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Bit-reverse Gray code method: 

(30)~ = ( 1  1 1 1 0) binary representation 

(30)2=(0 1 1 1 1 )  bit-reverse 

(d30)2 = (0 1 0 1 0) bit-reverse inverse Gray code 

d30=[0 1 0 1 0][16 8 4 2 I I T =  10. 

CONCLUSION 
We have developed a simple method for determining the sequency 

ordering of any row in a given Hadamard matrix directly from the 
binary represenation of the order of that row with simple modification 
in the signs of the “ones.” The whole sequency vector can be also 
determined by using a single recursive formula, in contrast to other 
methods which require more than one recursive formula. Both 
proposed methods are found to be much simpler than other known 
methods. 
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Definition and Design of Strongly Language Disjoint Checkers 

INGRID JANSCH AND BERNARD COURTOIS 

Abstract-This paper defines strongly language disjoint (SLD) check- 
ers. SLD checkers are to sequential systems what strongly code disjoint 
checkers are to combinational systems. SLD checkers are the largest class 
of checkers with which a functional system may achieve the TSC goal. 
Self-checking sequential systems are first addressed, then formal defini- 
tions of SLD checkers are given. The next point is the design of SLD 
checkers based on regular combinational self-checking components. 

Index Terms-Checkers, concurrent error detection, self-checking 
design, sequentially self-checking systems, strongly language disjoint 
checkers, VLSI design. 

I. INTRODUCTION 
Basic definitions and properties of self-checking systems have been 

given by Anderson in [ l ] .  Self-testing (ST), fault secure (FS), totally 
self-checking (TSC), and code disjoint (CD) circuits have been 
defined. Next, strongly fault secure (SFS) and strongly code disjoint 
(SCD) circuits have been defined, respectively, by Smith and Metze 
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in [2] and by Nicolaidis and Courtois in [3]. SFS and SCD circuits are 
the largest classes of circuits such that the totally self-checking goal 
(i.e., the first erroneous output is a noncodeword) may be achieved, 
when the system is a combinational one. 

Sequential systems are addressed in this paper. The definitions of 
sequentially self-checking (SeSC) systems given by Viaud and David 
in [4] are used as a starting point and checkers of SeSC systems are 
defined: the strongly language disjoint (SLD) checkers. SLD 
checkers are the largest class of checkers such that, when associated 
with an SeSC circuit, the totally self-checking goal may be achieved 
[5]. Basically, SLD (sequential) checkers are needed when the output 
string of the SeSC circuit is defined by a sequential property. They 
keep the language disjoint (LD) property even if faults are present 
inside, similarly to (combinational) SCD checkers keeping the code 
disjoint property and to SFS circuits keeping the FS property even if 
faults are present inside (combinational systems). Two formal 
definitions will be given. One of them defines SLD checkers such that 
“simultaneous” faults (“simultaneous” will be formally defined) 
cannot be admitted in the functional system and in the checker. The 
other one will define VSLD checkers such that “simultaneous” faults 
may be admitted in the functional system and in the checker. Lastly, 
the design of SLD checkers will be addressed. Proposals are given 
based on regular structures. 

11. SEQUENTIALLY SELF-CHECKING CIRCUITS 
The approach considered here is of a sequentially self-checking 

system where the inputs are sequences defined by a given input 
language and the outputs are sequences defined by a given output 
language. The checker similarly receives a given input language (the 
output language of the functional sequential system) and produces 
outputs belonging to an output language. These outputs are an 
indication of an error when they do not belong to the output language. 
The basic scheme used is shown in Fig. 1 .  The sequential machine is 
sequentially self-checking as defined by Viaud and David in [4]. 

As in [4], M = (Q, X ,  Z ,  6, w, qo) is assumed to be a sequential 
machine. Q is the set of internal states. X and Z are the input and 
output alphabets, respectively. 6 and w are the state transition 
function and the output function, respectively, and qo is the initial 
state. We use the Mealy machine definition for our considerations, 
but those may be easily applied to the equivalent Moore machine. 
Under the faultf, the machine M = (Q, X ,  Z ,  6, w, qo) becomes M f  
= (Qf, X ,  Zf, hf, wf,  qo). Under normal operation, 6(i ,  q) is the 
state reached from q E Q when input sequence i is applied, and w(i, 
q)  is the obtained output sequence. If a faultfoccurs in the state q of 
M ,  it is supposed that M f  reaches immediately the state qf. Hence, 
6f(h, q) = qf, q E Q, qf  E Qf, and wf(i ,  q) is the obtained output 
sequence. Let i = i l  . i2 ,  where “ .  ” denotes the concatenation. The 
input sequences i l  and i2 are said to be a prefix and a suffix of i ,  
respectively. P ( i )  and S ( i )  will denote the set of prefixes and the set 
of suffixes of i ,  respectively. Zq is the set of input sequences which 
may be applied from that state q in normal operation: Zq = 
{ i 2 : i l . i 2 }  E ZM and 6 ( i l ,  qo) = q.  Zq” E Zq  defines the input 
sequences of nonbounded length. The shortest prefix of i2, such that 
an output sequence not included in the output language of M is 
obtained in the presence of faultf, is denoted by iZm.  Then, we have 

The concepts of input and output languages and of sequentially 
self-checking (SeSC) circuits are those defined in [4]. Now we give 
some basic concepts concerning sequential machines, which had not 
been given in [4], before defining sequential checkers. 

Definition DI: A circuit M is redundant with respect to a faultf, a 
state q,  and an input sequence i2 E Zq,  iff V i 2  E P(i2),  wf ( i2+ ,  q) 
= w( i2+ ,  q). 

Remark RI:  In a circuit redundant with respect to a faultf, a state 
q,  and an input sequence i2 E I q ,  iZm does not exist. Remind that i2,,, 
is the shortest prefix such that w(i1,  40). wf(i2,,,, q)  4 OM. 

For sequential circuits, the TSCgoal is the property which ensures 

N i l ,  qo).wf(i2rn, q)  B O M .  
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Fig. 1 .  Sequentially self-checking systems. 

that the first erroneous output from the machine M results in an 
output sequence not included in the output language OM. The 
hypothesis that may be used in order to achieve the TSC goal is 
expressed as follows: 

Hypothesis HI: Between the occurrence of any two faults 
belonging to F, a sufficient time elapses such that, for any q E Q, for 
any i l  such that S(i1, qo) = q and such that i l  .i2 E I,, all iz, with 
respect to each fault f or sequence of faults are applied, whenever 
they exist. 

It may be shown [6] I that any sequentially self-checking (SeSC) 
circuit, under Hypothesis HI ,  achieves the TSC goal. 

Remark R2-(Remark on Hypothesis Hl): The aim of Hypothesis 
HI is to ensure the detection of the first fault or of a new one with 
respect to which the sequential circuit is not redundant before the 
occurrence of another fault. Another way to formulate Hypothesis H I  
is to enforce the appearance of detection transition sequences (DTS), 
as defined by [7 ] .  In this case, Hypothesis H1 may be formulated as: 
“Between the occurrence of any two faults belonging to F,  a 
sufficient time elapses such that for any q E Q, for any i2  E Iq,  for 
any i l  such that i l  .i2 E I,, and 6( i l ,  qo) = q,  at least one DTS 
with respect to each fault or sequence of faults is applied. Note that, 
when iz, exists, i2 E Iq. a transition sequence q*izm may be a DTS. 

111. STRONGLY LANGUAGE DISJOINT CHECKERS 
Strongly language disjoint (SLD) checkers defined in this paper 

will be different from the checkers used in the literature for the design 
of self-checking sequential machines. Strongly language disjoint 
checkers will check a sequential property, and consequently they will 
be defined as sequential checkers when combinational checkers 
have been used in the past for the design of self-checking sequential 
systems. 

Several authors have studied the design of fail-safe or self-checking 
sequential systems (e.g., [8]-[12]) but in all these studies, the checker 
was a combinational circuit, checking in general the state’s code. 
Others (like [ 131. [ 141. etc.) considered algebraic approaches or the 
use of reverse or parallel machines. In all these studies, the checker is 
combinational. On the contrary, SLD checkers are sequential 
checkers, to be used associated with a sequential machine, according 
to the general structure already represented in Fig. 1 .  

The first sequential checkers have been defined by Viaud and 
David [4] based on the following situation. Consider a functional part 
having a 2-bit output such that, in normal operation, this output is 
constituted by an alternation of even and odd number of zeros. This 
output language may be formally described as 0, = ((00 + 11)(01 
+ lo)*. A fault-free sequence may be 00, 01, 00, 10, 11, 10, . * . .  
For this defined output of a functional circuit, a checker is a 
sequential circuit. The language disjoint property had been intro- 
duced by 141, as a generalization of the code disjoint property. 

Definition 0 2 :  A machine M is language disjoint if Vi  E ZM, w(i, 
4 0 )  E OM and v i  B I M ,  w(i, 40) B OM. 

Definition 0 3 :  A circuit is a sequentially self-checking checker if 
it is both sequentially self-checking and language disjoint. 

The problem with these definitions is that nothing is said 
concerning the language disjoint property when faults are present 
inside the checker. A similar problem was presented by combina- 
tional checkers, when they were defined to be code disjoint, but not 
strongly code disjoint. 

In the next definitions, we name, respectively, IC and Oc the input 
and output languages of a checker, and wc(i’, q ’ )  the output sequence 
obtained from q’ E Q’ on the checker. (The symbols are 
distinguished from those used for the functional block by a mark ( I )  

or by an index c.) Notice that, although defining an output language 
to be obtained in the outputs of the checker, this output language may 
be degenerated in a string of output codewords (for example, a 
double-rail code). But in the following, a sequential property at the 
outputs is considered in order to keep general definitions. 

Definition 0 4 :  A sequential checker C is redundant with respect 
to a faultf, and with respect to an input language IC and with respect 
to an output language Oc if vi’ E IC, v i l ’  E P(i ’ ) ,  w,(il I ,  

q;).w-;f(i2’,q’) E Oc,wherei’  = i l ’ . i 2 ’ a n d q ’  = 6 ’ ( i l ’ , q i ) ,  
and Vi’ €f I C ,  Vil’  E P(i’) ,  w,(il’,  qd).w-;f(i2’, q ’ )  4 Oc. 

Definition D5: A sequential checker is strongly redundant with 
respect to the fault sequence dfl, f 2, . . . , f n )  and with respect to an 
input language IC and with respect to an output language Oc if it is 
redundant with respect to the n fault subsequences ( f l ) ,  ( f l ,  f 2 ) ,  
( f l ,  f 2 , f 3 ) ,  a . . ,  ( f l ,  f 2 ,  . . . , f n  ) and with respect to the input 
language IC, and with respect to the output language Oc. 

Now it is possible to give the definition of strongly language 
disjoint checkers (SLD checkers). 

Definition 06:  Before the occurrence of any fault, the checker C 
is language disjoint. For a fault sequence ( f l ,  f 2 ,  . . . , f n ) ,  a state 
q ’ ,  and an input sequence i2’ E IC, let k be the smallest integer for 
which 6’( i l ’ ,  qi) = q’ and such that 

If there is no such k ,  let k = n + 1. Then C is strongly language 
disjoint (SLD) with respect to the fault sequence if 

vi’ 4 IC, vm(1 ,  2, . . . ,  k - 1 ) ,  

Definition 07 :  The checker C is strongly language disjoint (SLD) 
with respect to the fault set F if C is SLD with respect to all fault 
sequences whose members belong to F. 

Checkers that are SLD with respect to class of faults are given by 
the following property. 

Property PYI: If a checker is strongly language disjoint with 
respect to all sequences of faultsfi belonging to a class Cf of fault 
hypotheses, it is strongly language disjoint with respect to the class 
Cf of fault hypotheses. 

Hypothesis H2: Between the occurrence of any two faults 
affecting the functional block, a sufficient time elapses such that for 
any q E Q, for any i 1 such that 6 ( i l ,  qo) = q and such that i 1 . i2 E 
I M ,  all i2m with respect to each fault f or sequences of faults are 
applied to this block whenever they exist and no fault occurs in the 
checker. Between the occurrence of any two faults affecting the 
checker, a sufficient time elapses such that for any q E Q, for any i 1 
such that 6’(il I ,  qd) = q’ and such that i l  ‘ . i 2 ‘  E IC, all iim with 
respect to each faultfor sequence of faults are applied to the checker 
whenever they exist, and no fault can occur in the functional block. 

Proposition PI: A system composed of an SeSC circuit and an 
SLD checker achieves the TSC goal under Hypothesis H2. 

This proposition is demonstrated in [6]. 
Comments on SLD checkers may be derived from their definition. 
1) Strongly language disjunction ensures the mapping of input 

sequences included (and, respectively, not included) in the input 
language to output sequences included (and, respectively, not 
included) in the output language, even if faults are present inside. The 
SLD property ensures also the detection of the first fault with respect 
to which the checker is not redundant with the application of a .. 
sequence defined by the input language. 

TSC quality of the system is achieved. 
’ A complete version of this correspondence [6] can be obtained with one of 2) The sequentially self-checking Property is not verified, but the 

the authors. 
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3) The sequentially fault secureness is not necessary for checkers, 

Stronger definitions may be given for SLD checkers. 
Definition 08: Before the occurrence of a fault, the checker C is 

language disjoint. For a fault sequence (fl, f2,  . . . , f n ) ,  a state q ’ ,  
and an input sequence i2‘ E I q ,  let k be the smallest integer for 
which 6’ ( i l ’ ,  q;) = q‘ and such that 

in general, as the output values will not be used subsequently. 

If there is no such k ,  let k = n. Then C is very strongly language 
disjoint (VSLD) with respect to the fault sequence if 

Definition D9: The checker C is very strongly language disjoint 
(VSLD) with respect to the fault set F if C is VSLD (by Definition 
D8) with respect to all fault sequences whose members belong to F. 

Property PY2: If (but not only if) a checker is VSLD, then it is 
SLD. 

Definition D9 is more restrictive than D7. It (D9) ensures that, 
even if a fault with respect to which the circuit is not redundant 
occurs, the language disjoint property is kept (i.e., an output 
sequence E Oc will be necessarily generated by an input sequence 
IC, while an input sequence 6 IC will always produce an output 
sequence 6 Oc). This property allows us to consider a less strong 
hypothesis than H2 with a sequential system in order to achieve the 
TSC goal which means that it is admitted the occurrence of faults in 
the functional block (resp., in the checker) preceding the detection of 
another one, occurred before, in the checker (resp., in the functional 
block). Hence, “simultaneous” faults in the checker and in the 
functional block are admitted. 

The relationships among the checkers, obtained from the proposed 
definitions, are depicted in Fig. 2. In this scheme, it may be observed 
that sequentially self-checking (SeSC) checkers that are sequentially 
self-testing (SeST), are the most restrictive group. The next one is the 
group of SeSC checkers which are not SeST. The checkers defined by 
D9 may be SeST and/or SeFS or just very strongly language disjoint, 
even in the presence of faults with respect to which the circuit is not 
redundant. That is why they are a subgroup of SLD checkers 
described by D7, which is the largest class of checkers. 

A .  General Considerations 
Strongly language disjoint checkers may be designed from 

traditional logical devices (i.e., using flip-flops and combinational 
logic or other approaches) or from regular structures, as PLA’s and 
registers, for instance. 

But, in a general manner, flip-flops seem not to be a good approach 
for the design of SLD checkers. Some types of flip-flops are 
inadequate, as input arrangements with “DON’T CARE” values are 
allowed; this behavior may hide some stuck-at faults or faults in the 
input language, for example. There are some difficulties also to 
ensure the propagation of certain faults to the outputs of flip-flops. 

Another traditional approach used for the design of sequential 
circuits is that of asynchronous circuits, executed from simple logical 
gates and designed with basis in the fundamental mode (eliminating 
races). Such a design supposes that the primitive flow table is 
constructed with the corresponding flow graph and that the states are 
stable. The design of the complete circuit, from the transition maps, 
may lead to a good solution but it would be probably too fastidious, 
considering the designer’s point-of-view because 1 )  a new design will 
correspond to each new input language (which depends on the SeSC 
circuit); 2) each design may require a great number of transistors and 
the analysis of the SLD properties becomes hard and time consuming. 
It is preferable to choose a solution where predesigned blocks and/or 
regular structures may be used. 

’ 

Fig. 2. The checkers in the sequential world 

B. Design of SLD Checkers Based on Regular Structures 
SLD checkers cannot be assembled directly from basic cells, as it 

is the case of strongly code disjoint checkers [15]. But as they are 
sequential checkers, they may be decomposed internally in combina- 
tional and memorization blocks. Then, each one of these blocks may 
be designed using regular structures such as PLA’s, registers, etc. 
According to the definitions, the outputs of the checker are included 
in an output language. This language may be particularized into a 
combinational double-rail code for the error indication. In the 
following, we will refer to such a particular system, having two 
double-rail coded outputs. 

The inputs of the checker, which are defined by a language, come 
from the functional part. They are received by the internal combina- 
tional block, which executes the logic of the next state function- 
giving coded states, and the logic of the output function-giving the 
error indication. The memorization logic feeds back the combina- 
tional block and together with the general inputs constitutes the data 
for the succeeding next states function. Therefore, the complexity of 
the checker will depend on the sequential property of the input 
language to be checked, and not on the complexity of the functional 
system. 

We consider a system based on the Mealy model, with a master- 
slave register and stable inputs (which come from the functional 
block). When the Moore model is considered, it will be explicitly 
noted. 

The checker, being a finite state accepter, is language disjoint with 
respect to input language, and Hypothesis H2 may be reformulated. 
The LD accepter is such that is recognizes the language according to 
the fact that an input, belonging to an input sequence i ,  appears when 
the present state belongs to some set of states. 

Let B be the set of codewords, where the codewords are each 
constitued by the concatenation of an input x E X ( X  is the set of 
input vectors) and a state 4’ E Q’ , such that a word is a codeword iff 
there is an input sequence i‘ E IC corresponding to this word. The set 
of states being encoded, examples of noncodewords y B B are 

one input x, E X that cannot appear in any sequence i‘ E IC 
when the state is s,, 

any input xk E X when the state 4’ 
Now Hypothesis H2 may be reformulated as follows. 
Hypothesis H2‘: Between the occurrence of any two faults 

affecting the functional block, a sufficient time elapses such that, for 
any q E Q, for any i l  such that &(;I, qo) = q and such that i l  .i2 E 
I M ,  all izm with respect to each fault f or sequence of faults that may 
occur in the functional block are applied, whenever they exist, and no 
fault occurs in the deterministic finite state accepter (checker). 
Between the occurrence of any two faults affecting the deterministic 
finite state accepter, a sufficient time elapses such that all codewords 
B are applied to the checker (i.e., sequences i’ E IC applied to the 
checker are such that all codewords B are applied), and no fault 
occurs in the functional block. 

In the next paragraphs, some propositions referring to internal 
properties of SLD checkers are given. A complete set of schemes 
including the respective demonstrations of the necessary internal 
properties are given in [6]. 

Proposition P2: For a partitioned design of an SLD checker 
according to Fig. 3 (Mealy model), the strongly language disjoint 

Q’. 
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property of the checker (as stated by Definition D6) will be ensured if 
it is composed of an SFS combinational logic for the next state 
function realization, an SCD combinational logic for the error 
indication output function (double-rail code), and an SFS/SCD* 
memorization logic, assuming Hypothesis H2 ‘ and that any fault can 
affect only one block. 

The SCD property of the output function refers to the input code B 
(concatenation of the external input with the state code) and to the 
output code Oc. The SCD and SFS properties of the memorization 
logic refer to the state code C. Both refer to the large (weak) 
definition of the combinational SCD checkers. The next state function 
block is SFS with respect to the output code C. 

Proposition P2 is demonstrated in [6]. 
The star is associated with the denomination SFS/SCD* to mean 

the use of combinational properties to circuits where time variables 
are also involved. While load enable and clock signals are not valid, 
the circuit outputs do not change. When the circuit is enabled by load/ 
clock, the outputs have to be the copy of the input values, or they 
have to be a noncodeword (then the SFS property is ensured). The 
noncode inputs have to produce the same noncode outputs, even if 
faults with respect to which the circuit is redundant have occurred; or 
if a different noncode output is produced, the concatenation of this 
one with the external input word has to result in a noncode input word 
( B )  to the SCD output function circuit. Therefore, we will keep the 
star to assign the delay that will be needed between the input 
application and the output production (depending on clock period and 
signal propagation). It is assumed that the clock and load circuitry 
lines do not fail-or that they are checked separately. 

If the Moore model is used similarly to the architecture depicted by 
Fig. 3, the next-state function block needs to be SCD (in addition to 
the SFS property). 

Other architectures for SLD checkers may be used, if required 
properties are ensured. The combinational functions may be com- 
bined in one single block with SFS/SCD properties, which with an 
SFS* memorization logic and an internal SCD checker (that checks 
states code) will compound another proposition. This one and others 
(including the design of VSLD checkers) are all demonstrated in [6]. 

In practice, the difficulties for the design of these checkers, as well 
as the area increasing (if compared to the original circuits) depend on 
the properties of the internal blocks and on the considered fault 
hypotheses. The rules for the design of blocks with SFS and SCD 
properties have been studied by [16] and [17], respectively. In these 
references, Class I of fault hypotheses is considered, and a complete 
coverage for the faults included in this class may be achieved if the 
rules are respected. The complexity of the checker and its additional 
cost will depend basically on the output language of the functional 
block; therefore, it is impossible to estimate these parameters as a 
function of the system complexity. 

IV.  CONCLUSION 
In this paper, the largest class of checkers is defined-the strongly 

language disjoint checkers. They check inputs that follow sequential 
properties and ensure the language disjoint property, even if faults 
with respect to which the circuit is redundant have already occurred. 
The SLD checkers, when associated with SeSC (sequentially self- 
checking) circuits, compose sequential systems that achieve the TSC 
goal under well-defined fault hypotheses. 

The hypotheses related to fault detection suppose the application of 
a set of sequences between the occurrence of two faults. This set of 
detecting sequences allows the detection of any occurring fault 
(excluding the ones with respect to which the circuit is redundant), 
and independently from the state during which the fault has occurred. 
Before this detection, the circuit outputs are the same as they would 
be during normal operation. 

Concerning practical applications, the most important conclusion 
is the possibility of using regular structures for the implementation of 
these SLD checkers, such as PLA’s and register cells. This is 
interesting as CAD resources may be employed for the design of 
these checkers. Propositions suggest the use of internal combinational 

EXTERNAL 

INPUT 

SEQUENCE 

& oc  
--+ ERROR 

INDICATION 

Fig. 3. Proposition for the internal structure of an SLD checker 

blocks with SFS, SCD, and SFWSCD properties for the design of 
checkers defined by the large (weak) or the strong definitions, 
without loss of generality for the global sequential properties. 

The last point to be noted is that to be really efficient, the design of 
SLD checkers, and then the design of SFS, SCD, etc., blocks should 
be based on realistic fault hypotheses. Such realistic fault hypotheses 
should include MOS s-on/s-open, shorts, etc., if an MOS technology 
is the target technology, such as NMOS or CMOS. Rules for the 
design of such NMOS [16] and CMOS circuits have been studied, 
and they are for the design of several projects, including large 
industrial ones. 

REFERENCES 
D. A. Anderson, “Design of self-checking digital networks using 
coding techniques,” Univ. Illinois, Res. Rep. 527, Urbana, IL, Sept. 
1971. 
J. E. Smith and G. Metze, “Strongly fault secure logic networks,” 
IEEE Trans. Cornput., vol. C-27, pp. 491-499, June 1978. 
M. Nicolaidis, I. Jansch, and B. Courtois, “Strongly code disjoint 
checkers,” in Dig. 1984 Int. Syrnp. Fault-Toleranl Cornput., June 
1984. 
J .  Viaud and R. David, “Sequentially self-checking circuits,” in Dig. 
1980 Int. Syrnp. Fault-Tolerant Cornput., Oct. 1980. 
I. Jansch and B. Courtois, “Strongly language disjoint checkers,” in 
Dig. 1985 Int. Syrnp. Fault-Tolerant Cornput., June 1985. 
_. , “Strongly language disjoint checkers,” TIM3/IMAG, Res. Rep. 
RR468, Grenoble, France, Oct. 1984. 
R. David and P.  Thevenod-Fosse, “Detection transition sequences: 
Application to random testing of sequential circuits,’’ in Dig. 1979 In l .  
Syrnp. Fault-Tolerant Cornput., June 1979. 
M. Diaz, “Design of totally self-checking and fail-safe machines,” in 
Dig.,,1974 Int. Syrnp. Fault-Tolerant Cornput., June 1974. 
F. Ozguner, “Design of totally self-checking asynchronous and 
synchronous sequential machines,” in Dig. 1977 In/. Syrnp. Fault- 
Tolerant Cornput., June 1977. 
M. Diaz, P. Azema, and J .  Ayache, “Unified design of self-checking 
and fail-safe Combinational circuits and sequential machines,” IEEE 
Trans. Cornput.. vol. C-28, pp. 276-281, Mar. 1979. 
Y. Tohma, Y. Ohyama, and R. Sakai, “Realization of fail-safe 
sequential machines by using a k-out-of-n code.” IEEE Trans. 
Cornput., vol. C-20, pp. 1270-1275, Nov. 1971. 
H. Chuang and S .  Das, “Design of fail-safe sequential machines using 
separable codes,” IEEE Trans. Cornput., vol. C-27, pp. 249-252, 
Mar. 1978. 
T. Takaoka and T.  Ibaraki, “Fail-safe realization of sequential 
machines,” Inform. Conlr., vol. 22, pp. 31-55, Feb. 1973. 
J .  Meyer and R. Sundstrom, “On-line diagnosis of unrestricted 
faults,” IEEE Trans. Cornput., vol. C-24, pp. 468-475, May 1975. 
I .  Jansch and B. Courtois, “Design of SCD checkers based on 
analytical fault hypotheses,” in froc.  Euro. Solid-State Circuils 
Conf. ’84, Sept. 1984. 
M. Nicolaidis and B. Courtois, “Layout rules for the design of self- 
checking circuits,” in Proc. VLSI 85 Cony., Aug. 1985. 
I. Jansch and B.  Courtois, “SCD checkers, cellular checkers and multi- 
checker structures,” TIMYIMAG, Res. Rep. RR476, Grenoble, 
France, Nov. 1984. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 17, NO. 6, JUNE 1988 749 

be the product of A and B ,  and 
m 

F= f k a k  U r n =  1) 
k = O  

be the irreducible polynomial. 

product C = A B  to a polynomial of degree less than rn [2] .  
The equation F = 0, or am = Zyrd  f k a k  is used to reduce the 

C can be written as follows. 
C = A B  

m - l  

= A  b k a k  

k = O  

= (. . . ( (Ab,  - I CY +Abm -2)a +Abm - 3)a + ' . . ) + A  bo 

A New Bit-Serial Systolic Multiplier Over GF(2"') 

B. B. ZHOU 

Abstract-A new bit-serial systolic array is developed to compute 
multiplications over GF(Zm). In contrast to another systolic multiplier 
designed in [SI, this new systolic algorithm allows the input elements to 
enter a linear systolic array in the same order and the system only requires 
one control signal. 

Index Terms-Finite field, finite field multiplication, Massey-Omura 
multiplier, systolic array, VLSI. 

I. INTRODUCTION 
Finite field arithmetic operations play a very important role in 

certain error-correcting codes. Multiplication in GF(2"') is one 
among those most complex and time-consuming operations. Re- 
cently, two VLSI architectures, systolic architecture [5] and the 
Massey and Omura algorithm-based pipeline architecture [4], were 
developed to compute multiplications in GF(2m). The Massey and 
Omura algorithm utilizes a normal basis { a ,  a*, cy4, . . ., a2"-'} to 
represent elements in the field GF(2"),  where (Y is a root of an 
irreducible polynomial of degree m over GF(2). In this basis 
representation, the squaring of an element in GF(2") is a simple 
cyclic shift of its binary digits followed by an Exclusive-OR 
operation. Based on this important property, multiplication for any 
one product digit requires the same logic circuitry as it does for any 
other product digit. The advantage of this design is that it takes less 
area than that required in systolic designs. However, it is much less 
expandable because irreducible polynomials for different rn are not 
related, but the design only focuses on one particular rn each time. 
Since systolic arrays have the advantages of regularity, modularity, 
and expandability [ l ] ,  systolic designs are still worthy of consider- 
ation. 

The systolic multiplier of [5] ,  which uses a conventional basis, has 
two disadvantages. One is that it does not allow the two input 
elements to enter the system in the same order. If this order of the 
elements is essential, extra registers and control signals are required. 
The other is that it requires two control signals, which increases the 
chip area. 

A new systolic algorithm for multiplications over GF(2") will be 
discussed here. This algorithm allows the input elements to enter a 
linear systolic array in the same order and the system only requires 
one control signal. 

11. ALGORITHM 
Using a conventional basis representation, let 

m - l  

A =  a k a k  

k = O  

and 

m -  I 

B =  b k a k  

k = O  

be two elements in GF(2m), 

k = O  
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or 

Using the fact that 
m -  I 

am= f k d ,  

k = O  

C(I) in ( 1 )  can be reduced to a polynomial of degree less than m. 
C(O) in ( I )  can be rewritten as 

m-  I m-I 

C"'=Abm-l= 2 ukbm-lak= C f ) a k  (2) 
k = O  k - 0  

where Cp) = a k  bm- 1 . 
Suppose 

, n - l  

which has been reduced to a polynomial of degree less than m. Then 

C("= C('+ ')cy + Abm_ I - I  

k - 0  
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