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In this paper general working equations for the Morse (r-r,)' rnatrix elernents are given. These equations 
can be used to calculate the diagonal ( m  = n )  matrix elements and, for the off-diagonal ( m # n )  elements, 
are simpler to use than the ones currently available in the literature. Also, in this paper a new approach is 
given which allows one to obtain simple formulas, in closed forrn, for the off-diagonal matrix elements. 
Explicit expressions are given for 1 = 1, 2,  and 3. 

I. INTRODUCTION 

Fifty years  ago Morse' proposed the potentiai 

a s  a model to describe the electronic levels of di- 
atomic molecules. Since then this potentiai, known 
as the Morse potentiai, has been used in the study 
of diatomic molecules. Because i t  describes the 
two-atomic molecular vibrations e x ~ e l l e n t l y , ~  i t  
has been extensively used to caiculate vibrational 
transition probabilities, to predict band intensi- 
ties, oscillator strengths, and related para-  
 meter^.^ Recently, this same potentiai has been 
found to be useful in the study of molecular dis- 
sociation under intense electromagnetic fields4 
and, more  generaily, in the study of the interac- 
tion of coherent radiation with m o l e ~ u l e s . ~  In ai1 
these applications of the Morse potentiai the evai- 
uation of severai  matrix elements i s  needed. In 
the majority, these matrix elements a r e  of the 
generai type 

For vibrationai transitions involving two differ- 
ent electronic states, with each state represented 
by a potentiai given by Eq. (I),  the caiculation of 
the matrix elements is usuaily done by direct  nu- 
merical  integration o r  by an approximate method 
known a s  the a-average m e t h ~ d . ~ ~ ~  Recently, an 
anaiytical expression has been derived718 which en- 
ables one to easily evaluate such matrix elements 
without any approximation. These generai ex- 
pressions also include the effects of vibration- 
rotation interaction. 

For  transitions within the same electronic state, 
i.e., within the same Morse state, one can find 
in the literatureg expressions for  the 1 = 1 and 
1 = 2 matrix elements of Eq. (2) when m f n. Some 
caiculations have also included the effects of ro-  
tation.1° In particular, Herman and Rubinll have 
given generai expressions for  the matrix elements 
of a rotating Morse oscillator for  any desired 1 
vaiue in Eq. (2). However, a s  noted by Cashion,lo 

these expressions a r e  sufficiently complex to de- 
t e r  one from using them. Also, since ai1 of the 
previous work was in the caiculation of the vibra- 
tionai transition probabilities for  diatomic mole- 
cules, the expressions available in the l i tera-  
ture1°*12 a r e  given for  the off-diagonai (m + n )  ma- 
tr ix elements. 

In the present paper we derive generai working 
equations to caiculate the matrix elements of Eq. 
(2), for  transitions within a given Morse state, for  
ai1 m and n,  and, in principie, for  ai1 1 vaiues, 
too. The diagonai matrix elements (m =n), which 
a r e  very important in the theoretical investigation 
of the interaction of coherent radiation with mole- 
cules a s  recently reported by Nieto and S i m r n ~ n s , ~  
a s  far a s  the author knows, have not been reported 
before for vibrational s ta tes  other than the ground 
state. Also, in this paper a new way to calculate 
the off -diagonal matrix elements, which allows one 
to derive simpler  working equations for these ele-  
ments, i s  given. 

11. RESULTS AND DISCUSSION 

Strictly speaking, the Schrodinger equation for 
the Morse potential cannot be exactly solved.13 
However, t o  a very good approximation one can 
consider this equation a s  being solvable for dia- 
tomic molecules.2~14 In this  case the following 
orthonormalized eigenkets a r e  obtainedl": 

where 

and where, for a diatomic molecule of reduced 
mass  p and spectroscopic constants15 w,, o, x, , 
and '3, , 
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( 8 )  lnk lnz 
M,=NmN,, 6- e -%bf2+b '12 ( - ;_ -ã )L~( z )L~( z )d r ,  

D = zui/  (4wex, ) ,  ( 1 0 )  where b' =k - 2nz - 1.  From Eq. ( 5 )  one easily 
finds d r  = - d z / ( a z ) .  With this, Eq. ( 1 3 )  can alço 

The Laguerre polynomials in Eq. (3) a re  either be written a s  
given by16 

( 1 )  =NmN a k e a r e e - e z b / h  

( 1 1 )  Mmn a 
or by the formula L; ( z )Ln( z )dz  . ( 1 4 )  

1  d" L ; ( ~ )  =-__- -2 n+b)  
n ! e  "zb  dzn(e ( 1 2 )  

Following ter Haar,13 we replace kea'e by infinity 
in Eq. ( 1 4 )  since the e r r o r  introduced i s  negligi- 

To calculate the linear (m I r -re ( n)  matrix we ble. Noting that the eigenkets a re  orthonormal- 
have to solve the integral I ized, we obtain 

Next we use the definition of the Laguerre polynomials Eq. ( 1 1 )  twice in Eq. ( 1 5 )  to find 

The integral appearing in this expression is  evaluated [ ~ q .  (4 .352 -1 )  of Ref. 161 and finally the linear 
matrix elements a r e  given by 

where $ ( x ) =  ( d / d x ) [ l n r ( x ) ]  i s  the digamma func- 
tion (Ref. 16, p. 9 4 3 ) .  From this result the ex- 
pectation value {x), in Eq. (5 .15 )  of Ref. 7 can be 
trivially obtained by setting m = lz = 0 .  

For rn #n ,  a new approach can be used to cal- 
culate the linear matrix elements. This new ap- 
proach consists of replacing one of the Laguerre 
polynomials in Eq. ( 1 5 )  by Eq. ( 1 1 )  and the other 
onc by Eq. ( 1 2 )  and then performing severa1 inte- 
grations by parts. Since 111, =M:: we assume 
n>m for convenience. After substitution of the 
Laguerre polynomials, Eq. ( 1 5 )  becomes 

I 
integral 

Now, due to the vanishing of a t  the limits of 
integration, i t  i s  easy to evaluate Eq. ( 2 0 )  by 
means of n integrations by parts. This can be 
done in two steps: First ,  in order to remove the 
zP  term in the integral, we integrate p times by 
parts; then the integral i s  reduced to a known one 
by performing the remaining n-p integrations. Af- 
t e r  p integrations by parts, the nonvanishing con- 
tribution i s  given by 

- dn-P 
I  = ( - I p  ! lnz z(e-zz"+h)dz  . ( 2 1 )  

o 

d" 1 z p ( e - z b d  , ( 1 8 )  Integrating by parts  ( n - 0 )  times one obtains 

where the power 0 of z  i s  given by 

p = i b + $ b ' - b + i - l = n + i - m - 1 .  ( 1 9 )  
= ( - l ) " " ! ( m - i ) ! r ( k + i - n - m - 1 ) .  ( 2 2 )  

With these substitutions the problem of calcu- 
lating (m I r - r, 1 n) reduces to the evaluation of the With this result Eq. ( 1 8 )  then becomes 
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T h i s  equation can be  fur ther  simplified if we note 
that  f o r  n> rn 

Substitution of this resu l t  in Eq. (23) gives 

which i s  a relatively s imple expression f o r  the 
off-diagonal l inear  mat r ix  elements. This  expres -  
sion can b e  easi ly  generalized to include rotation- 
a1 effects,  s ince Pekeris" h a s  shown that these 
effects  only introduce a s l ight  J (rotational quan- 
tum number)  dependence in k.7p17 

In studying the harmonic band of hydrogen chlor- 
ide, Dunham" calculated the mat r ix  element  
(O I r - ~ ~ 1 2 ) :  

where al l  the symbols  in the right-hand s ide a r e  
defined in the original paper." After some s im-  
plifications and algebraic manipulation, this equa- 

tion can b e  written a s  

which is the resu l t  given in Eq. (17). This  mat r ix  
element  can b e  fur ther  simplified if one notes that 

[(k - 4)+(k - 3) - 2(k - 3 )S(k - 2)+  (k - 2)$(k - 1 )  

= 1/(k - 3).  (28) 

Finally, 

With this s imple resul t ,  which can b e  direct ly  ob- 
tained f r o m  Eq. (25), the intensity of the harmonic 
band f o r  any molecule can b e  calculated with a 
pocket calculator. 

F o r  the higher-order  mat r ix  elements, the cal- 
culations a r e  s imilar .  Noting that 

( Y - y , ) l =  --- e r)', 
according to Eq. (5), the second-order  (1 = 2 )  ma- 
t r ix  element, for  any integer  value of m and n, i s  
given by 

Now, by changing variable  of integration f r o m  z t o  y = z / k  and using the r e s u l t s  f r o m  the Appendix, we f ind 

F o r  m=n=O th i s  resu l t  reduces  t o  Eq. (5.17) of Ref. 7. The  second-order off-diagonal mat r ix  e lements  
can  a l s o  be evaluated in  a s imple  way by using a suitable representat ion f o r  the Laguer re  polynomials in 
the following equation: 

Substitution of Eq. (11) and Eq. (1 2) into Eq. (33) gives 

where  p is given by Eq. (19). T o  calculate th i s  matr ix element we need t o  evaluate the integral  

T h i s  integral  can  be easily evaluated in  the s a m e  way as I, w a s  in Eq. (20). After  p integrat ions by par t s ,  
one g e t s  
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where y =0.557 721 5 . " i s  the Euler  constant. Performing the remaining n -p + 1 integrations in the f i r s t  
integral of Eq. (36) we find 

Then substituting Eq. (22) and these results  back into Eq. (34) the second-order matrix element becomes 

x [ + ( r n - i + l ) - i ( n + i - m ) - + ( k + i - n - w z - l ) j  for  n > m .  (38) 

For the off-diagonal matrix elements th is  last  expression i s  s impler  to evaluate then the one given by Eq. 
(32) since it involves only one summation and two special functions t o  be evaluated. 

For  1 = 3, according to Eq. (A5) of the Appendix, we find 

w h e r e q = k + i + j - n - m - l .  For n > m ,  

where 

and p i s  given by Eq. (19). Integrating Eq. (41) by parts  p t imes  the nonvanishing contribution is given by 

where 
P-1 

1 S p =  -,[+(p+l) - + @ + I  -j)] f o r @ *  2 2nd So=S1=O. 
j - O  P - 3  

In Eq. (42) the only unknown integral i s  the f irst  one involving the terin in the integrand. As before, 
integrating by parts  (n-p) t imes and then using Eq. (A4) from the Appendix, we find 

where t = k + i - n - m - 1  and 
I 

yP = zP + (1 - b3,p)[$ + x P ( l  - 6,,,)1 

for  p a 3 ,  Y1= Y,=O, (46) 
z,=+($p)++($p+S)+ 2 ~ + 2 1 n 2 - 2 ,  

f o r p a 3 ,  Z,=Z,=O, (45) a n d w h e r e X p = O f o r p < 5 a n d  
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TABLE I. Numerators of the rational coefficients S,, which enable the expressions for  the higher -or de r  
2,. Y P ,  and Xp. matrix elements t o  be further simplified. 

It i s  worth mentioning that even though the pre-  
P  P !  p ! s ,  ( p - l ) ! Z p  ( p - l ) ! Y p  ( p - l ) ! X p  sent derivation does not include the effects of vi- 

1  l o o o o bration-rotation interaction, th is  can be easily 
2  2  1  O O o done in view of the resul t s  of Pekeris17. 
3 6 6 2  2  O  
4 24 35 1 0  12  O 111. CONCLUSIONS 
5  120 225 52 7 0  1 O 

It is interesting to  note that since S,, Zp ,  Y p  and 
X, do not depend on the Morse parameters,  they 
need be evaluated just once and then may be used 
in calculations for  any se t  of Morse parameters,  
i.e., for  any molecule. The f i r s t  ten values of S,, 
Z,, Y,, and Xp a r e  given in Table I. 
In principle, for  any 1 value, the above proce- 

dures  can be repeated to give the corresponding 
matrix elements, but a s  1 increases,  the 

complexity of the M(:: also  increases. However, 
the approach presented here  gives results  fo r  the 
diagonal matrix elements a s  welI a s  for  the off- 
diagonal elements. The expressions obtained fo r  
the off-diagonal matrix elements a r e  simpler  to 
evaluate then the others f ound in the literature, 
e.g., the ones given by Hermann and ~ u b i n . "  
Hopefully, one may find relations like Eq. (24), 

We have derived expressions fo r  the matrix ele- 
ments of (Y -r,)' fo r  1 = 1,  2, and 3 between Morse 
eigenstates. As f a r  a s  the author knows, this  is 
the f i r s t  t ime that general expressions have been 
given for  the diagonal matrix elements, which a r e  
important in the study of the interaction of coher- 
ent radiation with molecules, a s  mentioned in 
Refs. 4 and 5. Fo r  the off-diagonal matrix ele- 
ments a new method of calculation i s  presented. 
This method, which makes use of a special repre-  
sentation of Laguerre polynomials and of s e -  
quences of integrations by parts ,  gives simpler  
equations fo r  the off-diagonal matrix elements 
than the ones currently available in the literature. 
These off-diagonal matrix elements a r e  important 
in the calculation of the intensity distribution in the 
vibration-rotation spectrum of diatomic mole- 
cules9-12"8 a s  well a s  in the theoretical investiga- 
tion of the dipole moment function of d i a to rn i c~ . '~  
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APPENDIX 

The integrals 4.358-2 and 4.358-3 in the table of Gradshteyn and Ryzhik16 a r e  incorrect. With the nota- 
tion of these authors they should read 

xU -I  -I% r í v )  r ( ~ n r ) ~ d x = ~  ([((v) - 1nul2+ ~ ( 2 ,  v)], Rep  > O, Rev> O 
IJ. 

and 

x ~ - l  e - p x  (1iu)'dx = Y- r ( v )  ([((v) - lnPl3+ 3[)(v) - l n ,u ]~ (2 ,  v) - 26(3, v)), R e a  > O, Reu O .  
a 

Using the result  

which can be obtained f rom Eq. 9.521-1 of Ref. (16) and Eq. 6.4.10 of Ref. (20), these integrals can be 
more conveniently written a s  
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r (V) 
1 p x ( ) 2 d = w )  - n 2 + $ 1 ( ,  R e p  > O, R e v r  O 

P 

and 

r ( ~ )  
~ ~ x u - 1 e - U x ( i n r ) 3 d r  =--jj- { [ + ( v )  - Inii]'+ 3 [ $ ( v )  - ln i i ]$( l ) (v)  + +(*(v) ) ,  R e p  > O,  Reu> O .  

P 

*Par t  of the paper was presented in the 31st Annual 
Meeting of the Brazilian Society for the Progress  of 
Science, Fortaleza, July 11-18, 1979. 

'Present address: Universidade Federal de Santa Cata- 
r ina ,  Departamento de Fisica-Campus da Trindade, 
88000 FZorianÓpolis, S. C.,  Brasil .  

I P .  M. Morse,  Phys. Rev. 3, 57 (1929). 
2 ~ .  FlÜgp, Practical Quantum Mechanics, (Springer , 

Berlin, 1974), pp. 182-189. 
3 ~ .  A. Kuznetsova, N. E .  I<uzmenko, Yu. Ya. Kuziakov, 

and Yu. A. Plastinin, Usp. Fiz. Nauk. 113, 285(1974) 
[Sov. Phys. Usp. íJ, 405 (1974)). 

4 ~ .  B. Walker and R. K. Preston, J. Chem. Phys. o, 
2017 (1977). 

5 ~ .  M. Nieto and L. M .  Simmons, J r . ,  Phys. Rev. 
A o, 438 (1979). 

6 ~ .  A. F'raser and W. R. Jarmain ,  Proc.  Phys. Soc. 
London %, 1145, (1953); e, 1153 (1953). 

'J. A. C.  Gallas, H. P .  Grieneisen, and B. P. Chakca- 
borty, J .  Chem. Phys. 69, 612 (1978). 

*J. A. C. Gallas, R. E .  Francke, H. P. Grieneisen, 
and B. P.  Chakraborty, Astrophys. J . ,  2, 851 

(1979). 
'H. S. Heaps and G. Herzberg, 2. Phys. 133, 48 (1952). 
'k. Cashion, J. Mol. Spectrosc. 3, 182 (1963). 
"R. Herman and R. J. Rubin, Astrophys. J. 121, 533 

(1955). 
1 2 ~ .  Badawi, N. Bess is ,  G. Bessis,  and G. Hadinger, 

Can. J. Phys. z, 110 (1974). 
1 3 ~ .  t e r  Haar, Phys. Rev. E, 222 (1946). 
145. Rundgren, Ark. Fys. g, 6 1  (1965). 
1 5 ~ .  Herzberg, Molecular Spectra and Molecular Struc- 

tures: I. Spectra of Diatomic Molecules, 2nd. ed. 
(Van Nostrand, Princeton, 1950). 

I6I. S. Gradshteyn, and I. M. Ryzhik, Tables of Inte- 
g r a l ~ ,  Ser ies ,  and Products,  4th. ed. ,  edited by 
A. Jeffrey kcademic ,  New York, 1966). 

"C. L. Pekeris,  Phys. Rev. 2, 98 (1934). 
1 8 ~ .  L. Dunham, Phys. Rev. 35, 1347 (1930). 
"B. S. Rao, J. Phys. B 4, 791 (1971). 
20ni~. Abramowitz and I. A. Stegun, Handbook of 

Mathematical Functions, National Bureau of Standards 
Applied Mathematics Series,  No. 55 (U.S.G.p.0. 
Dover, New York, 1965). 


