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HYPERSURFACES WITH POSITIVE PRINCIPAL CURVATURES
IN SYMMETRIC SPACES

JAIME RIPOLL

(Communicated by Christopher Croke)

A classical result in differential geometry, known as Hadamard’s theorem, es-
tablishes that a compact connected surface in Euclidean space whose principal cur-
vatures are everywhere positive is the boundary of a convex body. In particular,
the surface is diffeomorphic to a sphere ([H]). We present here, using a simple
observation as proof, a partial extension of this theorem to immersions of arbitrary
codimension and to other spaces than the Euclidean one, as symmetric spaces of
noncompact type.

Let Mn and Nn+k be Riemannian manifolds of dimensions n and n + k, n ≥
2, k ≥ 1, M compact, connected, and let φ : M → N be an isometric immersion.
Denote by N(M) the unit normal bundle of φ, namely

N(M) = {(p, η)| p ∈ M, η ∈ Tφ(p)N, η ⊥ φ∗(TpM), ‖η‖ = 1}.
We denote by N∗(M) the subbundle of N(M) consisting of the pairs (p, η) such
that the 2nd fundamental form A of φ with respect to η at p, that is, Aη(v) =
(∇φ∗vη)T, v ∈ TpM , has positive eigenvalues, ∇ being the Riemannian connection
of N and ( )T the orthogonal projection to φ∗(TpM). We prove:

Proposition. According to the above notation, assume the existence of n+1 Killing
fields X1, . . . , Xn+1 in N which are linearly independent on φ(M) and a global
section η : M → N∗(M) such that η(p) ∈ span{X1, . . . , Xn+1} for all p ∈ M .
Then M is diffeomorphic to an n-dimensional sphere.

We have the following immediate consequences:

Corollary 1. Let N be a homogeneous manifold with an invariant metric. Then
there is an open dense subset U of N such that any immersed compact, connected
hypersurface of U whose principal curvatures are positive is diffeomorphic to a
sphere.

Corollary 2. Let G be a Lie group with a left invariant metric. Then, any compact
connected immersed hypersurface of G whose principal curvatures are positive is
diffeomorphic to a sphere.

We remark that Corollary 2 applies, for example, to a symmetric space G/K
of noncompact type since, by the Iwasawa decomposition G = KAN, G/K is
isometric to the solvable Lie group S = AN with a certain left invariant metric.
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Proof of the proposition. Given p ∈ M , set

Ep = {a1X1(φ(p)) + · · ·+ an+1Xn+1(φ(p)) | a2
1 + · · ·+ a2

n+1 = 1}.
From the hypothesis, there is a unit normal vector field η to φ such that the
2nd fundamental form of M with respect to η is positive definite and η(p) ∈
span{X1(φ(p)), . . . , Xn+1(φ(p))}, for all p ∈ M . There exists a differentiable map
f : M → R+ such that f(p)η(p) ∈ Ep, for all p ∈ M . We define a map γ : M → Sn,
where Sn is the unit sphere centered at the origin in Rn+1, by setting

γ(p) = (a1(p), . . . , an+1(p))(1)

if

f(p)η(p) = a1(p)X1(φ(p)) + · · ·+ an+1(p)Xn+1(φ(p)), p ∈ M.(2)

We claim that γ is a diffeomorphism. Clearly γ is a differentiable map. Choose
p ∈ M and let v ∈ TpM such that dγp(v) = 0. From (1), we have d(aj)p(v) =
0, j = 1, . . . , n + 1.

Taking the covariant derivative of (2) with respect to v we therefore obtain

dfp(v)η(p) + f(p)∇vη(p) = a1(p)∇vX1 + · · ·+ an+1(p)∇vXn+1.

Taking the inner product of both sides with v, since the Xj are Killing fields, we
obtain f(p)〈∇vη, v〉 = 0, which implies v = 0, since η ∈ N∗(M). It follows that γ
is a local diffeomorphism so that, since it goes into the sphere and M is compact,
γ is a global diffeomorphism.
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