP 2A: 0.85 = well-rounded. a8) TUP 1B: 0.93 = well-rounded. b) Strong tendency towards rounding of zircon grains, with more subrounded to subangular grains and rare angular grains. b1) TUP 2A: 0.22 = angular. b2) TUP 8A: 0.22 = angular. b3) TUP 1B: 0.29 = subangular. b4) TUP 3B: 0.32 = subangular. b5) TUP 2A: 0.35 = subrounded. b6) TUP 9B: 0.47 = subrounded. b7) TUP 9B: 0.53 = rounded. b8) TUP 3B: 0.69 = rounded. b9) TUP 2A: 0.83 = well-rounded. b10) TUP 8A: 0.91 = well-rounded.

Figure 9: Distribution of the roundness degree of detrital tourmaline and zircon in percentage values. a) The prevalence of well-rounded grains is noticeable in all tourmaline samples. Subrounded grains do not exceed 9.7% per sample, while subangular grains are negligible, and angular grains are absent. b) Rounded zircon grains are predominant, but there is also a significant presence of subrounded grains. Subangular grains can reach up to 10.2% per sample, with rare angular grains occurring as well.

Tourmalines	TUP 1B		TUP 2A		TUP 3B		TUP 7A		TUP 8A		TUP 9B	
Grade Terms	Number of Grains	%										
Well rounded	91	69,47	71	57,26	76	58,91	71	66,36	83	67,48	72	57,60
Rounded	34	25,95	41	33,06	46	35,66	32	29,91	38	30,89	44	35,20
Subrounded	5	3,82	12	9,68	6	4,65	3	2,80	2	1,63	9	7,20
Subangular	1	0,76	0	0,00	1	0,78	1	0,93	0	0,00	0	0,00
Total	131	100	124	100	129	100	107	100	123	100	125	100

Table 2: Roundness classes (Powers, 1953) of tourmaline grains in the Tupanciretã Formation.

6.3.2 Zircon

The roundness analyses of the zircon grains (Fig. 8b) also show a slight difference in the dispersion of the classifications, occurring in five classes (Fig. 9b). The zircons are predominantly rounded (50%-39.8%) to subrounded (40.7%-22.1%),

with few well-rounded (27.1%-8.3%) and subangular (10.2-2.3%) grains and rare, but present, angular grains (<0.9%) (Table 3).

Zircon	TUP 1B		TUP 2A		TUP 3B		TUP 8A		TUP 9B		
Grade Terms	Number of Grains	%	Number of Grains	%	Number of Grains	%	Number of Grains	%	Number of Grains	%	
Well rounded	13	11,61	14	10,94	33	27,05	9	8,33	15	12,61	
Rounded	56	50,00	61	47,66	59	48,36	43	39,81	53	44,54	
Subrounded	38	33,93	49	38,28	27	22,13	44	40,74	43	36,13	
Subangular	5	4,46	3	2,34	3	2,46	11	10,19	8	6,72	
Angular	0	0,00	1	0,78	0	0,00	1	0,93	0	0,00	
Total	112	100	128	100	122	100	108	100	119	100	

Table 3: Roundness classes (Powers, 1953) of zircon grains in the Tupanciretã Formation.

7 DISCUSSION

7.1 Comparison of heavy minerals from the Tupanciretã Formation with adjacent areas

7.1.1 Potential source rocks for detrital tourmalines

So far, there have been no in-depth studies on the composition and provenance of tourmaline in sedimentary rocks from Rio Grande do Sul. Even for the igneous or metamorphic Sul-Riograndense Shield rocks, there are few detailed compositional analyses of tourmalines, which hinders comparison and precise indication of the location of the source rocks.

The composition of the tourmaline grains found in the Tupanciretã Formation is varied, suggesting diversity of source rocks. In the ternary diagram of tourmaline provenance based on the AI-Fe-Mg composition (Fig. 5) by Henry & Guidotti (1985), the grains are predominantly located in three fields: granitic rocks poor in Li (field 2), AI-rich metapelites and metapsammites (field 4) and AI-poor (field 5). Rare grains represent quartz-tourmaline rocks rich in Fe³⁺, calci-silicate rocks and metapelites (field 6).

Most of the points (total average of 73.21%) in the AI-Fe-Mg diagram have a metamorphic origin (Fig. 10). The contribution of AI-saturated metasedimentary source rocks is predominant. Due to the large compositional and stability range of tourmaline, it becomes difficult to evaluate the metamorphic conditions of formation of the studied

tourmalines exclusively from chemical analyses. However, if tourmalines commonly form under low to medium grade metamorphic conditions up to upper amphibolite facies (Thomson, 2006), the most likely source lithologies are therefore mica schists and paragneisses.

A total average of 26.8% of the points has a typical origin of granitic rocks (and their varieties of pegmatites and aplites) in the AI-Fe-Mg diagram. This distribution occurs quite homogeneously in the samples, but has a greater presence in sample TUP 1B.

Figure 10: Distribution of points in percentage among the fields of the AI-Fe-Mg provenance diagram (Henry & Guidotti, 1985) for the tourmalines of the Tupanciretã Formation. Note the predominance of metamorphic rock provenance (fields 4, 5, and 6) over granitoids sources (field 2).

There is a compositional similarity of tourmalines in the assembly of the 6 analyzed samples, indicating that the source of the clastic material that constituted the Tupanciretã Formation was similar throughout the type-section and surroundings. This can also be observed in the dominance distribution of provenance fields, which is consistent with a system fed by the same sources. There is a massive contribution of tourmalines related to low- to medium-grade metamorphic rocks (metapelites). The scarcity or absence of garnets in the heavy mineral assembly of the analyzed samples makes it impossible to evaluate the presence of rocks with higher grades of metamorphism as a source area of the tourmalines found in the Tupanciretã Formation, but it should be considered that various weathering sedimentary cycles may have contributed to such scarcity or absence.

The general assembly of heavy minerals in sandstones of the Tupanciretã Formation was analyzed by Menegotto (1971), who observed the sporadic occurrence of unstable titanite and fragmented and rounded garnets. He also recognized the frequent occurrence of staurolite. The presence of these heavy minerals indicates the provenance of primitive material (ultimate source) of the South Brazilian Shield, but reworked in later cycles in an arid climate, with very slight diagenesis in its final deposition periods. The occurrence of staurolite also indicates the primitive source area of terranes with amphibolite facies metapelites (medium grade).

Metamorphic rocks, mainly metapelites, are generally the second most common geological host of tourmalines after igneous rocks. Tourmalines in metamorphic rocks have a wide stability range from green schist to amphibolite facies but disappear at higher temperatures corresponding to upper amphibolite and granulite facies. In metamorphic rocks, it is common for their grains to grow from pre-existing detrital cores of tourmalines, which is not verified in the tourmalines found in the Tupanciretã Formation, suggesting a single genesis. They also develop during the release of boron mainly mobilized under progressive metamorphism on phyllosilicates (mainly the breakdown of muscovite and chlorite in low-grade metamorphism).

At low temperatures such as diagenetic and epigenetic environments, tourmaline can develop zoning and overgrowths from detrital cores. The absence of these characteristics in the tourmalines found in the Tupanciretã Formation indicates that there was no mobilization of boron or destabilization of other potentially boron-rich minerals such as phyllosilicates in this unit.

7.1.2 Potential source rocks for detrital zircons

The age spectra of different populations of zircons obtained from the Tupanciretã Formation represent the proto-source groups that composed the provenance terrain that supplied clastic material for its deposition. Geochronological interpretation of zircon U-Pb data obtained from Tupanciretã Formation samples indicate three main age peaks delimited by KDC (280-250 Ma, 570-530 Ma, 1025-1080 Ma), and three secondary peaks (134-128 Ma, 630 Ma, 2143-2077 Ma) restricted to younger and older ages, with the 630 Ma peak composing with the highest density of

population in most samples (500-700 Ma range). These age peaks represent geological events occurring in source areas and are compatible with extrusive igneous events and tectonic cycles that generated granitoids and metamorphic rocks in the SW of Gondwana (Fig. 6).

Zircons that compose the secondary age peak between 135-127 Ma are interpreted as originated from extrusive volcanic rocks, consistent with the ages of the Serra Geral volcanism (Wildner *et al.*, 2006; Hartmann *et al.*, 2017). These zircons corroborate the existence of basaltic lithoclasts found in basal conglomerates (Menegotto *et al.*, 1968; Coulon *et al.*, 1973) but indicate that the Serra Geral Formation not only contributed coarse sediments in the basal portions of the unit.

Detrital zircons with ages from 279 to 251 Ma may be linked to the igneous event Choiyoi. The Choiyoi Magmatic Province (W Argentina) is a significant intermediate to acidic magmatic event that occurred in the southwest sector of Gondwana with ages between 286 Ma and 247 Ma, having had a volcanic activity lasting 39 Ma during the Permian and generating felsic volcanic rocks of the andesitic breccias, dacitic to rhyolitic ignimbrites, and pyroclastic flows type before Andean subduction. Such volcanism was capable of injecting enormous volumes of tephra into the troposphere-stratosphere (Rocha-Campos *et al.*, 2011; Sato *et al.*, 2015; Spalletti & Limarino, 2017). Volcanic ash from this igneous event would be contemporary and would have deposited as ash layers and volcanogenic glass in the Irati and Rio do Rasto formations (Silva, 2021). This voluminous volcanism is so significant that it may have contributed to the Permian warming and environmental degradation (Nelson & Cottle, 2019), being considered one of the largest silicic magmatic events in the SW of Gondwana (Bastías-Mercado *et al.*, 2020).

The zircons composing the main peaks of the highest population from 994-470 Ma represent rocks formed or metamorphosed during the Brasiliano Orogenic Cycle. These rocks are the dominant occurrences in the Sul-Riograndense Shield, having contributed the most clastic material and predominance of populations in the analyzed samples. The oldest grains in the secondary peak ranging from 2177 to 2072 Ma represent rocks formed or metamorphosed during the Transamazonian Orogenic Cycle. Rocks with ages in this interval occur especially in the Taquarembó Block, with subordinate occurrences in the eastern sector of the SRGS. The oldest grains are rare, with ages between 3296 to 2403 Ma, and may be related to generative rocks derived from recycling of ancient crusts. Zircon grains with ages of this type are found in the

Passo Feio Metamorphic Complex or as metamorphic xenoliths representing the basement, which occur as fragments relative to the Rio de La Plata Craton.

The dating of detrital zircons provides the maximum age of deposition of this sub-basin, indicated by the ages of zircons compatible with the Serra Geral volcanism, with the minimum age found being 127 Ma.

7.2 Evidence of sediment reclycling

The variation in shape of a sediment particle provides an idea of the distance it has traveled before its deposition. Roundness and size tend to indicate mixing from various source areas, where more rounded grains are indicative of previous cycles of erosion and abrasion (Krynine, 1946; Powers, 1953; Morton & Hallsworth, 1999). However, roundness in fluvial systems is slow, inefficient, and complex (Garzanti, 2017), and a direct connection with the transport distance and particle trajectory in such an ancient system requires further studies, as such models are still being developed by the scientific community (Caracciolo, 2020). The influence of eolian processes referred to by Menegotto (1971) also plays a role, which has greater competence in roundness than fluvial processes (Folk, 1980; Caracciolo, 2020).

The degree of roundness of grains not only reflects a longer transport trajectory of sediment but is also closely linked to the reworking in depositional environments with high competence for such (e.g., marine, eolian, and fluvial environments). Another justification for the different degrees of roundness of the same mineral is differential reworking within various sedimentary cycles. Due to the abundance of sedimentary rocks in the crust, recycled sediments are very common (e.g., Zoleikhaei *et al.*, 2022).

Together with zircon, tourmaline has been an important index of maturity of clastic sedimentary environments due to their great mechanical and chemical stability (Henry & Dutrow, 1996). This robust nature of both minerals due to their high hardness and undeveloped cleavage allows them to survive multiple sedimentary cycles (Krynine, 1946). As tourmaline and zircon grains move through sedimentary transport systems, they break or are polished to become more rounded. The accumulation of these physical abrasion effects during multiple cycles increases the textural maturity of the sediment, causing polycyclic grains to tend to be more rounded than those of the first cycle (e.g., Zoleikhaei *et al.*, 2022).

Tourmalines have greater mechanical resistance than zircons (Thiel, 1940; 1945), yet well-rounded to rounded tourmalines predominate in the sediments of the Tupanciretã Formation (Fig. 9a). This suggests the presence of recycled detrital minerals from pre-existing sedimentary rocks through transport and subsequent cycles of sedimentation and erosion (Caracciolo, 2020).

The transport environment is generally unable to select specific age populations (Muhlbauer *et al.*, 2017). This multiplicity of populations can be observed in the U-Pb age ranges of detrital zircons, which already suggest multiple sedimentary cycles for such minerals (Fedo *et al.*, 2003). From this perspective, it is observed that the more angular zircons coincide with younger ages (Serra Geral event), tending towards intermediate levels of roundness (indices 0.35-0.60) (Fig. 11). However, there is a clear trend towards higher degrees of roundness towards the oldest ages found (>700 Ma), where subangular to angular grains are practically nonexistent.

The roundness of particles indicates a high textural maturity achieved by these grains over time, both due to the longer distance traveled and the policyclic nature of these sediments, as can be seen in grains of intermediate ages (related to the Choiyoi igneous event and orogenic cycles of the SRGS), which can even reach the highest roundness class in all samples within their respective age ranges.

Figure 11: Age vs. roundness degree plot of detrital zircon grains from the Tupanciretã Formation. The y-axis shows roundness values according to the Wadell method (1935) and Powers' classification (1953).

The younger grains, some of which are also partially rounded, allow inferring depositional environments with higher abrasive energy of the transporting agent (Wiesnet, 1961), which were inferred as sporadic flash flood events in a semi-arid environment with important eolian contribution (immediate source) (Menegotto *et al.*, 1968; Menegotto, 1971; Ruppel *et al.*, 2023).

No significant changes were observed that distinguished the different samples regarding textural maturity, allowing us to suppose that there was no significant alteration of the final proto-sources of provenance over the unit's duration.

7.3 Tectonic significance of the Tupanciretã Formation

From the data on genesis, age, and reworking of detrital tourmaline and zircon grains contained in the Tupanciretã Formation type-section, we can evaluate that the igneous and metamorphic rocks of the SRGS were the primary sources of many of the heavy minerals analyzed.

For these areas of the shield to act as proto-sources of these sediments, it implies that they were under a paleomorphology that favored ancestral drainage systems carrying these materials from elevated areas in the South to depositional areas in the North (Fig. 12).

Figure 12: Block diagram of the provenance model of the Tupanciretã Formation. The Rio Grande Arc and the Alto Uruguai dome acted as elevated areas, directing the provenance of detrital material from the SRGS to lower areas through ancestral drainage systems northeast of the arc and the SRGS. These drainage systems remobilized materials from various sedimentary cycles through the Paraná Basin and possibly the Camaquã Basin, culminating in the deposition of the material in the sub-basin of the Tupanciretã Formation.

The tectonic elements that controlled these proto-sources acted in the uplift processes of the Shield through the Alto Uruguai Dome and Rio Grande Arc, which allowed the provision of this clastic system, supporting a shared provenance model between igneous and metamorphic rocks from the Trans-Amazonian, Grenvillian, and Brasiliano orogenic cycles to the northeast of the arc and SRGS (Ruppel *et al.*, 2023). The origin of the materials in these elevated basement areas is not only recorded by the granitic and metapelitic/metapsammitic genesis of the analyzed tourmalines but also by the U-Pb age spectra of most detrital zircons. The greater abundance of ages positioned in the Brasiliano also suggests a greater contribution from the eastern portion of the Rio Grande Arc and Shield, analogous to what was found in the Botucatu Formation in Rio Grande do Sul (Bertolini *et al.*, 2020).

Not only are these tectonic cycles well recorded in the ages of the analyzed zircons, but also the variability of syn-, late- and post-collisional granites related to the SRGS. It is possible to verify the occurrence of several ages inserted in the Brasiliano Cycle, such as syn- to post-orogenic Dom Feliciano granites (620-550 Ma) and older granites related to the São Gabriel orogeny (Philipp *et al.*, 2021). This indicates the variability of lithologies affected by this ancestral drainage and a paleogeography of basement highs, since zircon is a refractory mineral and its dating does not reflect recycling data in younger sedimentary systems, thus having the ability to represent a local source directly or through intermediate repositories (Fedo *et al.*, 2003).

These intermediate repositories between the Shield and the Tupanciretã Formation were Gondwanan sedimentary units of the Paraná Basin, with the possibility of some participation from the Camaquã Basin given its direct overlap with the Shield. In addition to the inherited characteristics of zircon and tourmaline grains (mineral chemistry and age) that are direct evidence of the Shield as the definitive proto-source of part of the sediments, the acquired characteristics (degree of roundness) suggest recycling from these pre-existing sedimentary rocks (e.g., Zoleikhaei *et al.*, 2022), which had the Shield as their ultimate source.

The high degree of roundness of tourmalines, for example, indicates a high degree of abrasion, compatible with an aeolian environment and/or reworking in multiple sedimentary cycles. In addition, the presence of multiple varieties of tourmaline colors, sizes, and degrees of roundness may indicate that the tourmaline grains were derived from various sources (Krynine, 1946) within the Shield, making it impossible to pinpoint a single rock as the proto-source.

Direct evidence of the reworking of Gondwanan sedimentary rocks in the Paraná Basin in the provenance of detrital mineralogy is the presence of zircons corresponding to the Choiyoi magmatic igneous event. The ancestral drainage from the Shield flowed through and reworked the sedimentary units of the Paraná Basin, possibly encompassing the Rio Bonito, Irati, and Rio do Rasto formations, which have clayey layers relative to the volcanic particles of this event (Rocha-Campos *et al.*, 2011; Silva, 2021).

The U-Pb age signatures for detrital zircons in the São Gabriel, Taquarembó, and southern sector of Tijucas (Gnaisses Encantadas) terrains have a relative abundance of Archean zircons (Philipp & Basei, 2011; Pertille *et al.*, 2015; Philipp *et al.*, 2021), but they occur sparingly in the Tupanciretã Formation. Therefore, it is unlikely that such terrains with significant Transamazonian Cycle signatures were the proto-source for the formation, indicating that the source would be located northeast of the Rio Grande Arc and SRGS.

Signatures equivalent to the Neoarchean, Paleoproterozoic (2260-2000 Ma), and Neoproterozoic (880-532 Ma) orogenic cycles were found in the detrital zircons of the Guaritas Group (Camaquã Basin) (Hartmann *et al.*, 2008), but with the absence of the Grenvillian and a significant presence of the Transamazonian Cycle, which is also not compatible with the signature found in the Tupanciretã Formation.

However, considering a closer comparative period to the deposition period of the Tupanciretã Formation - the Lower Cretaceous (Riccomini *et al.*, 2016; Ruppel *et al.*, 2023) - the signatures found in zircons in the Botucatu Formation in Rio Grande do Sul indicate a predominance of Cambrian to Neoproterozoic materials (650-515 Ma - Brasiliano Cycle), with the presence of Tonian to Stenian (1250-900 Ma - Grenvillian Cycle) and Orosirian to Rhyacian (2200-1800 Ma - Transamazonian Cycle), with strong evidence of clastic sediment recycling as the main feeding mechanism of this eolian unit in the SW of Gondwana (Pinto *et al.*, 2015; Bertolini *et al.*, 2021). Detrital zircons from the eastern portion of the Botucatu Formation in Rio Grande do Sul (Bertolini *et al.*, 2020) have a signature equivalent to the zircons in the Tupanciretã Formation, different from the central and western portions, which reinforces the predominance of provenance from the northeast of the Rio Grande Arc and SRGS as a possible source area.

The predominance of well-rounded tourmalines and the occurrence of angular grains in zircons demonstrate the existence of younger zircon populations that have not participated in as many sediment recycling events as tourmalines. This is consistent with the occurrence of igneous zircons belonging to the Serra Geral Formation. This finding is consistent with previous research by Menegotto *et al.* (1968), Coulon *et al.* (1973), Riccomini *et al.* (2005), and Riccomini *et al.* (2016), which relate the proximity of the last volcanic deposits of the Serra Geral Formation to the beginning of deposition of the Tupanciretã Formation.

Regarding the age determination of the formation, in the absence of fossils or datable diagenetic minerals, the time of sediment deposition is very difficult to determine. The age of crystallization of the youngest detrital zircon within the sediment can be used as a comparative parameter, since this age would be a maximum limit for the age of deposition, since it necessarily precedes the deposition of the host sediment (Fedo *et al.*, 2003; Andersen, 2005; Gehrels, 2012; Liu *et al.*, 2013). The youngest age obtained was ca. 127 Ma, which is indicated as the maximum age of deposition.

8 CONCLUSIONS

The composition of the tourmaline grains from the studied samples of the Tupanciretã Formation indicates derivation from predominantly metasedimentary terranes and Li-poor granitic rocks, indicating that the ultimate source is the ancient basement, notably the Sul-Riograndense Shield. The high degree of roundness of the tourmalines suggests intense abrasion, pointing to polycyclic reworking in eolian and sporadic fluvial environments.

The sedimentary rocks of the Tupanciretã Formation contain zircons from different age populations with dominance in the intervals of 280-250 Ma, 570-530 Ma, and 1025-1080 Ma, with rarer grains in the ranges of 134-128 Ma, 630 Ma, and 2143-2077 Ma, indicating predominance of source areas from the basement, mainly related to the Brasiliano Cycle. In this study, U-Pb geochronological data of detrital zircons proved to be a key point in identifying recycling processes, as evidenced by grains with ages related to the Choiyoi Igneous Event, which can only result from the reworking of sedimentary rocks from the Paraná Basin itself (Rio Bonito, Irati and Rio do Rasto formations). This demonstrates that zircon geochronology, combined with knowledge of the regional geological framework, is an important tool for evaluating recycled sources of sediment provenance.

The presence of Cretaceous zircon grains (134-128 Ma) with low degree of roundness indicates the participation, even if small, of sediments from the Serra Geral Formation as a primary source area (first cycle). The high degree of roundness of most populations of tourmaline and some populations of zircon from the studied samples indicates that the source area underwent strong abrasion, clearly pointing to the Botucatu Formation (immediate source), which is corroborated by the compatibility between the U-Pb signatures of the zircons from the eastern sector of the Botucatu and Tupanciretã formations.

Therefore, the data presented here and the integrated study of tourmaline and zircon grains support that:

 There was an ancestral drainage percolating the highs of the Sul-Riograndense Shield and NE of the Rio Grande Arc, from SSE to NNW, eroding the sedimentary rock package of the Paraná Basin, with a smaller contribution of first cycle sediments from the Serra Geral Formation;

2) The observed degrees of roundness corroborate the interpretation of polycyclic sedimentary events of grain reworking from the unit, mostly derived from its proto-source in the SRGS (ultimate source);

 The varieties of tourmalines and U-Pb ages in the zircons indicate multiple source rocks within the SRGS, rarely participating as first cycle sediments;

4) The maximum depositional age for the Tupanciretã Formation is ca. 127Ma;

5) There was an important inversion of relief on this last unit of post-Gondwanan continental sedimentation in southern Brazil during the Tertiary.

ACKNOWLEDGMENTS

The field activities were supported by the Institute of Geosciences (IGEO) at the Federal University of Rio Grande do Sul. We thank CPGq-UFRGS for the availability of the Electron Microprobe, Thermochronology, and Sample Preparation laboratories, as well as the Mineralogical Analysis Laboratory of CECO-UFRGS and the Isotopic Geology Laboratory of UFOP.

This research was funded by the Coordination for the Improvement of Higher Education Personnel (CAPES) under the scholarship number 88882.345540/2019-01 for KMVR.

REFERENCES

- Andersen, T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. *Chemical Geology*, 216: 249-270. DOI: 10.1016/j.chemgeo.2004.11.013
- Andersen, T., Elburg, M.A., Magwaza, B.N. 2019. Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction. *Earth-Science Reviews*, 197: 102899. DOI: 10.1016/j.earscirev.2019.102899
- Aubrecht, R. & Krištín, J. 1995. Provenance of detrital tourmaline in the Lower Jurassic of the Malé Karpaty Mts. *Mineralia Slovaca*, 27: 37-44.
- Barros, C.E., Nardi, L.V.S., Dillenburg, S.R., Ayup, R., Jarvis, K., Baitelli, R. 2010.
 Detrital Minerals of Modern Beach Sediments in Southern Brazil: A Provenance
 Study Based on the Chemistry of Zircon. *Journal of Coastal Research*, 26: 80-93. DOI: 10.2112/06-0817.1
- Bastías-Mercado, F., González, J., Oliveros, V., 2020. Volumetric and compositional estimation of the Choiyoi Magmatic Province and its comparison with other Silicic Large Igneous Provinces. *Journal of South American Earth Sciences*, 103: 102749. DOI: 10.1016/j.jsames.2020.102749
- Bertolini, G., Marques, J.C., Hartley, A.J., Da-Rosa, A.A.S., Scherer, C.M.S., Basei, M.A.S., Frantz, J.C. 2020. Controls on Early Cretaceous desert sediment provenance in south-west Gondwana, Botucatu Formation (Brazil and Uruguay). *Sedimentology*, 67: 2672-2690. DOI: 10.1111/sed.12715.

- Bertolini, G., Marques, J.C., Hartley, A.J., Basei, M.A.S., Frantz, J.C., Santos, P.R. 2021. Determining sediment provenance history in a Gondwanan erg: Botucatu formation, Northern Paraná Basin, Brazil. *Sedimentary Geology*, 105883. DOI: 10.1016/j.sedgeo.2021.105883
- Blatt, H. & Jones, R.L. 1975. Proportions of exposed igneous, metamorphic, and sedimentary rocks. *Geological Society of America Bulletin*, 86: 1085–1088, DOI: 10.1130/0016-7606(1975)86<1085:POEIMA>2.0.CO;2
- Boggs, S. Jr. 2014. *Principles of Sedimentology and Stratigraphy*. 5th Edition Revised. Pearson Education Inc., Harlow, 560 p.
- Borba, A.W., Mizusaki, A.M.P., Santos, J.O.S., McNaughtom, N.J., Onoe, A.T., Hartmann, L.A. 2008. U-Pb zircon and 40Ar-39Ar K-feldspar dating of synsedimentary volcanism of the Neoproterozoic Maricá Formation: constraining the age of foreland basin inception and inversion in the Camaquã Basin of southern Brazil. *Basin Research*, 20: 359-375. DOI: 10.1111/j.1365-2117.2007.00349.x
- Bosi, F. 2018. Tourmaline crystal chemistry. *American Mineralogist*, 103: 298-306. DOI: 10.2138/am-2018-6289
- Caracciolo, L. 2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. *Earth-Science Reviews*, 209: 103226. DOI: 10.1016/j.earscirev.2020.103226
- Chemale Jr, F. 2000. Evolução Geológica do Escudo Sul-rio-grandense. In: Holz M., De Ros L.F. (Eds.). *Geologia do Rio Grande do Sul*. Porto Alegre: CIGO/UFRGS, p. 13-52.
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P. 2003. Atlas of Zircon Textures. *Reviews in Mineralogy and Geochemistry*, 53(1): 469–500. DOI: 10.2113/0530469
- Coulon, F.K., Gamermann, N., Formoso, M.L.L. 1973. Considerações sobre a Gênese da Formação Tupanciretã. *Pesquisas em Geociências*, 2(1): 78-89.
- Deer, W.A., Howie, R.A., Zussman, J. 2013. *An introduction to the rock-forming minerals*. The Mineralogical Society, London, 198p. DOI: 10.1180/DHZ
- Dutrow, B.L. & Henry, D.J. 2011. Tourmaline: A Geologic DVD. *Elements*, 7: 301-306. DOI: 10.2113/gselements.7.5.301

- Dutrow, B.L. & Henry, D.J. 2018. Tourmaline compositions and textures: reflections of the fluid phase. *Journal of Geosciences*, 63: 99–110. DOI: 10.3190/jgeosci.256
- Fedo, C.M., Sircombe, K.N., Rainbird, R.H. 2003. Detrital Zircon Analysis of the Sedimentary Record. *Reviews in Mineralogy and Geochemistry*, 53(1): 277–303. DOI: 10.2113/0530277
- Fernandes, L.A. & Coimbra, A.M. 2000. Revisão estratigráfica da parte oriental da Bacia Bauru (Neocretáceo). *Revista Brasileira de Geociências*, 30(4): 717-728. DOI: 10.25249/0375-7536.2000304717728
- Fernandes, L.A.D., Menegat, R., Costa, A.F.U., Porcher, C.C., Tommasi, A., Kraemer, G., Ramgrab, G.E., Camozzato, E. 1995. Evolução Tectônica do Cinturão Dom Feliciano no Escudo Sul-Rio-Grandense: Parte I Uma Contribuição a Partir do Registro Geológico. *Revista Brasileira de Geociência*, 24(4): 651-374.
- Folk, R.L. 1980. *Petrology of Sedimentary Rocks*. Hemphill Publishing Company, Austin, 184 p.
- Frank, H.T., Gomes, M.E.B., Formoso, M.L.L. 2009. Review of the areal extent and the volume of the Serra Geral Formation, Paraná Basin, South America. *Pesquisas em Geociências (UFRGS)*, 36: 49-57.
- Gamermann, N., Carraro, C.C., Eick, N., Bortoluzzi, C.A. 1973. Geotransversal brasileira norte-sul (parcial). Projeto internacional do manto superior - Rio Grande do Sul. UFRGS, Pesquisas, 2(1): 49-60. DOI: 10.22456/1807-9806.21861
- Garzanti, E. 2017. The Maturity Myth in Sedimentology and Provenance Analysis. *Journal of Sedimentary Research*, 87: 353–365. DOI: 10.2110/jsr.2017.17
- Gehrels, G. 2012. Detrital zircon U-Pb geochronology: current methods and new opportunities. In: Busby, C. e Azor, A. (Eds.). Tectonics of Sedimentary Basins: *Recent Advances*. Blackwell Publishing, First Edition, p. 45-62. DOI: 10.1002/9781444347166.ch2
- Gubert, M.L., Philipp, R.P., Basei, M.A.S. 2016. The Bossoroca Complex, São Gabriel Terrane, Dom Feliciano Belt, southernmost Brazil: U-Pb geochronology and tectonic implications for the neoproterozoic São Gabriel Arc. *Journal of South American Earth Sciences*, 70: 1-17. DOI: 10.1016/j.jsames.2016.04.006

- Hartmann, L.A. 1987. Isócrona Sm-Nd de 2,1 Ga em minerais de duas amostras do Complexo Granulítico Santa Maria Chico, RS. *In*: CONGRESSO BRASILEIRO DE GEOQUIMICA, 1. Porto Alegre, 1987. Anais... Rio de Janeiro, SBGq, 1: 105-111.
- Hartmann, L.A. 1991. Condições de Metamorfismo no Complexo Granulítico Santa Maria Chico, RS. *Revista Brasileira de Geociências*, 21: 107-113.
- Hartmann, L.A., Chemale Jr, F., Philipp, R.P. 2007. Evolução Geotectônica do Rio Grande do Sul no Pré-Cambriano. In: Iannuzi, R., Frantz, J.C. (Eds.). 50 Anos de Geologia: Instituto de Geociências. Contribuições. Porto Alegre: Comunicação e Identidade, 97-123.
- Hartmann, L.A., Pertille, J., Duarte, L.C. 2017. Giant-geode endowment of tumuli in the Veia Alta flow, Ametista do Sul. *Journal of South American Earth Sciences*, 77: 51-57. DOI: 10.1016/j.jsames.2017.04.013
- Hartmann, L.A., Philipp, R.P., Santos, J.O.S., McNaughton, N.J. 2011. Time frame of 753–680 Ma juvenile accretion during the São Gabriel orogeny, southern Brazilian Shield. *Gondwana Res.*, 19: 84–99. DOI: 10.1016/j.gr.2010.05.001.
- Hartmann, L.A., Santos, J.O.S., McNaughton, N.J. 2008. Detrital zircon U-Pb age data, and Precambrian provenance of the Paleozoic Guaritas Formation, southern Brazilian Shield. *International Geology Review*, 4: 364-374. DOI: 10.2747/0020-6814.50.4.364
- Henry, D.J. & Dutrow, B.L. 1996. Metamorphic Tourmaline and Its Petrologic Applications. In: Grew, E.S. e Anovitz, L.M. (Eds.). Boron: Mineralogy, Petrology, and Geochemistry. *Mineralogical Society of America Reviews in Mineralogy*, 33: 503-557. DOI: 10.1515/9781501509223-012
- Henry, D.J & Dutrow, B.L. 2018. Tourmaline studies through time: contributions to scientific advancements. *Journal of Geosciences*, 63: 77–98. DOI: 10.3190/jgeosci.255
- Henry, D.J. & Guidotti, C.V. 1985. Torumaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. *American Mineralogist*, 70: 1-15.

- Horbach, R., Kuck, L., Marimon, R.G., Moreira, H.L., Fuck, G.F., Moreira, M.L.O., Marimon, M.P.C., Pires, J.L., Vivian, O., Marinho, D.A., Teixeira, W. 1986.
 Geologia. In: Projeto RADAMBRASIL, Folha SH.22 Porto Alegre e parte das folhas SH.21 Uruguaiana e SI.22 Lagoa Mirim: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra. Rio de Janeiro: IBGE, Levantamento de Recursos Naturais v.33, p. 29-312.
- Hubert, J.F. 1962. A zircon–tourmaline–rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. *J. Sediment. Petrol.*, 32: 440-450. DOI: 10.1306/74D70CE5-2B21-11D7-8648000102C1865D
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology. *Chem. Geol.*, 211: 47–69. DOI: 10.1016/j.chemgeo.2004.06.017
- Jia, R., Fang, W., Hu, R. 2010. Mineral geochemical compositions of tourmalines and their significance in the Gejiu tin polymetallic deposits, Yunnan, China. *Acta Geologica Sinica*, 84(1): 155-166. DOI: 10.1111/j.1755-6724.2010.00177.x
- Johnsson, M.J. 1993. The system controlling the composition of clastic sediments. In: Johnsson M.J. & Basu A. (eds.) Processes Controlling the Composition of Clastic Sediments. *Geol. Soc. Am.*, Spec. Pap., 284: 1-19.
- Kowal-Linka, M. & Stawikowski, W. 2013. Garnet and tourmaline as provenance indicators of terrigenous material in epicontinental carbonates (Middle Triassic, S Poland). Sedimentary Geology, 291: 27-47. DOI: 10.1016/j.sedgeo.2013.03.005
- Krynine, P.D. 1946. The Tourmaline Group in Sediments. *The Journal of Geology*, 54(2): 65-87. DOI: 10.1086/625323
- Krynine, P.D. 1956. Sphericity and Roundness Through the Ages. *GSA Bulletin*, 67: 1661-1662. DOI: 10.1130/0016-7606(1956)67[1661:SARTTA]2.0.CO;2
- Liu, J., Liu, F., Ding, Z., Yang, H., Liu, C., Liu, P., Xiao, L., Zhao, L., Geng, J. 2013. U–
 Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei
 Terrane, North China Craton: Provenance and implications for Precambrian
 crustal growth and recycling. *Precambrian Research*, 235: 230-250. DOI:
 10.1016/j.precamres.2013.06.014

- Laux, J.H. 2021. Escudo Sul-Rio-Grandense, estado do Rio Grande do Sul. CPRM: Programa Geologia, Mineração e Transformação Mineral Levantamentos Geológicos e de Potencial Mineral de Novas Fronteiras. Porto Alegre, Escala 1:500.000. 166p.
- Mange, M.A. & Maurer, H.F.W. 1992. *Heavy mineral in colour*. Chapman & Hall, London, p. 147. DOI: 10.1007/978-94-011-2308-2
- Marin, H.D. 2022. Análise Morfoestrutural como ferramenta para a identificação da influência de processos tectônicos associados com a Formação Tupanciretã-RS.
 Porto Alegre, 64p. Monografia (Conclusão de Curso), Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Marschall, H.R. & Jiang, S.Y. 2011. Tourmaline Isotopes: No Element Left Behind. *Elements*, 7: 313-319. DOI: 10.2113/gselements.7.5.313
- Menegotto, E., Sartori, P.L., Maciel Filho, C.L. 1968. Nova sequência sedimentar sobre a Serra Geral no Rio Grande do Sul. In: Santa Maria, Instituto de Solos e Culturas da Universidade Federal de Santa Maria, Seção de Geologia, Publicação Especial nº 01, 19p.
- Menegotto, E. 1971. Sedimentologia da Formação Tupanciretã. Porto Alegre, 58p. Dissertação de Mestrado, Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Milani, E.J. 1997. Evolução tectono-estratigráfica da Bacia do Paraná e seu relacionamento com a geodinâmica fanerozóica do Gondwana sul-ocidental. Porto Alegre, 255p. Tese (Doutorado em Geologia) - Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.
- Milani, E.J., Faccini, U.F., Scherer, C.M., Araújo, L.M., Cupertino, J.A. 1998. Sequences and stratigraphic hierarchy of the Paraná Basin (Ordovician to Cretaceous), southern Brazil. *Boletim IG-USP, Série Científica*, 29: 125-148.
- Milani, E.J., Melo, J.H.G., Souza, P.A., Fernandes, L.A., França, A.B. 2007. Bacia do Paraná. *Boletim de Geociências da Petrobrás*, 15(2): 265-287.
- Moecher, D.P., Kelly, E.A., Hietpas, J., Samson, S.D. 2019. Proof of recycling in clastic sedimentary systems from textural analysis and geochronology of detrital monazite: Implications for detrital mineral provenance analysis. *GSA Bulletin*, 131(7): 1115-1132. DOI: 10.1130/B31947.1

- Moore, J.M., Polteau, S., Armstrong, R.A., Corfu, F., Tsikos, H. 2012. The age and correlation of the Postmasburg Group, southern Africa: constraints from detrital zircon grains. *J. Afr. Earth Sci*. 64: 9–19. DOI: 10.1016/j.jafrearsci.2011.11.001
- Morton A.C. & Hallsworth C.R. 1994. Identifying provenience-specific features of detrital heavy mineral assemblages in sandstones. *Sed. Geol.*, 90: 241-256.
- Morton, A.C. & Hallsworth, C.R. 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. *Sed. Geol.*, 124: 3-29. DOI: 10.1016/S0037-0738(98)00118-3
- Morton, A.C., Whitham, A.G., Fanning, C.M. 2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. *Sedimentary Geology*, 182: 3-28. DOI: 10.1016/j.sedgeo.2005.08.007
- Muhlbauer, J.G., Fedo, C.M., Farmer, G.L. 2017. Influence of textural parameters on detrital-zircon age spectra with application to provenance and paleogeography during the Ediacaran–Terreneuvian of southwestern Laurentia. *GSA Bulletin*, 129(11): 1585-1601. DOI: 10.1130/B31611.1
- Nelson, D.A. & Cottle, J.M. 2019. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. *The Geological Society of America*, 11(3): 386–398. DOI: 10.1130/I1015.1.
- Nemchin, A.A., Cawood, P.A. 2006. Discordance of the U-Pb system in detrital zircons: implication for provenance studies of sedimentary rocks. *Sediment. Geol.* 182: 143–162. DOI: 10.1016/j.sedgeo.2005.07.011
- Nowatzki, C.H., Dutra, T.L., Fleck, A. 1999. Novas observações sobre a Formação Tupanciretã, Estado do Rio Grande do Sul. *Acta Geologica Leopoldensia*, 49: 39-52.
- Oyhantçabal, P., Suegesmund, S., Wemmer, K., Presnyakov, S., Layer, P. 2009.
 Geochronological constraints on the evolution of the southern Dom Feliciano Belt (Uruguay). *Journal of the Geological Society*, 166: 1075-1084. DOI: 10.1144/0016-76492008-122

- Padilha, N.L., Bertolini, G., Marques., J.C., Góes, A.M., Nogueira, A.C.R., Medeiros, R.S.P., Andrade, L.S., Sodré, A.A.N., Canarim, D.M., Souza, P.A., Scomazzon, A.K., Oliveira, E.J., Santos, J.M.M. 2022. Zircão, o Guardião do Tempo: Datação U-Pb Aplicada à Proveniência Sedimentar Revisão Metodológica e Utilidade no Projeto Biocronorte. *Revista da Academia de Ciências do Piauí*, 3(3): 157-179. DOI: 10.29327/261865.3.3-11
- Pertille, J., Hartmann, L.A., Philipp, R.P. 2015. Zircon U-Pb age constraints on the Paleoproterozoic sedimentary basement of the Ediacaran Porongos Group, Sul-Riograndense Shield, southern Brazil. *Journal of South American Earth Sciences*, 63: 334-345. DOI: 10.1016/j.jsames.2015.08.005
- Pezzotta, F. e Laurs, B.M. 2011. Tourmaline: The Kaleidoscopic Gemstone. *Elements*, 7: 33-338. DOI: 10.2113/gselements.7.5.333
- Philipp, R.P. & Basei, M.A.S. 2021. O Magmatismo Toniano do Terreno São Gabriel e a evolução do Cinturão Dom Feliciano. In: Jelinek, R., Sommer, C.A. (Eds.). *Contribuições à Geologia do Rio Grande do Sul e de Santa Catarina*. Porto Alegre: Compasso Lugar-Cultura, p. 43-59. DOI: 10.29327/537860.1-3.
- Philipp, R.P. & Machado, R. 2005. The Late Neoproterozoic granitoid magmatism of the Pelotas Batholith, southern Brazil. *Journal of South American Earth Sciences*, 19: 461-478. DOI: 10.1016/j.jsames.2005.06.010
- Philipp, R.P., Machado, R., Chemale Jr, F. 2003. Reavaliação e Novos Dados Geocronológicos (Ar/Ar, Rb/Sr e Sm/Nd) do Batólito Pelotas no Rio Grande do Sul: Implicações Petrogenéticas e Idade de Reativação das Zonas de Cisalhamento. *Geociências USP Sér. Cient.*, 3: 71-84. DOI: 10.5327/S1519-874X2003000100006
- Philipp, R.P., Machado, R., Nardi, L.V.S., Lafon, J.M. 2002. O Magmatismo granítico Neoproterozóico do Batólito de Pelotas no Sul do Brasil: Novos dados e revisão da geocronologia regional. *Revista Brasileira de Geociências*, 32(2): 277-290.
 DOI: 10.25249/0375-7536.2002322277290

- Philipp, R.P., Pimental, M.M., Basei, M.A.S., Salvi, M., De Lena, L.O.F., Vedana, L.A., Gubert, M.L., Lopes. C.G., Laux, J.H., Camozzato, E. 2021. U–Pb detrital zircon dating applied to metavolcano-sedimentary complexes of the São Gabriel Terrane: New constraints on the evolution of the Dom Feliciano Belt. *Journal of South American Earth Sciences*, 110: 103409. DOI: 10.1016/j.jsames.2021.103409
- Pinto, V.M., Hartmann, L.A., Santos, J.O.S., Mcnaughton, N.J. 2015. Zircon ages delimit the provenance of a sand extrudite from the Botucatu Formation in the Paraná volcanic province, Iraí, Brazil. *Anais da Academia Brasileira de Ciências*, 87(3): 1611-1622. DOI: 10.1590/0001-3765201520130222
- Powers, M.C. 1953. A new roundness scale for sedimentary particles. *Journal of Sedimentary Petrology*, 23(2): 117-119.
- Riccomini, C., Sant'anna, L.G., Fambrini, G.L. 2005. Jacuí: nova bacia sedimentar Eocretácea no Sul do Brasil. *In*: Simpósio Nacional de Estudos Tectônicos e International Symposium on Tectonics of the Brazilian Geological Society. Anais... Sociedade Brasileira de Geologia, Curitiba, 2005.
- Riccomini, C., Sant'anna, L.G., Fambrini, G.L. 2016. The Early Cretaceous Jacuí Group, a newly discovered Volcaniclastic - epiclastic accumulation at the top of the Paraná Basin, southern Brazil. *Cretaceous Research*, 59: 111-128. DOI: 10.1016/j.cretres.2015.10.020
- Rivers, T. 1997. Lithotectonic elements of the Grenville Province: review and tectonic implications. *Precambrian Research*, 86: 117-154. DOI: 10.1016/S0301-9268(97)00038-7
- Remus, M.V.D., Hartmann, L.A., McNaughton, N.J., Groves, D.I., Fletcher, I.R. 2000. The link between hydrothermal epigenetic copper mineralization and the Cacapava Granite of the Brasiliano cycle in southern Brazil. *Journal of South American Earth Sciences*, 13: 191–216. DOI: 10.1016/S0895-9811(00)00017-1
- Remus, M.V.D., Souza, R.S., Cupertino, J.A., De Ros, L.F., Dani, N., Vignol-Lelarge, M.L., 2008. Proveniência sedimentar: métodos e técnicas analíticas aplicadas. *Revista Brasileira de Geociências*, 38(2): 166-185. DOI: 10.25249/0375-7536.2008382S166185.

- Rocha-Campos, A.C., Basei, M.A., Nutman, A.P., Kleiman, L.E., Varela, R., Llambias,
 E., Canile, F.M., Rosa, O.C.R. 2011. 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: SHRIMP U-Pb zircon geochronology evidence. *Gondwana Research*, 19: 509–523. DOI: 10.1016/j.gr.2010.07.003
- Rodriguez, J.M., Edeskär, T., Knutsson, S. 2013. Particle Shape Quantities and Measurement Techniques–A Review. *The Electronic Journal of Geotechnical Engineering*, 18: 169-198.
- Roisenberg, A. & Viero, A.P. 2000. O vulcanismo Mesozóico da Bacia do Paraná no Rio Grande do Sul. In: Holz, M.; De Ros, L.F. 2000. *Geologia do Rio Grande do Sul*. Porto Alegre: CIGO/UFRGS, 355-374p.
- Rosenblum, S. & Brownfield, I.K. 2000. *Magnetic Susceptibilities of Minerals*. Reston: U.S. Geological Survey), 99-529, 37p. DOI: 10.3133/ofr99529
- Ruppel, K.M.V., Dani, N., Lisboa, N.A. 2023. Evolução Morfotectônica e Megageomorfológica das Formações Pós Gondwânicas Santa Tecla e Tupanciretã no Rio Grande do Sul. *Revista Brasileira de Geomorfologia*, 24(1): 1-24. DOI: 10.20502/rbg.v24i1.2181
- Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C.D. 2017. A new appraisal of Sri Lankan BB zircon as a reference material for LA-ICP-MS U-Pb geochronology and Lu-Hf isotope tracing. *Geostand. Geoanal. Res.*, 41: 335–358. DOI: 10.1111/ggr.12167
- Sato, A.M., Llambías, E.J., Basei, M.A.S., Castro, C.E. 2015. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. *Journal of South American Earth Sciences*, 63: 48-69. DOI: 10.1016/j.jsames.2015.07.005
- Scharf, T., Kirkland, C.L., Daggitt, M.L., Barham, M. Puzyrev, V. 2022. AnalyZr: A Python application for zircon grain image segmentation and shape analysis. *Computers and Geosciences*, 162: 205057. DOI: 10.1016/j.cageo.2022.105057

- Silva, F.A. 2021. Depósitos piroclásticos de queda (PFDs) como ferramenta estratigráfica, proveniência, geocronologia e reconstrução das sequências deposicionais da Formação Irati. Porto Alegre, 206p. Tese (Doutorado em Geologia) - Curso de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul,
- Silva, J.P.A., Lana, C., Mazoz, A., Buick, I., Scholz, R., 2022. U-Pb/ Saturn: New U-Pb/Pb-Pb/Data Reduction Software for LA-ICP-MS. Geostand. *Geoanalytical Res.*, 47(1): 49-66 DOI: 10.1111/ggr.12474
- Slack, J.F. & Trumbull, R.B. 2011. Tourmaline as a Recorder of Ore-Forming Processes. *Elements*, 7: 321-326. DOI: 10.2113/gselements.7.5.321
- Soliani, E. Jr. 1986. Os dados Geocronológicos do Escudo Sul-Rio-Grandense e suas Implicações de Ordem Geotectônica. Tese (Doutorado em Geologia) – Curso de Geologia, Instituto de Geociências, Universidade de São Paulo, São Paulo, 239
 p. DOI: 10.11606/T.44.1986.tde-15072015-153916
- Spalletti, L.A. & Limarino, C.O. 2017. The Choiyoi magmatism in south western Gondwana: implications for the endpermian mass extinction - a review. *Andean Geology*, 44(3): 328-338. DOI: 10.5027/andgeoV44n3-a05
- Thiel, G.A. 1940. The Relative Resistance to Abrasion of Mineral Grains of Sand Size. *Journal of Sedimentary Petrology*, 10(3): 103-124.
- Thiel, G.A. 1945. Mechanical effects of stream transportation in mineral grains of sand size. Bull. *Geol. Soc. Am.*, 56: 1207.
- Thomson, J.A. 2006. A rare tourmaline-sillimanite-biotite-ilmenite-quartz assemblage from the granulite-facies region of south-central Massachusetts. *American Mineralogist*, 91: 1730–1738. DOI: 10.2138/am.2006.2231
- van Hinsberg, V.J. & Schumacher, J.C. 2007. Using estimated thermodynamic properties to model accessory phases: the case of tourmaline. *J. metamorphic Geol.*, 25: 769-779. DOI: 10.1111/j.1525-1314.2007.00728.x
- van Hinsberg, V.J., Henry, D.J., Dutrow, B.L. 2011a. Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past. *Elements*, 7: 327-332.
 DOI: 10.2113/gselements.7.5.327

- van Hinsberg, V.J., Henry, D.J., Marschall, H.R. 2011b. Tourmaline: an ideal indicator of its host environment. *The Canadian Mineralogist*, 49: 1-16. DOI: 10.3749/canmin.49.1.1
- Vermeesch, P. 2012. On the visualisation of detrital age distributions. *Chemical Geology*, 312-313: 190-194. DOI: 10.1016/j.chemgeo.2012.04.021
- Vermeesch, P. 2018. IsoplotR: a free and open toolbox for geochronology. *Geoscience Frontiers*, 9: 1479-1493. DOI: 10.1016/j.gsf.2018.04.001
- von Eynatten, H. & Dunkl, I. 2012. Assessing the sediment factory: The role of single grain analysis. *Earth-Science Reviews*, 115: 97–120. DOI: 10.1016/J.EARSCIREV.2012.08.001
- Wadell, H. 1935. Volume, shape, and roundness of quartz particles. *Journal of Geology*, 43: 250-279.
- Wiesnet, D. 1961. Composition, grain size, roundness, and sphericity of the Postdam Sandstone (Cambrian) in Northeastern New York. *Journal of Sedimentary Petrology*, 31: 5-14. DOI: 10.1306/74D70AE7-2B21-11D7-8648000102C1865D
- Wildner, W., Ramgrab, G.E., Lopes, R.C., Iglesias, C.M.F. 2006. Mapa Geológico do Estado do Rio Grande do Sul, escala: 1:750.000. Porto Alegre, Companhia de Pesquisa de Recursos Minerais, Serviço Geológico do Brasil.
- Yavuz, F., Karakaya, N., Yıldırım, D.K., Karakaya, M. Ç., Kumral, M. 2014. A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011). *Computers & Geosciences*, 63: 70-87. DOI: 10.1016/j.cageo.2013.10.012
- Zeh, A., Wilson, A.H., Ovtcharova, M. 2016. Source and age of upper Transvaal Supergroup, South Africa: age-Hf isotope record of zircons in Magaliesberg quartzite and Dullstroom lava, and implications for Paleoproterozoic (2.5–2.0 Ga) continent reconstruction. *Precambrian Res.* 278: 1–21. DOI: 10.1016/j.precamres.2016.03.017
- Zoleikhaei, Y., Mulder, J.A., Cawood, P.A. 2022. Evaluating sediment recycling through combining inherited petrogenic and acquired sedimentary features of multiple detrital minerals. *Basin Research*, 34: 1055–1083. DOI: 10.1111/bre.12650

ANEXO A: COMPROVANTES DE SUBMISSÃO DOS ARTIGOS CIENTÍFICOS

ANEXO B: MATERIAL SUPLEMENTAR DO ARTIGO II

ANEXO A: Comprovante de Submissão Artigo Científico – Revista Brasileira de Geomorfologia (A1)

UNIÃO DA GEOMORFOLOGIA BRASILEIRA - UGB

Curitiba, 17 de março de 2022

DECLARAÇÃO

Declaro para os devidos fins que o artigo intitulado **"Evolução Morfotectônica e Megageomorfológica das Formações Pós Gondwânicas Santa Tecla e Tupanciretã no Rio Grande do Sul"**, de autoria de <u>Kelvyn Mikael Vaccari Ruppel</u>, Norberto Dani e Nelson Amoretti Lisboa, encontra-se em processo de avaliação para publicação na Revista Brasileira de Geomorfologia.

Atenciosamente,

LEONARDO J.C. SANTON

Prof. Dr. Leonardo José Cordeiro Santos Editor Chefe da Revista Brasileira de Geomorfologia

ANEXO A: Comprovante de Submissão Artigo Científico - Basin Research (A1)

17/05/2023, 15:11

Gmail - Manuscript submitted to Basin Research

kelvyn ruppel <kelvynruppel@gmail.com>

Manuscript submitted to Basin Research

1 mensagem

Basin Research <no-reply@atyponrex.com> Para: Kelvyn Ruppel <kelvynruppel@gmail.com> 17 de maio de 2023 às 15:08

Dear Kelvyn Ruppel,

Your manuscript entitled "Detrital zircon and tourmaline unravel provenance and polycyclic origin of Cretaceous Tupanciretã Subbasin, south Brazil" has been successfully submitted online and is being delivered to the Editorial Office of *Basin Research* for consideration.

You will receive a follow-up email with further instructions from our electronic editorial office platform, ScholarOne Manuscripts, typically within one business day. That message will confirm that the Editorial Office has received your submission and will provide your Manuscript ID.

Thank you for submitting your manuscript to Basin Research

Sincerely, The Editorial Staff at Basin Research

By submitting a manuscript to or reviewing for this publication, your name, email address, and affiliation, and other contact details the publication might require, will be used for the regular operations of the publication, including, when necessary, sharing with the publisher (Wiley) and partners for production and publication. The publication and the publisher recognize the importance of protecting the personal information collected from users in the operation of these services and have practices in place to ensure that steps are taken to maintain the security, integrity, and privacy of the personal data collected and processed. You can learn more by reading our data protection policy. In case you don't want to be contacted by this publication again, please send an email to breditorial@wiley.com.

ANEXO B – Dados Análise Química, Turmalinas TUP 01B (Microssonda Eletrônica + WinTCac)

Grain No	Row	Na2O	MgO	SiO2	Al2O3	CaO	Т	iO2	К20	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li20*	H2O*	B2O3*	TOTAL	
1	Core	1,63	3,46	35,72	34,52	0,27	0	,69	0,05	0,08	0,04	0,02	9,67	0,00	0,05	0,131	2,838	10,15	99,319	*(Yavuz et al., 2014)
-	Rim	1,78	3,51	35,32	34,22	0,30	0	,75	0,05	0,05	0,01	0,04	8,97	0,03	0,10	0,253	2,774	10,09	98,247	
2	Core	1,95	1,54	35,01	33,15	0,12	0	,59	0,06	0,29	0,00	0,00	13,64	0,01	0,16	0,196	2,819	10,05	99,585	
-	Rim	1,89	1,62	35,09	33,23	0,13	0	,53	0,01	0,31	0,03	0,00	13,85	0,02	0,00	0,196	2,819	10,05	99,775	
2	Core	1,43	1,09	36,04	35,16	0,05	0	,14	0,03	0,26	0,00	0,00	12,78	0,11	0,01	0,247	2,852	10,383	100,582	
3	Rim	1,56	2,01	36,01	34,83	0,15	0	,26	0,02	0,21	0,01	0,02	11,49	0,00	0,00	0,275	2,855	10,304	100,004	
4	Core	1,79	7,07	36,68	32,17	0,93	0	,40	0,04	0,02	0,06	0,03	7,52	0,07	0,00	0,000	3,076	10,345	100,201	
	Rim	1,92	6,85	36,20	32,01	0,91	0	,45	0,04	0,03	0,06	0,03	7,53	0,00	0,07	0,127	2,962	10,239	99,428	
5	Core	1,78	5,49	35,32	32,72	1,17	1,	,42	0,05	0,11	0,11	0,02	8,48	0,07	0,05	0,177	2,993	10,234	100,194	
3	Rim	1,79	5,26	35,52	32,46	1,15	1,	,30	0,02	0,09	0,07	0,02	8,75	0,03	0,00	0,177	2,993	10,234	99,864	
6	Core	2,02	1,20	34,96	32,78	0,21	0	,46	0,03	0,46	0,00	0,00	14,26	0,00	0,15	0,155	3,053	9,911	99,649	
0	Rim	1,84	0,73	35,44	33,87	0,14	0	,37	0,02	0,66	0,03	0,00	14,30	0,03	0,19	0,299	2,769	10,004	100,692	
7	Core	2,03	2,90	35,02	32,95	0,29	0	,48	0,03	0,13	0,02	0,00	12,44	0,00	0,00	0,313	3,042	10,04	99,685	
,	Rim	1,94	3,74	35,81	33,66	0,24	0	,90	0,01	0,09	0,03	0,01	9,74	0,00	0,04	0,253	2,791	10,024	99,278	
	Core	2,33	5,16	36,33	32,14	0,32	0	,75	0,06	0,15	0,04	0,01	9,88	0,00	0,07	0,187	3,195	10,321	100,943	
0	Rim	2,23	5,34	36,33	32,05	0,35	0	,81	0,03	0,14	0,06	0,02	9,58	0,10	0,08	0,187	3,195	10,321	100,823	
0	Core	1,82	1,88	35,68	33,84	0,04	0	,23	0,05	0,17	0,00	0,00	12,18	0,00	0,10	0,327	2,755	9,991	99,063	
	Rim	1,84	2,08	36,04	34,20	0,01	0	,33	0,02	0,16	0,05	0,01	12,56	0,00	0,00	0,144	2,919	10,364	100,727	
10	Core	1,85	3,25	36,15	34,45	0,16	0	,53	0,04	0,15	0,04	0,00	10,89	0,00	0,00	0,172	2,905	10,351	100,938	
10	Rim	1,81	3,15	36,79	34,63	0,22	0	,55	0,02	0,11	0,06	0,02	10,33	0,02	0,00	0,172	2,905	10,351	101,138	
11	Core	1,96	3,20	35,06	33,36	0,53	1,	,08	0,05	0,02	0,04	0,00	11,47	0,05	0,17	0,036	2,921	10,25	100, 197	
11	Rim	1,94	2,69	35,37	34,09	0,46	0	,92	0,07	0,08	0,04	0,00	11,83	0,00	0,00	0,113	2,852	10,163	100,618	
12	Core	2,25	5,58	36,41	31,89	0,35	0	,82	0,06	0,07	0,10	0,00	8,93	0,00	0,00	0,450	3,084	10,136	100,130	
12	Rim	2,29	5,54	36,67	32,29	0,41	0	,80	0,03	0,06	0,11	0,00	9,74	0,07	0,00	0,187	3,195	10,321	101,713	
13	Core	1,93	3,86	36,32	34,13	0,31	0	,70	0,05	0,04	0,00	0,00	9,90	0,08	0,11	0,304	2,841	10,292	100,867	
15	Rim	1,84	3,71	36,38	34,85	0,32	0	,70	0,03	0,07	0,01	0,03	9,82	0,00	0,07	0,304	2,841	10,292	101,267	
14	Core	1,84	5,96	35,95	33,92	0,89	1,	,15	0,06	0,03	0,04	0,00	6,80	0,00	0,00	0,151	2,83	10,164	99,785	
14	Rim	1,79	5,77	35,94	33,64	0,87	0	,97	0,07	0,03	0,08	0,02	7,37	0,00	0,11	0,047	2,891	10,117	99,715	
15	Core	2,10	6,24	36,81	33,13	0,44	0	,95	0,05	0,06	0,05	0,05	6,83	0,02	0,02	0,215	3,164	10,374	100,503	
15	Rim	2,06	6,01	38,29	34,60	0,43	0	,96	0,03	0,08	0,09	0,04	7,46	0,00	0,00	0,318	3,281	10,843	104,492	
16	Core	2,04	3,90	35,95	33,52	0,27	0	,29	0,02	0,18	0,00	0,00	10,10	0,00	0,00	0,222	3,075	10,152	99,719	
10	Rim	1,92	4,10	36,61	34,41	0,33	0	,30	0,06	0,17	0,00	0,00	9,92	0,13	0,15	0,070	2,955	10,397	101,522	
17	Core	2,14	2,00	34,92	34,17	0,07	0	,60	0,05	0,25	0,04	0,03	12,04	0,05	0,23	0,125	3,132	10,149	99,996	
	Rim	2,12	2,08	34,36	34,07	0,17	0	,85	0,07	0,23	0,02	0,00	11,97	0,01	0,17	0,205	3,068	10,089	99,482	
18	Core	1,89	6,23	35,13	32,19	1,16	0	,42	0,07	0,02	0,01	0,00	8,60	0,07	0,00	0,000	3,104	10,233	99,127	
10	Rim	1,92	6,14	35,84	32,80	1,19	0	,41	0,08	0,02	0,02	0,00	8,81	0,01	0,00	0,000	3,104	10,233	100,577	
19	Core	2,36	6,93	37,22	31,83	0,30	0	,18	0,00	0,01	0,00	0,04	7,89	0,00	0,06	0,530	3,137	10,325	100,812	
17	Rim	2,25	6,94	36,58	31,43	0,38	0	,10	0,01	0,04	0,00	0,05	7,72	0,13	0,09	0,347	3,134	10,183	99,384	
20	Core	1,95	2,71	35,25	33,78	0,41	0	,66	0,07	0,14	0,03	0,00	12,23	0,06	0,00	0,093	2,869	10,096	100,348	
20	Rim	1,91	2,65	35,03	33,31	0,34	0	,75	0,03	0,11	0,02	0,04	12,13	0,00	0,00	0,093	2,869	10,096	99,378	
21	Core	2,11	3,32	36,35	32,02	0,17	1	,01	0,04	0,23	0,03	0,00	12,21	0,00	0,03	0,211	3,161	10,394	101,286	
21	Rim	2,01	3,24	36,45	32,43	0,14	0	,81	0,03	0,27	0,01	0,00	11,60	0,00	0,12	0,393	3,095	10,228	100,826	
22	Core	1,88	6,52	36,88	33,79	0,59	0	,85	0,00	0,07	0,08	0,00	6,24	0,03	0,05	0,127	2,944	10,305	100,356	
22	Rim	2,08	6,29	37,15	33,88	0,30	0	,67	0,01	0,05	0,06	0,04	6,24	0,00	0,00	0,398	3,167	10,516	100,851	
22	Core	2,06	2,87	35,53	32,91	0,37	1	,07	0,10	0,03	0,06	0,04	12,14	0,04	0,03	0,270	3,044	10,147	100,711	
23	Rim	2,29	2,87	35,53	33,17	0,37	1	,17	0,07	0,02	0,06	0,00	11,96	0,00	0,00	0,327	3,027	10,213	101,077	
	Core	2,18	2,67	35,68	32,68	0,15	0	,66	0,05	0,09	0,06	0,01	13,24	0,01	0,02	0,181	3,106	10,099	100,886	
24	Rim	2,01	2,50	35,30	32,77	0,17	0	,66	0,03	0,11	0,02	0,01	13,36	0,05	0,08	0,181	3,106	10,099	100,456	
25	Core	2,22	6,55	36,39	32,82	0,60	0	,53	0,02	0,02	0,08	0,02	7,15	0,07	0,01	0,215	3,181	10,308	100,184	
25	Rim	1,86	6,56	36,54	33,23	0,90	0	,40	0,04	0,05	0,07	0,08	7,43	0,00	0,00	0,000	3,008	10,365	100,533	
26	Core	1,89	3,22	36,54	33,77	0,16	0	,22	0,04	0,18	0,00	0,00	10,78	0,00	0,02	0,304	2,858	10,225	100,207	
20	Rim	2,00	3,14	36,02	34,43	0,13	0	,30	0,03	0,15	0,01	0,00	10,93	0,00	0,05	0,261	3,125	10,42	100,996	
27	Core	2,03	4,07	35,46	33,71	0,42	0	,77	0,04	0,09	0,01	0,00	9,89	0,00	0,00	0,159	3,125	10,199	99,973	
2/	Rim	1,96	4,14	35,52	33,04	0,44	0	,81	0,03	0,06	0,04	0,04	9,99	0,00	0,12	0,018	2,905	10,13	99,243	
20	Core	2,14	4,43	36,41	33,10	0,20	0	,76	0,02	0,05	0,01	0,00	9,85	0,00	0,25	0,290	3,128	10,341	100,979	
28	Rim	1,99	3,92	36,31	33,54	0,17	0	,58	0,03	0,03	0,02	0,01	10,33	0,00	0,11	0,304	2,858	10,225	100,427	
20	Core	2,25	4,87	35,92	32,15	0,23	0	,59	0,05	0,10	0,02	0,00	10,06	0,01	0,02	0,107	3,142	10,133	99,652	
29	Rim	2,29	4,99	36,70	32,10	0,26	0	,71	0,04	0,12	0,00	0,00	9,82	0,00	0,08	0,421	3,081	10,215	100,827	
20	Core	2,33	2,53	34,69	32,04	0,46	0	,88	0,06	0,26	0,04	0,00	14,43	0,00	0,03	0,011	3,167	10,017	100,945	
50	Rim	2,33	2,51	34,38	31,89	0,48	0	,97	0,07	0,21	0,03	0,00	14,38	0,00	0,08	0,035	3,12	9,891	100,376	
21	Core	2,41	3,78	35,74	32,48	0,25	0	,24	0,04	0,48	0,01	0,00	11,84	0,03	0,13	0,210	3,092	10,086	100,818	
31	Rim	2,23	3,52	35,64	31,97	0,19	0	,35	0,03	0,45	0,01	0,00	11,64	0,00	0,10	0,342	3,045	9,961	99,478	
22	Core	1,71	4,90	35,67	33,96	0,73	0	,83	0,06	0,05	0,00	0,01	8,62	0,00	0,08	0,150	2,841	10,071	99,682	
32	Rim	1,78	4,71	36,33	34,54	0,73	0	,90	0,05	0,04	0,05	0,03	8,88	0,00	0,00	0,201	2,891	10,338	101,470	
22	Core	1,90	6,50	36,65	33,62	0,77	0	,46	0,06	0,06	0,01	0,03	6,72	0,00	0,00	0,127	2,944	10,305	100,156	
33	Rim	1,95	6,60	36,71	33,80	0,78	0	,48	0,04	0,09	0,01	0,02	6,76	0,00	0,00	0,127	2,944	10,305	100,616	
24	Core	1,78	3,44	36,73	34,42	0,13	0	,11	0,04	0,26	0,00	0,01	10,82	0,00	0,00	0,172	2,905	10,351	101,168	
34	Rim	1,83	3,29	35,61	33,34	0,14	0	,18	0,02	0,25	0,04	0,00	10,82	0,00	0,00	0,121	2,855	10,084	98,580	
25	Core	2,06	4,98	36,38	33,84	0,44	0	,87	0,05	0,00	0,06	0,01	8,75	0,01	0,00	0,421	3,064	10,281	101,216	
35	Rim	2,05	5,13	35,13	32,50	0,65	0	,76	0,05	0,01	0,05	0,01	8,82	0,00	0,00	0,136	3,128	10,12	98,544	
20	Core	2,64	0,98	35,14	30,55	0,04	0	,41	0,07	0,16	0,00	0,02	16,92	0,00	0,08	0,519	2,976	9,815	100,320	
30	Rim	2,36	1,35	34,58	30,97	0,10	0	,62	0,05	0,12	0,06	0,02	15,96	0,00	0,06	0,233	3,023	9,719	99,225	
27	Core	2,23	6,90	36,59	30,87	0,83	0	,85	0,02	0,05	0,10	0,00	8,51	0,03	0,06	0,347	3,151	10,117	100,655	
3/	Rim	1,80	6,13	35,92	32,31	0,67	0	,51	0,05	0,05	0,07	0,00	8,04	0,10	0,08	0,000	3,022	10,157	98,909	
20	Core	2,47	5,85	35,72	29,71	0,45	0	,85	0,04	0,24	0,08	0,04	10,73	0,04	0,00	0,267	3,115	9,862	99,464	
38	Rim	2,48	5,60	36,66	30,52	0,43	0	,93	0,06	0,26	0,04	0,00	11,14	0,05	0,16	0,187	3,229	10,189	101,935	
20	Core	1,91	0,10	35,50	33,74	0,02	0	,57	0,03	0,39	0,05	0,00	14,71	0,00	0,21	0,299	2,769	10,004	100, 302	
	Rim	1,91	0,14	35,03	33,32	0,03	0	,58	0,03	0,43	0,01	0,00	14,79	0,00	0,15	0,299	2,769	10,004	99,492	
40	Core	2,05	6,42	36,34	33,46	0,77	0	,32	0,05	0,05	0,09	0,06	7,30	0,00	0,00	0,088	3,228	10,434	100,660	
-10	Rim	2,13	6,55	36,49	33,24	0,66	0	,44	0,06	0,03	0,07	0,08	7,45	0,00	0,00	0,088	3,228	10,434	100,950	
	Core	2,17	1,35	34,45	31,80	0,34	0	,68	0,03	0,66	0,05	0,00	15,30	0,02	0,09	0,102	3,07	9,845	99,957	
41	Rim	2,10	1,41	34,79	33,60	0,29	0	,45	0,05	0,62	0,02	0,01	14,48	0,11	0,11	0,131	3,099	10,036	101,306	
12	Core	2,26	4,22	35,35	31,13	0,74	0	,32	0,08	0,11	0,02	0,02	12,88	0,00	0,12	0,000	3,223	10,126	100,599	
42	Rim	2,21	4,15	35,12	30,73	0,71	0	,44	0,07	0,14	0,01	0,00	12,74	0,00	0,13	0,107	3,176	10,001	99,734	
	Core	2,15	4,94	36,64	33,61	0,34	0	,67	0,02	0,10	0,04	0,03	9,28	0,11	0,00	0,290	3,128	10,341	101,689	
43	Rim	2,04	4,64	35,74	33,35	0,37	0	,84	0,04	0,12	0,06	0,10	9,86	0,00	0,11	0,159	3,125	10,199	100,753	
	Core	1,95	6,39	36,87	33,91	0,58	0	,79	0,03	0,04	0,08	0,04	6,30	0,00	0,06	0,127	2,944	10,305	100,416	
44	Rim	2,05	6,33	37,23	34,05	0,56	0	,65	0,04	0,04	0,08	0,02	6,29	0,02	0,00	0,266	3,214	10,641	101,481	
	Core	2,21	3,76	36,16	33,66	0,10	0	,34	0,03	0,14	0,03	0,00	10,62	0,12	0,03	0,393	3,078	10,294	100,965	
45	Rim	2,09	3,78	36,37	33,46	0,13	0	,39	0,02	0,14	0,01	0,03	10,25	0,00	0,14	0,393	3,078	10,294	100,575	
	Core	1,94	2,99	35,52	33,91	0,17	0	,47	0,04	0,22	0,06	0,02	11,35	0,00	0,13	0,224	2,805	10,037	99,886	
46	Rim	1,76	2.55	36.03	34.81	0.20	0	,75	0,05	0,22	0.02	0,00	10.93	0,08	0.00	0,407	2,791	10,245	100,843	
	Core	2,36	3,76	36,00	30,31	0,24	0	,56	0,06	0,17	0,04	0,01	14,11	0,00	0,11	0,261	3,193	10,155	101,339	
47	Rim	2,29	1,90	36,03	32,07	0,10	0	,30	0,05	0,24	0,01	0,03	15,29	0,11	0,18	0,335	3,123	10,254	102,312	
40	Core	1,78	6,15	36,27	33,98	0,70	0	,53	0,05	0,03	0,07	0,02	6,82	0,00	0,05	0,127	2,944	10,305	99,826	
48	Rim	1,79	6,10	37,00	34,42	0,66	0	,52	0,04	0,04	0,03	0,00	6,75	0,03	0,00	0,178	2,994	10,573	101,125	
10	Core	2,22	6,99	36,31	32,06	0,61	0	,43	0,03	0,07	0,07	0,01	7,50	0,05	0,00	0,215	3,181	10,308	100,054	
49	Rim	2,08	7,00	36,74	32,61	0,63	0	,49	0,01	0,02	0,06	0,05	7,63	0,00	0,12	0,000	3,295	10,414	101,149	
50	Core	2,09	1,36	34,65	34,13	0,19	0	,34	0,06	0,06	0,01	0,01	14,21	0,00	0,00	0,107	3,146	10,162	100,525	
50	Rim	2,06	1,34	34,49	33,68	0,21	0	,36	0,06	0,11	0,00	0,00	13,85	0,03	0,06	0,212	3,035	9,977	99,474	
	Core	1 92	5.65	36.53	32 70	0.24	0	24	0.01	0.03	0.00	0.01	7 72	0.00	0.00	0.230	2 804	10 250	99.4/12	
51	Rim	1,55	5.67	36,35	33,70	0,24	0,	.22	0.00	0.05	0,00	0,01	7.66	0.00	0,00	0,230	2,054	10,235	99,742	
	Core	2,05	6.02	36,26	33,05	0,20	0,	53	0.04	0.05	0,05	0,02	6.62	0.00	0,00	0,230	3 211	10.5	100.096	
52	Rim	2,00	5.06	36,50	34,04	0,40	0,	49	0.03	0,03	0,05	0,03	6.45	0,00	0,00	0,143	3,007	10,5	100.010	
	Core	1 01	3,90	30,45	22 71	0,31	0,	, <i>-</i> 76	0.02	0,04	0,05	0,04	11 00	0,03	0,00	0,518	2 205	10,394	00 3VE	
53	COL6	1,91	2,81	35,48	33,/1	0,22	0,	,10 76	0,02	0,12	0,02	0,03	11,00	0,10	0,00	0,224	2,805	10,037	33,240	
	run Cor-	1,68	4.22	30,83	34,Ub	0,27	0,	,70 22	0,03	0,09	0,04	0,02	11,Ub	0,00	0,11	0,113	2,852	10,103	100,008	
54	cure pim	1,97	4,33	30,01	34,10	0,22	0,	,23 22	0,03	0,12	0,02	0,00	3,30	0,00	0,00	0,070	2,900	10,397	100,472	
	KIM	2,00	4,30	35,72	33,38	0,22	0,	,23	0,03	0,12	0,02	0,00	9,10	0,02	0,12	0,159	3,125	10,199	98,803	
55	core pi	2,06	1,38	35,04	32,51	0,05	0,	,55 50	0,03	0,40	0,02	0,02	14,31	0,00	0,22	0,284	3,056	10,053	33,303	
	кіт	2,14	1,25	34,59	32,79	0,08	0,	,5U	0,04	0,31	0,01	0,00	14,42	0,00	0,34	0,155	3,053	9,911	99,589	
56	core	2,08	5,23	35,72	33,05	0,55	1,	,04	0,05	0,04	0,03	0,00	8,1b	0,00	0,08	0,138	3,1//	10,352	99,707	
	кіт	2,22	4,55	34,20	53,17	0,44	1,	,02	0,05	0,06	0,09	0,00	9,17	0,00	0,08	0,145	3,124	10,164	98,483	

Grain No	Row	Na2O	MaQ	SiO2	AI2O3	CaO	TiO2	к20	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
	Coro	1.04	0.41	24.76	22.05	0.20	0.00	0.02	0.10	0.00	0.02	16.41	0.00	0.00	0.000	2 9/7	0.955	09 902	
57	Rim	1,94	0,41	34,70	32,05	0,25	0,03	0,05	0,13	0,00	0,02	16.97	0,00	0,00	0,000	2,047	9,855	101 534	
	Coro	1,52	4.04	24.97	21.60	0,20	0,20	0,05	0,10	0,01	0,01	11 12	0,07	0,05	0,107	2,05	0.956	07.512	
58	Rim	2 3/	4,04	34,87	33,09	0,25	0,40	0,00	0,15	0,01	0,01	10.84	0,00	0,11	0,000	2,550	3,830 10.4	102 020	
	Coro	2,34	4,30 5.02	26.75	21.62	0,30	0,38	0,07	0,20	0,01	0,03	10,84	0,00	0,04	0,138	2 212	10,4	102,020	
59	Rim	2,25	5,03	30,75	20.59	0,50	0,75	0,03	0,05	0,04	0,04	10,85	0,10	0,11	0,107	2 165	10,233	101,034	
	Core	1 77	5,89	37.04	35.05	0,50	0,70	0.05	0.06	0,00	0,01	6 26	0,00	0.14	0,310	2 927	10,15	101 130	
60	Rim	1.80	5,87	37.20	34 64	0.66	0.45	0,05	0,00	0.04	0,00	6 79	0.05	0.00	0.412	2,527	10,352	101,150	
	Core	1.85	3.45	36.51	35.07	0.13	0.22	0.01	0.07	0.01	0.00	9.53	0.02	0.00	0.172	2.888	10.417	100.347	
61	Rim	1.78	3.71	36.36	34.05	0.23	0.58	0.05	0.07	0.04	0.00	9.25	0.06	0.00	0.304	2.841	10.292	99.617	
	Core	1.64	9.39	36.38	27.32	2.37	0.39	0.04	0.09	0.02	0.00	9.06	0.03	0.13	0.014	3.361	10.2	100.435	
62	Rim	1,76	9,77	35,38	26,84	2,36	0,37	0,07	0,09	0,07	0,02	8,86	0,00	0,00	0,094	3,247	9,874	98,805	
63	Core	1,86	6,29	37,70	34,29	0,76	0,51	0,02	0,07	0,05	0,03	6,44	0,00	0,00	0,178	2,994	10,573	101,765	
63	Rim	1,78	6,19	39,04	35,20	0,66	0,65	0,04	0,06	0,03	0,10	6,67	0,03	0,00	0,412	3,047	10,982	104,891	
CA	Core	2,11	3,78	35,37	33,13	0,13	0,64	0,05	0,14	0,00	0,00	11,22	0,00	0,01	0,141	3,139	10,212	100,072	
64	Rim	2,15	3,87	35,06	32,75	0,14	0,57	0,07	0,12	0,03	0,00	11,17	0,01	0,04	0,210	3,092	10,086	99,368	
65	Core	2,03	3,05	35,41	33,06	0,20	0,46	0,04	0,19	0,01	0,00	11,78	0,00	0,03	0,141	3,139	10,212	99,752	
05	Rim	2,08	3,56	36,05	33,04	0,24	0,38	0,05	0,21	0,02	0,00	11,41	0,00	0,05	0,261	3,142	10,354	100,847	
66	Core	1,92	1,75	35,27	33,50	0,23	0,81	0,04	0,17	0,01	0,04	12,81	0,04	0,11	0,327	2,755	9,991	99,773	
	Rim	2,07	2,42	34,90	32,92	0,25	0,95	0,02	0,18	0,04	0,00	12,71	0,08	0,08	0,172	3,039	9,898	99,729	
67	Core	2,29	5,92	36,30	33,06	0,37	0,41	0,06	0,13	0,01	0,00	8,45	0,00	0,04	0,187	3,178	10,387	100,792	
	Rim	2,08	5,91	36,26	33,23	0,40	0,28	0,04	0,12	0,01	0,01	7,76	0,04	0	0,318	3,114	10,328	99,900	
68	Core	2,2	6,46	36,40	31,73	0,52	0,84	0,04	0,03	0,10	0,07	8,81	0,00	0	0,215	3,198	10,242	100,855	
	Rim	2,42	6,14	36,34	31,97	0,32	0,67	0,06	0,04	0,09	0,04	8,74	0,08	0	0,215	3,198	10,242	100,565	
69	Core	2,29	7,21	36,60	32,60	0,53	0,26	0,05	0,04	0,03	0,03	7,31	0,00	0	0,000	3,295	10,414	100,659	
	Rim	2,31	7,11	36,30	32,54	0,47	0,29	0,03	0,07	0,02	0,03	7,27	0,03	0,06	0,000	3,295	10,414	100,239	
70	Core	2,45	6,31	36,05	31,94	0,36	0,47	0,06	0,14	0,04	0,04	8,88	0,03	0,01	0,215	3,198	10,242	100,435	
	RIM	2,29	0,38	36,67	31,53	0,35	0,55	0,05	0,14	0,04	0,04	8,35	0,00	0,1	0,215	3,198	10,242	100,145	
71	Core	1,97	4,42	36,36	33,63	0,40	0,52	0,07	0,06	0,03	0,00	9,77	0,00	0,01	0,201	2,908	10,272	100,621	
	Coro	2,08	4,51	35,00	22.66	0,50	0,05	0,07	0,04	0,00	0,01	9,09	0,09	0.01	0,159	2 090	10,199	100,475	
72	Rim	1.96	2,45	35,00	33,56	0,11	0,40	0,03	0,19	0,04	0,00	12,42	0,00	0,01	0,204	2 869	10,105	99 5/18	
	Core	1,50	0.38	35,55	34,90	0,15	0,55	0,02	0,18	0,01	0,02	14.05	0,13	0,07	0,055	2,805	10,030	100.820	
73	Rim	1.4	0,30	36.07	35,00	0,00	0,13	0,05	0,20	0.05	0,00	13 52	0,00	0.01	0,350	2,015	10,271	100,020	
	Core	2 38	6 38	36.19	32 20	0,02	0,14	0,05	0,22	0,05	0,00	8 15	0,00	0,01	0,050	3 2/15	10,357	100,006	
74	Rim	2,43	7.53	36,93	31.47	0.50	0.68	0.09	0.04	0.09	0.10	7.12	0.12	0	0.112	3,248	10,288	100,748	
	Core	2.12	5.77	36.80	32.62	0.24	1.05	0.02	0.06	0.07	0.04	8.38	0.00	0	0.269	3.133	10.368	100.940	
75	Rim	1.88	7.03	36.26	33.64	1.02	0.69	0.02	0.03	0.08	0.02	5,90	0.00	0	0.122	3.076	10.428	100.196	
	Core	1,94	5,87	36,71	33,96	0,50	0,41	0,05	0,08	0,03	0,03	6,77	0,00	0	0,361	2,83	10,2	99,741	
76	Rim	1,85	6,10	36,98	33,78	0,46	0,47	0,05	0,08	0,02	0,04	6,79	0,00	0,03	0,127	2,944	10,305	100,026	
	Core	1,79	4,54	36,88	33,96	0,16	0,28	0,06	0,20	0,00	0,02	9,18	0,01	0,03	0,201	2,908	10,272	100,491	
//	Rim	1,91	4,62	36,88	33,65	0,15	0,24	0,05	0,25	0,00	0,03	9,14	0,01	0	0,201	2,908	10,272	100,311	
70	Core	1,97	2,63	35,42	33,89	0,10	0,49	0,04	0,25	0,02	0,00	12,18	0,00	0,04	0,093	2,869	10,096	100,088	
/0	Rim	1,97	2,60	36,11	34,19	0,11	0,45	0,04	0,21	0,02	0,00	12,16	0,07	0,03	0,144	2,919	10,364	101,387	
70	Core	2,18	7,15	36,91	31,74	0,76	0,82	0,01	0,01	0,05	0,01	7,42	0,03	0	0,112	3,248	10,288	100,738	
15	Rim	1,69	6,41	37,31	32,80	0,59	0,75	0,01	0,01	0,10	0,04	6,48	0,00	0	0,441	2,901	10,322	99,854	
80	Core	2,63	7,45	36,92	28,22	0,51	0,19	0,01	0,02	0,08	0,00	11,03	0,00	0	0,000	3,363	10,15	100,573	
00	Rim	2,08	8,00	38,20	29,50	1,20	0,52	0,04	0,01	0,03	0,03	8,74	0,07	0	0,473	3,421	10,562	102,876	
81	Core	1,97	6,50	36,54	31,58	0,65	0,15	0,03	0,05	0,03	0,03	7,91	0,00	0	0,258	2,915	10,114	98,727	
	Rim	2,09	7,01	36,38	31,67	0,70	0,14	0,07	0,06	0,05	0,05	8,05	0,05	0	0,000	3,312	10,348	99,980	
82	Core	1,99	6,25	36,53	33,90	0,47	0,61	0,05	0,03	0,05	0,01	7,41	0,01	0,01	0,000	3,008	10,365	100,693	
	Rim	1,98	6,03	37,43	34,08	0,50	0,52	0,04	0,04	0,04	0,04	7,49	0,00	0,05	0,046	3,058	10,632	101,976	
83	Core	1,85	4,98	37,03	34,30	0,45	0,37	0,03	0,14	0,02	0,02	8,63	0,03	0,03	0,384	2,894	10,48	101,638	
	Rim	1,99	4,78	36,99	33,94	0,36	0,32	0,05	0,14	0,00	0,00	8,43	0,00	0	0,333	2,844	10,213	100,390	
84	Core	2,05	7,92	37,44	32,61	0,42	0,16	0,00	0,02	0,05	0,01	6,34	0,05	0	0,295	3,234	10,496	101,095	
	Rim	1,92	7,51	37,11	32,10	0,39	0,08	0,02	0,02	0,03	0,03	6,10	0,00	0,05	0,206	3,015	10,428	99,009	
85	Core	2,14	8,00	36,89	30,69	0,84	0,28	0,02	0,00	0,04	0,01	6,88	0,00	0,03	0,141	3,251	10,209	99,421	
	Rim	1,93	7,26	37,55	30,75	0,87	0,25	0,02	0,01	0,06	0,02	7,23	0,00	0,06	0,338	2,985	10,236	99,569	
86	Core	2	2,38	34,58	31,90	0,22	0,45	0,03	0,17	0,06	0,04	12,97	0,01	0	0,262	2,992	9,773	97,837	
	Coro	2,00	2,45	35,40	33,35	0,20	0,54	0,01	0,15	0,02	0,00	13,02	0,00	0.08	0,124	3,135	10,225	100,982	
87	Rim	2 /0	2,10	30,75	20.96	0,14	0,50	0,07	0,20	0,01	0,02	12.46	0,00	0,08	0,130	2 052	0 155	02 259	
	Core	1 75	4.46	36,81	34 56	0,10	0,00	0,04	0,27	0,02	0,03	8.67	0,00	0,07	0,000	2,955	10 338	100 520	
88	Rim	1,68	4,35	38.08	35.25	0,21	0.06	0.01	0.10	0.00	0.00	8.41	0.03	0.02	0.435	2,001	10,330	102,276	
	Core	1.96	6.37	36.31	33.85	0.91	0.69	0.05	0.04	0.07	0.05	6.57	0.03	0.01	0.127	2,944	10.305	100.286	
89	Rim	1.72	6.39	35.98	33.12	0.85	0.58	0.07	0.03	0.06	0.00	6.51	0.00	0.04	0.000	2.941	10.164	98.455	
	Core	1,84	6,22	36,67	33,04	0,56	0,58	0,01	0,07	0,07	0,03	7,33	0,09	0,07	0,000	3,008	10,365	99,953	
90	Rim	1,92	6,29	36,16	32,89	0,55	0,58	0,01	0,06	0,07	0,08	7,25	0,00	0	0,127	2,962	10,239	99,188	
01	Core	2,12	5,78	35,17	33,19	0,76	0,68	0,04	0,01	0,06	0,03	8,15	0,03	0	0,096	3,175	10,245	99,536	
91	Rim	1,89	5,87	35,04	32,76	0,73	0,67	0,04	0,07	0,05	0,04	8,01	0,00	0	0,047	2,908	10,051	98,176	
92	Core	1,91	6,40	35,80	33,70	1,01	0,93	0,04	0,06	0,02	0,03	6,43	0,08	0	0,129	3,023	10,24	99,802	
52	Rim	1,94	6,43	35,91	33,54	1,06	1,03	0,05	0,05	0,05	0,00	6,04	0,00	0,02	0,171	3,026	10,346	99,663	
93	Core	2,61	6,82	36,55	30,43	0,10	0,13	0,01	0,00	0,06	0,05	9,20	0,07	0	0,215	3,215	10,176	99,636	
	Rim	2,52	6,95	36,41	29,16	0,38	0,68	0,03	0,01	0,08	0,05	9,52	0,00	0,06	0,347	3,168	10,051	99,416	
94	Core	1,61	1,68	35,25	34,03	0,05	0,21	0,02	0,27	0,00	0,00	12,23	0,05	0,09	0,196	2,802	10,116	98,604	
	Rim	1,87	1,81	35,15	33,37	0,03	0,21	0,01	0,26	0,01	0,02	12,59	0,04	0,14	0,327	2,755	9,991	98,583	
95	Core	1,84	6,76	35,62	32,80	0,76	0,68	0,01	0,02	0,10	0,02	6,36	0,00	0	0,076	2,895	10,038	97,979	
	RIM	1,86	6,69	35,96	33,10	0,81	0,62	0,01	0,02	0,05	0,05	6,53	0,00	0	0,000	2,941	10,164	98,805	
96	Core	2,35	2,90	35,24	32,23	0,10	0,50	0,04	0,16	0,04	0,02	12,61	0,00	0,05	0,313	3,042	10,04	99,635	
	KIM Core	2,22	2,75	35,33 24 0 1	32,08	0.84	0,58	0,03	0.02	0,00	0,00	12,82	0,03	0,04	0,313	3,042	10,04	99,525	
97	core Pim	1.9	0,21 6.0F	34,92	33.05	0,64	0,00	0,00	0,03	0,08	0,04	6.01	0,00	0	0,000	2,938	10,022	90,100 00 575	
	Coro	2,05	7 1 2	35,69	33,95	0,00	0,00	0,05	0,00	0,10	0,07	8.02	0,00	0	0,000	2,941	10,104	100,400	
98	Rim	2,11	6 52	26.54	31,20	0.70	0.67	0,02	0.05	0,04	0,02	7 /1	0.07	0.02	0.215	3,312	10,340	100,400	
	Core	2,24	3 80	35.75	34,10	0.18	0.04	0.04	0.15	0.00	0.02	10 17	0.00	0,02	0 198	3 177	10,308	99,918	
99	Rim	2,00	3.87	35.64	33,92	0.19	0.05	0.04	0.15	0.04	0.00	9.99	0.00	0.06	0.341	3.011	10.093	99,415	
	Core	1.91	7.49	37.07	31,28	1,05	0.76	0.00	0.01	0.04	0.00	7.40	0.00	0	0.304	3.114	10.438	100,866	
100	Rim	2,13	7,06	36.76	31.11	0.84	0,82	0,03	0.01	0,06	0,05	7.75	0.00	0,05	0.112	3,248	10,288	100.318	
	Core	1.97	6.32	36.23	33,60	0,58	0.57	0.06	0.02	0.08	0.05	6.80	0.05	0	0.127	2.944	10.305	99,706	
101	Rim	1.95	6.32	36.26	33,85	0,54	0.58	0.06	0.07	0.07	0.06	6.73	0.00	0.11	0.127	2.944	10.305	99,976	
105	Core	1,86	1,38	34,70	33,65	0,33	0,70	0,07	0,07	0,01	0,02	13,92	0,09	0,02	0,064	2,816	9,908	99,608	
102	Rim	1,96	1,52	35,50	34,15	0,29	0,52	0,04	0,07	0,04	0,02	14,06	0,00	0,04	0,015	2,93	10,235	101,390	
100	Core	1,7	1,74	35,81	33,87	0,09	0,19	0,04	0,09	0,03	0,00	12,70	0,00	0	0,327	2,755	9,991	99,333	
103	Rim	1,9	1,79	34,00	32,44	0,11	0,45	0,03	0,13	0,03	0,01	13,00	0,01	0,07	0,145	2,769	9,783	96,667	
104	Core	2,28	4,47	34,57	31,62	0,35	0,67	0,03	0,10	0,06	0,00	10,43	0,05	0	0,070	3,092	9,865	97,657	
104	Rim	2,19	4,53	33,86	31,42	0,34	0,62	0,03	0,07	0,07	0,00	10,68	0,05	0	0,014	3,089	9,724	96,687	
105	Core	1,61	6,46	37,13	33,89	1,20	0,84	0,04	0,03	0,08	0,01	6,64	0,02	0	0,407	3,029	10,523	101,909	
105	Rim	1,58	6,66	36,92	33,72	1,14	0,86	0,03	0,07	0,07	0,05	6,42	0,00	0	0,225	3,026	10,381	101,152	
106	Core	2,27	3,65	36,34	32,36	0,08	0,43	0,03	0,23	0,07	0,02	11,50	0,04	0	0,393	3,095	10,228	100,736	
	Rim	2,08	3,42	37,20	33,44	0,06	0,31	0,02	0,18	0,02	0,03	10,84	0,00	0	0,575	3,081	10,436	101,692	

Grain No	Row	Na2O	MgO	SiO2	Al2O3	CaO	TiO2	К2О	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
	Core	2,07	5,08	35,90	34,02	0,26	0,50	0,06	0,09	0,02	0,00	8,50	0,00	0	0,072	3,222	10,371	100,165	
107	Rim	2,11	5,05	36,87	34,36	0,25	0,48	0,04	0,09	0,02	0,00	8,75	0,00	0,11	0,128	3,225	10,513	101,996	
	Core	2.2	5.75	35.05	31.02	0.87	1.25	0.06	0.07	0.10	0.04	9.21	0.00	0	0.105	3.147	10.16	99.032	
108	Rim	2.03	3.89	36.45	34.47	0.35	0.39	0.03	0.14	0.02	0.02	9.39	0.00	0	0.393	3.061	10.36	100.994	
	Core	2.16	4.77	35.65	31.93	0.44	0.75	0.05	0.13	0.01	0.00	10.05	0.06	0	0.239	3.095	10.007	99.341	
109	Rim	2.01	4.96	34.78	31.56	0.41	0.36	0.06	0.11	0.03	0.04	9.42	0.02	0.02	0.187	3.028	9.806	96.801	
	Core	2.32	5,97	36.59	32.29	0.36	0.76	0.06	0.10	0.10	0.00	8.43	0.00	0.03	0.318	3.131	10.262	100.721	
110	Rim	2.02	4.82	37.73	33.46	0.32	0.58	0.04	0.09	0.06	0.00	9.17	0.00	0.04	0.472	3.131	10.483	102.416	
	Core	2,03	1,97	34,60	33,02	0,15	0,05	0,05	0,23	0,02	0,03	13,20	0,02	0,1	0,212	3,035	9,977	98,694	
111	Rim	2,03	1,73	34,20	32,52	0,13	0,08	0,04	0,29	0,02	0,04	12,96	0,00	0,11	0,365	2,925	9,792	97,232	
	Core	2,17	2,71	34,51	32,22	0,15	0,55	0,04	0,23	0,01	0,01	12,81	0,00	0	0,172	3,039	9,898	98,519	
112	Rim	2,09	2,75	34,48	32,29	0,11	0,45	0,03	0,18	0,03	0,00	12,44	0,00	0,03	0,172	3,039	9,898	97,989	
	Core	1,76	6,64	35,57	33,41	0,78	0,56	0,04	0,05	0,09	0,03	5,73	0,03	0,03	0,076	2,877	10,104	97,777	
113	Rim	1,92	6,38	36,04	34,33	0,61	0,45	0,02	0,05	0,05	0,05	5,41	0,02	0	0,127	2,927	10,372	98,756	
	Core	1,93	6,67	35,91	33,26	0,63	0,81	0,00	0,02	0,09	0,08	6,00	0,00	0,03	0,000	2,941	10,164	98,535	
114	Rim	1,75	6,57	35,69	32,42	0,87	0,77	0,00	0,03	0,04	0,05	6,49	0,05	0,08	0,076	2,895	10,038	97,819	
445	Core	1,75	4,86	35,70	32,65	0,21	0,20	0,00	0,03	0,00	0,00	9,17	0,01	0,06	0,150	2,858	10,005	97,653	
115	Rim	2	5,14	36,08	32,52	0,57	0,78	0,01	0,02	0,06	0,04	9,02	0,04	0,04	0,187	3,195	10,321	100,023	
110	Core	2,27	6,53	35,07	29,77	1,02	0,55	0,04	0,04	0,05	0,05	10,44	0,09	0,01	0,131	3,311	10,044	99,416	
116	Rim	1,86	6,52	34,99	29,77	1,58	0,67	0,08	0,08	0,06	0,03	10,46	0,00	0	0,000	3,089	9,833	99,022	
447	Core	1,87	9,57	37,50	33,86	1,02	0,54	0,00	0,00	0,05	0,00	1,83	0,00	0,1	0,362	3,052	10,544	100,298	
11/	Rim	2,05	6,27	36,18	31,16	0,63	0,80	0,01	0,05	0,09	0,01	8,05	0,00	0	0,215	3,198	10,242	98,955	
110	Core	1,89	6,27	35,97	32,02	1,06	0,78	0,03	0,06	0,08	0,05	8,36	0,05	0	0,000	3,104	10,233	99,957	
110	Rim	1,92	6,35	35,70	32,11	1,17	0,68	0,03	0,06	0,08	0,00	8,04	0,01	0,05	0,000	3,104	10,233	99,537	
110	Core	1,99	6,97	36,32	32,41	0,64	0,57	0,00	0,05	0,05	0,09	6,71	0,08	0	0,258	2,898	10,18	99,216	
119	Rim	2,01	6,83	36,13	31,92	0,70	0,58	0,01	0,06	0,08	0,03	7,38	0,07	0,06	0,347	3,134	10,183	99,524	
120	Core	2,06	10,00	37,51	32,42	1,18	0,46	0,01	0,05	0,03	0,01	2,48	0,00	0,05	0,216	3,402	10,652	100,530	
120	Rim	1,98	9,59	37,77	33,18	0,99	0,47	0,00	0,06	0,06	0,00	2,64	0,05	0	0,132	3,034	10,527	100,483	
121	Core	2,39	4,99	36,10	31,12	0,06	0,47	0,03	0,12	0,04	0,02	10,95	0,00	0,01	0,421	3,098	10,149	99,968	
121	Rim	2,28	6,72	36,92	31,87	0,46	0,68	0,02	0,00	0,03	0,03	7,34	0,00	0	0,347	3,134	10,183	100,014	
122	Core	1,63	0,14	35,39	33,91	0,07	0,07	0,04	0,30	0,00	0,00	14,91	0,08	0	0,299	2,769	10,004	99,612	
	Rim	1,76	0,05	35,48	34,92	0,08	0,07	0,00	0,31	0,01	0,00	14,38	0,09	0,07	0,167	2,816	10,129	100,332	
123	Core	2,22	7,29	37,55	31,09	0,77	0,54	0,00	0,04	0,08	0,06	7,62	0,00	0,03	0,295	3,251	10,43	101,266	
	Rim	2,15	7,17	37,43	30,66	0,47	0,54	0,01	0,03	0,07	0,04	8,33	0,13	0,04	0,295	3,268	10,364	100,997	
124	Core	2,2	5,75	36,60	33,20	0,29	0,79	0,05	0,00	0,06	0,06	7,60	0,00	0,05	0,318	3,114	10,328	100,410	
	Rim	2,01	5,85	36,27	33,14	0,36	0,82	0,00	0,00	0,04	0,04	7,74	0,00	0,02	0,318	3,114	10,328	100,050	
125	Core	2,1	3,35	35,31	32,90	0,12	0,65	0,02	0,16	0,02	0,00	11,62	0,00	0,11	0,210	3,092	10,086	99,748	
	Rim	2,22	3,17	35,65	33,49	0,12	0,77	0,03	0,17	0,05	0,02	11,46	0,02	0,11	0,141	3,139	10,212	100,772	
126	Core	2	6,54	36,75	33,70	0,66	0,49	0,02	0,04	0,05	0,08	7,02	0,00	0	0,088	3,228	10,434	101,100	
	Rim	1,8	6,44	37,19	33,68	0,75	0,51	0,03	0,04	0,06	0,06	6,50	0,01	0,05	0,309	2,948	10,447	100,824	
127	Core	2,2	2,54	34,48	32,91	0,22	0,54	0,04	0,09	0,06	0,00	12,72	0,00	0,13	0,172	3,039	9,898	99,039	
	Rim	2,08	2,32	33,66	32,80	0,26	0,57	0,07	0,14	0,03	0,00	13,02	0,00	0	0,036	3,1	9,815	97,901	
128	Core	2,13	6,83	36,29	31,22	0,63	0,59	0,02	0,06	0,05	0,01	8,22	0,04	0	0,215	3,198	10,242	99,745	
	Rim	1,92	6,14	38,76	32,98	0,67	0,51	0,04	0,03	0,07	0,00	8,09	0,00	0,07	0,361	3,032	10,582	103,255	
129	Core	2,24	6,25	36,35	32,64	0,44	0,58	0,05	0,05	0,06	0,06	8,17	0,00	0	0,084	3,245	10,367	100,586	
	Rim	2,25	6,08	37,27	33,50	0,41	0,58	0,06	0,03	0,05	0,03	8,23	0,06	0	0,135	3,295	10,635	102,615	
130	Core	1,97	6,67	36,52	33,28	0,75	0,65	0,06	0,04	0,05	0,07	6,66	0,00	0,03	0,127	2,944	10,305	100,126	
	Rim	1,76	5,81	37,50	33,47	0,59	0,63	0,03	0,03	0,06	0,03	7,07	0,00	0,05	0,412	2,897	10,401	100,740	
131	Core	2,19	5,48	35,71	32,00	0,74	0,57	0,05	0,04	0,09	0,02	10,09	0,00	0,03	0,000	3,256	10,238	100,504	
	Rim	1,93	4,58	35,53	32,2	0,51	0,73	0,04	0,08	0,06	0,02	10,41	0,05	0	0,018	2,922	10,064	99,144	

ANEXO B – Dados Análise Química, Turmalinas TUP 02A (Microssonda Eletrônica + WinTCac)

Grain No	Row	Na2O	MgO	SiO2	AI2O3	CaO	TiO2	к20	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
1	Core	2,01	5,17	37,04	34,16	0,58	0,85	0,03	0,04	0,04	0,02	8,07	0,00	0,08	0,238	3,228	10,654	102,210	*(Yavuz et al., 2014)
1	Rim	2	5,04	36,86	34	0,59	0,82	0,06	0,03	0,01	0,01	8,03	0,00	0	0,128	3,225	10,513	101,316	
2	Core	2	3,88	36,46	34,26	0,21	0,46	0,05	0,09	0	0,02	9,6	0,00	0,13	0,393	3,061	10,36	100,974	
	Rim	1,81	3,82	38,24	36,25	0,16	0,38	0,02	0,06	0,01	0,04	8,97	0,08	0,03	0,538	2,877	10,767	104,052	
3	Core	1,98	5,29	36,61	33,58	0,53	0,81	0,04	0,09	0,07	0,03	8,14	0,00	0	0,098	2,958	10,318	100,544	
	Rim	1,82	5,3	37,54	34,59	0,7	0,75	0,03	0,1	0,06	0,02	8,26	0,03	0,03	0,149	3,008	10,586	102,973	
4	Lore	1,81	6,78	36,59	32,73	0,98	0,47	0.01	0,05	0,02	0,04	7,66	0,00	0,05	0,127	2,962	10,239	100,508	
	Core	1,85	6,5	36.38	33,10	0,87	0,55	0,01	0,09	0,04	0,03	6.45	0,00	0.03	0,178	3,012	10,507	101,807	
5	Rim	1.8	5.84	37,75	35.3	0.48	0.47	0.04	0.04	0.01	0.03	6.51	0.01	0,05	0,127	2,927	10,505	102.080	
	Core	2,04	6,3	36,58	33,44	0,62	0,56	0,03	0,1	0,06	0,05	7,17	0,07	0,01	0,088	3,228	10,434	100,780	
6	Rim	1,94	6,29	36,77	32,92	0,51	0,48	0,03	0,07	0,04	0,08	7,33	0,00	0	0,127	2,962	10,239	99,788	
7	Core	1,91	8,33	36,5	31,04	1,36	0,26	0,07	0,01	0,03	0,02	7,83	0,06	0	0	3,225	10,401	101,046	
	Rim	1,87	8,07	36,17	30,8	1,41	0,23	0,07	0,06	0	0,01	7,63	0,00	0	0,019	3,178	10,276	99,793	
8	Core	1,64	2,18	36,2	34,33	0,03	0,1	0,02	0,16	0	0	12,24	0,05	0,02	0,144	2,919	10,364	100,397	
	Rim	1,54	1,96	37,24	34,56	0,05	0,08	0	0,15	0	0	12,1	0,00	0,13	0,561	2,808	10,4	101,579	
9	Core	2,05	3,83	35,39	33,3	0,11	0,66	0,03	0,14	0,04	0,02	10,39	0,00	0,06	0,222	3,075	10,152	99,469	
	Rim	1,94	3,67	35,87	32,98	0,11	0,58	0,05	0,15	0,01	0	10,33	0,00	0,08	0,253	2,808	9,958	98,789	
10	Core	2,15	2,3	35,21	32,55	0,09	0,46	0,04	0,47	0,04	0	12,49	0,00	0	0,313	3,042	10,04	99,195	
	Kim	2,02	2,17	36,24	33,24	0,09	0,36	0,04	0,39	0,03	0,01	12,49	0,04	0,18	0,364	3,092	10,307	101,063	
11	Rim	2,12	2,01	36.28	33.75	0,00	0,8	0,03	0,10	0,03	0.02	11,77	0,00	0,20	0,313	3,023	10,100	100 982	
	Core	1.72	1.34	34.86	34.32	0.15	0,13	0.03	0.33	0	0	12.23	0.00	0.06	0,130	2,799	9,974	98.404	
12	Rim	1,67	1,24	35,27	34,82	0,14	0,44	0,04	0,28	0	0	12,4	0,00	0,09	0,196	2,802	10,116	99,504	
42	Core	2,25	4,69	36,17	32,31	0,14	0,56	0,01	0,13	0,05	0	9,92	0,00	0,22	0,421	3,081	10,215	100,167	
15	Rim	2,1	4,32	36,47	32,63	0,12	0,6	0,04	0,13	0	0,03	9,5	0,00	0,16	0,421	3,081	10,215	99,817	
14	Core	1,97	0,87	34,69	32,75	0,16	0,29	0,01	0,39	0,04	0,02	14,37	0,06	0,21	0,248	2,719	9,736	98,533	
	Rim	2,07	1	34,84	33,02	0,19	0,21	0,04	0,39	0,01	0,05	14,41	0,00	0,12	0,131	3,099	10,036	99,616	
15	Core	2,23	4,83	35,19	32,01	0,3	0,5	0,04	0,13	0,04	0,02	10,82	0,10	0,08	0,107	3,142	10,133	99,672	
	Rim	2,27	4,63	35,89	31,83	0,33	0,5	0,02	0,14	0,04	0,02	10,57	0,05	0,02	0,239	3,095	10,007	99,651	
16	Core	2,16	5,35	35,63	31,66	0,58	0,66	0,05	0,13	0,11	0,02	9,55	0,02	0	0,136	3,145	10,054	99,255	
	Core	1,98	5,90	30,27	34,51	0,71	0,58	0,05	0,03	0.05	0	0,90 6 0 2	0,02	0,08	0,23	2,8//	10,325	100,382	
17	Rim	2,23	6 14	34,99	33 71	0.79	1,41	0,00	0.01	0,05	0.01	6,96	0,00	0,04	0,123	3,163	10,330	100.367	
	Core	2,13	6.27	35.34	32.78	0.48	0.38	0.02	0.05	0.01	0.03	8.58	0.00	0.07	0,100	3.247	10.226	99,608	
18	Rim	2,14	5,97	35,47	32,53	0,46	0,25	0,04	0,04	0,03	0,04	8,22	0,00	0	0,136	3,128	10,12	98,574	
10	Core	2,36	4,37	35,26	31,86	0,35	0,56	0,06	0,12	0,02	0,02	11,03	0,00	0,17	0,107	3,159	10,067	99,513	
19	Rim	2,3	4,2	35,87	31,69	0,38	0,68	0,04	0,11	0,03	0	10,88	0,01	0	0,239	3,095	10,007	99,531	
20	Core	2,29	4,27	34,88	31,19	0,3	0,35	0,06	0,29	0,01	0	11,37	0,00	0,09	0	3,156	9,925	98,181	
20	Rim	2,34	4,93	34,54	30,85	0,36	0,35	0,06	0,23	0	0	10,59	0,00	0,1	0,187	3,045	9,74	97,322	
21	Core	1,89	2,28	34,98	33,27	0,02	0,31	0,03	0,17	0,06	0	12,46	0,03	0,14	0,001	2,866	9,955	98,462	
~-	Rim	1,74	2,19	34,35	33,22	0,02	0,18	0,02	0,16	0,03	0	11,76	0,00	0,07	0,082	2,802	9,895	96,519	
22	Core	2,37	5,9	34,69	31,75	0,65	0,6	0,05	0,13	0,04	0,02	9,29	0,03	0	0,007	3,142	9,912	98,581	
	Rim	2,19	5,87	34,51	31,27	0,61	0,55	0,05	0,11	0,06	0,02	9,1	0,00	0	0,007	3,142	9,912	97,401	
23	Core	2,16	5,09	35,6	34,02	0,36	0,42	0,03	0,09	0,03	0	7,64	0,04	0,1	0,152	3,158	10,311	99,201	
	Core	2,07	5,18	35,37	33,3	0,45	0,39	0,05	0,07	0,01	0.03	6.99	0,00	0,00	0,176	2,874	10,180	98,283	
24	Rim	2 02	5.47	34.96	33 55	0.64	0,74	0,00	0.06	0.06	0,05	6.95	0,00	0,01	0,005	3 044	9 985	97 710	
	Core	1.57	0.98	34.31	33.81	0,01	0,17	0.03	0.31	0.02	0	12.65	0.00	0.19	0,201	2.638	9,743	96.800	
25	Rim	1,51	0,99	35,73	34,85	0,05	0,17	0,01	0,25	0,03	0	13,17	0,00	0,1	0,299	2,752	10,07	99,981	
26	Core	1,9	2,03	34,42	33,59	0,16	0,39	0,03	0,33	0,01	0	12,01	0,08	0,09	0,001	2,866	9,955	97,862	
27	Rim	1,82	2,09	34,5	33,38	0,15	0,32	0,04	0,32	0,02	0	11,85	0,00	0,04	0,082	2,802	9,895	97,309	
21	Core	1,93	6,43	34,76	32,16	0,77	0,48	0,05	0,04	0,03	0,01	7,32	0,02	0,03	0	2,955	9,956	96,941	
28	Rim	1,99	6,6	35,01	33,16	0,82	0,46	0,04	0,08	0,03	0	7,07	0,00	0,09	0	3,005	10,223	98,578	
	Core	1,63	2,17	34,63	34,31	0,06	0,15	0	0,18	0,01	0	11,92	0,00	0,03	0,058	2,849	10,021	98,018	
29	Rim	2,04	3,07	33,79	32,19	0,09	0,41	0,06	0,09	0	0	11,79	0,03	0,06	0,054	3,086	9,803	96,563	
	Core	1,76	2,73	35,63	34,17	0,05	0,01	0,04	0,14	0,01	0,01	11,12	0,00	0	0,113	2,852	10,163	98,798	
30	Coro	2,75	2,05	35,74	33,77	0,02	0,05	0,05	0,15	0,02	0.01	2 10,7	0,00	0,00	0,350	2,741	9,978	97,995	
	Rim	2,12	4,75	36.1	34.43	0,25	0,45	0,03	0.09	0,02	0,01	7 76	0,02	0,11	0,235	3 047	10,135	99.855	
31	Core	1.89	6.12	35.42	33.53	0,52	0.31	0.03	0.07	0.05	0.03	7.26	0.02	0	0,111	3.005	10,223	98.478	
	Rim	1,95	6,04	35,73	33,53	0,5	0,36	0,06	0,06	0	0	7,21	0,02	0	0	3,005	10,223	98,688	
32	Core	1,91	6,2	35,41	33,1	1,25	0,62	0,09	0,04	0,07	0,02	8,1	0,00	0,14	0	3,151	10,358	100,459	
22	Rim	1,8	6,17	35,98	33,78	1,02	0,49	0,07	0	0,03	0,06	7,2	0,04	0	0,048	3,087	10,299	100,074	
35	Core	2,02	6,58	36,53	33,36	0,71	0,42	0,04	0,06	0,09	0	6,75	0,02	0,01	0,215	3,164	10,374	100,343	
34	Rim	1,97	6,49	37,03	33,87	0,67	0,38	0,03	0,1	0,04	0,01	6,86	0,12	0,14	0,309	2,948	10,447	101,414	
	Core	2,33	5,29	36,77	32,29	0,17	0,59	0,05	0,13	0,03	0	9,55	0,01	0,06	0,187	3,195	10,321	100,973	
35	Rim	2,17	5,43	36,43	31,79	0,1	0,55	0,05	0,14	0,05	0,01	9,62	0,02	0,12	0,318	3,148	10,196	100,142	
	Core	1,98	6,65	36,88	33,71	0,38	0,92	0,03	0,06	0,09	0,01	6,37	0,11	0,04	0,127	2,944	10,305	100,606	
36	Core	1.9	5 20	36.25	33,7	0,43	0,94	0,05	0,04	0,07	0,02	0,43 8 56	0,00	0 00	0,127	2,344	10,305	100,070	
	Rim	1,92	4,86	36,77	33,55	0,43	0,93	0,03	0	0,15	0,02	8,23	0,03	0,04	0,333	2,844	10,213	100,350	
37	Core	1,93	3,5	35,59	34,34	0,36	0,87	0,04	0,08	0,02	0	10,95	0,00	0,01	0,05	2,902	10,209	100,851	
20	Rim	2,07	3,85	35,7	34,09	0,32	0,82	0,04	0,06	0,04	0	9,97	0,04	0,21	0,279	3,058	10,218	100,765	
30	Core	1,9	1,91	36,22	34,02	0,07	0,24	0	0,34	0	0	12,33	0,02	0	0,378	2,805	10,258	100,491	
39	Rim	1,75	1,97	36,47	34,42	0,09	0,2	0,03	0,35	0,01	0	12,2	0,01	0,13	0,378	2,805	10,258	101,071	
	Core	2,3	6,21	36,39	32,66	0,43	0,35	0,07	0,07	0,03	0,04	8,18	0,04	0,16	0,084	3,245	10,367	100,626	
40	Rim	2,16	6,52	37,47	32,35	0,45	0,42	0,02	0,08	0,04	0,24	8,25	0,00	0	0,266	3,248	10,509	102,023	
	Core	2,01	4,38	37,06	34,21	0,16	0,37	0,01	0,14	0,02	0	9,44	0,03	0,08	0,341	3,1/8	10,608	102,037	
41	Core	1,9	4,05	30,79	34,21	0.30	0,39	0,01	0,14	0,02	0,02	9,42	0,00	0,03	0,07	2,955	10,397	100,542	
	Rim	1.87	2,77	36.7	33,51	0,35	0,5	0,03	0,13	0,03	0.01	17 24	0,00	0	0,055	2,005	10,050	101,785	
42	Core	1,02	6.47	37.2	33.19	0.74	0.8	0.03	0.06	0.07	0.06	7.49	0.05	0	0.178	3.012	10.507	101,797	
42	Rim	2,01	6,57	37,07	33	0,7	0,74	0,06	0,06	0,08	0,03	7,16	0,00	0	0,266	3,231	10,575	101,552	
43	Core	1,85	3,7	36,6	33,99	0,29	0,51	0,03	0,15	0,05	0	10,44	0,00	0	0,304	2,858	10,225	100,997	
44	Rim	1,87	3,7	36,71	34,06	0,29	0,51	0,05	0,13	0,01	0	10,13	0,00	0,02	0,172	2,905	10,351	100,908	
	Core	1,86	6,47	36,81	33,74	0,8	0,5	0,01	0,05	0,06	0,01	6,99	0,03	0,12	0,127	2,944	10,305	100,826	
45	Rim	1,9	6,42	36,91	33,51	0,89	0,58	0,05	0,04	0,07	0,01	6,56	0,00	0,14	0,127	2,944	10,305	100,456	
	Core	2,12	6,19	36,52	32,66	0,4	0,49	0,04	0,09	0,04	0,04	8,25	0,02	0	0,084	3,245	10,367	100,556	
46	Rim	2,18	6,43	36,84	32,65	0,58	0,45	0,04	0,08	0,01	0,03	8,15	0,00	0,17	0,084	3,245	10,367	101,306	
	Core	2,11	4,/1	36,2	34,15	0,31	0,75	0,03	0,08	0,11	0,01	8,57	0,04	0	0,29	3,111	10,407	101,878	
47	Core	1 07	4,/3	30,77	34,18	0,32	0,03	0,04	0,09	0,08	0,03	0,00	0,00	0.04	0,29	3,111 2 0E0	10,407	102,736	
	Rim	1.84	2.27	35,89	33.66	0.13	0,7	0.03	0,22	0.03	0.07	12.07	0.04	0.19	0.041	2,509	10,41	102,040	
48	Core	1,97	1.46	34.94	33.45	0,14	0,11	0,04	0.2	0,01	0,02	13.92	0,00	0.22	0,064	2,816	9,908	99,268	
-0	Rim	2,17	2,25	34,84	32,62	0,17	0,17	0,06	0,16	0,02	0	12,84	0,00	0,11	0,172	3,039	9,898	98,519	
49	Core	1,98	6,74	36,47	34,01	0,48	0,78	0	0,02	0,07	0,09	5,7	0,00	0	0,127	2,927	10,372	99,766	
50	Rim	2,02	6,58	37,37	34,45	0,49	0,62	0	0,03	0,06	0,09	5,7	0,03	0	0,398	3,15	10,582	101,570	
50	Core	1,83	8,93	36,87	30,54	1,41	1,48	0,01	0,05	0,1	0,25	5,29	0,05	0	0,232	3,052	10,264	100,358	
51	Rim	1,89	8,99	37,03	30,41	1,45	1,33	0	0,02	0,14	0,21	5,38	0,02	0	0,415	3,055	10,406	100,746	
	Core	2,1	4,83	36,61	33,37	0,14	0,35	0,04	0,17	0	0,02	9,73	0,08	0,08	0,29	3,128	10,341	101,279	
52	Rim	2,02	4,88	36,67	33,03	0,12	0,41	0,04	0,18	0,01	0	9,62	0,00	0,04	0,29	3,128	10,341	100,779	
	Core	1,71	5,77	36,74	34,33	0,55	0,41	0,04	0,03	0,04	0,05	7,36	0,08	0,02	0,098	2,941	10,384	100,553	
53	KIM	1,96	0,33	3/,13	34,15	0,61	0,48	0,02	0,05	0,06	0,05	/,35	0,03	0	0,046	3,058	10,032	101,956	
	Rim	1,91	3,98	30,93	34,75	0,18	0,44	0,03	0,2	0,04	0,05	9,33	0,00	0.04	0,504	2,841	10,292	101,277	
54	Core	2.16	5.74	36.65	37.04	0.43	0.67	0.07	0.01	0.06	0,02	9.47	0.03	0.16	0.187	3.195	10.371	101,143	
	Rim	2,11	5,69	37.1	32,28	0,38	0,62	0,03	0,05	0,09	0	9,22	0,07	0	0,369	3,198	10,463	101,670	
55	Core	2,09	3,05	35,51	32,91	0,19	0,53	0,04	0,09	0,04	0,04	12,28	0,07	0,05	0,085	3,156	10,146	100,277	
	Rim	2,19	3,06	35,95	33,33	0,21	0,51	0,03	0,12	0,04	0	12,73	0,07	0	0,061	3,203	10,271	101,775	
90	Rim	1,9	5,99	36,57	33,77	0,71	0,54	0,01	0,08	0,06	0,03	7,4	0,03	0,1	0,23	2,894	10,259	100.573	

Grain No.	Row	Na2O	MaO	SiO2	AI2O3	0€0	TiO2	K20	MnO	V203	07203	FeO	NiO	7nO	Li20*	H2O*	B203*	ΤΟΤΑΙ	
}	Core	2 37	6.63	36.92	31.85	0.2	0.44	0.03	0.09	0.04	0.02	8.42	0.00	0.02	0.215	3 198	10 242	100.685	
57	Rim	2,37	6.96	37.18	31.57	0.14	0.44	0.03	0,05	0.04	0,02	7.99	0.00	0.07	0.53	3,137	10,242	101.072	
	Core	1,98	3,21	36,42	34,43	0,11	0,19	0,04	0,15	0	0	10,94	0,00	0,13	0,172	2,905	10,351	101,028	
58	Rim	1,95	3,39	36,97	34,11	0,12	0,23	0,05	0,15	0,02	0,02	10,94	0,00	0,06	0,172	2,905	10,351	101,438	
50	Core	1,87	7,09	37,45	33,32	0,91	0,69	0,04	0,05	0,12	0,06	5,9	0,04	0	0,206	2,998	10,494	101,238	
29	Rim	1,63	7,49	36,63	32,1	1,59	0,93	0,06	0,03	0,08	0,08	5,74	0,04	0,02	0,253	3,03	10,302	100,005	
60	Core	1,93	1,23	35,73	34,12	0,18	0,17	0	0,18	0,01	0,01	13,62	0,01	0,09	0,096	2,866	10,175	100,417	
	Rim	1,93	1,38	35,61	33,16	0,21	0,19	0,04	0,2	0,05	0,01	14,02	0,00	0,12	0,064	2,883	10,109	99,976	
61	Core	1,42	7,26	36,56	32,35	1,75	0,94	0,02	0,04	0,05	0,02	6,8/	0,02	0,09	0,122	3,094	10,362	100,968	
	Coro	1,52	0,77	30,20	33,38	1,46	0,7	0,04	0,04	0,08	0,03	10.69	0,00	0.01	0,104	3,09	10,441	101,445	
62	Rim	2.03	2,65	36.02	34,27	0,09	0,08	0,01	0,25	0,01	0	11 17	0,08	0,01	0,407	3,075	10,243	100,113	
	Core	2,03	6.42	36,77	32.82	0.65	0,55	0.02	0.07	0.04	0	8.46	0.07	0.09	0.084	3,245	10,367	101,706	
63	Rim	2,14	6,35	36,44	32,8	0,6	0,5	0,04	0,06	0,06	0,01	8,05	0,00	0,02	0,084	3,245	10,367	100,766	
64	Core	1,86	3,63	36,17	33,46	0,42	0,54	0,04	0,06	0,05	0,06	10,42	0,00	0,05	0,304	2,858	10,225	100,147	
04	Rim	1,91	2,07	35,18	33,58	0,42	1,02	0,05	0,07	0,06	0,04	12,76	0,03	0,07	0,099	2,871	10,203	100,433	
65	Core	2,23	6,73	36,51	32,18	0,65	0,54	0,01	0,04	0,08	0,05	8,07	0,07	0,06	0,084	3,245	10,367	100,916	
	Rim	2,2	7,32	36,18	31,65	0,68	0,52	0,01	0,04	0,04	0,04	7,66	0,02	0,04	0,112	3,248	10,288	100,048	
66	Core	1,88	8,12	36,83	31,38	1,57	0,62	0,03	0	0,1	0,02	6,87	0,00	0,01	0,019	3,161	10,342	100,952	
	Rim	1,86	7,79	37,25	30,91	1,39	1,03	0	0,01	0,08	0	7,46	0,00	0,02	0,386	3,069	10,419	101,674	
67	Rim	2,15	6.07	27.04	22,79	0,57	0,46	0,03	0,00	0,00	0,03	8,10	0,02	0	0,064	2 205	10,507	100,550	
	Core	1.91	7	36.42	32,59	0.99	0,47	0.02	0.03	0.13	0.03	7.58	0.03	0.04	0,155	3.076	10,345	100.881	
68	Rim	1,84	6,85	35,65	31,7	0,93	0,78	0,03	0,02	0,1	0,09	7,2	0,06	0,04	0,076	2,912	9,972	98,250	
CO	Core	1,97	6,68	36,71	33,22	0,81	0,43	0,05	0,05	0,05	0	7,06	0,00	0	0	3,008	10,365	100,403	
69	Rim	1,81	6,69	36,36	32,63	0,8	0,5	0,05	0,05	0,05	0,01	7,13	0,03	0,07	0,127	2,962	10,239	99,508	
70	Core	2,15	4,52	35,41	33,04	0,31	0,5	0,04	0,09	0,03	0	10,27	0,02	0	0,078	3,189	10,258	99,905	
	Rim	1,68	3,55	36,24	34,43	0,11	0,37	0,04	0,03	0,06	0	10,26	0,04	0,09	0,172	2,905	10,351	100,328	
71	Core	1,91	2,6	35,34	33,8	0,33	0,72	0,02	0,2	0,05	0	12,08	0,02	0,05	0,093	2,869	10,096	100,178	
	Rim	1,76	2,37	35,31	33,65	0,32	0,59	0,06	0,19	0,02	0	11,68	0,12	0	0,224	2,805	10,037	99,136	
72	Rim	2,14	6 22	36,99	31,83	0,18	0,50	0,01	0,02	0,07	0,04	6 55	0,00	0.02	0,347	3,134	10,183	99,544	
	Core	1,85	6 55	35,24	33,73	0,04	0,71	0.05	0.05	0,05	0,04	8 51	0,03	0,02	0,127	3 022	10,303	100 119	
73	Rim	1,86	6,42	34.94	31.81	0,98	0.8	0,05	0.08	0.08	0.03	8,28	0,05	0,08	0	2,973	9,889	98,322	
	Core	1,98	6	36,23	33,21	0,48	0,72	0,04	0,05	0,02	0,06	7,88	0,00	0	0	3,008	10,365	100,043	
/4	Rim	2,07	6,29	35,49	32,25	0,55	0,61	0,04	0,06	0,05	0	7,8	0,00	0	0,057	3,178	10,166	98,611	
75	Core	2,4	4,52	35,24	29,77	0,41	0,49	0,07	0,43	0,06	0,01	12,35	0,04	0,06	0,239	3,129	9,875	99,093	
,5	Rim	2,51	4,52	35,84	30,1	0,39	0,6	0,07	0,52	0,06	0	12,58	0,00	0,08	0,107	3,176	10,001	100,554	
76	Core	2,75	6,95	36,25	29,94	0,42	0,13	0,02	0,03	0,1	0,02	9,7	0,04	0	0,347	3,168	10,051	99,916	
	Rim	2,37	7,68	36,27	29,88	0,72	0,8	0,01	0	0,08	0,06	8	0,06	0	0,244	3,218	10,097	99,489	
77	Core	1,/1	3,17	36,61	34,98	0,07	0,12	0,03	0,13	0,01	0,02	9,94	0,03	0,01	0,304	2,841	10,292	100,267	
	Core	2.04	5,22	35,55	33,54	0,07	1	0,03	0,14	0.04	0	8 81	0,00	0.05	0,082	3,063	10,476	99.840	
78	Rim	2,04	4,88	35.27	33.28	0,23	0.92	0.02	0,1	0.04	0	8.03	0,00	0.04	0.239	3,061	10,139	98,269	
70	Core	2,32	5,01	35,29	31,12	0,47	0,58	0,03	0,13	0,06	0	11,6	0,05	0	0	3,273	10,172	100,105	
/9	Rim	2,17	4,31	34,81	30,3	0,43	0,51	0,05	0,2	0,02	0	11,14	0,04	0,05	0,056	3,109	9,799	96,994	
80	Core	2,07	2,06	35,61	31,69	0,52	0,26	0,03	0,36	0,03	0,01	13,94	0,06	0,01	0,313	3,059	9,974	99,996	
	Rim	2,04	2,04	35,52	32,11	0,47	0,22	0,04	0,38	0	0,02	13,74	0,07	0,11	0,181	3,106	10,099	100,146	
81	Core	2,07	6,88	36,58	32,38	0,24	0,98	0,01	0,03	0,1	0,02	6,36	0,00	0,11	0,347	3,117	10,249	99,473	
	Rim	2,03	6,8	36,95	33,96	0,21	0,57	0	0	0,08	0,05	5,53	0,06	0,02	0,347	3,1	10,315	100,022	
82	Core	2,17	5,18	35,26	32	0,45	0,67	0,04	0,08	0,07	0,02	9,82	0,03	0	0,039	3,192	10,179	99,200	
	Core	1,7	3,85	27,8	22,38	0,34	0,46	0,03	0,06	0,05	0,02	8,07	0,05	0	0,37	2,187	7,45	74,817	
83	Rim	2.08	7.01	36.08	32.46	0.62	0.49	0.02	0.04	0.05	0.01	6.92	0.07	0	0.112	3,231	10,355	99.548	
	Core	2,09	6,76	36,36	32,14	0,58	0,71	0	0,07	0,08	0,14	7,35	0,00	0	0,215	3,181	10,308	99,984	
84	Rim	2,03	6,43	36,31	33,23	0,61	0,65	0,03	0,05	0,09	0,08	6,82	0,00	0	0,215	3,164	10,374	100,083	
85	Core	2,15	6,31	35,67	32,61	0,62	0,58	0	0,03	0,02	0,01	7,53	0,00	0	0,057	3,178	10,166	98,931	
	Rim	1,98	6,34	35,3	32,95	1,01	0,48	0,08	0,02	0,07	0,04	8,05	0,00	0,04	0	3,104	10,233	99,697	
86	Core	1,96	6,91	36,33	32,52	0,5	0,64	0,02	0,03	0,06	0,02	6,17	0,03	0,07	0,258	2,898	10,18	98,596	
	Rim	2,3	7,95	36,09	29,74	0,78	0,99	0,04	0,01	0,16	0,26	7,54	0,00	0,05	0,376	3,154	10,038	99,478	
87	Dim	2,08	5,28	35,79	32,97	0,28	1,17	0,03	0,05	0,05	0,05	8,28	0,00	0.02	0,162	3,13	10,226	99,548	
	Core	2,03	7.08	35,8	27.85	0,35	1,05	0.02	0,00	0,05	0,03	10.84	0,04	0,03	0,218	3 252	9.93	98 744	
88	Rim	2,65	7,78	36,2	29,25	0,59	0,69	0	0,03	0,05	0	8,29	0,05	0	0,244	3,218	10,097	99,139	
00	Core	1,83	6,58	35,56	33,67	0,84	0,43	0,03	0,06	0,06	0,06	6,88	0,00	0	0	2,941	10,164	99,105	
89	Rim	1,99	6,75	35,5	32,98	0,84	0,46	0,05	0,07	0,05	0,09	6,8	0,07	0	0,076	2,895	10,038	98,659	
90	Core	2,09	2,74	35,03	32,75	0,41	0,98	0,05	0,19	0	0,01	12,91	0,10	0,04	0,313	3,042	10,04	100,695	
	Rim	1,94	3,03	33,46	31,59	0,48	0,91	0,03	0,12	0,05	0	11,83	0,00	0,09	0	2,819	9,608	95,957	
91	Core	1,61	6,43	34,49	25,59	2,25	0,76	0,05	0,08	0,09	0	14,71	0,05	0	0	3,239	9,645	98,994	
	Core	1,91	0,51	34,67	20,5	1,82	0,85	0,06	0,09	0,08	0.02	13,42	0,03	0,1	0.044	3,14	9,035	90,815 98,221	
92	Rim	2.25	o,/ 7.62	34,95	29,09	2,04	1.3	0.02	0.04	0,12	0.02	7.44	0.01	0.05	0,044	3,143	9,684	96,472	
	Core	2,02	3,88	35,33	33,45	0,15	0,45	0,03	0,13	0,03	0	10,44	0,00	0	0,222	3,075	10,152	99,359	
93	Rim	1,98	3,9	34,62	32,31	0,15	0,42	0,07	0,11	0,02	0	9,95	0,09	0,08	0,202	2,741	9,757	96,400	
QA	Core	1,83	2,34	35,28	33,61	0,11	0,5	0,04	0,23	0,01	0	11,77	0,10	0,1	0,224	2,805	10,037	98,986	
	Rim	1,76	2,07	35,71	33,94	0,1	0,28	0,03	0,2	0,03	0	12,43	0,00	0,06	0,093	2,869	10,096	99,668	
95	Core	1,89	2,31	34,9	33,43	0,1	0,19	0,07	0,29	0,01	0,03	12,28	0,00	0,23	0,001	2,866	9,955	98,552	
	Rim	2,08	2,41	34,37	32,42	0,1	0,12	0,02	0,31	0,02	0	11,81	0,00	0,13	0,262	2,975	9,839	96,866	
96	Lore	2,2	4,94	35,6	33,24	0,09	0,09	0,01	0,13	0,03	0.02	8,69 9 1	0,00	0,05	0,239	3,061	10,139	98,509	
	Core	2,55	8.67	36.08	29.77	1.03	0.6	0.09	0.03	0.1	0.02	6.15	0.00	0,00	0.37	3,076	10.16	98,906	
97	Rim	2.32	8.74	36.08	29.49	1.15	0.58	0.09	0.04	0.09	0.26	6.45	0.00	0	0.37	3.286	10.16	99,106	
~~~	Core	2,45	5,88	35,53	31,13	0,25	1,24	0,05	0,09	0,09	0,08	8,54	0,01	0,03	0,218	3,083	10,101	98,772	
98	Rim	2,64	5,87	35,42	31,03	0,18	1,06	0,06	0,09	0,11	0,02	8,32	0,00	0	0,218	3,083	10,101	98,202	
99	Core	1,96	5,78	35,27	33,13	0,51	0,49	0,04	0,08	0,01	0,01	8,22	0,06	0	0	2,955	10,176	98,691	
	Rim	1,95	5,94	35,48	33,32	0,53	0,5	0,04	0,06	0,04	0,03	7,97	0,02	0,09	0,047	2,891	10,117	99,025	
100	Core	1,9	6,53	35,55	34,23	0,78	0,59	0,03	0,03	0,05	0,04	6,02	0,00	0,02	0	2,988	10,289	99,047	
	Rim	2,01	6,68	36,02	33,85	0,66	0,58	0,03	0,03	0,06	0,05	5,81	0,03	0,03	0,347	3,1	10,315	99,602	
101	Lore	2,11	6,87	35,39	32,51	0,66	0,8	0,01	0,02	0,09	0,05	6,19	0,04	0,15	0,164	3,114	10,107	98,275	
	Core	2 42	0,49	35,71	33,28	0,73	0,81	0.02	0,04	0,08	0,05	0,28	0,00	0.04	0 193	2,941	9 962	96,550	
102	Rim	1.89	6.16	36.04	34.05	0.21	0.66	0.03	0.01	0.07	0.03	6.22	0.00	0	0	2.991	10.431	98,822	
102	Core	1,99	6,56	35,47	32,84	0,69	0,62	0,02	0,03	0,06	0,08	6,79	0,00	0,01	0,076	2,895	10,038	98,169	
103	Rim	1,95	6,68	36,25	32,58	0,55	0,76	0	0,02	0,06	0,04	6,9	0,13	0,05	0,258	2,898	10,18	99,306	
104	Core	2,32	8,12	35,97	28,98	0,99	0,8	0,04	0,06	0,06	0,02	7,65	0,02	0,03	0,09	3,219	9,876	98,245	
10+	Rim	2,4	8,71	35,95	29,43	0,96	0,89	0,06	0,06	0,09	0,02	6,99	0,00	0	0,09	3,201	9,942	98,793	
105	Core	1,97	6,67	35,61	33,05	0,85	0,5	0,04	0,06	0,06	0,06	6,77	0,00	0	0	2,941	10,164	98,745	
	Rim	1,94	6,75	35,38	32,72	0,89	0,64	0,06	0,06	0,06	0	6,72	0,00	0,02	0,076	2,895	10,038	98,249	
106	COre Rim	2,09	5,43	35,/1	33,39 22.7	0,39	0,51	0,01	0,11	0,02	0	7,72	0,00	0	0,1/6	3,111	10,186	98,853 99.162	

Grain No	Row	Na2O	MgO	SiO2	AI2O3	CaO	TiO2	K2O	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
	Core	1.93	6.19	35.62	33.5	0.61	0.81	0.01	0.08	0.06	0.04	6.91	0.00	0	0	2.941	10.164	98.865	
107	Rim	2.17	6.29	35.81	33.02	0.37	0.61	0.02	0.07	0.05	0.04	7.34	0.03	0	0.033	3,225	10.292	99.370	
	Core	2.31	5.94	35.37	31.94	0.6	0.74	0.04	0.03	0.07	0.03	8.95	0.00	0.13	0.267	3.081	9,994	99,492	
108	Rim	2,38	6,3	35,23	29,83	0,72	0,83	0,04	0,1	0,03	0,05	9,53	0,09	0,03	0,164	3,165	9,909	98,398	
	Core	1,83	6,72	35,91	33,34	0,74	0,7	0,03	0,01	0,08	0,07	6,07	0,14	0	0	2,941	10,164	98,745	
109	Rim	1,89	6,85	35,75	32,17	0,86	0,89	0,01	0,01	0,13	0,05	6,63	0,00	0,02	0,076	2,895	10,038	98,269	
110	Core	1,29	9,3	35,65	28,24	2,8	1,16	0,06	0,05	0,26	0,25	7,26	0,02	0	0	3,279	10,172	99,791	
110	Rim	1,43	9,37	35,21	28,22	2,68	1,22	0,07	0,01	0,25	0,18	7,07	0,00	0,03	0	3,279	10,172	99,191	
111	Core	2,17	6,34	35,1	32,24	0,53	0,65	0,01	0,02	0,05	0,04	7,57	0,01	0,04	0,057	3,178	10,166	98,171	
111	Rim	2,03	6,58	35,9	32,87	0,64	0,55	0	0,07	0,07	0,05	7,21	0,09	0,09	0,057	3,178	10,166	99,551	
112	Core	1,26	4,5	35,06	32,62	1,06	0,47	0,05	0,05	0,1	0,02	9,55	0,00	0	0,248	2,94	10,081	98,009	
112	Rim	2,4	6,75	35,91	30,69	0,53	0,5	0,03	0,01	0,06	0,03	8,59	0,00	0	0,164	3,148	9,975	98,787	
112	Core	1,84	2,2	34,79	34,04	0,11	0,47	0,06	0,21	0,01	0	11,78	0,00	0,09	0,058	2,849	10,021	98,528	
115	Rim	1,84	2,15	35,22	33,96	0,08	0,38	0,04	0,22	0,04	0	11,92	0,00	0,03	0,224	2,805	10,037	98,946	
114	Core	2,22	8,45	35,95	30,76	0,81	0,87	0	0,05	0,08	0,04	6,44	0,00	0,06	0	3,248	10,068	99,046	
114	Rim	2,18	7,64	35,72	30,21	1	0,68	0,05	0	0,09	0,04	7,18	0,00	0	0,159	3,28	10,097	98,326	
115	Core	1,74	6,08	35,52	33,85	0,7	0,86	0,04	0,04	0,09	0,06	6,23	0,02	0	0	2,941	10,164	98,335	
115	Rim	1,67	5,86	35,64	34,37	0,58	0,75	0,04	0,05	0,08	0,03	6,22	0,00	0	0,085	2,874	10,183	98,432	
116	Core	2,04	3,29	34,66	33,16	0,25	0,55	0,05	0,11	0	0,01	11,01	0,00	0,15	0,085	3,136	10,07	98,571	
110	Rim	2,04	3,65	35,26	33,58	0,34	0,63	0,04	0,11	0,05	0	10,59	0,00	0,07	0,222	3,075	10,152	99,809	
117	Core	2,13	6,73	35,88	33,3	0,34	0,68	0,06	0,04	0,07	0,01	5,57	0,00	0,03	0,194	3,097	10,173	98,304	
	Rim	1,99	6,63	36,31	33,62	0,34	0,71	0,03	0,01	0,08	0,04	5,67	0,00	0	0,258	2,881	10,246	98,815	
118	Core	1,92	4,22	35,51	34,17	0,08	0	0,04	0,11	0	0	9,1	0,00	0	0	2,952	10,255	98,357	
	Rim	2,15	4,44	35,76	33,86	0,2	0,1	0,04	0,12	0	0	9,12	0,13	0,1	0,159	3,125	10,199	99,503	
119	Core	2,07	1,92	34,59	32,95	0,18	0,31	0,02	0,34	0	0,01	13,02	0,00	0,07	0,236	2,989	9,852	98,557	
	Rim	2,01	1,67	34,72	33,17	0,2	0,21	0,07	0,45	0	0,02	13,14	0,04	0,05	0,212	3,035	9,977	98,974	
120	Core	1,75	6,29	35,32	34,11	0,93	0,63	0,03	0,02	0,08	0,09	6,46	0,00	0,01	0	2,988	10,289	98,997	
	Rim	1,87	6,69	35,29	33,89	0,81	0,48	0,03	0,07	0,05	0	6,2	0,02	0,04	0	2,941	10,164	98,545	
121	Core	1,74	6,09	36,1	32,46	0,65	0,62	0	0,04	0,05	0,04	7,28	0,00	0	0,127	2,962	10,239	98,398	
	Rim	1,75	6,32	35,5	32,1	0,87	0,77	0	0,02	0,05	0,03	7,34	0,00	0,07	0	2,959	10,097	97,876	
122	Core	1,81	6,21	35,47	33,86	0,73	0,78	0,03	0,05	0,09	0,04	6,37	0,04	0	0	2,941	10,164	98,585	
	Rim	1,74	6,35	35,45	33,43	0,89	0,67	0,02	0,06	0,05	0	6,53	0,16	0,03	0	2,941	10,164	98,485	
123	Core	1,58	5,98	34,86	33,9	0,99	0,73	0,03	0,02	0,07	0,13	6,19	0,00	0	0,054	2,824	9,916	97,274	
	Rim	1,74	6,06	35,52	34,18	0,99	0,72	0,04	0,02	0,1	0,04	6,14	0,00	0,12	0	2,988	10,289	98,947	
124	Core	2,17	6,12	35,97	32,42	0,47	1,08	0,03	0,07	0,09	0,03	6,4	0,06	0,07	0,179	3,116	10,214	98,489	
	Rim	2,06	6,45	34,8	31,6	0,67	0,93	0,03	0,05	0,1	0,01	6,9	0,00	0,13	0,113	3,064	9,84	96,747	
125	Core	1,85	6,33	35,71	33,91	0,78	0,53	0,04	0,08	0,07	0,01	6,24	0,00	0	0	2,941	10,164	98,655	
	Rim	1,88	6,75	34,91	32,39	0,79	0,55	0,04	0,03	0,03	0	6,46	0,00	0	0	2,891	9,896	96,617	
126	Core	1,87	6,14	35,56	32,26	0,52	0,49	0,01	0,05	0,05	0,04	7,68	0,00	0,01	0	2,959	10,097	97,736	
120	Rim	2,05	6,18	35,28	31,93	0,57	0,64	0,02	0,06	0,04	0,03	7,19	0,13	0	0,164	3,131	10,041	97,456	

## ANEXO B – Dados Análise Química, Turmalinas TUP 03B (Microssonda Eletrônica + WinTCac)

Grain No	Row	Na2O	MgO	SiO2	AI2O3	CaO	TiO2	K2O	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
4	Core	2	6,75	35,84	31,32	0,64	0,56	0,01	0,03	0,03	0	7,68	0	0,01	0,164	3,131	10,041	98,21	*(Yavuz et al., 2014)
1	Rim	1,81	6,78	35,76	32,53	0,65	0,65	0,04	0,06	0,06	0	6,81	0,02	0,05	0,076	2,895	10,038	98,23	
2	Core	1,92	6,52	35,47	33,52	0,61	0,73	0,05	0,04	0,05	0,08	5,65	0	0	0,076	2,877	10,104	97,70	
2	Rim	1,7	6,46	36,23	34,26	0,7	0,66	0,06	0,03	0,09	0,07	5,31	0	0	0,127	2,927	10,372	99,00	
3	Core	1,72	6,62	35,53	33, 32	0,85	0,59	0,04	0,04	0,07	0	6,38	0	0	0	2,941	10,164	98,27	
3	Rim	1,82	6,63	35,48	32,89	0,69	0,52	0,01	0,03	0,04	0,08	6,35	0	0	0,076	2,895	10,038	97,55	
4	Core	2,28	4,99	34,89	30,51	0,29	0,81	0,01	0,03	0,09	0,02	10,53	0	0,03	0,187	3,045	9,74	97,45	
4	Rim	2,07	5,91	35,33	30,6	0,82	0,91	0	0	0,06	0,05	9,17	0	0,19	0,267	3,098	9,928	98,40	
-	Core	1,97	4,53	34,85	32,99	0,3	0,34	0,05	0,07	0,04	0	9,67	0	0,06	0	2,855	9,863	97,59	
	Rim	1,91	4,27	35,44	33,28	0,24	0,46	0,02	0,04	0,02	0,01	9,85	0,07	0,01	0,018	2,905	10,13	98,67	
6	Core	2,14	7,01	35,6	31,01	0,63	0,57	0	0,06	0,05	0,09	7,88	0	0	0	3,245	10,147	98,43	
ь	Rim	2,05	6,77	35,62	31,21	0,76	0,49	0,01	0,06	0,06	0,07	7,74	0,02	0,07	0,164	3,131	10,041	98,27	
-	Core	1,92	6,29	34,79	33,42	0,85	0,5	0,06	0,07	0,08	0,06	6,79	0	0	0	2,938	10,022	97,79	
/	Rim	1,84	6,22	35,31	33,11	0,83	0,55	0,03	0,04	0,07	0,07	6,58	0,03	0	0	2,941	10,164	97,79	
-	Core	2,09	6,75	35,51	32,07	0,59	0,55	0,04	0,03	0,06	0,05	7,19	0,06	0	0,057	3,178	10,166	98,39	
8	Rim	2,26	6,54	35,9	33,38	0,5	0,6	0,03	0,02	0,07	0,05	6,8	0	0	0,113	3,161	10,232	99,66	
-	Core	2,02	2,73	35,38	32,9	0,08	0,31	0,06	0,14	0,02	0,03	11,94	0	0,28	0,444	2,978	9,981	99,29	
9	Rim	2,05	2,96	34,83	31,77	0,09	0,24	0,05	0,12	0	0	11,73	0,03	0,22	0,393	2,928	9,713	97,12	
	Core	1.89	6.42	35	31.87	0.78	0.48	0	0.03	0.02	0.04	7.98	0.07	0.03	0.076	2.912	9.972	97.57	
10	Rim	2.02	6.4	34.99	31.87	0.82	0.51	0.04	0.03	0.01	0.05	8	0.11	0	0	3,192	9,958	98.00	
	Core	1.55	6.69	35.33	28.7	1.82	0.61	0.07	0.11	0.08	0	10.45	0.01	0.03	0.174	3.045	9.85	98.52	
11	Rim	1.39	7.02	34.25	25.73	2.57	1.29	0.06	0.1	0.05	0	12.32	0.05	0.01	0	3.227	9,739	97.81	
	Core	2.51	7.13	35.06	30.38	0.57	0.52	0	0.01	0.03	0.02	7.87	0	0.02	0.061	3,198	10.021	97.40	
12	Rim	2.44	7.29	35.27	30.59	0.54	0.51	0.05	0	0.01	0.09	7.96	0.05	0.01	0.061	3,198	10.021	98.09	
	Core	1.86	3.82	35.2	33.84	0.08	0.61	0	0.1	0.01	0	9.47	0	0.11	0.253	2,791	10.024	98.17	
13	Rim	1 79	3,81	35.67	33.95	0.1	0.58	0.03	0.05	0,01	0	9	0.01	0.11	0.253	2 791	10,024	98.20	
	Core	2 21	2 15	33,91	31.16	0.57	0.91	0.04	0.18	0.05	0.02	14 04	0.05	0.15	0,255	3 117	9 749	98.32	
14	Rim	2 16	2,15	34.52	31.43	0.54	1.05	0.07	0.18	0,03	0	13.66	0,00	0.16	0 158	3.058	9 939	99.20	
	Core	2,10	6.4	35.54	32,45	0,54	0.49	0,07	0,10	0,04	0.04	8.78	0,05	0,10	0,150	3,050	10 226	99.27	
15	Rim	2,1	6.29	35,54	32,11	0,60	0,45	0.04	0,00	0,00	0,04	8 21	0.13	0	0	3 242	10,220	99.06	
	Core	1 72	6.10	35,38	34.14	0,02	0.71	0.05	0.07	0,05	0.05	6	0,15	0.02	0	2 088	10,220	98.51	
16	Rim	1.86	6 36	35,50	34.02	0,01	0,71	0,05	0,07	0,08	0.02	5 90	0,01	0,02	0 022	2,000	10,205	98.83	
	Core	2,00	7 76	36 35	31 07	0,07	0,52	0,02	0,00	0,07	0,00	6.58	0,05	0.1	0 2/1	3 184	10,23	98,72	
17	Pim	2,29	5.00	26 72	33,52	0,49	0	0,01	0,00	0.02	0.01	0,08	0.05	0,1	0,244	3,184	10,229	99.50	
	Core	2,42	1,50 1 76	35,73	30.55	0,20	0.56	0,02	0.21	0,03	0,01	11 72	0,00	0,02	0,45	3,05	Q Q/11	98.76	
18	Dire-	2,3	-+,/0	35,07	20,22	0,00	0,00	0,00	0,21	0,03	0	11.07	0,01	0,13	0,239	2 112	0.041	100.06	
	KIM	2,23	4,59	35,61	30,58	0,58	0,69	0,06	0,23	0,04	0	11,8/	0	0,29	0,239	3,112	9,941	100,06	
19	core	1,91	4,3/	35,41	32,77	0,34	0,64	0,06	0,1	0,02	0	9,58	0	0	0,15	2,858	10,005	96,21	
	KIM	2,15	4,69	35,42	32,63	0,32	0,6/	0,02	0,12	0,05	0.07	9,76	0	0,01	0,239	3,0/8	10,0/3	99,23	
20	Lore	1,9	6,41	35,23	32,81	0,79	0,48	0,03	0,03	0,06	0,07	7,43	0	0	0	2,959	10,097	98,30	
	KIM	1,99	0,35	35,78	33,25	0,79	0,48	0,04	0,04	0,07	0,07	7,42	0	0,01	0.207	3,005	10,223	99,52	
21	core	2,55	0,72	36,19	30,22	0,53	1,14	0	0,02	0,07	0,04	8,4/	0	U	0,297	3,154	10,223	99,62	
	KIM	2,51	6,02	36,22	30,93	0,69	0,64	0,02	0,01	0,09	0	0,13	0	0,01	0,141	3,251	10,209	96,67	
22	Core	1,//	6,64	36,55	33,27	0,65	0,5	0,01	0	0,09	0	6,64	0	0,01	0,127	2,944	10,305	99,51	
	RIM	1,88	6,86	35,9	32,95	0,85	0,64	0	0,02	0,1	0,03	6,16	0	0,05	0,076	2,895	10,038	98,45	
23	Core	2,09	6,55	36,44	33,41	0,33	0,88	0,04	0,01	0,07	0,07	6,41	0	0,07	0,215	3,164	10,374	100,12	
	Rim	1,/1	4,32	35,83	32,98	0,06	0,38	0,02	0,03	0,04	0,01	9,28	0	0,06	0,15	2,858	10,005	97,73	
24	Core	1,78	6,07	35,32	34,1	1,11	0,37	0,05	0,06	0,08	0,16	6,29	0	0,11	0,105	3,07	10,365	99,05	
	Rim	1,83	6,39	36,06	33,65	1,01	0,49	0,07	0,01	0,05	0,04	/	0	0,01	0,104	3,09	10,441	100,25	
25	Core	2,33	6,45	36,29	30,99	0,21	0,55	0	0,09	0,03	0,02	8,38	0,03	0,1	0,347	3,151	10,117	99,09	
	Rim	2,16	6,98	35,58	31,96	0,62	0,38	0,04	0,12	0,03	0,06	7,61	0	0	0,164	3,131	10,041	98,88	
26	Core	2,09	2,27	34,08	32,43	0,25	0,78	0,02	0,14	0,07	0	13,72	0,01	0	0,092	3,103	9,957	99,01	
27	Core	1,94	6,47	35,47	33,41	0,67	0,63	0,02	0,04	0,07	0,08	6,43	0,02	0,12	0	2,941	10,164	98,48	
	Rim	1,97	6,8	36,24	32,72	0,73	0,88	0,04	0,03	0,06	0,07	6,97	0,02	0	0,258	2,898	10,18	99,87	
28	Core	2,06	2,48	34,74	33,5	0,18	0,4	0,05	0,18	0,02	0	12,27	0	0,05	0,149	3,086	10,023	99,19	
	Rim	1,92	2,5	34,91	33,49	0,15	0,38	0,03	0,16	0,01	0,02	12,03	0,11	0	0,001	2,866	9,955	98,53	
29	Core	1,95	3,28	34,95	33,53	0,24	0,74	0,05	0,1	0,01	0	10,79	0	0,01	0,018	2,852	9,942	98,46	
	Rim	2,02	3,52	34,92	33,04	0,25	0,84	0	0,07	0,01	0	10,57	0	0,01	0,166	3,072	10,01	98,50	
30	Core	1,55	4,93	34,51	31,76	1,47	1,47	0,03	0,03	0,08	0,01	10,05	0,06	0,06	0,128	2,957	9,979	99,07	
	Rim	1,8	4,97	35,13	31,74	0,58	0,74	0,01	0,01	0,06	0,23	9,15	0	0,05	0,282	2,812	9,879	97,44	
31	Core	1,91	7,75	36,19	31,4	1,08	0,75	0,01	0,02	0,14	0,03	6,25	0,04	0	0,253	3,047	10,236	99,11	
	Rim	2,14	7,79	36,08	30,89	0,94	0,81	0,03	0,01	0,09	0,03	6,9	0	0	0,376	3,137	10,104	99,33	
32	Core	1,57	7,57	34,94	25,87	2,33	1,18	0,06	0,12	0,08	0	12,16	0	0,02	0	3,227	9,739	98,87	
52	Rim	1,59	7,48	34,46	25,54	2,34	1,2	0,06	0,15	0,05	0,02	11,83	0,06	0	0,068	3,163	9,679	97,69	
33	Core	1,9	1,29	34,69	33,4	0,1	0,31	0,04	0,2	0,01	0	13,67	0	0,18	0,064	2,816	9,908	98,58	
35	Rim	1,88	1,93	35,18	33,59	0,11	0,47	0,03	0,18	0,02	0,01	12,89	0	0,14	0,327	2,755	9,991	99,50	
34	Core	2,23	7,1	36,3	31	0,62	0,41	0,02	0,01	0,06	0,02	8,01	0,12	0,14	0	3,312	10,348	99,70	
34	Rim	2,24	7,57	35,81	30,73	1,02	0,31	0,02	0	0,05	0,06	7,42	0,13	0,05	0,159	3,28	10,097	98,95	
25	Core	0,98	9,37	35,32	27,35	3,24	1,72	0,04	0,03	0,29	0,06	7,59	0,09	0	0,054	3,095	10,054	99,28	
35	Rim	0,91	9,06	35,07	27,54	3,38	1,47	0,04	0,01	0,32	0,09	7,69	0,04	0	0,054	3,095	10,054	98,82	
36	Core	1,95	6,44	35,73	32,5	0,84	0,52	0,05	0,05	0,04	0,04	7,93	0,16	0,11	0	2,959	10,097	99,42	
	Rim	1,79	5,99	35,58	32,86	0,74	0,58	0,03	0,01	0,05	0,08	8,25	0,04	0,02	0,047	2,908	10,051	99,03	
37	Core	1,97	5,83	35,16	32,06	0,71	0,54	0,03	0,08	0,06	0,03	8,92	0,04	0,01	0,047	2,908	10,051	98,45	
	Rim	2,02	5,92	35,71	32,91	0,69	0,53	0,07	0,09	0,06	0,02	8,52	0,16	0,05	0,136	3,128	10,12	100,13	
38	Core	2,1	4,31	35,18	31,42	0,46	0,52	0,02	0,12	0,06	0,01	11,15	0,08	0,01	0,107	3,159	10,067	98,77	
	Rim	2,21	4,59	34,67	31,55	0,55	0,54	0,05	0,12	0,09	0	10,71	0	0,04	0,07	3,092	9,865	98,15	
30	Core	1,96	6,03	35,65	31,78	0,96	1,12	0,03	0,02	0,09	0,07	8,47	0,05	0	0	2,978	10,138	99,35	
	Rim	1,91	6,21	35	31,75	0,97	1,05	0,01	0,05	0,11	0,04	8,4	0,02	0,07	0	2,978	10,138	98,71	
40	Core	1,98	5,08	36,26	33,69	0,19	0,64	0,03	0,09	0,04	0,11	7,76	0,07	0,08	0,23	2,894	10,259	99,40	
40	Rim	2,05	4,96	36,77	34,28	0,13	0,65	0,02	0,13	0,05	0,12	7,91	0	0,17	0,421	3,047	10,347	101,06	
41	Core	1,94	5,53	35,62	33,14	0,58	0,57	0,04	0,04	0,04	0,01	8,21	0,02	0	0	2,955	10,176	98,87	
+1	Rim	1,91	5,6	35,6	33,12	0,57	0,61	0,06	0,04	0,08	0	8,21	0	0,11	0	2,955	10,176	99,04	
43	Core	1,21	9,64	35,51	28,06	3,17	0,55	0,04	0,01	0,09	0,05	7,82	0	0	0,063	3,359	10,141	99,71	
42	Rim	1,12	9,35	35,68	28,16	3,23	0,61	0,08	0,04	0,13	0,04	7,65	0	0,08	0,063	3,359	10,141	99,73	
43	Core	2,19	7,8	36	30,16	0,86	0,64	0	0	0,08	0,14	7,65	0,08	0,03	0,244	3,201	10,163	99,24	
45	Rim	2,18	7,93	36,34	30,03	0,87	0,65	0,01	0	0,09	0,17	7,6	0,03	0,06	0,244	3,201	10,163	99,57	
	Core	2,17	3,7	35,39	33,47	0,2	0,64	0,02	0,2	0,04	0,04	11,3	0	0,02	0,141	3,139	10,212	100,68	
44	Rim	2.2	3,73	34.96	33.34	0,22	0,67	0,03	0,15	0,02	0	10.93	0,07	0.05	0,166	3,072	10.01	99,62	
	Core	2,01	6,42	36.02	33.27	0,57	0.6	0.03	0,03	0.07	0.04	7,13	0.07	0	0,088	3,228	10,434	100.01	
45	Rim	2.03	6.4	36.4	33.3	0.63	0.67	0.03	0.07	0.05	0.03	6.36	0	0	0.215	3.164	10.374	99,67	
	Core	1.93	6.14	36.48	34.65	0.4	0.84	0.07	0.04	0.06	0.05	6.01	0.01	0	0	2.991	10.431	100.05	
46	Rim	1.71	5.86	35.9	34.38	0.58	1.02	0.05	0.05	0.17	0.03	6.16	0	0.01	0.127	2.877	10.29	99,16	
	Core	2.05	7 02	36.3	30.70	0,00	0.72	0,05	0,05	0.06	0.04	7 07	0	0.01	0 244	3 201	10,25	99.50	
47	Pim	2,00	6.70	26.22	30,79	0,09	0,73	0,03	0,04	0,00	0,04	7,52	0.07	0,01	0.244	3,201	10,103	99,30	
	Coro	2,11	4 20	30,33	37.24	0,89	0,01	0,03	0,03	0,05	0,05	10.92	0,07	0.1	0,347	3,134	10,183	99,47 00,70	
48	Pim	2,34	3 07	35,34	32,34	0,54	0,43	0,03	0,24	0,02	0.02	10,63	0,02	0,1	0,103	3,142	10,133	100 33	
	Core	2,07	3,37	25 02	26 11	1 /17	0,29	0,04	0,22	0.07	0,02	11 10	0,05	0	0,595	2 605	0 020	98 51	
49	Dim	2,22	0,42	35,92	20,11	1,42	0,29	0,07	0,07	0,07	0,19	11,19	0	0.02	0	2,005	3,939	20,01 00 01	
	nun Coro	7,99	6,/	35,58	20,09	1,/1	0,49	0,07	0,05	0,07	0,05	11,64	0.00	0,02	0.000	3,190	3,744	55,21 100 91	
50	core	2,02	0,56	36,07	33,29	0,79	0,54	0,04	0,03	0,08	0,09	7,4	0,09	0,06	0,088	3,228	10,434	100,81	
	Rim	2	6,46	35,54	32,97	0,91	0,64	0,06	0,01	0,06	0,07	/,11	0,03	0,01	0,057	3,178	10,166	99,27	
51	Core	2,29	1	34,87	31,43	0,13	0,38	0,03	0,48	0,02	0,02	16,04	0,02	0,06	0,018	3,134	9,904	99,83	
	Rim	2,22	1,07	34,77	31,2	0,12	0,38	0,05	0,5	0,02	0,01	15,6	0	0,11	0,102	3,07	9,845	99,07	
52	Core	2,27	5,94	36,59	32,72	0,23	0,23	0,04	0,03	0,03	0,01	8,55	0,07	0,09	0,318	3,131	10,262	100,51	
	Rim	2,21	6,04	36,64	32,16	0,22	0,6	0,02	0,06	0,01	0,02	8,81	0,03	0	0,084	3,245	10,367	100,52	
53	Core	2,09	3,83	35,57	33,56	0,15	0,25	0,05	0,24	0,01	0	11,12	0	0,02	0,141	3,139	10,212	100,38	
	Rim	2,15	3,99	34,9	33,43	0,15	0,28	0,05	0,24	0,02	0	10,56	0,09	0,02	0,166	3,072	10,01	99,13	
5.4	Core	1,83	6,35	35,57	33,83	0,81	0,48	0,03	0,03	0,04	0,08	6,67	0	0,01	0	2,941	10,164	98,84	
4ر	Rim	1,83	6,48	35,96	33,74	0,8	0,48	0,04	0,05	0,04	0,09	6,79	0	0,1	0	2,941	10,164	99,51	
cc	Core	1,33	4,43	36,29	34,95	0,34	0,24	0	0,03	0,03	0,02	8,47	0	0	0,201	2,891	10,338	99,56	
22	Rim	2,76	6,32	36,09	29,8	0,09	0,19	0	0,02	0,05	0	10,75	0,05	0	0,215	3,232	10,11	99,68	
	Core	2,01	4,43	36,3	34,53	0,19	0,25	0,03	0,07	0,03	0	7,9	0	0,07	0,421	3,047	10,347	99,63	
56	Rim	2,19	5,02	36.72	33.94	0.2	0,49	0,03	0,09	0,01	0,01	8,47	0	0	0,187	3,178	10,387	100.92	

Grain No	Row	Na2O	MgO	SiO2	AI2O3	CaO	TiO2	K20	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
	Carro	2.01	4.42	26.2	24.52	0.10	0.25	0.02	0.07	0.02	0	70		0.07	0.431	2.047	10.247	00.02	
56	Rim	2,01	4,43	30,3	34,53	0,19	0,25	0,03	0,07	0,03	0.01	7,9	0	0,07	0,421	3,047	10,347	99,63	
	Coro	2,19	3,02	30,72	33,94	0,2	0,49	0,05	0,09	0,01	0,01	8,47	0	0	0,187	3,1/8	10,387	100,92	
57	Rim	1,81	2,71	35,40	32,97	0,10	0,4	0,00	0,32	0	0,01	12,20	0.12	0.21	0,224	2,822	9,971	99,18	
	Coro	1,89	2.15	34,75	33,38	0,12	0,11	0,07	0,35	0.02	0	10.74	0,12	0,21	0,004	2,810	9,908	98,90	
58	Rim	1.05	3,13	35,05	33,9/	0,15	0,30	0,02	0,2	0,03	0	10,74	0	0,14	0,150	2 855	10,278	99,32	
	Core	2 20	6.57	36.05	33,04	0,15	0,4	0,05	0,2	0.05	0.06	7.84	0	0.05	0,121	3 191	10,004	00.00	
59	Rim	2,25	6.2	35,97	33.16	0,41	0,40	0	0,03	0,03	0.06	7,59	0	0,05	0.033	3 225	10,300	99.76	
	Core	1.71	6.77	35,95	33.66	1.02	0.58	0.07	0.04	0.03	0	6.16	0	0	0.129	3.023	10,232	99.38	
60	Rim	1.8	6.77	36.56	33.81	0.92	0.63	0.08	0.05	0.03	0.04	5.95	0.02	0	0.258	2.881	10.246	100.05	
	Core	1.95	5.22	35.25	30.3	0.95	0.78	0.05	0.09	0.07	0	11.29	0	0.05	0	3.007	9,978	98.99	
61	Rim	2.1	5.57	35.32	30.19	1.16	0.9	0.04	0.11	0.06	0.03	11.89	0.1	0.01	0.102	3,308	10.123	101.01	
63	Core	2,04	5,8	35,96	32,72	0,52	0,61	0,05	0,04	0,07	0	8,42	0	0,07	0,136	3,128	10,12	99,68	
62	Rim	2,03	5,87	35,59	32,74	0,5	0,59	0,03	0,07	0,06	0	8,47	0,02	0,09	0,136	3,128	10,12	99,44	
~	Core	1,57	6,3	33,88	33,26	1,83	0,71	0,1	0,06	0,04	0	8,04	0,02	0	0	3,145	10,074	99,03	
03	Rim	1,9	6,99	36,24	32,41	1,14	0,55	0,08	0,07	0,01	0,08	7,38	0	0	0,225	3,044	10,315	100,43	
64	Core	2,05	5,84	36,2	33,21	0,47	0,45	0,05	0,07	0,04	0,03	7,82	0	0	0,318	3,114	10,328	99,99	
~	Rim	1,98	5,69	36,26	33,4	0,45	0,48	0,07	0,07	0,06	0,07	7,85	0	0,03	0,23	2,894	10,259	99,79	
65	Core	1,96	6,87	36,3	33,25	0,88	0,55	0	0,04	0,05	0,08	6,83	0	0	0,127	2,944	10,305	100, 19	
	Rim	1,99	6,67	35,99	33,43	0,78	0,41	0,03	0,05	0,05	0,07	6,67	0,01	0,01	0	2,941	10,164	99,27	
66	Core	1,86	4,12	35,56	34,67	0,38	0,33	0,02	0,12	0,03	0,01	8,89	0,01	0	0,068	2,888	10,196	99,15	
	Rim	2,09	3,99	35,7	34,15	0,49	0,82	0,02	0,05	0,08	0	9,3	0,01	0,14	0,279	3,058	10,218	100,40	
67	Core	1,72	4,58	36,15	33,35	0,08	0,09	0,03	0,2	0,04	0	9	0,05	0	0,201	2,908	10,272	98,67	
	Rim	1,84	4,55	36,25	33,78	0,1	0,12	0,04	0,22	0	0	8,62	0	0,04	0,333	2,844	10,213	98,95	
68	Core	1,64	2,95	36	34,97	0,05	0,16	0,03	0,15	0,01	0	10,08	0	0,14	0,407	2,791	10,245	99,62	
	Rim	1,61	3,06	35,9	35,07	0,04	0,1	0,03	0,13	0	0,01	10,09	0,04	0,13	0,026	2,949	10,334	99,52	
69	Core	1,59	6,21	35,62	32,84	1,3	0,67	0,04	0,06	0,07	0,03	8,64	0	0,02	0	3,104	10,233	100,43	
	Rim	1,83	6,06	35,97	32,72	1,06	0,68	0,05	0,05	0,07	0,03	8,51	0,02	0,1	0	3,104	10,233	100,49	
70	Core	2,07	6,29	36,78	32,63	0,22	0,36	0,04	0,1	0,03	0,04	7,96	0	0	0,215	3,181	10,308	100,22	
	Rim	2,55	6,47	36,13	31,44	0,19	0,47	0,05	0,16	0,05	0,02	8,88	0,03	0	0,215	3,198	10,242	100,10	
71	Core	2,1	3,61	35,43	33,75	0,21	0,71	0,04	0,14	0,05	0,03	10,6	0.00	0,16	0,222	3,075	10,152	100,28	
	Cara	2,05	3,75	35,32	33,60	0,28	0,79	0,03	0,09	0,04	0.01	10,49	0,09	0.11	0,222	3,075	10,152	100,24	
72	Rim	2,08	3,24	35,23	33,00	0,22	0,00	0,07	0,07	0,04	0,01	11,01	0.01	0,11	0,141	3,139	10,212	100,49	
	Coro	2,11	4 20	35,00	22 27	0,23	0,40	0,04	0,05	0,00	0.02	0.02	0,01	0,13	0,313	3,023	10,100	100 52	
73	Rim	2,2	4,35	36.3	33,57	0,05	0,30	0,02	0,15	0,02	0,02	9,92	0	0,07	0,29	3,120	10,341	100,55	
	Core	2,15	9	37 13	32,09	1	0,25	0,02	0,17	0,01	0.07	3 76	0	0,07	0,25	3 352	10,541	100,35	
74	Rim	2.52	9.34	36.93	31.68	0.67	0.5	0.03	0	0.07	0	4	0.04	0.01	0.038	3.784	10.322	99.43	
	Core	2,52	1.89	34.83	33.16	0.09	0.69	0.01	0.13	0,01	0.02	13.96	0.02	0,01	0,030	3,035	9 977	100 23	
75	Rim	2.13	2.01	35.18	32.83	0.11	0.63	0.05	0.13	0.05	0	13,1	0	0.17	0.181	3,106	10.099	99.78	
	Core	2.09	2,94	34.81	32,48	0.45	0.77	0.06	0.14	0.05	0.02	13.33	0.01	0.04	0.092	3,103	9,957	100.34	
76	Rim	2.05	3.27	35.25	32.63	0.43	0.58	0.05	0.15	0.05	0	12.18	0	0.07	0.085	3,156	10.146	100.10	
	Core	2,46	6.15	36.8	31.44	0.14	0.58	0	0	0.03	0.03	9.02	0	0.06	0.084	3.262	10.301	100.36	
77	Rim	2.56	5.9	36.57	31.37	0.15	0.54	0	0.03	0.04	0.04	9.47	0	0.02	0.318	3,148	10.196	100.35	
	Core	2.11	5.18	35.8	32.52	0.45	0.56	0.05	0.01	0.06	0.01	8.99	0.11	0	0.136	3.128	10.12	99.23	
78	Rim	2.03	6.23	35.91	32.86	0.56	0.55	0.07	0.06	0.08	0.02	7.99	0.11	0.02	0.057	3.178	10.166	99.89	
	Core	2,16	8,27	36,28	31,01	1,11	0,55	0	0	0,1	0,07	6,64	0,03	0,07	0,107	3,38	10,411	100,19	
79	Rim	2,12	8,11	35,72	30,85	0,99	0,48	0,03	0	0,08	0,03	6,58	0,03	0	0	3,248	10,068	98,34	
	Core	2,27	4,51	35,81	33,07	0,22	0,27	0,07	0,17	0,01	0,02	9,82	0	0,11	0,159	3,125	10,199	99,83	
80	Rim	2,07	4,36	35,87	32,79	0,21	0,27	0,03	0,16	0	0	10,38	0	0,08	0,107	3,142	10,133	99,60	
01	Core	1,74	6,02	36,39	34,47	0,46	0,33	0,03	0,05	0,04	0,02	6,55	0	0	0	2,991	10,431	99,52	
81	Rim	1,77	5,77	36,84	34,2	0,45	0,38	0,02	0,04	0,06	0	6,48	0,1	0	0,23	2,877	10,325	99,54	
07	Core	1,99	4,15	35,2	31,71	1,02	1,07	0,07	0,07	0,06	0,01	11,36	0,08	0	0,103	3,024	10,181	100, 10	
02	Rim	1,97	4,25	35,38	31,69	1	1,01	0,06	0,05	0,04	0	11,12	0,12	0,07	0,103	3,024	10,181	100,07	
83	Core	1,96	5,41	35,56	31,93	0,99	1,24	0,05	0,04	0,08	0	9,99	0,02	0,09	0	2,928	10,092	100, 38	
	Rim	2,08	5,27	36,4	31,73	0,69	1,09	0,04	0,07	0,05	0,03	9,61	0	0	0,269	3,15	10,302	100,78	
84	Core	1,72	5,7	35,87	33,7	0,5	0,43	0,02	0,04	0	0	8,06	0,04	0,02	0	2,955	10,176	99,23	
	Rim	1,87	5,71	35,41	33,34	0,66	0,47	0,03	0,06	0,01	0,01	7,7	0,01	0,05	0,047	2,891	10,117	98,39	
85	Core	1,52	3,03	36,77	35,22	0,06	0,11	0	0,26	0	0	10	0,05	0,14	0,082	2,952	10,476	100,67	
	Rim	1,78	3	35,94	35	0,19	0,15	0,03	0,26	0,06	0	10,3	0,14	0,05	0,026	2,949	10,334	100,21	
86	Core	2,04	7,08	35,34	29,83	1,29	1,11	0,07	0,03	0,02	0,06	10	0	0,05	0	3,428	10,256	100,60	
	Rim	2,01	6,94	35,27	29,26	1,26	1,21	0,1	0,04	0,05	0	9,97	0	0,17	0,213	3,25	10,091	99,83	
87	Core	1,85	3,88	36,04	34,44	0,18	0,35	0,03	0,08	0,03	0	9,61	0	0	0,304	2,841	10,292	99,93	
	Rim	1,93	4,3	35,49	34,41	0,46	0,56	0,06	0,1	0,04	0,02	9,15	0	0	0	2,952	10,255	99,73	
88	Core	2,25	6,09	36,36	33,08	0,28	0,34	0,05	0,09	0,01	0	7,53	0,09	0	0,088	3,228	10,434	99,92	
	Rim	2,19	6,05	36,82	33,55	0,3	0,35	0,04	0,08	0	0,02	7,62	0	0,01	0,088	3,228	10,434	100,78	
89	Core	2,12	2,56	35,46	33,33	0,12	0,45	0,03	0,16	0,06	0	12,83	0,04	0,01	0,204	3,089	10,165	100,63	
	Rim	2,15	2,9	34,5	32,17	0,17	0,4	0,02	0,14	0,06	0,03	12,42	0	0	0,172	3,039	9,898	98,07	
90	Core	1,58	2,02	35,45	34,34	0,04	0,21	0,04	0,12	0,01	0	12,24	0	0,18	0,033	2,916	10,222	99,40	
	Rim	1,77	2,2	36,04	34,32	0,12	0,28	0,07	0,12	0,03	0	12,28	0	0,14	0,144	2,919	10,364	100,80	
91	Core	2,01	6,48	36,83	33,87	0,59	0,93	0,01	0,03	0,05	0,02	6,58	0	0	0,215	3,164	10,374	101,15	
	Rim	2,08	6,63	36,11	33,64	0,7	1,12	0,01	0,03	0,06	0,04	6,4	0	0,02	0,211	3,166	10,481	100,70	
92	Core	2,07	4,31	35,78	32,88	0,25	0,62	0,06	0,07	0,06	0,01	10,6	0	0,05	0,107	3,142	10,133	100,14	
	кіm	2,27	4,75	35,73	33,01	0,23	0,53	0,05	0,1	0,07	0	10,19	0	0	0,078	3,189	10,258	100,46	
93	Core	2,35	5	35,64	32,82	0,33	0,51	0,06	0,17	0	0.01	9,81	0	0,03	0,039	3,192	10,179	100,13	
	Coro	2,28	4,99	30,3	32,75	0,27	0,48	0,01	0,10	0,04	0,01	9,90	0.09	0,11	0,421	3,081	10,215	101,08	
94	Rim	1.00	6.53	36,44	34,10	0,4	0,75	0,01	0,03	0,08	0,07	6.28	0,08	0,03	0,143	2 944	10,5	100,70	
	Core	2,55	4.95	36.23	33.3	0.27	0.14	0.05	0.09	0.07	0	9,99	0	0.07	0.29	3.128	10.341	101.05	
95	Rim	2.13	5.21	36.55	33.22	0.28	0.2	0.02	0.1	0	0	8.87	0	0.05	0.187	3.178	10.387	100.38	
	Core	2.12	6.36	36.45	32.79	0.45	0.43	0.06	0.06	0.06	0.01	8.05	0	0.02	0.084	3.245	10.367	100.56	
96	Rim	2,16	6,19	35,53	32,75	0,57	0,45	0,06	0,09	0,08	0,08	8,41	0	0	0	3,242	10,226	99,84	
07	Core	2,37	7,25	36,81	31,76	0,37	0,6	0,02	0	0,04	0	7,24	0	0,06	0,112	3,248	10,288	100,17	
97	Rim	2,37	7,25	36,61	31,7	0,52	0,84	0	0,01	0,05	0	6,65	0,06	0,02	0,244	3,184	10,229	99,74	
09	Core	2,06	6,48	35,91	32,33	0,92	0,67	0,05	0,09	0,05	0,03	8,32	0	0,07	0	3,242	10,226	100,45	
	Rim	2,03	6,41	35,96	32,08	0,89	0,51	0,06	0,04	0,02	0,04	8,12	0,03	0,04	0	3,242	10,226	99,70	
99	Core	1,89	4,76	35,37	33,32	0,53	1,08	0,03	0,05	0,2	0,07	8,94	0,03	0	0,134	2,844	10,177	99,43	
,,,	Rim	1,94	4,69	35,56	33,13	0,57	1,05	0,04	0,04	0,17	0,04	9,04	0,11	0,03	0,053	2,908	10,237	99,61	
100	Core	1,84	3,87	35,69	34,56	0,36	0,96	0,02	0,06	0,05	0	9,65	0,04	0,08	0,131	2,838	10,15	100,30	
100	Rim	1,86	3,32	34,92	34,44	0,32	0,98	0,02	0,13	0,07	0,03	10,31	0	0	0	2,899	10,067	99,37	
101	Core	1,99	6,47	36,44	32,72	0,54	0,39	0,02	0,02	0,06	0,01	7,87	0,04	0	0,127	2,962	10,239	99,90	
101	Rim	2,11	6,54	35,87	32,27	0,65	0,44	0,02	0,04	0,04	0,03	7,84	0,01	0,03	0,057	3,178	10,166	99,29	
102	Core	1,82	6,14	36,19	34,16	0,63	0,88	0,03	0,04	0,07	0,07	6,13	0	0,07	0	2,991	10,431	99,65	
-02	Rim	1,9	6,03	36,21	34,21	0,6	0,74	0,04	0,05	0,07	0,01	6,01	0	0,06	0	2,991	10,431	99,35	
103	Core	1,74	5,14	35,44	31,32	1,4	0,88	0,04	0,07	0,06	0,01	10,17	0	0	0,013	3,071	10,12	99,47	
205	Rim	1,69	4,79	35	31,06	1,36	1,44	0,06	0,07	0,12	0,03	10,82	0	0,04	0,198	2,96	10,121	99,76	
104	Core	1,86	6,5	36,72	34,37	0,85	0,63	0,04	0,06	0,06	0	6,25	0,07	0,04	0	2,991	10,431	100,87	
	Rim	1,76	6,59	36,46	34,38	0,95	0,61	0,05	0,05	0,05	0,04	6,33	0,04	0,02	0	2,991	10,431	100,75	
105	Core	2,58	5,14	36,27	31,48	0,19	1	0,03	0	0,07	0,08	10,06	0,04	0,01	0,137	3,214	10,362	100,66	
	Rim	2,69	5,57	36,6	31,37	0,22	1,05	0,02	0,02	0,06	0,04	9,7	0,15	0,07	0,269	3,15	10,302	101,28	
106	Core	1,95	5,59	35,78	33,3	0,56	0,54	0,05	0,09	0,07	0,03	9,02	0,02	0,04	0	3,019	10,236	100,30	
	Rim	1,95	5,47	35,28	32,53	0,59	0,52	0,06	0,08	0	0,04	8,18	0,02	0	0,047	2,908	10,051	97,73	
107	Core	2,15	6,47	36,19	32,57	0,52	0,36	0,04	0,09	0	0,01	8,14	0	0,04	0,084	3,245	10,367	100,28	
	Rim	2,19	6,57	36,43	32,43	0,53	0,34	0,03	0,09	0,03	0,01	7,9	0	0,04	0,215	3,181	10,308	100,29	
108	Core	1,68	3,25	36,11	34,11	0,12	0,33	0,03	0,14	0,02	0,02	10,82	0	0,16	0,172	2,905	10,351	100,22	
	KIM	1,9	3,9	34,83	32,78	0,49	0,73	0,06	0,1	0,04	0,01	10,7	0,01	0	0,07	2,805	9,816	98,24	
109	core	1,95	5,68	35,8/	33,6/	0,49	0,63	0,05	0,02	0,06	0,05	8,16	U	0	0.310	2,955	10,1/6	99,/b	
	Coro	2,15	5,51	30,34	33,94	0,35	0,39	0,03	0,02	0,08	0,06	6.05	0.12	0,02	0,518	2,114	10,328	100,50	
110	Rim	1,73	6.42	36,08	34,1	0,8	0,59	0,00	0,05	0,00	0,00	5,00	0,12	0,01	0.258	2,551	10,431	99.17	
	Core	2.02	6.17	30,13	33,9	0,94	0,05	0,00	0,04	0,04	0,08	3,71	0,05	0	0,238	3 790	10,240	100.05	
111	Rim	2,00	6 35	35,05	31 /1	0.0	0,43	0.04	0,07	0,00	0,03	8 17	n	0	0.055	3 105	10,551	98.33	
	Core	1 07	63	36.31	34,41	0,49	0.35	0,05	0,03	0.04	0,02	6 10	0.07	0.03	0,033	2,192	10,1	-0,53 99 65	
112	Rim	1.82	6.24	35.75	33.07	1.06	1 18	0.05	0	0.07	0	6.66	0.03	0	0 171	3.026	10 346	100.37	

Grain No	Row	Na2O	MgO	SiO2	AI2O3	CaO	TiO2	к2О	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
	Core	1.56	5.77	36.92	35.27	0.53	0.3	0.05	0	0.04	0.07	6.38	0.01	0	0.117	2.924	10.45	100.39	
113	Rim	1,62	6,25	36,07	34,62	0,86	0,89	0,03	0,04	0,07	0,09	6,43	0	0	0	2,991	10,431	100,39	
	Core	1,91	6,1	36,68	34,76	0,36	0,49	0,05	0,04	0,05	0,01	6,3	0,01	0,04	0	2,991	10,431	100,22	
114	Rim	1,93	6,19	36,19	34,19	0,58	0,83	0,04	0,05	0,05	0	5,96	0,04	0,04	0,127	2,927	10,372	99,52	
115	Core	2,07	5,94	36,06	32,92	0,49	1,02	0,04	0,04	0,04	0,01	7,63	0	0	0,4	3,069	10,309	100,04	
115	Rim	2,03	6	35,51	33,4	0,7	0,69	0,06	0,05	0,06	0,04	7,35	0,05	0,03	0,033	3,225	10,292	99,52	
116	Core	2,13	5,69	35,69	32,28	0,61	0,78	0,04	0,12	0,04	0,07	8,77	0,04	0,13	0,136	3,128	10,12	99,77	
110	Rim	2,2	5,66	35,62	31,98	0,65	0,72	0,02	0,15	0,08	0,11	8,5	0,05	0,04	0,267	3,081	9,994	99,12	
117	Core	1,85	2,64	34,42	34,13	0,53	0,99	0,07	0,04	0,06	0	12	0	0,06	0	2,913	10,08	99,78	
11/	Rim	1,89	2,76	34,42	34,02	0,61	0,95	0,05	0,05	0,05	0,01	11,63	0	0,09	0,058	2,849	10,021	99,46	
119	Core	1,77	4,13	36,28	33,41	0,47	0,56	0,06	0,02	0,02	0,07	10,68	0	0,04	0,07	2,972	10,331	100,88	
110	Rim	2	4,48	35,84	31,77	0,76	1,08	0,02	0,03	0,1	0,14	10,97	0	0,11	0,189	3,097	10,114	100,70	
110	Core	2,12	6,58	36,49	32,98	0,67	0,54	0,05	0,06	0,07	0,01	7,4	0,01	0,11	0,215	3,181	10,308	100,79	
115	Rim	2,01	6,53	36,82	33,54	0,75	0,61	0,04	0,07	0,05	0,01	7,34	0	0,02	0,088	3,228	10,434	101,54	
120	Core	1,85	4,59	34,79	33,38	0,73	0,83	0,07	0,07	0,03	0	9,79	0	0,05	0	2,902	9,988	99,07	
120	Rim	2,01	4,6	34,83	33,19	0,73	0,82	0,07	0,08	0,03	0	9,67	0,07	0,06	0,103	3,122	10,057	99,44	
121	Core	2,03	6,89	36,25	32,57	0,77	0,54	0,02	0,06	0,04	0	6,91	0	0,09	0,347	3,117	10,249	99,88	
121	Rim	1,93	5,38	36,55	32,93	0,72	0,7	0,01	0,07	0,03	0	9,02	0	0,09	0,098	2,975	10,252	100,76	
122	Core	2,18	4,8	35,99	34,06	0,39	0,43	0,06	0,05	0,02	0	8,7	0,08	0,12	0,216	3,108	10,265	100,47	
122	Rim	2,25	5,11	35,73	33,69	0,34	0,45	0,07	0,05	0,04	0	8,49	0	0,07	0,096	3,175	10,245	99,81	
122	Core	2,31	5,74	36,04	32,64	0,49	0,55	0,05	0,07	0,03	0,02	9,32	0	0	0,187	3,195	10,321	100,96	
125	Rim	2	6,46	36,12	31,97	0,9	0,51	0,02	0,09	0,03	0	8,69	0	0	0,215	3,198	10,242	100,45	
124	Core	1,92	2,09	35,86	34,12	0,08	0,25	0,04	0,23	0,01	0	12,53	0,03	0,22	0,033	2,916	10,222	100,55	
124	Rim	2	2,14	36,07	34,04	0,08	0,25	0,04	0,25	0,02	0	12,42	0	0,17	0,236	3,139	10,433	101,29	
125	Core	2,32	6,77	35,71	31,31	1,12	0,67	0,09	0,07	0,09	0,11	8,65	0	0	0,163	3,277	10,176	100,53	
125	Rim	2,16	6,61	36,15	31,88	1,17	0,71	0,07	0,04	0,09	0,04	8,67	0,06	0	0,313	3,28	10,318	101,56	
126	Core	2,09	5,26	36,06	33,84	0,37	0,4	0,02	0,14	0	0	8,31	0	0	0,187	3,178	10,387	100,24	
120	Rim	1,97	5,17	36,7	34,21	0,38	0,4	0,03	0,09	0,03	0	7,93	0,01	0,02	0,098	2,941	10,384	100,36	
127	Core	1,9	3,08	35,05	34,17	0,34	0,46	0,05	0,21	0,04	0	11,2	0,08	0,04	0	2,966	10,268	99,85	
12/	Rim	1,9	3	34,19	33,24	0,37	0,45	0,05	0,22	0,05	0	11,78	0	0	0	2,916	10,001	98,17	
128	Core	1,89	3,27	36,1	33,63	0,23	0,6	0,05	0,07	0,03	0	10,85	0,02	0,03	0,304	2,858	10,225	100,16	
120	Rim	1,83	3,16	35,57	33,71	0,24	0,52	0,01	0,04	0,05	0,01	11,1	0	0,11	0	2,919	10,143	99,41	
129	Core	2,08	3,93	34,92	33,19	0,36	0,72	0,05	0,14	0,04	0	10,81	0	0	0,166	3,072	10,01	99,49	
129	Rim	1,89	3,93	36,34	34,09	0,3	0,5	0,02	0,12	0,02	0,03	10,84	0,04	0,04	0,172	2,905	10,351	101,588	

## ANEXO B – Dados Análise Química, Turmalinas TUP 07A (Microssonda Eletrônica + WinTCac)

Grain No	Row	Na2O	MaO	SiO2	AI2O3	CaO	TiO2	K20	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
	Core	1.62	7 76	35.65	33.97	1 74	0.53	0.08	0.02	0.09	0.08	4.5	0.01	0.07	0 146	3 009	10 227	99.50	*(Yayuz et al. 2014)
1	Rim	1 47	9.19	36.29	29.6	2.65	1 18	0.04	0.06	0.13	0.15	5.63	0.00	0	0.227	3 201	10.32	100.14	(101020101) 2021)
	Core	1.82	3.01	34.77	33.49	0.41	1,19	0.05	0.15	0.05	0.02	11.31	0.00	0.03	0	2,918	10.108	99.33	
2	Rim	1 01	4.05	35.44	33,45	0.28	0.68	0.04	0,15	0.05	0,02	0.85	0,00	0,05	0.018	2,010	10,100	98.74	
	Cara	1,51	4,03	35,44	33,05	0,20	0,08	0,04	0,10	0,05	0.07	5,65	0,08	0,00	0,018	2,503	10,15	100.10	
3	Core	1,75	6,48	36,33	34,27	0,87	0,58	0,05	0,05	0,05	0,07	6,14	0,00	0,04	0	2,991	10,431	100,10	
	Rim	1,76	6,32	36,34	33,85	0,73	0,63	0,03	0,03	0,02	0	5,93	0,04	0	0,258	2,881	10,246	99,07	
4	Core	2,13	7,08	36,99	33,86	0,33	0,49	0,02	0,01	0,06	0	5,38	0,00	0	0,112	3,214	10,421	100,10	
	Rim	2,08	7,35	37,55	34,41	0,45	0,74	0,02	0	0,03	0,02	4,3	0,02	0	0,295	3,2	10,629	101,09	
5	Core	1,98	5,22	35,84	33,02	0,45	0,37	0,05	0,11	0	0	8,31	0,00	0,06	0	2,955	10,176	98,54	
	Rim	2,17	5,3	35,98	32,86	0,28	0,24	0,04	0,1	0,01	0,01	8,74	0,00	0,1	0,136	3,128	10,12	99,21	
6	Core	2	4,3	35,77	33, 38	0,43	0,92	0,02	0,02	0,1	0,02	9,28	0,00	0,04	0,159	3,125	10,199	99,76	
0	Rim	2,39	5,62	36,69	31,03	0,09	0,84	0,03	0	0,06	0,08	9,47	0,00	0	0,318	3,148	10,196	99,96	
-	Core	2,33	3,88	35,3	31,54	0,38	0,6	0,08	0,02	0,02	0	12,16	0,00	0,03	0,21	3,109	10,02	99,68	
/	Rim	2.29	3.92	34.06	30.14	0.4	0.8	0.05	0.04	0.04	0.03	12.43	0.00	0.02	0.159	3.059	9.753	97.19	
	Core	1.88	4.63	36.13	34.39	0.31	0.76	0.05	0.03	0.04	0	8.07	0.03	0.06	0.201	2,891	10.338	99.81	
8	Rim	1.83	4.82	36.36	34.82	0.25	0.73	0.05	0.02	0.01	0	7 94	0.06	0.05	0 333	2 827	10 279	100 38	
	Core	1 94	2.97	35.48	33.97	0.24	0.72	0.03	0.08	0.01	0	10.91	0.06	0	0.356	2 741	9 978	99.49	
9	Rim	1 77	2.99	36.01	34 38	0.2	0.63	0.04	0.08	0.01	0	11 21	0.00	0.04	0.275	2 855	10 304	100.79	
	Core	19	7 35	35.4	27.46	1.56	0.99	0.05	0.07	0.09	0	11 14	0.05	0.04	0	3 176	9,889	99.17	
10	Rim	1 07	7.65	25.22	27,68	1,50	1.07	0.06	0.06	0.08	0	11 1	0.06	0.08	0	3 179	0,005	00.05	
	Coro	2,11	2.74	25.04	27,00	0.19	0.29	0.05	0,00	0,00	0	12.65	0,00	0,00	0.212	2 042	10.04	100 55	
11	Dim	2,11	2,74	35,54	32,57	0,10	0,20	0,05	0,10	0,01	0.01	12,05	0,00	0,03	0,515	3,042	10,04	100,30	
	Core	1 07	6.36	35,01	31 50	0,24	1.57	0,03	0.07	0,05	0.04	7 35	0,00	0,04	0,005	2 01/	10,140	08.51	
12	Rim	2.07	6.30	26.20	22.17	0,55	1,57	0,04	0,07	0,00	0.05	7,55	0,00	0.04	0,020	2,514	10,075	100.47	
	Coro	2,07	6.02	25.02	22,17	0,71	0.52	0,07	0,05	0,03	0,05	7,52	0,00	0,04	0,100	2 225	10,415	00,47	
13	Dim	2	0,02	35,62	33,43	0,35	0,33	0,04	0,00	0,03	0,07	7,20	0,00	0.01	0,033	3,223	10,292	00.84	
	RIM	2,05	6,08	35,82	33,51	0,59	0,59	0,04	0,04	0,07	0,02	7,47	0,00	0,01	0,033	3,225	10,292	99,84	
14	Core	1,97	5,87	36,35	33,04	0,55	0,67	0,01	0,01	0,09	0,02	7,69	0,00	0	0,23	2,894	10,259	99,65	
	KIM	1,86	6,12	35,64	33,18	0,78	0,49	0,05	0,03	0,04	0,07	7,56	0,09	0	0	3,005	10,223	99,14	
15	Core	2,05	6,68	36,32	30,86	0,95	0,58	0,02	0,04	0,07	0,06	8,68	0,00	0	0,347	3,151	10,117	99,93	
	Rim	2,11	7,09	36,34	30,3	0,96	0,89	0,02	0,01	0,1	0,05	8,52	0,04	0,04	0,112	3,265	10,222	100,07	
16	Core	2	3,84	35,52	33,26	0,31	0,63	0,03	0,07	0,04	0,01	10,69	0,00	0	0,222	3,075	10,152	99,85	
-	Rim	1,96	3,8	35,47	33	0,25	0,66	0,04	0,07	0,03	0,01	10,09	0,07	0,08	0,121	2,855	10,084	98,59	
17	Core	2,1	6,58	36,37	32,99	0,43	0,4	0,04	0,06	0,07	0	6,73	0,00	0	0,347	3,117	10,249	99,48	
	Rim	2,13	6,62	36,68	33,44	0,4	0,42	0,04	0,04	0,05	0,01	6,5	0,03	0,08	0,215	3,164	10,374	100, 19	
18	Core	1,57	1,85	35,5	34, 38	0,09	0,18	0,01	0,15	0	0,01	12,45	0,06	0,03	0,196	2,802	10,116	99,39	
	Rim	1,7	1,85	35,35	33,83	0,13	0,12	0,04	0,15	0	0	12,35	0,00	0	0,327	2,755	9,991	98,59	
10	Core	1,91	4,65	36,51	33,85	0,18	0,56	0,03	0,07	0	0	8,78	0,06	0,05	0,333	2,844	10,213	100,04	
17	Rim	1,93	4,78	36,47	33,81	0,24	0,43	0,03	0,07	0	0,03	8,82	0,03	0	0,333	2,844	10,213	100,03	
20	Core	1,79	6,66	36,59	33,06	1,14	0,65	0,02	0,04	0,04	0,03	6,69	0,00	0,18	0,225	3,026	10,381	100,52	
20	Rim	1,95	6,57	35,62	32,64	0,8	0,61	0,04	0,03	0,07	0,04	6,52	0,01	0	0,076	2,895	10,038	97,91	
	Core	1,61	4,53	35,86	34,1	0,65	0,9	0,01	0,07	0,06	0	8,6	0,00	0,07	0,068	2,888	10,196	99,61	
21	Rim	1,67	4,76	36,24	33,27	0,65	0,78	0,15	0,07	0,07	0	8,39	0,03	0	0,333	2,844	10,213	99,47	
	Core	1.94	6.28	36.39	32.98	0.62	0.86	0	0.04	0.05	0.02	7.2	0.12	0	0.127	2,962	10.239	99.83	
22	Rim	1.95	6.36	36.31	32.62	0.65	0.85	0.05	0.05	0.08	0.03	7.66	0.00	0	0.127	2,962	10,239	99.94	
	Core	2.02	6.68	35.81	32.43	0.87	0.38	0.02	0.02	0	0.05	7.47	0.05	0	0.057	3,178	10,166	99.20	
23	Rim	2,02	6.1	35.97	31 30	0.76	0,90	0.02	0.05	0.08	0.05	7.03	0.02	0.03	0.164	3 131	10,100	98.60	
	Coro	1.00	6.16	26.64	22.05	0,70	0,05	0.05	0,05	0,00	0,05	6.04	0,02	0,05	0,104	2 044	10,041	00.77	
24	Dim	1,55	0,10	30,04	33,53	0,55	0,07	0,00	0,05	0,05	0,03	0,04	0,02	0,14	0,127	2,544	10,303	100.04	
	KIM	2,12	0,15	30,40	33,81	0,5	0,70	0,03	0,05	0,07	0,04	0,23	0,07	0.00	0,215	3,104	10,374	100,04	
25	Core	2,03	5,82	36,08	34,02	0,66	0,78	0,03	0,06	0,08	0,02	6,73	0,00	0,08	0,318	3,097	10,394	100,20	
	Rim	1,89	6,12	36,4	34,04	0,74	0,54	0,07	0,03	0,07	0,09	6,28	0,03	0	0	2,991	10,431	99,72	
26	Core	2	2,57	35,05	32,76	0,24	0,25	0,04	0,2	0,02	0	13,15	0,06	0,06	0,181	3,106	10,099	99,79	
	Core	2,05	2,58	35,01	32,49	0,26	0,26	0,03	0,2	0,01	0	13,4	0,00	0,04	0,181	3,106	10,099	99,72	
27	Rim	1,8	3,9	36,02	33,3	0,38	0,47	0,06	0,07	0,02	0,04	10,13	0,03	0	0,304	2,858	10,225	99,61	
	Core	1,93	3,76	36,31	34,07	0,39	0,52	0,05	0,07	0	0	9,74	0,08	0,02	0,304	2,841	10,292	100, 38	
28	Rim	2,1	4,01	35,79	33,47	0,13	0,52	0,03	0,2	0,03	0,01	10,04	0,04	0,1	0,078	3,189	10,258	100,00	
	Core	2,1	3,95	35,87	33,85	0,1	0,55	0,04	0,19	0,04	0	9,75	0,04	0,07	0,341	3,011	10,093	100,00	
29	Rim	1,95	6,37	36,12	32,68	0,76	0,72	0,02	0,02	0,06	0,05	6,67	0,00	0	0,258	2,898	10,18	98,76	
	Core	1,88	6,64	36,03	32,87	0,79	0,82	0	0,02	0,07	0	6,78	0,00	0	0,258	2,898	10,18	99,24	
30	Rim	1,78	7,04	36,27	32,54	1,06	0,82	0	0,09	0,01	0,06	6,54	0,00	0,1	0,122	3,094	10,362	99,89	
50	Core	1,7	6,92	36,1	32,23	1,06	0,93	0,02	0,05	0,07	0,06	6,52	0,04	0	0,356	2,98	10,256	99,29	
21	Rim	1,9	6,17	36,45	32,88	0,76	0,49	0,05	0,09	0,04	0,06	7,42	0,03	0,09	0,127	2,962	10,239	99,76	
51	Core	2,01	6,21	36,49	32,55	0,63	0,56	0,05	0,07	0,05	0,04	7,37	0,00	0	0,215	3,181	10,308	99,73	
22	Rim	2,03	3,34	35,49	32,48	0,28	0,65	0,03	0,07	0,07	0	11,52	0,00	0,04	0,21	3,092	10,086	99,39	
32	Core	1,88	3,29	35,62	32,9	0,2	0,41	0,03	0,1	0,05	0,01	11,03	0,00	0	0,121	2,872	10,018	98,53	
	Rim	1.94	7.54	36.82	32.57	0.81	0.59	0.03	0	0.05	0	6.2	0.00	0	0.024	3.012	10.286	99.87	
33	Core	2,03	7,48	36,51	32,38	0,87	0,71	0,03	0	0,05	0,09	6,06	0,06	0,08	0,112	3,231	10,355	100,05	
	Rim	1,55	3,69	36,45	35,13	0,13	0,2	0	0,04	0,02	0,01	9,05	0,00	0	0,172	2,888	10,417	99,75	
34	Core	1.64	3.67	36.42	35.08	0.18	0.21	0.05	0	0.03	0.02	8.98	0.05	0.01	0.304	2.824	10.358	99.83	
	Rim	2.13	5.61	36.36	33.19	0.27	0.13	0.04	0.06	0	0.02	8.17	0.00	0	0.187	3.178	10.387	99.63	
35	Core	1.94	5.2	36.61	33.8	0.19	0.14	0.02	0.01	0.01	0	8.33	0.04	0	0.098	2.958	10.318	99.66	
	Rim	1.75	2.77	36.37	34.4	0.05	0.15	0,03	0,25	0	0.01	11.47	0,00	0,17	0,275	2,855	10.304	100.30	
36	Core	1.63	2.23	36.14	34.29	0.02	0.16	0.03	0.24	0	0	11.29	0.09	0.16	0.275	2.855	10.304	99.71	
	Rim	1.88	3.73	35.64	33.24	0.3	0.67	0.04	0.09	0.02	0	10.79	0.01	0.06	0.121	2.855	10.084	99.48	
37	Core	1.91	3.89	35.59	33.3	0.32	0.53	0.05	0.09	0.04	0.04	10.58	0.00	0.07	0.121	2.855	10.084	99.47	
	Rim	2.21	4.45	35.87	32.91	0.15	0.37	0.03	0.16	0	0	10.11	0.02	0.05	0.107	3.147	10.133	99.71	
38	Core	2,19	4 44	36 51	33.44	0.17	0.38	0.03	0.16	0.01	0.01	9.56	0.00	0.1	0.29	3,178	10 341	100.75	
	Rim	2,01	5 58	35.98	33.6	0.32	0.83	0.04	0,10	0.11	0.11	69	0.04	0,1	0.267	3,047	10 127	98.96	
39	Core	1 92	5.43	36.64	33,90	0.35	0.70	0.05	0.05	0.17	0.17	6.91	0.00	n	0.361	2,047	10.7	99.72	
	Rim	2.36	6.55	36.39	30.84	0.46	0.49	0.02	0.05	0.02	0.05	8.64	0.00	0	0.347	3.151	10.117	99.49	
40	Core	2.39	6.39	36.04	31.05	0.39	0.63	0.03	0.07	0.04	0.02	8.51	0.07	0.11	0.215	3.198	10.242	99.40	
	Rim	2.01	6.26	36.58	33.68	0.3	0.98	0.03	0.03	0.1	0.07	6.11	0.03	0	0.215	3.164	10.374	99.93	
41	Core	23	6 18	36 58	32 92	0.15	0.97	0.04	0.05	0.08	0.06	7,19	0,00	n	0.215	3,181	10 308	100.22	
	Rim	1.99	4 61	35.98	32,92	0.29	0.87	0.03	0.17	0.05	0	8,97	0.03	0.03	0.282	2,794	9,945	98.83	
42	Core	2,55	4 54	36.14	33.02	0.20	1 03	0.03	0.12	0.07	0.07	9 00	0.02	0,00	0.252	3 12	10 447	100.43	
	Pim	2,2	6.97	25 01	21 77	0,25	0.44	0,03	0,13	0,07	0,02	9,05	0,03	0.04	0,237	2 105	10,447	99.26	
43	Core	1 07	6.95	36.27	20.21	1.02	1 00	0.02	0,03	0,05	0,03	9,40 9.45	0,00	0,04	0,033	2 016	10,1	99.95	
	Pire	2,5/	6.74	27.00	20,31	1,03	1,09	0,01	0,00	0,1	0,03	0,40 7 0 7	0,08	0,04	0,307	3,010	10,231	101.02	
44	KIM	2,14	0,24	37,09	35,17	0,39	0,71	0,02	0,05	0,04	0,04	7,03	0,04	0	0,266	3,231	10,575	101,03	
	core	2,08	6,29	36,82	32,65	0,42	0,94	0,04	0,05	0,09	0,01	6,92	0,02	0	0,347	3,11/	10,249	100,04	
45	Rim	1,84	6,83	37,51	32,83	0,5	0,46	0,02	0,06	0,15	0,06	6,59	0,02	0	0,441	2,901	10,322	100,53	
	core	1,/5	6,41	36	33,62	0,8	0,81	0,01	0,04	0,1	0,08	6,45	0,00	0	0,127	2,944	10,305	99,45	
46	Rim	2,1	5,97	36,06	31,31	0,54	1,07	0,05	0,11	0,06	0,05	9,25	0,06	0,03	0,269	3,15	10,302	100,38	
	Core	2,22	5,77	35,81	31,63	0,53	0,85	0,04	0,08	0	0,03	8,72	0,00	0	0,267	3,081	9,994	99,02	
47	Rim	2,04	6,84	35,86	31,47	0,83	0,32	0,1	0,06	0,03	0,2	8,06	0,00	0,13	0,033	3,195	10,1	99,27	
	Core	2,18	6,9	36,01	31,78	0,84	0,35	0,05	0,07	0,05	0,14	7,95	0,00	0,05	0,347	3,134	10,183	100,03	
48	Rim	2,25	3,42	35,58	31,89	0,33	0,45	0,05	0,13	0,02	0	12,58	0,03	0,01	0,21	3,109	10,02	100,08	
-10	Core	2,34	3,48	35,27	31,74	0,37	0,49	0,05	0,12	0,02	0	12,5	0,00	0,18	0,21	3,109	10,02	99,90	
49	Rim	1,91	2,8	34,96	32,22	0,7	0,83	0,04	0,1	0,04	0,02	13,08	0,00	0	0	2,883	9,889	99,47	
~~	Core	1,89	2,79	35,15	32,31	0,7	0,78	0,06	0,09	0,05	0	12,62	0,04	0,02	0,224	2,822	9,971	99,52	
50	Rim	1,98	1,31	35	33,08	0,18	0,4	0,04	0,35	0,03	0,01	13,5	0,04	0,43	0,196	2,819	10,05	99,42	
50	Core	2,09	1,46	35,7	33, 36	0,19	0,39	0,04	0,33	0,03	0,02	13,46	0,01	0,16	0,284	3,039	10,119	100,68	
E1	Rim	1,55	6,25	35,77	33,74	1,32	0,92	0,04	0,06	0,11	0,03	6,37	0,01	0,02	0,129	3,023	10,24	99,58	
21	Core	1,61	6,28	36,05	33,71	1,29	0,94	0,03	0,06	0,08	0	6,39	0,00	0	0,225	3,026	10,381	100,07	
52	Rim	2,19	4,7	35,45	31,9	0,47	0,7	0,06	0,05	0,1	0,03	10,88	0,05	0	0,239	3,095	10,007	99,92	
52	Core	2,21	4,6	35,31	32,07	0,44	0,66	0,07	0,04	0,07	0,03	10,41	0,00	0	0,107	3,142	10,133	99,29	
	Rim	2,21	6,66	36,7	33,39	0,33	0,81	0,01	0,01	0,09	0,02	6,21	0,08	0	0,215	3,164	10,374	100,27	
53	Core	2,16	6,77	36,27	33, 33	0,31	0,77	0,03	0,01	0,07	0,07	6,18	0,00	0	0,215	3,164	10,374	99,72	
	Rim	1,98	6,38	36,43	32,43	0,76	0,68	0	0,07	0,03	0,06	7,86	0,05	0,03	0,127	2,962	10,239	100,09	
54	Core	2,07	6,3	35,87	32,78	0,7	0,57	0,04	0,08	0,1	0,05	7,47	0,04	0	0,057	3,178	10,166	99,47	
	Rim	1,84	2,09	35,13	33,72	0,43	0,35	0,05	0,17	0	0	12,43	0,06	0	0,093	2,869	10,096	99,33	
55	Core	1,9	2,5	34,97	30,96	0,25	0,39	0,04	0,24	0	0,01	12,45	0,00	0,11	0,305	2,725	9,578	96,43	
	Rim	1.97	5.1	35.68	30.5	0.79	0.37	0.03	0.1	0.07	0	11.39	0.07	0	0	3.007	9.978	98.96	
56	Core	2.17	5.46	35.36	30.46	0.83	0.41	0.04	0.09	0.02	0.01	10 74	0.00	0	0.136	3,167	9,988	98.88	

Grain No	Row	Na2O	MaO	SiO2	AI2O3	CaO	TiO2	K20	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
		2.24		26.20	22.24		0.00	0.05	0.42	0.02	0.04	0.00	0.02	0.02	0.004	2.245	40.007	400.00	
57	Rim	2,31	6,08	36,28	32,21	0,3	0,26	0,05	0,12	0,03	0,01	8,69	0,02	0,03	0,084	3,245	10,367	100,09	
	Core	2,22	6,15	35,98	32,24	0,3	0,36	0,05	0,06	0,07	0,06	8,31	0,05	0	0	3,242	10,226	99,32	
58	Rim	2,2	8,01	36,72	32,86	0,68	0,51	0,06	0	0,06	0,05	4,85	0,00	0	0,141	3,21/	10,342	99,70	
	Core	2,32	7,56	36,81	30,86	0,67	0,67	0,01	0,01	0,01	0	7,15	0,00	0,03	0,244	3,201	10,163	99,71	
59	Rim	2,07	6,53	36,59	32,79	0,48	0,34	0,01	0,06	0,06	0,04	7,19	0,00	0,01	0,215	3,181	10,308	99,87	
	Core	1,96	6,68	36,17	32,18	0,78	0,63	0,04	0,07	0,04	0,06	13.77	0,09	0	0,127	2,962	10,239	99,40	
60	Coro	1,65	1,78	35,09	24,41	0,17	0,29	0,01	0,32	0.02	0.02	12,77	0,04	0.07	0,190	2,802	10,110	99,84	
	Rim	1,05	6.36	36,15	33.25	0,13	0,3	0,03	0,52	0,02	0,02	7 /3	0,00	0,07	0,150	3,002	10,110	100,07	
61	Core	2.02	6.13	35,67	33,23	0,58	0,74	0,02	0,00	0,00	0,00	7,45	0,03	0,1	0.033	3,008	10,303	08.07	
	Bim	1 72	4 95	35,07	25.05	0,01	0,37	0,03	0,00	0,03	0	7.40	0,00	0,00	0,000	3,223	10,252	00.72	
62	Core	1,72	4,03	35,97	34.52	0,2	0,27	0,04	0,1	0,04	0.03	8.07	0,00	0.14	0,201	2,074	10,404	100.16	
	Rim	1.09	8.04	36.03	30.62	1 35	0,71	0,03	0.04	0,05	0,05	6.74	0,00	0,14	0.15	3 11/	10,150	00.87	
63	Core	2,14	9.03	37.01	30.47	1.31	0.35	0.01	0	0.05	0.01	5.5	0.00	0.04	0.319	3,386	10,474	100.10	
	Rim	2,29	6.47	36.23	32.86	0.4	0.65	0.06	0.06	0.04	0.07	6.89	0.01	0.07	0.347	3,117	10,249	99.81	
64	Core	2.22	6.58	36.34	32.38	0.47	0.74	0.03	0.04	0.07	0.07	6.75	0.00	0.01	0.347	3,117	10.249	99.41	
	Rim	2.07	3.34	35,89	33.43	0.22	0.57	0.04	0.15	0.02	0	10.94	0.07	0.1	0.222	3.075	10,152	100.29	
65	Core	1.76	3.06	35.52	33.67	0.21	0.5	0.03	0.17	0.03	0.03	11.29	0.03	0.04	0	2,919	10,143	99.40	
	Rim	1.66	1.08	35.93	34.24	0.01	0.15	0.03	0.42	0	0.01	12.97	0.04	0.2	0.196	2,802	10.116	99.85	
66	Core	1.76	1.17	35.51	34.2	0.05	0.2	0.01	0.36	0.01	0	12.95	0.00	0.08	0.196	2,802	10.116	99.41	
	Rim	2.06	6.45	35.64	30.91	0.71	1.19	0.03	0.04	0.11	0.07	7.81	0.01	0	0.246	3.087	10.022	98.39	
67	Core	1.9	6.46	36.24	31.77	0.87	0.99	0	0.04	0.06	0.06	7.67	0.04	0	0.258	2,915	10.114	99.39	
	Rim	1.97	6,64	35,94	32.18	0.98	0.43	0.05	0.08	0.04	0.04	7,78	0.14	0	0	2,959	10.097	99.33	
68	Core	1.91	6.6	35.59	31.93	1.02	0.44	0.05	0.07	0.05	0.07	8	0.05	0.11	0.042	3.058	10.107	99.10	
	Rim	2,07	5,14	36,82	33,06	0,31	0,54	0,05	0,1	0,02	0,04	8,85	0,00	0	0,187	3,178	10,387	100,75	
69	Core	2.26	5.19	35.95	32.5	0.3	0.53	0.06	0.08	0.03	0	8.77	0.08	0.02	0.136	3,128	10.12	99.15	
	Rim	1.85	5.25	35.56	33.32	0.4	0.47	0.04	0.07	0.06	0.05	8.4	0.08	0	0	2.955	10.176	98.68	
70	Core	1.88	5.38	35.86	33.22	0.44	0.42	0	0.07	0.04	0.05	8.32	0.00	0.05	0	2,955	10.176	98.86	
	Rim	1,76	6,1	35,51	34,6	0,96	0,67	0,07	0,07	0,04	0,03	6,31	0,00	0,05	0	2,988	10,289	99,45	
71	Core	1,81	6,23	35,72	34,51	0,98	0,67	0,04	0,05	0,08	0,01	6,13	0,02	0,01	0	2,988	10,289	99,54	
	Rim	1.93	3.55	36.14	33.6	0.16	0.34	0.05	0.09	0.04	0	10.52	0.01	0.03	0.304	2.858	10.225	99.85	
/2	Core	1,96	3,87	34,92	32,37	0,48	0,76	0,02	0,07	0,05	0,03	11,08	0,03	0,11	0	2,869	9,876	98,50	
	Rim	2,17	5,57	36,16	32,65	0,32	0,41	0,02	0,04	0	0,02	8,54	0,02	0,05	0,318	3,131	10,262	99,68	
/3	Core	2,13	5,88	35,75	32,84	0,33	0,44	0,04	0,08	0	0,01	8,54	0,11	0	0,136	3,128	10,12	99,53	
	Rim	1,83	6,33	35,82	33,21	0,95	0,54	0,04	0,05	0,06	0,04	7,19	0,00	0	0	3,005	10,223	99,29	
/4	Core	1.73	6.42	35.74	32.53	1.01	0.56	0.03	0.06	0.04	0.03	7.04	0.00	0.06	0.072	3.04	10.173	98.54	
	Rim	2.26	4.67	36.04	32.27	0.24	0.99	0.02	0.11	0.02	0	9.8	0.00	0.06	0.421	3.081	10.215	100.20	
75	Core	2,16	4,84	36,22	32,74	0,29	0,58	0,03	0,08	0,04	0	9,73	0,00	0,09	0,421	3,081	10,215	100,52	
76	Rim	1,98	7,86	36,88	31,98	0,78	0,67	0	0,03	0,06	0,03	5,42	0,00	0	0,287	2,901	10,101	98,98	
76	Core	2,01	6,6	36,18	32,68	0,56	1,11	0,04	0,02	0,06	0	6,8	0,04	0	0,297	3,119	10,355	99,87	
	Rim	1,85	7,82	36,25	27,92	1,65	0,49	0,05	0,06	0,05	0	10,54	0,00	0	0,253	3,115	9,972	100,02	
	Core	2,7	6,69	36,41	29,39	0,17	0,39	0,01	0,02	0,06	0,03	9,78	0,04	0	0,347	3,168	10,051	99,26	
70	Rim	1,96	4,85	35,52	33,37	0,47	0,84	0,06	0,03	0	0	8,63	0,00	0	0,15	2,841	10,071	98,79	
/8	Core	1,96	4,74	35,71	33,97	0,45	0,89	0,07	0,05	0,05	0	8,7	0,00	0	0,15	2,841	10,071	99,65	
70	Rim	2,33	6,73	36,67	31,76	0,37	0,49	0,01	0,05	0,07	0,1	8	0,00	0,11	0,215	3,198	10,242	100,35	
/9	Core	2,33	6,7	36,76	31,95	0,42	0,52	0,02	0,04	0,06	0,11	7,67	0,02	0	0,347	3,134	10,183	100,26	
00	Rim	2,22	6,22	36,5	32,08	0,57	1,03	0,04	0,08	0,08	0,03	7,97	0,07	0	0,166	3,183	10,415	100,65	
80	Core	2,14	6,02	36,43	32,25	0,53	0,84	0,01	0,07	0,06	0,01	7,66	0,00	0,08	0,215	3,181	10,308	99,80	
01	Rim	2,01	6,44	36,27	32,77	0,69	0,47	0,04	0,09	0,04	0	7,71	0,00	0,05	0,215	3,181	10,308	100,28	
81	Core	2,04	6,28	36,31	32,42	0,57	0,54	0,04	0,09	0,03	0,07	7,25	0,00	0,07	0,215	3,181	10,308	99,41	
07	Rim	2,01	6,64	35,96	31,33	1	0,51	0	0,02	0	0,03	8,7	0,04	0,02	0,163	3,277	10,176	99,88	
82	Core	2,06	6,48	36,05	31,88	0,89	0,49	0,02	0,03	0,06	0,01	8,62	0,09	0	0,215	3,198	10,242	100,34	
07	Rim	2	1,72	33,96	34,26	0,24	0,53	0,07	0,21	0	0,01	13,18	0,03	0	0,132	3,079	9,96	99,38	
65	Core	1,89	1,68	33,87	33,79	0,24	0,42	0,03	0,2	0,01	0,03	12,99	0,00	0,13	0,089	2,749	9,707	97,83	
0.4	Rim	2,17	6,48	36,33	32,75	0,46	0,77	0,05	0,03	0,06	0,01	7,09	0,05	0	0,215	3,181	10,308	99,95	
04	Core	2,11	6,01	35,61	28,86	0,6	0,73	0	0,02	0,02	0,03	7,16	0,00	0,02	0,559	2,99	9,665	94,38	
OF	Rim	1,78	6,24	35,65	31,24	1,07	0,39	0,05	0,07	0,04	0	8,93	0,00	0,02	0,042	3,058	10,107	98,69	
65	Core	1,91	6,38	35,76	30,97	1,06	0,54	0,04	0,1	0,02	0,03	8,64	0,00	0,11	0,174	3,011	9,982	98,73	
00	Rim	1,46	5,91	37,07	35,02	0,38	0,18	0,01	0,03	0,03	0,03	5,85	0,01	0	0,412	2,863	10,533	99,79	
80	Core	1,8	6,61	36,44	33,64	0,81	0,68	0,02	0,01	0,06	0,05	6,3	0,11	0,08	0,127	2,944	10,305	99,99	
07	Rim	1,8	7,58	36,2	29,88	1,61	1,81	0,04	0,06	0,08	0,1	8,06	0,00	0	0,204	3,083	10,211	100,72	
6/	Core	1,75	7,26	35,68	28,44	1,63	2,71	0,08	0,04	0,2	0,06	8,29	0,00	0,01	0,103	3,036	10,05	99,34	
00	Rim	2,01	5	36,78	33,81	0,32	0,48	0,03	0,07	0	0,01	8,46	0,04	0,02	0,187	3,178	10,387	100,78	
00	Core	2,18	4,97	36,28	33,28	0,33	0,61	0,03	0,09	0	0,01	8,5	0,02	0,09	0,421	3,064	10,281	100,16	
80	Rim	2,14	4,82	36,08	33,7	0,22	0,38	0,06	0,12	0,02	0	9,31	0,00	0,04	0,29	3,128	10,341	100,65	
05	Core	1,99	4,78	36,07	33,65	0,26	0,4	0,04	0,18	0,02	0,01	9,52	0,00	0,12	0,201	2,908	10,272	100,42	
90	Rim	2,4	7,11	37,86	25,71	4,03	0,57	0,15	0,07	0,08	0,03	12,1	0,00	0	0,818	2,731	10,279	103,94	
50	Core	2,35	7,89	36,25	31,08	0,67	0,66	0,01	0	0,07	0,14	6,58	0,00	0	0,244	3,184	10,229	99,36	
01	Rim	1,72	5,69	35,51	33,77	1,05	0,75	0,04	0	0,05	0,08	7,52	0,00	0,05	0,192	2,973	10,193	99,59	
51	Core	1,82	5,5	35,67	33,52	0,72	0,87	0,03	0,05	0,05	0,05	7,57	0,03	0,04	0,047	2,891	10,117	98,98	
92	Rim	1,91	3,82	35,97	33,61	0,22	0,35	0,02	0,12	0,01	0	9,94	0,00	0	0,253	2,791	10,024	99,04	
52	Core	1,92	3,81	35,11	33,55	0,26	0,38	0,03	0,15	0,03	0	10,17	0,00	0,01	0,121	2,855	10,084	98,48	
03	Rim	1,74	6,24	36,96	33,86	0,2	0,47	0,02	0,03	0,07	0,03	5,83	0,09	0	0,258	2,881	10,246	98,93	
	Core	2,13	5,91	36,74	33,41	0,14	0,64	0	0,04	0,04	0,04	6,9	0,00	0	0,45	3,05	10,268	99,76	
94	Rim	1,71	5,92	36,51	33,86	0,48	0,35	0,02	0,05	0,03	0	7,31	0,00	0,01	0,23	2,894	10,259	99,63	
÷.	Core	1,92	5,85	36,44	33,44	0,39	0,33	0,01	0,07	0,05	0,05	7,43	0,03	0	0,23	2,894	10,259	99,39	
95	Rim	1,74	6,75	36,29	32,98	0,88	0,68	0,02	0,04	0,06	0,04	6,51	0,00	0	0,258	2,898	10,18	99,33	
	Core	1,94	6,52	36,46	33,01	0,78	0,64	0,05	0,06	0,05	0,04	6,78	0,08	0	0,127	2,944	10,305	99,79	
96	Rim	2,21	5,88	35,79	31,92	0,7	0,6	0,02	0,14	0,04	0,03	8,42	0,00	0,06	0,267	3,081	9,994	99,15	
	Core	2,08	5,73	35,81	31,67	0,76	0,87	0,02	0,14	0,03	0	8,51	0,00	0,02	0,267	3,081	9,994	98,98	
97	Rim	1,98	6,73	36,37	33,48	0,57	0,76	0,01	0	0,06	0,04	5,79	0,08	0,04	0,258	2,881	10,246	99,30	
	core	1,8	6,37	36,2	31,92	0,74	0,9	0,02	0,04	0,07	0,06	5,61	0,05	U	0,521	2,/87	9,995	97,08	
98	Rim	2,01	4,54	35,78	32,77	0,5	0,59	0,05	0,07	0,06	0,01	10,14	0,01	0,04	0,107	3,142	10,133	99,95	
	core	2,1	4,5	35,39	32,91	0,4/	0,53	0,04	0,08	0,09	0,01	10,08	0,02	0,02	0,107	3,142	10,133	99,62	
99	Rim	2,07	5,71	35,62	31,83	0,64	0,42	0,08	0,08	0,03	0	9,19	0,00	0	0,136	3,145	10,054	99,01	
	core	2,11	5,36	35,81	32,69	0,69	0,34	0,07	0,09	0,01	0,03	9,05	0,04	0,08	0,039	3,192	10,1/9	99,78	
100	Rim	2,08	2,15	35,71	33,68	0,11	0,31	0,05	0,18	0,04	0	12,09	0,01	0,08	0,204	3,089	10,165	99,95	
	Core	2,02	2,25	35,18	33,49	0,13	0,37	0	0,19	0,01	0	12,53	0,04	0,13	0,204	3,089	10,165	99,80	
101	KIM	2,28	6,7	30,25	30,64	0,75	1,01	0,07	0,08	0,08	0,05	8,89	0,04	0.02	0,297	3,154	10,223	100,52	
	core pire	2,30	6.04	30	30,/3	0,69	0,99	0,03	0,13	0,05	0,07	8,88	0,13	0,02	0,34/	3,151	10,11/	100,34	
102	KIII1	1,9/	0,20	30,34	32,79	0,58	0,42	0,04	0,09	0,02	0.01	7,98	0,00	0,12	0,127	2,962	10,239	39,94	
	core	2,1	0,32	30,26	32,56	0,56	0,41	0,05	0,1	0,05	0,04	7,93	0,02	0.00	0,215	3,181	10,308	100,11	
103	Rim	1,81	3,42	36,35	34,8	0,21	0,41	0,02	0,08	0,01	0	9,68	0,00	0,08	0,304	2,841	10,292	100,31	
	Core	1,68	3,18	36,25	34,65	0,22	0,4	0,04	0,11	0	0	9,74	0,08	0,07	0,304	2,841	10,292	99,86	
104	Rim	2	3,25	35,64	32,88	0,2	0,43	0,04	0,11	0,02	0,01	11,8	0,02	0,08	0,21	3,092	10,086	99,87	
	core	2,13	3,35	35,63	32,86	0,17	0,57	0,03	0,13	0,03	0,02	11,62	0,02	0,04	0,21	3,092	10,086	99,99	
105	Rim	1,66	4,78	35,34	31,88	1,4	1,34	0,04	0,09	0,06	0	9,75	0,00	0,01	0,33	2,896	10,062	99,64	
	Lore	1,/9	5,55	35,37	30,98	1,37	1,18	0,18	0,12	0,09	0	9,81	0,02	0,07	0,227	2,963	10,042	99,76	
106	Rim	1,9	5,84	36,25	33,73	0,34	1,04	0,03	0,06	0,09	0,02	6,48	0,02	U	0,312	2,833	10,306	99,25	
	Core	1,97	5,95	36,25	33,32	0,38	1,3	0,05	0,07	0,1	0,08	6,6	0,12	0	0,312	2,833	10,306	99,64	
107	Rim	1,9	6,76	36,01	32,15	1	0,66	0,05	0,08	0,05	0,05	/,19	0,05	0,08	0,225	3,044	10,315	99,61	
	Lore	1,85	7,05	35,69	31,69	1,12	0,7	0,03	0,07	0,09	0,05	/,5	0,04	U	0.25	3,108	10,154	99,14	
108	KIM	1,44	7,96	35,5	27,85	2,6/	1,41	0,01	0,02	0,12	0,07	9,23	0,11	U	0,25	3,132	9,954	99,73	
	core	1,44	/,85	35,28	27,53	2,45	1,42	0,02	0,01	0,17	0,08	8,9	0,08	U	0,382	3,068	9,894	98,57	
109	Rim	1,/1	2,76	35,98	33,42	0,06	0,3	0,06	0,09	0,02	0	11,19	0,00	0,09	0,224	2,805	10,037	98,75	
	core	1,81	2,6/	35,78	33,5	0,07	0,26	0,03	0,11	U	U	11,03	0,13	0,12	0,224	2,805	10,037	98,58	
110	Rim	2,35	7,25	36,62	28,66	0,7	0,85	0,03	0	0,1	0,01	9,12	0,00	0,02	0,244	3,236	10,031	99,22	
	core pirm	2,15	6.24	30,38	30,63	0,76	0,84	0,01	0,03	0,05	0.04	8,91	0,07	0,15	0,34/	3,151	10,11/	100,05	
111	Corre	2,04	6,54	30,47	21 72	0,58	1 21	0,02	0,02	0,05	0,04	0,//	0,00	0.02	0,215	3,104	10,374	100,61	
117	cure pirre	1,94	0,05	27.20	31,72	0,75	1,51	0,02	0,04	0,04	0,01	7,30	0,00	0,02	0,209	2,91/	10,221	59,3U	
112	KIM	2,23	5,8/	37,28	29,65	0,56	0,63	0,04	0,05	0,06	0,03	9,68	0,02	0,02	0,764	3,05/	10,087	100,03	
113	Pim	2,10	6.15	33,57	20,09	0,79	0,55	0,05	0,05	0,00	0,00	0,00	0	0,05	0,104	3,146	3,975	97 799	
114	11111	2,02	0,10	33,34	23,1/	0,21	0,94	0,00	0,21	0,04	0,05	5,44	U	0,13	0,104	3,103	3,309	21,100	

## ANEXO B – Dados Análise Química, Turmalinas TUP 08A (Microssonda Eletrônica + WinTCac)

Grain No	Row	Na2O	MgO	SiO2	Al2O3	CaO	TiO2	K2O	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
4	Core	1,9	1,97	34,86	32,45	0,25	0,66	0,04	0,4	0,01	0,01	14,15	0	0,07	0,013	2,833	9,842	99,46	*(Yavuz et al., 2014)
1	Rim	1,95	0,88	34,26	32,24	0,28	0,89	0,03	0,41	0,03	0	15,28	0,00	0,17	0,116	2,783	9,796	99,12	
2	Core	2,27	5,19	35,97	31,65	0,31	0,97	0,04	0,15	0,07	0,01	9,65	0,00	0	0,136	3,145	10,054	99,62	
3	Rim	2,18	4,65	36,07	32,52	0,24	1,07	0,05	0,16	0,08	0,02	9,08	0,00	0	0,372	3,083	10,322	99,90	
	Core	1,87	2,43	34,31	33,68	0,57	0,6	0,06	0,03	0	0	12,73	0,00	0	0,001	2,866	9,955	99,10	
4	Rim	1,99	2,17	34,6	33,58	0,53	0,53	0,07	0,05	0,02	0,01	12,85	0,01	0	0,001	2,866	9,955	99,23	
-	Core	1,55	5,48	37,17	34,28	0,4	0,64	0	0,02	0,03	0,03	7,25	0,04	0,11	0,281	2,944	10,526	100,75	
5	Rim	1.87	5.4	36.62	34.5	0.36	0.91	0	0.01	0.07	0.12	6.99	0.05	0	0.23	2.877	10.325	100.33	
	Core	1.89	2.03	35.37	33.65	0.13	0.61	0.02	0.35	0	0	12.62	0.00	0.08	0.093	2.869	10.096	99.81	
6	Rim	1.7	2.5	35,28	33.41	0.1	0.65	0.07	0.28	0.05	0	11.45	0.00	0.08	0.224	2,805	10.037	98.64	
	Core	1.76	6.91	36.18	32 59	0.89	0.79	0.06	0.06	0.05	0.07	6.76	0.04	0	0.258	2,898	10.18	99.50	
7	Rim	1.75	6.85	36.18	33.07	0.85	0,75	0.06	0.06	0.05	0	6 74	0.00	0.02	0.127	2,050	10 305	99.62	
	Core	2,75	6 71	35 /1	22 51	1 18	1.0	0.05	0,00	0,03	0	16.07	0,00	0.02	0,213	2,530	9,629	98.65	
8	Rim	2,20	6.65	34 74	22,51	1,10	1.67	0,05	0,04	0,12	0	16.34	0,00	0,02	0,215	2,555	9.487	97.47	
	Coro	1.74	2.05	34,74	24,4	1,05	0.1	0,08	0,01	0,10	0	10,54	0,00	0.02	0,03	2,340	10 245	100 54	
9	Dim	1,74	2,95	30,33	34,00	0,03	0,1	0,02	0,22	0,04	0	10,58	0,00	0,05	0,407	2,751	10,245	100,54	
	Cara	1,90	5,05	30,03	33,01	0,14	0,46	0,05	0,2	0,05	0	10,57	0,03	0,05	0,304	2,858	10,225	99,57	
10	Dim	1,01	5,66	30,29	33,06	0,96	1.04	0,00	0,04	0,09	0.02	7,00	0,00	0,06	0,25	2,894	10,259	100,50	
	Rim	1,70	5,75	35,80	33,21	0,91	1,04	0,05	0,02	0,08	0,02	7,07	0,00	0	0,071	2,894	10,224	99,50	
11	Core	2,01	6,06	36,37	33,61	0,52	0,62	0,1	0,03	0,05	0,05	6,97	0,00	0,03	0,215	3,164	10,374	100,17	
	Rim	1,/2	6,04	36,97	35,11	0,65	0,62	0,01	0,03	0,08	0,08	5,94	0,01	0,01	0,054	2,974	10,497	100,80	
12	Core	2,01	6,59	37,18	33,37	0,38	0,74	0	0,07	0,07	0,04	6,24	0,02	0	0,398	3,167	10,516	100,79	
	Rim	1,76	6,1	36,33	34,53	0,81	0,69	0,03	0,06	0,07	0,07	5,75	0,01	0	0,127	2,927	10,372	99,64	
13	Core	1,86	0,21	34,38	32,84	0,17	0,49	0,03	0,34	0,02	0	15,76	0,00	0,13	0,116	2,783	9,796	98,93	
	Rim	1,92	0,22	34,27	33,07	0,19	0,46	0,05	0,35	0,01	0	15,3	0,05	0,2	0,047	2,83	9,921	98,89	
14	Core	2,45	3,73	35,62	31,66	0,14	0,66	0,04	0,05	0,06	0,01	11,86	0,00	0,16	0,342	3,045	9,961	99,79	
	Rim	2,37	3,71	35,79	31,9	0,13	0,6	0,03	0,09	0,01	0,03	12,13	0,00	0	0,21	3,109	10,02	100,13	
15	Core	1,82	2,99	35,59	33,61	0,31	1,03	0,02	0,08	0,03	0	11,19	0,06	0,08	0,179	2,807	10,144	99,94	
	Rim	1,81	2,38	34,1	33,99	0,38	1,04	0,02	0,12	0,04	0	11,64	0,04	0,03	0,124	2,804	10,002	98,52	
16	Core	2,55	6,31	36,36	32,3	0,21	1,03	0,03	0	0,17	0,11	7,34	0,07	0,13	0,166	3,183	10,415	100,37	
10	Rim	2,41	6,65	36,49	33,05	0,28	0,87	0,02	0,01	0,1	0,08	5,98	0,06	0	0,347	3,1	10,315	99,76	
17	Core	2,11	6,22	36,49	33,68	0,32	0,56	0,04	0,08	0,06	0	6,52	0,00	0	0,215	3,164	10,374	99,83	
1/	Rim	2,02	6,39	36,87	33,82	0,41	0,7	0,02	0,04	0,03	0,06	6,08	0,00	0	0,215	3,164	10,374	100,19	
18	Rim	1,85	6,96	36,71	31,96	0,42	0,27	0,01	0,12	0,02	0,02	6,75	0,03	0,01	0,39	2,851	10,055	98,43	
40	Core	1,83	6,24	36,82	33,23	0,7	0,62	0,03	0,05	0,06	0	7,26	0,00	0	0	3,008	10,365	100,21	
19	Rim	1,93	6,24	36,53	33,34	0,65	0,65	0	0,05	0,06	0,01	6,91	0,09	0	0,127	2,944	10,305	99,84	
	Core	1,62	6,15	36,15	34,49	1	0,56	0,03	0,05	0,03	0,07	6,35	0,01	0,03	0,161	3,073	10,507	100,28	
20	Rim	1.67	6.26	36.18	34.4	0.89	0.52	0.02	0.05	0.06	0.02	6.2	0.00	0.04	0	2.991	10.431	99.73	
	Core	2.06	5.96	35.99	32.66	0.53	0.73	0.04	0.04	0.02	0.01	8.68	0.00	0.04	0.136	3.128	10.12	100.14	
21	Rim	2.13	6.34	36.58	32.08	0.48	0.64	0.02	0.04	0.05	0	8.39	0.09	0	0.084	3.245	10.367	100.54	
	Core	1.88	5.08	36.99	32.8	0.29	0.3	0.04	0.16	0.03	0.01	9.04	0.03	0.03	0.098	2.975	10.252	100.01	
22	Rim	1.84	5.13	37.4	33.26	0.23	0.21	0.02	0.18	0.03	0.03	8.83	0.00	0.03	0.281	2,961	10.46	100.89	
	Core	1.99	6 34	36.77	32 35	0.57	0.89	0.01	0.06	0.08	0.02	7 36	0.00	0.05	0.127	2 962	10 239	99.82	
23	Rim	2,09	6 44	36 71	32.6	0.47	0.58	0.01	0.08	0.06	0	7 19	0.06	0,05	0,215	3 181	10,200	99.99	
	Coro	1.02	2.40	25 62	24.15	0.16	0,50	0,01	0,00	0,00	0	11 41	0,00	0.07	0,215	3,101	10,500	00.95	
24	Rim	1,52	2,45	25 /1	34,13	0,10	0,01	0,04	0,10	0,01	0.04	11,41	0,08	0,07	0,113	2,032	10,103	00.22	
	Coro	1,00	2,70	27.14	22 10	0,15	0,35	0,03	0,21	0,03	0,04	7 52	0,04	0,02	0,224	2,803	10,037	100.42	
25	Dim	1,5	0,32	37,14	32,15	0,55	0,78	0,01	0,04	0,05	0,02	6,33	0,00	0.07	0,305	2,503	10,301	100,45	
	Cara	1,67	0,28	30,15	35	0,05	1.05	0,01	0,05	0,02	0,00	0,78	0,00	0,07	0,127	2,944	10,305	96,97	
26	Core	2,09	0,22	35,07	20,2	1,55	1,05	0,08	0,09	0,15	0,03	14,5	0,00	0,11	0 4 2 4	3,429	10,012	100,96	
	Rim	2,05	6,38	35,54	26,44	1,46	0,97	0,05	0,07	0,1	0	13,76	0,00	0,02	0,131	3,362	9,846	100,18	
27	Core	1,8	2,3	34,18	33,98	0,78	1,08	0,08	0,01	0,07	0	12,87	0,04	0,04	0,043	2,868	10,061	100,20	
	Rim	2,04	2,47	35,11	32,25	0,47	0,99	0,06	0,05	0,04	0	12,54	0,00	0,1	0,313	3,042	10,04	99,52	
28	Core	2,25	6,3	37,07	32,22	0,25	0,51	0,01	0,04	0,06	0,03	8,03	0,00	0	0,266	3,248	10,509	100,79	
	Rim	2,45	6,28	36,71	32,03	0,12	0,48	0,02	0,07	0,03	0	8,59	0,00	0,23	0,084	3,245	10,367	100,71	
29	Core	2,06	5,11	36,2	32,62	0,34	0,62	0,04	0,11	0,02	0	8,75	0,00	0,08	0,318	3,131	10,262	99,66	
	Rim	2,29	5,7	35,57	32,9	0,35	0,67	0,04	0,11	0,03	0	8,38	0,00	0,08	0,136	3,128	10,12	99,50	
30	Core	2,31	6,25	36,36	31,07	0,52	1,01	0,02	0,04	0,13	0,07	8,45	0,00	0	0,166	3,2	10,349	99,95	
	Rim	2,31	6,04	36,17	31,05	0,56	1,09	0,04	0,05	0,14	0,11	8,67	0,02	0,11	0,166	3,2	10,349	100,08	
31	Core	1,66	5,44	36,85	33,55	0,46	0,31	0,02	0,04	0,05	0,01	7,97	0,02	0,08	0,23	2,894	10,259	99,84	
	Rim	1,77	5,96	36,32	33	0,7	0,52	0,03	0,06	0,04	0	8,24	0,00	0	0,098	2,958	10,318	100,01	
32	Core	1,69	5,45	36,04	33,54	0,33	0,46	0,02	0,04	0,07	0,02	8,11	0,00	0	0,098	2,958	10,318	99,14	
52	Rim	1,8	5,39	35,75	32,84	0,49	0,62	0,04	0,02	0,09	0,04	8,26	0,00	0,13	0,047	2,908	10,051	98,48	
33	Core	2,25	0,88	33,84	31,77	0,32	0,91	0,06	0,13	0,04	0	15,46	0,15	0,16	0,186	2,953	9,597	98,71	
35	Rim	2,26	0,79	34,67	32,57	0,34	0,76	0,07	0,11	0,03	0	15,14	0,00	0,02	0,218	3,003	9,864	99,85	
24	Core	1,81	6,21	36,06	33,51	0,76	0,56	0,04	0,05	0,06	0,03	7,45	0,12	0,04	0	3,008	10,365	100,07	
34	Rim	1,91	6,44	36,34	32,85	0,76	0,81	0,06	0,09	0,11	0,05	7,39	0,00	0	0,127	2,962	10,239	100,14	
25	Core	1,43	7,97	36,02	30,35	2,32	0,83	0,05	0,02	0,09	0,05	7,22	0,03	0,06	0,351	3,146	10,246	100,18	
35	Rim	1,55	7,94	35,24	30,02	2,18	0,9	0,09	0,04	0,03	0	7,13	0,06	0	0,168	3,143	10,104	98,60	
20	Core	2,09	6,05	36,72	33,6	0,46	0,17	0,03	0,18	0,02	0,01	6,91	0,00	0,15	0,215	3,164	10,374	100,14	
30	Rim	1,97	6,25	36,23	33,26	0,52	0,31	0,03	0,15	0,02	0	7,31	0,00	0	0	3,008	10,365	99,42	
27	Core	0,83	8,69	36,61	34,01	2,06	0,56	0,06	0,02	0,57	0,11	2,52	0,02	0,06	0,211	2,908	10,488	99,73	
57	Rim	2,39	7,38	36,62	30,73	0,62	0,53	0,01	0,02	0,06	0,06	7,78	0,09	0,11	0,244	3,201	10,163	100,01	
20	Core	2,07	8,6	36,38	25,06	1,59	0,52	0,05	0,05	0,08	0,04	12,11	0,01	0,01	0,107	2,619	10,014	99,31	
38	Rim	1,93	8,09	36,17	24,12	1,66	0,92	0,04	0,05	0,17	0,1	14,24	0,00	0	0	3,344	9,939	100,77	
20	Core	1,91	9,49	36,85	31,33	1,44	0,93	0,01	0	0,05	0,11	3,6	0,00	0	0,179	3,083	10,27	99,25	
39	Rim	1,88	9,67	37,36	31,23	1,58	0,96	0,02	0,01	0,07	0,1	3,68	0,07	0,02	0,362	3,086	10,412	100,51	
	Core	1.96	5.23	35.95	33	0.35	1.55	0.04	0.09	0.13	0.05	8.02	0.03	0.09	0	2.958	10.283	99.73	
40	Rim	1,97	5,31	35,54	33,36	0,4	0,95	0,02	0,09	0,04	0,03	7,71	0,00	0,03	0,047	2,891	10,117	98,51	
	Core	1,84	5,55	39,91	32,55	0,39	0,55	0	0,03	0,08	0,01	6,69	0,00	0,14	1,041	2,793	10,5	102,07	
41	Rim	1,77	6,04	36,46	33,15	0,41	0,74	0,01	0,03	0,05	0,01	6,86	0,13	0,04	0,127	2,944	10,305	99,08	
	Core	2.05	5.94	36.61	32.72	0.47	0.42	0.04	0.07	0.04	0.06	8.01	0.03	0.06	0.318	3.131	10.262	100.18	
42	Rim	2.02	6,41	36.19	32.18	0.77	0,61	0.07	0.02	0.07	0.11	8.23	0,00	0	0,084	3,245	10.367	100.38	
	Core	1.19	4.04	54.65	19.47	0.58	0.22	0	0.01	0.05	0	5.97	0.03	0.00	4.65	2.986	10.833	104.63	
43	Pim	1 05	7 20	27 77	21 02	0.90	0.54	0	0,01	0.04	0.01	6.35	0.02	0,00	0.320	2,000	10 202	100 //	
	Core	1 90	6.49	36 57	33,52	0,05	0.66	0.01	0,02	0.04	0,01	7 10	0.02	0,00	0,556	3 002	10,302	100.16	
44	Rim	1.09	6 21	30,52	22 24	0,00	0,00	0,01	0,05	0,05	0,08	C 0E	0,00	0,02	0.127	2 0/14	10,305	00,10	
	Core	1,00	7 02	30,04	20,24	1 //	1 1 2	0,04	0,05	0,05	0,03	0,30	0,00	0,05	0,127	2,544	10,305	100 10	
45	Dim	1,99	7.92	30,09	29,32	1,40	1,13	0,01	0,05	0,09	0,05	6,45	0,05	0	0,204	3,083	10,211	100,10	
	RIM	1,95	1,14	30,44	30,93	1,30	0,33	0	0,05	0,05	0,03	0,55	0,00	0.077	0,385	3	10,111	96,89	
46	Core	1,78	2,1	34,7	33,94	0,42	0,83	0,05	0,09	0,04	0	12,16	0,00	0,05	0,001	2,866	9,955	98,98	
	Rim	1,82	2,51	34,6	33,1	0,48	0,89	0,05	0,11	0,04	0	11,73	0,01	0	0,082	2,802	9,895	98,12	
47	Core	2,52	/,56	37,08	32,01	0,31	0,48	0,03	0,01	0,1	0,1	6,53	0,00	0	0,295	3,234	10,496	100,76	
	Rim	2,35	7,22	36,59	31,97	0,23	0,51	0,01	0	0,09	0,1	6,23	0,00	0,03	0,244	3,184	10,229	98,99	
48	Core	2,06	4,62	35,99	32,68	0,28	0,47	0,04	0,15	0,04	0	10,16	0,00	0,02	0,107	3,142	10,133	99,89	
	Rim	2,06	4,42	36,02	33,31	0,32	0,57	0,07	0,16	0,03	0	9,66	0,00	0	0,29	3,128	10,341	100,38	
49	Core	2,15	3,09	35,22	30,23	0,52	1,31	0,09	0,11	0,05	0,09	13,38	0,00	0,01	0,16	3,128	10,061	99,60	
+5	Rim	1,92	3,06	35,62	32,23	0,6	0,71	0,04	0,1	0,02	0,05	12,47	0,02	0,11	0	2,936	10,077	99,96	
50	Core	1,91	5,81	36,35	32,72	0,76	0,5	0,03	0,1	0,06	0,01	8,38	0,00	0,01	0,23	2,912	10,193	99,98	
50	Rim	1,91	6,01	36,09	32,53	0,8	0,53	0,03	0,06	0,05	0,06	8,12	0,09	0	0	3,026	10,299	99,61	
E1	Core	2,08	3,55	36,05	33,31	0,18	0,59	0,06	0,26	0,02	0,02	10,7	0,00	0,12	0,393	3,078	10,294	100,71	
21	Rim	2,18	3,47	35,6	33,02	0,2	0,59	0,08	0,22	0,01	0,01	10,55	0,00	0,07	0,222	3,075	10,152	99,45	
	Core	2,18	6,5	35,55	32,12	0,72	0,38	0,07	0,07	0,06	0,01	8,42	0,00	0,06	0	3,242	10,226	99,61	
52	Rim	2.2	7.04	36.52	30.13	0.71	0.45	0.03	0.06	0.07	0.02	8.73	0.01	0	0.117	3.265	10.277	99.57	
	Core	2	6.14	36.48	32.79	0.63	0.67	0.03	0.06	0.05	0.05	7.93	0.06	0.01	0.215	3.181	10.308	100.60	
53	Rim	2.03	6.16	36.18	32.58	0.65	0.58	0.03	0.08	0.07	0.01	7.55	0.02	0	0.215	3.181	10.308	99.64	
	Core	2,03	5,00	36,10	21 07	0,05	0,00	0,03	0,08	0,07	0,01	0 14	0.02	0	0,210	3,101	10,000	101.02	
54	Rim	2,13	5,50	36,17	21 75	0,00	0,58	0,03	0,07	0,00	0,01	0.30	0,00	0.05	0,518	3,140	10,190	101,05	
	Corre	1.05	3,04	25 26	31,/3	0,00	0,75	0,04	0,08	0,07	0.01	5,39	0,02	0,05	0,004	3,202	10,301	100,03	
55	core p;	1,95	2,55	35,20	31,95	0,34	0,48	0,05	0,12	0,04	0,01	14,11	0,06	0	0,093	2,905	9,964	33,80	
	KIM	2,13	2,53	35,86	31,05	0,4	0,82	0,02	0,1	0,02	0,01	14,42	0,09	0	0,181	3,123	10,033	100,79	
56	cure	1,02	0,32	30,45	32,97	0,60	0,02	0,02	0,06	0,09	0,05	7,75	0,00	0	0,127	2,962	10,239	100,52	
	Rim	2,14	6,67	36,62	31.68	0.84	0,93	0,02	0,04	0,07	0,04	/,29	0.00	0	0.347	3,134	10,183	100.00	

1	_														1				
Grain No	Row	Na2O	MgO	SIO2	AI2O3	CaO	1102	K20	MnO	V2O3	Cr203	FeO	I NIO	ZnO	Li20*	H2O*	B2O3*	IOIAL	
57	Core	1,64	5,98	36,43	34,51	1,01	0,47	0,01	0,07	0,07	0,03	6,11	0,01	0	0,328	2,959	10,401	100,03	
	Rim	1,75	6,29	36,46	33,54	0,97	0,56	0,03	0,05	0,04	0,02	6,38	0,10	0,1	0,127	2,944	10,305	99,67	
58	Core	2,14	7,07	36,23	31,66	0,84	0,6	0,03	0	0,06	0,05	7,72	0,00	0	0,112	3,248	10,288	100,05	
	Rim	2,21	6,92	35,93	31,8	0,74	0,53	0,03	0,02	0,04	0,01	7,68	0,00	0	0,164	3,131	10,041	99,25	
59	Core	1,96	6,21	35,6	32,82	0,65	0,43	0,03	0,06	0,05	0,03	8,16	0,00	0,07	0	3,022	10,157	99,25	
60	Rim	1,80	6,31	35,95	32,48	0,77	0,47	0,05	0,06	0,05	0,01	8,43	0,05	0,04	0 215	3,022	10,157	99,71	
00	Core	1 94	4 19	36,00	30,23	0,83	0,07	0,04	0,00	0,03	0,08	8 24	0,04	0	0,215	2 891	10,170	99.35	
59	Rim	1.93	4 26	36.07	34,5	0.24	0,00	0.04	0.02	0,04	0,01	8 62	0.00	0.01	0,201	2,001	10,338	99.61	
	Core	2,11	5.54	35.09	29.58	0.35	1.03	0.02	0.13	0.02	0.04	10.60	0.00	0.00	0.218	3.118	9,969	97.82	
60	Rim	2.16	5.46	35.28	30.01	0.37	0.97	0.02	0.11	0.02	0.01	10.24	0.04	0.06	0.136	3,162	9,988	98.04	
<i>c</i> 1	Core	1,95	6,40	35,03	32,75	0,94	1,18	0,07	0,03	0,02	0,00	6,68	0,00	0,19	0,032	2,897	10,145	98,31	
61	Rim	1,84	6,25	34,93	32,67	0,84	1,25	0,07	0,05	0,00	0,01	6,25	0,00	0,10	0	2,894	10,003	97,16	
62	Core	2,10	6,33	36,19	32,81	0,43	0,38	0,05	0,02	0,04	0,03	7,19	0,03	0,00	0,215	3,181	10,308	99,30	
62	Core	1,85	5,58	35,67	33,26	0,65	0,49	0,06	0,02	0,01	0,00	7,37	0,00	0,06	0,047	2,891	10,117	98,08	
05	Rim	1,70	5,30	36,22	33,88	0,33	0,21	0,00	0,02	0,03	0,03	7,25	0,00	0,00	0,23	2,894	10,259	98,35	
64	Core	1,79	5,52	35,00	32,79	0,79	1,13	0,03	0,00	0,29	0,22	7,11	0,00	0,05	0,129	2,847	10,098	97,79	
65	Core	1,60	7,52	35,89	33,00	1,14	0,54	0,08	0,00	0,04	0,04	4,54	0,00	0,01	0,146	3,009	10,227	97,78	
	Rim	1,66	7,70	35,37	32,78	1,38	0,73	0,06	0,00	0,06	0,05	4,52	0,00	0,00	0,202	2,963	10,101	97,58	
66	Core	2,17	4,77	35,36	32,21	0,27	0,15	0,04	0,20	0,02	0,01	10,16	0,03	0,09	0,107	3,142	10,133	98,86	
	KIM	1,99	4,42	35,34	32,62	0,20	0,28	0,05	0,16	0,02	0,00	9,91	0,00	0,11	0,15	2,858	10,005	98,11	
67	Dim	2,02	2,73	35,31	32,22	0,11	0,15	0,05	0,19	0,00	0,00	12,20	0,00	0,10	0,313	3,042	10,04	98,48	
	Coro	1,95	2,44	35,01	22.24	0,07	0,13	0,00	0,18	0,00	0,00	10.20	0,11	0,09	0,095	2,009	0.059	99,10	
68	Rim	1,90	4 13	34,63	31.60	0,47	0,87	0,02	0,13	0,01	0.01	10,50	0,00	0,10	0,233	2,800	9,550	96.69	
	Core	2.10	6.74	36.09	31.89	0.68	0.52	0.04	0.02	0.04	0.05	6.89	0.00	0.00	0.478	3.07	10.123	98.73	
69	Rim	2.01	6.88	35.90	31.84	0.74	0.48	0.06	0.07	0.05	0.04	7.22	0.07	0.00	0.164	3.131	10.041	98.70	
	Core	2,15	6,93	35,50	31,28	0,34	0,41	0,02	0,09	0,04	0,04	7,28	0,00	0,00	0,164	3,131	10,041	97,42	
/0	Rim	2,13	6,97	35,87	31,58	0,37	0,42	0,01	0,11	0,03	0,02	7,35	0,00	0,02	0,164	3,131	10,041	98,22	
71	Core	2,02	6,23	34,71	28,91	1,31	0,77	0,08	0,05	0,02	0,00	11,07	0,02	0,06	0	3,325	9,836	98,41	
/1	Rim	1,93	6,33	34,68	28,85	1,24	0,73	0,11	0,09	0,02	0,00	10,96	0,00	0,01	0	3,042	9,708	97,70	
72	Core	1,97	3,48	34,34	31,45	0,44	0,72	0,04	0,03	0,03	0,02	12,56	0,00	0,05	0	2,886	9,81	97,83	
12	Rim	2,13	4,10	34,76	30,45	0,44	0,78	0,04	0,05	0,04	0,00	11,23	0,00	0,02	0,056	3,109	9,799	97,00	
73	Core	1,95	5,65	35,35	32,08	0,41	0,63	0,01	0,05	0,05	0,04	8,11	0,00	0,06	0,047	2,908	10,051	97,40	
	Rim	1,91	5,34	34,57	30,51	0,48	0,59	0,04	0,08	0,03	0,05	8,04	0,00	0,00	0,128	2,812	9,658	94,24	
74	Core	1,80	4,81	35,14	32,43	0,82	0,63	0,04	0,11	0,02	0,00	9,42	0,00	0,00	0,15	2,858	10,005	98,23	
	Rim	1,99	5,64	35,34	31,88	0,85	0,59	0,02	0,13	0,02	0,01	8,75	0,06	0,06	0,179	2,862	9,926	98,31	
75	Core	1,94	6,71	36,34	30,90	0,26	1,37	0,00	0,02	0,08	0,03	6,38	0,00	0,00	0,472	2,806	10,036	97,34	
	Rim	1,70	6,65	35,76	33,70	0,99	0,49	0,02	0,02	0,08	0,04	5,48	0,00	0,00	0,076	2,8//	10,104	97,99	
76	Rim	1,01	5,35	25.42	22 21	0,70	1,00	0,03	0,08	0,02	0,02	7,47	0,00	0,00	0,071	2,094	10,224	96,10	
	Core	1 91	5,92	35,43	33,21	0,78	0.66	0,04	0,07	0,02	0,00	6 37	0,00	0,00	0,071	2,834	10,224	97.62	
77	Rim	1.83	5.89	35.53	33,10	0.44	0,00	0.02	0,05	0.07	0.09	6 37	0.02	0.04	0 179	2,027	10,058	97.45	
	Core	2.07	6.55	35,49	31.07	0.73	0.60	0.05	0.04	0.03	0.07	8,13	0.07	0.00	0.033	3,195	10.1	98.23	
78	Rim	2,10	6,46	36,30	31,37	0,56	0,66	0,04	0,04	0,04	0,04	8,01	0,00	0,00	0,215	3,198	10,242	99,28	
70	Core	1,82	6,28	36,13	33,50	0,64	0,69	0,05	0,03	0,05	0,09	5,88	0,00	0,00	0,258	2,881	10,246	98,55	
/9	Rim	1,77	6,34	36,12	33,84	0,67	0,74	0,03	0,08	0,04	0,07	5,91	0,00	0,00	0,258	2,881	10,246	99,00	
80	Core	1,72	6,65	35,93	33,76	0,86	0,52	0,04	0,04	0,06	0,06	5,78	0,02	0,10	0,076	2,877	10,104	98,60	
00	Rim	1,77	6,73	35,88	33,23	0,84	0,55	0,08	0,02	0,05	0,05	5,68	0,01	0,00	0,076	2,877	10,104	97,95	
81	Core	1,88	5,92	35,31	32,65	0,81	1,16	0,06	0,06	0,06	0,05	7,48	0,00	0,06	0,129	2,847	10,098	98,57	
00	Rim	1,64	5,73	35,16	32,42	0,72	1,1/	0,05	0,05	0,05	0,05	7,46	0,00	0,00	0,129	2,847	10,098	97,57	
82	Core	1,09	5,90	35,33	33,53	0,73	0,92	0,01	0,05	0,06	0,04	10.62	0,00	0,12	0,179	2,827	10,058	97,53	
84	Core	1,60	6.26	34,71	32,80	1 11	0,33	0,05	0,10	0,05	0,02	7 55	0,00	0,03	0,07	3 037	10 032	97.62	
85	Core	2.32	6.92	35.89	31.13	0.53	0.30	0.07	0.06	0.02	0.03	7.86	0.00	0.00	0.164	3.131	10.041	98.47	
86	Core	2,17	6,33	34,68	27,25	1,09	0,49	0,06	0,14	0,03	0,03	12,11	0,00	0,12	0	3,342	9,77	97,61	
87	Core	1,95	4,00	34,73	29,96	0,71	1,37	0,03	0,21	0,05	0,01	11,79	0,00	0,08	0,049	2,845	9,712	97,50	
88	Core	2,01	3,74	35,22	32,02	0,11	0,47	0,04	0,32	0,00	0,00	10,49	0,01	0,03	0,342	3,028	10,027	97,86	
89	Core	1,94	6,02	35,23	31,91	0,64	0,46	0,04	0,07	0,03	0,02	8,19	0,00	0,02	0	2,976	10,031	97,58	
90	Core	2,31	5,08	35,48	31,45	0,24	0,46	0,02	0,25	0,00	0,00	10,13	0,01	0,00	0,004	3,209	10,113	98,76	
91	Core	2,11	4,03	34,69	31,44	0,44	1,00	0,04	0,10	0,04	0,03	11,08	0,01	0,00	0,032	3,158	10,031	98,23	
-	Rim	1,98	6,37	34,16	28,85	0,79	0,96	0,00	0,03	0,03	0,00	9,08	0,05	0,00	0,025	2,896	9,573	94,79	
92	Core	1,82	6,18	35,04	32,03	0,84	0,61	0,05	0,07	0,04	0,07	7,44	0,04	0,05	0	2,959	10,097	97,34	
93	Core	2,33	6,43	35,45	28,84	0,30	0,58	0,00	0,16	0,02	0,01	9,65	0,01	0,06	0,296	3,118	9,783	97,04	
	Rim	2,33	6,29	35,64	28,83	0,41	0,63	0,02	0,22	0,02	0,02	10,11	0,00	0,00	0,164	3,182	9,843	97,71	
94	Dim	2,01	0,76	33,70	31,91	0,09	0,52	0,02	0,33	0,00	0,01	15,47	0,00	0,12	0,180	2,953	9,597	97,74	
	Core	1,98	3, 70	34,09	37.88	0,10	0,52	0,04	0,30	0,01	0,00	9.75	0,02	0,12	0,579	2,072	9,011	97,50	
95	Rim	1.93	4.11	35.23	32,00	0.29	0.56	0.04	0.15	0.00	0.01	9.94	0.00	0.08	0.15	2.858	10.005	98.39	
	Core	1.99	5.01	35.03	31.22	0.70	1.39	0.05	0.11	0.03	0.00	9.55	0.00	0.00	0	2.928	10.092	98.10	
96	Rim	2,04	5,07	35.20	31,02	0,71	1,43	0,02	0,09	0,06	0,00	9,59	0,00	0,04	0,105	3,147	10,16	98,68	
07	Core	1,59	5,47	36,65	33,89	0,26	0,31	0,03	0,03	0,01	0,00	6,91	0,00	0,07	0,361	2,83	10,2	98,61	
97	Rim	1,70	5,56	36,12	33,87	0,30	0,48	0,03	0,04	0,03	0,01	6,87	0,00	0,00	0,361	2,83	10,2	98,40	
09	Core	1,93	2,93	33,72	31,00	0,73	0,75	0,08	0,07	0,01	0,01	13,27	0,00	0,03	0	2,833	9,621	96,98	
30	Rim	1,89	3,27	34,05	31,02	0,71	0,63	0,07	0,09	0,05	0,00	13,11	0,00	0,07	0	2,95	9,869	97,78	
99	Core	2,08	5,98	35,23	32,18	0,56	0,32	0,06	0,12	0,00	0,01	8,23	0,00	0,00	0,136	3,128	10,12	98,15	
	Rim	2,14	5,74	34,93	31,66	0,56	0,36	0,06	0,09	0,01	0,00	8,20	0,01	0,02	0,088	3,078	9,853	96,80	
100	Core	2,19	2,89	34,20	26,69	0,29	3,22	0,04	0,01	0,06	0,01	15,12	0,00	0,00	0,376	2,956	9,644	97,70	
	Rim	2,07	3,16	35,66	30,87	0,34	0,63	0,02	0,04	0,01	0,00	13,05	0,00	0,00	0,21	3,126	9,954	99,14	
101	Core	2,00	6,81	36,20	32,69	0,55	0,70	0,02	0,04	0,06	0,10	5,90	0,01	0,00	0,478	3,053	10,189	98,80	
	Rim	1,93	6,93	36,12	32,26	0,64	0,92	0,04	0,03	0,07	0,09	5,90	0,01	0,00	0,39	2,834	10,121	98,29	
102	core pirm	2,22	6,22	35,53	30,81	0,52	0,57	0,05	0,15	0,02	0,02	8,95	0,00	0,05	0,164	3,148	9,9/5	98,40	
	KIII)	2,10	0,37	35,37	30,58	0,50	0,52	0,04	0,1/	0,02	0,01	0,8U	0,00	0,03	0,164	3,148	3,975	97,92	
103	Rim	2,00	4,00	25,09	32,45	0,25	0,58	0,02	0,10	0,01	0,00	9,00	0,00	0,02	0,239	3,078	10,073	97 36	
104	Core	1 70	6 25	35,12	33,25	0,20	0,50	0.02	0,09	0,05	0.05	7 19	0.05	0,00	0,200	2,791	10,024	98.20	
105	Core	2.09	2.51	34.71	31.89	0,14	0.39	0,02	0.27	0.00	0,00	13.18	0,00	0.00	0.13	3,056	9,832	98,26	
	Core	1,92	6,02	35.62	33,12	0,58	0,60	0,04	0,05	0,05	0,01	6,95	0,00	0,00	0	2,941	10,164	98,07	
106	Rim	1,92	6,15	35,80	32,75	0,56	0,57	0,06	0,03	0,07	0,00	6,78	0,00	0,06	0,076	2,895	10,038	97,76	
107	Core	1,83	6,30	35,74	33,30	0,68	0,68	0,02	0,06	0,03	0,05	6,04	0,00	0,06	0	2,941	10,164	97,90	
107	Rim	1,94	6,09	35,54	33,02	0,69	0,68	0,05	0,06	0,06	0,05	5,98	0,00	0,00	0,076	2,877	10,104	97,22	
108	Core	1,83	4,30	35,80	33,37	0,31	0,56	0,04	0,13	0,02	0,00	9,07	0,00	0,00	0,018	2,905	10,13	98,48	
109	Core	2,36	6,22	36,14	31,13	0,35	0,92	0,06	0,08	0,01	0,02	8,73	0,00	0,08	0,215	3,198	10,242	99,76	
110	Core	2,03	5,53	35,73	30,01	0,63	1,27	0,05	0,15	0,00	0,01	9,96	0,00	0,06	0,218	3,1	10,035	98,78	
111	Core	1,55	4,25	33,50	34,23	1,44	0,89	0,07	0,03	0,11	0,04	9,66	0,00	0,02	0,039	3,028	10,048	98,91	
112	Core	2,01	6,25	36,48	33,03	0,29	0,86	0,03	0,05	0,05	0,00	6,75	0,04	0,00	0,215	3,164	10,374	99,59	
	Rim	2,01	6,01	35,49	32,70	0,47	0,67	0,03	0,06	0,08	0,07	6,01	0,00	0,00	0,164	3,114	10,107	96,99	

Grain No	Row	Na2O	MgO	SiO2	Al2O3	CaO	TiO2	K2O	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
113	Core	2,00	6,36	35,98	33,14	0,67	0,48	0,06	0,06	0,04	0,08	6,60	0,06	0,07	0,113	3,161	10,232	99,11	
114	Core	2,06	6,75	36,04	31,52	0,68	0,52	0,04	0,04	0,05	0,22	7,67	0,00	0,00	0,347	3,134	10,183	99,25	
115	Core	1,90	5,71	35,30	33,06	0,99	1,01	0,06	0,05	0,00	0,00	7,86	0,00	0,00	0,071	2,894	10,224	99,13	
115	Rim	1,91	5,71	35,22	33,09	0,92	0,91	0,04	0,07	0,01	0,00	7,84	0,00	0,14	0,047	2,891	10,117	98,92	
116	Core	2,18	5,74	35,92	31,56	0,41	0,49	0,07	0,10	0,00	0,04	9,14	0,03	0,02	0,136	3,145	10,054	99,04	
110	Rim	2,29	6,57	36,44	31,26	0,46	0,44	0,02	0,06	0,03	0,01	8,44	0,01	0,00	0,215	3,198	10,242	99,69	
117	Core	1,75	2,37	35,06	33,58	0,25	0,82	0,04	0,10	0,00	0,00	12,53	0,00	0,08	0,093	2,869	10,096	99,64	
	Rim	1,76	2,79	35,03	32,91	0,31	0,84	0,01	0,14	0,03	0,01	12,21	0,00	0,01	0,224	2,822	9,971	99,07	
118	Core	1,76	5,70	35,38	32,53	0,82	0,55	0,05	0,01	0,06	0,00	8,67	0,07	0,00	0,047	2,908	10,051	98,61	
110	Rim	1,82	5,68	35,36	32,60	0,91	0,52	0,07	0,05	0,03	0,01	8,50	0,00	0,02	0,047	2,908	10,051	98,58	
110	Core	2,07	6,52	36,03	28,56	0,70	3,37	0,06	0,03	0,07	0,01	8,50	0,00	0,02	0,461	3,064	10,186	99,65	
115	Rim	2,24	6,89	36,39	28,35	0,80	3,42	0,04	0,04	0,07	0,03	8,55	0,00	0,00	0,461	3,064	10,186	100,53	
120	Core	1,77	9,01	36,21	31,69	1,76	0,93	0,07	0,02	0,09	0,07	4,00	0,08	0,05	0,047	3,147	10,329	99,27	
120	Rim	2,54	6,39	36,33	30,59	0,48	0,41	0,01	0,07	0,02	0,00	8,73	0,01	0,01	0,347	3,151	10,117	99,21	
121	Core	1,78	6,41	35,48	30,53	1,16	2,34	0,02	0,05	0,10	0,10	8,03	0,00	0,17	0,123	3,015	10,195	99,50	
121	Rim	1,83	7,02	35,97	30,18	1,22	1,58	0,03	0,02	0,12	0,08	7,56	0,00	0,07	0,021	3,063	10,135	98,90	
122	Core	2,41	6,03	36,07	31,56	0,28	0,23	0,04	0,20	0,00	0,00	8,54	0,00	0,00	0,215	3,198	10,242	99,02	
122	Rim	2,37	5,93	36,21	32,07	0,23	0,22	0,06	0,23	0,00	0,01	8,80	0,08	0,00	0,318	3,131	10,262	99,92	
123	Core	1,74	6,31	36,08	33,11	0,49	0,92	0,02	0,01	0,04	0,01	6,59	0,03	0,00	0,127	2,944	10,305	98,73	
125	Rim	1,71	5,82	36,53	33,80	0,43	0,45	0,03	0,05	0,01	0,02	6,47	0,07	0,03	0,361	2,83	10,2	98,81	
124	Core	1,85	4,54	35,58	33,85	0,50	0,67	0,06	0,11	0,02	0,03	8,58	0,02	0,04	0,15	2,841	10,071	98,91	
124	Rim	1,82	4,64	35,37	33,28	0,48	0,71	0,04	0,10	0,02	0,00	8,89	0,06	0,00	0,15	2,841	10,071	98,47	
125	Core	2,31	5,58	35,64	30,94	0,19	0,57	0,04	0,12	0,04	0,01	9,82	0,02	0,05	0,267	3,098	9,928	98,62	
125	Rim	2,38	5,62	35,79	30,77	0,3	0,67	0,03	0,14	0,02	0,01	9,44	0	0,12	0,267	3,098	9,928	98,583	

## ANEXO B – Dados Análise Química, Turmalinas TUP 09B (Microssonda Eletrônica + WinTCac)

Grain No	Row	Na2O	MgO	SiO2	Al2O3	CaO	TiO2	K20	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li20*	H2O*	B2O3*	TOTAL	
1	Core	2,35	5,88	36,72	31,22	0,06	1,66	0,03	0,05	0,09	0,06	8,33	0	0,07	0,4	3,086	10,243	100,25	*(Yavuz et al., 2014)
1	Rim	2,39	6,17	36,7	32,03	0,23	1	0	0,06	0,08	0,05	7,89	0	0	0,166	3,183	10,415	100,36	
2	Core	2,12	6,49	36,54	33,03	0,4	0,49	0,03	0,09	0,04	0,04	6,8	0,01	0,03	0,215	3,164	10,374	99,86	
2	Rim	2,15	6,66	36,37	33,51	0,37	0,74	0,03	0,1	0,05	0,04	6,59	0	0,05	0,215	3,164	10,374	100,41	
-	Core	2,03	5,92	36,4	34,01	0,28	0,4	0,05	0,05	0,04	0	7,31	0	0	0,208	3,161	10,453	100,31	
	Rim	1,98	6,39	36,52	32,99	0,64	0,63	0,03	0,04	0,05	0,03	7,25	0,01	0	0,127	2,962	10,239	99,89	
	Core	2	7,97	36,74	31,52	0,87	0,85	0	0,04	0,19	0,14	5,73	0,05	0	0,376	3,12	10,17	99,77	
4	Rim	1,95	7,89	36,74	32,69	0,89	0,66	0	0,02	0,22	0,18	4,28	0	0	0,287	2,884	10,167	98,86	
-	Core	1,77	5,08	36,32	33,83	0,42	0,75	0,03	0,12	0,03	0,03	8,18	0	0,04	0,098	2,958	10,318	99,97	
5	Rim	1,97	4,92	35,76	34,03	0,41	0,69	0,04	0,05	0,04	0,03	7,9	0	0	0,15	2,824	10,137	98,95	
	Core	2,11	6,9	36,73	31,1	0,92	0,67	0,05	0,06	0,06	0,04	7,71	0,03	0	0,347	3,134	10,183	100,04	
6	Rim	2,09	6,72	36,33	32,16	0,82	0,77	0,04	0,06	0,03	0,1	7,44	0,02	0	0,215	3,181	10,308	100,28	
	Core	1.75	6.75	36.47	33.15	0.93	0.75	0.02	0.01	0.05	0	6.4	0.05	0	0.127	2.944	10.305	99.71	
7	Rim	1.75	5.63	36.17	31.78	0.81	0.5	0.04	0.03	0.02	0.06	6.52	0	0	0.624	2,737	9,949	96.62	
	Core	1.95	5.36	35.76	33.03	0.68	0.6	0.04	0.06	0.05	0.02	8.86	0	0	0	2,955	10.176	99.54	
8	Rim	1.85	5 28	36.1	33.01	0.63	0.63	0.03	0.03	0.07	0,02	9.04	0.05	0.05	0	3,022	10 378	100.17	
	Core	2 /0	5.41	36.52	31 77	0.05	0,03	0.05	0.1	0.11	0.02	0 /3	0,03	0,00	0 318	3 1/18	10,070	100,58	
9	Rim	2,45	4.00	35,02	32,77	0,05	0,54	0,03	0,1	0.03	0,02	10.88	0,05	0.02	0,510	3 1/12	10,133	00,50	
	Core	1.83	6 36	36.28	33.3	0.78	0,72	0,05	0,00	0,05	0.03	6.93	0,02	0,02	0,107	2 944	10,155	99.65	
10	Rim	1.83	6 31	36.22	33.84	0.74	0.4	0.04	0.04	0.03	0.04	6.83	0.02	0	0.127	2,944	10,305	99.72	
	Core	1 73	7 31	36.24	30.49	1 49	0.58	0.01	0.03	0.07	0,04	8 16	0,02	0	0,122	3 128	10,505	99.59	
11	Rim	17	6.62	35.95	29 74	13	0,50	0.05	0.05	0.06	0	7.61	0	0.09	0.437	2.9	9 797	97.03	
	Core	2.18	3 21	35 54	32.52	0.19	0.42	0,09	0.1	0.01	0	11.95	0	0,05	0.21	3,092	10.086	99.69	
12	Rim	2,10	3 3	35.46	31.66	0.36	0,72	0.03	0.15	0.03	0	12,00	0.01	0.1	0.21	3 109	10.02	99.80	
	Core	2,04	6.7	36.18	21.5	0,50	0,72	0.03	0.07	0.00	0.07	8.2	0.04	0.05	0.215	3 108	10 242	100.20	
13	Rim	2,04	6.53	36.2	32,00	0,01	0,70	0,03	0,07	0,05	0,07	8.03	0,04	0,05	0,215	3 2/15	10,242	100,20	
	Core	1 20	6.6	36.3	34.76	1/3	0,75	0,04	0,05	0,00	0.04	5 32	0,05	0.01	0,004	3,245	10,307	100,24	
14	Rim	1.27	6,0	36,5	25.04	1.43	0,05	0,10	0,02	0,04	0,04	5,52	0.06	0,01	0,241	2,055	10,440	100,51	
	Coro	2.06	6.7	26.64	22.17	0.72	0,70	0,10	0,01	0,03	0,05	7 22	0,00	0,05	0,217	2 1 9 1	10,373	100,51	
15	Rim	2,00	6.7	30,04	22.04	0,75	0,0	0,02	0,07	0,02	0,04	6 47	0,05	0,02	0,215	3,101	10,308	07.69	
	Core	2,50	2 50	25 70	33,04	0,03	0,09	0,03	0,04	0,09	0,00	17 95	0	0,02	0.212	2,541	10.04	100 55	
16	cure Rim	2,1	2,59	35,79	32,74	0,1/	0,35	0,05	0.4	0,03	0.04	11.00	0	0,1	0,313	3,042	10,04	100,00	
	KIIII	1,74	2,4	35,98	33,90	0,05	0,15	0,02	0,46	0.05	0,04	11,98	0.05	0,05	0,224	2,005	10,037	33,3U	
17	Dim.	2	9,20	27.24	20,00	0,95	0,45	0,02	0	0,05	0,04	2,39	0,05	0	0.252	3,200	10,13	20,37	
	KIII)	2,27	3,02	37,24	29,51	0,66	0,45	0.02	0	0,01	0,02	5,6	0,05	0.02	0,352	3,238	10,272	33,/3 00.20	
18	core	2,54	7.10	30,95	31,5	0,42	0,39	0,03	0.02	0,02	0,09	3,75	0,03	0,02	0,141	3,234	10,270	33,39	
	KIM	1,96	/,19	36,76	31,94	0,74	0,68	U	0,02	0,08	0,03	0,35	0.02	0.02	0,155	2,965	10,16	99,03	
19	Lore	1,/7	5,57	39,91	27,64	0,63	0,58	0	0,06	0,05	0,03	7,44	0,03	0,02	1,567	2,622	9,932	97,85	
	Rim	1,93	6,67	37,11	32,52	U,46	0,5	0	0,05	0,05	0	7,25	0,02	0,08	0,309	2,965	10,381	100,30	
20	Core	1,96	6,93	36,16	33,28	1	0,75	0,06	0,03	0,07	0,02	5,89	0,02	0	0,356	2,962	10,322	99,81	
	Rim	1,97	7,28	36,34	33,32	1	0,82	0,03	0,01	0,05	0,03	5,45	0,06	0,01	0,122	3,076	10,428	100,00	
21	Core	1,85	6,1	36,54	33,29	0,61	0,74	0,01	0,03	0,06	0,04	6,9	0,03	0,11	0,127	2,944	10,305	99,69	
	Rim	1,7	5,71	36,38	34,26	0,77	0,95	0,05	0,03	0,08	0,01	6,91	0	0,08	0,23	2,877	10,325	100,36	
22	Core	1,73	5,92	36,37	33,88	0,47	0,54	0,01	0,02	0,06	0,06	6,98	0,01	0,02	0,361	2,83	10,2	99,46	
	Rim	1,67	5,78	37,2	34,81	0,29	0,26	0,01	0,06	0,04	0,03	6,72	0,07	0,03	0,412	2,88	10,467	100,73	
23	Core	2,19	7,08	36,91	32,09	0,48	0,09	0,03	0,04	0,02	0,01	7,36	0,04	0,02	0	3,295	10,414	100,07	
	Rim	2,17	6,63	36,68	31,91	0,61	0,25	0,04	0,06	0,07	0	8,12	0	0	0,215	3,198	10,242	100,20	
24	Core	2,05	6,41	36,39	30,78	0,88	0,67	0	0,04	0,08	0	8,33	0	0	0,347	3,151	10,117	99,25	
	Rim	1,98	6,45	35,91	31,75	0,67	0,59	0,03	0,1	0,06	0,01	8,1	0	0	0	2,976	10,031	98,66	
25	Core	2,12	4,36	35,34	31,94	0,29	0,55	0,05	0,15	0,06	0,01	11,25	0	0	0,107	3,159	10,067	99,45	
	Rim	2,11	5,2	36,01	32,12	0,4	0,56	0,06	0,14	0,05	0,01	9,73	0	0,01	0,187	3,195	10,321	100,10	
26	Core	2,05	5,59	36,81	34,47	0,21	0,66	0,05	0,09	0,06	0,03	7,28	0,08	0,04	0,208	3,161	10,453	101,24	
	Rim	2,15	5,93	36,69	33,66	0,26	0,8	0,03	0,04	0,05	0,04	7,11	0	0	0,318	3,114	10,328	100,52	
27	Core	1,99	4,09	35,47	34,2	0,3	0,64	0,04	0,13	0,03	0	9,23	0	0	0	2,952	10,255	99,33	
	RIM	1,94	4,13	35,83	34	0,32	0,62	0,03	0,15	0,03	0	9,58	0	0,12	0	2,952	10,255	99,96	
28	Rim	1,09	6 71	30,74	32,79	1,00	0,85	0,01	0,03	0,00	0,04	0,42 E 92	0,08	0.01	0,350	2,98	10,250	100,29	
	Coro	1,05	6.26	30,03	22.26	1,20	0,75	0,02	0,05	0,07	0,02	3,02	0,05	0,01	0,330	2,502	10,322	100.41	
29	Rim	1,74	6.49	30,05	22.20	1,03	0,0	0,05	0,00	0,00	0,03	7,52	0,05	0	0,104	3,05	10,441	00.64	
	Core	1.52	7.45	35,07	29.06	2,04	1 /1	0,00	0,04	0,00	0,14	8.57	0	0.06	0,225	3 167	10,315	99.94	
30	Rim	1,52	7.45	36.08	20,00	2,25	1 32	0,00	0,07	0.06	0,07	8 55	0.07	0,00	0,125	3 165	10,145	100.63	
	Core	2,01	7 13	36.92	31.95	0.86	0.57	0,00	0.06	0.06	0.07	7 25	0,07	0	0,112	3 248	10,288	100,00	
31	Rim	2.08	6.43	36.17	32,29	0.47	0.56	0.03	0.04	0.1	0.07	7.49	0.08	0	0.215	3,181	10,308	99.51	
	Core	2,00	2	35 32	33.48	0.15	0.5	0.02	0.26	0,1	0.03	13.1	0,00	0.08	0.124	3 153	10 225	100 57	
32	Rim	2,13	2 26	35.16	33.05	0.17	0.35	0.04	0.23	0.02	0.01	12 68	0.03	0,00	0 204	3,089	10 165	99.59	
	Core	2.01	6.4	36.42	33,39	0.71	0.83	0.02	0.02	0.02	0.05	6.62	0	0.03	0.215	3,164	10.374	100.27	
33	Rim	1.96	6.37	36.19	33.76	0.84	0.73	0.03	0.04	0.07	0.05	6.73	0	0	0.127	2,944	10.305	100.15	
	Core	2.31	7.11	36.82	33.14	0.25	0.67	0.01	0.01	0.1	0.09	5.4	0.11	0	0.112	3.214	10.421	99.77	
34	Rim	2.26	7.08	36.94	32.89	0.28	0.75	0.01	0.03	0.07	0.08	5.2	0.02	0	0.244	3.167	10.295	99.32	
	Core	2.03	9.44	36.6	28.03	1.45	0.59	0.04	0.05	0.11	0.05	8.44	0	0	0.004	3,482	10.259	100.58	
35	Rim	2.01	6.15	36.01	30.58	0.95	1.19	0.02	0.05	0.1	0	8.78	0.04	0.06	0.297	3,154	10.223	99.61	
	Core	1.65	7.36	37	32.81	1.12	0.82	0.01	0.05	0.07	0.01	5.69	0.06	0	0.436	3.033	10.444	100.56	
36	Rim	1.98	6.89	36.63	34.23	0.62	0.52	0.02	0.04	0.07	0.05	5.37	0.06	0	0.127	2,927	10.372	99.91	
	Core	1.87	6.73	47.26	26.93	0.61	0.56	0.04	0.03	0.05	0.02	7.86	0	0.02	2,926	3.667	11.048	109.62	
37	Rim	2,18	7,08	36.18	31.79	0,67	0,42	0	0,05	0,04	0	7,62	0	0,08	0,112	3,248	10,288	99.76	
	Core	2.08	4.11	36.22	32.8	0.16	0.57	0.04	0.12	0.02	0	10.22	0.02	0.11	0.29	3,145	10.275	100.18	
38	Rim	2,01	3,93	36,25	32,7	0,08	0,75	0,03	0,12	0,03	0	9,85	0	0,11	0,656	2,967	10,11	99,59	
20	Core	2,05	3,75	36,07	33,43	0,16	0,8	0,03	0,04	0,01	0	9,87	0,03	0,13	0,524	3,014	10,235	100,14	
- 39	Rim	1,9	6,57	36,64	33,06	0,7	0,55	0,01	0	0,09	0,05	6,49	0,02	0	0,127	2,944	10,305	99,46	
40	Core	1,89	3,7	35,44	32,86	0,47	0,61	0,02	0,14	0,06	0,01	11,79	0	0	0,121	2,872	10,018	100,00	
40	Rim	2,07	3,58	35,5	32,83	0,44	0,61	0,04	0,12	0,03	0	11,35	0	0,06	0,21	3,092	10,086	100,02	
41	Core	1,94	5,8	35,35	32,36	0,83	0,55	0,04	0,05	0,05	0,03	8,71	0	0	0,047	2,908	10,051	98,72	
41	Rim	1,87	5,74	35,77	32,67	1	0,54	0,06	0,03	0,03	0,06	8,8	0,1	0	0,145	2,99	10,127	99,93	
42	Core	2,22	5,67	36,47	33,17	0,22	0,3	0,03	0,23	0	0	8,23	0	0,15	0,187	3,178	10,387	100,44	
42	Rim	2,26	5,77	36,64	33,15	0,22	0,34	0,04	0,2	0	0,01	8,03	0,05	0	0,187	3,178	10,387	100,46	
42	Core	2,14	8,39	36,69	31,35	0,93	0,13	0,02	0,07	0	0,08	5,76	0,09	0	0,141	3,234	10,276	99, 30	
-7-3	Rim	2,18	8,76	36,41	31,37	1	0,14	0,02	0,04	0,06	0,12	5,75	0,03	0	0,239	3,316	10,352	99,79	
44	Core	2,01	5,51	35,68	28,52	1,28	0,75	0,12	0,17	0	0,01	12,99	0	0	0,234	3,278	9,931	100,48	
	Rim	1,99	5,76	35,58	28,53	1,41	0,79	0,07	0,16	0,02	0,01	12,74	0	0,01	0,145	3,059	9,863	100,14	
45	Core	2,39	7,18	36,26	26,71	0,85	0,43	0,07	0,04	0,06	0,07	12,07	0,13	0,01	0,112	3,334	9,958	99,67	
	Rim	2,59	6,28	36,92	30,96	0,09	0,23	0,07	0,01	0,05	0,04	9,08	0	0	0,215	3,215	10,176	99,93	
46	Core	1,95	6,47	36,13	33,39	0,66	0,77	0,02	0,05	0,06	0,08	6,72	0,01	0,15	0,127	2,944	10,305	99,84	
	Rim	2,05	6,77	36,9	32,12	0,59	0,68	0,02	0,02	0,04	0,04	7,05	0	0,01	0,215	3,181	10,308	99,99	
47	Core	2,01	6	36,26	34,55	0,5	0,71	0,05	0,04	0,12	0,03	5,99	0,07	0	0,226	3,147	10,44	100,14	
4/	Rim	2,16	6,1	36,66	34,46	0,36	0,61	0,02	0,05	0,04	0,05	6,06	0	0	0,145	3,211	10,5	100,43	
49	Core	1,8	6,63	36,84	33,29	0,63	0,74	0,01	0,05	0,08	0,08	6,06	0	0,05	0,127	2,944	10,305	99,64	
10	Rim	1,93	6,71	36,63	33,37	0,61	0,68	0	0,02	0,1	0,03	5,62	0	0	0,258	2,881	10,246	99,09	
49	Core	1,68	6,71	36,79	32,01	0,77	1,4	0	0,01	0,08	0,01	6,88	0,03	0	0,209	2,9	10,287	99,77	
	Rim	1,83	6,98	36,99	32,78	0,8	0,64	0,02	0,06	0,08	0,13	5,74	0,02	0	0,39	2,834	10,121	99,42	
50	Core	1,95	6,18	36,68	32,52	0,63	0,6	0,01	0,05	0,09	0,02	7,73	0	0,01	0,127	2,962	10,239	99,80	
	Rim	1,97	6,22	36,73	32,79	0,65	0,75	0	0,06	0,03	0,01	8	0,07	0	0	3,026	10,299	100,61	
51	Core	2	4,24	35,4	32,35	0,68	1,09	0,05	0,2	0,09	0,05	10,63	0	0,01	0,144	3,144	10,239	100,32	
	Rim	2,02	3,81	35,32	32,39	0,64	1,03	0,04	0,18	0,06	0,01	11,13	0	0,05	0,207	3,094	10,193	100,17	
52	Core	2,2	5,88	36,63	33,32	0,22	0,76	0,03	0,01	0,07	0,03	7,23	0	0,04	0,318	3,114	10,328	100,18	
	Rim	2,27	5,69	37,02	33,11	0,12	0,86	0,04	0,06	0,07	0,02	/,/1	0	0	0,501	3,117	10,47	101,06	
53	Core	2,42	6,14	36,63	31,66	0,28	0,58	0,07	0,09	0,04	0,01	8,79	0	0,07	0,215	3,198	10,242	100,44	
	Rim	2,41	6,06	36,92	31,72	0,4	0,65	0,04	0,07	0,03	0,03	8,56	0,05	0,01	0,215	3,198	10,242	100,61	
54	core	1,84	5,41	30,19	33,85	0,46	0,3/	0,02	0,1	0,03	U	8,05	U	U	0,098	2,958	10,318	39,09	
	KIM Cor-	1,9	2,24	30,01	33,4b	0.10	0,59	0,01	0,15	0.01	0.01	6,58	0.02	0.10	0.195	2,958	10,318	39,99	
55	core	2,10	2,57	35,54	31,1	0,18	0,09	0,07	0,44	0,01	0,01	16.5	0,02	0,18	0,181	3,125	10,033	100,59	
	KIM	2,22	2,50	35,02	30,26	0,24	0,23	0,06	0,48	0,01	0.07	10,5	0.01	0,14	0,181	3,14	9,967	100,01	
56	core	2,3/	7,04	30,93	31,9	0,51	0,45	0,01	0,04	0,02	0,07	7,20	0,01	0.01	0,112	3,248	10,288	100,04	
	кıт	2,4	7,4	37,11	31,36	0,42	0,47	0,03	0,04	0,03	0,03	1,2	0,15	0,01	U,295	3,251	10,43	100,63	

Grain No	Row	Na2O	MgO	SiO2	Al2O3	CaO	TiO2	К2О	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL	
57	Core	1,89	6,54	37,14	31,71	0,44	0,06	0	0,04	0,03	0,02	8,12	0,02	0	0,309	2,982	10,315	99,62	
57	Rim	2,02	6,88	36,46	29,74	1,21	0,2	0,01	0,05	0,03	0	9,4	0	0	0,445	3,25	10,127	99,82	
58	Core	1,98	3,26	35,87	33,73	0,13	0,27	0,03	0,21	0	0	10,77	0,06	0,04	0,121	2,855	10,084	99,41	
	Core	2,06	6,41	36,33	32,88	0,13	0,41	0,02	0,03	0,04	0,09	7,78	0,05	0,07	0,304	3,181	10,223	100,62	
59	Rim	2,09	6,86	36,71	31,8	0,78	0,6	0,02	0,07	0,07	0,06	7,85	0	0,09	0,347	3,134	10,183	100,66	
60	Core	1,8	3,79	35,53	33,9	0,71	0,99	0,02	0,04	0,03	0,01	9,88	0	0	0,253	2,791	10,024	99,77	
	Core	1,63	3,65	34,98	32,65	0,67	0,98	0,06	0,01	0,04	0.03	9,89	0	0,07	0,202	3.015	9,757	97,33	
61	Rim	1,69	7,38	37,6	33,35	0,25	0,18	0,01	0	0	0,02	5,94	0	0,02	0,206	2,998	10,494	100,14	
62	Core	2,02	6,96	36,86	33,34	0,73	1,01	0,05	0,13	0,07	0	5,49	0,1	0,01	0,297	3,102	10,422	100,59	
	Core	2,03	5.83	35,46	33,32	0,79	0,99	0,05	0,18	0,05	0,04	7.63	0,07	0,03	0,112	2.891	10,421	98.91	
63	Rim	1,98	5,76	36,23	33,43	0,6	0,6	0,05	0,04	0,07	0,02	7,35	0,05	0	0,23	2,894	10,259	99,56	
64	Core	1,7	5,91	35,86	34,3	0,91	0,7	0,06	0,03	0,08	0,05	6,78	0,01	0	0,085	2,874	10,183	99,53	
	Core	1,81	6,51	36,36	33,48	0,62	0,49	0.03	0,03	0,05	0,04	6,64	0	0	0,127	2,944	10,305	99,41	
65	Rim	1,92	6,1	35,96	33,79	0,62	0,74	0,04	0,04	0,05	0,06	6,77	0	0	0	2,941	10,164	99,20	
66	Core	1,9	5,57	36,78	34,28	0,46	0,85	0,05	0,03	0,1	0,1	6,66	0,07	0	0,23	2,877	10,325	100,28	
	Core	2,04	5,8	37,14	34,76	0,33	0,71	0,04	0,07	0,08	0,08	5,85	0,06	0.1	0,501	3,1	10,536	101,48	
67	Rim	1,75	6,99	37,03	33,09	0,73	0,73	0,01	0,03	0,07	0,04	5,57	0	0	0,441	2,884	10,388	99,75	
68	Core	2,23	5,58	36,03	32,88	0,39	0,45	0,04	0,08	0,03	0	9,02	0,03	0,04	0,187	3,195	10,321	100,50	
	Core	2,1	5,7	36,37	33,29	0,45	0,49	0,05	0,05	0,02	0.05	8,62	0,1	0,13	0,187	3,1/8	10,387	101,12	
69	Rim	2,43	5,45	36,51	31,27	0,41	0,57	0,06	0,12	0,02	0	10,25	0	0,02	0,187	3,212	10,255	100,76	
70	Core	1,71	4,44	35,55	33,3	0,87	0,69	0,05	0,02	0,08	0,15	10,2	0	0,09	0	2,969	10,189	100,31	
	Core	1,83	4,47	35,58	33,32	0,7	0,68	0,07	0,07	0,08	0,14	9,83	0	0,03	0,018	2,905	10,13	99,85 99.61	
71	Rim	1,71	6,65	36,22	33,32	1,09	0,46	0,04	0,05	0,08	0,08	7,19	0	0,04	0,104	3,09	10,441	100,57	
72	Core	1,82	6,02	36,21	33,42	0,74	0,46	0,05	0,04	0,03	0,05	7,64	0,11	0,03	0	3,008	10,365	99,99	
	Core	1,82	6,05	36,12	33,3	0,72	0,42	0,04	0,07	0,05	0,05	7,54	0,01	0,04	0 121	3,008	9,819	99,61	
73	Rim	1,84	3,92	35,13	28,65	1,35	1,14	0,07	0,14	0,08	0,05	13,85	0	0,18	0,433	2,897	9,817	99,55	
74	Core	1,95	6,35	36,39	33,03	0,79	0,52	0,04	0,01	0,06	0,05	7,34	0,12	0,03	0	3,008	10,365	100,05	
	Rim Core	1,86	6,45 6.3	36,54	33,39 33.17	0,74	0,51	0,04	0,05	0,07	0,03	6,98 6.95	0	0,09	0,127	2,944 3.164	10,305	100,13	
75	Rim	1,98	6,68	36,5	32,36	0,8	0,8	0,03	0,06	0,06	0,24	7,13	0	0,01	0,127	2,962	10,239	99,98	
76	Core	1,95	2,38	35,87	34,01	0,18	0,2	0,05	0,27	0,05	0	11,77	0	0,15	0,113	2,852	10,163	100,01	
	Kim Core	1,83	2,52 8.77	35,87 35,86	34,12 25.95	0,17	0,15	0,05	0,26	0,01	0	11,73 9.9	0,04	0,02	0,113 0.27	2,852	10,163	99,91 99.47	
77	Rim	2,06	8,69	36,19	26,44	1,85	1,79	0,09	0,04	0,05	0	9,89	0	0	0,321	3,34	10,069	100,82	
78	Core	2	3,24	36,28	34,47	0,12	0,46	0,03	0,31	0	0	10,09	0	0,09	0,261	3,125	10,42	100,90	
	Core	2.01	4,89	36.5	33,57	0,15	0,48	0,03	0,27	0,01	0,01	9,79 8.43	0,08	0,05	0,304	3.064	10,292	100,48	
79	Rim	2,15	5,04	36,37	33,02	0,11	0,45	0,03	0,09	0,02	0	8,97	0,01	0,03	0,187	3,178	10,387	100,04	
80	Core	1,89	5,86	36,26	34,05	0,51	0,76	0,03	0,03	0,06	0,05	6,63	0,14	0,07	0,23	2,877	10,325	99,77	
	Core	2,08	4,54	36,61	34,08	0,44	0,82	0,05	0,04	0,1	0,04	9,69	0	0,16	0,145	3,211 3,081	10,5	100,72	
81	Rim	2,33	4,69	35,92	33,34	0,14	0,41	0,02	0,12	0,03	0	9,86	0,06	0,19	0,159	3,125	10,199	100,59	
82	Core	2,12	4,32	35,58	31,78	0,52	0,62	0,05	0,18	0,01	0	11,39	0	0,04	0,107	3,159	10,067	99,94	
	Core	1,63	6,67	36,49	33,37	0,91	0,68	0,00	0,10	0,02	0,01	5,78	0,02	0,05	0,107	2,881	10,007	99,20	
63	Rim	2,09	6,93	36,59	32,23	0,72	0,69	0,02	0,1	0,08	0,09	6,43	0	0	0,347	3,117	10,249	99,68	
84	Core	1,93	6,62	36,51	30,96	0,3	0,47	0,1	0	0,02	0,03	8,56	0,02	0,07	0,258	2,932	10,048	98,83	
or	Core	2,08	3,16	35,54	32,46	0,4	0,77	0,04	0,2	0	0	11,89	0,15	0,04	0,230	3,092	10,086	100,12	
85	Rim	2,17	3,5	35,05	31,89	0,39	0,64	0,04	0,24	0,04	0	11,76	0	0,07	0,342	3,045	9,961	99,14	
86	Rim	1,69	6,32	36,74	34,55	0,78	0,6	0,03	0,08	0,1	0,05	5,7	0,03	0,04	0,127	2,927	10,372	100,14	
87	Core	2,21	6,14	35,64	32,19	0,79	1,15	0,05	0,09	0,06	0,02	8,28	0,02	0	0,018	3,244	10,332	100,23	
	Rim	2,31	6,15	35,99	32,05	0,69	1,18	0,05	0,12	0,01	0	8,07	0	0,19	0,018	3,244	10,332	100,40	
88	Rim	1,82	7,82	36,15	33,41	1,35	0,48	0,08	0,05	0,04	0,03	5,61	0,03	0,09	0,255	3,05	10,302	100,90	
89	Core	2,05	6,64	36,22	31,68	0,8	0,67	0,03	0,08	0,05	0,09	7,38	0,12	0,09	0,347	3,134	10,183	99,56	
	Rim	2,21	6,66	36,38	31,21	0,86	1,12	0,07	0,07	0,13	0,08	7,49	0	0,01	0,297	3,136	10,289	100,01	
90	Rim	2,12	6,08	36,89	33,23	0,55	0,66	0,02	0,00	0,03	0,04	7,88	0,1	0,03	0,23	3,228	10,235	100,48	
91	Core	2,29	6,35	36,17	32,06	0,43	0,43	0,05	0,18	0	0,03	8,49	0	0,07	0,084	3,245	10,367	100,25	
	Rim	2,32	6,24	35,71	32,02	0,43	0,49	0,05	0,11	0,01	0,01	8,35	0,09	0,01	0 112	3,242	10,226	99,31	
92	Rim	1,57	2,3	36,08	34,33	0,12	0,12	0,04	0,2	0,03	0,01	11,69	0,03	0,06	0,113	2,855	10,103	100,06	
93	Core	2,01	3,62	36,14	33,49	0,2	0,43	0,03	0,22	0,04	0,01	10,09	0	0	0,393	3,078	10,294	100,05	
	Rim	1,8	3,66	36,54	34	0,17	0,32	0,03	0,23	0	0,02	10,01	0	0,09	0,172	2,905	10,351	100,30	
94	Rim	1,98	6,34	35,7	32,93	1,05	0,55	0,02	0,07	0,05	0,06	7,65	0,06	0,05	0,072	3,04	10,173	99,85	
95	Core	1,77	6,33	36,5	33,28	0,84	0,49	0,05	0,03	0,08	0,06	7,64	0	0,12	0	3,008	10,365	100,56	
	Core	1,94	6,52	36,23	33,26	0,83	0,51	0,07	0,03	0,04	0,01	7,29	0.01	0,05	0.318	3,008	10,365	100,16	
96	Rim	2,15	5,89	35,94	32,42	0,48	0,32	0,05	0,08	0,01	0,03	8,53	0	0	0,136	3,128	10,12	99,28	
97	Core	1,86	3,48	36,27	34,46	0,19	0,75	0,01	0,1	0,03	0	10,11	0	0	0,172	2,905	10,351	100,69	
	Core	2.1	3,84 4,37	35,36	34,34 33.04	0,23	0.62	0,03	0,08	0.03	0,01	9,63	0,05	0,02	0,304	2,841 3,189	10,292	100,46 99.93	
98	Rim	2,01	4,41	35,14	32,65	0,28	0,64	0,04	0,12	0,06	0,02	9,69	0	0,06	0,239	3,078	10,073	98,51	
99	Core	2,15	6,58	36,06	31,87	0,73	0,53	0	0,04	0,05	0,08	8,06	0	0	0,215	3,198	10,242	99,81	
400	Core	1,77	2,36	36,02	34,08	0,8	0,38	0,03	0,02	0,03	0,02	11,49	0	0,03	0,347	2,855	10,185	99,97	
100	Rim	1,78	2,32	36,01	34,1	0,13	0,28	0,03	0,23	0,02	0	11,73	0	0,1	0,275	2,855	10,304	100,16	
101	Core	1,92	6,74	36,44	32,44	0,72	0,81	0,04	0,04	0,05	0,05	6,91	0,07	0,04	0,258	2,898	10,18	99,61 100 72	
102	Core	1,94	3,92	36,15	34,26	0,19	0,32	0,00	0,05	0,07	0	9,25	0	0,13	0,215	2,841	10,292	99,84	
102	Rim	1,9	3,85	36,51	34,37	0,17	0,15	0,05	0,18	0	0	8,75	0	0,1	0,436	2,777	10,232	99,48	
103	Core Rim	2,13	5,65 5,65	36,59 36,55	33,25 33,28	0,26	0,31	0,05	0,23	0,03	0,04	7,89 8,04	0,08	0,04	0,318	3,114 3,178	10,328	100,28	
10/	Core	1,78	6,55	35,52	33,75	1,04	0,78	0,07	0	0,08	0,01	5,85	0	0,08	0,209	2,959	10,18	98,86	
104	Rim	1,69	6,58	36,47	34,08	1,06	0,84	0,04	0,05	0,08	0,03	5,77	0	0,02	0,241	3,009	10,448	100,41	
105	Core Rim	2,21	6,5 6.49	36,18	32,34	0,53	0,43	0,07	0,05	0,01	0,09	8,38 8.17	0.07	0,13	0.084	3,245	10,367	100,62 99.99	
105	Core	1,69	9,4	36,83	32,34	1,41	0,45	0,06	0,05	0,03	0,01	3	0,06	0	0,047	3,13	10,395	98,90	
100	Rim	1,71	9,29	37,28	32,9	1,41	0,43	0,06	0,02	0,05	0	3,09	0	0	0,23	3,133	10,537	100,14	
107	Rim	1,15	8,09	35,46	26,98	3,15	2,27	0,04	0,07	0,17	0,03	9,12	0,04	0,04	0,43	3,1/	10,011 10,117	99,80 100,11	
108	Core	2,19	4,37	35,67	31,94	0,17	0,87	0,04	0,12	0,05	0,01	10,39	0	0,11	0,239	3,095	10,007	99,27	
	Rim	2,13	3,64	35,94	32,04	0,61	0,83	0,04	0,13	0,08	0,08	9,02	0	0,12	0,039	3,192	10,179	100,07	
109	Rim	1,94	4,15	35,79	32,34	0,45	0,69	0,04	0,00	0,00	0	10,89	0	0	0,018	2,922	10,060	99,52	
110	Core	2,32	6,34	37,08	31,88	0,17	0,16	0,04	0,04	0,01	0,01	8,45	0,01	0,01	0,398	3,201	10,384	100,50	
	Kim Core	2,4	6,45	37,11	31,96	0,16	0,09	0,04	0,03	0,03	0,02	8,28	0,01	0,05	0,398	3,201	10,384 10.308	100,61	
111	Rim	2	6,32	35,94	32,82	0,68	0,56	0,05	0,03	0,06	0	7,54	0	0	0,057	3,178	10,166	99,40	
112	Core	2,22	4,99	36,06	32,55	0,32	0,59	0,03	0,22	0,01	0,02	9,32	0	0	0,421	3,081	10,215	100,05	

Grain No	Row	Na2O	MgO	SiO2	Al2O3	CaO	TiO2	K20	MnO	V2O3	Cr2O3	FeO	NiO	ZnO	Li2O*	H2O*	B2O3*	TOTAL
440	Core	2,79	6,44	36,28	29,31	0,23	0,39	0,01	0,01	0,05	0,04	10,28	0,03	0	0,215	3,232	10,11	99,42
113	Rim	2,55	6,37	36,96	31	0,1	0,1	0	0,04	0,08	0,05	9,64	0	0	0,084	3,262	10,301	100,54
	Core	1,8	3,57	34,36	31,95	1,19	0,67	0,06	0,24	0,04	0,01	12,31	0	0,01	0,068	2,968	9,886	99,13
114	Rim	1,86	3,58	34,61	31,86	1,2	0,54	0,07	0,22	0,02	0	12,34	0	0,01	0,068	2,968	9,886	99,23
445	Core	2,53	5,96	35,79	30,29	0,57	0,77	0,06	0,19	0,05	0,01	10,06	0,02	0,09	0,136	3,162	9,988	99,68
115	Rim	2,45	6,09	36,26	30,79	0,56	0,72	0,06	0,2	0,06	0,01	9,88	0,08	0	0,215	3,215	10,176	100,77
110	Core	2,21	5,85	35,04	33,87	0,27	0,39	0,03	0,04	0,03	0,02	8,03	0,07	0	0,096	3,175	10,245	99,37
110	Rim	1,98	6,54	35,8	33,22	0,8	0,55	0,03	0,04	0,07	0,03	7,43	0,03	0,06	0	3,005	10,223	99,81
	Core	2,11	3,94	35,7	33,23	0,29	0,5	0,04	0,05	0,06	0	10,61	0	0	0,222	3,075	10,152	99,98
11/	Rim	2,2	4,15	34,61	33,15	0,29	0,51	0,04	0,09	0,02	0	10,56	0	0	0,022	3,186	10,116	98,94
110	Core	1,53	0,96	35,47	34,46	0,04	0,38	0,02	0,36	0	0	13,53	0,04	0,03	0,299	2,752	10,07	99,94
110	Rim	1,9	1,77	34,71	33,76	0,11	0,82	0,05	0,18	0,03	0,04	13,06	0	0,09	0,064	2,816	9,908	99,31
110	Core	2,06	3,5	35,33	33,33	0,21	0,57	0,01	0,13	0,02	0,04	11,29	0,02	0,01	0,141	3,139	10,212	100,01
119	Rim	2,07	3,47	35,13	33,13	0,22	0,68	0,04	0,08	0,06	0	11,28	0,01	0,19	0,141	3,139	10,212	99,85
120	Core	2	5,58	36,35	33,56	0,31	0,48	0,04	0,11	0,01	0	7,69	0	0,05	0,318	3,114	10,328	99,94
120	Rim	2,03	5,56	37,02	33,95	0,29	0,47	0,04	0,15	0,03	0,03	7,45	0,05	0,01	0,501	3,117	10,47	101,17
121	Core	1,76	7,39	36,22	33,87	1,03	0,79	0,02	0,04	0,09	0,14	4,98	0,04	0,1	0,253	3,013	10,369	100,11
121	Rim	1,9	6,89	36,6	34,62	0,8	0,76	0,05	0,06	0,12	0,11	4,91	0	0	0,258	2,863	10,312	100,25
122	Core	2,12	5,54	36,06	33,35	0,39	0,27	0,03	0,1	0	0	8,63	0,03	0,02	0,187	3,178	10,387	100,29
122	Rim	2,29	5,68	36,03	33,22	0,3	0,26	0,05	0,13	0,02	0,03	8,19	0	0,08	0,187	3,178	10,387	100,03
122	Core	1,9	5,3	35,67	32,76	0,6	0,58	0,06	0,06	0,04	0,02	9,22	0	0,02	0	2,972	10,11	99,31
123	Rim	1,92	5,65	35,73	32,67	0,8	0,72	0,07	0,05	0,04	0,05	8,96	0,05	0	0,047	2,908	10,051	99,72
124	Core	1,75	5,39	36,11	34,45	0,85	0,51	0,03	0,05	0,07	0,06	7,09	0	0,08	0,098	2,941	10,384	99,86
124	Rim	1,73	5,48	35,98	34,54	0,79	0,62	0,04	0,05	0,06	0,09	7,43	0	0	0,005	2,938	10,243	100,00
125	Core	1,84	6,96	36,53	32,88	1,16	0,77	0,02	0	0,15	0	6,24	0	0,04	0,356	2,98	10,256	100,18
125	Rim	1,71	6,59	36,52	32,49	1,14	0,73	0,01	0	0,15	0,09	6,62	0	0,03	0,356	2,98	10,256	99,67
120	Core	1,81	4,79	35,89	33,4	0,67	0,79	0,01	0,06	0,05	0	8,98	0,02	0,07	0,15	2,841	10,071	99,60
120	Rim	1,84	4,86	35,84	33,76	0,58	0,78	0,04	0,06	0,07	0,01	8,56	0	0	0,15	2,841	10,071	99,46
127	Core	2,05	1,1	34,27	33,61	0,19	0,55	0,03	0,29	0,04	0	14,17	0	0,01	0,131	3,099	10,036	99,58
12/	Rim	1,96	1,09	35,02	33,77	0,09	0,62	0,04	0,25	0,04	0,03	14	0	0,07	0,064	2,883	10,109	100,04
129	Core	1,87	3,99	36,42	33,7	0,05	0,16	0,04	0,11	0,02	0	9,44	0	0,02	0,436	2,794	10,166	99,22
120	Rim	1,93	4,2	36,52	33,6	0,04	0,3	0,04	0,12	0,01	0,01	9,28	0,04	0	0,201	2,908	10,272	99,471

### ANEXO B – Medidas de Forma, Turmalinas TUP 01B (Analyzr)

Sample	Grain	Area (um²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
	number		diameter (µm)	(µm)	(µm)	(µm)	,							
TUP-1B	2	24376,73	176,17	697,42	102,03	309,62	0,96	25457,06	0,63	0,32	0,57	3,03	101,92	290,62
TUP-1B	3	25346,26	1/9,64	628,41	140,04	236,24	0,96	26371,19	0,81	0,58	0,76	1,69	146,46	233,78
TUP-1B	4 F	19722,99	158,47	593,21	101,18	251,3	0,95	20775,62	0,7	0,4	0,03	2,48	104,21	242,33
TUP-1D	5	17062 71	1/0,79	109.26	140,65	206,11	0,97	17920 24	0,87	0,07	0,82	1,40	145,14	101 /0
TUP-1B	7	17451 52	149.06	496,20	115,05	178 93	0,90	18060 94	0,80	0,03	0,8	1,33	122,08	181,40
TUP-1B	8	23988 92	174 77	585.02	146 3	210 21	0,97	24709 14	0,88	0,69	0.83	1 44	148 13	210 13
TUP-1B	9	13656.51	131.86	447.96	115.27	155.14	0.95	14404.43	0,86	0.72	0.85	1.35	115,79	165.18
TUP-1B	10	9639.89	110.79	400.44	73.27	169.45	0.95	10138.5	0.76	0.43	0.65	2.31	74.8	165.18
TUP-1B	11	18836,57	154,87	545,25	114,42	212,89	0,96	19695,29	0,8	0,53	0,73	1,86	114,89	207,34
TUP-1B	12	14376,73	135,3	451,04	129,65	143,93	0,96	15041,55	0,89	0,88	0,94	1,11	131,58	156,22
TUP-1B	13	11274,24	119,81	408,41	96,92	149,71	0,95	11828,25	0,85	0,64	0,8	1,54	98,86	150,71
TUP-1B	14	11883,66	123,01	446,16	86,68	178,73	0,94	12659,28	0,75	0,47	0,69	2,06	91,54	171,44
TUP-1B	16	24044,32	174,97	578,86	151,22	202,74	0,97	24736,84	0,9	0,74	0,86	1,34	156,31	210, 13
TUP-1B	17	21218,84	164,37	587,05	114,48	238,79	0,96	22105,26	0,77	0,47	0,69	2,09	115,37	231,1
TUP-1B	18	22243,77	168,29	563,22	143,08	200,66	0,97	23047,09	0,88	0,7	0,84	1,4	147,37	201,45
TUP-1B	19	23905,82	174,46	574,5	151,98	200,47	0,97	24570,64	0,91	0,76	0,87	1,32	152,59	204,38
TUP-1B	20	25817,17	181,3	641,49	137,3	246,2	0,97	26620,5	0,79	0,54	0,74	1,79	139,73	254,22
TUP-1B	21	20221,61	160,46	532,92	146,87	177,7	0,97	20914,13	0,89	0,82	0,9	1,21	163,16	186,08
TUP-1B	22	19584,49	157,91	514,95	150,56	166,16	0,97	20193,91	0,93	0,9	0,95	1,1	157,89	1/2,08
TUP-1B	23	1/534,63	149,42	548,55	98,76	229,8	0,95	18421,05	0,73	0,42	0,65	2,33	99,26	219,35
TUP-1B	24	20526,32	101,00	534,2 420.21	147,7	1/8,5	0,97	21240,54	0,9	0,82	0,91	1,21	04 15	162 /1
TUP-1B	25	10335 18	120,4	420,21	126.7	105,74	0,95	20055 /	0,81	0,54	0,74	1,02	126 /19	105,41
TUP-1B	20	22686.98	169.96	609.16	123 54	237 73	0,50	23795.01	0,05	0,04	0,0	1,00	123,45	231 22
TUP-1B	28	15484.76	140.41	475.93	120,8	167.04	0,95	16343.49	0,86	0,51	0.84	1,32	125,10	172.4
TUP-1B	29	30526.32	197.15	651.26	181.49	215.53	0.98	31301.94	0.9	0.84	0.91	1.19	184.21	218.91
TUP-1B	30	21357,34	164,9	550,89	154,92	178,86	0,96	22299,17	0,88	0,85	0,92	1,15	168,42	185,41
TUP-1B	31	27534,63	187,24	610,96	166,03	211,66	0,98	28116,34	0,93	0,78	0,88	1,27	163,16	213,27
TUP-1B	32	23739,61	173,86	574,5	154,26	196,43	0,97	24515,24	0,9	0,78	0,89	1,27	160,03	200,42
TUP-1B	33	27229,92	186,2	614,8	166,88	208,22	0,97	28033,24	0,91	0,8	0,89	1,25	171,19	212,16
TUP-1B	34	25650,97	180,72	595,02	154,2	212,97	0,98	26260,39	0,91	0,72	0,85	1,38	152,59	212,16
TUP-1B	35	23462,6	172,84	572,69	155,57	193,23	0,97	24238,23	0,9	0,8	0,89	1,24	160,03	201,72
TUP-1B	36	19806,09	158,8	520,59	149,38	170,03	0,97	20415,51	0,92	0,87	0,93	1,14	150,51	176,53
TUP-1B	37	20055,4	159,8	529,31	142,13	180,85	0,97	20747,92	0,9	0,78	0,88	1,27	141,42	186,68
TUP-1B	38	26620,5	184,1	601,19	168,98	201,33	0,98	27285,32	0,93	0,84	0,91	1,19	167,47	210, 13
TUP-1B	39	27174,52	186,01	615,32	172,76	201,02	0,97	28005,54	0,9	0,86	0,93	1,16	173,68	203,37
TUP-1B	40	25346,26	179,64	623,83	132,32	246,81	0,98	25844,88	0,82	0,53	0,73	1,87	121,05	239,69
TUP-1B	41	33656,51	207,01	720,28	149,97	287,32	0,98	34487,53	0,82	0,52	0,72	1,92	148,86	281,76
TUP-1B	42	3/922,44	219,74	/03,00 646.27	162,32	299,51	0,98	38098,00	0,82	0,54	0,73	1,85	152,59	294,92
TUP-1D	45	20001,00	190,0	607.25	102,90	220,07	0,97	29410,20	0,00	0,71	0,84	1,39	100,1	251,4
TUP-1B	44	27030,01	189,54	629.68	138,71	197.22	0,98	27300,93	0,92	0,73	0,85	1,37	130,31	220,43
TUP-1B	46	26011.08	181 98	598.1	167,32	199.98	0,97	26731 3	0,91	0,55	0,90	1,00	163 75	205,01
TUP-1B	47	30083.1	195.71	655.62	163.52	235,87	0.97	30858.73	0.88	0.69	0.83	1.44	189.47	242.33
TUP-1B	48	23988,92	174,77	561,42	170	180,82	0,98	24404,43	0,96	0,93	0,97	1,06	168,42	188,67
TUP-1B	49	24958,45	178,26	583,75	167,58	191,3	0,98	25595,57	0,92	0,87	0,93	1,14	168,42	196,65
TUP-1B	50	23711,91	173,76	584,49	140,81	216,85	0,97	24487,53	0,87	0,64	0,8	1,54	141,42	214,82
TUP-1B	51	32825,48	204,44	729,31	143,3	292,75	0,97	33905,82	0,78	0,49	0,7	2,04	148,82	294,6
TUP-1B	52	24626,04	177,07	635,63	124,2	257,47	0,96	25623,27	0,77	0,47	0,69	2,07	124,03	245,74
TUP-1B	53	26897,51	185,06	652,01	138,67	252,44	0,96	27950,14	0,8	0,54	0,73	1,82	144,65	249,65
TUP-1B	54	32382,27	203,05	670,51	184,93	224,41	0,97	33213,3	0,91	0,82	0,9	1,21	184,21	230,2
TUP-1B	55	45955,68	241,89	828,62	195,09	301,73	0,97	47368,42	0,84	0,64	0,8	1,55	208,41	308,92
TUP-1B	56	39196,68	223,4	788,32	168,74	298,34	0,97	40609,42	0,79	0,56	0,75	1,77	168,96	291,95
TUP-1B	57	27673,13	187,71	637,13	169,44	213,6	0,95	29141,27	0,86	0,77	0,88	1,26	178,64	219,92
TUP-1B	58	33/67,31	207,35	685,4	192,27	224,55	0,97	34/09,14	0,9	0,85	0,92	1,17	194,74	230,2
TUP-1B	22	250120,19	205,38	617 00	170 00	249,06	0,9/	33988,92	0,88	0,68	0,82	1,4/	1/1,19	249,65
TUP-1B	61	20042,11	184,87	61/,88	161 0	192,15	0,97 0 07	277617 27	0,88	0,93	0,96 רפ ה	1,0/	161,24	205,26
TUP-1R	62	41163 43	228 05	796 82	176 77	212,33	0,97	42520 78	0,09	0,70	0,37	1 7	175 66	212,10
TUP-1B	63	34155 12	220,93	718 78	166.05	265 74	0.97	35235.46	0,31	0,58	0,70	1.6	163 33	256.66
TUP-1B	64	26897.51	185.06	619.68	153.16	224.69	0.97	27645.43	0.88	0.68	0.82	1.47	154.79	224.84
TUP-1B	65	33019,39	205,04	679,76	173,99	242,31	0,98	33767,31	0,9	0,72	0,85	1,39	168,42	244,89
TUP-1B	66	33407,2	206,24	692,09	173,58	247,76	0,98	34238,23	0,88	0,69	0,83	1,43	168,42	246,7
TUP-1B	67	33130,19	205,38	670,51	199,16	212,29	0,98	33905,82	0,93	0,94	0,97	1,07	194,74	220,93
TUP-1B	68	33157,89	205,47	676,68	190,73	222,61	0,98	33961,22	0,91	0,85	0,92	1,17	194,74	230,86
TUP-1B	69	28614,96	190,88	656,68	160,96	233,37	0,95	29972,3	0,83	0,67	0,82	1,45	157,89	230,86
TUP-1B	70	28864,27	191,71	628,41	178,3	206,85	0,97	29667,59	0,92	0,86	0,93	1,16	186,08	219,8
TUP-1B	71	36398,89	215,28	722,61	189,37	247,34	0,97	37423,82	0,88	0,76	0,87	1,31	200,97	258,11
TUP-1B	72	29030,47	192,26	663,07	173,45	222,69	0,96	30249,31	0,83	0,75	0,86	1,28	178,95	234,73
TUP-1B	73	18698,06	154,3	517,5	129,67	185,33	0,96	19473,68	0,88	0,69	0,83	1,43	133,17	186,9
TUP-1B	74	29307,48	193,17	638,93	191,08	196,77	0,96	30581,72	0,9	0,96	0,98	1,03	197,25	208,21
TUP-1B	75	24044,32	174,97	571,94	168,15	182,86	0,97	24847,65	0,92	0,92	0,96	1,09	168,42	193,02
TUP-1B	/b 	30581,72	197,33	693,37	158,26	256,52	0,94	32409,97	0,8	0,59	0,77	1,62	168,42	250,21
	77 79	3/570 64	203,75	0/4,8/ דכ כ∩ד	172 4	238,62	0,98	33351,8	0,9	0,73	0,85	1,3/	1/3,08	244,89
TUP-1R	79	41578 95	203,8	758 55	275 57	237,37	0,90	42520 78	0,00	0,00 N Q/	0,82	1,49	230 74	235,10
TUP-1B	80	45955.68	241.89	852.76	187.12	324.79	0.97	47396.12	0.79	0.55	0.74	1.74	198.95	324.66

### Grain Equivalent Perimeter Minor axis Major axis Sample Area (µm²) Solidity Convex area Form factor Roundness Compactness Aspect ratio Min. Feret Max. Feret diameter (µm) number (µm) (µm) (µm) TUP-1B 81 32991,69 204,95 671,79 198,16 215,02 0,98 33767,31 0,92 0,91 0,95 1,09 204,69 224,84 37590,03 TUP-1B 218,77 205,29 234,77 0,98 0,91 0,87 0,93 241,48 82 720,81 38476,45 1,14 208,41 TUP-1B 83 218,37 723,14 242,55 0,97 0,9 0,81 1,23 210,53 250,04 37451,52 197,88 38559,56 0,9 0.85 TUP-1B 84 38088.64 220.22 726.97 206.31 238.68 0.98 38891.97 0.91 0.92 1.16 212.13 244.67 1,06 TUP-1B 85 35096.95 211.39 695.92 205.56 218.31 0.97 36011.08 0.91 0.94 0 97 211,37 231.64 TUP-1B 86 37783,93 219,34 724,42 188,68 255,22 0,98 38614,96 0,9 0,74 0,86 1,35 200 261,31 TUP-1B 87 30415,51 196,79 642,01 182,7 212,27 0,98 31191,14 0,93 0,86 0,93 1,16 194,74 220,43 TUP-1B 88 31108,03 199,02 653,82 178,54 223,07 0,98 31828,25 0,91 0,8 0,89 1,25 182,36 228,75 0,98 0,73 0,85 TUP-1B 89 44072,02 236,88 783,44 203,16 277,35 44986,15 0,9 1,37 197,25 276,2 TUP-1B 90 40498.61 227.08 745.47 207.75 248.39 0.98 41440.44 0.92 0.84 0.91 1.2 210.53 259.18 TUP-1B 91 52049.86 257.43 866.37 222 62 300.3 0.98 53379.5 0.87 0.73 0.86 1.35 231 58 311.59 TUP-1B 92 41689,75 230,39 757,28 225.28 237.01 0,98 42659,28 0,91 0,94 0.97 1,05 223,02 247,42 TUP-1B 93 34930,75 210,89 698,48 197 227,58 0,97 35844,88 0,9 0,86 0,93 1,16 202,42 237,48 TUP-1B 94 38254,85 220,7 719,53 203,68 240,08 0,98 39002,77 0,93 0,85 0,92 1,18 200,97 247,42 TUP-1B 43767,31 205,91 276,99 0,96 0,84 0,73 215,79 284,89 95 236,06 808,1 45457,06 0,85 1,35 TUP-1B 96 42409.97 232.37 788.32 285.34 0.97 0.86 0.66 0.81 1.49 294.45 190.91 43545.71 193.52 TUP-1B 97 32576.18 203.66 674 87 192 87 216 99 0.98 33407 2 09 0.88 0.94 1 13 189 19 226.07 TUP-1B 98 41828,25 230.78 761.64 201,83 265.17 0,98 42548.48 0.91 0,76 0.87 1,31 200 274,59 TUP-1B 99 31385,04 199,9 649,46 183,22 218,72 0,98 31994,46 0,94 0,84 0,91 1,19 189,47 226,01 TUP-1B 100 36149,58 214,54 768,33 184,47 271,21 0,94 38254,85 0,77 0,63 0,79 1,47 178,95 282,11 TUP-1B 101 57756,23 271,18 942,61 209,3 353,84 0,98 59141,27 0,82 0,59 0,77 1,69 209,48 346,97 1.57 TUP-1B 102 54182.83 912.31 211.54 0.97 0.82 0.62 0.79 230.74 334.37 262.66 332.6 56094.18 TUP-1B 103 54903.05 264.4 878.7 234.77 299.22 0.98 56066.48 0.89 0.78 0.88 1.27 247.37 306.58 TUP-1B 104 45983,38 241,97 805,02 213,12 275,01 0,97 47229,92 0,89 0,77 0,88 1,29 215,79 281,37 TUP-1B 105 52409,97 258,32 866,37 218,24 306,3 0,97 53767,31 0,88 0,71 0,84 1,4 223,3 318,63 TUP-1B 106 51772,85 256,75 845,32 248,9 267,66 0,98 52742,38 0,91 0,92 0,96 1,08 253,07 276,6 TUP-1B 47340,72 229,84 0,91 0,87 107 245,51 809,38 263,46 0,97 48559,56 0,93 1,15 230,74 271,7 TUP-1B 108 46759 244 810.13 219.76 272.77 0.98 47811.63 0.9 0.8 0.89 1,24 215.85 284.84 TUP-1B 109 50775.62 254.26 832.24 232.71 279.63 0.98 51551.25 0.92 0.83 0.91 1.2 226.32 283.87 TUP-1B 110 43933,52 236,51 775,24 229,02 245,26 0,98 44930,75 0,92 0,93 0,96 1,07 231,58 256,66 TUP-1B 111 47645,43 246,3 805,02 232,99 260,83 0,98 48531,86 0,92 0,89 0,94 1,12 231,58 271,91 TUP-1B 112 43324,1 234,87 785,77 200,84 275,78 0,98 44376,73 0,88 0,73 0,85 1,37 204,14 274,74 288,31 TUP-1B 113 56952,91 269,29 898,7 253,13 0,97 58836,57 0,89 0,87 0,93 300,37 1,14 256,79 TUP-1B 0,82 1,21 114 55983,38 266,98 883,06 244,11 295,21 0,98 57008,31 0,9 0,9 242,11 300,37 TUP-1B 115 41080,33 228,7 762,16 193,42 273,22 0,98 41994.46 0,89 0,7 0,84 1,41 189,47 272,57 TUP-1B 116 58476,45 272,86 923.36 238,73 314,94 0.98 59916,9 0.86 0,75 0.87 1,32 244.34 322,6 248,79 269 0,86 249,42 284,89 TUP-1B 117 48614,96 829,15 231,08 0,97 50000 0,89 0,92 1,16 TUP-1B 118 35484.76 212.56 697.73 196,15 231.96 0,98 36288,09 0,92 0,84 0.92 1,18 189.47 237.48 TUP-1B 119 39030,47 222,92 738,03 206,35 241,41 0,97 40110,8 0,9 0,85 1,17 221,05 252,69 0,92 TUP-1B 120 53324,1 260,57 866,9 243,51 284,57 0,98 54349,03 0,89 0,84 0,92 1,17 257,89 294,92 TUP-1B 121 48171,75 247,66 822,99 235,76 260.88 0,97 49556,79 0,89 0,9 0.95 1,11 247,37 264,47 TUP-1B 122 52216,07 257,84 846.59 237.96 279.6 0.98 53351,8 0,92 0.85 0.92 1,17 249,35 289.04 TUP-1B 123 40609,42 227,39 746,75 224,65 231,79 0,98 41578,95 0,92 0,96 0,98 1,03 226,32 240,5 TUP-1B 124 47479.22 245.87 821.18 212.28 285.36 0.97 48725.76 0.88 0.74 0.86 1,34 213.12 288,32 TUP-1B 125 88393,35 342,07 0,98 0,98 1,04 335,48 1102,53 329,4 90083,1 0,91 0,96 327,5 352,32 TUP-1B 126 324,31 260,62 411,26 85955,68 0,81 0,62 1,58 264,5 82603,88 1129,75 0,96 0,79 407,21 TUP-1B 127 76925,21 312,96 1052,45 285,89 348,11 0,98 78559,56 0,87 0,81 0,9 1,22 290,29 358,24 TUP-1B 128 104349,03 364,5 1212,15 332,8 400,46 0,98 106343,49 0,89 0,83 0,91 1,2 342,11 409,58 TUP-1B 129 57202,22 269,87 906,45 226.9 323.36 0,98 58448,75 0,87 0.83 1,43 221,05 317,97 0,7 TUP-1B 130 76509,7 312,11 1040,65 295,58 333,21 0,98 78005,54 0,89 0,88 0,94 1,13 290,29 344,85 TUP-1B 131 90470,91 339,4 1170,05 278,93 418,39 0,97 92853,19 0,83 0,66 0,81 1,5 285,57 426,45 132 268,37 238,38 305,45 0,98 57451,52 0,77 305,13 TUP-1B 56565,1 886,67 0,9 0,88 1,28 226,32 TUP-1B 133 61412.74 279,63 925.92 265,12 296,55 0,98 62880,89 0,9 0,89 0.94 1,12 279,12 308,92 TUP-1B 134 65069,25 287,83 954,41 262,74 315,82 0,98 66426,59 0,9 0,83 0,91 1,2 267,96 324,83 135 282,91 0,98 0,79 TUP-1B 49556,79 251,19 836,07 224,17 50747,92 0,89 0,89 1,26 234,46 286,01 TUP-1B 136 58393,35 272,67 897,95 265,2 281,5 0,98 59612,19 0,91 0,94 0,97 1,06 268,42 294,6 TUP-1B 137 47174,52 245,08 809,38 226,44 265,84 0,98 48282,55 0,9 0,85 0,92 1,17 245,63 274,59



# ANEXO B – Medidas de Forma, Turmalinas TUP 02A (Analyzr)

Sample	Grain	Area (um²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
Sumple	number	Alea (µiii )	diameter (µm)	(µm)	(µm)	(µm)	Jonarcy	convextured	Tominactor	nounaness	compacticess	Aspectitutio		max.reret
TUP-2A	1	9361,98	109,18	416,61	75,23	166,29	0,9	10459,5	0,68	0,43	0,66	2,21	78,73	156, 19
TUP-2A	4	12747,11	127,4	429,91	121,65	135,94	0,96	13302,48	0,87	0,88	0,94	1,12	125,99	142,98
TUP-2A	6	10062,81	113,19	398,69	81,23	159,36	0,96	10433,06	0,8	0,5	0,71	1,96	82,18	156,41
TUP-2A	7	10300,83	114,52	387,16	92,27	143,22	0,97	10604,96	0,86	0,64	0,8	1,55	90	143,44
TUP-2A	8	9970,25	112,67	410,22	77,62	165,73	0,96	10406,61	0,74	0,46	0,68	2,14	77,95	160,37
TUP-ZA	10	11953,72	123,37	441,44	90,77	1/0,5/	0,95	12548,76	0,77	0,52	0,72	1,88	92,03	164,08
TUP-ZA	11	10340,5	114,74	386,49	107,3	126,64	0,97	10684,3	0,8/	0,82	0,91	1,18	98,18	134,15
TUP-ZA	12	1/1/6,86	147,89	521,81	105,62	209,5	0,98	1/600	0,79	0,5	0,71	1,98	101,82	205,7
TUP-ZA	14	1/745,45	150,31	527,99	114,15	201,67	0,97	18234,71	0,8	0,50	0,75	1,//	123,42	203,28
TUP-ZA	14	14/83,4/	137,2	487,73	100,11	189,81	0,97	15312,4	0,78	0,52	0,72	1,9	100,17	101,72
TUP-ZA	15	17401 65	140.05	508,00	129,78	1/8,55	0,97	18044,03	0,88	0,72	0,85	1,38	134,55	181,85
TUP-ZA	10	1/401,05	140,00	540.02	121,07	206.65	0,90	10049,59	0,81	0,64	0,8	1,54	110,42	202,02
	19	12600 17	122.07	471.05	10,03	172 77	0,30	14207.44	0,8	0,55	0,74	1,78	113,71	171.00
TLIP_2A	10	16727 27	1/5 9/	508 66	102,50	187 / 2	0,50	17256.2	0,70	0,50	0,70	1.63	113.8/	101 0
TLIP-2A	20	18922 31	155 22	546.43	123.88	199.6	0,57	19662.81	0,01	0,01	0,78	1,05	120.85	200
TUP-2A	21	13434 71	130 79	437 55	110 14	156	0.97	13818 18	0.88	0.7	0.84	1 42	112 73	157
TUP-2A	22	20588.43	161.91	538.64	138.64	189.38	0.98	21011.57	0,89	0.73	0.85	1.37	143.99	192.45
TUP-2A	23	13024.79	128.78	449.6	115.42	148.55	0.95	13725.62	0.81	0.75	0.87	1.29	116.99	161.48
TUP-2A	24	22439,67	169,03	626,79	118,26	247,4	0,96	23272,73	0,72	0,47	0,68	2,09	114,99	237,48
TUP-2A	25	24330,58	176,01	650,01	120,48	260,38	0,97	25203,31	0,72	0,46	0,68	2,16	118,06	252,98
TUP-2A	26	23127,27	171,6	596,3	128,24	232,39	0,98	23709,09	0,82	0,55	0,74	1,81	123,64	226,89
TUP-2A	27	21976,86	167,28	584,77	123,68	227,82	0,97	22558,68	0,81	0,54	0,73	1,84	121,95	224,04
TUP-2A	28	22757,02	170,22	597,33	142,12	211,52	0,96	23590,08	0,8	0,65	0,8	1,49	143,99	218,21
TUP-2A	29	19728,93	158,49	534,74	130,87	192,47	0,98	20204,96	0,87	0,68	0,82	1,47	132,24	191,9
TUP-2A	30	24132,23	175,29	577,5	158,63	195,08	0,98	24515,7	0,91	0,81	0,9	1,23	152,73	195,82
TUP-2A	31	23907,44	174,47	635,46	123,52	250,12	0,97	24621,49	0,74	0,49	0,7	2,03	118,97	238,23
TUP-2A	32	18909,09	155,16	531,88	122,44	198,1	0,97	19411,57	0,84	0,61	0,78	1,62	119,27	194,91
TUP-2A	33	15325,62	139,69	493,75	106,08	187,41	0,96	15933,88	0,79	0,56	0,75	1,77	107,64	188,6
TUP-2A	34	17110,74	147,6	481,7	130,71	167,08	0,98	17401,65	0,93	0,78	0,88	1,28	138,85	173,82
TUP-2A	35	15603,31	140,95	458,48	137,56	145,04	0,98	15933,88	0,93	0,94	0,97	1,05	134,55	155,35
TUP-2A	36	26763,64	184,6	681,44	120,3	287,09	0,97	27490,91	0,72	0,41	0,64	2,39	117,56	273,91
TUP-2A	37	16661,16	145,65	589,55	90,59	240,9	0,92	18089,26	0,6	0,37	0,6	2,66	101,7	247,83
TUP-2A	38	27887,6	188,43	620,92	166,14	214,32	0,98	28337,19	0,91	0,77	0,88	1,29	161,99	215,87
TUP-2A	39	23233,06	171,99	569,86	162,28	183,2	0,98	23814,88	0,9	0,88	0,94	1,13	163,64	187,72
TUP-2A	40	20945,45	163,31	539,15	152,12	176,15	0,98	21474,38	0,91	0,86	0,93	1,16	156,85	186,17
TUP-2A	41	19570,25	157,85	521,08	140,86	177,6	0,98	19993,39	0,91	0,79	0,89	1,26	145,45	183,99
TUP-2A	42	20588,43	161,91	570,01	117,89	225,86	0,97	21183,47	0,8	0,51	0,72	1,92	118,28	219,87
TUP-2A	43	21236,36	164,44	619,3	107,88	255,95	0,96	22228,1	0,7	0,41	0,64	2,37	105,42	245,91
TUP-ZA	44	20535,54	161,7	536,87	154,12	1/1,34	0,98	20998,35	0,9	0,89	0,94	1,11	152,73	1/6,39
TUP-ZA	45	20442,98	161,33	565,6	124,8	211,61	0,97	21183,47	0,8	0,58	0,76	1,/	126,4	208,92
TUP-ZA	46	25/19,01	180,96	608,87	165,32	200,95	0,97	26591,74	0,87	0,81	0,9	1,22	166,74	199,7
	47	24550,56	10,01	705 19	130,20	259,75	0,97	23071,07	0,81	0,54	0,73	1,04	110.27	230,14
TUP-ZA	40	27365,47	107,4	627 50	125,04	209,20	0,97	20442,90	0,7	0,42	0,05	2,54	119,57	275,55
TUP-2A	50	23378 51	172 53	628.04	109,28	213,84	0,38	23038,02	0,88	0,78	0,88	2 11	120.87	222,3
TLIP-2A	51	25376,51	172,55	642 74	113,37	232,40	0,57	26591 74	0,74	0,47	0,00	1 78	133 49	244,34
TUP-2A	52	18803 31	154 73	509.03	139.28	172 64	0.98	19200	0,75	0.8	0,75	1,70	138 18	174 28
TUP-2A	53	22333.88	168.63	596.6	119.92	239.97	0.98	22876.03	0.79	0.49	0.7	2	115.71	231.27
TUP-2A	54	24462.81	176.49	580.66	170.71	183.48	0.98	24965.29	0.91	0.93	0.96	1.07	172.28	194.06
TUP-2A	55	27279.34	186.37	666.68	164.69	217.62	0.94	28945.45	0.77	0.73	0.86	1.32	181.82	225.4
TUP-2A	56	27649,59	187,63	625,91	169,89	208,63	0,98	28310,74	0,89	0,81	0,9	1,23	174,55	207,3
TUP-2A	57	23920,66	174,52	584,04	158,71	193,32	0,97	24740,5	0,88	0,81	0,9	1,22	161,73	197,61
TUP-2A	58	20046,28	159,76	526,22	140,46	181,87	0,98	20509,09	0,91	0,77	0,88	1,29	141,82	186,17
TUP-2A	59	34829,75	210,59	726,63	178,35	255,13	0,97	36019,83	0,83	0,68	0,83	1,43	184,56	257,57
TUP-2A	60	32409,92	203,14	743,67	139,79	298,92	0,97	33242,98	0,74	0,46	0,68	2,14	134,54	286,44
TUP-2A	61	25824,79	181,33	594,69	174,85	189,29	0,98	26314,05	0,92	0,92	0,96	1,08	178,18	195,82
TUP-2A	62	28588,43	190,79	629,8	171,41	213,13	0,98	29170,25	0,91	0,8	0,9	1,24	181,82	218,3
TUP-2A	63	22651,24	169,82	577,13	161,85	183,81	0,97	23391,74	0,85	0,85	0,92	1,14	167,27	198,71
TUP-2A	64	29183,47	192,76	654,63	155,71	240,86	0,98	29738,84	0,86	0,64	0,8	1,55	163,64	241,76
TUP-2A	65	26803,31	184,74	655,15	139,02	248,71	0,97	27490,91	0,78	0,55	0,74	1,79	133,96	238,23
TUP-2A	66	24476,03	176,53	593,81	147,5	212,85	0,97	25110,74	0,87	0,69	0,83	1,44	147,08	210,69
TUP-2A	67	25586,78	180,49	608,35	149,14	219,77	0,98	26168,6	0,87	0,67	0,82	1,47	149,09	218,24
TUP-2A	68	27517,36	187,18	622,17	173,44	204,05	0,98	28178,51	0,89	0,84	0,92	1,18	177,42	208,16
TUP-2A	69	22479,34	169,18	584,4	135,8	212,31	0,97	23153,72	0,83	0,63	0,8	1,56	143,74	216,97
TUP-2A	70	22413,22	168,93	562,58	150,88	189,6	0,97	23034,71	0,89	0,79	0,89	1,26	152,73	192,32
TUP-2A	71	35173,55	211,62	712,97	184,48	246,81	0,98	35966,94	0,87	0,74	0,86	1,34	210,85	253,03
TUP-2A	72	38016,53	220,01	757,85	177,72	276,7	0,97	39047,93	0,83	0,63	0,8	1,56	185,45	286,44
TUP-2A	/3	38889,26	222,52	770,42	169,18	293,86	0,98	39775,21	0,82	0,57	0,76	1,74	164,56	289,63
TUP-2A	74	35596,69	212,89	/45,07	180,76	259,74	0,96	3/157,02	0,81	0,67	0,82	1,44	185,14	259,31
TUP-ZA	75 70	29315,7	193,2	647	1/5,7/	214,12	0,98	29963,64	0,88	0,81	0,9	1,22	180,54	227,79
TUP-ZA	70 77	20542,45	210,89	627.00	162.04	353,39	0,96	20222,00	0,64	0,30	0,0	2,7 1 20	179,25	340,44 227 AF
TI ID_ 2A	70	20094,21	206.20	672 OT	103,40	220,21	0,98	23308,0	0,89	0,71	0,84	1,38	106.26	257,45
TI IP_2A	70	21970 1	200,39	680 07	162 5	213,88	0,99	22202 102	0,93	0,91	. 0,90	1 54	190,30	221,37
TUP-24	80	29024 79	192.24	645 75	168 /5	231,10	0,50	29552 72	0,84	0,04	0,0 0,86	1 27	169 71	230,25
· -· -/ ·	~~	,,,	152,24	0.0,75	200,40		3,30	,	0,07	0,75	0,00	1, 32		,,,,,

Comple	Grain	Area (um²)	Equivalent	Perimeter	Minor axis	Major axis	Colidity	Comunition	Form factor	Poundnoss	Comportnoss		Min Forat	May Forat
Sample	number	Area (µm)	diameter (µm)	(µm)	(µm)	(µm)	Solicity	COnvex area	FORMIACION	Rounaness	compactness	Aspectiatio	wiin. reiet	IVIAX. Feret
TUP-2A	81	32819,83	204,42	687,62	168,16	248,95	0,98	33401,65	0,87	0,67	0,82	1,48	170,44	254,16
TUP-2A	82	32290,91	202,77	692,61	158,76	260,71	0,98	32912,4	0,85	0,6	0,78	1,64	152,73	256,77
TUP-2A	83	42684,3	233,13	783,56	213,71	258,31	0,98	43715,7	0,87	0,81	0,9	1,21	229,09	267,54
TUP-2A	84	33203,31	205,61	680,71	191,13	221,92	0,98	33970,25	0,9	0,86	0,93	1,16	189,09	224,9
TUP-2A	85	44535,54	238,13	795,1	234,98	246,05	0,98	45302,48	0,89	0,94	0,97	1,05	232,73	257,57
TUP-2A	86	38175,21	220,47	729,64	206,46	235,77	0,98	38849,59	0,9	0,87	0,94	1,14	205,7	238,04
TUP-2A	87	36403,31	215,29	718,84	185,22	250,62	0,98	37090,91	0,89	0,74	0,86	1,35	185,45	253,22
TUP-2A	88	33970,25	207,97	708,71	185,89	235,44	0,97	34988,43	0,85	0,78	0,88	1,27	194,65	255,38
TUP-2A	89	35186,78	211,66	716,35	181,82	251,43	0,98	35966,94	0,86	0,71	0,84	1,38	197,99	254,26
TUP-2A	90	39523,97	224,33	772,03	176,47	287,76	0,97	40621,49	0,83	0,61	0,78	1,63	177,81	285,82
TUP-2A	91	37844,63	219,51	732,14	203,41	238,27	0,98	38571,9	0,89	0,85	0,92	1,17	218,18	246,55
TUP-2A	92	31114,05	199,04	669,55	184,63	216,88	0,98	31907,44	0,87	0,84	0,92	1,17	185,45	228,25
TUP-2A	93	30876,03	198,27	649,49	189	208,53	0,98	31484,3	0,92	0,9	0,95	1,1	189,09	216,51
TUP-2A	94	30968,6	198,57	658,01	180,89	220,77	0,98	31523,97	0,9	0,81	0,9	1,22	178,18	222,29
TUP-2A	95	39047,93	222,97	733,54	208,82	238,51	0,98	39709,09	0,91	0,87	0,93	1,14	208,28	241,13
TUP-2A	96	36958,68	216,93	717,08	197,62	239,35	0,98	37646,28	0,9	0,82	0,91	1,21	196,36	240,47
TUP-2A	97	53725,62	261,54	882,89	228,49	300,72	0,98	54770,25	0,87	0,76	0,87	1,32	229,02	300,24
TUP-2A	98	37130.58	217.43	742.06	177.88	269.31	0.98	37937.19	0.85	0.65	0.81	1.51	185.13	269.43
TUP-2A	99	35689.26	213.17	700.04	199.16	228,46	0.98	36284.3	0.92	0.87	0.93	1.15	200	233.78
TUP-2A	100	43768.6	236.07	822.58	204.09	281.64	0.97	44998.35	0.81	0.7	0.84	1.38	219.54	289.57
TUP-2A	101	48714.05	249.05	821.69	226.76	274.2	0.98	49560.33	0.91	0.82	0.91	1.21	223.7	276.46
TUP-2A	102	37844.63	219.51	730.01	207.1	235.1	0.98	38558.68	0.89	0.87	0.93	1.14	210.91	241.13
TUP-2A	103	38466.12	221.31	726.11	207.69	237.05	0.99	39034.71	0.92	0.87	0.93	1.14	214.55	246.34
TUP-2A	104	41137.19	228.86	756.09	214.48	245.2	0.98	41917.36	0.9	0.87	0.93	1.14	214.55	247.83
TUP-2A	105	38585 12	221.65	735 52	208 85	237 18	0.98	39457.85	0.9	0.87	0.93	1 14	214 55	243 23
TUP-2A	106	34340 5	209.1	695.26	196 25	224 23	0.98	35067 77	0.89	0.87	0.93	1 14	207 27	231 27
TUP-2A	107	62466.12	282.02	1027.61	195.88	408.43	0.98	63841.32	0,74	0.48	0.69	2.09	195.32	402.52
TUP-2A	108	74142 15	307.25	1050 31	257 92	368.66	0.98	75292 56	0.84	0.69	0.83	1 43	256.83	367 34
TUP-2A	109	42446.28	232 47	762 11	219 3	246 64	0.98	43094 21	0,92	0.89	0.94	1 12	229.09	252 59
TUP-2A	110	45619.83	241 01	796.86	224 75	260 13	0.98	46360 33	0.9	0.86	0.93	1 16	233.99	268.2
TUP-2A	111	41388 43	229 56	769 38	212 12	250 43	0.98	42340 5	0.88	0.84	0.92	1 18	220 78	258.8
TUP-2A	112	57758 68	223,330	898.83	245 7	300 25	0.98	58671.07	0.9	0.82	0.9	1 22	241 7	303 11
TUP-2A	113	61183 47	279 11	961 27	235 36	336 33	0.97	62915 7	0.83	0.69	0.83	1 43	246.08	338 49
TUP-2A	114	49414 88	250.83	950.26	165.08	388 14	0.96	51358.68	0.69	0.42	0.65	2 35	164 73	369.21
TUP-2A	115	54161 98	262.6	881 79	230,83	301 22	0.98	55047 93	0.88	0.76	0.87	1 3	223 16	301.84
TLIP-24	116	44085.95	236.92	778 79	224 87	251.61	0,99	44680.99	0,00	0,70	0.94	1 12	232 73	259.64
TUP-2A	117	58446 28	200,02	907 57	262 42	285.2	0.98	59438.02	0.89	0,03	0.96	1 09	261.82	303 11
TUP-2A	118	46333.88	242 89	799 36	227 55	259.86	0,99	47034 71	0,03	0.87	0.93	1 14	229.09	270
TLIP-24	119	67887.6	212,000	992 13	270.96	325 36	0,98	69342 15	0,82	0.82	0.9	1.2	277 7	335.81
TUP-2A	120	60614.88	277 81	950 47	276,50	342.06	0,98	61633.06	0.84	0,62	0.81	1 51	225 38	344 9
TLIP-24	121	77368.6	313.86	1043.04	290.36	340.08	0,99	78479 34	0.89	0.85	0.92	1 17	307 36	352 78
	122	63153 72	283 57	966.42	236,50	356 23	0,55	64066 12	0,85	0,03	0,52	1,1,	231 /2	363 13
	122	47537 19	205,57	810 53	220,01	259 72	0,55	48251 24	0,03	0,03	0.95	1,50	231,42	263 15
	123	62400	240,02	911 96	255,50	318.09	0,55	63352.07	0,51	0,5	0,55	1,11	257,45	321 67
TI IP-2Δ	125	74062.91	307.02	1016 81	231,00	310,03	0,58	75028 1	0,00	0,75	0,89	1,20	200,2	336 63
TI ID_2A	125	63153 72	282 57	0/0 22	203,32	309 27	0,99	6/171 0	0,9	0,85	0,92	1 17	270,30	309.03
TI IP-2Δ	120	72436.36	203,57	1010 9/	203,27	300,57	0,98	73414 88	0,00	0,03	0,92	1,17	203,23	305,05
TI IP-2Δ	128	46161 98	242 14	803 62	270,25	250 12	0,09	47114 05	0,85	0,04	0,91	1 1/	236 36	268 82
TI ID_2A	120	62/170 2/	242,44	003,02	227,05	233,12	0,50	63695 97	0,9	0,00	0,94	1.06	230,30	200,82
TUP-2A	129	55550 /1	202,03	875 61	274,39	232,2	0,98	56257 02	0,9	0,95	0,97	1,00	277,7	284 22



# ANEXO B – Medidas de Forma, Turmalinas TUP 03B (Analyzr)

Sample	Grain	Area (um²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min Feret	Max Feret
Sumpre	number	Area (part )	diameter (µm)	(µm)	(µm)	(µm)	Solidity	convexarea	T Offit Tuccol	nounaness	compacticess	Aspectitutio	Willin Feret	Maxireret
TUP-3B	1	75283,35	309,6	1049,22	266,21	364,54	0,99	76401,59	0,86	0,72	0,85	1,37	279,86	368,05
TUP-3B	2	54327,95	263,01	8/1,/5	249,1	2/8,/8	0,99	55154,98	0,9	0,89	0,94	1,12	250,99	291,6
TUP-3B	4	47723 33	205,7	928,49 844 64	213,21	294 37	0,38	48748 38	0,81	0,03	0,73	1,30	214,71	299 19
TUP-3B	5	75527.96	310 11	1033 57	303.48	319.02	0,58	76855.87	0,89	0.94	0,97	1,41	307 17	329 72
TUP-3B	6	73291.48	305.48	1034.05	253.49	368.59	0.99	74234.99	0.86	0.69	0.83	1,45	260.64	371.07
TUP-3B	7	47432,12	245,75	816,65	225,45	269,26	0,98	48259,15	0,89	0,83	0,91	1,19	220,55	276,53
TUP-3B	8	43891,02	236,4	799,83	208,65	272,07	0,98	44974,32	0,86	0,75	0,87	1,3	212,37	276,53
TUP-3B	9	60350,15	277,2	914,22	264,92	290,35	0,98	61270,37	0,91	0,91	0,95	1,1	262,8	294,58
TUP-3B	10	45999,37	242,01	791,69	238,86	245,3	0,99	46616,73	0,92	0,97	0,99	1,03	241,33	250,34
TUP-3B	11	42504,86	232,63	769,9	230,58	236,27	0,98	43331,9	0,9	0,97	0,98	1,02	228,67	245,21
TUP-3B	12	47956,3	247,1	826,65	233,72	265,47	0,98	48725,09	0,88	0,87	0,93	1,14	235,09	268,09
TUP-3B	13	58556,3	273,05	984,96	194,96	385,17	0,98	59651,25	0,76	0,5	0,71	1,98	190,94	375,64
TUP-3B	14	41025,52	228,55	791,21	190,22	280,76	0,97	42295,19	0,82	0,66	0,81	1,48	204,78	280,13
TUP-3B	15	36109,91	214,42	748,39	164,33	283,57	0,97	37204,86	0,81	0,57	0,76	1,73	161,69	2/7,38
TUP-SD	10	22709 50	236,02	700,04	197 22	255,55	0,98	43165,99	0,9	0,87	0,95	1,15	192 /1	205,24
TUP-3B	17	41887 5	204,07	769 56	215 18	223,19	0,99	42761 13	0,92	0,84	0,91	1,19	232	258.6
TUP-3B	19	29866.39	195.01	647.03	192.79	199.03	0,98	30472.11	0,05	0,96	0.98	1,10	195.48	206.28
TUP-3B	20	37670,79	219,01	733,43	191,96	250,5	0,98	38392,99	0,88	0,76	0,87	1,3	194,14	252,49
TUP-3B	21	41409,92	229,62	757,9	211,28	250,12	0,98	42062,23	0,91	0,84	0,92	1,18	211,6	258,33
TUP-3B	22	27967,71	188,71	632,55	172,99	207,85	0,98	28666,61	0,88	0,82	0,91	1,2	178,52	212,51
TUP-3B	23	33535,63	206,64	687,16	187,26	229,54	0,98	34246,18	0,89	0,81	0,9	1,23	197,95	238,81
TUP-3B	24	31881,56	201,48	666,34	183,32	222,69	0,98	32580,46	0,9	0,82	0,9	1,21	193,07	228,47
TUP-3B	25	30122,66	195,84	696,67	142,79	271,98	0,97	30914,75	0,78	0,52	0,72	1,9	139,93	268,41
TUP-3B	26	38882,22	222,5	757,22	191,07	263,99	0,98	39837,39	0,85	0,71	0,84	1,38	192,49	262,89
TUP-3B	27	30099,36	195,76	649,03	1//,//	217,35	0,98	30588,59	0,9	0,81	0,9	1,22	181	223,1
TUP-3B	28	33931,67	207,85	598,13	189,73	231	0,98	34595,63	0,87	0,81	0,9	1,22	193,07	235,91
TUP-3D	29	3/080 02	221,33	760,36	177,04	205,50	0,90	36051 67	0,8	0,61	0,78	1,0	192,41	200,07
TUP-3B	31	27327.05	186 53	621 73	165 25	211 58	0,57	27979 36	0,8	0,57	0,70	1,71	168 49	204,1
TUP-3B	32	32114.53	202.21	678.82	171.33	239.87	0.98	32731.89	0.88	0,70	0.84	1.4	169.28	240.22
TUP-3B	33	36645,74	216,01	754,94	173,32	275,03	0,97	37880,46	0,81	0,62	0,79	1,59	176,25	273,83
TUP-3B	34	25591,45	180,51	595,11	169,02	193,74	0,98	26127,27	0,91	0,87	0,93	1,15	167,24	198,77
TUP-3B	35	29959,58	195,31	656,2	188,44	205,9	0,97	30809,91	0,87	0,9	0,95	1,09	187,71	215,04
TUP-3B	36	24065,51	175,05	622,07	150,87	210,86	0,95	25358,48	0,78	0,69	0,83	1,4	163,82	223,41
TUP-3B	37	32231,01	202,58	730,8	146,43	288,54	0,97	33162,88	0,76	0,49	0,7	1,97	150,17	279,55
TUP-3B	38	35935,19	213,9	724,26	180,42	255,86	0,98	36715,63	0,86	0,7	0,84	1,42	183,41	252,88
TUP-3B	39	27338,7	186,57	626,9	167,01	211,15	0,98	27991,01	0,87	0,78	0,88	1,26	178,08	221,84
TUP-3B	40	26931,01	185,17	640,21	164,57	211,84	0,95	28293,86	0,83	0,76	0,87	1,29	182,87	221,63
TUP-3B	41	27629,91	187,56	643,38	161,57	221,45	0,96	28/13,21	0,84	0,72	0,85	1,3/	166,71	222,89
TUP-3B	42	28212,33	189,53	6/3 38	154,42	230,4	0,97	29179,14	0,83	0,64	0,8	1,53	159,31	234,33
TUP-3B	43	28538.48	190.62	647.86	163 78	232,03	0,97	29400,39	0,84	0,03	0,81	1,32	106,89	235,32
TUP-3B	45	27268.81	186.33	619.24	160.1	217.33	0.98	27711.45	0,89	0,73	0,86	1,36	180,82	223.6
TUP-3B	46	24403,31	176,27	577,46	165,07	188,68	0,98	24834,3	0,92	0,87	0,93	1,14	170,65	195,02
TUP-3B	47	31357,38	199,81	735,43	140,05	289,26	0,97	32394,09	0,73	0,48	0,69	2,07	141,39	281,11
TUP-3B	48	25964,19	181,82	614,07	160,19	209,78	0,98	26616,5	0,87	0,75	0,87	1,31	160,92	215,56
TUP-3B	49	31345,73	199,78	710,81	153,11	267,99	0,96	32545,52	0,78	0,56	0,75	1,75	159,29	266,76
TUP-3B	50	27082,44	185,69	630,9	162,35	217,46	0,97	27827,93	0,86	0,73	0,85	1,34	191,13	223,91
TUP-3B	51	26232,11	182,76	607,25	172,65	195,12	0,98	26884,41	0,89	0,88	0,94	1,13	173,76	197,98
TUP-3B	52	30297,38	196,41	/36,11	133,39	294,3	0,96	31683,54	0,7	0,45	0,67	2,21	132,44	276,53
TUP-3B	53	22200.0	151,52	498,72	130,77	205 65	0,98	18357,81	0,91	0,74	0,86	1,35	130,32	212 70
TI IP-3B	54	32300,9	202,8	700 91	201,38	205,65	0,98	32904,80	0,91	0,97	0,99	1,02	204,78	213,79
TUP-3B	56	24228.59	175.64	640.55	143.19	224,51	0,98	26197.16	0,80	0,91	0,95	1,09	152.04	229.36
TUP-3B	57	28025.95	188.9	666.2	139.99	258.73	0.97	28887.93	0.79	0.53	0.73	1.85	146.76	255.06
TUP-3B	58	34118,04	208,42	700,81	182,09	239,69	0,98	34968,37	0,87	0,76	0,87	1,32	184,3	239,03
TUP-3B	59	21467,93	165,33	585,8	130,42	214,28	0,96	22294,96	0,79	0,6	0,77	1,64	124,74	209,2
TUP-3B	60	22527,93	169,36	596,42	141,24	205,37	0,96	23541,33	0,8	0,68	0,82	1,45	143,47	206,17
TUP-3B	61	23518,04	173,04	625,73	122	247,61	0,97	24216,94	0,75	0,49	0,7	2,03	121	241,55
TUP-3B	62	27839,58	188,27	641,72	153,53	232,94	0,98	28398,7	0,85	0,65	0,81	1,52	157	232,93
TUP-3B	63	26523,31	183,77	647,86	138,94	245,7	0,96	27688,15	0,79	0,56	0,75	1,77	146,95	244,69
TUP-3B	64	17204,63	148,01	541,33	110,5	204,46	0,96	17833,64	0,74	0,52	0,72	1,85	112,84	201,48
TUP-3B	65	24694,52	1//,32	638,01	126,42	253,89	0,97	25451,67	0,76	0,49	0,7	2,01	118,25	244,24
TI IP-3B	67	210/1,88	103,8	62/ 55	121,49	224,42	0,95	22108,59	0,8	0,53	0,73	1,85	120,97	223,18
TUP-3B	68	23949 03	174 67	591 6	155 6	197,75	0,98	23507,27	0,9	0,94	0,97	1 27	168 93	200,02
TUP-3B	69	28841.34	191.63	635.38	171.52	214.55	0.98	29435.4	0,00	0.8	0,89	1,27	173.76	217.17
TUP-3B	70	24368,37	176,14	629,87	130,73	241,31	0,97	25078,92	0,77	0,53	0,73	1,85	132,73	240,46
TUP-3B	71	18660,67	154,14	520,37	131,69	182,07	0,97	19196,5	0,87	0,72	0,85	1,38	131,42	182,94
TUP-3B	72	24030,57	174,92	583,46	148,79	206,51	0,98	24531,44	0,89	0,72	0,85	1,39	160,41	212,21
TUP-3B	73	24997,38	178,4	651,52	124,94	258,28	0,97	25707,93	0,74	0,48	0,69	2,07	123,12	250,48
TUP-3B	74	25381,77	179,77	590,77	167,56	193,08	0,98	25964,19	0,91	0,87	0,93	1,15	168,93	197,27
TUP-3B	75	26150,57	182,47	607,59	166,27	200,85	0,98	26814,52	0,89	0,83	0,91	1,21	168,3	205,35
TUP-3B	76	16692,1	145,78	506,03	121,42	177,09	0,96	17344,41	0,82	0,68	0,82	1,46	118,32	177,08
	//	18637,37	154,04	539,68	137,45	180,33	0,95	19662,43	0,8	0,73	0,85	1,31	157	190,45
TI IP-3B	78 70	17603 96	1/1,02	570,29 202 72	128 24	163 50	0,98	18078 25	0,89	U,82 N 94	0,91	1,2 1 10	127 56	168 07
TUP-3B	80	24729.47	177.44	601.25	159.24	201.34	0.97	25509.91	0,32	0.78	0.88	1,18	168.93	211.08

Comunito	Grain	Aug (	Equivalent	Perimeter	Minor axis	Major axis	Calidia	C	Forme footon	Deconducer	Commenter		Min Faunt	May Faret
Sample	number	Area (µm-)	diameter (µm)	(µm)	(µm)	(μm)	Solidity	convex area	Form factor	Roundness	compactness	Aspect ratio	win. Feret	wax. Feret
TUP-3B	81	22667,71	169,89	567,46	165,68	177,07	0,97	23261,77	0,88	0,92	0,96	1,07	169,44	187,09
TUP-3B	82	27362	186,65	616,42	173,14	201,85	0,98	27874,52	0,9	0,86	0,92	1,17	170,65	209,39
TUP-3B	83	23716,06	173,77	593,11	154,53	197,63	0,96	24694,52	0,85	0,77	0,88	1,28	160,41	203,69
TUP-3B	84	17670,56	150	511,89	139,91	165,54	0,96	18322,87	0,85	0,82	0,91	1,18	139,93	173,02
TUP-3B	85	28189,03	189,45	629,73	173,49	208,31	0,98	28748,15	0,89	0,83	0,91	1,2	178,59	213,79
TUP-3B	86	24543,09	176,77	594,08	148,67	212,48	0,98	25078,92	0,87	0,69	0,83	1,43	144,8	209,56
TUP-3B	87	18707,27	154,33	551,67	121,68	197,9	0,95	19662,43	0,77	0,61	0,78	1,63	129,51	199,74
TUP-3B	88	21479,57	165,37	558,98	138,64	198,27	0,97	22073,64	0,86	0,7	0,83	1,43	139,93	203,69
TUP-3B	89	27909,47	188,51	618,42	171,78	207,13	0,98	28387,05	0,92	0,83	0,91	1,21	177,47	214,23
TUP-3B	90	22225,07	168,22	580,97	136,67	208,68	0,97	23005,51	0,83	0,65	0,81	1,53	136,52	208,64
TUP-3B	91	27629,91	187,56	639,72	152,89	231,66	0,98	28293,86	0,85	0,66	0,81	1,52	154,79	230,98
TUP-3B	92	18718.91	154.38	520.51	133.58	180.55	0.98	19196.5	0.87	0.73	0.86	1.35	135.15	180.63
TUP-3B	93	23215,18	171,93	566,98	158,54	187,59	0,98	23611,22	0,91	0,84	0,92	1,18	167,24	199,01
TUP-3B	94	18905.29	155.15	528.51	137.81	179.06	0.96	19709.02	0.85	0.75	0.87	1.3	138.2	183.32
TUP-3B	95	19592.54	157.94	532.51	149.1	171.23	0.96	20349.68	0.87	0.85	0.92	1.15	153.58	175.93
TUP-3B	96	19347.92	156.95	518.03	140.92	175.32	0.98	19790.56	0.91	0.8	0.9	1.24	152.04	179.63
TUP-3B	97	17192.98	147.96	624.36	80.46	278.93	0.94	18218.03	0.55	0.28	0.53	3.47	79.18	256.7
TUP-3B	98	17845.29	150.74	517.2	124.34	184.11	0.96	18497.59	0.84	0.67	0.82	1.48	130.59	189.69
TUP-3B	99	21677.6	166.13	552.98	160.42	174.71	0.98	22155.18	0.89	0.9	0.95	1.09	161.69	179.17
TUP-3B	100	20629.24	162.07	537.33	151.45	175.3	0.97	21188.37	0.9	0.85	0.92	1.16	159.28	181.43
TUP-3B	101	16354.3	144.3	526.99	108	198.77	0.96	17006.6	0.74	0.53	0.73	1.84	101.28	191.25
TUP-3B	102	21095.18	163.89	548,99	146.83	185.27	0.97	21654.3	0.88	0.78	0.88	1.26	161.69	194.78
TUP-3B	103	15527.26	140.61	476.1	128.15	158.45	0.96	16214.52	0.86	0.79	0.89	1.24	122.87	166.71
TUP-3B	104	15236.05	139.28	569.46	116.11	174.45	0.93	16307.7	0.59	0.64	0.8	, 1.5	116.33	168.07
TUP-3B	105	16109.68	143.22	490.24	120.16	173.03	0.97	16552.32	0.84	0.69	0.83	1.44	116.56	174.06
TUP-3B	106	14478 91	135.78	477 56	102 35	183 15	0.97	14991 44	0.8	0.55	0.74	1 79	98 79	175 69
TUP-3B	107	17356.06	148.66	584.77	98.9	237.82	0.9	19312.98	0.64	0.39	0.63	2.4	112.18	228.95
TUP-3B	108	17554 08	149 5	511 89	126.7	178 43	0.97	18183.09	0.84	0.7	0.84	1 41	126.28	178 16
TUP-3B	109	20198.26	160 37	564 98	117 98	220	0.97	20803.97	0.8	0.53	0.73	1.86	121,89	219 55
TUP-3B	110	15119.57	138.75	458.25	128,49	151.01	0.98	15480.67	0.9	0.84	0.92	1.18	123.08	155.66
TUP-3B	111	13383.96	130 54	452 59	97.03	177 51	0.97	13756 71	0.82	0.54	0.74	1.83	94 12	173 39
TUP-3B	112	15014 74	138 27	487.07	100 51	191 44	0.97	15410 78	0.8	0.52	0.72	1.9	103 79	191.4
TUP-3B	113	19720 67	158.46	535.68	142 57	178 47	0,57	20338.04	0.86	0,32	0,72	1 25	154 34	189 57
TUP-3B	114	14909 9	137 78	462.25	123 71	155 54	0.97	15317 59	0.88	0.78	0.89	1 26	119 02	156 59
TUP-3B	115	17379 35	148 76	494 72	144 26	156 29	0.98	17798 69	0.89	0.91	0.95	1.08	147 21	160 66
TLIP-3B	115	12615 17	126 74	434.46	112 1	130,23	0,50	13022.87	0,84	0,51	0,55	1,00	115 84	151 18
TUP-3B	117	16994 96	147 1	515.2	120 3	185.83	0,96	17693.86	0.8	0,73	0,03	1,52	126.28	193 58
TLIP-3B	118	14688 58	136.76	479.07	101.45	185 54	0.97	15107 92	0.8	0 54	0.74	1.83	109.22	190 15
TLIP-3B	110	13721 77	130,70	4/3,0/	118 5	149 54	0.97	14199 35	0,8	0,54	0,74	1,05	116 04	148 34
TLIP-3B	120	13349 02	130 37	462 11	97.08	177 66	0,96	13908 14	0.79	0,70	0,00	1,20	96 67	172 58
TI ID_3B	120	971/ 73	111 22	/13 15	93 /9	1/13 28	0,50	10180 67	0,73	0,54	0,75	1,53	90,07	153 58
TI ID_3B	121	8308 //7	103 /1	351 23	87 51	173 51	0,55	8794 51	0,72	0,0	0,70	1,33	Q1 71	128 79
TI ID_3B	122	10565.06	115 98	446.45	74.2	185.85	0,00	11368.8	0,60	0,7	0,67	2 5	75.96	177 21
TI ID_3B	123	81/12 2	101.82	366 54	78.54	136.03	0,55	8/91 65	0,07	0,55	0,02	1 73	76,50	131.87
TI IP-2R	125	82/0 22	101,02	366 90	76.24	1/12 6/	0,90	0451,05 87/7 ۵۵	0,70	0,50	0,73	1,73	70,30	1/1 06
TI ID_3B	125	7524 94	103,03	252 90	73,24	132 00	0,95	8025 72	0,78	0,52	0,72	1 91	70,75	120 02
TLIP-3B	120	9936.05	57,00 112 /Q	352,09	104 85	121 22	0,94	10180 67	0,70	0,55	0,75	1,01	102 20	125,02
TI IP-2R	178	67// /	112,40 07 67	303,23	75 22	110 72	0,58	7105 5	0,34	0,80	0,33	1,10	Q1 01	123,49
TLIP-3B	120	5195 17	\$2,07 \$1.22	295 66	53,22	126.6	0,95	5474 72	0,77	0,0 0 /1	0,78	2,35	54 61	118 47



# ANEXO B – Medidas de Forma, Turmalinas TUP 07A (Analyzr)

Sample	Grain number	Area (µm²)	Equivalent diameter (µm)	Perimeter (µm)	Minor axis (µm)	Major axis (µm)	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
TUP-7A	1	7208,29	95,8	346,09	78,48	120,94	0,93	7774,47	0,76	0,63	0,79	1,54	87,51	130,56
TUP-7A	4	7774,47	99,49	328,23	87,47	113,69	0,97	7977,29	0,91	0,77	0,88	1,3	98,84	116,17
TUP-7A	6	5822,4	86,1	280,31	84,97	87,89	0,97	5974,51	0,93	0,96	0,98	1,03	84,3	92,34
TUP-7A	8	9667,39	110,95	366,23	98,5	126,74	0,98	9895,55	0,91	0,77	0,88	1,29	98,84	131,72
TUP-7A	9	8213,9	102,27	374,86	78,1	136,95	0,94	8763,18	0,73	0,56	0,75	1,75	80,17	136,66
TUP-7A	10	8813,89	105,93	366,93	103,54	110,41	0,94	9405,42	0,82	0,92	0,96	1,07	106,92	122,68
TUP-7A	11	7428	97,25	335,75	84,75	114,13	0,95	7791,37	0,83	0,73	0,85	1,35	84,57	114,56
TUP-7A	12	0042.05	95,52	300,93	95,30	104,08	0,80	0405 42	0,67	0,84	0,92	1,09	98,84	118,02
TUP-7A	15	6481 54	90.84	306,54	75 99	122,44	0,90	6684 36	0,84	0,77	0,88	1,27	78 11	152,50
TUP-7A	15	6304.08	89.59	306.39	74.83	108.9	0,96	6549.15	0,84	0.68	0.82	1,46	74	112,17
TUP-7A	17	6659	92.08	336.16	68.47	129,73	0,94	7106.88	0,74	0.5	0,71	1.89	72.8	129.65
TUP-7A	18	5678,75	85,03	295,76	75,29	97,92	0,94	6059,02	0,82	0,75	0,87	1,3	78,49	103,76
TUP-7A	19	9642,04	110,8	391,6	91,01	137,85	0,93	10368,78	0,79	0,65	0,8	1,51	98,84	141,01
TUP-7A	20	8535,02	104,25	362,12	86,19	129,78	0,97	8813,89	0,82	0,65	0,8	1,51	90,12	132,39
TUP-7A	21	8678,68	105,12	364,65	98,07	116,91	0,95	9092,75	0,82	0,81	0,9	1,19	100,72	131,1
TUP-7A	22	9929,35	112,44	369,34	105,6	120,37	0,97	10191,32	0,91	0,87	0,93	1,14	111	123,78
TUP-7A	23	8475,87	103,88	390,48	89,01	126,83	0,89	9481,48	0,7	0,67	0,82	1,42	93,94	143,03
TUP-7A	24	11247,63	119,67	391,19	115,28	125,35	0,98	11467,35	0,92	0,91	0,95	1,09	113,37	129,03
TUP-7A	25	6608,3	91,73	336,45	82,22	105,94	0,89	7411,1	0,73	0,75	0,87	1,29	86,27	112,32
TUP-7A	26	5856,21	86,35	311,5	73,83	106,19	0,92	6388,59	0,76	0,66	0,81	1,44	81,4	114,52
TUP-7A	27	/554,/6	98,08	317,31	90,81	106,17	0,98	7706,87	0,94	0,85	0,92	1,1/	96,61	110,69
TUP-7A	28	8154,75	101,9	339,57	96,66	108,52	0,96	14696.00	0,89	0,88	0,94	1,12	98,84	113,07
TUP-7A	29	15945,55	112 20	404,45	100,27	1/1,11	0,95	14000,99	0,73	0,61	0,78	1,01	104 65	1/0 9/
	30	11103 98	112,35	423.96	95 18	152,23	0,91	11872 97	0,72	0,05	0,31	1.6	95.93	149,04
TUP-7A	32	10199.77	113.96	394.3	95.48	137.52	0,95	10715.25	0,70	0,69	0.83	1.44	96.62	136.26
TUP-7A	33	8746,28	105,53	446,46	60,05	193,36	0,89	9836,4	0,55	0,3	0,55	3,22	63,05	176,75
TUP-7A	34	8678,68	105,12	379,85	81,45	138,28	0,95	9177,26	0,76	0,58	0,76	1,7	84,3	138,96
TUP-7A	35	12481,41	126,06	443,22	105,67	153,23	0,94	13241,96	0,8	0,68	0,82	1,45	109,39	154,07
TUP-7A	37	8754,73	105,58	365,52	89,04	128,09	0,95	9244,86	0,82	0,68	0,82	1,44	93,02	128,7
TUP-7A	38	10250,47	114,24	384,08	95,15	137,52	0,98	10512,44	0,87	0,69	0,83	1,45	98,67	142
TUP-7A	39	12675,77	127,04	482,63	91,64	185,02	0,91	13926,45	0,68	0,47	0,69	2,02	92,3	173,45
TUP-7A	40	15396,84	140,01	470	124,21	158,56	0,97	15827,81	0,88	0,78	0,88	1,28	127,44	166,51
TUP-7A	41	12008,18	123,65	440,52	98,03	159,36	0,94	12726,47	0,78	0,6	0,78	1,63	106,59	164,13
TUP-7A	42	16588,36	145,33	502,48	138	157,53	0,96	17340,45	0,83	0,85	0,92	1,14	141,83	164,06
TUP-7A	43	14087,01	133,93	452,27	121,74	149,4	0,97	14517,98	0,87	0,8	0,9	1,23	119,22	151,75
TUP-7A	44	10020 21	107,36	400.12	159,10	204,76	0,95	10622.2	0,01	0,07	0,82	1,47	101 74	205,59
TUP-7A	45	12388 45	113,00	400,12	116 43	133,33	0,93	12751 83	0,75	0,72	0,83	1,34	101,74	143 51
TUP-7A	40	12500,45	116.43	389.19	116,43	118.68	0,97	10960.32	0,88	0,05	0.98	1,13	115,11	143,51
TUP-7A	48	11399.74	120,48	415.44	101.36	146.25	0.96	11872.97	0.83	0.68	0.82	1.44	97.91	145.99
TUP-7A	49	10673	116,57	397,71	100,96	136,52	0,97	11044,82	0,85	0,73	0,85	1,35	100,2	137,49
TUP-7A	50	9988,51	112,77	410,33	96,32	138,27	0,94	10613,85	0,75	0,67	0,82	1,44	95,93	140,29
TUP-7A	51	14974,31	138,08	473,41	116,12	166,12	0,97	15481,34	0,84	0,69	0,83	1,43	133,61	172,1
TUP-7A	52	13664,48	131,9	452,56	110,73	159,49	0,97	14070,11	0,84	0,68	0,83	1,44	117,17	162,17
TUP-7A	53	13072,94	129,02	483,46	126,76	140,07	0,93	14087,01	0,7	0,85	0,92	1,1	129,11	153,41
TUP-7A	54	11856,07	122,86	422,67	102,86	148,82	0,96	12320,85	0,83	0,68	0,83	1,45	104,65	150,55
TUP-7A	55	11898,32	123,08	464,48	122,83	135,72	0,89	13343,36	0,69	0,82	0,91	1,1	133,9	143,51
TUP-7A	56	14188,41	134,41	484,33	115,1	164,79	0,95	14999,66	0,76	0,67	0,82	1,43	117,17	171,73
TUP-7A	57	14044 75	140,97	479,93	135,33	142.91	0,96	10210,54	0,85	0,87	0,93	1,12	140,29	157.22
TUP-7A	50	14044,75	133,72	400,00	120,49	142,01	0,95	1/610 30	0,65	0,00	0,94	1,11	132,37	157,22
TUP-7A	60	11011.02	118 4	390.19	113.03	125.51	0,98	11281.44	0,89	0,89	0,91	1,19	113.37	127.71
TUP-7A	61	13402.51	130.63	430.89	117.3	146.51	0.98	13689.83	0.91	0.79	0.89	1,25	113.37	148.03
TUP-7A	62	21379,8	164,99	659,87	105,19	268.2	0,91	23483,98	0,62	0,38	0,62	2,55	111,07	256,16
TUP-7A	63	14729,25	136,94	491,85	110,77	176	0,94	15751,76	0,77	0,61	0,78	1,59	116,28	176,82
TUP-7A	64	14146,16	134,21	457,26	114,47	159,87	0,97	14602,49	0,85	0,7	0,84	1,4	116,3	161,54
TUP-7A	65	16453,15	144,74	537,78	139,74	161,98	0,93	17695,38	0,71	0,8	0,89	1,16	142,42	176,97
TUP-7A	66	15337,68	139,74	469,01	133,34	148,34	0,97	15810,91	0,88	0,89	0,94	1,11	131,55	154,51
TUP-7A	67	13934,9	133,2	445,34	125,36	143,72	0,97	14348,97	0,88	0,86	0,93	1,15	133,61	149,48
TUP-7A	68	14484,18	135,8	454,39	127,18	147,35	0,98	14796,85	0,88	0,85	0,92	1,16	125,39	156,28
TUP-7A	69	17239,05	148,15	499,37	137,3	160,98	0,96	17864,39	0,87	0,85	0,92	1,17	139,53	165,47
TUP-7A	70	15455,99	140,28	477,52	126,54	158,07	0,96	16123,58	0,85	0,79	0,89	1,25	134,74	164,67
	/1	119/4,38	123,48	408,63	119,65	129,28	0,97	12354,65	0,9	0,91	0,96	1,08	110.20	139,6
TUP-7A	/2 72	15027 67	1/0,13	038,9	115,51	255,/	0,95	23914,95	0,7	0,44	0,67	2,21	110,28	251,01
TUP-7A	73	18007 76	142,45	480,74	1/6.06	170 90	0,96	10101 17	0,85	0,78	0,88	1,2/	133,01	1/0,13
TUP-7A	75	16013 72	142 79	482 92	118 9	170,89	0,95	16436 25	0,75	0,79 0 68	0,89	1 45	119 09	174 44
TUP-7A	76	13588.43	131.53	448.33	106.8	163 7	0.98	13918	0.85	0.65	0.8	1,43	104.65	163.05
TUP-7A	77	14822.2	137.38	457.96	119.68	158.31	0.98	15177.12	0.89	0.75	0.87	1.32	122.09	160.12
TUP-7A	78	16385,55	144,44	478,23	139,39	150,83	0,98	16791,17	0,9	0,92	0,96	1,08	139,78	156,55
TUP-7A	79	13563,07	131,41	443,22	114,2	153,62	0,97	13918	0,87	0,73	0,86	1,35	119,19	161,54
TUP-7A	80	14864,45	137,57	467,3	118,41	164,27	0,97	15261,63	0,86	0,7	0,84	1,39	115,11	165,29





# ANEXO B – Medidas de Forma, Turmalinas TUP 08A (Analyzr)

Sample	Grain number	Area (µm²)	Equivalent diameter (um)	Perimeter (um)	Minor axis (um)	Major axis (um)	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
TUP-8A	2	50446.03	253.44	922.85	220.31	313.82	0.96	52523.86	0.74	0.65	0.81	1.42	245.19	325.94
TUP-8A	3	51648,99	256,44	863,67	217,16	304,22	0,98	52633,22	0,87	0,71	0,84	1,4	217,39	299,61
TUP-8A	4	38307,11	220,85	734,88	207,5	236,2	0,98	39275,73	0,89	0,87	0,93	1,14	206,82	241,33
TUP-8A	5	34698,25	210,19	705,57	182,66	243,34	0,98	35448,14	0,88	0,75	0,86	1,33	187,49	252,13
TUP-8A	6	42478,4	232,56	808,11	191,34	286,78	0,97	43806,34	0,82	0,66	0,81	1,5	188,75	294,33
TUP-8A	7	27511,76	187,16	658,37	156,75	230,84	0,95	29089,66	0,8	0,66	0,81	1,47	162,06	233,44
TUP-8A	8	44493,74	238,02	831,09	186,98	304,99	0,97	46009,15	0,81	0,61	0,78	1,63	190,43	300,86
TUP-8A	9	29886,42	195,07	580,34	190,42	212,96	0,96	31130,25	0,81	0,84	0,92	1,12	189,72	228,74
TUP-8A	10	22449 97	169.07	574.86	134 99	213.08	0,95	22981 14	0,78	0,55	0,77	1,00	134 15	209,38
TUP-8A	12	40650.53	227.5	838.44	150.82	344.97	0,97	41791	0,03	0.43	0.66	2,30	154.15	335.97
TUP-8A	14	25590,15	180,51	618,62	156,89	210,37	0,96	26590,01	0,84	0,74	0,86	1,34	156,51	220
TUP-8A	15	48743,15	249,12	828,78	229,13	273,99	0,98	49649,27	0,89	0,83	0,91	1,2	225,3	278,73
TUP-8A	16	42384,66	232,31	795,41	186,28	291,43	0,97	43556,37	0,84	0,64	0,8	1,56	192,31	292,2
TUP-8A	17	29136,53	192,61	653,35	177,64	214,81	0,98	29792,69	0,86	0,8	0,9	1,21	185,77	224,74
TUP-8A	18	34807,61	210,52	701,34	188,96	236,02	0,98	35510,63	0,89	0,8	0,89	1,25	185,17	238,8
TUP-8A	19	44728,09	238,64	815,28	189,01	302,7	0,98	45/12,32	0,85	0,62	0,79	1,6	193,68	301,98
TUP-8A	20	24043,49	1/4,9/	612.46	163 14	208 / 3	0,98	24480,93	0,94	0,93	0,97	1,07	1/3,91	216.38
TUP-8A	22	25496.41	180.18	608.63	167.23	197.78	0,58	26230.69	0,86	0,77	0,88	1,20	165.11	213,95
TUP-8A	23	21621,96	165,92	564,07	136,68	203,26	0,97	22231,25	0,85	0,67	0,82	1,49	138,78	204,05
TUP-8A	24	29792,69	194,76	676,1	150,89	252,76	0,97	30605,07	0,82	0,59	0,77	1,68	150,51	248,89
TUP-8A	26	46056,02	242,16	834,93	210,15	286,17	0,97	47352,72	0,83	0,72	0,85	1,36	241,11	296,44
TUP-8A	27	33167,21	205,5	696,71	174,88	243,71	0,97	34182,69	0,86	0,71	0,84	1,39	181,67	253
TUP-8A	28	49352,43	250,67	827,42	223,22	282,29	0,99	50102,33	0,91	0,79	0,89	1,26	221,34	291,45
TUP-8A	29	43447,02	235,2	784,62	212,92	261,13	0,98	44353,14	0,89	0,81	0,9	1,23	213,44	263,88
TUP-8A	30	20934,56	163,26	561,2	127,53	211,2	0,97	21559,47	0,84	0,6	0,77	1,66	126,48	215,7
TUP-8A	32	31370 59	193,73	662 77	102,55	212,20	0,98	32042 37	0,89	0,85	0,92	1,10	101,02	223,17
TUP-8A	33	32136.11	202.28	671.64	195.89	211.13	0,98	32917.25	0,9	0,75	0,85	1,27	192.85	219.64
TUP-8A	34	24246,59	175,7	600,49	158,17	199,88	0,97	25090,22	0,84	0,77	0,88	1,26	164,9	211,86
TUP-8A	35	22996,77	171,12	582,76	141,26	211,04	0,97	23637,3	0,85	0,66	0,81	1,49	139,74	217,68
TUP-8A	36	21715,7	166,28	553,85	152,36	182,26	0,97	22278,12	0,89	0,83	0,91	1,2	152,02	184,25
TUP-8A	37	12591,98	126,62	433,76	115,16	145,1	0,96	13154,4	0,84	0,76	0,87	1,26	114,62	154,35
TUP-8A	38	50383,54	253,28	854,97	213,84	302,28	0,98	51336,53	0,87	0,7	0,84	1,41	210,48	305,14
TUP-8A	39	62303,74	281,65	951,03	240,42	333,09	0,98	63303,6	0,87	0,71	0,85	1,39	233,2	323,27
TUP-8A	40	35166,93	211,6	/25,62	1/0,54	264,19	0,98	35916,82	0,84	0,64	0,8	1,55	1/3,28	268,6
TUP-8A	41	44743 71	213,89	820.87	201 1	244,00	0,38	46056.02	0,88	0,77	0,88	1,3	204 99	243,32
TUP-8A	43	26152,57	182,48	633,07	147,93	228,35	0,97	26996,2	0,82	0,63	0,8	1,54	142,29	202,50
TUP-8A	44	40134,98	226,06	768,25	198,02	262,2	0,97	41166,09	0,85	0,74	0,86	1,32	194,85	262,48
TUP-8A	45	29886,42	195,07	638,1	175,77	216,7	0,98	30401,97	0,92	0,81	0,9	1,23	173,28	219,25
TUP-8A	46	21793,81	166,58	582,2	131	214,31	0,97	22574,95	0,81	0,6	0,78	1,64	134,88	215,7
TUP-8A	47	18684,87	154,24	519,52	148,98	162,37	0,96	19387,9	0,87	0,9	0,95	1,09	148,13	176,1
TUP-8A	48	25918,23	181,66	620,37	148,3	224,74	0,98	26496,27	0,85	0,65	0,81	1,52	154,15	229,45
TUP-8A	49	10122,73	143,28	486,21	135,19	155,93	0,95	16981,99	0,86	0,84	0,92	1,15	130,43	162,25
TUP-8A	51	44259 4	201,01	814 89	248,01	277,32	0,97	46040 4	0,87	0,88	0,94	1,12	243,7	250,10
TUP-8A	52	31511.19	200.3	682.82	188.31	219.6	0,98	32261.09	0,85	0.83	0,91	1,11	188.75	202,03
TUP-8A	53	20028,43	159,69	555,61	119,93	215,65	0,96	20793,95	0,82	0,55	0,74	1,8	118,58	213,18
TUP-8A	54	41166,09	228,94	765,94	211,87	250,37	0,98	42150,32	0,88	0,84	0,91	1,18	221,34	266,47
TUP-8A	55	35682,48	213,15	699,98	207,78	219,06	0,98	36307,39	0,92	0,95	0,97	1,05	210,35	229,15
TUP-8A	56	23074,88	171,41	585,08	152,3	196,38	0,97	23824,77	0,85	0,76	0,87	1,29	151,55	198,5
TUP-8A	57	31214,36	199,36	675,7	196,81	206,45	0,97	32245,47	0,86	0,93	0,97	1,05	193,68	218,82
TUP-8A	58	25683,89	180,84	613,98	160,18	208,99	0,97	26605,63	0,86	0,75	0,87	1,3	167,69	218,82
TUP-8A	59	2/062 02	210.00	518,79 725 11	120,8	181,3 266 95	0,96	26/01 12	0,82	0,68	0,83	1,43	166 01	185,14 256 02
TUP-8A	61	25340 19	179 62	594 74	165 62	200,85 197 18	0,90	25840 12	0,01	0,03	0,79	1,37	166 01	200,92
TUP-8A	62	38385,23	221,07	762,83	177,8	278,09	0,98	39135,12	0,83	0,63	0,79	1,56	181,67	285,38
TUP-8A	63	40525,55	227,15	759,55	214,64	242,17	0,98	41478,54	0,88	0,88	0,94	1,13	217,42	253
TUP-8A	64	34073,33	208,29	689,76	187,61	232,21	0,98	34838,85	0,9	0,8	0,9	1,24	195,64	237,19
TUP-8A	65	59444,77	275,11	922,45	241,13	314,51	0,98	60725,84	0,88	0,77	0,87	1,3	243,93	316,43
TUP-8A	66	39166,37	223,31	797,16	160,95	312,19	0,97	40213,1	0,77	0,51	0,72	1,94	161,14	304,99
TUP-8A	67	36244,9	214,82	726,97	205,99	232,05	0,97	37463,48	0,86	0,86	0,93	1,13	206,09	237,81
TUP-8A	68	26246,31	182,81	611,67	168,93	202,71	0,98	26730,62	0,88	0,81	0,9	1,2	162,1	208,7
TUP-8A	70	30855 04	108 21	681 20	101 14	209,93	0,98	29904,54	0,9	U,85 0 99	0,92	1,1/	107,20	214,79
TUP-8A	70	22059 4	190,21	571 81	144 35	211,33	0,90	22131,73	0,64	0,88	0,94	1,11	192,07	223,91
TUP-8A	72	16950.74	146.91	530.93	122	187.1	0.94	18059.96	0.76	0.62	0,35	1,57	130.43	190.13
TUP-8A	73	12888,81	128,1	446,29	110,01	153,64	0,96	13435,61	0,81	0,7	0,83	1,4	110,67	165,16
TUP-8A	74	41650,39	230,28	800,43	191,56	283,73	0,97	42868,97	0,82	0,66	0,81	1,48	205,53	292,86
TUP-8A	75	56492,06	268,19	913,98	230,69	314,77	0,98	57835,62	0,85	0,73	0,85	1,36	252,96	328,99
TUP-8A	76	51758,35	256,71	866,95	223,01	298,76	0,98	52773,83	0,87	0,74	0,86	1,34	235,88	306,8
TUP-8A	77	42353,42	232,22	767,46	210,1	257,06	0,98	43243,92	0,9	0,82	0,9	1,22	212,41	262,33
TUP-8A	/8 70	44134,42	237,05	/94,05	212,33	266,44	0,98	44978,05	0,88	0,79	0,89	1,25	215,96	2/4,55
TUP-8A	80	36166.79	214.59	710.76	200.94	230,47	0.98	36979.17	0,00	0,00	0,81	1.15	201.23	241.85
			,00	,, 0	,51	,0,	-,-0		-)5	2,37	-,50	_, 10	,	

unuber     runther     diameter (m)     (µm)     (µm) <th>Sample</th> <th>Grain</th> <th>Area (um²)</th> <th>Equivalent</th> <th>Perimeter</th> <th>Minor axis</th> <th>Major axis</th> <th>Solidity</th> <th></th> <th>Form factor</th> <th>Roundness</th> <th>Compactness</th> <th>Aspect ratio</th> <th>Min Forot</th> <th>May Forot</th>	Sample	Grain	Area (um²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity		Form factor	Roundness	Compactness	Aspect ratio	Min Forot	May Forot
TUP-BA     81.     2974.57     194.51     641.77     177.89     213.02     0.98     39325.11     0.91     0.83     0.91     1.1     189.72     220.57       TUP-BA     83     2237.48     156.83     567.35     151.11     199.71     0.97     2200.5     0.87     0.93     1.12     155.1     827.67       TUP-BA     84     21075.16     153.84     483.1     127.15     159.34     0.91     1599.77     0.83     0.75     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.87     0.81     0.81     0.55     125.67     0.88     0.75     10.76     0.88     375 <t< th=""><th>Jampie</th><th>number</th><th>Alea (µili )</th><th>diameter (µm)</th><th>(µm)</th><th>(μm)</th><th>(μm)</th><th>Solicity</th><th>CONVEX area</th><th>Formactor</th><th>Roununess</th><th>compactness</th><th>Aspectiatio</th><th>wiin. Felet</th><th>IVIAN. PETEL</th></t<>	Jampie	number	Alea (µili )	diameter (µm)	(µm)	(μm)	(μm)	Solicity	CONVEX area	Formactor	Roununess	compactness	Aspectiatio	wiin. Felet	IVIAN. PETEL
TUP-BA     82     3234.08     CO26,64     672.99     194.96     217.02     0.98     3379.12     0.92     0.93     0.95     1.11     198.44     217.21       TUP-BA     84     21075.16     161.814     564.91     155.76     175.77     0.97     21793.81     0.96     0.75     0.87     0.93     1.12     155.36     153.74     189.14       TUP-BA     86     1513.64     226.6     880.61     121.02     315.51     0.97     2179.83     0.96     0.81     1.5     121.84     183.44     183.44     183.41     0.97     0.81     0.66     0.81     1.5     121.84     183.44     149.74     123.82     141.44     128.24     129.82     121.32     123.88     314.67     123.88     143.34     140.97     133.91     200.82     153.74     129.42     153.74     129.82     121.88     129.82     121.88     129.82     121.88     129.82     121.88     129.82     123.88     129.82     129.82     129.82     129.82	TUP-8A	81	29714,57	194,51	641,77	177,89	213,02	0,98	30355,11	0,91	0,83	0,91	1,2	189,72	220,57
TUP-BA     88     2287.48     168.88     567.35     151.11     189.71     0.97     2.08     0.97     0.98     1.16     113.41     185.51     152.71     0.97     0.98     0.12     125.51     152.71     0.97     0.98     0.12     125.51     182.76       TUP-BA     86     1336.53     255.66     880.61     210.23     315.12     0.97     528.0.7     0.81     0.75     0.81     1.57     213.83     314.67       TUP-BA     86     39416.33     220.07     73.44     20.04     23.95     0.88     0.91     0.64     0.92     1.18     20.62     25.53       TUP-BA     88     39416.33     22.00     73.3.4     20.05.33     21.33     20.53     20.53     20.53     20.99     0.9     0.95     1.09     13.83     23.62     73.98     0.91     0.46     1.33     13.83     23.62     73.08     0.93     0.44     0.46     1.33     13.83     23.62     73.63     0.43     0.46	TUP-8A	82	33214,08	205,64	672,99	194,96	217,02	0,98	33792,12	0,92	0,9	0,95	1,11	198,44	221,52
TUP-BA     84     21075,16     163.81     546,91     155,36     175,77     0.97     21793,81     0.89     0.87     0.93     1,12     156,31     122,72       TUP-BA     85     1504,75     123,42     120,23     315,21     0.97     5220,7     0.81     0.55     0.87     125     123,42     165,91       TUP-BA     86     5136,53     225,66     880,61     120,23     315,21     0.97     5220,7     0.81     0.66     0.81     1,57     187,49     288,32       TUP-BA     88     39416,33     224,04     713,44     105,73     0.97     0.61     0.78     1.28     126,23     355,33       TUP-BA     90     2129,47     199,61     668,8     173,35     232,1     0.96     20,43     0.40     0.86     1,33     181,82     238,62       TUP-BA     91     3245,03     325,07     0.55     0.48     0.48     1,33     181,82     238,62       TUP-BA     99     3345,60	TUP-8A	83	22387,48	168,83	567,35	151,11	189,71	0,97	23090,5	0,87	0,79	0,89	1,26	153,74	189,15
TUP-BA     85     15044,76     138,4     421,12     129,34     0.94     1999,78     0,81     0,75     0,87     0,15     129,42     165,13       TUP-BA     86     5133,65,72     25,66     80,61     120,23     315,11     0,97     0,88     0,66     0,81     1,57     187,49     288,32       TUP-BA     88     94916,33     224,02     74,34     206,93     241,35     0,98     40931,40     0,98     0,64     0,22     1,18     120,62     21,12       TUP-BA     89     4915,57     226,64     53,35     30,53     30,53     30,74     0,88     0,94     0,9     0,95     1,99     1312,24,12     123,64     123,32     120,62     3243,24     0,83     0,74     0,86     1,33     181,82     239,68       TUP-BA     94     13435,61     130,79     745,88     162,38     226,60     0,78     0,74     0,76     1,75     133,181,82     236,76     193,18     193,68     226,60     772,188	TUP-8A	84	21075,16	163,81	546,91	155,96	175,27	0,97	21793,81	0,89	0,87	0,93	1,12	156,51	182,76
TUP-BA     86     51336,53     225,66     880,61     210,23     315,71     0.97     5280,7     0.83     0.66     0.68     1.5     213,88     314,67       TUP-BA     88     39416,33     224,02     743,34     206,33     243,35     0.98     40134,48     0.99     0.84     0.92     0.18     156,23     305,3       TUP-BA     89     43915,7     226,46     834,14     100,77     301,94     0.98     44066,2     0.79     0.55     10,99     130,30     200,62     251,23       TUP-BA     90     270,55     185,77     618,45     173,95     2526,07     0.88     0.99     0.90     0.91     173,81     223,88     193,82       TUP-BA     93     356260,53     224,47     764,88     112,38     291,56     0.95     3810,40     0.78     0.66     2,26     691,71     196,28       TUP-BA     95     3577,60     216,39     732     116,71     12,26     0.98     1073     0.46     0	TUP-8A	85	15044,76	138,4	483,1	127,15	159,34	0,94	15997,75	0,81	0,75	0,87	1,25	129,42	165,91
TUP-8A     87     40056,87     225,84     77,34     180,94     283,39     0.98     40014,98     0.94     0.94     0.94     0.94     0.94     0.94     0.94     0.92     1.18     209,62     251,23       TUP-8A     99     43315,7     224,02     743,34     206,93     0.93     0.93     0.95     0.95     1.08     91,23     206,63     2352,33     TUP-8A     90     27105,56     1.85,77     618,45     177,36     202,12     0.96     2342,24     0.88     0,74     0.96     1.03     1812,2     230,66       TUP-8A     92     23430,33     176,04     598,97     170,96     186,72     0.96     23422,94     0.76     0,74     0,44     1.08     173,31     128,82     136,75     117,49     128     126,79     155,41     0.93     3242,94     0.86     0.93     0,72,44     0.64     0,73     0.66     1.33     181,42     236,65     120,41     116,14     120,41     116,14     123     120,411,41	TUP-8A	86	51336,53	255,66	880,61	210,23	315,21	0,97	52820,7	0,83	0,66	0,81	1,5	213,88	314,67
TUP-BA     88     94416.33     224.02     74.34     206.93     244.95     0.98     401496.2     0.79     0.84     0.92     1.18     20.96.2     25.123       TUP-BA     90     27105.56     185.77     618.45     179.48     195.35     0.97     27808.59     0.89     0.9     0.95     1.08     173.91     200.8       TUP-AA     91     31292.47     199.61     688.88     173.95     128.72     0.96     23242.07     0.88     0.74     0.46     1.33     181.82     239.66       TUP-AA     91     332620.53     214.87     765.88     162.38     129.56     0.95     3810.40     0.78     0.44     0.48     1.12.8     128.56       TUP-AA     96     14732.3     136.69     1472.3     128.67     1576.41     0.76     0.48     0.74     0.48     1.08     120.48     171.61       TUP-AA     96     14732.3     136.69     172.79     127.26     0.97     0.76     0.69     1.63 <td< td=""><td>TUP-8A</td><td>87</td><td>40056,87</td><td>225,84</td><td>773,44</td><td>180,94</td><td>283,39</td><td>0,98</td><td>40931,74</td><td>0,84</td><td>0,64</td><td>0,8</td><td>1,57</td><td>187,49</td><td>288,32</td></td<>	TUP-8A	87	40056,87	225,84	773,44	180,94	283,39	0,98	40931,74	0,84	0,64	0,8	1,57	187,49	288,32
TUP-8A     99     439157     236,46     884,14     190,77     301,94     0,98     4460,2     0,79     0,61     0,78     1,58     192,33     305,33       TUP-8A     91     31232,47     199,61     666,88     173,95     123,21     0,96     3242,94     0,83     0,74     0,86     1,33     181,82     239,66       TUP-8A     91     31232,47     764,88     173,95     123,92     0,96     226,27     0,85     0,89     0,94     1,09     173,91     288,56       TUP-8A     94     13435,61     130,79     479,99     88,13     198,82     0,96     10,73     0,48     0,66     1,35     199,68     263,67       TUP-8A     96     1473,23     136,56     493,22     126,79     155,44     0,93     1576,341     0,76     0,76     1,68     12,3     120,84     20,77     1,68     12,32     120,84     10,05     320,26       TUP-8A     99     33354,68     200,50     165,75     176	TUP-8A	88	39416,33	224,02	743,34	206,93	243,95	0,98	40134,98	0,9	0,84	0,92	1,18	209,62	251,23
TUP-8A     90     27105,56     185,77     618,45     173,98     193,53     0,97     2780,89     0,98     0,98     0,98     0,98     0,94     1.09     173,28     2336,80       TUP-8A     92     24340,33     176,04     598,97     170,96     186,72     0,96     2526,07     0,85     0,89     0,94     1.09     173,28     138,82     239,68       TUP-8A     94     13435,61     130,79     479,99     88,13     198,26     0,64     0,73     0,74     0,76     1.08     139,36     263,67       TUP-8A     97     20184,66     160,31     588,66     127,36     1023,36     0,77     0,76     0,78     0,86     1,30,43     210,12       TUP-8A     97     20184,66     160,31     588,66     127,36     103,36     0,77     0,76     1.06     190,05     320,25     133,3     201,02     10,83     201,03     101,33     130,43     201,02     10,43     103,43     201,02     10,43     300,86	TUP-8A	89	43915,7	236,46	834,14	190,77	301,94	0,98	44806,2	0,79	0,61	0,78	1,58	196,23	305,35
TUP-8A     91     31292,47     199,61     686,88     173,95     222,1     0,96     22432,43     0,74     0,86     1,33     181,82     239,86       TUP-8A     93     3660,53     214,87     764,88     162,38     291,56     0,95     38104,02     0,78     0,54     0,74     1.8     173,28     198,26       TUP-8A     93     3660,53     214,87     764,88     162,38     291,56     0,95     3014,02     0,78     0,73     0,46     1,85     193,68     123,57     195,68     235,75     170,78     0,88     0,73     0,46     0,73     0,86     1,33     193,68     233,57     170,78     0,88     1,33     0,79     0,77     0,88     1,33     193,68     233,57     170,74     0,88     1,33     0,79     0,77     0,88     1,33     193,68     210,12     110,13     110,13     110,13     110,13     110,13     110,13     111,23     233,76     110,13     114,13     113,23     120,12     110,14	TUP-8A	90	27105,56	185,77	618,45	179,48	195,35	0,97	27808,59	0,89	0,9	0,95	1,09	173,91	200,8
TUP-8A     92     24340,33     170,64     598,57     170,96     182,72     0.96     222,627     0.085     0.94     0.94     1.09     172,28     198,22       TUP-8A     94     13435,61     130,77     479,99     188,13     198,82     0.95     0.61     0.73     0.64     0.74     1.8     173,91     228,56       TUP-8A     95     36776,08     216,39     732     186,71     225,66     0.98     3757,24     0.06     0.73     0.66     1,23     129,68     223,17       TUP-8A     96     1473,23     136,66     433,22     126,79     156,44     0.93     1576,34     0,76     0,76     1,66     130,43     210,12       TUP-8A     97     20184,66     160,31     548,66     127,36     242,71     0.98     34088,96     0.77     0,76     1,66     130,43     210,12       TUP-8A     100     40088,11     225,92     761,7     196,65     252,53     0,94     34385,86     0,77     <	TUP-8A	91	31292,47	199,61	686,88	173,95	232,1	0,96	32432,94	0,83	0,74	0,86	1,33	181,82	239,68
TUP-8A     93     36260,33     214,87     764,58     162,38     291,56     0,95     38104,02     0,78     0,74     0,44     1,8     173,91     288,56       TUP-8A     94     13435,61     130,79     479,99     88,13     198,62     0,66     0,73     0,64     0,74     0,86     1,25     135,62     86,17     10,628       TUP-8A     95     14732,3     136,96     493,32     126,79     155,24     0,93     20762,71     0,84     0,72     0,88     1,23     139,06     201,02     201,02     10,05     300,03     201,02     10,07     0,88     1,33     120,06     300,05     20,07     0,84     0,77     0,88     1,33     120,06     300,05     20,07     0,84     0,07     0,76     1,09     1300,05     300,07     1,07     0,88     1,38     205,53     25,138     0,97     0,47     0,86     1,38     205,53     25,138     0,97     10,53     1,38     205,53     25,138     0,97     306	TUP-8A	92	24340,33	176,04	598,97	170,96	186,72	0,96	25262,07	0,85	0,89	0,94	1,09	173,28	198,26
TUP-8A     94     13435,61     130,79     479,99     88,13     198,82     0.66     1401,65     0.73     0.68     1,22     167,28       TUP-8A     96     14732,3     136,96     493,32     126,79     156,24     0,93     15756,41     0,76     0,77     0.88     1,23     193,68     263,67       TUP-8A     97     20184,66     160,31     548,66     127,35     203,36     0,97     0,77     0,88     1,02     100,05     320,26       TUP-8A     99     3334,68     206,08     655,75     17,61     242,71     0,98     34088,96     0,87     0,72     0,85     1,38     205,53     251,38       TUP-8A     100     40088,11     225,92     761,7     196,55     252,65     0,94     43385,6     0,79     0,72     0,85     1,38     205,53     251,48     0,88     0,91     0,15     243,29       TUP-8A     103     42712,74     233,2     775,36     2216,27     218,43     263,76     <	TUP-8A	93	36260,53	214,87	764,58	162,38	291,56	0,95	38104,02	0,78	0,54	0,74	1,8	173,91	288,56
TUP-8A     95     36776,08     216,39     732     186,71     252,66     0,98     3757,284     0,86     0,73     0,86     1,35     193,68     263,67       TUP-8A     96     14732,3     136,96     493,32     126,79     105,24     0,93     15763,41     0,76     0,78     0,88     1,23     129,04     171,1       TUP-8A     97     2018,466     160,31     584,66     127,36     203,6     0,97     207,67     0,78     0,88     1,38     205,53     251,38       TUP-8A     99     3335,66     206,30     77     127,54     0,87     0,74     0,86     1,34     193,68     261,38       TUP-8A     100     31839,27     201,34     717,12     122,28     250,35     0,94     44366,7     0,91     0,88     0,91     1,12     221,34     258,92       TUP-8A     104     35385,65     212,26     77,13     212,25     0,97     3664,23     0,85     0,84     0,91     1,15     231,38 </td <td>TUP-8A</td> <td>94</td> <td>13435,61</td> <td>130,79</td> <td>479,99</td> <td>88,13</td> <td>198,82</td> <td>0,96</td> <td>14013,65</td> <td>0,73</td> <td>0,43</td> <td>0,66</td> <td>2,26</td> <td>86,17</td> <td>196,28</td>	TUP-8A	94	13435,61	130,79	479,99	88,13	198,82	0,96	14013,65	0,73	0,43	0,66	2,26	86,17	196,28
TUP-8A   96   14732,3   136,96   493,32   126,79   156,24   0,93   15763,41   0,76   0,77   0,88   1,23   129,04   171,61     TUP-8A   97   20184,66   160,31   548,66   127,36   203,36   0,97   0,762,71   0,84   0,62   0,79   1,6   130,43   210,12     TUP-8A   99   33354,68   206,08   695,75   176,31   242,71   0,98   34088,96   0,87   0,72   0,85   1,38   205,53   251,38     TUP-8A   100   40088,11   225,92   76,7   166   26,263   0,97   0,42   0,72   0,85   1,34   193,68   263,53     TUP-8A   102   43603,24   235,62   777,12   222,8   250,25   0,98   443572   0,99   0,66   0,93   1,15   231,38   263,76     TUP-8A   103   42712,74   233,2   775,36   218,25   251,4   0,98   43572   0,99   0,66   0,93   1,15   231,88   263,77   1,15   183,47	TUP-8A	95	36776,08	216,39	732	186,71	252,66	0,98	37572,84	0,86	0,73	0,86	1,35	193,68	263,67
TUP-8A   97   20184,66   160,31   548,66   127,36   203,36   0,97   2076,71   0,84   0,62   0,79   1,6   130,43   220,12     TUP-8A   98   46352,86   242,94   856,88   189,68   321,24   0,98   47430,83   0,77   0,75   0,76   1,69   190,05   320,26     TUP-8A   100   40088,11   225,92   761,7   196,65   262,63   0,97   41275,45   0,87   0,74   0,86   1,34   193,68   261,38     TUP-8A   101   31339,27   201,34   712,12   165,98   225,20   0,98   44368,76   0,91   0,89   0,94   1,12   221,42   289,29     TUP-8A   103   42712,74   233,2   775,36   218,25   251,4   0,98   443572   0,88   0,84   0,91   1,12   221,34   228,89   1,14   223,38   263,76     TUP-8A   106   25324,56   179,57   611,5   164,18   200,32   0,96   26340,05   0,85   0,8   0,91   1,22<	TUP-8A	96	14732,3	136,96	493,32	126,79	156,24	0,93	15763,41	0,76	0,77	0,88	1,23	129,04	171,61
TUP-8A   98   46352,86   242,94   856,89   189,68   321,24   0,98   47430,83   0,79   0,57   0,76   1,69   190,05   320,26     TUP-8A   99   33354,68   206,08   695,75   176,31   242,71   0,98   34088,96   0,87   0,72   0,85   1,38   205,53   251,38     TUP-8A   101   31839,27   201,34   712,12   165,98   225,53   0,94   33885,86   0,79   0,62   0,79   1,54   175   249,29     TUP-8A   102   43603,24   225,62   777,12   222,8   250,25   0,98   44368,76   0,91   0,89   0,94   1,12   221,34   258,95     TUP-8A   104   35385,65   212,26   721,38   199,19   232,22   0,97   36604,23   0.85   0,84   0,91   1,17   198,19   238,76     TUP-8A   106   25324,56   179,57   611,5   164,18   200,32   0,96   36541,74   0,78   0,62   0,79   1,54   183,46   133,36   1	TUP-8A	97	20184,66	160,31	548,66	127,36	203,36	0,97	20762,71	0,84	0,62	0,79	1,6	130,43	210,12
TUP-8A   99   33354,68   206,08   695,75   176,31   242,71   0,98   34088,96   0,87   0,72   0,85   1,38   205,53   251,38     TUP-8A   100   40088,11   225,52   761,7   196,65   226,63   0,97   41275,45   0,87   0,74   0,86   1,34   193,68   261,38     TUP-8A   102   43603,24   225,62   777,12   222,8   225,52   0,98   44368,76   0,91   0,89   0,94   1,12   221,34   283,35     TUP-8A   103   42712,74   233,2   775,36   218,25   255,4   0,98   4363,76   0,91   0,89   0,46   0,93   1,15   231,38   263,76     TUP-8A   104   35385,65   212,26   711,38   199,19   232,23   0,97   3664,23   0,85   0,48   0,91   1,17   198,19   238,39   0,65   36541,74   0,78   0,42   0,79   1,54   183,74   266,97   1,54   183,74   266,97   1,54   183,74   266,97   1,52   1,61,	TUP-8A	98	46352,86	242,94	856,89	189,68	321,24	0,98	47430,83	0,79	0,57	0,76	1,69	190,05	320,26
TUP-8A   100   40088,11   225,92   761,7   196,65   262,63   0,97   41275,45   0,87   0,74   0,86   1,34   193,68   261,38     TUP-8A   101   31339,27   201,34   712,12   165,98   255,39   0,94   3385,86   0,91   0,62   0,79   0,14   117   249,92     TUP-8A   103   42712,74   233,22   775,36   218,25   251,4   0,98   44368,76   0,91   0,88   0,93   1,15   231,38   263,76     TUP-8A   104   35385,65   212,66   721,38   199,19   232,23   0,97   3664,74   0,78   0,62   0,79   1,54   183,74   266,97     TUP-8A   106   25324,56   179,57   611,5   164,18   200,32   0,96   26340,0   0,85   0,8   0,9   1,22   166,01   206,22     TUP-8A   107   28964,68   192,04   705,01   151,08   262,33   0,92   3141,74   0,73   0,54   0,73   1,74   157,49   260,03 <t< td=""><td>TUP-8A</td><td>99</td><td>33354,68</td><td>206,08</td><td>695,75</td><td>176,31</td><td>242,71</td><td>0,98</td><td>34088,96</td><td>0,87</td><td>0,72</td><td>0,85</td><td>1,38</td><td>205,53</td><td>251,38</td></t<>	TUP-8A	99	33354,68	206,08	695,75	176,31	242,71	0,98	34088,96	0,87	0,72	0,85	1,38	205,53	251,38
TUP-8A   101   31839,27   201,34   712,12   165,98   255,39   0,94   33885,86   0,79   0,62   0,79   1,54   175   249,29     TUP-8A   102   43603,24   225,62   777,12   222,8   250,25   0,86   44368,76   0,91   0,89   0,94   1,15   231,38   263,76     TUP-8A   104   35385,65   212,26   174,22   268,39   0,97   36604,23   0,86   0,93   1,15   231,38   266,76     TUP-8A   105   35245,04   211,84   752,61   174,22   268,39   0,96   36541,74   0,78   0,62   0,79   1,54   183,74   266,97     TUP-8A   106   25324,56   179,57   611,5   164,18   200,22   0,96   26340,05   0,85   0,8   0,99   1,22   166,01   205,22     TUP-8A   108   16513,3   148   489,65   120,53   175,59   0,97   1707,57   0,87   0,68   0,83   1,44   131,4   157,49   260,03     TUP-8A<	TUP-8A	100	40088,11	225,92	761,7	196,65	262,63	0,97	41275,45	0,87	0,74	0,86	1,34	193,68	261,38
TUP-8A   102   43603,24   235,62   777,12   222,8   250,25   0,98   44368,76   0,91   0,89   0,94   1,12   221,34   258,95     TUP-8A   103   42712,74   233,2   775,36   218,25   251,4   0,98   43572   0,89   0,86   0,93   1,17   231,38   263,76     TUP-8A   105   35245,04   211,84   752,61   174,22   268,39   0,96   36541,74   0,78   0,62   0,79   1,54   183,74   266,97     TUP-8A   106   25324,56   179,57   611,5   164,18   200,32   0,96   26340,05   0,85   0,8   0,9   1,22   166,01   206,22     TUP-8A   107   28964,68   192,04   705,01   151,08   262,33   0,92   3141,46   0,73   0,54   0,73   1,74   157,49   260,03     TUP-8A   108   16513,3   145   489,65   120,53   177,55   0,97   1707,57   0,87   0,68   0,83   1,46   131,36   179,99   100-5 <td>TUP-8A</td> <td>101</td> <td>31839,27</td> <td>201,34</td> <td>712,12</td> <td>165,98</td> <td>255,39</td> <td>0,94</td> <td>33885,86</td> <td>0,79</td> <td>0,62</td> <td>0,79</td> <td>1,54</td> <td>175</td> <td>249,29</td>	TUP-8A	101	31839,27	201,34	712,12	165,98	255,39	0,94	33885,86	0,79	0,62	0,79	1,54	175	249,29
TUP-8A   103   42712,74   233,2   775,36   218,25   251,4   0,98   43572   0,89   0,86   0,93   1,15   231,38   263,76     TUP-8A   104   35385,65   212,26   721,38   199,19   232,23   0,97   36604,23   0,85   0,84   0,91   1,17   198,19   238,89     TUP-8A   106   25324,56   179,57   611,5   164,18   200,32   0,96   26340,05   0,85   0,8   0,9   1,22   166,01   206,22     TUP-8A   107   28964,68   192,04   705,01   151,08   262,33   0,92   31417,46   0,73   0,54   0,73   1,74   157,49   260,03     TUP-8A   108   16513,3   145   489,65   120,53   175,59   0,97   17075,72   0,87   0,68   0,83   1,46   131,36   179,09     TUP-8A   110   42447,16   232,48   797,32   231,33   241,76   0,96   4136,51   0,84   0,92   0,96   1,05   229,18   255,09 <tr< td=""><td>TUP-8A</td><td>102</td><td>43603,24</td><td>235,62</td><td>777,12</td><td>222,8</td><td>250,25</td><td>0,98</td><td>44368,76</td><td>0,91</td><td>0,89</td><td>0,94</td><td>1,12</td><td>221,34</td><td>258,95</td></tr<>	TUP-8A	102	43603,24	235,62	777,12	222,8	250,25	0,98	44368,76	0,91	0,89	0,94	1,12	221,34	258,95
TUP-8A   104   35385,65   212,26   721,38   199,19   232,23   0,97   36604,23   0,85   0,84   0,91   1,17   198,19   238,89     TUP-8A   105   35245,04   211,84   752,61   174,22   268,39   0,96   36541,74   0,78   0,62   0,79   1,54   183,74   266,97     TUP-8A   106   25324,56   179,57   611,5   164,18   200,32   0,96   26340,05   0,85   0,8   0,9   1,22   166,01   206,22     TUP-8A   108   16513,3   145   489,65   120,53   175,59   0,97   17075,72   0,87   0,68   0,83   1,46   131,36   179,99     TUP-8A   110   42447,16   232,48   797,32   231,33   241,76   0,96   44196,91   0,84   0,92   0,96   1,05   229,18   255,09     TUP-8A   112   57163,84   266,78   928,04   225,05   330,24   0,98   5860,13   0,83   0,67   0,93   1,14   292,25   251,38	TUP-8A	103	42712,74	233,2	775,36	218,25	251,4	0,98	43572	0,89	0,86	0,93	1,15	231,38	263,76
TUP-8A   105   35245,04   211,84   752,61   174,22   268,39   0.96   36541,74   0.78   0.62   0.79   1.54   183,74   266,97     TUP-8A   106   25324,56   179,57   611,5   164,18   200,32   0.96   26340,05   0.85   0.8   0.9   1,22   166,01   206,22     TUP-8A   107   28964,68   192,04   705,01   151,08   262,33   0.92   31417,46   0,73   0,54   0,73   1,74   157,49   260,03     TUP-8A   108   16513,3   145   489,65   120,53   175,59   0,97   17075,72   0,87   0,68   0,83   1,46   131,36   179,09     TUP-8A   110   42447,16   232,48   797,32   231,33   241,76   0.96   44196,91   0,84   0,92   0,96   1,05   229,18   251,09     TUP-8A   111   48055,74   247,36   995,12   215,49   308,83   0,94   51336,53   0,74   0,64   0,82   1,47   234,77   334,5	TUP-8A	104	35385,65	212,26	721,38	199,19	232,23	0,97	36604,23	0,85	0,84	0,91	1,17	198,19	238,89
TUP-8A   106   25324,56   179,57   611,5   164,18   200,32   0.96   26340,05   0.85   0.8   0.9   1,22   166,01   206,22     TUP-8A   107   28964,68   192,04   705,01   151,08   262,33   0,92   31417,46   0,73   0,54   0,73   1,74   157,49   260,03     TUP-8A   108   16513,3   145   489,65   120,53   175,59   0,97   17075,72   0,87   0,68   0,83   1,46   131,36   179,09     TUP-8A   110   42447,16   232,48   797,32   231,33   241,76   0,96   44196,91   0,84   0,92   0,96   1,05   229,12   255,09     TUP-8A   112   57163,84   269,78   928,04   225,05   330,24   0,98   58601,13   0,83   0,67   0,82   1,47   234,77   7334,5     TUP-8A   113   43306,41   234,82   772,48   227,9   242,52   0,98   38870,24   0,88   0,87   0,93   1,14   229,25   281,38	TUP-8A	105	35245,04	211,84	752,61	174,22	268,39	0,96	36541,74	0,78	0,62	0,79	1,54	183,74	266,97
TUP-8A   107   28964,68   192,04   705,01   151,08   262,33   0.92   31417,46   0.73   0.54   0.73   1,74   157,49   260,03     TUP-8A   108   16513,3   145   489,65   120,53   175,59   0,97   17075,72   0,87   0,68   0,83   1,46   131,36   179,09     TUP-8A   110   42447,16   232,48   797,32   231,33   241,76   0.96   44196,91   0,84   0.92   0.96   1,05   229,18   255,09     TUP-8A   111   48055,74   247,36   905,12   215,49   308,83   0,94   51336,53   0,74   0,64   0,8   1,43   226,22   311,95     TUP-8A   113   43306,41   234,82   772,48   227,9   242,52   0,98   44212,53   0,91   0,94   0,97   1,06   229,25   251,38     TUP-8A   114   47024,64   244,69   816,64   231,37   262,76   0,98   48008,87   0,88   0,87   0,93   1,14   292,95   281,44	TUP-8A	106	25324.56	179.57	611.5	164.18	200.32	0.96	26340.05	0.85	0.8	0.9	1.22	166.01	206.22
TUP-8A   108   16513,3   145   489,65   120,53   175,59   0,97   17075,72   0,87   0,68   0,83   1,46   131,36   179,09     TUP-8A   110   42447,16   232,48   797,32   231,33   241,76   0,96   44196,91   0,84   0,92   0,96   1,05   229,18   255,09     TUP-8A   111   48055,74   247,36   905,12   215,49   308,83   0,94   51336,53   0,74   0,64   0,82   1,43   226,22   311,95     TUP-8A   112   57163,84   269,78   928,04   225,05   330,24   0,98   58601,13   0,83   0,67   0,82   1,47   234,77   334,5     TUP-8A   113   43306,41   234,82   772,48   227,9   242,52   0,98   44212,53   0,91   0,94   0,97   1,06   229,25   251,38     TUP-8A   114   47024,64   244,69   816,64   231,37   262,76   0,98   43807,24   0,88   0,87   0,93   1,14   229,25   281,41	TUP-8A	107	28964,68	192,04	705,01	151,08	262,33	0,92	31417,46	0,73	0,54	0,73	1,74	157,49	260,03
TUP-8A   110   42447,16   232,48   797,32   231,33   241,76   0,96   44196,91   0,84   0,92   0,96   1,05   229,18   255,09     TUP-8A   111   48055,74   247,36   905,12   215,49   308,83   0,94   51336,53   0,74   0,64   0,8   1,43   226,22   311,95     TUP-8A   112   57163,84   269,78   928,04   225,05   330,24   0,98   58601,13   0,83   0,67   0,82   1,47   234,77   334,5     TUP-8A   113   43306,41   234,82   772,48   227,9   242,52   0,98   44212,53   0,91   0,94   0,97   1,06   229,25   251,38     TUP-8A   114   47024,64   244,69   816,64   231,37   262,76   0,98   48008,87   0,89   0,87   0,93   1,14   229,25   281,41     TUP-8A   115   33042,23   205,11   666,49   192,95   219,26   0,98   33870,24   0,88   0,87   0,93   1,14   229,25   281,41 <td>TUP-8A</td> <td>108</td> <td>16513,3</td> <td>145</td> <td>489,65</td> <td>120,53</td> <td>175,59</td> <td>0,97</td> <td>17075,72</td> <td>0,87</td> <td>0,68</td> <td>0,83</td> <td>1,46</td> <td>131,36</td> <td>179,09</td>	TUP-8A	108	16513,3	145	489,65	120,53	175,59	0,97	17075,72	0,87	0,68	0,83	1,46	131,36	179,09
TUP-8A   111   48055,74   247,36   905,12   215,49   308,83   0,94   51336,53   0,74   0,64   0,8   1,43   226,22   311,95     TUP-8A   112   57163,84   269,78   928,04   225,05   330,24   0,98   58601,13   0,83   0,67   0,82   1,47   234,77   334,5     TUP-8A   113   43306,41   234,82   772,48   227,9   242,52   0,98   44212,53   0,91   0,94   0,97   1,06   229,25   251,38     TUP-8A   114   47024,64   244,69   816,64   231,37   262,76   0,98   48008,87   0,89   0,87   0,93   1,14   229,25   281,41     TUP-8A   115   33042,23   205,11   686,49   192,95   219,26   0,98   33870,24   0,88   0,87   0,93   1,14   129,564   228,46     TUP-8A   116   31933,01   201,64   678,58   172,93   236,58   0,97   32792,26   0,87   0,73   0,85   1,37   195,64   245,49 </td <td>TUP-8A</td> <td>110</td> <td>42447.16</td> <td>232.48</td> <td>797.32</td> <td>231.33</td> <td>241.76</td> <td>0.96</td> <td>44196.91</td> <td>0.84</td> <td>0.92</td> <td>0.96</td> <td>1.05</td> <td>229.18</td> <td>255.09</td>	TUP-8A	110	42447.16	232.48	797.32	231.33	241.76	0.96	44196.91	0.84	0.92	0.96	1.05	229.18	255.09
TUP-8A   112   57163,84   269,78   928,04   225,05   330,24   0,98   58601,13   0,83   0,67   0,82   1,47   234,77   334,5     TUP-8A   113   43306,41   234,82   772,48   227,9   242,52   0,98   44212,53   0,91   0,94   0,97   1,06   229,25   251,38     TUP-8A   114   47024,64   244,69   816,64   231,37   262,76   0,98   48008,87   0,89   0,87   0,93   1,14   229,25   281,41     TUP-8A   116   3193,01   201,64   678,58   172,93   236,58   0,97   32792,26   0,87   0,73   0,85   1,37   195,64   228,46     TUP-8A   117   33229,7   205,69   701,74   177,75   241,3   0,97   34323,3   0,85   0,73   0,85   1,37   195,64   226,46     TUP-8A   117   33229,7   205,69   701,74   177,75   241,3   0,97   34323,3   0,85   0,73   0,85   1,36   177,87   246,49	TUP-8A	111	48055,74	247,36	905,12	215,49	308,83	0,94	51336,53	0,74	0,64	0,8	1,43	226,22	311,95
TUP-8A   113   43306,41   234,82   772,48   227,9   242,52   0,98   44212,53   0,91   0,94   0,97   1,06   229,25   251,38     TUP-8A   114   47024,64   244,69   816,64   231,37   262,76   0,98   48008,87   0,89   0,87   0,93   1,14   229,25   281,41     TUP-8A   115   33042,23   205,11   686,49   192,95   219,26   0,98   33870,24   0,88   0,88   0,94   1,14   195,64   228,46     TUP-8A   116   3193,01   201,64   678,58   172,93   236,58   0,97   32792,26   0,87   0,73   0,85   1,37   195,64   228,46     TUP-8A   117   33229,7   205,69   701,74   177,75   241,3   0,97   34323,3   0,85   0,73   0,85   1,36   177,87   246,49     TUP-8A   118   28527,24   190,58   639,85   174,38   211,74   0,97   29370,87   0,88   0,81   0,9   1,21   177,87   215,04	TUP-8A	112	57163,84	269,78	928,04	225,05	330,24	0,98	58601,13	0,83	0,67	0,82	1,47	234,77	334,5
TUP-8A   114   47024,64   244,69   816,64   231,37   262,76   0,98   48008,87   0,89   0,87   0,93   1,14   229,25   281,41     TUP-8A   115   33042,23   205,11   686,49   192,95   219,26   0,98   33870,24   0,88   0,87   0,93   1,14   229,25   281,41     TUP-8A   116   31933,01   201,64   678,58   172,93   236,58   0,97   32792,26   0,87   0,73   0,85   1,37   195,64   245     TUP-8A   117   33229,7   205,69   701,74   177,75   241,3   0,97   34323,3   0,85   0,73   0,85   1,36   177,87   246,49     TUP-8A   118   28527,24   190,58   639,85   174,38   211,74   0,97   29370,87   0,88   0,81   0,9   1,21   177,87   215,04     TUP-8A   119   18622,38   153,98   520,31   131,95   180,88   0,96   19387,9   0,86   0,72   0,85   1,37   138,34   181,34	TUP-8A	113	43306,41	234,82	772,48	227,9	242,52	0,98	44212,53	0,91	0,94	0,97	1,06	229,25	251,38
TUP-8A   115   33042,23   205,11   686,49   192,95   219,26   0,98   33870,24   0,88   0,88   0,94   1,14   195,64   228,46     TUP-8A   116   31933,01   201,64   678,58   172,93   236,58   0,97   32792,26   0,87   0,73   0,85   1,37   195,64   245     TUP-8A   117   33229,7   205,69   701,74   177,75   241,3   0,97   34323,3   0,85   0,73   0,85   1,36   177,87   246,49     TUP-8A   118   28527,24   190,58   639,85   174,38   211,74   0,97   29370,87   0,88   0,81   0,9   1,21   177,87   215,04     TUP-8A   119   18622,38   153,98   520,31   131,95   180,88   0,96   19387,9   0,86   0,72   0,85   1,37   138,34   181,34     TUP-8A   120   26746,24   184,54   650,47   144,29   241,41   0,97   27683,61   0,79   0,58   0,76   1,67   138,88   240,81	TUP-8A	114	47024,64	244,69	816,64	231,37	262,76	0,98	48008,87	0,89	0,87	0,93	1,14	229,25	281,41
TUP-8A     116     31933,01     201,64     678,58     172,93     236,58     0,97     32792,26     0,87     0,73     0,85     1,37     195,64     245       TUP-8A     117     33229,7     205,69     701,74     177,75     241,3     0,97     34323,3     0,85     0,73     0,85     1,36     177,87     246,49       TUP-8A     118     28527,24     190,58     639,85     174,38     211,74     0,97     29370,87     0,88     0,81     0,9     1,21     177,87     215,04       TUP-8A     119     18622,38     153,98     520,31     131,95     180,88     0,96     19387,9     0,86     0,72     0,85     1,37     138,34     181,34       TUP-8A     120     26746,24     184,54     650,47     144,29     241,41     0,97     27683,61     0,79     0,58     0,76     1,67     138,88     240,81       TUP-8A     121     15247,86     139,33     465,94     122,69     159,98     0,96	TUP-8A	115	33042,23	205,11	686,49	192,95	219,26	0,98	33870,24	0,88	0,88	0,94	1,14	195,64	228,46
TUP-8A   117   33229,7   205,69   701,74   177,75   241,3   0,97   34323,3   0,85   0,73   0,85   1,36   177,87   246,49     TUP-8A   118   28527,24   190,58   639,85   174,38   211,74   0,97   29370,87   0,88   0,81   0,9   1,21   177,87   215,04     TUP-8A   119   18622,38   153,98   520,31   131,95   180,88   0,96   19387,9   0,86   0,72   0,85   1,37   138,34   181,34     TUP-8A   120   26746,24   184,54   650,47   144,29   241,41   0,97   27683,61   0,79   0,58   0,76   1,67   138,88   240,81     TUP-8A   121   15247,86   139,33   465,94   122,69   159,98   0,96   15810,28   0,88   0,76   0,87   1,3   131,36   162,97     TUP-8A   122   81191,71   321,52   1120,48   243,67   425,66   0,98   82863,35   0,81   0,57   0,76   1,75   245,06   425,66 <td< td=""><td>TUP-8A</td><td>116</td><td>31933,01</td><td>201,64</td><td>678,58</td><td>172,93</td><td>236,58</td><td>0,97</td><td>32792,26</td><td>0,87</td><td>0,73</td><td>0,85</td><td>1,37</td><td>195,64</td><td>245</td></td<>	TUP-8A	116	31933,01	201,64	678,58	172,93	236,58	0,97	32792,26	0,87	0,73	0,85	1,37	195,64	245
TUP-8A     118     28527,24     190,58     639,85     174,38     211,74     0,97     29370,87     0,88     0,81     0,9     1,21     177,87     215,04       TUP-8A     119     18622,38     153,98     520,31     131,95     180,88     0,96     19387,9     0,86     0,72     0,85     1,37     138,34     181,34       TUP-8A     120     26746,24     184,54     650,47     144,29     241,41     0,97     27683,61     0,79     0,58     0,76     1,67     138,88     240,81       TUP-8A     121     15247,86     139,33     465,94     122,69     159,98     0,96     15810,28     0,88     0,76     0,87     1,3     131,36     162,97       TUP-8A     122     81191,71     321,52     1120,48     243,67     425,66     0,98     82863,35     0,81     0,57     0,76     1,75     245,06     416,52       TUP-8A     122     81191,71     321,62     120,62     0,92     0,92     0,92	TUP-8A	117	33229,7	205,69	701,74	177,75	241,3	0,97	34323,3	0,85	0,73	0,85	1,36	177,87	246,49
TUP-8A     119     18622,38     153,98     520,31     131,95     180,88     0,96     19387,9     0,86     0,72     0,85     1,37     138,34     181,34       TUP-8A     120     26746,24     184,54     650,47     144,29     241,41     0,97     27683,61     0,79     0,58     0,76     1,67     138,88     240,81       TUP-8A     121     15247,86     139,33     465,94     122,69     159,98     0,96     15810,28     0,88     0,76     0,87     1,3     131,36     162,97       TUP-8A     122     81191,71     321,52     1120,48     243,67     425,66     0,98     82863,35     0,81     0,57     0,76     1,75     245,06     416,52       TUP-8A     122     81191,71     321,52     1120,48     243,67     425,66     0,98     82863,35     0,81     0,57     0,76     1,75     245,06     416,52       TUP-8A     122     81191,71     321,52     120,48     243,67     425,66     0,98 </td <td>TUP-8A</td> <td>118</td> <td>28527,24</td> <td>190,58</td> <td>639,85</td> <td>174,38</td> <td>211,74</td> <td>0,97</td> <td>29370,87</td> <td>0,88</td> <td>0,81</td> <td>0,9</td> <td>1,21</td> <td>177,87</td> <td>215,04</td>	TUP-8A	118	28527,24	190,58	639,85	174,38	211,74	0,97	29370,87	0,88	0,81	0,9	1,21	177,87	215,04
TUP-8A     120     26746,24     184,54     650,47     144,29     241,41     0,97     27683,61     0,79     0,58     0,76     1,67     138,88     240,81       TUP-8A     121     15247,86     139,33     465,94     122,69     159,98     0,96     15810,28     0,88     0,76     0,87     1,3     131,36     162,97       TUP-8A     122     81191,71     321,52     1120,48     243,67     425,66     0,98     82863,35     0,81     0,57     0,76     1,75     245,06     416,52       TUP 8A     132     5096,73     274,67     205,76     0,77     0,76     1,75     245,06     416,52	TUP-8A	119	18622,38	153,98	520,31	131,95	180,88	0,96	19387,9	0,86	0,72	0,85	1,37	138,34	181,34
TUP-8A     121     15247,86     139,33     465,94     122,69     159,98     0,96     15810,28     0,88     0,76     0,87     1,3     131,36     162,97       TUP-8A     122     81191,71     321,52     1120,48     243,67     425,66     0,98     82863,35     0,81     0,57     0,76     1,75     245,06     416,52       TUP-8A     122     81191,71     321,52     1120,48     243,67     425,66     0,98     82863,35     0,81     0,57     0,76     1,75     245,06     416,52       TUP 84     133     500,633     500,633     50,81     0,57     0,76     1,75     245,06     416,52	TUP-8A	120	26746,24	184,54	650,47	144,29	241,41	0,97	27683,61	0,79	0,58	0,76	1,67	138,88	240,81
TUP-8A     122     81191,71     321,52     1120,48     243,67     425,66     0,98     82863,35     0,81     0,57     0,76     1,75     245,06     416,52       TUP-8A     112     5000.02     201.47     200.27     607.76     1,75     245,06     416,52	TUP-8A	121	15247,86	139,33	465,94	122,69	159,98	0,96	15810,28	0,88	0,76	0,87	1,3	131,36	162,97
	TUP-8A	122	81191,71	321,52	1120,48	243,67	425,66	0,98	82863,35	0,81	0,57	0,76	1,75	245,06	416,52
I UP-BA I 123 I DYYDU, 32 Z/b, 3 933,46 Z51,67 3U6,26 U,97 61/56,94 U,86 U,81 U,9 1,22 249,01 320,13	TUP-8A	123	59960,32	276,3	933,46	251,67	306,26	0,97	61756,94	0,86	0,81	0,9	1,22	249,01	320,13
TUP-8A 124 46759.05 244 818.16 218.23 275.32 0.98 47649.55 0.88 0.79 0.89 1.26 229.25 282.49	TUP-8A	124	46759,05	244	818,16	218,23	275,32	0,98	47649,55	0,88	0,79	0,89	1,26	229,25	282,49
TUP-8A 125 46305,99 242,81 834,93 201,78 294,79 0,97 47524,57 0,83 0,68 0,82 1,46 209,49 301,56	TUP-8A	125	46305,99	242,81	834,93	201,78	294,79	0,97	47524,57	0,83	0,68	0,82	1,46	209,49	301,56
TUP-8A 126 43556,37 235,49 779,43 230,52 242,57 0.98 44415,63 0.9 0.94 0.97 1.05 228,62 261.83	TUP-8A	126	43556,37	235,49	779,43	230,52	242,57	0,98	44415,63	0.9	0,94	0,97	1,05	228,62	261,83
TUP-8A 127 27058,69 185,61 638,66 164,94 214,57 0,96 28121,05 0,83 0,75 0,87 1.3 162,24 219,14	TUP-8A	127	27058.69	185.61	638,66	164.94	214.57	0,96	28121.05	0.83	0.75	0.87	1.3	162.24	219.14
TUP-8A 128 38869,53 222,46 764,74 186,99 266,12 0.97 40056,87 0.84 0.7 0.84 1.42 223,59 279,49	TUP-8A	128	38869,53	222,46	764,74	186,99	266,12	0,97	40056,87	0,84	0.7	0,84	1,42	223,59	279,49
TUP-8A 129 29683,33 194,41 641,21 185,94 204,87 0.98 30386,35 0.91 0.9 0.95 1.1 189,72 214.24	TUP-8A	129	29683,33	194,41	641,21	185,94	204,87	0,98	30386,35	0,91	0.9	0,95	, 1.1	189,72	214,24
TUP-8A 130 21762,56 166,46 551,14 148,08 187,9 0,98 22231,25 0,9 0,78 0,89 1,27 150,92 196,24	TUP-8A	130	21762.56	166.46	551,14	148.08	187.9	0,98	22231.25	0.9	0.78	0.89	1.27	150.92	196.24
TUP-8A 131 24949,62 178,23 613,03 167,66 198,35 0,97 25621,4 0,83 0,81 0.9 1.18 164.9 206.9	TUP-8A	131	24949.62	178.23	613,03	167.66	198.35	0,97	25621.4	0.83	0.81	0.9	1.18	164.9	206.9
TUP-8A 132 28636,6 190,95 651,03 161,02 227,74 0,97 29589,59 0,85 0,7 0,84 1,41 162,06 231,32	TUP-8A	132	28636,6	190,95	651,03	161,02	227,74	0,97	29589,59	0,85	0,7	0,84	1,41	162,06	231,32



# ANEXO B – Medidas de Forma, Turmalinas TUP 09B (Analyzr)

Sample	Grain	Area (um²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convey area	Form factor	Roundness	Compactness	Aspect ratio	Min Forot	May Forot
Jampie	number		diameter (µm)	(µm)	(μm)	(µm)	Jonarcy	convex area	Tonnactor	Rounaness	compactness	Aspectiatio	winn. reret	Wax. Teret
TUP-9B	2	49623,45	251,36	853,38	205,83	307,84	0,98	50479,24	0,86	0,67	0,82	1,5	213,29	310,8
TUP-9B	3	33290,14	205,88	715,07	173,89	249,06	0,95	35209,55	0,82	0,68	0,83	1,43	179,52	244,26
TUP-9B	4	31566,34	200,48	692,54	168,4	242,23	0,96	32837,79	0,83	0,68	0,83	1,44	180,49	247,14
TUP-9B	5	25526,92	180,28	614,62	165,35	201,96	0,97	26419,38	0,85	0,8	0,89	1,22	172,18	206,09
TUP-9B	6	20832,31	162,86	551,68	152,44	176,06	0,97	21553,62	0,86	0,86	0,93	1,15	152,92	184,92
TUP-9B	7	19340,8	156,93	510,93	141,6	174,25	0,98	19646,44	0,93	0,81	0,9	1,23	139,86	179,01
TUP-9B	8	23252,97	172,07	570,97	162,38	183,62	0,97	23852,02	0,9	0,88	0,94	1,13	167,83	188,2
TUP-9B	9	32446,57	203,25	780,05	131,92	320,33	0,96	33876,96	0,67	0,4	0,63	2,43	131,14	309,53
TUP-9B	10	21052,37	163,72	560,73	142,03	190,35	0,97	21749,23	0,84	0,74	0,86	1,34	143,86	190,23
TUP-9B	11	19780,92	158,7	528,16	144,91	175,25	0,97	20331,07	0,89	0,82	0,91	1,21	146,85	177,26
TUP-9B	12	13863,76	132,86	451,38	116,19	155,85	0,98	14218,3	0,86	0,73	0,85	1,34	109,99	158,43
TUP-9B	13	13276,93	130,02	476,31	106,88	170,13	0,93	14254,98	0,74	0,58	0,76	1,59	137,38	183,49
TUP-9B	14	45197,81	239,89	820,81	196,72	293,99	0,98	46212,53	0,84	0,67	0,82	1,49	192,65	289,39
TUP-9B	15	37080,05	217,28	726,66	196,77	241,26	0,98	37911,39	0,88	0,81	0,9	1,23	209,79	247,29
TUP-9B	16	26920,63	185,14	649,73	149,58	236,77	0,95	28204,31	0,8	0,61	0,78	1,58	150,82	230,08
TUP-9B	17	25086,8	178,72	588,7	165,95	193,11	0,98	25624,72	0,91	0,86	0,93	1,16	167,83	195,05
TUP-9B	18	22531,66	169,38	555,78	162,38	177,73	0,98	22996,23	0,92	0,91	0,95	1,09	160,84	181,72
TUP-9B	19	21920,39	167,06	549,28	151,38	184,78	0,98	22360,51	0,91	0,82	0,9	1,22	148,34	187,8
TUP-9B	20	17543,65	149,46	497,79	135,74	165,32	0,97	18020,44	0,89	0,82	0,9	1,22	135,77	167,32
TUP-9B	21	20062,11	159,82	559,53	121,07	214,11	0,97	20697,83	0,81	0,56	0,75	1,77	128,56	216,28
TUP-9B	22	16724,53	145,93	488,25	126,43	169,12	0,97	17213,56	0,88	0,74	0,86	1,34	129,37	177,26
TUP-9B	23	19120,74	156,03	537,2	119,05	205,54	0,98	19560,86	0,83	0,58	0,76	1,73	118,88	207,83
TUP-9B	24	16944,59	146,88	528,86	112,28	198,72	0,97	17506,97	0,76	0,55	0,74	1,77	104,9	210,37
TUP-9B	26	47985,23	247,18	833,39	240,13	258,74	0,97	49378,94	0,87	0,91	0,96	1,08	233,71	266, 15
TUP-9B	27	31774,17	201,14	711,97	158,88	261,74	0,95	33559,1	0,79	0,59	0,77	1,65	160,98	252,06
TUP-9B	28	13472,54	130,97	489,1	94,69	185,66	0,95	14144,95	0,71	0,5	0,71	1,96	92,88	186,5
TUP-9B	29	28534,4	190,61	634,05	174,4	208,95	0,98	29072,33	0,89	0,83	0,91	1,2	182,96	217,12
TUP-9B	30	24072,08	175,07	601,13	143	216,87	0,97	24854,52	0,84	0,65	0,81	1,52	143,4	216,25
TUP-9B	31	24377,72	176,18	588,7	152,14	205,82	0,98	24866,74	0,88	0,73	0,86	1,35	164,34	206,89
TUP-9B	32	25416,89	179,89	625,71	143,8	227,94	0,96	26443,84	0,82	0,62	0,79	1,59	141,62	223,45
TUP-9B	33	24108,76	175,2	575,91	161,32	190,59	0,98	24597,78	0,91	0,85	0,92	1,18	157,34	196,08
TUP-9B	34	13411,41	130,67	444,6	108,16	160,9	0,97	13827,08	0,85	0,66	0,81	1,49	111,89	168,2
TUP-9B	35	17470,29	149,14	516,22	128,27	177,18	0,95	18436,11	0,82	0,71	0,84	1,38	130,47	179,72
TUP-9B	36	19475,28	157,47	559,03	120,64	208,45	0,96	20294,39	0,78	0,57	0,76	1,73	122,12	207,12
TUP-9B	37	12934,62	128,33	423,27	111,87	148,13	0,98	13228,03	0,91	0,75	0,87	1,32	113,73	152,65
TUP-9B	38	39940,83	225,51	765,01	181,03	281,55	0,98	40649,91	0,86	0,64	0,8	1,56	180,49	279,72
TUP-9B	39	28485,5	190,44	643,94	160,3	227,7	0,98	29206,81	0,86	0,7	0,84	1,42	163,18	231,77
TUP-9B	40	23534,16	173,1	596,54	148,47	206,48	0,95	24768,94	0,83	0,7	0,84	1,39	178,32	214,32
TUP-9B	41	24781,16	177,63	607,28	152,06	210,12	0,96	25808,11	0,84	0,71	0,85	1,38	158,41	213,49
TUP-9B	42	28094,28	189,13	627,41	173,08	207,05	0,98	28644,43	0,9	0,83	0,91	1,2	185,31	214,32
TUP-9B	43	16626,73	145,5	483,8	137,74	154,6	0,97	17091,3	0,89	0,89	0,94	1,12	134,48	157,07
TUP-9B	44	17225,78	148,1	572,11	95,7	236,05	0,95	18044,89	0,66	0,39	0,63	2,47	92	229,87
TUP-9B	45	21309,11	164,72	538,9	159,83	170,01	0,98	21785,91	0,92	0,94	0,97	1,06	160,84	173,88
TUP-9B	46	23778,67	174	592,44	142,24	215,19	0,98	24328,82	0,85	0,65	0,81	1,51	144,85	214,91
TUP-9B	48	19903,17	159,19	569,62	115,5	224,62	0,96	20734,51	0,77	0,5	0,71	1,94	112,33	214,52
TUP-9B	49	20318,84	160,84	563,13	126,43	209	0,96	21101,28	0,81	0,59	0,77	1,65	122,91	204,72
TUP-9B	50	30013,69	195,49	650,79	186,86	206,61	0,98	30722,77	0,89	0,9	0,95	1,11	181,82	215,34
TUP-9B	51	33925,86	207,84	729,41	175,15	253,05	0,97	35013,94	0,8	0,67	0,82	1,44	176,38	258,01
TUP-9B	52	27874,22	188,39	634,4	167,57	215,83	0,98	28473,27	0,87	0,76	0,87	1,29	171,33	218,83
TUP-9B	53	25086,8	178,72	594,49	155,87	205,8	0,98	25600,27	0,89	0,75	0,87	1,32	157,34	209,24
TUP-9B	54	30906,16	198,37	669,86	166,21	237,49	0,98	31541,88	0,87	0,7	0,84	1,43	170,11	239,86
TUP-9B	55	22274,93	168,41	557,97	151,76	188,03	0,98	22727,27	0,9	0,8	0,9	1,24	153,29	197,61
TUP-9B	56	17066,85	147,41	499,34	122,58	178,62	0,97	17580,32	0,86	0,68	0,83	1,46	122,38	179,55
TUP-9B	57	21089,05	163,86	549,64	142,9	188,74	0,97	21651,43	0,88	0,75	0,87	1,32	148,34	191,06
TUP-9B	58	19499,73	157,57	523,71	151,49	165,24	0,97	20037,65	0,89	0,91	0,95	1,09	155,76	172,18
TUP-9B	59	12665,66	126,99	428,71	107,56	152.6	0,97	13056,87	0,87	0,69	0,83	1,42	102,4	150,19
TUP-9B	60	21015.7	163,58	549,49	131	205.8	0,99	21309,11	0,87	0,63	0,79	1,57	122,38	204,42
TUP-9B	62	36542.13	215.7	717.12	194.29	241.2	0.98	37165.63	0.89	0.8	0.89	1.24	199.3	248.87
TUP-9B	63	32348.77	202.95	694.09	200.67	214.17	0.97	33387.94	0.84	0,9	0.95	1.07	206.29	226.73
TUP-9B	64	26835.05	184.84	637.79	151.52	228.44	0.97	27580.81	0.83	0.65	0.81	1.51	146.73	231.77
TUP-9B	65	26077.07	182.22	608.97	159.28	210.43	0.97	26749.47	0.88	0.75	0.87	1.32	160.71	209.47
TUP-9B	66	28204 31	189 5	637.65	163 67	223 37	0.97	28986 75	0.87	0.72	0.85	1 36	164 34	223.04
TUP-9B	67	17568.1	149.56	545.89	143.35	163 3	0.97	19010.71	0.74	0.84	0.92	1.14	142.3	181.41
TUP-9B	68	16907.92	146.72	491.64	132.16	164.61	0.97	17445.84	0.88	0.79	0.89	1.25	133.51	174.83
TUP-9R	69	20379 97	161 09	562 77	129 44	205 91	0 97	20930 12	0.81	0.61	0 78	1 59	130 8	207
TUP-9B	70	16125.48	143.29	489 6	119 7	174.14	0.97	16626.73	0.85	0.68	0.82	1,35	118.68	175.59
TUP-9B	71	23815.35	174.13	608.83	132.49	230.83	0.97	24475.52	0.81	0.57	0.75	1.74	130.28	224.24
TUP-9R	72	13888 21	132 98	455 48	115 18	156 85	0.97	14352 78	0,81	0 72	0,25	1 36	114 67	165 67
TUP-9R	73	30062 59	195 64	646 34	189 25	204 24	0.98	30600 52	0,04	0,72	0.96	1 08	188 81	212.4
TUP-9B	74	28314.34	189.87	626.56	182.26	199.11	0.98	28937.85	0.91	0,91	0.95	1.09	185.31	207.56
TUP-9R	75	25844 78	181 4	600 14	163.6	202 57	0.98	26272 68	0.91	0.8	0.9	1 24	171 33	214 32
TUP-9R	76	26578 32	183.96	610 53	171 56	198.26	0,58	27152 92	0,9	0,0	0,9	1 16	171 33	203 67
TUP-9R	77	27042 89	185 56	638 99	149 68	233,20	0.98	27678 62	0,5	0.63	0.79	1 56	151 28	234 68
TUP-9R	78	27128 /17	185,50	641 04	152 01	233,01	0,58	28106 51	0,03	0,03	0,73	1 /10	157 2/	237,00
TUP-9R	79	27120,47	172 02	677 7	176 2	220,3	0,57	20100,01	0,83	0,00	0,81	1 07	171 69	232,5
TUP-9B	80	30343 78	196 56	650.08	179.85	215 16	0,50	30918 38	0,75	0,51	0,71	1 2	185 43	220 17
	00	303-13,70	10,00	0.00,00	1,0,00	213,10	5,50	55510,58	0,9	0,00	0,91	1,2	100,40	220,11

Sampla	Grain	Aroa (um²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convox area	Form factor	Poundnoss	Compactness	Aspect ratio	Min Forot	Max Earot
Jampie	number	Alea (µili )	diameter (µm)	(µm)	(μm)	(µm)	Solicity	COnvex area	Formactor	Roununess	compactness	Aspectiatio	wini. Felet	IVIAN. PETEL
TUP-9B	81	22556,12	169,47	625,01	117,01	248,95	0,97	23216,29	0,73	0,46	0,68	2,13	114,32	242,17
TUP-9B	82	31321,83	199,7	763,17	128,75	314,62	0,97	32336,54	0,68	0,4	0,63	2,44	127,49	304,54
TUP-9B	83	14682,87	136,73	462,33	125,27	150,92	0,96	15233,02	0,86	0,82	0,91	1,2	130,47	156,56
TUP-9B	84	17653,67	149,92	509,73	131,3	174,72	0,96	18411,66	0,85	0,74	0,86	1,33	132,53	174,86
TUP-9B	85	34268,18	208,88	692,89	184,51	236,79	0,98	34916,13	0,9	0,78	0,88	1,28	185,31	241,44
TUP-9B	86	19670,89	158,26	628,05	100,76	263,58	0,94	20905,67	0,63	0,36	0,6	2,62	100,43	257,34
TUP-9B	87	28167,64	189,38	629,1	170	211,77	0,98	28730,01	0,89	0,8	0,89	1,25	170,6	214,06
TUP-9B	88	35392,93	212,28	747,99	168,85	271,01	0,96	37055,6	0,79	0,61	0,78	1,61	175,45	275,43
TUP-9B	89	32030,91	201,95	669,37	185,27	221,76	0,98	32605,51	0,9	0,83	0,91	1,2	181,82	224,24
TUP-9B	90	28204,31	189,5	652,48	150,62	240,19	0,98	28864,49	0,83	0,62	0,79	1,59	147,43	240,32
TUP-9B	91	22226,03	168,22	581,85	130,44	219,18	0,98	22751,72	0,82	0,59	0,77	1,68	131,04	216,47
TUP-9B	92	19842,05	158,95	524,91	147,58	173,76	0,98	20257,71	0,9	0,84	0,91	1,18	146,85	179,79
TUP-9B	93	20123,23	160,07	583,4	110,84	233,62	0,97	20697,83	0,74	0,47	0,69	2,11	110,57	230,08
TUP-9B	94	21455,82	165,28	553,24	136,09	201,64	0,98	21944,84	0,88	0,67	0,82	1,48	132,87	200, 25
TUP-9B	95	14096,04	133,97	454,98	112,66	160,12	0,97	14560,61	0,86	0,7	0,84	1,42	112,78	166,22
TUP-9B	97	29805,86	194,81	655,88	163,77	232,84	0,98	30527,17	0,87	0,7	0,84	1,42	192,85	240,85
TUP-9B	98	30527,17	197,15	670,71	174,68	225,46	0,96	31774,17	0,85	0,76	0,87	1,29	200,26	229,44
TUP-9B	99	26309,35	183,02	613,92	157,2	214,81	0,98	26945,08	0,88	0,73	0,85	1,37	158,27	211,24
TUP-9B	100	28265,44	189,71	637,79	162,03	222,84	0,98	28901,17	0,87	0,72	0,85	1,38	163,18	223,15
TUP-9B	101	22091,54	167,71	549,14	150,7	187,15	0,98	22446,09	0,92	0,8	0,9	1,24	146,85	189,62
TUP-9B	102	22886,2	170,7	575,21	150,37	196,61	0,98	23460,8	0,87	0,75	0,87	1,31	150,82	203,46
TUP-9B	103	24585,55	176,93	612,92	137,52	229,36	0,97	25404,67	0,82	0,6	0,77	1,67	138,23	227,27
TUP-9B	104	22812,85	170,43	577,61	145,52	201,18	0,97	23485,26	0,86	0,72	0,85	1,38	149,25	207,12
TUP-9B	105	20673,38	162,24	598,94	108,92	244,78	0,96	21431,37	0,72	0,44	0,66	2,25	107,33	235,51
TUP-9B	106	12567,85	126,5	416,62	122,7	132,01	0,97	12922,39	0,91	0,92	0,96	1,08	122,38	136,54
TUP-9B	107	20025,43	159,68	552,04	124,46	206,54	0,97	20575,58	0,83	0,6	0,77	1,66	125,87	208,18
TUP-9B	108	13496,99	131,09	502,73	83,25	211,21	0,96	14059,37	0,67	0,39	0,62	2,54	81,31	198,07
TUP-9B	109	32544,38	203,56	677,7	193,51	216,16	0,98	33253,46	0,89	0,89	0,94	1,12	197,79	221,41
TUP-9B	110	27776,42	188,06	613,77	182,41	194,39	0,98	28265,44	0,93	0,94	0,97	1,07	178,32	201,35
TUP-9B	111	25490,24	180,15	614,77	152,87	213,78	0,97	26284,9	0,85	0,71	0,84	1,4	153,29	211,24
TUP-9B	112	27886,45	188,43	664,57	155,3	237,93	0,94	29610,25	0,79	0,63	0,79	1,53	164,08	234,68
TUP-9B	113	19585,31	157,91	538,4	124,67	202,06	0,97	20172,14	0,85	0,61	0,78	1,62	122,38	198,32
TUP-9B	114	23191,84	171,84	591,24	145,65	205,17	0,97	23852,02	0,83	0,7	0,84	1,41	140,16	200,37
TUP-9B	115	23289,65	172,2	567,72	170,21	176,26	0,98	23741,99	0,91	0,95	0,98	1,04	167,83	181,72
TUP-9B	116	28387,7	190,12	638,5	158,21	228,84	0,98	28888,94	0,88	0,69	0,83	1,45	164,34	230,08
TUP-9B	117	17311,36	148,46	500,19	146,99	152,56	0,97	17922,64	0,87	0,95	0,97	1,04	146,85	161,33
TUP-9B	118	21981,51	167,3	605,08	117,67	242,01	0,97	22763,95	0,75	0,48	0,69	2,06	116,34	236,78
TUP-9B	119	19279,67	156,68	514,67	151,36	162,8	0,98	19756,47	0,91	0,93	0,96	1,08	150,82	167,32
TUP-9B	120	12971,29	128,51	437,25	109,94	154,28	0,97	13435,86	0,85	0,69	0,83	1,4	116,2	156,56
TUP-9B	121	49415,62	250,83	866,66	207	306,18	0,97	50907,13	0,83	0,67	0,82	1,48	220,04	318, 18
TUP-9B	122	39195,07	223,39	730,75	216,69	230,94	0,98	39818,57	0,92	0,94	0,97	1,07	213,29	236,78
TUP-9B	123	34207,05	208,7	698,68	183,7	238,63	0,98	34879,46	0,88	0,76	0,87	1,3	202,74	246, 17
TUP-9B	124	20074,33	159,87	544,69	135,2	191,42	0,97	20624,48	0,85	0,7	0,84	1,42	139,86	197,79
TUP-9B	125	30979,51	198,61	666,12	175,69	227,25	0,98	31603,01	0,88	0,76	0,87	1,29	178,32	231,77
TUP-9B	126	16895,69	146,67	506,48	136,18	164,05	0,96	17519,19	0,83	0,8	0,89	1,2	133,51	175,38
TUP-9B	127	21101,28	163,91	583,4	132,73	207,38	0,96	21883,71	0,78	0,62	0,79	1,56	126,61	209,24
TUP-9B	128	25832,56	181,36	627,76	142,65	231,68	0,97	26651,67	0,82	0,61	0,78	1,62	146,85	231,11
TUP-9B	129	21223,53	164,39	552,88	148,73	188,21	0,98	21749,23	0,87	0,76	0,87	1,27	153,85	192,02
TUP-9B	130	23228,52	171,98	577,81	156,16	192,77	0,97	23925,38	0,87	0,8	0,89	1,23	146,85	199,09
TUP-9B	131	14389,46	135,36	468,97	106,34	174,09	0,97	14866,25	0,82	0,6	0,78	1,64	111,26	178,32
TUP-9B	132	16149,93	143,4	493,55	121,82	171,97	0,96	16810,11	0,83	0,7	0,83	1,41	117,41	173





Zircon; Tupanciretã formation Tupanciretã, RS, Brazil

0.5 mm



Zircon; Tupanciretã formation Tupanciretã, RS, Brazil

0.5 mm



Zircon; Tupanciretã formation Tupanciretã, RS, Brazil

TUP-8A ß areas a A. (Par E O Q TEN D E Con s C Ø No. P C 

Zircon; Tupanciretã formation Tupanciretã, RS, Brazil

0.5 mm



Zircon; Tupanciretã formation Tupanciretã, RS, Brazil

# ANEXO B – Dados Datação U-Pb, Zircões TUP 01B

SPOT	238U(ppm)	232Th(ppm)	207Pb/206Pb	207Pb/235U	206Pb/238U	Rho	AgePb206*/U238	AgePb207*/U235	AgePb207/Pb206	Concordância - 206/238 x 207/235	Concordância - 207/206 x 206/238
376	30,05557999	21,45008393	0,0576294	0,734370367	0,092420811	0,849459788	569,8382649	559,1149527	515,7008304	101,9179083	110,4978374
373	11,54841687	12,53168152	0,058875107	0,774170659	0,09536823	0,598551363	587,2076693	582,1527046	562,4808095	100,8683228	104,3960362
343	29,55697531	21,06724112	0,051706615	0,319171894	0,044768986	0,484580555	282,3258331	281,265365	272,4572217	100,3770347	103,6220774
369	34,81779396	45,94204234	0,059017607	0,77579216	0,095337227	0,871075875	587,0252084	583,0802923	567,7456165	100,6765648	103,3958152
375	48,97838289	28,1047966	0,059911131	0,823184848	0,099652587	0,846599246	612,3726028	609,8238079	600,3664505	100,417956	101,999804
239	60,79425327	32,49725272	0,060115974	0,833420028	0,100547846	0,85804798	617,6186776	615,5081336	607,7514827	100,3428946	101,6235575
280	108,8214179	71,66123873	0,058369582	0,719023609	0,089341923	0,910743263	551,6439885	550,0902124	543,6619881	100,2824584	101,4681917
287	119,8988891	48,7194226	0,061413854	0,913214778	0,107846314	0,930312588	660,2280309	658,7652912	653,7603388	100,2220426	100,9893063
220	84,10865197	49,16153175	0,058226002	0,702966296	0,087562118	0,913082284	541,1029968	540,5609809	538,2762898	100,1002692	100,5251405
244	125,0808743	68,0185518	0,058100744	0,693318857	0,086546607	0,925678652	535,080846	534,7924059	533,562929	100,053935	100,284487
313	34,43443553	19,80428816	0,059917297	0,808256322	0,09783531	0,748370841	601,7104959	601,4754501	600,5892566	100,0390782	100,1866899
270	176,4632644	36,76155988	0,058990607	0,748218211	0,091990745	0,922407923	567,2999314	567,1899802	566,7494023	100,0193852	100,097138
285	56.20284288	48.07548071	0.057687186	0.665765517	0.083702932	0.840287142	518,18738	518,1345097	517,9014721	100.010204	100.0552051
234	337.079789	77.43978979	0.057552531	0.657315661	0.082833931	0.942792222	513.0160517	512,9707846	512,7687729	100.0088245	100.0482242
296	193,9848264	126.5751647	0.061556168	0.913369691	0.107615232	0.938847676	658,8832507	658,8475032	658,7249576	100.0054258	100.0240302
286	117.5843132	44.04989232	0.058120963	0.691589317	0.086300676	0.935722495	533.6215886	533,7547757	534.3247151	99.97504713	99.86840839
240	165,4865177	83.63323731	0.05917566	0.757545103	0.092846195	0.910889358	572,3479868	572,5927591	573,5647368	99.95725195	99.78786179
243	106 8628151	70 42368321	0.058725791	0 728260545	0.089940777	0.935406714	555 1868591	555 5316432	556 9454133	99 9379362	99 68425017
265	82,41693073	78.63311861	0.054975982	0.496864113	0.065548591	0.890175704	409.2813901	409.5773446	411,2464314	99.9277415	99.52217426
273	138.8075578	67.60350574	0.069640262	1.461408733	0.152198379	0.937080032	913.2747874	914,5897937	917,7648803	99.85621901	99.51075782
300	160 6586557	235 4181122	0.060037354	0 809754825	0.097820691	0 845405404	601 6246549	602 3165519	604 9211276	99.88512735	99.45505745
364	21 87107954	14 19478346	0.061637713	0 910790747	0 107169405	0.891110912	656 2879781	657 4779953	661 5626413	99.81900274	99 20269633
307	60 12708036	50 08701515	0.061255734	0.883751310	0,107105400	0.86768426	641 5218089	643 0068001	648 2260407	99,76905514	98 9657571
228	55 87184536	56 12771023	0.061348065	0,888014200	0,104030223	0,00700420	644 1642008	645 7858082	651 4600501	99,70900014	98,8007587
377	11 88100800	5 255313857	0,001340003	0,000314203	0,103003107	0,573351789	621 08/1558	623 0100238	630 0037185	99,601170	98,58622442
077	25.04190107	0,200013007	0,000704370	0,040000420	0,101293363	0,575551789	520,2200447	623,9109230	630,9037163 630,6443700	99,091179	90,30022442
2//	35,94169197	21,4017240	0,056232259	0,000459044	0,065745967	0,040131000	530,3269447	531,674503	530,5113769	99,70940173	90,40054573
290	155,6010727	64,65190445	0,059106739	0,742975975	0,09116367	0,936406979	562,4155592	504,1400463	571,1034656	99,69420939	90,47874739
363	31,72010933	16,68051967	0,062569626	0,958439225	0,111096339	0,721217873	679,1118203	682,4875047	693,6357194	99,50538517	97,90612006
227	3/7,526/6	146,5268183	0,059462927	0,76041848	0,092748117	0,917444216	5/1,7694231	574,2514414	584,0870604	99,56778196	97,89112992
395	129,1765615	64,29270269	0,057845336	0,658489679	0,082561837	0,863446076	511,395994	513,6898009	523,9087978	99,55346458	97,61164466
248	170,4449655	59,2561293	0,058431749	0,694080024	0,086150814	0,85778543	532,732201	535,2487292	545,9882758	99,52983947	97,57209534
362	297,259875	5,986634873	0,06034869	0,811378315	0,097511149	0,92514	599,8067658	603,2270228	616,0999089	99,43300666	97,35543816
346	36,78370337	36,58852329	0,05990428	0,78291584	0,094788566	0,864474194	583,7953526	587,1454203	600,1188774	99,42943136	97,27995146
217	134,458087	88,97677626	0,05806254	0,66799201	0,083439936	0,928497948	516,6227559	519,4907677	532,1225871	99,44791862	97,0871691
370	27,43983095	24,66327082	0,061957684	0,908073274	0,106297841	0,826967123	651,2113633	656,0329218	672,6483912	99,26504321	96,81304108
215	84,24889131	66,02766719	0,059728092	0,767801455	0,093232862	0,931516333	574,6284312	578,5009446	593,7383377	99,33059514	96,78142621
374	4,736844524	3,943805217	0,063437147	1,001935808	0,11454997	0,642856401	699,1181885	704,7921482	722,9184466	99,19494566	96,70775339
219	184,30162	130,2499642	0,057912508	0,655843101	0,08213463	0,958410589	508,8515703	512,0682095	526,4534877	99,37183384	96,65651045
245	74,91700835	91,41861218	0,058783229	0,705175843	0,0870047	0,91180851	537,7981092	541,8775563	559,0770213	99,24716441	96,19392117
378	7,737092387	8,499673155	0,063709712	1,013199052	0,115342101	0,607955019	703,6981484	710,488855	732,0075942	99,04422053	96,1326295
320	50,92414392	48,71840822	0,064363035	1,050206904	0,118341503	0,847219551	721,010712	728,9847532	753,5826418	98,90614431	95,67772292
224	114,8243634	55,59394304	0,057924965	0,64909723	0,081272328	0,924699818	503,7126754	507,9231893	526,9249692	99,17103335	95,59476298
235	40,34988341	20,64016223	0,074001738	1,691659812	0,165794391	0,908702664	988,8975655	1005,389894	1041,514927	98,35960864	94,94799738
350	46,67617824	46,9396422	0,058914319	0,703211621	0,0865693	0,845936537	535,2154802	540,7072442	563,9312514	98,98433689	94,90793051
229	78,53358371	29,80686967	0,072672828	1,585240257	0,158205565	0,933252217	946,7969695	964,4296393	1004,84352	98,17169972	94,2233244
326	48,59109309	37,05621141	0,058794179	0,690032658	0,085120476	0,8632191	526,614141	532,8199575	559,4830458	98,83528827	94,12512942
218	71,77369781	69,856305	0,058856717	0,692198703	0,085296944	0,933465547	527,6624076	534,1204955	561,8000892	98,79089309	93,92351795
293	88,38071488	90,30804174	0,057241329	0,596869684	0,075625548	0,913488034	469,9590507	475,2453386	500,8430168	98,88767181	93,83360353
230	75,22319309	58,83803381	0,062575799	0,914286923	0,105968023	0,931303093	649,2892192	659,33414	693,8460309	98,47650528	93,57828542
368	27,32733782	23,3542891	0,061301879	0,834268006	0,098703039	0,756162631	606,8037336	615,9776516	649,8431598	98,51067356	93,37695172
334	78,2590813	40,50708024	0,060474862	0,780204201	0,09356903	0,880696661	576,6103885	585,5999416	620,6078793	98,46489857	92,91058135
325	112,501585	61,42764652	0,059440974	0,718773305	0,087701041	0,845005199	541,9263976	549,942353	583,285369	98,5424008	92,9093076
276	71,14331216	90,36539517	0,062641954	0,911082573	0,105485113	0,870352168	646,4738433	657,6330574	696,0979794	98,30312452	92,87109896
387	128.0816482	73.86798941	0.070943878	1,438945104	0.1471052	0.862908551	884.7158823	905,2805347	955,796839	97,72836688	92.56317307
336	66,01170086	84,32820194	0,060444954	0,775291991	0,093025919	0,85402316	573,4080425	582,7942587	619,5404809	98,38944601	92,55376528
236	149,9790647	79,73001872	0,061728313	0,851877649	0,100090197	0,857531815	614,9374622	625,6792063	664,7094545	98,28318665	92,51221838
216	54.25237766	28,95342672	0.060631092	0.781380441	0.093468629	0.834714481	576.0185173	586,2706202	626,1721096	98.25130195	91,99044616
327	25.03211897	19.20870994	0.06870725	1.280611128	0.135180308	0.863269481	817.3505246	837,125982	889.9634475	97,63769638	91,84090952
295	66 6419781	56 90073002	0.051873037	0 289440882	0.040468482	0 827715317	255 7361847	258 1191585	279 817306	99.07679312	91 39398426
390	46.45569458	49.05857362	0.062134523	0.86145849	0.100554177	0.842035491	617,6557612	630,9188278	678,7419896	97,89781728	91,00008114
225	113.2155657	138.8905465	0.058925727	0.668285372	0.082253754	0.84424703	509 561167	519 6693332	564 3530157	98.05488501	90 29121000
338	20 34251445	12 9388051	0.05255703	0.321056794	0.044303030	0 750268206	279 4557697	282 7151641	309 7600057	08 84710082	90.21626521
396	82 02005005	71 59213923	0 130703415	7 178525061	0.398333665	0.941642068	2161 362054	2133 839584	2107 436963	101 2898097	102 5587997
200	110 5138915	88 90195391	0.08150467	2 417430543	0 215114774	0.945678507	1256 009904	1247 792964	1233 640206	100 6585179	101 8133082
385	35 53659466	23 70271069	0.08063304	2 316127008	0 2083282	0 874305709	1210 004024	1217 238622	1212 515057	100,0000173	100.600466
208	23 55970562	19 982044/1	0 187028224	13 42065470	0.520433545	0.931672508	2701 018669	2709 713623	2716 203604	90 6701100/	99 44005001
230	22,05666422	0.337626000	0.075600602	1 806347002	0 181686702	0.866201575	1076 182602	1070 800710	1087 137227	00 66400660	08 00224445
204	22,00000423	30 27062552	0.111067700	1,090347903	0.318072544	0,000201575	1784 714004	1700 621224	1816 050400	99,00409008	30,33234115
204	107 4/96224	63 5969/110	0.075/35277	1 847014400	0 177500/07	0,314021320	1053 8/6777	1062 / 3600	1010,909133	00 101/61/6	30,22030039 07 56733346
260	37 2010257	14 47140244	0.080244007	2 103244605	0.108245722	0.800100450	1165 000274	1170 00007	1202 020640	00 00007000	02000000
200	55 20202204	25 60121602	0.073010400	2,130041005	0,190249723	0,033130452	1003,009374	1012 040002	1030 244207	30,0333/038	90,92002223
297	30,20392301	20,09131003	0,077205470	1,7 14421431	0.100214003	0,00001/110	1002,200351	1013,940062	1120.045407	30,0400/843	90,44212123
247	30,04903062	13,20049215	0,077295173	1,959200544	0,10004182	0,90020139	1007,928629	1101,038098	1120,010437	90,7555379	90,37790145
200	10 27264524	7 05/770224	0.083570004	2,10404/313	0,190120453	0,040292050	1220 455027	12/0 225055	1282 702000	30,03418908	90,0001/919
203	13,21301524	1,904/70334	0,003079901	2,41920000	0,203932098	0,044061021	1220,400027	1240,330955	1202,793909	90,40748568	95,76409883
345	05,73193088	19,91133782	0,076283438	1,780993087	0,169328748	0,792648666	1008,411692	1038,541871	1102,518778	97,09879975	91,46435519


## ANEXO B – Dados Datação U-Pb, Zircões TUP 02A

SPOT	238U(ppm)	232Th(ppm)	207Pb/206Pb	207Pb/235U	206Pb/238U	Rho	AgePb206*/U238	AgePb207*/U235	AgePb207/Pb206	Concordância - 206/238 x 207/235	Concordância - 207/206 x 206/238
23	96,93595247	81,34263283	0,066274323	0,85114004	0,093143906	0,158003528	574,1038648	625,274695	815,0516663	91,81626401	70,43772665
24	80,65623095	30,98399326	0,060671084	0,859490807	0,102744411	0,927101038	630,4721478	629,844935	627,5933284	100,0995821	100,4587078
25	81,77317376	80,6140493	0,060004463	0,767254582	0,092737346	0,950401162	571,7058795	578,1867839	603,7355394	98,8790985	94,69475328
28	123,9564002	151,1324599	0,052770255	0,300081156	0,041242811	0,925949091	260,5318962	266,4635858	318,9312741	97,77392113	81,68904004
29	118,7355131	11,09187843	0,064423449	1,10486063	0,124383351	0,911353339	755,7437729	755,6980303	755,5628686	100,006053	100,023943
30	68,68981546	101,5507226	0,061413772	0,83880982	0,099059574	0,932618109	608,8952882	618,4887262	653,7575059	98,44889041	93,13778928
33	140 7722226	29 70250145	0,059369665	0,756916007	0,092434465	0,956194618	509,9100391 626 1201051	572,2292436	501,4101704 642 9252057	99,59024457	96,02219164
34	298 9644902	68 01327813	0.058541492	0,746573654	0,103714201	0,955527229	570 2626515	566 2343505	550 0865346	100 7114194	103 6678078
36	108.8703565	124.3926404	0.067063179	1.334018127	0.144270097	0.962783626	868.7636648	860.6298811	839,7362797	100,9450966	103,4567263
37	226,1977617	170,5315454	0,052830108	0,353064054	0,048469745	0,952786927	305,1198388	307,0231543	321,5072447	99,38007428	94,90294349
39	158,1569105	93,79538661	0,061180448	0,897695384	0,106417992	0,932170512	651,9114488	650,4952577	645,5841863	100,2177097	100,9800833
43	81,78498727	73,96843367	0,076050196	1,977866967	0,188623354	0,961280877	1113,913243	1107,993448	1096,392248	100,5342807	101,598059
44	56,66667653	32,78370943	0,078326944	1,955548156	0,181073985	0,839898933	1072,839198	1100,354578	1155,178142	97,49940785	92,87218645
45	57,21403232	58,92203799	0,066507832	1,250962802	0,136417578	0,953254458	824,3728519	823,8392825	822,3991469	100,0647662	100,2399936
46	73,96878076	24,21792749	0,072492778	1,610382591	0,161113914	0,946821984	962,9641546	974,2568964	999,8075624	98,84088664	96,31495007
47	80,5091137	54,46520439	0,131512956	6,981677107	0,385025902	0,934383958	2099,718557	2109,10153	2118,265227	99,55511991	99,1244406
48	32,17392831	61,82689284	0,063073008	0,818087332	0,094070803	0,834222333	579,5675824	606,980877	710,693235	95,48366421	81,54961296
49	179 1904134	49 62003399	0.058705214	0,934772055	0,089301992	0,904013447	551 4076805	552 3389374	556 1810769	99.83139756	99 14175498
63	220.457941	129.4395457	0.076567345	1.889710118	0.178998885	0.971296662	1061.503141	1077.480006	1109.943399	98.51720079	95,6357903
64	25,16599646	54,95391025	0.049257571	0.14310578	0.021070891	0.486818085	134,4204354	135.8064818	160,1093262	98,979396	83.95540638
65	62,72504067	48,25884466	0,059219204	0,696807851	0,085339323	0,942412027	527,9141225	536,8823931	575,1642085	98,32956514	91,78493979
66	117,055917	107,7304308	0,058203129	0,745415213	0,092886082	0,961540458	572,5832638	565,5606567	537,41664	101,2417071	106,5436425
67	78,08543978	123,8820181	0,13946488	7,541424966	0,392181662	0,927230849	2132,938327	2177,92338	2220,574245	97,93449789	96,05345698
68	35,96643455	20,54950787	0,060873024	0,767640398	0,091460099	0,914709334	564,1665774	578,4084331	634,750362	97,53775103	88,88007178
69	95,82795234	52,68396615	0,057994515	0,67834611	0,084832671	0,961074826	524,9041421	525,7742448	529,5546925	99,83451021	99,12179979
70	155,6154333	84,85797044	0,061852746	0,902335332	0,105805369	0,947240355	648,3410811	652,9748775	669,0212404	99,2903561	96,90889346
73	95,26998813	75,63463204	0,068614312	1,229718075	0,129983903	0,963443155	787,773648	814,2105166	887,1667934	96,75306717	88,79656609
74	/1,32//0156	35,8576797	0,062980419	0,976165819	0,112413061	0,964090509	686,746721	691,6367644	707,5695954	99,29297521	97,05/12/02
76	49,17583205	15,60090526	0,06073671	0,798963451	0,095405712	0,938328609	587,4282537	596,2437924	629,9227385	98,52148755	93,25401638
78	25 51310732	23,11002/11	0,056909236	0,551265155	0,070257432	0,929350606	437,7004290	570 306306	400,0177303	90,17000010	02,26844047
70	206 7261342	41 83381601	0.066222329	1 205332316	0 13200825	0,920009003	799 3119618	803 0443876	813 4109442	99 5352155	98 26668395
83	118 2974753	121 5688893	0.060771183	0.852557529	0 101747731	0.959702786	624 6431273	626 0519154	631 1449927	99 77497265	98 96983016
84	23.62116582	33.33012772	0.07336397	1.60283179	0.158454234	0.801620024	948,1808779	971.3155368	1024.023968	97.61821386	92,59362156
85	59,35195658	68,8007814	0,061329717	0,666938944	0,078870364	0,558673844	489,3765317	518,8495231	650,817898	94,31954929	75,19408012
87	414,7424236	53,81608136	0,052321915	0,311148622	0,04313035	0,934106366	272,2072136	275,0708805	299,5040661	98,95893492	90,88598265
88	131,6117212	52,42077037	0,058088644	0,668660262	0,083485874	0,960675634	516,8960815	519,8974775	533,1068982	99,42269463	96,95918083
90	22,44416468	47,80000463	0,051338765	0,14987202	0,021172584	0,547479887	135,0624288	141,7989819	256,069522	95,2492232	52,74443743
93	177,6941826	49,95350133	0,064820885	1,052436422	0,117755076	0,950726824	717,6295107	730,0883418	768,5281096	98,29351733	93,37713243
94	106,0758405	85,38317605	0,057723541	0,388355979	0,048795049	0,930007842	307,1196321	333,1678714	519,2844109	92,18164731	59,14285615
95	108,6622817	129,705498	0,05676521	0,460019459	0,058775005	0,888684329	368,1713736	384,2714469	482,4234392	95,81023429	76,31705753
96	361,4877454	37,20725213	0,060278891	0,746214228	0,089783596	0,641608841	554,2571517	566,0253733	613,6005601	97,92090211	90,32865804
97	68 22803217	39,01546913	0,002039781	0,903387434	0,103032708	0,949347023	600 156850	597 354996	586 7312/05	100 4690449	102 2882043
99	146.165583	47.28950425	0.05990698	0.708775315	0.085808416	0.695901452	530,6997166	544.0186809	600,2164403	97.55174505	88.41805739
100	137.5734486	14.25644619	0.069650794	1.467404182	0.152799667	0.959501549	916.6380416	917.0600361	918.0758954	99,95398399	99.843384
113	78,48470026	327,1422247	0,057991015	0,423030152	0,052906537	0,902582923	332,3414696	358,2155169	529,4224688	92,77696077	62,7743417
115	54,46285339	26,59954902	0,080853918	2,222049059	0,199320194	0,597023345	1171,667307	1188,015915	1217,89595	98,62387303	96,20422069
116	62,36150056	81,4276046	0,061909196	0,763124814	0,089400334	0,713540515	551,9896355	575,8112224	670,9734449	95,86295196	82,26698682
117	88,64306118	74,87157288	0,06547682	1,005234221	0,111346972	0,9692125	680,5657908	706,4637266	789,694988	96,334145	86,18084211
118	189,6010755	107,4917731	0,078332554	1,963858275	0,181830436	0,8977799	1076,966657	1103,205532	1155,32027	97,62157871	93,21801798
119	117,6089638	38,7722436	0,077713212	2,109733764	0,196893563	0,956254474	1158,610814	1151,989818	1139,551232	100,5747443	101,6725516
120	127,0391349	100 /302562	0,053517404	0,310050773	0,043164346	0,904036596	672 2605013	200,0007913	750 3347042	97,03495211	88 53283117
125	118 1710043	73 04139662	0.075213118	1 803366306	0 173895797	0,221700343	1033 540419	1046 677996	1074 202326	98 74483107	96 21468828
126	151,9691437	91,94380794	0.053898499	0.339573783	0.045693688	0.945326194	288.0288881	296.8487944	366.8109562	97.02882194	78.52243321
128	59.91138566	47.84191717	0.055622621	0.329199646	0.042924638	0.847460772	270.9358131	288,9546813	437.336124	93,76411967	61,95139123
129	122,5077258	67,49788491	0,054501834	0,330446326	0,043973247	0,885841708	277,4141091	289,9065833	391,843478	95,69086217	70,79717404
130	66,63646699	31,58804249	0,060965371	0,814783195	0,096929856	0,951609993	596,3915412	605,1338686	638,0125013	98,55530689	93,47646638
133	195,0579124	26,36848867	0,059320425	0,685970649	0,083868718	0,965776558	519,1734823	530,3765462	578,8760557	97,88771505	89,68646693
136	124,6902798	56,8965715	0,054904703	0,34518227	0,045597146	0,891659064	287,4337055	301,0911037	408,344492	95,46403131	70,3900043
139	45,44656293	35,26230771	0,240800113	19,52951922	0,588211607	0,929786121	2982,1667	3068,349253	3125,265473	97,19124044	95,42122823
140	152,7933867	37,76164636	0,05987584	0,716175501	0,086749418	0,925995454	536,2839981	548,4065089	599,0906637	97,78950276	89,51633377
143	181 188/370	23 00027145	0.003071346	1 67910092358	0.165353837	0.003130206	986 4600007	1000 641214	1031 830264	94,21035217	10,43125214
144	122,0763559	117,0900448	0.052769073	0.289570446	0.039799122	0.841549368	251.5877039	258 22118	318.8803938	90,00207733	78 89720059
149	66,48523773	139,5528961	0,075126803	1,910020524	0,184391905	0,922974507	1090,923331	1084,59172	1071,895988	100,5837783	101,775111
163	15,76219073	11,03223065	0,067129772	0,863109591	0,09325014	0,535909678	574,7303116	631,8190657	841,8024145	90,96438249	68,27377799
164	111,8508871	98,13049552	0,178648614	11,32254882	0,459666947	0,843315824	2438,087297	2550,064181	2640,364897	95,60886017	92,3390286
165	109,6813142	146,1036302	0,056349701	0,671357745	0,086409425	0,826090192	534,2669037	521,5375595	466,1735584	102,4407339	114,6068656
167	196,8328005	44,60606341	0,077788248	1,881521104	0,175425946	0,938177331	1041,937715	1074,598462	1141,470353	96,96065565	91,28031328
168	79,4410887	77,14839598	0,056255614	0,665550117	0,085805202	0,894831528	530,6806373	518,0032037	462,4709867	102,4473659	114,7489578
173	56,67094452	44,18296635	0,056083603	0,651176035	0,084209526	0,889474822	521,2001574	509,2023202	455,6796906	102,3562024	114,3786234
1/4	69,7356466	51,95683833	0,057758778	0,646046836	0,081123136	0,887551749	502,8231509	506,0433012	520,6237108	99,36366112	96,58091641
170	82 76050200	13 73/525552	0,001212188	0,000339/59	0.087285109	0,904430481	530 4608276	535 2520202	517 3565652	100 7862220	99,04038074
178	244.1539904	84.57852411	0.078073688	1.878279199	0.174483426	0.749675862	1036 766561	1073 45544	1148 748936	96 58217028	90 25179727
184	34,70558397	12,26234664	0,061988014	0,853295401	0,099836744	0,775102893	613,4520861	626,4562604	673,6951709	97.92416882	91.05781258
186	89,39080256	58,28713819	0,08005334	2,30613492	0,208931528	0,963975884	1223,12287	1214,174473	1198,302204	100,7369943	102,0713194
187	305,3347694	62,85240241	0,058891643	0,709733833	0,087405862	0,96439943	540,1767402	544,5880893	563,0926412	99,18996591	95,93034976
188	86,1422418	186,3868849	0,061036633	0,893519031	0,106172481	0,94779545	650,4808453	648,2581959	640,5252493	100,3428648	101,5542863
189	83,58412384	97,88052497	0,064192304	0,91868207	0,103796093	0,800332225	636,6171294	661,6627518	747,9729568	96,21474499	85,11231905
190	55,08170311	23,24841779	0,072449513	1,66681477	0,166859368	0,957024328	994,7838043	995,9736917	998,5950165	99,88053024	99,61834256
193	90,15619491	80,95098549	0,05/044531	0.204754244	0,08191053	0,92279152	507,5164361	504,9348684	493,2551868	100,5112675	102,8912518
194	31,09329462	31,30805501	0.057600455	0,394/51341	0,048841913	0,704104025	307,4076763	285 7022655	518 3692000	90,99359351	55,59604983
190	93 9924126	51 5166736	0.074125077	1 745000425	0 170823550	0.9035600/12	1016 6472	1025 647521	1044 80031	90,32042000 QQ 1224743	49,70013000
198	142,817626	82,495237	0.062107215	0.716206669	0.083636343	0.916796975	517.791262	548.4249492	677.8025248	94,41424261	76.39264285
200	110,8928766	38,98778828	0,059479821	0,814930004	0,099368647	0,932022555	610,7078677	605,2160057	584,7037076	100,9074218	104,4474081
213	116,2445998	32,75353489	0,059820338	0,731521365	0,088690454	0,913628136	547,7876263	557,4456332	597,0821729	98,26745311	91,74409338
214	83.53808328	38,95223268	0.061855328	0.903417573	0.105927846	0,952660998	649.055037	653,5523648	669,1106144	99.31186419	97.00265143



## ANEXO B – Dados Datação U-Pb, Zircões TUP 03B

SPOT	238U(ppm)	232Th(ppm)	207Pb/206Pb	207Pb/235U	206Pb/238U	Rho	AgePb206*/U238	AgePb207*/U235	AgePb207/Pb206	Concordância - 206/238 x 207/235	Concordância - 207/206 x 206/238
418	356,4107765	52,67052629	0,058942947	0,754901297	0,092887452	0,90191235	572,5913469	571,0642016	564,9893867	100,2674209	101,3455049
419	98,75343317	56,97425874	0,057867951	0,6683644	0,083767187	0,872575354	518,5695885	519,717431	524,7659748	99,77914104	98,81920959
423	336,4632362	15,23507534	0.058096068	0.670281649	0.083677619	0.928877982	518.0368022	520,8836056	533,3867299	99.4534665	97,12217668
414	95,79464219	49.65298678	0.058696871	0.702316659	0.086779421	0.883033578	536,4619692	540,1735654	555.8710705	99.31288823	96,50834478
444	69 4240512	31 80664834	0.058637911	0 697971152	0.086329198	0.856901377	533 7908414	537 5782823	553 6785752	99 29546245	96 40807237
449	184 4569998	146 3605127	0.060420738	0.81019262	0.097252546	0.917280851	598 2876392	602 5621523	618 6756823	99 29061041	96 70456692
470	135 5636219	78 57004901	0.072479206	1 633868838	0 163494251	0.917917812	976 1660744	983 3516657	999 4272933	99 26927552	97 67254516
470	121 /015/01	81 01/2/753	0.054032874	0.416408364	0.055803345	0.870300147	350,6022040	353 4796162	372 /1008	99 1860008	94 14164486
420	90,00262061	60 02707410	0,054052074	0,725269606	0,000005536	0,073303147	530,0022343	555,4730102 EE2 7722079	E72 102062	00 14022522	05 78002242
420	404.0002001	42 444952	0,039103342	0,725208000	0,088905520	0,074341491	642,0009988	000,1122910	620 4524547	99,14923333	95,76992242
440	104,0007300	43,441003	0,000997700	0,039133290	0,099773723	0,003490904	013,0020914	010,0073337	039,1031017	99,09731095	95,92109550
413	209,7677715	110,1209000	0,051733622	0,261375591	0,039446691	0,000493090	249,4023791	201,7401007	2/3,002/311	99,00622432	91,13494463
427	/1,1204/444	176,7449131	0,061256641	0,653090367	0,101001173	0,796115746	620,2734792	020,3439317	040,3279545	99,03061164	95,6/2/956/
430	113,6987023	90,01647748	0,051992195	0,293465385	0,040937136	0,869260069	258,6391594	261,2833649	285,0666518	98,98799318	90,72936372
486	123,2681055	6,794002802	0,059015722	0,703912048	0,086506632	0,912828899	534,84367	541,1247233	567,6760683	98,83925959	94,21634975
443	188,7724645	44,10235961	0,073397624	1,671666678	0,165183404	0,943606046	985,5181433	997,8193168	1024,951882	98,7671943	96,1526254
468	88,86488711	20,67164108	0,062049153	0,877448168	0,102561495	0,857414616	629,4027695	639,6035736	675,8031947	98,40513647	93,13403287
440	42,63140315	42,41969934	0,061955228	0,868597387	0,101680877	0,496292123	624,2519473	634,8054811	672,563609	98,33751691	92,81678921
438	111,6317064	1,640088216	0,059737944	0,720140726	0,087431077	0,888061774	540,3262172	550,7498518	594,0958056	98,10737405	90,94934051
448	178,6394644	102,2827836	0,059185897	0,681403368	0,083499671	0,905480061	516,9781677	527,6221626	573,9409324	97,98264826	90,07515207
493	67,2041803	19,47175994	0,074048482	1,646703015	0,161286436	0,886641828	963,921909	988,287309	1042,789149	97,53458334	92,43689487
497	93,61223459	16,27796452	0,059283242	0,649170593	0,07941922	0,862506541	492,6551991	507,9683587	577,5135133	96,98541073	85,30626344
488	159,3348793	22,4036449	0,073772894	1,584290221	0,155753082	0,956358647	933,1323112	964,0564316	1035,261513	96,79229147	90,13493687
474	205,0808871	104,5011422	0,06094657	0,735672323	0,087545509	0,845115834	541,0045466	559,8768966	637,3489171	96,6291965	84,88357508
437	464,2400737	258,4977355	0,054192238	0,341952789	0,045764401	0,877864225	288,4648029	298,6504605	379,0468695	96,58943853	76,10267386
484	113,7648966	177,6952927	0,053183531	0,286447409	0,039063078	0,878488421	247,0228546	255,7591737	336,6347729	96,58416199	73,38007673
483	159,1041808	179,1664319	0,053703892	0,294537129	0,03977709	0,726583321	251,4511126	262,1243485	358,6530733	95,92817836	70,10984467
500	166,520456	47,59463129	0,07327744	1,481687553	0,146651014	0,891638523	882,1629787	922,920968	1021,635553	95,58380503	86,34810883
439	112,313822	54,90791317	0,054586451	0,316958568	0,042113018	0,834891353	265,917161	279,5603057	395,323351	95,11978473	67,26573585
520	143,111332	44.30523963	0.066595379	0.987614935	0.107557892	0.897334176	658,5495213	697,5025006	825,145011	94,41536349	79.81015609
490	36.35722397	37.55181555	0.064863651	0.868404704	0.097100061	0.607837971	597.3917178	634,7007727	769,9168869	94,12178832	77.59171515
516	79,98490893	75,52075092	0.062965503	0.751012004	0.086505342	0.832887194	534,8360189	568,8113558	707.0657934	94.02695876	75,64161976
496	94,27499371	39,41975563	0.06448433	0.83434704	0.093840705	0.777761428	578.21167	616.0214009	757,5558987	93,86226991	76.32594123
465	278 2280946	113 9471205	0.06230979	0 704893585	0.082047622	0.820592028	508 3332319	541 7094658	684 7583328	93 83872056	74 2354211
515	81 64571568	46 97290536	0.061777957	0.672985826	0.079008006	0.878312976	490 1989106	522 5261609	666 4311173	93 8132762	73 55582564
526	73 2003767	45 99342125	0.061473003	0.654834509	0.077258425	0 83423547	479 73775	511 4495508	655 8256669	93 7996229	73 15019435
524	64 97102518	31 94012196	0.074259454	1 42877398	0 139543788	0 896498064	842 0821683	901 0372393	1048 527127	93 45697731	80 31095681
527	103 2030582	109 0030431	0.061281147	0.624788333	0.073944308	0.848407032	459 8752007	492 8441051	649 1168207	93 31048012	70 84629238
473	184 7110875	155 0953989	0.065772293	0.873530729	0.096323871	0 70392865	592 8293186	637 4826892	799 1374373	92 99535951	74 18364989
523	32 94440615	17 3238647	0.062620630	0.670672002	0.078710303	0.766987103	488 4738577	526 5766735	605 3727705	92,75405171	70,24633004
535	226 0870702	01 02737311	0,002020003	1 619007306	0,070713303	0,700307103	800 0707/8	977 6061038	1156 3570/3	92,0403171	77,82810277
404	104 1207522	160 2612606	0,070373437	0.202402264	0,143022337	0,919320902	246 055292	269.2749724	460 7600007	02,05001705	E2 02127127
494	104,1397523	160,2513505	0,056161462	0,302402304	0,039052166	0,022729510	240,900202	200,2740724	400,7000337	92,05307969	53,63127137
430	60 18106004	136 01121 44	0.066091602	0,00000762	0.001420120	0.083126145	563 0205540	615 2520620	800 064500	32,0004407	FO 74040000
530	09,10100021	130,0113141	0,066061602	0,032959150	0,091420136	0,963126445	563,9305516	015,2520020	000,901032	91,000300	69,71042666
433	63,1883492	55,4062477	0,055244007	0,241766068	0,031740145	0,826788548	201,4300561	219,8654945	422,1118024	91,61512884	47,71959821
464	198,5894124	113,9253051	0,06538983	0,786225775	0,087203878	0,535367848	538,979214	589,0287112	786,9041817	91,50304625	68,49362687
487	44,60603502	26,35118377	0,064574189	0,730002491	0,081990608	0,798294887	507,9935574	556,5545548	760,4929169	91,274/1027	66,79793409
499	89,98717261	55,84608222	0,074380544	1,301052439	0,126862767	0,752676178	769,9433289	846,1863918	1051,810933	90,98980276	73,20168525
548	162,2731903	83,17168203	0,0641226	0,6749387	0,076339961	0,914490478	474,2392322	523,7107148	745,6769522	90,55366232	63,59848334
416	403,5810988	75,02081934	0,070654381	1,040987555	0,106857538	0,842416215	654,4719022	724,4084913	947,4309224	90,34569722	69,07858786
528	29,04844326	44,0040846	0,072089429	1,125752807	0,113258337	0,905895702	691,6432182	765,7267325	988,466324	90,32507145	69,97134869
534	287,0515583	168,4720365	0,065046028	0,714441648	0,079660808	0,85044213	494,0978288	547,3801463	775,8255995	90,26593898	63,68671376
478	125,2862105	75,02448773	0,09757446	3,843677137	0,285699494	0,98728818	1620,002729	1601,943692	1578,273405	101,1273203	102,6439857
428	123,6966919	51,63746117	0,129486982	6,766897587	0,379020083	0,846579373	2071,704508	2081,404085	2091,014299	99,53398879	99,07653476
426	50,9167118	33,56378225	0,07633867	1,935067493	0,183844336	0,855998869	1087,942332	1093,293903	1103,965973	99,51050935	98,5485385
469	80,29314073	44,00524792	0,129633431	6,701907711	0,374955867	0,91525419	2052,677735	2072,872037	2093,001229	99,02578155	98,07341279
434	67,16433257	34,79331564	0,075885873	1,862916102	0,178045535	0,719671482	1056,288401	1068,021194	1092,06134	98,90144569	96,72427383
435	221,4229879	28,93144573	0,074824612	1,765088582	0,171088475	0,946183528	1018,10563	1032,718235	1063,794159	98,58503464	95,70513441
467	156,9390751	41,48015393	0,076363073	1,86467884	0,177100331	0,91436124	1051,11405	1068,64619	1104,604951	98,35940647	95,15746323
475	120,773211	71,49134117	0,081698712	2,250914541	0,199821642	0,98523625	1174,362055	1197,071938	1238,303679	98,1028807	94,8363535
463	117,2335201	24,67553562	0,077772191	1,905044521	0,177655852	0,908689942	1054,155656	1082,853968	1141,059879	97,34975231	92,38390329



## ANEXO B – Dados Datação U-Pb, Zircões TUP 08A

SPOT	238U(ppm)	232Th(ppm)	207Pb/206Pb	207Pb/235U	206Pb/238U	Rho	AgePb206*/U238	AgePb207*/U235	AgePb207/Pb206	Concordância - 206/238 x 207/235	Concordância - 207/206 x 206/238
176	16,18536024	18,78017227	0,274681427	24,70784545	0,652385511	0,921940766	3237,518173	3296,741908	3332,95356	98,20356776	97,13661218
177	157,5889248	136,1722506	0,051810957	0,292960295	0,041009632	0,899491157	259,0881072	260,8867864	277,0756772	99,31055183	93,50806602
179	37,02793629	40,63530734	0,062646777	0,865129859	0,100156997	0,685986584	615,3288906	632,9195016	696,2620494	97,22071907	88,37604909
180	96,11943398	77,19498747	0,058389227	0,663124826	0,082368525	0,906504787	510,2447608	516,5235949	544,3974709	98,78440519	93,72651199
183	58,45689967	32,95125759	0,058601832	0,648447076	0,080253146	0,906622388	497,6335773	507,5228056	552,3354067	98,05147116	90,09626601
184	23,33773398	8,175063543	0,060316237	0,74206803	0,089229448	0,767051715	550,9783578	563,6115786	614,938332	97,75852356	89,59896126
185	167,0147431	91,2126053	0,054288562	0,330634319	0,044171111	0,974932223	278,6357786	290,0500479	383,0391386	96,0647242	72,7434224
186	113,388843	19,69443321	0,062960983	0,993485906	0,114442922	0,944231843	698,4990097	700,4972894	706,9130828	99,71473413	98,80974432
188	272,6048372	166,0224283	0,058405952	0,650176641	0,08073707	0,77135668	500,5207443	508,5875734	545,0233502	98,41387611	91,83473408
190	156,2434433	72,95199824	0,057848891	0,668618597	0,083826655	0,979153507	518,9233083	519,8721246	524,0435739	99,81749044	99,02293133
193	136,5090399	57,26994112	0,055005627	0,322609835	0,04253723	0,961853632	268,5407687	283,9081556	412,451821	94,58719779	65,1083969
194	97,0841155	43,47687223	0,055688522	0,422981042	0,055087611	0,988597537	345,6812714	358,1804745	439,9713553	96,51036169	78,56904029
195	57,63669134	42,83516257	0,062277617	0,849660782	0,098949205	0,71018771	608,2479008	624,462972	683,655672	97,40335747	88,96991947
196	88,2100324	33,91693532	0,0598535	0,68900741	0,083489732	0,876895692	516,9190345	532,2037966	598,2825406	97,12802461	86,40048798
198	150,7646065	73.59464324	0.060555709	0.706264656	0.084588457	0.922905051	523,452783	542.5257064	623,4897503	96,48442034	83.95531486
200	70.75100052	31,20675966	0.070935368	1.440775686	0.147310014	0.912511254	885.8667773	906.042357	955,5515466	97,77321893	92,70737727
213	94,38664098	33.04362911	0.059154571	0.712469206	0.087352736	0.901102127	539,8617859	546,2112868	572,7895425	98.83753758	94,25133418
214	133,2129417	58.37593216	0.06003806	0.729131716	0.088080153	0.703440906	544,1728668	556.0433441	604,9465792	97,86518849	89.95387122
216	106.2784459	16,71661616	0.059720884	0.951282472	0.1155266	0.99108029	704,7644172	678,7701887	593,476782	103.8296067	118.7518094
217	164 0467328	118 2208286	0.058869103	0 703722278	0.086698704	0 904779931	535 9831674	541 0116309	562 2585901	99.07054428	95 32680813
218	342 1057057	207 2184405	0.050445801	0 141966107	0.020410722	0.507546573	130 2511866	134 7936442	215 586708	96 63006543	60,41707663
210	42 30301232	36 90377247	0.050783438	0 141667792	0.020232416	0 539488886	129 1246438	134 5283616	231 0122676	95 98321297	55 89514579
220	345 3247242	88 6277962	0.052696186	0.333696893	0.045927384	0.921017323	289 4693993	292 384363	315 7377998	99.00303707	91 68031179
223	177 7623056	79 96566855	0.055493502	0,332623098	0.043471937	0.808407469	274 3178372	202,004000	432 1603756	94 08413475	63 47593455
224	68 0707337	155 7012708	0.050606314	0,775685135	0.094240303	0,881672737	580 5662262	583 0100042	502 58/8123	00 5702817	07,97183607
224	63 68670263	100,7012790	0.061474188	0,773003133	0,034240505	0.153647260	545 1287454	567 028605	655 8660852	95,5752017	83 11574721
220	162 2255771	45,01014700 65 19006425	0.05497472	0,74734033	0,000241500	0,133047203	220.2661110	240.0020003	407 1006052	07 12622707	91 12202140
220	102,2200771	24 10502975	0,00407473	0,397733321	0,052507019	0,980037003	530,2001119	540,0029003	407,1220303	02 77296699	74 10261102
221	120,7010094	54,10505875	0,002323038	0,714749270	0,062910247	0,072204159	650 4717511	601 0712621	092,0001094	93,77300000	74,19301103
220	41 7308368	42 00570701	0,0007277541	1 107164140	0,10017092	0,794101490	758 8206884	756 8086406	750 8/17070	100.2670487	101 063858
229	41,7390300	42,90370791	0,004279341	0.142646222	0,124921725	0,977034409	107,0290004	130,0000400	206 2662072	02 29510012	42.04201976
230	161 2617622	FE 26141295	0,052250007	0,143040232	0,019939149	0,031081030	127,2713440	497 2761200	290,3003972 529,0601105	95,36319012	42,94391070
200	04.07502040	00 57405047	0,03797678	0,010002010	0,07700445	0,971011339	470,5700024	407,3701299	320,9001193	90,1940074	90,47304032
234	04,07533919	60,57135317	0,064792523	0,911949267	0,102080907	0,081294345	626,5922747	636,0934463	707,0004175	95,2132074	01,02930090
235	91,00053147	63,15026007	0,063661071	0,003104571	0,096306719	0,080419295	004,4697245	031,0099200	731,0549000	95,00631140	02,00731519
230	71,0615613	31,40003022	0,063662649	1,162/0/521	0,134695659	0,976263667	614,5977325	792,5736143	731,114127	102,7788104	111,4100031
238	291,7145559	113,8436782	0,053792804	0,402952526	0,054328589	0,979122741	341,0421022	343,7874128	362,3853443	99,20145109	94,1103462
240	114,048247	79,12750392	0,065077343	0,90164426	0,100485671	0,865633718	617,2544821	652,6059473	//6,83/9265	94,58303048	79,45730519
244	77,31191783	28,23750067	0,062320267	0,90933426	0,105826144	0,844159063	648,4621903	656,7037333	685,11/2/84	98,74501353	94,64980824
245	102,8569964	113,6396816	0,052711988	0,308494678	0,042446023	0,845834657	267,976772	273,0135185	316,4196531	98,15512926	84,69030587
247	607,3657021	476,0655993	0,05228021	0,145892161	0,020239201	0,753797761	129,1675114	138,2785164	297,6850572	93,41112037	43,39066013
249	63,43271839	24,01355774	0,064192201	0,927584503	0,104802089	0,872275123	642,4896972	666,3630868	747,9695921	96,41736013	85,89783649
250	140,2641176	116,6116803	0,055161247	0,454978129	0,059821207	0,911376529	374,5380922	380,7593543	418,7646431	98,36609081	89,43880493
263	249,5435009	79,12519929	0,060409155	0,670352363	0,080482064	0,759786361	498,999499	520,9265923	618,2618653	95,79075178	80,7100562
264	17,65586971	39,89415224	0,061194119	0,745431261	0,088347984	0,780003737	545,7594532	565,5699922	646,0642241	96,49724363	84,4744892
265	76,82669056	46,10308669	0,059183929	0,704247752	0,086301909	0,977160013	533,6289058	541,3247538	573,8685962	98,57833066	92,98799574
266	150,0971389	124,4725587	0,064316739	0,799360468	0,090139963	0,308730268	556,3648326	596,4678556	752,063473	93,27658269	73,97844098
267	209,8578047	97,54473915	0,051810467	0,312438308	0,043736648	0,937391975	275,9529745	276,0691539	277,0540024	99,95791654	99,60259448
268	88,5767304	44,52005198	0,055758483	0,341055852	0,044362221	0,819707993	279,815531	297,9715691	442,7642376	93,90678843	63,1974101
269	208,9508357	80,66121214	0,059651246	0,65376601	0,079487995	0,900067688	493,0659184	510,7937353	590,9473762	96,52935898	83,43651875
270	304,3730669	81,45975039	0,059498465	0,732954399	0,089344931	0,945036414	551,661791	558,2856355	585,3839355	98,81353842	. 94,23931159
275	91,6166269	46,45595092	0,062655812	0,592608156	0,068596979	0,849617648	427,6973643	472,5319869	696,5693087	90,5118333	61,40054678
276	284,1858273	164,6430846	0,055095296	0,375060451	0,049372541	0,938299807	310,6682038	323,3972423	416,0923439	96,06396196	74,66328288
277	104,4124815	95,96823097	0,061307671	0,5511188	0,065197228	0,793604881	407,1553452	445,7292691	650,0460132	91,34588493	62,63484999
280	127,3805153	46,64060477	0,07376033	1,717475415	0,168875405	0,946630204	1005,911964	1015,081806	1034,917458	99,09664008	. 97,19731328
285	288,1602564	226,0606181	0,062461128	0,960302071	0,111505623	0,954473255	681,4859863	683,4528645	689,934923	99,71221451	98,77540092
286	134,946474	38,59988846	0,075770957	1,800820023	0,172371818	0,939260778	1025,166099	1045,755309	1089,025371	98,0311637	94,1361079
287	231,8484956	176,8088349	0,052071283	0,288622391	0,040200409	0,924404574	254,0750689	257,4744235	288,5414181	98,67973115	88,05497339
288	86,44053576	38,36759163	0,076557948	1,796959288	0,170234147	0,299340033	1013,401151	1044,354706	1109,698213	97,03610711	91,3222297
289	143,4833323	65,59644658	0,065730023	0,852132753	0,094024753	0,59392897	579,2962434	625,8190696	797,7900827	92,56609003	72,61261527
290	45,80549346	40,89822686	0,052481554	0,288728546	0,039900814	0,819983628	252,2181322	257,5580663	306,4482453	97,92670673	82,30366337
293	143,9308526	83,42054341	0,073182824	1,696954541	0,168174354	0,992468294	1002,044464	1007,385234	1019,019755	99,46983838	98,33415494
294	233,5374666	80,6344676	0,0557443	0,3250736	0,042294117	0,689749513	267,0373251	285,7978621	442,1984491	93,4357322	60,38857116
295	78,25564181	80,190813	0,059928815	0,724943749	0,087733882	0,860551335	542,1210327	553,5810894	601,0053457	97,92983235	90,20236453
296	81,25922411	32,77443265	0,060851864	0,778127815	0,092741855	0,132989363	571,7324835	584,4149281	634,0019157	97,82989037	90,17835267
298	245,5029114	54,57242493	0,059240942	0,747102005	0,091465366	0,903302472	564,197683	566,5414663	575,9620623	99,58629978	97,95743851
299	140,6185927	96,76037274	0,05351524	0,32175438	0,043605946	0,743525077	275,1456685	283,2511986	350,7052076	97,13839515	78,45497089
300	36,85990817	19,81919717	0,057581988	0,623445403	0,078525462	0,810336012	487,3153589	492,0045329	513,8929948	99,04692465	94,82817705
313	113,0182388	39,48049772	0,059572381	0,589138803	0,071725138	0,86974115	446,5407181	470,3176502	588,0779937	94,94449505	75,93222716
314	187,4087673	170,4736574	0,05790269	0,662914085	0,083034243	0,990853287	514.2084552	516.3949255	526.0817938	99.57658951	97.74306225
315	161,7795425	44,96471993	0,056273395	0,555390394	0,071580375	0,896594294	445.6699131	448.5216814	463.1713748	99.36418497	96.2213853
317	119.6373515	55,83611607	0.061918682	0.897918046	0.10517529	0.886351303	644,6669214	650,6143881	671,3012884	99,08586917	96,03242725
319	151,7532893	22,81786131	0.058241583	0.62398656	0.077703538	0.354881529	482 4007974	492.3429367	538.8616018	97.9806475	89.52220678
320	67.37887322	19,86826966	0.074893065	1.802854749	0.174589394	0.982472689	1037.348162	1046.492693	1065.63313	99.12617347	97.34571239
323	24.07459941	6.615317833	0.060656214	0.978120508	0.116954191	0.397751313	713 0089184	692 6406138	627 0650519	102 9406743	113 7057338
325	14.29610141	16.53226645	0.070865214	1.600397318	0.163792283	0.482756756	977 8171277	970 365386	953 5280383	100 7670315	102 5472863
326	44,78169791	5.522796641	0.158518495	9.669913831	0.442426762	0.417427496	2361,495225	2403.846182	2439,919233	98,23820021	96,78579492
020	,	3,022100041	5,100010400	3,000010001	5,	-, +21 +30	2001,700220	2.00,040102	2.00,010200	00,20020021	50,10013432



## ANEXO B – Dados Datação U-Pb, Zircões TUP 09B

SPOT	238U(ppm)	232Th(ppm)	207Pb/206Pb	207Pb/235U	206Pb/238U	Rho	Age Pb206*/U238	Age Pb207*/U235	AgePb207/Pb206	Concordância - 206/238 x 207/235	Concordância - 207/206 x 206/238
23	67,8703396	27,03499775	0,054844701	0,428300265	0,056638585	0,858624979	355,150512	361,9689759	405,8975807	98,11628502	87,49756809
24	81,38/2654	52,18398959	0,06261584	0,9409662	0,108990474	0,687570779	666,8823102	6/3,38//149	695,2094317	99,03392882	95,92538302
26	153,7496093	114,9986748	0.057192111	0.587255314	0.074471406	0.883878311	463.038357	469.1134743	498,9487026	98,70497913	92.80279806
27	146,2807101	30,30793828	0,062134155	0,907375919	0,105914539	0,937151756	648,9774695	655,6617567	678,7293319	98,98052812	95,61653504
28	184,312168	43,13164658	0,073085511	1,714940301	0,170183105	0,948460948	1013,119971	1014,134134	1016,324754	99,89999716	99,68466943
30	149,2419568	158,5639582	0,053698943	0,294179108	0,039732401	0,787383638	251,1740445	261,8434914	358,4450569	95,92525792	70,07323428
33	87,71843475	38,7605684	0,059392621	0,670669664	0,081898302	0,897052516	507,4435809	521,1194548	581,5182215	97,3756739	87,26185391
35	18,29422709	8,367181065	0,067932219	1,295268551	0,138287443	0,79783127	694 5615583	684 22149	650 3611243	98,97350335	96,36281277
37	93.05263618	36.55653132	0.055116634	0.327250675	0.043062237	0.583264938	271.7862729	287.4647555	416,9574393	94,54594616	65.18321711
38	77,59181655	41,79345128	0,125564573	7,091081963	0,409585059	0,951388674	2213,024183	2122,924872	2036,771707	104,2441121	108,6535214
39	311,9590761	45,07944761	0,061253195	0,833853403	0,098732398	0,966233295	606,9759857	615,7481169	648,137022	98,5753702	93,64933109
40	99,51190694	23,40238711	0,073149885	1,837702869	0,182205033	0,949806599	1079,00961	1059,039235	1018,108069	101,8857068	105,9818346
43	121,4317505	58,10881237	0,109455978	4,745546196	0,314445544	0,931597483	1762,545932	1775,32109	1/90,377068	99,28040293	98,44551539
40	119,7433332	58.13814084	0.058813403	0.693763324	0.085552706	0,944297767	529, 181395	535.0588911	560,1956783	98,90152351	94.46366966
47	201,3757151	92,76149402	0,058127133	0,680902976	0,084958151	0,941459801	525,6497417	527,3199375	534,5570977	99,68326708	98,33369418
48	45,1674857	48,20660917	0,066056726	1,256920277	0,138003281	0,965012905	833,3616026	826,5230806	808,1737166	100,8273843	103,1166426
49	115,0322619	47,52788227	0,075707934	1,430696138	0,137058109	0,383349838	828,0052891	901,8405051	1087,357825	91,81282992	76,14837266
50	34,25213439	15,26982782	0,061185611	0,749860299	0,088885267	0,593173491	548,9410633	568,1432784	645,7654996	96,6201809	85,00625438
64	233 9777152	33 9855511	0,059695393	0,736245617	0,089693049	0,847650899	554 4359784	559 6066981	580 6917433	90,0300741	93,44701078
65	357,6474894	136.8143335	0.05384528	0.317043112	0.042704083	0.84506352	269.5724025	279.6254871	364,5841446	96.40480391	73.93969446
66	78,94233941	17,31662795	0,059181242	0,729326844	0,08937928	0,879696898	551,8650524	556,1579211	573,7698555	99,22812055	96,18230152
67	25,62102594	24,35083595	0,067983688	1,000631955	0,10675012	0,880471963	653,8462616	704,130619	868,0568895	92,85866059	75,32297358
68	138,9782819	96,78214372	0,062051492	0,888359041	0,10383291	0,931612409	636,8321456	645,4874255	675,8837973	98,65910945	94,22213525
69	71,06551175	43,16921404	0,054865934	0,335497929	0,0443492	0,736192294	2/9,/3516	293,7546231	406,7638849	95,22749195	68,77089399
70	198 5511525	43 4560636	0.058363824	0,707831356	0.087959911	0,937491492	543 4604464	543 4576086	543 4463712	100 0005222	100 00259
74	81,43805439	28,58945299	0,061621216	0,867246063	0,102072981	0,859025911	626,5459106	634,0709159	660,9889744	98,8132234	94,78916214
75	451,5577448	149,8832455	0,057118591	0,342120972	0,043441112	0,885386986	274,127399	298,7777078	496,1149051	91,74961578	55,25482023
76	117,2822714	57,7779303	0,08463595	2,629820333	0,225356418	0,992104583	1310,116071	1309,014793	1307,210795	100,0841303	100,22225
77	99,85091384	14,72526136	0,081081288	2,25939684	0,202101995	0,955891616	1186,602333	1199,717824	1223,415363	98,90678538	96,99096226
/9	61,80/5/9/4	19,57607934	0,09502339	3,757783663	0,286813759	0,989230907	1625,587163	1583,776168	1528,53745	102,639956	106,3491878
84	85 88791784	13 71133133	0.084005417	2 719130769	0,128103708	0,860055886	1359 390776	1333 695544	1292 678475	101 9266191	105 1607807
85	142,8473087	23,90202636	0,069730374	0,995179208	0,103508979	0,745549418	634,9401021	701,359406	920,4239347	90,52991899	68,98344102
86	92,64096693	53,29103561	0,061342939	0,861004168	0,101798036	0,941346861	624,9374622	630,6709757	651,2806711	99,09088673	95,95516801
87	89,56565579	36,87511039	0,061792213	0,927688245	0,108884743	0,923238294	666,2676822	666,4177327	666,9251633	99,97748403	99,90141606
88	88,68887299	16,51158569	0,060121796	0,677217769	0,081694934	0,891983307	506,2317127	525,0913851	607,9608592	96,40830664	83,26715529
89	129,0108689	39,3828848	0,059175633	0,72137966	0,088413729	0,912636263	546,1488608	1157 273746	573,563738	99,03313766	95,22025621
93	31,67290766	21.39538631	0.06653975	0.973265253	0.106083729	0,706302285	649.9636079	690.1453194	823,4008206	94.17778975	78.93647804
94	42,72976633	125,21296	0,065330695	0,890203727	0,098825917	0,948163126	607,5246551	646,4788388	785,0042007	93,97440701	77,39126168
95	132,5765112	104,7989436	0,057687215	0,340329947	0,042787737	0,919336885	270,0895641	297,4217983	517,9025719	90,81027876	52,15065127
96	89,2167885	78,10541964	0,06634835	1,054833533	0,115306164	0,941667425	703,4904385	731,2735513	817,3846977	96,20072233	86,06601524
98	77,40323446	146,5749805	0,061549078	0,831587808	0,097990796	0,968488279	087 5586288	014,4929069	007 3508265	98,06841215	91,51762645
100	49.16552027	54.02470963	0.054936277	0.482387263	0.063684733	0,791661423	397,995445	399,7093332	409.6305997	99.57121638	97,15959827
114	73,10310997	38,75661187	0,057740276	0,652964972	0,082018109	0,882575641	508,1574002	510,3018021	519,9206379	99,5797771	97,7374936
115	89,94185396	75,88764548	0,220575721	17,88988145	0,588231774	0,698182004	2982,248557	2983,831518	2984,898386	99,94694871	99,9112255
116	116,044721	83,66454144	0,133552908	7,078699669	0,384413707	0,792657554	2096,868549	2121,369777	2145,201434	98,84502792	97,74693024
11/	41,37875333	27,27339214	0,078578964	2,365328564	0,218315163	0,919069054	12/2,966258	1232,193246	1161,549404	103,3089787	109,5920891
110	40 30520329	39 51471522	0.067545874	0.965588513	0,103679284	0,978516991	635 9349069	686 1874048	854 6509286	92 67656364	74 40873059
120	20,65765598	10,56793504	0,168306583	11,34855793	0,489033153	0,91315718	2566,491654	2552,20509	2540,872843	100,5597734	101,0082681
123	38,7889957	26,30915886	0,077471885	2,017494612	0,188871742	0,937775334	1115,260218	1121,416444	1133,362775	99,45103117	98,40275704
124	60,2227362	13,4478344	0,075268743	1,799714912	0,173415445	0,954061035	1030,90204	1045,354592	1075,686833	98,61744979	95,83663281
125	124,0379191	150,9299556	0,062056209	0,807164215	0,094335549	0,790095213	581,1273155	600,8620168	676,0463207	96,7156018	85,95968912
126	215 1/221052	55 72983013	0.058806274	0,493092807	0,036/658/2	0.863473961	506 1741261	407,0158903	559 9314271	90,44260238	58,04939202
129	96,76252365	35,18647597	0,058190503	0,690191494	0,086023324	0,901753652	531.97549	532.9153826	536.9419049	99.82363193	99.07505545
133	140,452083	41,79443497	0,064247286	1,000413315	0,112933659	0,974692388	689,7628686	704,0196463	749,7817004	97,97494603	91,99515915
134	78,90919512	39,71840628	0,060744656	0,719601694	0,085917736	0,40079332	531,3487159	550,4316155	630,2045521	96,53310256	84,31369056
135	63,60624988	18,84862225	0,069457862	1,187338725	0,12398009	0,928629375	753,4313472	794,7257466	912,3686615	94,80394342	82,57970478
136	157,8829654	141,7151676	0,06228068	0,897078832	0,104466246	0,990139218	640,5297847	650,1653121	683,7606886	98,51798809	93,67748035
137	132,5627073	35 30345704	0,059491864	0,776156663	0,094621922	0,920041925	542 3688219	545 0546391	556 300837	99,91040009	99,0019001
139	119,2648594	87,49231954	0,063940232	0,921579517	0,104533943	0,982979704	640,9249014	663,1949449	739,6539713	96,64200644	86,65199218
140	35,98327599	12,33630162	0,062869452	0,746391702	0,0861045	0,820173844	532,4573197	566,1285655	703,8177784	94,05236763	75,65272376
143	33,07384672	39,78014313	0,064696579	1,01146133	0,113387895	0,796005421	692,3933918	709,6120347	764,4844401	97,57351312	90,56997834
145	73,15510357	42,05682773	0,159142774	9,846474106	0,448737687	0,488652273	2389,638145	2420,510713	2446,573221	98,72454321	97,67286442
146	34,07387159	59,82597987	0,066668969	0,926412333	0,10078115	0,866844088	618,9851061	665,7454431	827,4494345	92,97624378	74,80639666
147	209 5909322	26,36436030	0.060008000	0,040350/52	0,097953285	0.495420602	543 324808	562 1702287	630 1055707	96,7486617	85 00134122
163	121,8714812	19,7274461	0,057886209	0,651327413	0,081606166	0,916298868	505,70267	509,295403	525,4576853	99,29456797	96,24041749
164	170,7628904	33,3368144	0,06601055	1,040564853	0,114328505	0,939131214	697,8371385	724,1981771	806,7102651	96,35996893	86,50406083
167	48,39708415	18,39290032	0,061340213	0,787318209	0,093090153	0,8066606	573,7868682	589,6495194	651,1852669	97,30981699	88,11422761
168	/3,85631192	28,9446377	0,060881077	0,788465625	0,093928885	0,700647358	578,7313264	590,3011645	635,0350747	98,04001096	91,13375771
169	62 17300611	3 70350015	0.074969601	0,546956566	0,004901208	0.736372100	405,363627	444,31284/3	1067 686642	91,23382982	62,23186563 72 20207312
174	62,20237974	16,99848795	0,074177369	1,657220261	0,162034515	0,907240854	968.0732311	992.3140964	1046.297135	97.55713786	92.5237391
175	266,8483836	166,4626993	0,054364945	0,324957089	0,043351666	0,660434489	273,5747728	285,7085769	386,1979313	95,75308372	70,83796952



## ANEXO B – Medidas de Forma, Zircões TUP 01B (Analyzr)

Sample	Grain number	Area (µm²)	Equivalent diameter (µm)	Perimeter (µm)	Minor axis (µm)	Major axis (µm)	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
TUP-1B	2	72494,33	303,81	1164,73	190,98	486,26	0,97	74421,77	0,67	0,39	0,62	2,55	190,4	468,99
TUP-1B	3	76757,37	312,62	1071,12	256,31	383,55	0,98	78390,02	0,84	0,66	0,82	1,5	245,8	373,77
TUP-1B	4	52721,09	259,09	896,51	205,47	329,71	0,97	54104,31	0,82	0,62	0,79	1,6	200,28	322,02
TUP-1B	5	65759,64	289,36	1071,6	200,83	427,59	0,96	68843,54	0,72	0,46	0,68	2,13	201,34	408,89
TUP-1B	6	58911,56	273,88	935,08	217,1	347,21	0,98	60249,43	0,85	0,62	0,79	1,6	214,29	344,18
TUP-1B	7	45374,15	240,36	845,62	180,99	322,32	0,98	46462,59	0,8	0,56	0,75	1,78	183,19	317,19
TUP-1B	8	51678	256,51	886,31	194,8	339,18	0,98	52857,14	0,83	0,57	0,76	1,74	195,24	333,5
TUP-1B	9	33378,68	206,15	712,09	160,42	266,95	0,97	34489,8	0,83	0,6	0,77	1,66	162,63	264,49
TUP-1B	10	39455,78	224,14	737,39	191,58	263,07	0,99	40022,68	0,91	0,73	0,85	1,37	185,19	262,94
TUP-1B	11	29614,51	194,18	638,01	179,81	210,32	0,97	30430,84	0,91	0,85	0,92	1,17	180,95	215,76
TUP-1B	12	36235,83	214,79	/31,14	179,93	258,73	0,97	3/2/8,91	0,85	0,69	0,83	1,44	180,1	256,44
TUP-1B	14	20/55 79	208,38	7/2 /5	100,0	240,45	0,97	35011,34	0,88	0,71	0,85	1,4	1/6,19	247,48
TUP-1B	14	37981.86	224,14	743,43	133,00	233,02	0,58	3893/ 2/	0,9	0,78	0,88	1,27	195,70	230,34
TLIP-1B	16	30770 98	197 94	655.43	186 52	200,02	0,50	31587 3	0,04	0,01	0,78	1,02	185 71	200,14
TUP-1B	17	33718.82	207.2	790.11	130	331.56	0,97	34761.9	0.68	0.39	0.62	2.55	136.29	330.77
TUP-1B	18	35941.04	213.92	738.07	164	280.74	0.98	36848.07	0.83	0.58	0.76	1.71	164.99	274.79
TUP-1B	19	33764,17	207,34	736,92	150,12	290,05	0,97	34829,93	0,78	0,51	0,71	1,93	150,35	277,66
TUP-1B	20	30612,24	197,43	671,01	152,71	256,2	0,98	31315,19	0,85	0,59	0,77	1,68	147,62	253,1
TUP-1B	21	25623,58	180,62	627,53	133,99	246,04	0,97	26281,18	0,82	0,54	0,73	1,84	130,75	238,86
TUP-1B	22	34036,28	208,17	795,89	126,94	344,12	0,97	35102,04	0,68	0,37	0,6	2,71	126,31	330, 19
TUP-1B	23	24285,71	175,85	680,73	107,71	288,67	0,96	25260,77	0,66	0,37	0,61	2,68	110,09	285,4
TUP-1B	24	28730,16	191,26	637,53	166,12	221,27	0,97	29591,84	0,89	0,75	0,86	1,33	165,71	220,95
TUP-1B	25	24240,36	175,68	614,54	132,41	236,17	0,97	24943,31	0,81	0,55	0,74	1,78	138,42	235,22
TUP-1B	26	26598,64	184,03	722,77	109,12	313,56	0,96	27800,45	0,64	0,34	0,59	2,87	111,79	304,54
TUP-1B	27	24285,71	175,85	607,81	138,94	224,46	0,96	25283,45	0,83	0,61	0,78	1,62	146,94	227,88
TUP-1B	28	28435,37	190,28	686,99	136,56	268,01	0,97	29433,11	0,76	0,5	0,71	1,96	141,42	270,59
TUP-1B	29	29727,89	194,55	697,47	140,8	271,42	0,96	30816,33	0,77	0,51	0,72	1,93	141,55	265,64
TUP-1B	30	19365,08	157,02	552,78	114,17	216,79	0,97	20022,68	0,8	0,52	0,72	1,9	114,29	216,86
TUP-1B	31	22244,9	168,29	595,49	124,48	231,04	0,97	23038,55	0,79	0,53	0,73	1,86	124,95	226,23
TUP-1B	32	18322	152,74	502,37	146,02	160,45	0,97	18934,24	0,91	0,91	0,95	1,1	147,62	166,33
TUP-1B	24	20113,38	100,03	590,87	100,97	240,57	0,95	21150,40	0,72	0,44	0,67	2,25	112,09	238,14
TUP-1B	35	23704,17	175,95	620.6	128,53	237,04	0,97	24380,3	0,79	0,54	0,73	1,04	132 82	232,0
TLIP-1B	36	27879 82	170,68	611 75	119 04	242,12	0,50	23605.44	0,75	0,32	0,72	2 07	122,02	230,42
TUP-1B	37	14308 39	134 97	433 39	130 69	140 31	0.98	14603 17	0,96	0,40	0,96	1 07	133 33	147.08
TUP-1B	38	20317.46	160.84	572.5	118.99	220.94	0.97	21043.08	0,30	0.53	0.73	1.86	121.97	224.62
TUP-1B	39	20748,3	162,53	594,34	108,99	243,86	0,97	21451,25	0,74	0,44	0,67	2,24	110,74	242,86
TUP-1B	40	23310,66	172,28	626,38	116,98	255,58	0,96	24195,01	0,75	0,45	0,67	2,18	120,07	255,55
TUP-1B	41	24897,96	178,05	716,04	103,36	309,23	0,95	26258,5	0,61	0,33	0,58	2,99	107,55	297,11
TUP-1B	42	19229,02	156,47	559,17	115,17	218,73	0,96	20090,7	0,77	0,51	0,72	1,9	123,81	214,87
TUP-1B	43	21224,49	164,39	559,51	132,87	204,89	0,96	21995,46	0,85	0,64	0,8	1,54	133,33	204,54
TUP-1B	44	23650,79	173,53	718,15	99,81	316,55	0,92	25600,91	0,58	0,3	0,55	3,17	109,92	303,76
TUP-1B	45	19274,38	156,66	566,25	110,74	224,08	0,95	20226,76	0,76	0,49	0,7	2,02	112,94	218,48
TUP-1B	46	20725,62	162,45	559,51	122,86	215,94	0,97	21315,19	0,83	0,57	0,75	1,76	128,57	217,18
TUP-1B	47	20204,08	160,39	547,2	129,64	199,7	0,97	20929,71	0,85	0,65	0,8	1,54	133,33	201,41
TUP-1B	48	19002,27	100 12	537,2	119,23	205,10	0,97	19523,81	0,83	0,57	0,76	1,72	119,23	201,81
TUP-1D	49 51	15622.59	190,12	474.05	135,34	170.91	0,90	29309,10	0,75	0,40	0,09	2,00	140,55	191.02
TUP-1B	52	17324.26	141,04	545 37	94 61	234 29	0,97	17777 78	0,87	0,02	0,78	2 48	90.48	227 03
TUP-1B	53	18775.51	154.61	542.1	112.19	214.16	0.97	19387.76	0.8	0.52	0.72	1.91	109.52	215.6
TUP-1B	54	17505.67	149.29	525.36	109.04	207.01	0.96	18140.59	0.8	0.52	0.72	1.9	109.65	200.74
TUP-1B	55	15804,99	141,86	482,84	112,51	179,69	0,96	16394,56	0,85	0,62	0,79	1,6	113,78	179
TUP-1B	56	15238,1	139,29	477,74	109,11	178,68	0,96	15895,69	0,84	0,61	0,78	1,64	111,92	179,25
TUP-1B	57	18662,13	154,15	559,51	103,17	231,18	0,97	19297,05	0,75	0,44	0,67	2,24	107,4	228,97
TUP-1B	58	20453,51	161,38	680,05	88,92	299,5	0,93	21882,09	0,56	0,29	0,54	3,37	93,54	289,66
TUP-1B	59	22018,14	167,43	623,59	120,67	240,98	0,94	23401,36	0,71	0,48	0,69	2	131,32	239,14
TUP-1B	60	10521,54	115,74	380,67	108,58	124,48	0,96	10929,71	0,91	0,86	0,93	1,15	108,42	128,22
TUP-1B	61	21972,79	167,26	598,28	117,41	239,01	0,97	22698,41	0,77	0,49	0,7	2,04	123,52	240,79
TUP-1B	62	17800,45	150,55	560,33	110,03	213,23	0,95	18684,81	0,71	0,5	0,71	1,94	118,6	224,77
TUP-1B	63	14081,63	133,9	505,36	82,57	221,12	0,95	14807,26	0,69	0,37	0,61	2,68	84,18	211,46
TUP-1B	64	11791,38	122,53	428,97	88,19	170,78	0,96	12312,93	0,81	0,51	0,72	1,94	92,45	170,7
TUP-1B	65	12290,25	125,09	436,18	98,18	162,14	0,95	12947,85	0,81	0,6	0,77	1,65	105,41	168,36
TUP-1B	67	14221.07	152,45	508,50	98,38	239,40	0,90	19002,27	0,71	0,41	0,64	2,43	99,42	230,15
TUP-18	69	151/7 20	135,08	503,52	89,11 103.30	200,54	0,95	15402,04	0,71	0,43	0,65	2,32	91,91	201,81
TUP-1R	60	17870 82	130,87	401,01	102,30 QR /	162.75	0,97	13401 26	0,82	0,54	0,73	1,85	104,70	169 76
TUP-1R	70	19705 22	158 /	611 75	90,4	252 02	0,50	20657 6	0,04	0,30	0,70	2,71	107 22	252 02
TUP-1R	71	14081 63	133,4	489 38	91 6	197 7	0.95	14897 96	0,30	0,55	0,03	2,35	100	195 76
TUP-1B	72	13990.93	133.47	448.02	114.36	156.39	0.96	14648.53	0.88	0.73	0.85	1.37	118.96	157.72
TUP-1B	73	17913,83	151,03	523,73	114,63	200,26	0,97	18548,75	0,82	0,57	0,75	1,75	124,59	211,36
TUP-1B	74	14535,15	136,04	441,76	124,43	150,8	0,98	14829,93	0,94	0,81	0,9	1,21	123,81	155,69
TUP-1B	75	15873,02	142,16	551,34	86,13	239,46	0,95	16712,02	0,66	0,35	0,59	2,78	85,94	229,81
TUP-1B	76	14240,36	134,65	480,33	91,53	201,4	0,96	14807,26	0,78	0,45	0,67	2,2	90,48	190,6
TUP-1B	77	15328,8	139,7	492,85	99,7	196,5	0,97	15873,02	0,79	0,51	0,71	1,97	102,22	198,06
TUP-1B	78	13038,55	128,85	485,43	85,28	197,61	0,95	13764,17	0,7	0,43	0,65	2,32	88,32	197,32
TUP-1B	79	14195,01	134,44	499,78	85,69	215,97	0,96	14739,23	0,71	0,39	0,62	2,52	84,18	207,46
TUP-1B	80	10408,16	115,12	433,87	72,12	184,5	0,94	11043,08	0,69	0,39	0,62	2,56	76,19	180,26

Sampla	Grain	Aroa (um²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convox area	Form factor	Poundnoss	Compactnoss	Acport ratio	Min Forot	Max Forat
Sample	number	Area (µm)	diameter (µm)	(µm)	(µm)	(µm)	Solicity	Convex area	FORMIACLOR	Rounaness	compactness	Aspectratio	win. reret	IVIAX. Feret
TUP-1B	81	11723,36	122,17	446,38	81,56	183,9	0,95	12312,93	0,74	0,44	0,66	2,25	84,93	183,26
TUP-1B	82	14557,82	136,15	469,37	104,95	177,94	0,96	15124,72	0,83	0,59	0,77	1,7	108,3	177,79
TUP-1B	83	17505,67	149,29	526,04	107,44	208,79	0,96	18185,94	0,79	0,51	0,72	1,94	107,75	203,82
TUP-1B	84	15079,37	138,56	491,21	95,82	201,58	0,98	15464,85	0,79	0,47	0,69	2,1	94,28	203,04
TUP-1B	85	14852,61	137,52	516,99	85,66	222,85	0,95	15623,58	0,7	0,38	0,62	2,6	89,85	215,13
TUP-1B	86	14512,47	135,93	503,33	86,64	215,16	0,96	15102,04	0,72	0,4	0,63	2,48	85,71	207,46
TUP-1B	87	17029,48	147,25	499,1	117,6	185,3	0,96	17664,4	0,86	0,63	0,79	1,58	118,1	185,29
TUP-1B	88	17392,29	148,81	507,95	117,62	191,65	0,97	17936,51	0,85	0,6	0,78	1,63	119,05	189,58
TUP-1B	89	18253,97	152,45	539,31	110,26	212,29	0,96	18956,92	0,79	0,52	0,72	1,93	111,43	207,89
TUP-1B	90	11814,06	122,65	438,49	84,56	179,54	0,95	12403,63	0,77	0,47	0,68	2,12	89,81	178,3
TUP-1B	91	19659,86	158,21	588,08	104,5	243,05	0,96	20566,89	0,71	0,42	0,65	2,33	105,53	236,42
TUP-1B	92	12585,03	126,59	455,91	91,05	177,91	0,95	13242,63	0,76	0,51	0,71	1,95	92,45	174,38
TUP-1B	93	22176,87	168,04	580,19	124,1	228,25	0,98	22675,74	0,83	0,54	0,74	1,84	119,05	226,28
TUP-1B	94	12063,49	123,93	404,82	121,37	127,64	0,97	12471,66	0,93	0,94	0,97	1,05	121,22	132,82
TUP-1B	95	9569,16	110,38	387,41	84,25	147,82	0,95	10068,03	0,8	0,56	0,75	1,75	87,31	148,77
TUP-1B	96	20612,24	162	573,18	125,88	211,9	0,95	21655,33	0,79	0,58	0,76	1,68	127,95	222,95
TUP-1B	97	22267,57	168,38	603,86	123,98	233,41	0,97	23015,87	0,77	0,52	0,72	1,88	124,99	229,07
TUP-1B	98	25306,12	179,5	632,24	130,62	251,1	0,97	26009,07	0,8	0,51	0,71	1,92	123,81	241,12
TUP-1B	99	18253,97	152,45	503,52	130,4	178,86	0,97	18775,51	0,9	0,73	0,85	1,37	129,9	179,51
TUP-1B	100	32358,28	202,98	724,88	146	289,52	0,96	33673,47	0,77	0,49	0,7	1,98	142,86	288,24
TUP-1B	101	18911,56	155,17	537,67	119	204,29	0,97	19591,84	0,82	0,58	0,76	1,72	123,48	206,96
TUP-1B	102	27052,15	185,59	687,46	120,05	289,28	0,97	27936,51	0,72	0,41	0,64	2,41	124,29	282,08
TUP-1B	103	31247,17	199,46	801,75	123,59	332,95	0,94	33129,25	0,61	0,36	0,6	2,69	123,58	319,37
TUP-1B	104	36213,15	214,73	748,35	160,53	290,01	0,97	37188,21	0,81	0,55	0,74	1,81	159,29	286,11
TUP-1B	105	34807,26	210,52	772,5	146,01	308,12	0,96	36077,1	0,73	0,47	0,68	2,11	146,01	303,31
TUP-1B	106	22290,25	168,47	624,74	112,36	257,67	0,96	23174,6	0,72	0,43	0,65	2,29	118,86	255,77
TUP-1B	107	22222,22	168,21	593,86	121,16	234,63	0,97	22902,49	0,79	0,51	0,72	1,94	125,47	234,25
TUP-1B	108	28707,48	191,18	688,42	130,4	280,84	0,97	29523,81	0,76	0,46	0,68	2,15	136,35	278,68
TUP-1B	109	78299,32	315,74	1154,05	219,81	458,58	0,98	80022,68	0,74	0,47	0,69	2,09	217,22	440, 19
TUP-1B	110	53356,01	260,64	1062,76	151,08	462,73	0,95	56145,12	0,59	0,32	0,56	3,06	148,71	444,8
TUP-1B	111	42675,74	233,1	815,42	170,9	318,98	0,98	43628,12	0,81	0,53	0,73	1,87	168,36	314,61
TUP-1B	112	42494,33	232,61	844,95	163,23	334,12	0,97	43786,85	0,75	0,48	0,7	2,05	164,14	328,02
TUP-1B	113	40589,57	227,33	838,01	152,47	343,14	0,97	41700,68	0,73	0,44	0,66	2,25	152,38	335,5
TUP-1B	114	40612,24	227,4	817,73	156,29	331,76	0,98	41541,95	0,76	0,47	0,69	2,12	158,26	322,27



### ANEXO B – Medidas de Forma, Zircões TUP 02A (Analyzr)

Sample	Grain	Area (µm²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
TUD 24	number	42551 44	diameter (µm)	(µm)	(μm) 164.95	(μm) 220.07	0.09	12112 07	0.77	0.5	. 0.71	ว	166 56	225.96
TUP-2A	3	58079.56	232,70	928.34	229.62	325,57	0,98	59149.52	0,77	0,3	0,71	1.42	270.37	340.12
TUP-2A	4	40123,46	226,02	866,32	147,56	360,81	0,93	43113,85	0,67	0,39	0,63	2,45	157,13	338,52
TUP-2A	5	35925,93	213,87	709,03	199,31	232,77	0,98	36529,49	0,9	0,84	0,92	1,17	196,3	240,74
TUP-2A	6	31577,5	200,51	670,72	179,85	225,56	0,98	32304,53	0,88	0,79	0,89	1,25	183,85	229,09
TUP-2A	7	36886,15	216,71	755,8	161,76	291,3	0,98	37626,89	0,81	0,55	0,74	1,8	178,09	300,57
TUP-2A	8	28902,61	191,83	614 38	1/5/13	302,61	0,98	29602,19	0,7	0,4	0,63	2,46	1/18 15	297,89
TUP-2A	10	20164.61	1/8,49	658.82	143,43	266.39	0,97	21796.98	0,83	0,05	0,81	2.6	148,13	275.3
TUP-2A	11	25967,08	181,83	644,01	131,71	253,8	0,97	26680,38	0,79	0,51	0,72	1,93	132,61	251,88
TUP-2A	12	21097,39	163,9	623,74	112,69	244,76	0,95	22112,48	0,68	0,45	0,67	2,17	109,56	240,74
TUP-2A	13	22647,46	169,81	573,9	141,71	204,56	0,98	23209,88	0,86	0,69	0,83	1,44	141,72	205,35
TUP-2A	14	27201,65	186,1	680,3	127,76	274,53	0,97	28107	0,74	0,46	0,68	2,15	127,92	265,53
TUP-2A	15	22386,83	168,83	584,9	132,38	217,59	0,96	23374,49	0,82	0,6	0,78	1,64	138,8	212,79
TUP-2A	10	22770.92	170.27	629.87	110,2	264.06	0,96	23731.14	0,74	0,43	0.64	2.38	111.71	255.42
TUP-2A	18	20329,22	160,88	598,45	105,89	245,63	0,97	20973,94	0,71	0,43	0,65	2,32	106,83	239,48
TUP-2A	19	25418,38	179,9	645,81	132,7	249,94	0,96	26515,78	0,77	0,52	0,72	1,88	142,48	244,16
TUP-2A	20	19506,17	157,59	528,56	131,79	189,27	0,98	20000	0,88	0,69	0,83	1,44	133,33	194,86
TUP-2A	21	18971,19	155,42	537,39	118,84	205,13	0,98	19423,87	0,83	0,57	0,76	1,73	120,47	200,31
TUP-2A	22	23004,12	1/1,14	640,04	110,64	267,82	0,97	23/03,/	0,71	0,41	0,64	2,42	111,12	257,91
TUP-2A	23	20491,08	162 02	553 48	128.88	2/3,43	0,97	23300,41	0,70	0,40	0,08	1 59	129,03	270,33
TUP-2A	25	27146,78	185,91	674,69	136,32	257,56	0,97	28024,69	0,75	0,52	0,72	1,89	131,27	247,26
TUP-2A	26	19615,91	158,04	523,32	140,11	178,65	0,98	20096,02	0,9	0,78	0,88	1,28	146,66	185,78
TUP-2A	27	26419,75	183,41	610,19	157,41	215,99	0,98	26844,99	0,89	0,72	0,85	1,37	157,13	217,04
TUP-2A	28	22976,68	171,04	578,61	134,39	218,23	0,98	23443,07	0,86	0,61	0,78	1,62	133,33	215,74
TUP-2A	29	16145,4	143,38	479,62	124,61	166,5	0,97	16611,8	0,88	0,74	0,86	1,34	122,22	168,91
TUP-ZA	30	24046,64	174,98	640,7	121,92	254,75	0,96	24993,14	0,72	0,47	0,69	2,09	125,42	255,85
TUP-2A	32	17407,41	148,88	490,99	135,94	163,58	0,90	17860,08	0,00	0,83	0,91	1,31	133,33	167,98
TUP-2A	33	18107	151,84	514,12	125,74	186	0,98	18532,24	0,86	0,67	0,82	1,48	125,93	193,34
TUP-2A	34	21152,26	164,11	578,5	121,48	222,94	0,97	21783,26	0,79	0,54	0,74	1,84	123,11	221,51
TUP-2A	35	18257,89	152,47	510,68	127,46	182,94	0,98	18696,84	0,88	0,69	0,83	1,44	128,61	182,95
TUP-2A	36	22386,83	168,83	591,41	132,24	222,11	0,97	22962,96	0,8	0,58	0,76	1,68	131,87	223,85
TUP-2A	37	13909,47	133,08	528.93	110,68	160,71	0,97	14334,71	0,89	0,69	0,83	1,45	107,38	162,63
TUP-2A	39	12112,48	124,19	453,96	86,71	179,88	0,95	12702,33	0,85	0,03	0,69	2,07	87,05	175,64
TUP-2A	40	10768,18	117,09	395,6	107,38	131,34	0,96	11179,7	0,86	0,79	0,89	1,22	104,76	138,28
TUP-2A	41	16213,99	143,68	525,86	96,87	214,93	0,96	16954,73	0,74	0,45	0,67	2,22	102,29	210,2
TUP-2A	42	12139,92	124,33	469,3	80,13	195,72	0,96	12702,33	0,69	0,4	0,64	2,44	81,3	192,49
TUP-2A	43	12290,81	125,1	465,7	81,75	193,07	0,95	12894,38	0,71	0,42	0,65	2,36	83,72	189,79
TUP-2A	44	14279,84	134,84	523,85	82,99	223,3	0,96	14869,68	0,65	0,36	0,6	2,69	81,66	212,12
TUP-2A	45	18340,19	152,81	538,51	114,3	207,14	0,97	18957,48	0,85	0,54	0,73	1,30	113,18	203,84
TUP-2A	47	6844,99	93,36	390,36	61,94	157,59	0,84	8107	0,56	0,35	0,59	2,54	68,09	156,26
TUP-2A	48	13484,22	131,03	481,05	89,45	194,44	0,97	13936,9	0,73	0,45	0,67	2,17	92,25	199,45
TUP-2A	49	9711,93	111,2	429,57	68,79	181,76	0,94	10315,5	0,66	0,37	0,61	2,64	73,33	180,91
TUP-2A	50	9588,48	110,49	432,79	62,79	197,83	0,97	9876,54	0,64	0,31	0,56	3,15	60,24	186,84
TUP-2A	51	7283.95	147,10	378 98	72,13	158 73	0,92	7791 5	0,47	0,22	0,47	4,3	61.82	290,05
TUP-2A	53	10795,61	117,24	399,04	91,89	130,73	0,93	11152,26	0,85	0,61	0,01	1,63	94,41	153,47
TUP-2A	54	19574,76	157,87	629,87	94,13	274,21	0,93	21001,37	0,62	0,33	0,58	2,91	99,11	259,15
TUP-2A	55	10246,91	114,22	413,48	76,96	171,68	0,97	10534,98	0,75	0,44	0,67	2,23	75,95	173,56
TUP-2A	56	11165,98	119,23	429,04	83,37	172,5	0,96	11632,37	0,76	0,48	0,69	2,07	84,26	169,93
TUP-2A	57	8930,04	106,63	382,43	80,2	143,95	0,95	9369	0,77	0,55	0,74	1,79	79,64	144,63
TUP-2A	59	16529 49	118,72	452,16	75,99	189	0,96	17462.28	0,08	0,39	0,03	2,49	109 97	199 35
TUP-2A	60	8161,87	101,94	378,09	67,75	155,94	0,95	8559,67	0,73	0,43	0,65	2,3	68,17	151,85
TUP-2A	61	6598,08	91,66	347,71	56,79	150,27	0,96	6844,99	0,69	0,37	0,61	2,65	55	146,89
TUP-2A	62	8559,67	104,4	369,04	72,38	151,83	0,97	8820,3	0,79	0,47	0,69	2,1	70,71	149,99
TUP-2A	63	16213,99	143,68	513,22	104,2	201,25	0,96	16844,99	0,77	0,51	0,71	1,93	105,52	200,86
TUP-2A	64	8573,39	104,48	369,25	73,39	150,56	0,97	8806,58	0,79	0,48	0,69	2,05	70,37	146,75
TUP-2A	66	12373 11	115,5	463 69	83 21	192,25	0,97	10458,90	0,82	0,55	0,74	2 3	86 42	189.03
TUP-2A	67	4951,99	79,4	282,16	56,71	112,66	0,97	5130,32	0,72	0,5	0,7	1,99	59,26	118,58
TUP-2A	68	4855,97	78,63	287,77	52,95	118,61	0,94	5144,03	0,74	0,44	0,66	2,24	56,59	116,95
TUP-2A	69	9355,28	109,14	397,98	74,63	162,85	0,96	9739,37	0,74	0,45	0,67	2,18	74,07	158,22
TUP-2A	70	8024,69	101,08	361,85	71,84	144,94	0,96	8395,06	0,77	0,49	0,7	2,02	74,07	139,47
TUP-2A	71	16995,88	147,1	503,64	111,88 04 25	193,87	0,97	17448,56	0,84	0,58	0,76	1,73	118,52	195,6
TUP-2A	72	8696 84	105 23	375 02	54,35 73 91	157,47	0,97	9039 78	0,81	0,59	0,77	2 03	94,41 77 03	152 53
TUP-2A	74	10781,89	117,17	439,14	82,86	169,72	0,95	11344,31	0,7	0,48	0,69	2,05	81,84	167,69
TUP-2A	75	11604,94	121,56	467,28	74,86	201,89	0,96	12126,2	0,67	0,36	0,6	2,7	73,33	191,2
TUP-2A	76	13347,05	130,36	494,22	82,01	210,1	0,96	13868,31	0,69	0,38	0,62	2,56	80,12	200,31
TUP-2A	77	14842,25	137,47	490,62	96,23	196,94	0,97	15281,21	0,77	0,49	0,7	2,05	99,38	195,56
TUP-2A	78 79	12359,4 8641 00	125,45	454,33 <u>⊿</u> ∩1 Q⊑	85 רד דד	185,71	0,96 0 0 0	12839,51	0,75	0,46	0,68	2,18	87,34 85 10	123,88
TUP-2A	80	15020,58	138,29	502,9	95,17	202,15	0,96	15569,27	0,75	0,40	0,68	2,12	96,56	197,55

Comple	Grain	Aroa (	Equivalent	Perimeter	Minor axis	Major axis	Coliditu	Conversion	Form factor	Boundhoos	Comportnoss		Min Forat	May Forat
Sample	number	Area (µm)	diameter (µm)	(µm)	(µm)	(µm)	Solitaty	Convex area	Form factor	Roundness	compactness	Aspectratio	wiin. reiet	IVIAX. Feret
TUP-2A	81	8696,84	105,23	376,82	72,56	153,69	0,96	9012,35	0,77	0,47	0,68	2,12	74,99	155,78
TUP-2A	82	11385,46	120,4	454,11	77,18	191,47	0,96	11879,29	0,69	0,4	0,63	2,48	77,04	185,78
TUP-2A	83	18902,61	155,14	557,82	115	215,35	0,95	19903,98	0,76	0,52	0,72	1,87	116,08	213,66
TUP-2A	84	16296,3	144,05	505,44	111,48	188,32	0,97	16803,84	0,8	0,59	0,76	1,69	111,37	187,76
TUP-2A	85	17421,12	148,93	547,56	98,69	228,03	0,96	18079,56	0,73	0,43	0,65	2,31	98,57	217,39
TUP-2A	86	21879,29	166,91	584,75	127,63	220,63	0,97	22565,16	0,8	0,57	0,76	1,73	133,33	220,14
TUP-2A	87	15390,95	139,99	488,08	101,81	193,99	0,98	15747,6	0,81	0,52	0,72	1,91	99,52	193,16
TUP-2A	88	12578,88	126,55	442,74	96,3	169,33	0,96	13045,27	0,81	0,56	0,75	1,76	93,33	165,39
TUP-2A	89	15857,34	142,09	537,76	89,92	225,8	0,96	16447,19	0,69	0,4	0,63	2,51	92,89	222,99
TUP-2A	90	14389,57	135,36	530,2	82,22	227,51	0,95	15171,47	0,64	0,35	0,59	2,77	82,64	215,71
TUP-2A	91	13786,01	132,49	444,38	110,17	160,35	0,97	14170,1	0,88	0,68	0,83	1,46	113,48	163,34
TUP-2A	92	11755,83	122,34	405,17	111,05	135,77	0,97	12112,48	0,9	0,81	0,9	1,22	112,44	143,11
TUP-2A	93	11316,87	120,04	422,68	83,32	173,91	0,98	11591,22	0,8	0,48	0,69	2,09	81,19	169,64
TUP-2A	94	10823,05	117,39	462,64	80,27	184,73	0,9	12030, 18	0,64	0,4	0,64	2,3	84,33	175,49
TUP-2A	95	20288,07	160,72	567,55	113,02	231,2	0,98	20685,87	0,79	0,48	0,7	2,05	109,99	223,76
TUP-2A	96	21179,7	164,22	630,4	104,05	263,71	0,96	21947,87	0,67	0,39	0,62	2,53	102,43	251,88
TUP-2A	97	18340,19	152,81	587,97	97,92	242,81	0,96	19094,65	0,67	0,4	0,63	2,48	101,8	241,45
TUP-2A	98	19176,95	156,26	583,32	99,16	248,22	0,97	19780,52	0,71	0,4	0,63	2,5	100	241,17
TUP-2A	99	18943,76	155,31	590,36	96,91	249,83	0,96	19643,35	0,68	0,39	0,62	2,58	98,78	244,33
TUP-2A	100	21358,02	164,91	557,82	139,04	196,59	0,97	21920,44	0,86	0,7	0,84	1,41	138,68	194,05
TUP-2A	101	16213,99	143,68	475,28	131,69	157,7	0,97	16652,95	0,9	0,83	0,91	1,2	137,04	162,33
TUP-2A	102	24622,77	177,06	605,17	135,98	232,71	0,98	25253,77	0,84	0,58	0,76	1,71	133,33	230,97
TUP-2A	103	16433,47	144,65	476,71	124,33	169	0,98	16790, 12	0,91	0,73	0,86	1,36	120,47	170,53
TUP-2A	104	18134,43	151,95	518,45	120,58	192,11	0,97	18641,98	0,85	0,63	0,79	1,59	122,17	191,2
TUP-2A	105	23744,86	173,88	600,09	134,78	225,47	0,98	24320,99	0,83	0,59	0,77	1,67	140,74	232,6
TUP-2A	106	25034,29	178,53	707,61	104,96	307,8	0,96	26008,23	0,63	0,34	0,58	2,93	106,12	296,48
TUP-2A	107	23401,92	172,62	615,8	124,03	243,19	0,97	24005,49	0,78	0,5	0,71	1,96	124,11	237,99
TUP-2A	108	23251,03	172,06	601,89	131,85	225,78	0,97	23882,03	0,81	0,58	0,76	1,71	135,98	223,02
TUP-2A	109	18696,84	154,29	533,27	119,22	201,46	0,97	19369	0,83	0,59	0,77	1,69	122,22	199,45
TUP-2A	110	19135,8	156,09	527,29	125,54	194,32	0,97	19629,63	0,86	0,65	0,8	1,55	128,33	196,3
TUP-2A	111	17928,67	151,09	519,88	126,19	185,58	0,97	18436,21	0,83	0,66	0,81	1,47	130,95	197,45
TUP-2A	112	31920,44	201,6	721,9	143,48	287,95	0,97	32798,35	0,77	0,49	0,7	2,01	138,7	272,39
TUP-2A	113	19176,95	156,26	526,76	132,14	187,74	0,98	19657,06	0,87	0,69	0,83	1,42	133,33	191,34
TUP-2A	114	20425,24	161,26	551,15	132,24	199,55	0,97	20973,94	0,84	0,65	0,81	1,51	144,44	202,62
TUP-2A	115	27256,52	186,29	627,55	154,89	224,85	0,98	27818,93	0,87	0,69	0,83	1,45	155,7	225,65
TUP-2A	116	19615,91	158,04	532	126,28	198,02	0,98	20041,15	0,87	0,64	0,8	1,57	125,93	199,76
TUP-2A	117	18641,98	154,06	550,78	110,36	216,4	0,97	19218,11	0,77	0,51	0,71	1,96	110,09	212,15
TUP-2A	118	15226,34	139,24	483,21	103,41	188	0,97	15651,58	0,82	0,55	0,74	1,82	106,83	188,89
TUP-2A	119	40096,02	225,95	772,63	188,73	273,54	0,97	41138,55	0,84	0,68	0,83	1,45	186,47	268,31
TUP-2A	120	57256,52	270	1000,99	177,8	413,43	0,97	58888,89	0,72	0,43	0,65	2,33	174,93	395,1
TUP-2A	121	31056,24	198,85	703,58	145,8	273,1	0,98	31810,7	0,79	0,53	0,73	1,87	144,04	268,23
TUP-2A	122	30013,72	195,49	648,13	171,65	223,07	0,98	30617,28	0,9	0,77	0,88	1,3	172,85	226,29
TUP-2A	123	23840,88	174,23	583,63	154,11	198,54	0,98	24389,57	0,88	0,77	0,88	1,29	164,99	211,92
TUP-2A	124	41399,18	229,59	841,93	159,15	336,63	0,97	42812,07	0,73	0,47	0,68	2,12	154,52	326,81
TUP-2A	125	34746,23	210,33	713,9	172,73	257,06	0,98	35500,69	0,86	0,67	0,82	1,49	175,68	263,2
TUP-2A	126	32990,4	204,95	730,51	148,06	285,96	0,98	33786,01	0,78	0,51	0,72	1,93	145,58	278,84
TUP-2A	127	38285,32	220,79	788,87	163,41	303,02	0,98	39163,24	0,77	0,53	0,73	1,85	163,98	299,84
TUP-2A	128	34471,88	209,5	717,34	166,24	265,14	0,98	35198,9	0,84	0,62	0,79	1,59	170,37	267,33
TUP-2A	129	27997.26	188.8	641.47	156.62	229.17	0.97	28806.58	0.86	0.68	0.82	1.46	162.96	233.22



### ANEXO B – Medidas de Forma, Zircões TUP 03B (Analyzr)

Sample	Grain	Area (um²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
	number		diameter (µm)	(µm)	(µm)	(µm)	,							
TUP-3B	2	17250,07	148,2	518,31	109,96	200,82	0,97	17821,15	0,81	0,54	0,74	1,83	110,35	198,97
TUP-3B	3	20323,84	160,86	602,27	104,33	250,62	0,97	20995,7	0,7	0,41	0,64	2,4	106,3	243,88
TUP-3B	4	21902,71	145.26	475.24	135,9	206,27	0,97	22624,97	0,86	0,66	0,81	1,52	139,34	203,81
TUP-3D	5	25060 47	145,50	672.64	120,1	270.81	0,98	25967.48	0,92	0,77	0,60	2.44	150,41	27/1 8
TUP-3B	7	42848 02	233 57	773 58	218.49	273,81	0,97	43637.46	0,7	0,41	0,04	1 16	223 14	258.07
TUP-3B	8	19803.14	158.79	618.08	97.51	262,26	0,95	20743.75	0.65	0.37	0,61	2.69	100.1	255.32
TUP-3B	9	17787.56	150,49	510.94	124.08	184.47	0,97	18425.83	0,86	0.67	0.82	1.49	127.05	189.5
TUP-3B	10	23263,24	172,1	629,09	113	263,28	0,97	23951,89	0,74	0,43	0,65	2,33	114,75	254,79
TUP-3B	11	20441,41	161,33	538,51	158,3	166,9	0,97	21029,29	0,89	0,93	0,97	1,05	159,84	175,08
TUP-3B	12	20021,5	159,66	515,33	150,41	169,73	0,98	20340,63	0,95	0,88	0,94	1,13	147,54	172,91
TUP-3B	13	21264,45	164,54	643,25	100,57	272,58	0,96	22070,68	0,65	0,36	0,6	2,71	100,09	263,35
TUP-3B	14	12009,54	123,66	455,55	85,47	180,91	0,95	12580,62	0,73	0,47	0,68	2,12	88,28	182,04
TUP-3B	15	21936,31	167,12	603,26	115,97	242,39	0,97	22524,19	0,76	0,48	0,69	2,09	118,63	245,53
TUP-3B	16	14109,11	134,03	447,35	113,99	157,95	0,97	14545,82	0,89	0,72	0,85	1,39	115,92	162,55
TUP-3B	17	12244,69	124,86	415,97	107,48	146,04	0,97	12647,81	0,89	0,73	0,85	1,36	109,97	149,01
TUP-3B	18	14529,02	136,01	501,75	89,35	210,44	0,96	15133,7	0,73	0,42	0,65	2,36	94,26	205,82
TUP-3B	19	12933,35	128,32	478,73	88,27	192,74	0,95	13571,62	0,71	0,44	0,67	2,18	91,78	194,4
TUP-3B	20	17434,83	148,99	527,33	104,04	214,12	0,97	17938,73	0,79	0,48	0,7	2,06	102,46	212,25
TUP-3B	21	17703,57	150,14	513,34	117,64	193,1	0,97	18190,67	0,84	0,6	0,78	1,64	114,75	192,1
TUP-3B	22	20945,31	163,3	5/8,91	115,3	234,03	0,97	21650,77	0,79	0,49	0,7	2,03	114,75	225,86
TUP-3B	23	11000 70	141,33	552,33	81,35	248,78	0,97	10141,49	0,65	0,32	0,57	3,00	100.50	238,97
TUP-3D	24	130/1 1/	123,14	415,96	92.58	140,05	0,90	12595,60	0,87	0,71	0,64	2 11	100,50	149,10
TUP-3B	25	10245 9	114 22	400,92	65 16	206 38	0,90	10649.02	0,73	0,40	0,08	3 17	61 48	193,32
TUP-3R	20	11858 37	177 88	420 36	100 28	152 52	0,90	12295 02	0,02	0,31	0,35 0 81	1 57	107 64	154 66
TUP-3B	28	9490.06	109.92	379.79	89.61	137.01	0.95	10010.75	0.83	0.64	0.8	1,52	98.36	138.26
TUP-3B	29	14260.28	134.75	438.16	126.24	144.25	0.97	14646.6	0.93	0.87	0.93	1.14	127.05	148.11
TUP-3B	30	13067,72	128,99	432,37	107,87	,	0,97	13470,84	0,88	0,69	0,83	1,44	109,97	156,06
TUP-3B	31	15234,48	139,27	500,92	100,39	196,43	0,95	15956,73	0,76	0,5	0,71	1,96	102,17	189,5
TUP-3B	32	12395,86	125,63	407,78	123,65	128,25	0,97	12748,59	0,94	0,96	0,98	1,04	124,61	136,24
TUP-3B	33	12815,78	127,74	455,96	93,88	178,07	0,93	13773,18	0,77	0,51	0,72	1,9	97,2	174,36
TUP-3B	34	13235,69	129,82	450,75	101,26	168,03	0,96	13773,18	0,82	0,6	0,77	1,66	103,1	168,23
TUP-3B	35	12765,39	127,49	461,18	83,86	196,01	0,98	13034,13	0,75	0,42	0,65	2,34	77,87	191,35
TUP-3B	36	11925,56	123,22	420,77	94,9	161,37	0,96	12429,45	0,85	0,58	0,76	1,7	99,4	160,05
TUP-3B	37	11640,02	121,74	399,99	102,6	145,12	0,98	11908,76	0,91	0,7	0,84	1,41	102,46	144,14
TUP-3B	38	9271,7	108,65	393,78	82,36	147,17	0,94	9825,99	0,75	0,55	0,74	1,79	82,48	147,77
TUP-3B	39	11724	122,18	424,34	120,28	131,03	0,95	12395,86	0,82	0,87	0,93	1,09	115,92	146,28
TUP-3B	40	12362,27	125,46	412,58	107,83	146,29	0,97	12715	0,91	0,74	0,86	1,36	118,85	152,52
TUP-3B	41	13588,42	131,53	445,36	105,25	166,05	0,97	14008,33	0,86	0,63	0,79	1,58	106,56	166,43
TUP-3B	42	/82/,2	99,83	327,63	89,42	113,31	0,97	8095,94	0,92	0,78	0,88	1,27	90,16	116,64
TUP-30	45	12226 /7	119,45	457,75	102.2	167.44	0,90	12972.06	0,75	0,44	0,00	2,27	110 66	1/9,05
TUP-3B	44	10061 1/	113 18	440,30	79 71	163 15	0,50	10/07 85	0,84	0,01	0,78	2.05	80.65	161.04
TUP-3B	46	8751 01	105 56	358.6	86.69	130 82	0,50	9120 53	0,75	0,40	0,05	1 51	85 75	128 63
TUP-3B	47	7407.28	97 11	323 82	81 45	116 51	0,96	7743 21	0,89	0,69	0.83	1 43	84 04	118 21
TUP-3B	48	7575,25	98,21	334,01	77,45	125,66	0,96	7927,98	0,85	0,61	0,78	1,62	81,14	128,63
TUP-3B	49	12479,84	126,05	485,35	80,66	202,43	0,93	13403,65	0,67	0,39	0,62	2,51	87,59	193,84
TUP-3B	50	11925,56	123,22	426,16	98,87	154,89	0,96	12446,25	0,83	0,63	0,8	1,57	104,33	158,3
TUP-3B	51	3409,7	65,89	214,28	65,14	68,41	0,95	3577,67	0,93	0,93	0,96	1,05	63,76	75,57
TUP-3B	52	10951,36	118,08	470,95	71,2	200,53	0,94	11690,41	0,62	0,35	0,59	2,82	72,97	194,75
TUP-3B	53	7205,72	95,78	319,02	83,98	112,09	0,97	7457,67	0,89	0,73	0,85	1,33	84,04	114,31
TUP-3B	54	8801,4	105,86	351,39	88,4	127,63	0,97	9086,94	0,9	0,69	0,83	1,44	86,94	128,63
TUP-3B	55	9977,16	112,71	381,2	88,33	144,77	0,97	10296,29	0,86	0,61	0,78	1,64	94,26	150,69
TUP-3B	56	8028,76	101,11	331,02	86,54	118,5	0,97	8297,5	0,92	0,73	0,85	1,37	86,07	121,37
TUP-3B	57	5626,85	84,64	301,63	76,59	98,11	0,93	6080,35	0,78	0,74	0,86	1,28	81,14	108,2
TUP-3B	58	9070,14	107,46	388,98	71,82	161,89	0,96	9406,07	0,75	0,44	0,66	2,25	/6,16	163,22
	59	51/3,34	81,16	278,04	60,08	111,29	0,95	5442,09	0,84	0,53	0,73	1,85	60,86 דד כד	106,87
TI IP-2P	61	004,17	94,44 111 PE	323,23 201 20	26.20	1/6 60	0,95	7340,1 10262 7	0,83	0,55	0,74	1,81	13,// Q9 E2	152 02
TI IP-2R	62	3023,99 11606 // 2	111,85	291,38	110 21	125 27	0,90	120202,7	0,81	0,58	0,76	1 22	30,33 110 FE	1/0 10
TUP-3R	63	6718 67	121,30 Q7 /Q	352 63	57 2/	152,37	0,90	7138 54	0,9	0,81	0,9	2,23	60 85	140,19
TUP-3B	64	8583.04	104 54	388.4	71 २	157 37	0.94	9103 74	0,08	0,37	0,01	2,00	71 28	150 47
TUP-3B	65	9053 35	107.34	439 57	62 18	191 15	0.94	9674 82	0,71	0,44	0,50	3 07	63 5	177 94
TUP-3B	66	7726,42	99,18	323,82	88,66	112,44	0,97	7961,57	0,93	0,78	0,88	1,27	92,74	114,31
TUP-3B	67	8583,04	104,54	383,77	70,23	159,08	0,96	8918,97	0,73	0,43	0,66	2,26	69,55	158,15
TUP-3B	68	7743,21	99,29	354,62	70,7	142,17	0,95	8163,13	0,77	0,49	0,7	2,01	73,44	140,19
TUP-3B	69	7558,45	98,1	322,83	79,3	121,47	0,98	7743,21	0,91	0,65	0,81	1,53	77,87	124,65
TUP-3B	70	8499,06	104,03	335,41	92,28	117,52	0,97	8717,41	0,95	0,78	0,89	1,27	89,84	121,02
TUP-3B	71	13319,67	130,23	458,53	101,02	171,79	0,96	13941,14	0,8	0,57	0,76	1,7	99,72	168,23
TUP-3B	72	15906,34	142,31	549,93	87,94	237,16	0,95	16762,97	0,66	0,36	0,6	2,7	90,16	227,23
TUP-3B	73	8095,94	101,53	349,41	78,64	132,18	0,95	8515,86	0,83	0,59	0,77	1,68	80,65	134,81
TUP-3B	74	8196,72	102,16	342,61	86,59	121,92	0,96	8566,25	0,88	0,7	0,84	1,41	90,72	126,59
TUP-3B	75	8834,99	106,06	366,79	78,18	144,08	0,96	9221,31	0,83	0,54	0,74	1,84	81,14	148,51
TUP-3B	76	7776,81	99,51	340,63	76,7	130,14	0,96	8062,35	0,84	0,58	0,76	1,7	73,77	134,25
TUP-3B	77	6886,59	93,64	325,64	68,63	129,8	0,96	7155,33	0,82	0,52	0,72	1,89	65,57	127,64
TUP-3B	/8	8213,52	102,26	334,83	85,57	122,85	0,97	8431,87	0,92	0,69	0,83	1,44	81,97	124,44
	/9	9960,36	112,61	385,18	91,95	140,16	0,95	10017.70	0,84	0,65	0,8	1,52	92,74	138,68
107-3B	80	10430,66	115,24	407,78	84,22	159,35	0,96	T0AT1'', \P	0,79	0,52	0,72	1,89	80,68	104,75

Comple	Grain	Aroa (	Equivalent	Perimeter	Minor axis	Major axis	Coliditu	Comunition	Form factor	Boundhoos	Comportnoss	Acrost ratio	Min Forat	May Forat
Sample	number	Area (µm)	diameter (µm)	(µm)	(µm)	(µm)	Solitily	convex area	FOITHIACLOF	Roundness	compactness	Aspectitatio	wiin. Feret	IVIAX. Feret
TUP-3B	81	12782,18	127,57	413,98	119,34	136,79	0,97	13118,11	0,94	0,87	0,93	1,15	122,95	144,38
TUP-3B	82	8633,43	104,84	370,19	77,73	143,25	0,94	9170,92	0,79	0,54	0,73	1,84	82,23	141,32
TUP-3B	83	9742	111,37	403,8	73,13	170,72	0,97	10061,14	0,75	0,43	0,65	2,33	73,77	168,03
TUP-3B	84	11270,49	119,79	409,18	92,27	156,12	0,97	11623,22	0,85	0,59	0,77	1,69	94,26	158,36
TUP-3B	85	7927,98	100,47	355,2	75,16	136,86	0,95	8381,48	0,79	0,54	0,73	1,82	76,98	139,34
TUP-3B	86	9674,82	110,99	361	105,1	117,66	0,97	10010,75	0,93	0,89	0,94	1,12	104,33	123,29
TUP-3B	87	11606,42	121,56	420,77	93,97	158,44	0,96	12043,13	0,82	0,59	0,77	1,69	98,53	167,23
TUP-3B	88	9909,97	112,33	401,57	76,55	166,93	0,97	10212,31	0,77	0,45	0,67	2,18	75,02	161,66
TUP-3B	89	8129,54	101,74	360	75,02	139,38	0,95	8583,04	0,79	0,53	0,73	1,86	78,39	140,07
TUP-3B	90	9170,92	108,06	382,6	88,19	137,51	0,94	9758,8	0,79	0,62	0,79	1,56	89,05	140, 19
TUP-3B	91	9523,65	110,12	356,61	104,9	116,41	0,97	9825,99	0,94	0,89	0,95	1,11	106,56	121,09
TUP-3B	92	6735,42	92,61	318,44	71,1	122,37	0,95	7071,35	0,83	0,57	0,76	1,72	72,9	120,61
TUP-3B	93	9742	111,37	373	98,9	126,96	0,96	10111,53	0,88	0,77	0,88	1,28	110,66	134,44
TUP-3B	94	14445,04	135,62	478,32	96,58	191,31	0,97	14915,35	0,79	0,5	0,71	1,98	95,63	188,7
TUP-3B	95	14176,3	134,35	490,74	93,63	195,51	0,96	14797,77	0,74	0,47	0,69	2,09	98,06	194,83
TUP-3B	96	7894,38	100,26	336,82	84,22	120,37	0,96	8263,91	0,87	0,69	0,83	1,43	88,41	124,65
TUP-3B	97	8700,62	105,25	365,8	78,02	143,47	0,96	9070,14	0,82	0,54	0,73	1,84	79,57	143,38
TUP-3B	98	10816,98	117,36	397,18	98,43	141,4	0,96	11287,29	0,86	0,69	0,83	1,44	107,23	145,36
TUP-3B	99	8683,82	105,15	354,62	85,72	129,83	0,96	9036,55	0,87	0,66	0,81	1,51	86,07	135,68
TUP-3B	100	7827,2	99,83	357,6	68,5	146,11	0,96	8179,92	0,77	0,47	0,68	2,13	72,45	150,08
TUP-3B	101	9792,39	111,66	366,21	102,62	122,24	0,96	10161,92	0,92	0,83	0,91	1,19	102,46	128,63
TUP-3B	102	12933,35	128,32	446,77	94,27	176,3	0,96	13437,25	0,81	0,53	0,73	1,87	98,36	172,03
TUP-3B	103	11891,96	123,05	409,18	99,7	152,06	0,98	12160,71	0,89	0,65	0,81	1,53	106,56	154,49
TUP-3B	104	12882,96	128,07	429,55	100,12	165,51	0,98	13134,91	0,88	0,6	0,77	1,65	95,63	164,85
TUP-3B	105	8381,48	103,3	338,81	90,7	118,27	0,96	8700,62	0,92	0,76	0,87	1,3	92,74	123,29
TUP-3B	106	10716,21	116,81	407,19	86,88	158,83	0,97	11085,73	0,81	0,54	0,74	1,83	90, 16	162,13
TUP-3B	107	11589,63	121,48	392,79	120,33	123,05	0,97	11891,96	0,94	0,97	0,99	1,02	118,85	129,6
TUP-3B	108	10447,46	115,33	392,96	89,57	151,47	0,98	10665,82	0,85	0,58	0,76	1,69	84,04	149,18
TUP-3B	109	9456,46	109,73	377,8	84,07	145,61	0,97	9792,39	0,83	0,57	0,75	1,73	86,07	148,11
TUP-3B	110	11119,32	118,99	387,99	107,65	131,69	0,97	11455,25	0,93	0,82	0,9	1,22	110,12	137,77
TUP-3B	111	11186,51	119,34	404,79	101,86	140,93	0,96	11656,81	0,86	0,72	0,85	1,38	114,75	152,47
TUP-3B	112	12261,49	124,95	433,94	92,22	171,17	0,97	12664,61	0,82	0,53	0,73	1,86	86,94	169,67
TUP-3B	113	15352,06	139,81	478,15	108,04	182,63	0,97	15771,97	0,84	0,59	0,77	1,69	110,66	184,11
TUP-3B	114	12261,49	124,95	426,57	103,17	153,48	0,96	12748,59	0,85	0,66	0,81	1,49	106,49	155,79
TUP-3B	115	14948,94	137,96	505,55	88,86	216,28	0,97	15419,24	0,73	0,41	0,64	2,43	86,07	207,52
TUP-3B	116	9993,95	112,8	362,4	106,95	119,6	0,98	10229,11	0,96	0,89	0,94	1,12	106,56	124,44
TUP-3B	117	13235,69	129,82	447,35	99,05	171,76	0,97	13655,6	0,83	0,57	0,76	1,73	102,64	169,82
TUP-3B	118	16527,82	145,07	505,31	105,64	199,91	0,98	16930,93	0,81	0,53	0,73	1,89	113,02	203,97
TUP-3B	119	19618,38	158,05	549,11	117,04	213,54	0,97	20189,47	0,82	0,55	0,74	1,82	122,95	216,75
TUP-3B	120	28167,83	189,38	626,86	181,8	197,58	0,97	28923,68	0,9	0,92	0,96	1,09	190,62	204,96
TUP-3B	121	35491,13	212,58	707,01	181,8	248,78	0,98	36146,2	0,89	0,73	0,85	1,37	191,27	257,25
TUP-3B	122	17854,74	150,78	518,72	117,83	194,69	0,97	18341,84	0,83	0,6	0,77	1,65	117,96	194,36
TUP-3B	123	18022,71	151,48	546,13	102,63	224,94	0,97	18627,39	0,76	0,45	0,67	2,19	106,56	220,7



## ANEXO B – Medidas de Forma, Zircões TUP 08A (Analyzr)

Sample	Grain number	Area (µm²)	Equivalent diameter (µm)	Perimeter (µm)	Minor axis (µm)	Major axis (µm)	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
TUP-8A	2	24511	176.66	598.7	146.91	214.17	0.97	25302.33	0.86	0.68	0.82	1.46	153.15	215.89
TUP-8A	3	10510,51	115,68	522,26	56,63	244,42	0,89	11849,69	0,48	0,22	0,47	4,32	63,67	229,69
TUP-8A	4	20067,36	159,85	614,46	101,89	258,81	0,96	21000,73	0,67	0,38	0,62	2,54	98,74	253,86
TUP-8A	5	13959,91	133,32	489,5	95,41	190,33	0,95	14771,53	0,73	0,49	0,7	1,99	98,33	194,53
TUP-8A	6	14325,14	135,05	480,04	106,96	174,68	0,95	15075,89	0,78	0,6	0,77	1,63	104,75	175,91
TUP-8A	7	18565,86	153,75	603,07	91,96	260,35	0,96	19316,61	0,64	0,35	0,59	2,83	92,67	253,86
TUP-8A	8	15928,09	142,41	536,28	93,37	220,63	0,95	16780,29	0,7	0,42	0,65	2,36	97,45	218,92
TUP-8A	9	19539,81	157,73	562,67	126,63	202,53	0,96	20452,89	0,78	0,61	0,78	1,6	121,08	199,12
TUP-8A	10	30598,17	197,38	808,73	113,38	354,13	0,93	32891	0,59	0,31	0,56	3,12	116,87	331,07
TUP-8A	11	15380,25	139,94	504,88	99,89	198,68	0,95	16252,74	0,76	0,5	0,7	1,99	100,71	193,48
TUP-8A	12	13026,54	128,79	485,5	79,26	214,22	0,98	13351,19	0,69	0,36	0,6	2,7	73,26	204,74
TUP-8A	13	23557,34	173,19	654,75	106,63	285,94	0,97	24166,06	0,69	0,37	0,61	2,68	99,1	272,1
TUP-8A	14	31166,3	199,2	717,74	135,63	293,24	0,97	31977,92	0,76	0,46	0,68	2,16	136,96	293,76
TUP-8A	15	39444,85	224,1	917,3	128,61	397,87	0,96	41149,26	0,59	0,32	0,56	3,09	131,3	388,33
TUP-8A	16	18281,8	152,57	545,74	107,14	219,41	0,97	18870,22	0,77	0,48	0,7	2,05	111,11	220,9
TUP-8A	17	16383,25	152,99	534,09	112,13	209,74	0,97	16952 91	0,81	0,53	0,73	1,8/	02 50	211,70
	10	21264 51	143,70	500 70	115 02	232,37	0,90	22076 12	0,07	0,30	0,02	2,37	115 20	221,02
TUP-8A	20	12701.89	104,34	455.2	93.74	177 19	0,30	132/19 7/	0,77	0,40	0,03	1.89	92.86	177 20
TUP-8A	20	14568 62	136.2	462 47	110 25	169.6	0,50	15116 47	0,77	0,52	0,72	1,05	117 12	173 99
TUP-8A	22	11991 72	123 57	423.8	100.85	152 61	0,96	12519 28	0,84	0,64	0.81	1,54	104 41	157 34
TUP-8A	23	11991.72	123,57	422.25	94.68	162.48	0.96	12438.11	0.85	0.58	0.76	1.72	95.55	162.41
TUP-8A	24	9759,76	111,47	410,61	76,44	167,46	0,97	10104,7	0,73	0,44	0,67	2,19	79,96	165,63
TUP-8A	26	28203,88	189,5	725,2	118,88	305,42	0,96	29360,44	0,67	0,38	0,62	2,57	119,94	297,43
TUP-8A	27	24693,61	177,32	741,86	98,37	334,29	0,93	26418,31	0,56	0,28	0,53	3,4	95,34	301,84
TUP-8A	28	20189,11	160,33	641,11	92,06	283,13	0,95	21183,35	0,62	0,32	0,57	3,08	92,57	269,56
TUP-8A	29	10956,9	118,11	427,53	85,28	166,98	0,95	11525,04	0,75	0,5	0,71	1,96	86,62	166,67
TUP-8A	30	24653,03	177,17	695,08	104,5	309,24	0,95	26053,08	0,64	0,33	0,57	2,96	103,84	288,6
TUP-8A	31	26803,83	184,74	672,51	130,3	265,84	0,96	27838,65	0,74	0,48	0,69	2,04	136,98	275,03
TUP-8A	32	6492,98	90,92	367,56	52,06	161,79	0,93	7000,24	0,6	0,32	0,56	3,11	56,04	156,69
TUP-8A	33	15177,34	139,01	467,75	131,41	150,34	0,96	15765,77	0,87	0,86	0,92	1,14	131,63	159,64
TUP-8A	34	12965,67	128,49	469,3	88,24	192,84	0,97	13391,77	0,74	0,44	0,67	2,19	85,59	198,86
TUP-8A	35	11829,4	122,73	477,4	80,24	192	0,94	12600,44	0,65	0,41	0,64	2,39	80,58	185,34
TUP-8A	36	23577,63	173,26	632,74	120,1	251,91	0,96	24551,58	0,74	0,47	0,69	2,1	121,08	248,12
TUP-8A	37	4382,76	74,7	283,2	48,54	117,11	0,92	4768,28	0,69	0,41	0,64	2,41	54,39	115,46
TUP-8A	38	23658,79	173,56	570,13	165,97	182,02	0,97	24287,8	0,91	0,91	0,95	1,1	166,67	187,74
TUP-8A	39	9536,56	110,19	367,56	91,73	132,89	0,96	9922,08	0,89	0,69	0,83	1,45	94,59	137,81
TUP-8A	40	6/9/,34	93,03	328,24	72,03	123,78	0,94	/203,15	0,79	0,56	0,75	1,72	85,59	133,7
TUP-8A	41	7872,74	100,12	401,6	120,45	246.97	0,9	8/05,52	0,61	0,33	0,58	2,88	140 54	163,97
TUP-8A	42	20945,80	185,23	642,39	139,73	240,87	0,97	27737,2	0,82	0,50	0,75	2,11	140,54	240,43
TUP-0A	45	1077/ 20	100,04	117 /2	94 74	162.60	0,90	23030,08	0,73	0,47	0,08	2,11	20 22	162 /1
TUP-8A	44	9/75 69	109.84	301 05	80,55	151.96	0,34	9881 5	0,78	0,51	0,72	1,95	86.62	102,41
TUP-8A	45	6695.89	92 33	391,95	67	127 58	0,90	6939 37	0,78	0,52	0,72	1,00	71 94	128 99
TUP-8A	47	22157.29	167.96	628.1	111.43	257.18	0.96	23131.24	0,00	0.43	0.65	2.31	109.94	246.06
TUP-8A	48	5072.64	80.37	309.77	49.85	131.61	0.92	5498.74	0.66	0.37	0.61	2.64	54.39	129.7
TUP-8A	50	24247,22	175,71	623,92	124,98	251,66	0,97	24957,39	0,78	0,49	0,7	2,01	117,85	245,07
TUP-8A	51	23922,57	174,53	686,15	107,26	295,76	0,92	25992,21	0,64	0,35	0,59	2,76	109,98	280,95
TUP-8A	52	5153,8	81,01	301,86	53,81	126,12	0,91	5661,07	0,71	0,41	0,64	2,34	58,72	119,01
TUP-8A	53	5600,19	84,44	279,47	65,76	109,7	0,98	5701,65	0,9	0,59	0,77	1,67	63,06	111,44
TUP-8A	54	6736,47	92,61	320,78	64,76	133,72	0,97	6979,95	0,82	0,48	0,69	2,06	63,06	130,01
TUP-8A	55	18809,35	154,75	511,25	148,95	162,88	0,97	19377,49	0,9	0,9	0,95	1,09	148,65	167,64
TUP-8A	56	12519,28	126,25	498,96	73,06	223,46	0,94	13351,19	0,63	0,32	0,56	3,06	76,71	212,48
TUP-8A	57	8359,71	103,17	390,4	66,37	164,36	0,96	8745,23	0,69	0,39	0,63	2,48	72,52	167,21
TUP-8A	58	20229,69	160,49	554,75	127,48	202,63	0,97	20939,86	0,83	0,63	0,79	1,59	131,05	208,67
TUP-8A	59	10469,93	115,46	434,81	75,52	179,49	0,94	11139,52	0,7	0,41	0,64	2,38	79,51	178,2
TUP-8A	60	19438,36	157,32	564,21	112,71	221,9	0,97	20128,24	0,77	0,5	0,71	1,97	112,61	226,21
TUP-8A	61	24348,67	176,07	594,7	152,7	206	0,97	25038,55	0,87	0,73	0,85	1,35	146,52	210,9
TUP-8A	62	6919,08	93,86	304,5	86,82	102,46	0,96	7203,15	0,94	0,84	0,92	1,18	86	107,07
TUP-8A	63	22218,16	168,19	660,59	97,36	295,93	0,97	23009,5	0,64	0,32	0,57	3,04	95,55	2/8,59
TUP-8A	04 CE	/669,83	98,82	341,62	/1,33	138,21	0,96	7974,19	0,83	0,51	0,72	1,94	/3,26	130,18
TUP-8A	66	4849,44	/8,58	208,46	59,41	104,76	0,96	11010 50	0,85	0,56	0,75	1,/6	00,52	107,07
TI IP-9A	67	2325/ //	121,03	580 80	120 65	100,25	0,97	22881 00	0,73	0,41	0,04	2,39	127 /1	221 1/
TUP-8A	68	160/10 92	1/2,44	509,00	123,03	230,05	0,98	16507.69	0,64	0,50	0,75	1,70 2 10	07 99	231,14
TUP-84	69	10165 57	112 77	412 A	78 12	166 07	0,97	10713 47	0,78	0,45 0.46	0,07	2,10	80 77	169 67
TUP-8A	70	4910 37	79.07	259 9	66 35	95 11	0,95	5152 8	0,75	0,40	0,08	1 43	79.63	97 24
TUP-8A	71	24348.67	176.07	675.79	111.77	284.02	0.93	26053.08	0.67	0.38	0.62	2.54	117.89	278.62
TUP-8A	72	23374 73	172 52	707	101 98	20-,02	0,93	25687.85	0,59	0,30	0,02	2,34	108 9	293 93
TUP-8A	73	6777.05	92.89	336.8	63.42	137.52	0.95	7162.57	0.75	0.46	0.68	2,33	66.95	136.78
TUP-8A	74	20209,4	160,41	583,32	109,27	237,31	0,97	20919,57	0,75	0,46	0,68	2,17	112,61	234,1
TUP-8A	75	19620,97	158,06	556,29	117,59	215,81	0,97	20310,85	0,8	0,54	0,73	1,84	117,12	214,05
TUP-8A	76	13046,83	128,89	441,82	104,77	160,25	0,96	13594,68	0,84	0,65	0,8	1,53	117,12	168,18
TUP-8A	77	6797,34	93,03	332,62	64,35	136,98	0,96	7101,7	0,77	0,46	0,68	2,13	66,89	137,52
TUP-8A	78	29624,22	194,21	683,06	144,71	264	0,97	30638,75	0,8	0,54	0,74	1,82	148,65	263,35
TUP-8A	79	9110,46	107,7	369,1	83,23	141,27	0,96	9475,69	0,84	0,58	0,76	1,7	84,48	141,01
TUP-8A	80	15603,44	140,95	519,35	96,33	210,23	0,96	16252,74	0,73	0,45	0,67	2,18	98,71	206,67

Comple	Grain	Aroa (	Equivalent	Perimeter	Minor axis	Major axis	Coliditu	Conversion	Form factor	Boundhors	Compostnoss	Acrost ratio	Min Forst	May Forat
Sample	number	Area (µm)	diameter (µm)	(µm)	(µm)	(µm)	Solidity	Convex area	FORMIACION	Roundness	compactness	Aspectratio	win. reret	IVIAX. Feret
TUP-8A	81	16415,06	144,57	557,39	92,01	231,58	0,95	17287,56	0,66	0,39	0,62	2,52	93, 19	228,36
TUP-8A	82	21670,32	166,11	615,63	105,85	262,13	0,97	22299,33	0,72	0,4	0,63	2,48	103,6	258, 18
TUP-8A	83	5681,36	85,05	307,13	58,86	124,54	0,94	6066,88	0,76	0,47	0,68	2,12	64,46	125,48
TUP-8A	84	20371,72	161,05	588,33	105,7	246,54	0,97	20939,86	0,74	0,43	0,65	2,33	101,93	245,77
TUP-8A	85	10409,06	115,12	449,92	85,83	164,29	0,92	11281,55	0,65	0,49	0,7	1,91	86	178,2
TUP-8A	86	13330,9	130,28	477,21	90,33	189,39	0,95	14081,65	0,74	0,47	0,69	2,1	90,09	190,05
TUP-8A	87	41271	229,23	842,13	158,48	334,55	0,96	42853,66	0,73	0,47	0,69	2,11	162,39	321,21
TUP-8A	88	9719,18	111,24	399,41	77,71	161,16	0,95	10185,86	0,77	0,48	0,69	2,07	81,21	163,28
TUP-8A	89	25038,55	178,55	666,32	113,92	283,21	0,96	26154,53	0,71	0,4	0,63	2,49	115,26	273,89
TUP-8A	90	12945,38	128,38	456,1	93,57	177,91	0,95	13614,97	0,78	0,52	0,72	1,9	99,1	181,08
TUP-8A	91	28467,66	190,38	699,27	141,52	267,01	0,95	30070,61	0,73	0,51	0,71	1,89	142,46	255,01
TUP-8A	92	16739,71	145,99	484,86	129,36	167	0,97	17287,56	0,89	0,76	0,87	1,29	127,41	173,35
TUP-8A	93	17977,44	151,29	582,23	93,02	250,57	0,95	18870,22	0,67	0,36	0,6	2,69	94,79	242,57
TUP-8A	94	15867,22	142,14	467,75	130,11	156,82	0,97	16333,9	0,91	0,82	0,91	1,21	130,63	160,97
TUP-8A	95	14020,78	133,61	480,04	95,55	190,7	0,96	14548,33	0,76	0,49	0,7	2	96,69	188,11
TUP-8A	96	12093,17	124,09	436,54	94,5	165,1	0,96	12661,31	0,8	0,56	0,75	1,75	92,67	163,22
TUP-8A	98	10794,58	117,24	422,25	81,35	172,52	0,96	11200,39	0,76	0,46	0,68	2,12	80,82	169,98
TUP-8A	99	10064,12	113,2	393,04	88,85	147,39	0,96	10449,64	0,82	0,59	0,77	1,66	89,74	148,58
TUP-8A	100	21507,99	165,48	638,02	108,66	258,73	0,95	22603,68	0,66	0,41	0,64	2,38	112,61	265,92
TUP-8A	101	11768,53	122,41	417,43	94,87	158,49	0,96	12214,92	0,85	0,6	0,77	1,67	97,45	161,47
TUP-8A	102	20290,56	160,73	566,58	118,19	221,34	0,96	21041,31	0,79	0,53	0,73	1,87	116,22	216,26
TUP-8A	103	28569,11	190,72	630,1	165,15	220,53	0,98	29218,41	0,9	0,75	0,86	1,34	171,17	229,38
TUP-8A	104	24145,77	175,34	719,28	100,22	315,51	0,94	25667,56	0,59	0,31	0,56	3,15	100,51	292,79
TUP-8A	105	32261,99	202,68	691,62	164,61	250,24	0,97	33195,36	0,85	0,66	0,81	1,52	175,68	256,8
TUP-8A	106	16313,61	144,12	515,62	101,47	206,77	0,97	16902,04	0,77	0,49	0,7	2,04	105,11	207,4
TUP-8A	107	15501,99	140,49	496,06	108,91	185,28	0,95	16354,19	0,79	0,57	0,76	1,7	108,3	181,3
TUP-8A	108	15583,15	140,86	523,99	103,65	197,75	0,94	16597,68	0,71	0,51	0,71	1,91	110,34	194,06
TUP-8A	109	16800,58	146,26	500,7	118,85	182,16	0,97	17328,14	0,84	0,64	0,8	1,53	123,93	191,11
TUP-8A	110	17977,44	151,29	553,66	101,66	229,89	0,94	19073,13	0,74	0,43	0,66	2,26	108,16	224,01
TUP-8A	111	11849,69	122,83	403,59	107,89	140,57	0,97	12255,5	0,91	0,76	0,87	1,3	108,11	147,28
TUP-8A	112	21386,25	165,01	588,15	138,13	203,82	0,93	22908,04	0,78	0,66	0,81	1,48	140,74	213,05



### ANEXO B – Medidas de Forma, Zircões TUP 09B (Analyzr)

Image   Image <th< th=""><th>Sample</th><th>Grain</th><th>Area (µm²)</th><th>Equivalent</th><th>Perimeter</th><th>Minor axis</th><th>Major axis</th><th>Solidity</th><th>Convex area</th><th>Form factor</th><th>Roundness</th><th>Compactness</th><th>Aspect ratio</th><th>Min. Feret</th><th>Max. Feret</th></th<>	Sample	Grain	Area (µm²)	Equivalent	Perimeter	Minor axis	Major axis	Solidity	Convex area	Form factor	Roundness	Compactness	Aspect ratio	Min. Feret	Max. Feret
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1	TUP-9B	2	40824.61	227.99	783.25	175.17	297.68	0.98	41575.36	0.84	0.59	0.77	1.7	180.18	299.13
10+96   4   1022.45   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   12.02   1	TUP-9B	3	14183,1	134,38	451,47	113,34	160,48	0,97	14629,49	0,87	0,7	0,84	1,42	111,48	162,41
19   5   2022.01   202.04   49.04   9.08   20.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   <	TUP-9B	4	16232,45	143,76	472,12	127,5	162,8	0,97	16658,55	0,92	0,78	0,88	1,28	127,41	169,56
10.948   5   4985.1   10.06   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0 <th17.0< th="">   17.0   17.0   <t< td=""><td>TUP-9B</td><td>5</td><td>12012,01</td><td>123,67</td><td>438,08</td><td>94,46</td><td>166,07</td><td>0,96</td><td>12539,57</td><td>0,79</td><td>0,55</td><td>0,74</td><td>1,76</td><td>98,33</td><td>172,65</td></t<></th17.0<>	TUP-9B	5	12012,01	123,67	438,08	94,46	166,07	0,96	12539,57	0,79	0,55	0,74	1,76	98,33	172,65
1000000   1   1000000   100000   1000000   1000000   1000000   1000000000   1000000000000000000000000000000000000	TUP-9B	6	9435,11	109,6	378,11	84,07	144,32	0,95	9982,96	0,83	0,58	0,76	1,72	87,4	143,93
mm   g   stars,d   mm   g   stars,d   mm   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g   g	TUP-9B	/	11038,07	118,55	436,09	/9,36	182,78	0,95	11646,78	0,73	0,42	0,65	2,3	/9,63	174,92
mp.   io   mp.	TUP-9B	8 Q	24754.48	133,03	4/1,93	102,67	30/ 95	0,96	27250 22	0,78	0,50	0,75	1,74	108,11	286.06
11.9   13.938.0   12.28   45.8   9.9.6   16.94   0.9   10.9.4   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9   10.9	TUP-9B	10	17977.44	151.29	521.8	105,71	200.94	0,91	18484.7	0,83	0,5	0,30	1.75	117.12	200,00
The-9a   12   1320.28   107.51   107.51   107.52   107.54   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55   107.55 <td>TUP-9B</td> <td>11</td> <td>12843,93</td> <td>127,88</td> <td>434,35</td> <td>99,56</td> <td>164,83</td> <td>0,96</td> <td>13330,9</td> <td>0,86</td> <td>0,6</td> <td>0,78</td> <td>1,66</td> <td>102,56</td> <td>163,97</td>	TUP-9B	11	12843,93	127,88	434,35	99,56	164,83	0,96	13330,9	0,86	0,6	0,78	1,66	102,56	163,97
19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 <th< td=""><td>TUP-9B</td><td>12</td><td>13330,9</td><td>130,28</td><td>476,31</td><td>88,71</td><td>194,48</td><td>0,96</td><td>13919,32</td><td>0,74</td><td>0,45</td><td>0,67</td><td>2,19</td><td>92,67</td><td>189,89</td></th<>	TUP-9B	12	13330,9	130,28	476,31	88,71	194,48	0,96	13919,32	0,74	0,45	0,67	2,19	92,67	189,89
10   14   1073.8   15   1074.9   1074.9   10.3   0.08   0.20   2.55   72.00   10.35     10.99   10   4486(4)   130.95   12.25   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01   107.01	TUP-9B	13	11261,26	119,74	400,96	101,83	144,23	0,95	11890,27	0,88	0,69	0,83	1,42	105,97	143,93
10   10   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	TUP-9B	14	10713,42	116,79	434,81	73,62	187,67	0,95	11240,97	0,71	0,39	0,62	2,55	72,07	181,58
Number   19   440000   12400   23405   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   23400   234000   23400   23400 <th< td=""><td>TUP-9B</td><td>15</td><td>14568,62</td><td>136,2</td><td>485,32</td><td>102,71</td><td>184,97</td><td>0,95</td><td>15299,08</td><td>0,78</td><td>0,54</td><td>0,74</td><td>1,8</td><td>107,9</td><td>189,4</td></th<>	TUP-9B	15	14568,62	136,2	485,32	102,71	184,97	0,95	15299,08	0,78	0,54	0,74	1,8	107,9	189,4
19   19   193   1932/20   115/2   04/2   76/6   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2   04/2	TUP-9B	10	41900.01	230 97	1190 95	225 59	372 47	0,95	60729.65	0,85	0,57	0,78	1,75	236 82	334 31
IPP 9   19   992.20   111/4   881,38   884,30   144,21   0.96   1938,80   0.07   1.61   881,18   145,50   72,30     1199 9   21   24248,67   17,00   663,31   113,81   820,64   0.9   123,71,74   0.05   0.33   0.2,65   113,50   123,33   113,50   123,33   113,50   123,33   113,50   123,33   113,50   123,33   113,50   123,33   114,30   0.93   114,44   0.93   0.75   0.17   121,12   124,13   123,13   124,14   123,13   124,14   123,13   124,14   123,13   124,14   123,13   124,14   123,13   124,13   123,13   124,14   123,13   124,14   123,13   124,14   123,13   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14   124,14	TUP-9B	18	10490,22	115,57	424,7	76,69	178,65	0,95	11017,77	0,73	0,42	0,65	2,33	76,58	172,65
TUP-98   20   1101.77   114.84   84.88   84.71   0.53   0.77   0.55   0.71   1.59   1.29   1.23   122.94   123.71   0.65   0.77   0.65   0.72   0.54   0.13   0.14   123.71   0.64   0.72   0.64   0.74   0.84   0.74   0.74   0.84   0.74   0.74   0.74   0.74   0.74   0.74   0.74   0.74   0.74   0.74   0.74   0.74   0.74   0.74   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75 <td>TUP-9B</td> <td>19</td> <td>9922,08</td> <td>112,4</td> <td>381,39</td> <td>89,03</td> <td>143,21</td> <td>0,96</td> <td>10368,48</td> <td>0,86</td> <td>0,62</td> <td>0,78</td> <td>1,61</td> <td>89,18</td> <td>146,17</td>	TUP-9B	19	9922,08	112,4	381,39	89,03	143,21	0,96	10368,48	0,86	0,62	0,78	1,61	89,18	146,17
109-98   21   2444.47   17.60"   669.34   112.80   22.70.71   0.65   0.37   0.61   2.56   112.56   12.83     110-99   23   1365.45   0.334.4   45.1   133.7   61.33   63.8   1.44   1.51.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1   111.17.1   110.15.1	TUP-9B	20	11017,77	118,44	424,89	86,48	167,19	0,95	11545,33	0,77	0,5	0,71	1,93	92,67	168,3
TUP-98   22   1404.67   133.71   64.38   98.72   151.57   077   14487.46   0,85   0,74   1,44   99.1   112   104.38     1109-98   24   11355.65   1138.45   45.14   103.08   0,75   0,15   1,97   145.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11   113.11	TUP-9B	21	24348,67	176,07	684,34	112,38	287,64	0,92	26377,73	0,65	0,37	0,61	2,56	113,56	272,36
10-98   24   1926.0   138.6   49.1   112.3   0.98   1941.1   0.01   0.73   0.08   1.70   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2   117.2<	TUP-9B	22	14041,07	133,71	461,38	98,71	181,57	0,97	14487,46	0,83	0,54	0,74	1,84	99,1	183,75
100 PB   25   11448.80   120 P1   415.20   100 P1   40.56   0.06   1120 P1.80   0.06   1120 P1.80   0.06   1120 P1.80   0.06   0.07   0.08   0.02   0.01   0.05   0.07   0.08   0.02   0.05   0.07   0.02   0.05   0.07   0.02   0.05   0.07   0.02   0.05   0.07   0.02   0.02   0.05   0.07   0.02   0.05   0.07   0.02   0.05   0.07   0.02   0.05   0.07   0.02   0.02   0.05   0.07   0.02   0.05   0.07   0.06   0.05   0.07   0.04   0.06   0.06   0.05   0.07   0.07   0.06   0.05   0.07   0.07   0.06   0.05   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07	TUP-9B	23	15055,6	138,45	456,1	118,7	162,3	0,98	15441,12	0,91	0,73	0,85	1,3/	117,12	168,18
Turba   26   Table   99   64   99   64   90   90   90   90   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	TUP-9B	24	11365,91	121,40	415,24	101 46	100,96	0,97	11971,43	0,84	0,57	0,73	1,75	99,1	148 58
PUP-98   27   100569   113.11   83.84   113.66   113.81   0.97   122.13   0.94   0.09   0.09   1.08   113.12   122.44     PUP-98   29   2991.77   116.06   614.36   70.64   0.68   0.24   0.57   1.01   85.65   27.1     PUP-98   31   1155.05   113.24   0.77   1.02   0.05   1.07   0.5   0.77   0.5   0.71   1.07   0.68   0.58   1.09   1.12.84   1.13.55   1.13.84   0.07   0.5   0.77   0.5   0.71   1.07   0.56   0.71   1.07   0.56   0.71   1.07   0.85   0.99   0.66   0.82   1.04   0.85   1.13.85   1.12.84   0.87   1.02   0.07   1.03.85   1.12.84   0.85   1.02.94   0.66   0.62   0.62   0.61   0.61   0.61   0.61   0.61   0.62   0.62   0.61   0.61   0.61   0.61   0.61	TUP-9B	26	7832.16	99.86	418.07	53.35	190.3	0,90	8278.55	0,55	0.28	0,54	3.57	54.15	181.81
mp-96   28   905001   87.48   11.41   170.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.77   0.78   0.77   0.77   0.78   0.77   0.78   0.77   0.77   0.78   0.77   0.77   0.78   0.77   0.77   0.78   0.77   0.77   0.74   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.78   0.77   0.78   0.77   0.78   0.78   0.77   0.78   0.77   0.78   0.77   0.78   0.78   0.77	TUP-9B	27	10956,9	118,11	381,84	116,66	119,83	0,97	11322,13	0,94	0,97	0,99	1,03	117,12	125,48
TUP 98   29   297.7.2   101.2.8   69.1.5   282.6.8   0.94   2102.3.4   0.0.2   0.0.7   0.4.6   0.0.8   1.1.2.8   69.1.1   1.1.2.8   69.1.1   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8   1.1.2.8	TUP-9B	28	6006,01	87,45	311,32	76,78	106	0,92	6513,27	0,78	0,68	0,82	1,38	84,12	111,44
100-98   30   990,79   112,28   403,14   77,06   104,88   0.05   1003,07   0.06   0.89   0.99   107   112,61   332,21   1033,07   1038,07   1038,07   1038,07   10,78   1038,07   0.5   0.71   1.97   103,81   105,105   0.06   0.88   0.76   0.77   1.97   103,81   104,81   103,11   104,128   0.88   0.76   0.07   1.07   103,11   104,128   0.88   0.76   0.07   1.07   91   114,06   114,13   114,128   0.88   1225,12   0.06   0.07   1.08   104,90   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80   114,80 <td>TUP-9B</td> <td>29</td> <td>20371,72</td> <td>161,05</td> <td>641,56</td> <td>94,15</td> <td>282,96</td> <td>0,94</td> <td>21629,74</td> <td>0,62</td> <td>0,32</td> <td>0,57</td> <td>3,01</td> <td>96,65</td> <td>267,14</td>	TUP-9B	29	20371,72	161,05	641,56	94,15	282,96	0,94	21629,74	0,62	0,32	0,57	3,01	96,65	267,14
IDP-96   31   IDB0101   ID24   32.4   ID35   ID24   32.4   ID24   32.4     IDP-96   33   I3855.55   ID186   440.72   ID648   ID207   0.66   1470.33   0.88   0.67   0.71   1.79   10.68   199.9     IDP-96   34   I2247.128   ID27.14   ID24.138.0   0.88   0.66   0.62   1.29   99.1   ID40.98   39.9   10.69   39.9   10.89   10.99   11.10   18.99.9   10.99   11.10   18.99.9   10.99   11.10   18.99.9   10.99   11.10   18.99.9   10.99   11.10   18.99.9   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   10.99   1	TUP-9B	30	9901,79	112,28	403,14	77,06	164,88	0,95	10429,35	0,77	0,46	0,68	2,14	79,28	163,78
100-98   32   100-88   133   100-88   133   100-88   133   100-88   133   100-88   133   100-88   133   100-88   133   100-88   133   100-88   133   110-88   133   110-88   120-80   0.88   1272-18   0.88   0.67   1.29   110-88   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   120-80   180.8   180.8   180.8   180.8   180.8   180.8   180.8   180.8   180.8   180.8   180.8   120.8   110.8   120.8   110.8   120.8   110.8   120.8   110.8   120.8   110.8   120.8   110.8	TUP-9B	31	10510,51	115,68	392,4	113,95	122,3	0,95	11038,07	0,86	0,89	0,95	1,07	112,61	135,21
TUP-98   34   L1417.82   L157.14   L03.31   L52.23   O.68   O.66   O.62   L46   91.1   D50.0     TUP-98   37   L135.12   Ad2.07   B43.13   L52.62   O.65   L55.62   Ad7   B49.13   L55.12   Ad7   D49.14   L55.12   Ad7   D49.14   L55.12   L55.12   Ad7   L55.13   D49.14   L55.12   L55.13   D49.14   L55.12   L55.12   D49.14   L55.12   L55.12   D49.14   L55.12   L55.12   D49.14   D49.14   L55.12   D49.14   D49.14 <td>TUP-9B</td> <td>32</td> <td>13655 55</td> <td>141,95</td> <td>507,07</td> <td>101,03</td> <td>200,27</td> <td>0,96</td> <td>1/203 30</td> <td>0,77</td> <td>0,5</td> <td>0,71</td> <td>1,97</td> <td>100,83</td> <td>199,93</td>	TUP-9B	32	13655 55	141,95	507,07	101,03	200,27	0,96	1/203 30	0,77	0,5	0,71	1,97	100,83	199,93
TUP-96   35   12296,07   1229,07   82,02   84,02   82,06   0.95   12266,67   0.02   0.49   2,07   89,95   182,95     TUP-96   38   10963,13   116,66   422,17   7,22,8   102,26   0.66   852,00   0.45   0.45   0.44   2,42   73,26   115,44   138,05   0.75   1.77   1.04   126,66   155,0     TUP-96   40   158,33   88,62   203,31   67,05   193,75   0.06   137,74   0.47   0.64   2,48   127,68   0.75   0.75   0.75   1.76   73   0.54   1,28   23,97   193,97   0.57   0.7   0.54   1,23   67,44   28,43   11,44   24,42   193,9   193,9   0.9   0.63   1,24   191,18   24,46   191,18   24,46   191,18   24,46   191,18   24,46   191,18   24,46   191,18   24,46   191,18   24,46   191,48   21,11,44   24,48	TUP-9B	34	12417.82	125.74	419.43	103.31	151,05	0,90	12722.18	0,89	0,70	0,87	1,25	99.1	154.08
TUP-98   37   B197,39   1012,16   346,26   82,07   12.82.88   0.96   8522,04   0.85   0.73   0.14,7   B1,08   1352,75   B1,08   1352,75   B1,08   1352,75   B1,08   1352,75   B1,08   1353,75   B1,08   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.76   0.74   1.76   0.73   0.74   0.84   0.83   0.74   1.76   73   1.76   73   1.97   0.84   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75 <td>TUP-9B</td> <td>35</td> <td>12296,08</td> <td>125,12</td> <td>462,02</td> <td>88,18</td> <td>182,66</td> <td>0,95</td> <td>12965,67</td> <td>0,72</td> <td>0,47</td> <td>0,69</td> <td>2,07</td> <td>89,95</td> <td>182,92</td>	TUP-9B	35	12296,08	125,12	462,02	88,18	182,66	0,95	12965,67	0,72	0,47	0,69	2,07	89,95	182,92
TUP-96   38   10693,13   116,88   428,17   75,28   182,25   0.97   11038,00   0.41   0.64   7,24   73,36   165,77     TUP-98   40   6168,33   38,82   302,31   67,06   117,75   0.95   0.476   0.75   0.75   0.74   1,84   86,82   120,83     TUP-98   44   12803,44   127,86   97,03   83,77   20,80   0.63   137,77   0.71   0.84   1,38   139,71   192,2     TUP-98   44   37679,57   219,03   725,01   197,38   224,06   0.93   399,78   0.57   0.43   0.66   2,46   77,46   197,4   144,67   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,47   114,4	TUP-9B	37	8197,39	102,16	346,26	82,07	128,68	0,96	8522,04	0,86	0,63	0,79	1,57	81,08	135,51
TUP-98   39   980.02   11.94   380.31   85.90   15.137   0.05   1000.06   0.55   0.74   1.74   86.62   15.10     TUP-98   44   12803.34   127.08   470.58   88.75   119.56   0.96   1337.48   0.77   0.74   0.44   0.64   1.39   139.37.1   191.25     TUP-98   42   21102.18   163.92   755.10   213.93   1937.77   0.67   0.71   0.54   1.34   124.97   114.97   124.93   124.97   114.97   124.93   124.97   114.97   124.93   124.97   114.97   124.94   124.97   114.97   124.94   124.97   114.97   124.94   124.97   114.97   124.94   124.97   114.97   124.94   124.97   124.93   124.94   124.97   124.94   124.97   124.94   124.97   124.94   124.97   124.94   124.97   124.94   124.97   124.94   124.97   124.97   124.94   124.97   124.9	TUP-9B	38	10693,13	116,68	428,17	75,28	182,25	0,97	11038,07	0,73	0,41	. 0,64	2,42	73,26	176,6
IUP-98   40   bl8x3   88.62   302,31   67,05   117,75   0.95   6452,4   0.05   0.75   1,76   7,27   17,76   0,75   1,76   7,27   17,77   0,71   0,41   0,054   1,38   189,87   199,98     1UP-98   44   12003,162   151,46   622,46   83,72   220,00   0,33   139,77   0,27   0,29   0,24   13,35   87,44   264,3     TUP-98   44   13964,46   153,04   71,39   214,05   0,88   3490,19   0,9   0,81   0,9   1,24   197,18   244,10   0,98   3491,19   0,9   0,81   0,9   1,24   197,18   246,10   1,17,39   210,00   0,7   0,43   0,66   2,66   70,26   149,7   1,11,6   0,37   0,38   0,46   2,66   70,26   149,7   1,11,6   0,37   0,43   0,66   2,67   70,26   149,7   1,14,8   0,30   1,33   0,30,01	TUP-9B	39	9840,92	111,94	389,31	83,59	151,37	0,95	10409,06	0,82	0,55	0,74	1,81	86,62	151,02
IDP-98   4.1   L2033.54   L2033.54   L2033.54   L2033.74   O.73   O.74   O.044   L38   L2033.74   L2033.74   D.71   O.74   O.744   L38   L397.1   L192.74   L1023   L337.1   D.71   O.741   O.744   L38   L397.1   L192.74   L1023   L123   L123   L123.74   D.71   O.741   O.754   L333   L37.44   L344.26   L335.14   C444   L365.13   L77.77   D.73   O.44   O.64   L46   L46.75   L124.14   L243.14   L248   O.77   O.81   O.33   O.73   O.44   O.64   L46.75   L33.14   C248.90   O.71   O.83   L43   L203.77   L263.77   O.81   O.83   O.73   O.44   O.64   L46   O.73   O.44   O.64   L46   O.73   O.44   O.64   L46   O.73   O.41   O.44   O.46   L45   O.43   L43   O.57   L107.86   L46   D.73   D.73   D.73	TUP-9B	40	6168,33	88,62	302,31	67,05	117,75	0,96	6452,4	0,85	0,57	0,75	1,76	73,2	120,87
TUP-98   43   18918,02   151,46   629,46   83,73   280,36   0,93   19397,78   0,57   0,29   0,54   3,35   87,44   264,3     TUP-98   44   37673,57   219,03   775,01   197,36   244,05   0,98   34941,9   0,91   0,81   0,9   1,24   377,18   244,7   114,7   114,7   114,7   114,7   114,7   114,7   114,7   114,7   114,7   114,7   114,8   114,8   0,71   0,43   0,66   2,26   70,26   1149,7   1149,7   114,7   114,18   0,77   0,43   0,66   0,89   0,69   0,83   1,43   63,06   912,9   110,7   63,37   73,34   114,80   0,77   0,44   0,67   2,25   73,38   1192,9   110,7   143,33   91,97   913,36   0,37   0,61   2,64   88,9   12,44     TUP-98   52   1338,16   132,74   514,88   2,37,4   938   36664,17	TUP-9B	41 42	21102 18	127,08	470,58	83,75	199,50	0,96	21771 77	0,73	0,41	. 0,64 0.84	2,38	82,81 139 71	194,89
TUP-98   44   37679,57   219.00   725.01   197.36   224.05   0.98   3490,19   0.9   0.91   0.91   0.91   1.24   197.18     TUP-98   45   19864,46   153.0,41   554.94   117.39   210.02   0.97   20433,47   0.81   0.93   0.73   1.87   114.67   211.1     TUP-98   44   1335.119   130.30   474.31   83.41   20.488   0.67   0.43   0.66   2.26   70.26   149.1   36.07   1.44   36.07   10.91   44   56.07   0.26   0.94   0.71   0.43   0.66   0.28   192.1   114.67   0.72   0.78   0.43   0.43   30.06   114.91   47.91   143.8   30.07   0.44   0.67   0.68   0.69   2.07   85.62   172.4     TUP-98   51   1107.65   118.77   79.8   14469.2   0.66   0.37   0.61   2.64   9.37   1.24   129.19   1	TUP-9B	43	18018.02	151.46	629.46	83.73	280.36	0,93	19397.78	0,57	0.29	0.54	3.35	87.44	264.39
TUP-98   45   19864.46   159.04   55.94.94   117.39   219.02   0.97   2004.87   0.81   0.53   0.73   1.87   114.67   211.1     TUP-98   46   13351.19   130.38   474.31   83.41   204.89   0.97   13866.13   0.75   0.44   0.63   0.64   2.26   77.02   149.77     TUP-98   44   8486.973   78.74   255.08   65.85   94.38   0.97   5093.06   0.94   0.73   0.43   0.66   2.26   77.23   107.21   84.48   71.67   111.168   0.97   0.93   0.44   0.60   2.275   56.62   72.44     TUP-98   52   13338.16   132.74   514.98   82.48   217.57   0.95   14460.2   0.66   0.37   0.61   2.24   88.9   2.12.4     TUP-98   53   35792.55   1371.6.42   132.74   1.98   306.94   0.55   0.57   1.436   0.64   0.53   0.50 <td>TUP-9B</td> <td>44</td> <td>37679,57</td> <td>219,03</td> <td>725,01</td> <td>197,36</td> <td>244,05</td> <td>0,98</td> <td>38491,19</td> <td>0,9</td> <td>0,81</td> <td>. 0,9</td> <td>1,24</td> <td>197,18</td> <td>246,15</td>	TUP-9B	44	37679,57	219,03	725,01	197,36	244,05	0,98	38491,19	0,9	0,81	. 0,9	1,24	197,18	246,15
TUP-98   46   13331,19   130,38   47,31   83,41   204,89   0,77   1306,61   0,75   0,4   0,64   2,46   79,63   199,1     TUP-98   48   4869,73   78,74   255,08   65,85   94,88   0,97   502,06   0,94   0,7   0,83   1,43   60,00   113,9     TUP-98   49   6736,47   92,61   307,95   78   111,68   0,97   6959,66   0,90   0,69   0,69   0,69   0,69   2,25   73,83   154,41   10,78   113,91   0,75   1446,40   0,78   0,44   0,66   2,07   66,62   2,07   66,63   127,4   174,40   0,75   0,61   3,70   53   1343,85   1460,92   0,66   0,37   0,61   2,26   73,83   127,47   143,85   0,44   0,53   0,59   2,28   82,87   141,1   144,1   144,1   144,1   144,1   144,1   144,1   144,1   144,1   144,	TUP-9B	45	19864,46	159,04	554,94	117,39	219,02	0,97	20493,47	0,81	0,53	0,73	1,87	114,67	211,14
TUP-98   47   8339.42   103.04   382.94   66.15   156.62   0.94   826.39   0.71   0.43   0.66   2.26   70.26   149.7     TUP-98   448   486.97   70.74   255.06   65.85   97.8   111.68   0.97   5032.06   0.94   0.77   0.44   0.67   2.25   75.38   158.9     TUP-98   50   9029.3   107.22   384.48   71.67   161.13   0.97   9353.95   0.77   0.44   0.67   2.25   75.38   158.9     TUP-98   52   13838.16   132.74   514.98   82.73   179.79   0.95   14365.7   0.89   0.79   0.89   1.60.41   2.24   82.72   147.4     TUP-98   54   6168.33   88.62   347.99   53.5   149.86   0.94   6353.8   0.64   0.35   0.99   2.8   58.72   147.2     TUP-98   57   14954.14   137.99   490.14   98.21 <td< td=""><td>TUP-9B</td><td>46</td><td>13351,19</td><td>130,38</td><td>474,31</td><td>83,41</td><td>204,89</td><td>0,97</td><td>13696,13</td><td>0,75</td><td>0,4</td><td>0,64</td><td>2,46</td><td>79,63</td><td>199,12</td></td<>	TUP-9B	46	13351,19	130,38	474,31	83,41	204,89	0,97	13696,13	0,75	0,4	0,64	2,46	79,63	199,12
IDP-98   48   48969/3   78,4   255,08   05,8   94,38   0,9'   502,06   0,93   1,43   65,06   91,19     TUP-98   50   9029,3   11072,65   1307,57   78   111,68   0,9'   6535,66   0,69   0,83   1,43   65,06   2,75   75,38   158,4     TUP-98   51   11078,65   118,7'   433,8   82,78   171,43   0,96   1144,46   0,78   0,64   0,69   0,27   66,62   127,4     TUP-98   53   35792,55   213,48   709,18   190,85   239,74   0,98   0,66   0,40   0,55   0,59   2,8   87,27   147,2     TUP-98   55   1371,64   132,15   488,41   88,73   198,79   0,95   14365,72   0,72   0,44   0,66   2,44   92,59   198,8     TUP-98   56   11829,4   122,73   451,92   81,01   187,85   0,96   1573,14   0,72 <t< td=""><td>TUP-9B</td><td>47</td><td>8339,42</td><td>103,04</td><td>382,94</td><td>69,15</td><td>156,62</td><td>0,94</td><td>8826,39</td><td>0,71</td><td>0,43</td><td>0,66</td><td>2,26</td><td>70,26</td><td>149,74</td></t<>	TUP-9B	47	8339,42	103,04	382,94	69,15	156,62	0,94	8826,39	0,71	0,43	0,66	2,26	70,26	149,74
IDP-98   50   9034   9037   10   11,00   0.97   9333,36   0.03   0.03   0.04   0.05   0.04   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.07   0.04   0.06   0.05   0.05   0.07   0.04   0.06   0.05   0.05   0.07   0.05   0.07   0.06   0.05   <	TUP-98	48	4869,73	/8,/4	255,08	65,85	94,38	0,97	5032,06	0,94	0,7	0,83	1,43	63,06	97,24
TUP-98 51 11078,65 118,77 423,8 82,78 171,43 0.96 11484,46 0,78 0.48 0.69 2,07 86,62 172,4   TUP-98 52 13383,16 132,74 514,98 82,48 217,57 0,95 14609,2 0,66 0,37 0,61 2,64 88,9 212,4   TUP-98 54 6168,33 88,62 347,99 53,5 1498,86 0,94 6553,85 0,64 0,35 0,59 2,8 58,72 147,2   TUP-98 55 113716,42 112,15 488,41 88,73 199,79 0,56 1237,24 0,73 0,44 0,66 2,24 9,29 198,8   TUP-98 57 14954,14 137,79 490,14 98,21 136,71 0,92 6675,59 0,71 0,42 0,65 2,35 68,16 131,41   TUP-98 59 2720,64 186,13 641,75 143,33 243,63 0,77 2790,68 0,83 0,56 1,7 144,21 240,9   TUP-98 60 <td>TUP-9B</td> <td>50</td> <td>9029.3</td> <td>107.22</td> <td>384.48</td> <td>71.67</td> <td>161.13</td> <td>0,97</td> <td>9353.95</td> <td>0,03</td> <td>0.44</td> <td>0,63</td> <td>2.25</td> <td>75.38</td> <td>158.43</td>	TUP-9B	50	9029.3	107.22	384.48	71.67	161.13	0,97	9353.95	0,03	0.44	0,63	2.25	75.38	158.43
TUP-98   52   13838,16   132,74   514,98   82,48   217,57   0,95   14609,2   0,66   0,37   0,61   2,64   88,9   212,4     TUP-98   53   35792,55   213,48   709,18   190,85   239,74   0,89   0,79   0,89   0,52   158,72   147,3     TUP-98   55   13716,42   132,15   488,61   487,73   198,79   0,95   14365,72   0,72   0,44   0,66   2,24   92,59   198,8     TUP-98   55   11829,4   122,73   451,92   81,01   187,85   0,66   1538,31   0,73   0,43   0,66   2,22   84,61   187,4     TUP-98   58   6168,33   88,62   330,43   58,22   136,71   0,92   6675,59   0,71   0,42   0,65   2,25   66,65   111,4   0,92   757,9   0,74   0,43   0,66   2,26   450,5   111,4     TUP-98   61   5498,74   <	TUP-9B	51	11078,65	118,77	423,8	82,78	171,43	0,96	11484,46	0,78	0,48	0,69	2,07	86,62	172,41
TUP-98   53   35792,55   121,48   709,18   190,85   229,74   0.98   6660,17   0,89   0,79   0,89   1,26   194,3   241,1     TUP-98   55   1371,62   132,15   488,41   88,73   198,79   0,55   14365,72   0,72   0,44   0,66   2,24   92,55   193,85     TUP-98   56   11829,4   127,73   451,92   81,01   1187,85   0,96   1237,74   0,73   0,43   0,65   2,32   84,61   138,17     TUP-98   57   14954,14   137,99   490,14   98,22   136,71   0,92   6675,59   0,71   0,42   0,65   2,25   68,16   138,1     TUP-98   59   2720,964   186,13   641,75   143,33   243,63   0,77   0,78   0,43   0,66   2,24   143,05   114,4     TUP-98   61   5499,74   83,67   282,11   67,17   144,41   0,95   713,32   0,77	TUP-9B	52	13838,16	132,74	514,98	82,48	217,57	0,95	14609,2	0,66	0,37	0,61	2,64	88,9	212,48
TUP-98   54   6168,33   88,62   347,99   53,5   149,86   0,94   6553,85   0,64   0,35   0,59   2,8   58,72   1472,15     TUP-98   55   13716,42   132,15   488,41   88,73   198,79   0,55   14356,72   0,72   0,44   0,66   2,24   92,59   198,87     TUP-98   56   11829,4   127,74   10,95   12377,24   0,73   0,43   0,66   2,23   84,61   187,4     TUP-98   59   27205,64   186,13   641,75   143,33   243,63   0,97   27980,68   0,83   0,56   0,76   1,7   144,21   240,9     TUP-98   60   4403,05   74,87   267,18   50,44   113,36   0,98   4504,5   0,78   0,76   1,77   144,21   240,9     TUP-98   61   5498,74   83,67   282,11   62,65   791,32,6   0,87   0,76   1,77   163,06   1114,41	TUP-9B	53	35792,55	213,48	709,18	190,85	239,74	0,98	36604,17	0,89	0,79	0,89	1,26	194,3	241,15
IDP-98   55   13/16,42   132,15   488,41   98,73   198,79   0,95   14405,72   0,72   0,44   0,66   2,24   92,293   198,8     TUP-98   56   11829,4   127,73   44   0,73   0,43   0,65   2,32   84,61   187,4     TUP-98   57   14954,14   137,99   490,14   98,21   195,09   0,96   15583,15   0,78   0,5   0,71   1,42   0,65   2,32   84,61   187,4     TUP-98   59   27209,64   186,13   641,75   143,33   243,63   0,92   675,59   0,71   0,42   0,66   2,26   45,05   111,4     TUP-98   61   5498,74   83,67   282,11   62,86   0,78   0,43   0,66   0,75   1,77   63,06   111,4     TUP-98   62   7527,8   97,9   349,54   7,17   144,41   0,95   7,17   0,46   0,68   1,34   197,48   257,9 <td>TUP-9B</td> <td>54</td> <td>6168,33</td> <td>88,62</td> <td>347,99</td> <td>53,5</td> <td>149,86</td> <td>0,94</td> <td>6553,85</td> <td>0,64</td> <td>0,35</td> <td>0,59</td> <td>2,8</td> <td>58,72</td> <td>147,28</td>	TUP-9B	54	6168,33	88,62	347,99	53,5	149,86	0,94	6553,85	0,64	0,35	0,59	2,8	58,72	147,28
IDP-98   56   I122;4   I27,3   43,12   61,01   167,50   0.96   1237,74   0,73   0,73   0,63   0,25   24,840   100,9   193,7     TUP-98   57   1495,14   137,99   400,14   550,071   0,92   6675,59   0,71   0,42   0,65   2,35   68,16   138,1     TUP-98   59   27209,64   186,13   641,75   143,33   243,66   0,97   2798,068   0,83   0,56   0,76   1,7   144,21   240,65     TUP-98   60   4403,05   74,87   267,18   50,04   113,96   0,98   4504,5   0,78   0,43   0,66   2,25   45,05   111,4     TUP-98   61   5498,74   83,67   282,11   62,26   451,50   111,4   0,95   731,32   0,77   0,46   0,68   2,15   70,51   141,0   10,75   0,5   0,71   1,98   103,69   133,9     TUP-98   65   79	TUP-9B	55	13716,42	132,15	488,41	88,73	198,79	0,95	14365,72	0,72	0,44	0,66	2,24	92,59	198,86
Tup-98   S8   Gl63,33   88,62   330,43   58,22   Gl53,52   0,71   0,42   0,65   2,55   68,16   138,1     Tup-98   59   27209,64   186,13   641,75   143,33   243,63   0,97   27980,68   0,83   0,58   0,76   1,7   144,21   240,9     Tup-98   60   4403,05   74,87   267,18   50,44   113,96   0,98   4504,5   0,78   0,43   0,66   2,26   45,05   111,4     Tup-98   61   5498,74   83,67   282,11   62,86   114,41   0,95   771,32   0,77   0,46   0,68   2,15   70,51   141,0     Tup-98   63   35914,29   213,84   727,2   186,36   249,21   0,97   37192,6   0,85   0,74   0,86   1,34   197,48   257,9     Tup-98   64   14670,08   136,4   777,2   186,36   249,21   0,97   3192,6   0,85   0,74	TUP-96	57	11029,4	122,73	451,92	98.21	107,03	0,90	15583 15	0,73	0,43	0,03	2,52	100 9	107,47
TUP-98   59   27209,64   186,13   641,75   143,33   243,63   0,97   27986,68   0,83   0,58   0,76   1,7   144,21   240,97     TUP-98   60   4403,05   74,87   267,18   50,44   113,96   0,98   4504,5   0,78   0,43   0,66   2,26   45,05   111,4     TUP-98   61   5498,74   83,67   282,11   62,86   111,46   0,96   5721,94   0,87   0,56   0,75   1,77   63,06   111,4     TUP-98   62   7527,8   97,9   349,54   67,17   144,41   0,97   37192,6   0,85   0,74   0,86   1,34   197,48   257,9     TUP-98   64   14670,08   136,67   495,58   97,5   192,6   0,95   15441,12   0,75   0,71   1,98   103,69   133,4     TUP-98   66   16131   143,31   544,19   94,83   225,72   0,95   1694,82   0,64	TUP-9B	58	6168.33	88.62	330.43	58.22	136.71	0.92	6675.59	0.71	0.42	0.65	2.35	68.16	138.18
TUP-9B 60 4403,05 74,87 267,18 50,44 113,96 0,98 4504,5 0,78 0,43 0,66 2,26 45,05 111,4   TUP-9B 61 5498,74 83,67 282,11 62,86 111,46 0,96 5721,94 0,87 0,56 0,75 1,77 63,06 111,4   TUP-9B 62 7527,8 97,9 349,54 67,17 144,41 0,95 7913,32 0,77 0,46 0,68 2,15 70,51 144,10   TUP-9B 63 35914,29 138,67 495,58 97,5 192,6 0,95 15441,12 0,75 0,5 0,71 1,98 103,69 133,9   TUP-9B 65 7974,19 100,76 346,26 78,94 129,71 0,95 8359,71 0,84 0,6 0,78 1,64 81,08 133,9 104,94 102,41 104,94 102,41 104,12 107,93 0,87 0,64 0,8 1,44 109,38 225,72 0,95 16042,62 0,68 0,4 0,63 2,44	TUP-9B	59	27209,64	186,13	641,75	143,33	243,63	0,97	27980,68	0,83	0,58	0,76	1,7	144,21	240,94
TUP-9B   61   5498,74   83,67   282,11   62,86   111,46   0,96   5721,94   0,87   0,56   0,75   1,77   63,06   111,4     TUP-9B   62   7527,8   97,9   349,54   67,17   144,41   0,95   7913,32   0,77   0,46   0,68   2,15   70,51   141,0     TUP-9B   63   35914,29   213,84   727,2   186,36   249,21   0,97   37192,6   0,85   0,74   0,86   1,34   197,48   257,9     TUP-9B   64   14670,08   136,67   495,58   97,5   192,6   0,95   15441,12   0,75   0,5   0,71   1,98   103,69   133,9     TUP-9B   66   16131   143,31   544,19   91,38   225,72   0,95   1694,26   0,68   0,4   0,63   2,47   94,68   224,1     TUP-9B   67   17328,14   148,54   512,92   1693,37   0,87   0,45   0,67 <td< td=""><td>TUP-9B</td><td>60</td><td>4403,05</td><td>74,87</td><td>267,18</td><td>50,44</td><td>113,96</td><td>0,98</td><td>4504,5</td><td>0,78</td><td>0,43</td><td>0,66</td><td>2,26</td><td>45,05</td><td>111,44</td></td<>	TUP-9B	60	4403,05	74,87	267,18	50,44	113,96	0,98	4504,5	0,78	0,43	0,66	2,26	45,05	111,44
IUP-9B   62   /52/8   9/9   349,54   67,17   144,41   0,95   7913,32   0,77   0,46   0,68   2,15   70,51   141,0     TUP-9B   63   35914,29   213,84   727,2   186,36   249,21   0,97   37192,6   0,85   0,74   0,86   1,34   197,48   257,9     TUP-9B   64   14670,08   136,67   495,58   97,5   192,6   0,95   15441,12   0,75   0,5   0,71   1,98   103,69   193,4     TUP-9B   65   7974,19   100,76   346,26   78,94   129,71   0,95   8339,71   0,84   0,6   0,78   1,64   81,08   183,9     TUP-9B   67   17328,14   148,54   501,15   120,92   186,28   0,98   17693,37   0,87   0,64   0,88   1,54   117,12   192,4     TUP-9B   67   17328,14   148,54   501,15   120,92   186,28   0,98   16649,83	TUP-9B	61	5498,74	83,67	282,11	62,86	111,46	0,96	5721,94	0,87	0,56	0,75	1,77	63,06	111,44
107-26 05 35914,29 71,2,4 180,50 249,71 0,97 37124,50 0,88 0,74 0,86 1,44 197,48 257,9   TUP-98 64 14670,08 136,67 495,58 97,5 192,6 0,95 15441,12 0,75 0,5 0,71 1,98 103,69 193,4   TUP-98 66 16131 143,31 544,19 91,38 225,72 0,95 16942,62 0,68 0,4 0,63 2,47 94,68 224,1   TUP-98 67 17328,14 148,54 501,15 120,92 186,28 0,98 17693,37 0,87 0,64 0,63 1,54 117,12 192,4   TUP-98 68 15481,7 140,4 502,43 95,45 208,24 0,96 16049,83 0,77 0,46 0,68 2,16 63,06 137,8 102,4 104,4 143,34 143,39 65,95 192,44 0,96 1051,51 0,68 0,54 0,74 1,81 87,45 153,2   TUP-98 71 10104,7 113,	TUP-9B	62	7527,8	97,9	349,54	67,17	144,41	0,95	7913,32	0,77	0,46	0,68	2,15	70,51	141,01
TUP-9B   65   7974,19   100,76   346,26   78,94   129,71   0,95   8359,71   0,84   0,6   0,78   1,64   81,08   133,9     TUP-9B   66   16131   143,31   544,19   91,38   225,72   0,95   16942,62   0,68   0,4   0,63   2,47   94,68   224,1     TUP-9B   66   16131   143,31   544,19   91,38   225,72   0,95   16942,62   0,68   0,4   0,63   2,47   94,68   224,1     TUP-9B   66   1538,17   140,4   502,43   95,45   208,24   0,96   16049,83   0,77   0,45   0,67   2,18   95,55   202,4     TUP-9B   69   6837,92   93,31   333,52   63,8   137,9   0,97   1051,09   0,83   0,54   0,74   1,81   87,45   153,2     TUP-9B   71   10104,7   113,43   431,9   67,95   194,24   0,96   10510,51	TUP-98	64	35914,29	213,84	/2/,2	186,36	249,21	0,97	3/192,6	0,85	0,74	0,86	1,34	102 60	257,98
TUP-9B   66   16131   143,31   544,19   91,38   225,72   0,95   1694,2,62   0,68   0,4   0,63   2,47   94,68   224,1     TUP-9B   66   16131   143,31   544,19   91,38   225,72   0,95   16942,62   0,68   0,4   0,63   2,47   94,68   224,1     TUP-9B   66   1531,7   140,4   502,43   95,45   208,24   0,96   16049,83   0,77   0,45   0,67   2,18   95,55   202,4     TUP-9B   69   6837,92   93,31   333,52   63,8   137,9   0,96   7121,99   0,77   0,46   0,68   2,16   63,06   137,8     TUP-9B   70   10206,15   114   393,04   85,43   154,77   0,97   1051,09   0,83   0,54   0,74   1,81   87,45   153,2     TUP-9B   71   10104,7   113,43   431,9   67,93   10,97   1424,25   0,83   0,5	TUP-9B	65	7974.19	130,07	346.26	78.94	192,0	0,95	8359.71	0,73	0,5	0,71	1,58	81.08	133,48
TUP-9B6717328,14148,54501,15120,92186,280,9817693,370,870,640,81,54117,12192,4TUP-9B6815481,7140,4502,4395,45208,240,9616049,830,770,450,672,1895,55202,4TUP-9B696837,9293,31333,5263,8137,90,967121,990,770,460,682,1663,06137,8TUP-9B7010206,15114393,0485,43154,770,9710551,090,830,540,741,8187,45153,2TUP-9B7110104,7113,43431,967,95194,240,9610510,510,680,340,582,8666,89182,9TUP-9B7210672,83116,57448,3771,99194,320,9714284,550,830,550,741,82101,93119,3TUP-9B7313858,45132,83456,7498,78179,390,9714284,550,830,550,741,82101,93179,3TUP-9B7412803,34127,68441,3695,93170,290,9713229,450,830,560,751,7895,55172,4TUP-9B7536624,46215,94823,4141,38337,750,953857,360,680,410,642,39143,33320,TUP-9B7632018,5201,94 <td>TUP-9B</td> <td>66</td> <td>16131</td> <td>143,31</td> <td>544,19</td> <td>91,38</td> <td>225,72</td> <td>0,95</td> <td>16942,62</td> <td>0,68</td> <td>0,4</td> <td>0,63</td> <td>2,47</td> <td>94,68</td> <td>224,19</td>	TUP-9B	66	16131	143,31	544,19	91,38	225,72	0,95	16942,62	0,68	0,4	0,63	2,47	94,68	224,19
TUP-9B 68 15481,7 140,4 502,43 95,45 208,24 0,96 16049,83 0,77 0,45 0,67 2,18 95,55 202,4   TUP-9B 69 6837,92 93,31 333,52 63,8 137,9 0,96 7121,99 0,77 0,46 0,68 2,16 63,06 137,8   TUP-9B 70 10206,15 114 393,04 85,43 154,77 0,97 10551,09 0,83 0,54 0,74 1,81 87,45 153,2   TUP-9B 71 10104,7 113,43 431,9 67,95 194,24 0,96 10510,51 0,68 0,34 0,58 2,86 66,89 182,9   TUP-9B 72 10672,83 116,57 448,37 71,99 194,32 0,94 11301,84 0,67 0,36 0,6 2,7 71,19 180,1   TUP-9B 73 13858,45 132,83 456,74 98,78 170,29 0,97 1428,55 0,83 0,55 0,74 4,82 101,93 179,3 1049,33 355	TUP-9B	67	17328,14	148,54	501,15	120,92	186,28	0,98	17693,37	0,87	0,64	0,8	1,54	117,12	192,43
TUP-9B   69   6837,92   93,31   333,52   63,8   137,9   0,96   7121,99   0,77   0,46   0,68   2,16   63,06   137,8     TUP-9B   70   10206,15   114   393,04   85,43   154,77   0,97   10551,09   0,83   0,54   0,74   1,81   87,45   153,2     TUP-9B   71   10104,7   113,43   431,9   67,95   194,24   0,96   10510,51   0,68   0,34   0,58   2,86   66,89   182,9     TUP-9B   72   10672,83   116,57   448,37   71,99   194,32   0,94   11301,84   0,67   0,36   0,66   2,7   71,19   180,1     TUP-9B   73   13858,45   132,83   456,74   98,78   170,29   0,97   1322,9,45   0,83   0,55   0,74   4,82   101,93   179,3     TUP-9B   74   12803,34   127,68   441,36   95,93   170,29   0,97   13229,45	TUP-9B	68	15481,7	140,4	502,43	95,45	208,24	0,96	16049,83	0,77	0,45	0,67	2,18	95,55	202,45
IUP-98   70   10206,15   114   393,04   85,43   154,77   0,97   10551,09   0,83   0,54   0,74   1,81   87,45   153,2     TUP-98   71   10104,7   113,43   431,9   67,95   194,24   0,96   10510,51   0,68   0,34   0,58   2,86   66,89   182,9     TUP-98   72   10672,83   116,57   448,37   71,99   194,32   0,94   11301,84   0,67   0,36   0,66   2,7   71,19   180,1     TUP-98   73   13858,45   132,83   456,74   98,78   170,29   0,97   14284,55   0,83   0,56   0,75   1,78   95,55   172,4     TUP-98   74   12803,34   127,68   441,36   95,93   170,29   0,97   13229,45   0,83   0,56   0,75   1,78   95,55   172,4     TUP-98   76   32018,5   201,91   680,42   160,6   254,17   0,98   32728,67	TUP-9B	69	6837,92	93,31	333,52	63,8	137,9	0,96	7121,99	0,77	0,46	0,68	2,16	63,06	137,81
IOF-95   71   IOL04,7   II3,43   431,57   I99,42   0,96   IU510,1   0,88   0,34   0,38   2,86   66,89   I122,9     TUP-98   72   1067,283   116,57   448,37   71,99   194,32   0,94   11301,84   0,67   0,36   0,6   2,7   71,19   188,1     TUP-98   73   13858,45   132,83   456,74   98,78   179,39   0,97   14284,55   0,83   0,55   0,74   1,82   101,93   179,3     TUP-98   74   12803,34   127,68   441,36   95,93   170,29   0,97   13229,45   0,83   0,55   0,74   1,82   95,55   172,4     TUP-98   75   36624,46   215,94   823,4   141,38   337,75   0,95   38572,36   0,68   0,41   0,64   2,39   143,33   320,     TUP-98   76   32018,5   201,91   680,42   160,6   254,17   0,98   32728,67   0,87 </td <td>TUP-9B</td> <td>70</td> <td>10206,15</td> <td>114</td> <td>393,04</td> <td>85,43</td> <td>154,77</td> <td>0,97</td> <td>10551,09</td> <td>0,83</td> <td>0,54</td> <td>0,74</td> <td>1,81</td> <td>87,45</td> <td>153,22</td>	TUP-9B	70	10206,15	114	393,04	85,43	154,77	0,97	10551,09	0,83	0,54	0,74	1,81	87,45	153,22
TUP-98   73   13858,45   132,83   456,74   98,78   179,39   0,97   14284,55   0,83   0,55   0,74   1,82   101,93   179,39     TUP-98   73   13858,45   132,83   456,74   98,78   179,39   0,97   14284,55   0,83   0,55   0,74   1,82   101,93   179,39     TUP-98   74   12803,34   127,68   441,36   95,93   170,29   0,97   13229,45   0,83   0,55   0,75   1,78   95,55   172,4     TUP-98   76   32018,5   201,91   680,42   160,6   254,17   0,98   32728,67   0,87   0,63   0,79   1,58   162,16   255,6     TUP-98   77   16638,26   145,55   505,97   112,04   190,27   0,96   17307,85   0,82   0,59   0,76   1,7   115,81   190,55     TUP-98   78   18383,25   152,99   536,73   109,59   214,31   0,97 <td< td=""><td></td><td>/1</td><td>10104,7</td><td>113,43</td><td>431,9 лло эт</td><td>67,95</td><td>194,24</td><td>0,96</td><td>10510,51</td><td>0,68</td><td>0,34</td><td>0,58</td><td>2,86</td><td>66,89 71 10</td><td>182,92</td></td<>		/1	10104,7	113,43	431,9 лло эт	67,95	194,24	0,96	10510,51	0,68	0,34	0,58	2,86	66,89 71 10	182,92
TUP-9B   74   12803,34   127,68   441,36   95,93   170,29   0,97   13229,45   0,83   0,55   0,75   1,78   95,55   172,4     TUP-9B   75   36624,46   215,94   823,4   141,38   337,75   0,97   13229,45   0,83   0,56   0,75   1,78   95,55   172,4     TUP-9B   76   32018,5   201,91   680,42   160,6   254,17   0,98   32728,67   0,87   0,63   0,79   1,58   162,16   255,6     TUP-9B   76   32018,5   201,91   680,42   160,6   254,17   0,98   32728,67   0,87   0,63   0,79   1,58   162,16   255,6     TUP-9B   77   16638,26   145,55   505,97   112,04   190,27   0,96   17307,85   0,82   0,59   0,76   1,7   115,81   190,55     TUP-9B   78   18383,25   152,99   536,73   109,92   143,1   0,97   1880	TUP-9B	72	13858 45	132.83	456 74	98.78	179 30	0,94	14284 55	0,07	0,30	, 0,6 , 0.74	2,7	101 93	179 39
TUP-9B   75   36624,46   215,94   823,4   141,38   337,75   0,95   38572,36   0,68   0,41   0,64   2,39   143,33   320,     TUP-9B   76   32018,5   201,91   680,42   160,6   254,17   0,98   32728,67   0,87   0,63   0,79   1,58   162,16   255,6     TUP-9B   77   16638,26   145,55   505,97   112,04   190,27   0,96   17307,85   0,82   0,59   0,76   1,7   115,81   190,57     TUP-9B   78   18383,25   152,99   536,73   109,59   214,31   0,97   18890,51   0,8   0,51   0,71   1,96   115,38   215,33     TUP-9B   79   8948,14   106,74   416,34   64,59   180,51   0,93   9617,73   0,65   0,35   0,59   2,79   68,37   173,88     TUP-9B   79   8948,14   106,74   416,52   0.94   924,652   0.75   0,75	TUP-9B	74	12803,34	127,68	441,36	95,93	170,29	0,97	13229,45	0,83	0,56	0,75	1,78	95,55	172,41
TUP-9B   76   32018,5   201,91   680,42   160,6   254,17   0,98   32728,67   0,87   0,63   0,79   1,58   162,16   255,6     TUP-9B   77   16638,26   145,55   505,97   112,04   190,27   0,96   17307,85   0,82   0,59   0,76   1,7   115,81   190,57     TUP-9B   78   18383,25   152,99   536,73   109,59   214,31   0,97   18890,51   0,8   0,51   0,71   1,96   115,38   215,33     TUP-9B   79   8948,14   106,74   416,34   64,59   180,51   0,93   9617,73   0,65   0,35   0,59   2,79   68,37   173,88     TUP-9B   80   8334,42   106,74   416,52   0.94   924,656   0.75   0,45   0,59   2,79   68,37   173,88	TUP-9B	75	36624,46	215,94	823,4	141,38	337,75	0,95	38572,36	0,68	0,41	0,64	2,39	143,33	320,8
TUP-9B   77   16638,26   145,55   505,97   112,04   190,27   0,96   17307,85   0,82   0,59   0,76   1,7   115,81   190,57     TUP-9B   78   18383,25   152,99   536,73   109,59   214,31   0,97   18890,51   0,8   0,51   0,71   1,96   115,38   215,33     TUP-9B   79   8948,14   106,74   416,34   64,59   180,51   0,93   9617,73   0,65   0,35   0,59   2,79   68,37   173,83     TUP-9B   80   8334,42   106,74   416,34   64,59   180,51   0,94   924,656   0,75   0,59   2,79   68,37   173,83	TUP-9B	76	32018,5	201,91	680,42	160,6	254,17	0,98	32728,67	0,87	0,63	0,79	1,58	162,16	255,65
IUP-98   78   18383,25   152,99   536,73   109,59   214,31   0,97   18890,51   0,8   0,51   0,71   1,96   115,38   215,33     TUP-9B   79   8948,14   106,74   416,34   64,59   180,51   0,93   9617,73   0,65   0,35   0,59   2,79   68,37   173,88     TUP-9B   80   8338,42   103,04   266,61   73,64   146,55   0.94   924,658   0.77   0,40   0.7   1.00   70,62   147,88	TUP-9B	77	16638,26	145,55	505,97	112,04	190,27	0,96	17307,85	0,82	0,59	0,76	1,7	115,81	190,53
10r-30   7.3   0540,14   100,74   410,34   04,33   180,31   0,33   9017,73   0,05   0,35   0,35   2,79   68,37   173,8     TIID.0R   80   8330,47   103,04   366,01   73,64   146,52   0.04   904,64   0.79   0.40   0.7   4.00   70,62   147,63	TUP-9B	78	18383,25	152,99	536,73	109,59	214,31	0,97	18890,51	0,8	0,51	0,71	1,96	115,38	215,32
TOLOL OV L 0002/421 100/041 00/011 73/041 140/021 0/040/001 0/0 0/49 0/1 1491 74/51 1475	TUP-9B	80	0548,14 8339 47	103,04	410,34 366 01	04,59 73 64	146 52	0,93	8846 68	0,05	0,35	, 0,59 ) 0.7	2,79	08,37 79 63	1/3,88

Sample	Grain	Area (µm²)	Equivalent Pe	Perimeter	Minor axis	Major axis	Colidity	Comunit area	Form factor	<b>B</b>	Commentances	A cure at matio	Min. Feret	Max. Feret
	number		diameter (µm)	(µm)	(µm)	(µm)	Sonarty	Convex area	FORMIACION	Roundness	compactness	Aspectratio		
TUP-9B	81	10530,8	115,79	405,14	84,81	159,78	0,95	11038,07	0,81	0,53	0,72	1,88	90,09	160,97
TUP-9B	82	9009,01	107,1	422,25	68,14	176,4	0,9	10023,54	0,63	0,37	0,61	2,59	75,45	167,21
TUP-9B	83	9617,73	110,66	438,73	64,41	192,93	0,95	10104,7	0,63	0,33	0,57	3	70,07	190,1
TUP-9B	84	12985,96	128,59	459,38	89,25	186,28	0,96	13472,93	0,77	0,48	0,69	2,09	89,95	181,58
TUP-9B	85	22766,01	170,25	721,47	90,43	325,45	0,95	23963,15	0,55	0,27	0,52	3,6	91,2	312,89
TUP-9B	86	15562,86	140,77	492,78	105,65	189,92	0,96	16171,58	0,81	0,55	0,74	1,8	110,11	187,74
TUP-9B	87	17165,81	147,84	552,56	97,55	228,69	0,93	18423,83	0,71	0,42	0,65	2,34	103,6	222,37
TUP-9B	88	30537,29	197,18	679,97	147,86	263,51	0,98	31166,3	0,83	0,56	0,75	1,78	153,95	267,93
TUP-9B	89	10246,73	114,22	431,9	71,17	186,79	0,95	10774,29	0,69	0,37	0,61	2,62	73,78	177,29
TUP-9B	90	13899,03	133,03	465,11	101,92	176,66	0,96	14487,46	0,81	0,57	0,75	1,73	105,97	175,91
TUP-9B	91	3855,21	70,06	247,16	48,05	103,09	0,95	4037,82	0,79	0,46	0,68	2,15	51,22	103,7
TUP-9B	92	11565,62	121,35	424,89	88,37	167,19	0,96	12052,59	0,81	0,53	0,73	1,89	89,18	170,28
TUP-9B	93	9962,67	112,63	434,54	71,75	182,42	0,94	10551,09	0,66	0,38	0,62	2,54	70,77	181,58
TUP-9B	94	12072,88	123,98	419,43	102,36	152,8	0,96	12600,44	0,86	0,66	0,81	1,49	103,6	157,34
TUP-9B	95	9293,08	108,78	379,66	81,84	149,03	0,96	9638,02	0,81	0,53	0,73	1,82	81,08	149,74
TUP-9B	96	17104,94	147,58	568,4	93,8	237,68	0,94	18241,21	0,67	0,39	0,62	2,53	98,81	232,19
TUP-9B	97	25971,92	181,85	614,27	144,19	230,39	0,98	26560,34	0,86	0,62	0,79	1,6	146,52	229,73
TUP-9B	98	13046,83	128,89	473,48	83,23	202,72	0,96	13655,55	0,73	0,4	0,64	2,44	85,59	192,59
TUP-9B	99	14913,56	137,8	529,46	85,46	225,86	0,95	15704,89	0,67	0,37	0,61	2,64	87,23	218,69
TUP-9B	100	23212,4	171,92	639,56	113,56	263,42	0,96	24226,93	0,71	0,43	0,65	2,32	114,82	253,58
TUP-9B	101	11301,84	119,96	433,9	87,72	167,34	0,95	11930,85	0,75	0,51	0,72	1,91	94,68	175,21
TUP-9B	102	33033,03	205,08	753,13	138,42	305,87	0,97	33986,69	0,73	0,45	0,67	2,21	138,66	296,96
TUP-9B	103	9110,46	107,7	351,09	92,59	125,62	0,97	9414,82	0,93	0,74	0,86	1,36	90,09	128,99
TUP-9B	104	16658,55	145,64	503,79	111,09	193,12	0,97	17226,69	0,82	0,57	0,75	1,74	112,61	192,43
TUP-9B	105	19742,72	158,55	616,27	96,53	263,95	0,95	20797,82	0,65	0,36	0,6	2,73	98,91	252,61
TUP-9B	106	11362,71	120,28	423,8	87,34	166,95	0,96	11890,27	0,8	0,52	0,72	1,91	92,67	166,18
TUP-9B	107	21264,51	164,54	560,21	140,01	198,08	0,97	21934,1	0,85	0,69	0,83	1,41	136,96	199,52
TUP-9B	108	10997,48	118,33	417,43	85,44	164,99	0,96	11484,46	0,79	0,51	0,72	1,93	88,64	162,41
TUP-9B	109	12296,08	125,12	418,97	105,18	149,85	0,96	12762,76	0,88	0,7	0,83	1,42	107,07	151,42
TUP-9B	110	20736,95	162,49	654,49	95,16	283,16	0,95	21852,93	0,61	0,33	0,57	2,98	94,9	266,83
TUP-9B	111	19052,84	155,75	552,11	121,94	202,2	0,96	19945,62	0,79	0,59	0,77	1,66	125,35	214, 14
TUP-9B	112	15765,77	141,68	514,08	98,63	209,07	0,96	16455,64	0,75	0,46	0,68	2,12	98,7	204,1
TUP-9B	113	14223,68	134,57	464,02	98,54	184,92	0,97	14730,95	0,83	0,53	0,73	1,88	103,6	183,8
TUP-9B	114	37375,21	218,15	726,56	188,03	254,64	0,98	38125,96	0,89	0,73	0,86	1,35	189,19	256,8
TUP-9B	115	13858,45	132,83	455,65	105,37	168,91	0,97	14223,68	0,84	0,62	0,79	1,6	105,11	177,29
TUP-9B	116	12174,34	124,5	421,16	96,06	161,83	0,97	12559,86	0,86	0,59	0,77	1,68	101,93	165,2
TUP-9B	117	28670,56	191,06	723,2	120,28	308,39	0,96	29766,25	0,69	0,38	0,62	2,56	121,04	291,96
TUP-9B	118	11038,07	118,55	407,33	93,58	152,08	0,96	11504,75	0,84	0,61	0,78	1,63	101,93	157,59
TUP-9B	119	20960,15	163,36	608,8	105,74	254,67	0,97	21690,61	0,71	0,41	0,64	2,41	105,97	249,38
TUP-9B	120	11220,68	119,53	414,79	93,25	157,26	0,96	11727,94	0,82	0,58	0,76	1,69	105,11	165,26
TUP-9B	121	21528,29	165,56	629,01	103,28	267,34	0,96	22380,49	0,68	0,38	0,62	2,59	105,97	260,99



ANEXO I

#### Título da Tese: "GEOLOGIA DAS FORMAÇÕES PÓS GONDWÃNICAS SANTA TECLA E **TUPANCIRETÃ - RS**"

Área de Concentração: Geoquímica

Autor: Kelvyn Mikael Vaccari Ruppel

Orientador: Prof. Dr. Norberto Dani

Examinador: Prof. Dr. Clódis de Oliveira Andrades Filho

Data: 16/06/2023

Conceito: A

#### PARECER:

O presente trabalho cumpre com todos os requisitos necessários para uma Tese de Doutorado. A Tese está bem redigida, organizada, ilustrada e apresenta um importante modelo evolutivo que preenche uma lacuna no entendimento da evolução geológica-geomorfológica do Cretáceo-Cenozoico no sul do Brasil, a partir do maior entendimento das Formações Santa Tecla e Tupanciretã.

Assinatura:

Documento assinado digitalmente CLODIS DE OLIVEIRA ANDRADES FILHO Data: 16/06/2023 11:37:47-0300 Verifique emíntps://validar.iti.gov.br

Data:16/06/2023

Ciente do Orientador:

Norberto Domi Kebryon Ruppel

Ciente do Aluno:

### ANEXO I

Título da Tese:

## "GEOLOGIA DAS FORMAÇÕES PÓS GONDWÃNICAS SANTA TECLA E TUPANCIRETÃ - RS"

Área de Concentração: Geoquímica

### Autor: Kelvyn Mikael Vaccari Ruppel

Orientador: Prof. Dr. Norberto Dani

Examinadora: Profa. Dra. Karin Goldberg

Data: 16/6/2023

Conceito: A

### PARECER:

O trabalho do aluno consistiu numa grande contribuicao para o entendimento das unidades posgondwanicas no sul do Brasil, atraves de um extensivo trabalho de revisao e compilacao de dados integrado com novos dados de proveniencia e datacao absoluta gerados por ele. O texto foi bem escrito e os objetivos propostos plenamente cumpridos.

A unica ressalva eh que a descricao do modelo evolutivo e deposicional (p. 70-71) e a informacao de que a Fm. Tupancireta eh o equivalente continental de uma fracao da Bacia de Pelotas (p. 72-73) ficaram "soterrados" nas conclusoes. Isto deveria ser salientado porque tem grande relevancia para o entendimento da geologia do Estado e implicacoes para a geologia do petroleo na Bacia de Pelotas. Eu sugiro inclusive que o aluno submeta um terceiro artigo focado no modelo deposicional e evolutivo, preparando uma figura mostrando a deposicao fluvial durante o Cretaceo, com os sistemas drenando o domo formado pelo entumescimento crustal e cada unidade em sub-bacias diferentes (separadas pelo Arco de Rio Grande), seguida por inversao do relevo no Terciario. Por fim, no Artigo 2 (submetido), o principal problema eh a fonte muito pequena nas figuras e falta de alguns elementos indicados:

p. 132 Fig. 1 na escala do mapa do RS (azul) e na identificacao das amostras coletadas

p. 135 Fig. 2 adicionar na legenda os padroes dos blocos tectonicos (e.g. Taquarembo terrane = inclined lines; SG terrane=vertical lines, Tijucas=horizontal, Pelotas batholith = X)

p. 142 Fig. 4 Fonte muito pequena (com excecao do nome dos vertices); salientar a identificacao das amostras

p. 145 Fig. 6 dentro dos graficos

p. 149 Fig. 9 na legenda

p. 156 Fig. 12 dentro da figura; nao da pra ver onde esta o Arco de Rio Grande, sem indicacao do Domo do Alto Uruguai na figura

p.147, 149, 150 Nas tabelas 1, 2, 3 mudar separador decimal pra . (ao inves de ,) De qualquer forma, o trabalho foi excelente. Parabenizo o aluno e seu orientador!

Kann Goldberg	
Assinatura:	Data: 16/6/2023
Ciente do Orientador: Norberto Don	л Л
Ciente do Aluno: Kelnyn Ruppel	

ANEXO I

Título da Tese:

## "GEOLOGIA DAS FORMAÇÕES PÓS GONDWÂNICAS SANTA TECLA E TUPANCIRETÃ - RS"

Área de Concentração: Geoquímica

## Autor: Kelvyn Mikael Vaccari Ruppel

Orientador: Prof. Dr. Norberto Dani

Examinadora: Profa. Dra. Maria Lidia Medeiros Vignol-Lelarge

Data:16/06/2023

Conceito: A

# PARECER:

O modelo da tese de doutorado é aquele sob forma de artigos, dos quais um já publicado e outro submetido. Considerando que para o artigo já publicado as contribuições que possam aqui serem apresentadas não cabem mais, a avaliação da tese refere-se principalmente ao segundo artigo e possivelmente poderá contribuir para um terceiro artigo, que seria de integração dos dados.

A estratégia metodológica proposta pelo autor para atingir seus objetivos foi embasada em uma abordagem integradora das diferentes áreas do conhecimento geológico e na qual a partir de análise de dados geomorfológicos, litológicos, tectônicos e estratigráficos propôs uma correlação das Formações Santa Tecla e Tupanciretã com a supersequência Bauru, além de propor um modelo preliminar sobre a evolução da plataforma Sul-Americana a partir da ruptura do Gondwana. Para esse modelo evolutivo da plataforma, o autor apresentou argumentos lógicos e robustos, sendo que estes estabelecem as primeiras bases para que se possa propor uma história integrada para a região sul do Brasil.

A monografia está bem redigida, apresenta ideias inovadoras e de síntese do conhecimento, reunindo diferentes aspectos da geologia da área de estudo, demonstrando claramente que o autor possui um perfil de pesquisador.

Entretanto sugiro que o autor, para os próximos artigos revise alguns conceitos teóricos em geomorfologia (conceitos de superfície de aplainamento e de cimeira, que não são sinônimos) e em geocronologia, pois alguns termos se tornaram obsoletos segundo a Comissão Internacional de Estratigrafia (Terciário, Eocretáceo, Neocretáceo).

Em termos geocronológicos, a partir de datação U-Pb em zircão o autor conseguiu identificar diversas áreas-fonte e estabelecer uma idade máxima de deposição da Formação Tupanciretã. Pelos estudos de maturidade e grau de arredondamento dos grãos minerais (no caso as turmalinas) foram evidenciados processos de

reciclagem e pelo estudo composicional foi identificada a proveniência dos grãos detríticos. Por fim após análise do que já foi obtido como resultado na presente tese de doutorado, sugiro que, para um maior detalhamento sobre a história deposicional e térmica das bacias sedimentares estudadas, aplicar os modelos propostos por Maluzà e equipe. Nos modelos propostos por este grupo de pesquisadores utiliza-se diferentes geocronômetros e multi-datações desde U-Pb em zircão (de alta temperatura de bloqueio, como já feito no presente estudo) até a termocronologia por Traços de fissão e (U-Th/He) em zircão e apatita, acoplado a estudos de fertilidade e a arredondamento dos grãos detríticos, tento assim informações tanto sobre a cristalização quanto sobre a exumação/deposição, taxas de erosão e idades deposicionais.

Conclui-se que a presente tese de doutorado representa uma pesquisa promissora e que possivelmente fomentará novas pesquisas. O conceito atribuído foi A.

Data:16/06/2023

Assinatura: Maria Lidia Medeiros Vignol-Lelarge

Documento assinado digitalmente MARIA LIDIA MEDEIROS VIGNOL Verifique eminttps://validar.itt.gov/br

Ciente do Orientador:

Ciente do Aluno:

Norberto Domi Kelup Rugpel