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On the Classification of Classes with
Nearly Equal Spectral Response in
Remote Sensing Hyperspectral Image Data
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Abstract—It is well known that high-dimensional image data by the well-known quadratic classifier
allows for the separation of classes that are spectrally very
similar, i.e., possess nearly equal first-order statistics, provided ) _ _ Tyl R ] ]
that their second-order statistics differ significantly. The aim of Gi(X) = =X = )" B (X = ) — In [55] + 21 Plwi)
this study is to contribute to a better understanding, from a ) ]
more geometrically oriented point of view, of the role played Wherew; represents a particular clasé,an unlabeled pixej;
by the second-order statistics in remote sensing digital image the class mean vectok;; the class covariance matrif(w;)
classification of natural scenes when the classes of interest arethe corresponding priori probability for classy;, andG;(X)
spectrally very similar and high dimensional multispectral image the discriminant function associated with.

data is available. A number of the investigations that have | f th hi | hh d
been developed in this area deal with the fact that as the n most of the cases, this general approach has proved ca-

data dimensionality increases, so does the difficulty in obtaining Pable of performing image data classification in an acceptable
a reasonably accurate estimate of the within-class covariance way. There are some cases, however, in which some or all of
matrices from the number of available labeled samples, which the classes involved are very similar spectrally, i.e., their first-
is usually limited. Several approaches have been proposed 10, 4qr giatistics are nearly identical. In these cases, the more
deal with this problem. This study aims toward a complementary traditi | t di lassificati thod
goal. Assuming that reasonably accurate estimates for the within- r_a ||or_1a sensor sysiems an |me}ge Classilication methods
class covariance matrices have been obtained, we seek to bette€ither yield a very low accuracy or fail completely. The answer
understand what kind of geometrically-oriented interpretation to this problem is provided by a new generation of sensors
can be given to them as the data dimensionality increases andthat allow for a much larger number of spectral bands. The

also to understand how this knowledge can help the design of a AVIRIS system, which possesses the capability of sensing
classifier. In order to achieve this goal, the covariance matrix is !

decomposed into a number of parameters that are then analyzed natura_l sce_nes |n_ 220 spectral bands, is one example of these
separately with respect to their ability to separate the classes. New high dimensional sensor systems. As a consequence, the
Methods for image classification based on these parameters aredevelopment of new methods to analyze this high dimensional
investigated. Results of tests using data provided by the sensorimage data have become necessary. In this context, it is also
system AVIRIS are presented and discussed. well known that in a higher dimensional space, samples drawn
Index Terms—AVIRIS sensor, digital image classification, high- from normally distributed data tend to fall toward the tails

dimensional data, remote sensing, second-order statistics. of the density function with virtually no samples falling in
the central region (where the value of the density function is
I. INTRODUCTION largest [1]). The result of this phenomenon is that in a high

dimensional space, different classes sharing the same expected

HE REMOTE sensing analysis of natural scenes has b&gl) o5 can become separable with very little error, provided

relying primarily on data collected by sensors that provid@ o their covariance matrices are sufficiently distinct [1]. Thus,
a relatively small number of spectral bands. Se_nsor SYS'®IH8 second-order statistics can assume a preponderant role in
such as Landsat-TM and Spot have been used widely (o gatper ote sensing image data classification, possibly allowing
the information required in areas such as forestry, agrlc:ulturfgr the separation of classes close to each other spectrally
geology, and many others. In almost all of the cases, WGy iherefore not separable by the current low-dimensionality
distribution of the individual spectral classes that are presentdg, oo, systems nor by analysis methods that do not take into
the image data can be approximated by a multivariate nomé@count second-order statistics

distribution, and the classification procedure can be pen‘ormedThe classification of high-dimensional image data, however
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the scientific community. Two main approaches have beand the matrixD defines the orientation of the cluster in the
pursued: multidimensional space.

1) development of methods that allow the reduction of the Assuming that the original image data is multivariate nor-
data dimensionality with small loss of information; ~ mally distributed, then the same data measured along the
2) development of new approaches for dealing with tH@tated axis also presents a multivariate normal distribution
covariance matrix when the sample size is small. [10]. The eigenvalues represent the variances along the rotated
js. In practice, we work with the sample estima$ ¢f the

Several new approaches have been reported in the literat@r&: ! . ] - -
[2]-[7]. covariance matrix:. Thus, all eigenvalues of (including

The aim of this study is, however, somewhat differenthe largest one\) are random variables with Gamma distri-

High dimensional spaces present a number of geometriP&tion [11]. The Gamma density function parameters can be
properties that contradict our usual perception of space [#ftimated from the available samples for later use in image
The aim of this study is to contribute to a better understandifigt@ classification. A more difficult situation is presented by
(from a more geometrically-oriented point of view) of datiatrixA. Since here we are dealing with a matrix, a statistical
distribution in high dimensional spaces. This in turn may led#PProach to its implementation in image data classification
to more adequate classification algorithms when the clas&ednore complex. In this study, we propose to estimate the
involved possess nearly equal first-order statistics and cldarmation carried byA. by its trace. The cluster orientation
separation is only possible via the second-order statistics. MG Pe estimated from the eigenvectors. In this study, the
specifically, we seek to take some initial steps that may le§i#€nvector associated with the largest eigenvalue is used to
to the development of a classification algorithm based So|eqparactenze egch clust_er orientation. It is assum_ed also that
on the within-class second-order statistics in high dimensioridf Sample-estimated eigenvectors are random variables whose
spaces. The first step required to implement such an algoritgRi"Ponents are normally distributed.

consists in the segmentation of the image into homogeneous

areas, each one supposedly belonging to one of the existing !ll. DESIGN OF A STATISTICALLY BASED CLASSIFIER

classes. The covariance matrix associated with each imagen order to understand better the importance of each com-
segment is then decomposed into three parameters whigihent of the covariance matrix in multispectral image clas-

describe the size, shape, and orientation of the image segmgfi¢ation, the probability density function for each one of the
in the multispectral space. These parameters are then tegfge components must be derived.

for their ability to separate the classes, and a classifier is then

proposed based on these three parameters. A. Cluster Size
Since it is basically a sample variance, the parameter size
[I. COVARIANCE MATRIX has a Gamma density
In multispectral image data, each class can be seen as a 1 et z 5
cluster of points in a multidimensional space. The position of fx(z) = b°T(c) oo exp [_Z}' 2)

the cluster can be measured by its central point, as defined 23/ & and ated Vel ith th |
the class mean vector (first-order statistic). The cluster siiD ,rameter andc are associated, respectively, with the scale

shape, and orientation are measured by its covariance magrﬂg shape of the density function (2) gnd can be estimated
(second-order statistics). y the method of the momen_ts. The _flrst and second-order
In order to better understand the meaning of the class covapoments of the Gamma density are given by
ance matrix in this context, we break it down into components Jin) =E[X!] =bc
that lend themselves to a more geometrical meaning. This 9 2
can be accomplished by the spectral decomposition of the He) = EXT=belc+1).
covariance matrix [8], [9] B. Cluster Shape
Y =ADAD” Q) The shape of the cluster can be defined by the relative length
of its axes. The diagonal elementsAnprovide this data. One
where\ is the largest eigenvalue &f, A is a diagonal matrix remaining question is how to make use Afin a classifier.
whose elements are the ratio of eigenvalue& afith respect One possible approach is by using the traceAof
to A, andD is a matrix whose columns are the eigenvectors A M Ayt
of X. T:trace{A):)\_+)\_+...+ i
This particular form for the spectral decomposition is partic- P P P
ularly useful for the purpose of this study, i.e., to understand The eigenvalues of can be understood as the variances
the geometry of clusters representing different classes wilong the orthogonal directions defined by the eigenvectors,
nearly equal first-order statistics and further, to understand., after rotating the original coordinate system in order to
their separability in high dimensional spaces. A clear geeliminate the correlation among them. Therefore, the sample
metrical interpretation can be assigned to three componeaigenvalues are independent random variables. The elements
in (1). The largest eigenvalua represents the size of thein A are the eigenvalues normalized with respect to the largest
cluster, the diagonal matriA defines the shape of the clusterpne, and they also form a set of independent random variables.

+ 1.
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Therefore, the trace Ak lies within the interval [1p], p being image data of natural scenes, particularly the ones that show
the dimensionality ofS. A perfectly spherical cluster, i.e.,equal or nearly equal first-order statistics and therefore, they
the one with equal eigenvalues along allxes, will result are not separable by these alone.

in the trace ofA being equal top. As the cluster becomes Several approaches to measure the separability among
increasingly ellipsoidal, the trace oA starts decreasing, classes are described in the literature. In this study, the
becoming equal to the unit in the extreme case of only oBhattacharyya distance is applied. The general expression
eigenvalue being nonzero. The actual use of the tracA offor this distance is given by [13]

requires the knowledge of its density function.

Representing by, the largest eigenvalue &f, and by, e
the repmaininggg— i))\peigenva?uesi(:g 1,2, -, p—1),it )éan B=-ln [/_Oo V11(Z)f2(Z)dZ). (6)
be proved that the density function for the raio= A;/,
is given by Bhattacharyya distance must be implemented to the three
density functions and to the pairs of classes to be used in
pei—l the test procedure to determine the efficiency of each of the
fz(z) =k (2, + by (bib)“***I(ci+cy),  2>0  three proposed random variables as the data dimensionality

3) increases.
Size is a one-dimensional random variable (irrespective
of the number of spectral bands in use) and has a Gamma

with density. In this case, the Bhattacharyya distance (6) between
b — 1 two classes, characterized by the Gamma paraméiers,
= b?ib;pr(ci)r(cp)' and bs, c2, respectively, becomes
The density function for the sum oo 1 1 x 1
B=-1 — % —|
" /,oo [bilmcn * eXp{ bj b T (c2)
R:£+ﬁ+...+)\1”_1 1/2
Ay N Ap -z exp {—;” dz.
2

is then given by the convolution of the ¢ 1) densities [12] . i ) .
Performing the above integration, we obtain

)\1 )\2 )\ _1
fR(T) :fZ<)\_p> *fZ<)\_p> **fZ( ip ) (4) F<%202>b<112/2b;1/22(c1+c2)/2
B=-1 . @
" e @) 20 + bz |- ()

where each individual density function is given by (3). Finally,
the density functionfr(¢) for the tracel” of matrix A can be
obtained from (4) by a simple transformation of variables  The estimation of Bhattacharyya distance for the random
variable shape is a far more difficult problem. The general
fr(t) = fr(t —1). (5) form for the density function [as in (4)], which involves the
convolution among the component density functions, renders
The full derivation of the density function for the trace othremely difficult or even precludes a closed—form expression
matrix A (5) is presented in the Appendix. or this de.nsny function, even when one tries to perfo_rm
this operation in the Fourier domain. In this study, we tried
to estimate the Bhattacharyya distance by implementing (4)
into (6) in a numerical fashion. This approach, however, pre-
The third parameter, orientation, can be characterized by &ented the drawbacks inherent in many numerical procedures,
eigenvectors ob. Since the eigenvectors are orthogonal, ongamely, a large computational time and numerical instability
will suffice to describe the orientation of the cluster. In thigt points where the density functions vary rapidly. Due to
study, the eigenvector associated with the largest eigenvalugnisse problems, this approach proved to be unsatisfactory in
SE|eCted, and the normal distribution is assumed for the Iengﬂé experiments performed in this Study_ A more convenient

C. Cluster Orientation

of its components. approach to this problem remains a topic for future research.
The Bhattacharyya distance for the cluster orientation pa-
IV. EVALUATING THE ADEQUACY OF THE PARAMETERS rameter presents the well-known form for multivariate normal

As stated earlier, the aim of this study is to investigat(éizata

the geometrical behavior of the second-order statistics in 1

remote sensing image data classification as a function of B=§(M1 _MQ)T<
the data dimensionality. Primarily, we seek to investigate

the importance of the three components (size, shape, and +1 ln [w} (8)
orientation) for the classes that most often appear in satellite 27 [|S:]M2]8,1/2

Si+ S\ !
12 2) (Ml_MQ)
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where M and S represent, respectively, the mean vector arad comparatively low capability of discriminating the image

the covariance matrix for parameter orientation for each pailasses under consideration (Figs. 3 and 4).

of classes. The analysis of the data depicted in Figs. 1-4 allows one to
draw the following conclusions.

1) The parameter orientation presents a very consistent
V. TESTING THE PARAMETERS: pattern of increasing Bhattacharyya distance as the di-
SIZE. SHAPE. AND ORIENTATION mensionality of the data increases.

) ] ) 2) The parameter size provides smaller values for Bhat-
In order to investigate how the parameters (size, shape, and tacharyya distance.

qrientation) perform i_n remote s.ensing image datg classifica-3) The histograms for parameter shape tend to suggest a
tion, tests were carried out using multispectral image data " |5\er discriminant power in separating the image classes
obtained by the sensor AVIRIS. A 30 channel subset of an ;.\ olved.

image obtained in June 1992 and covering an agricultural are . .
. . he analysis of these experiments suggests that the pa-
in Indiana was used. The 30 channels were selected from the . - e

o . . o ameter orientation is the most promising one to successfully
original 220 channels in a uniformly spaced fashion in order

cover the entire range of wavelengths sensed by the AVIRY ssify the image data being tested. The Bhattacharyya dis-

e . tance among the pairs of classes increases consistently as the

system. The area covered by this image shows agricultural :

. . . . - “number of channels increases. The other two parameters show

fields with corn and soybeans. Different agricultural techniques . .
: . - a less promising behavior.

are present across these fields, allowing for the following

user-defined classes:
1) corn no till;
2) corn minimume-till (corn minimum);
3) corn clean (corn);

VI. USE OF THE PARAMETERS: SIZE,
SHAPE, AND ORIENTATION AS A BASIS FOR
AN IMAGE CLASSIFICATION ALGORITHM

4) soybeans no till; In this section, we investigate the development of an al-
5) soybeans minimum-till (soybean minimum); gorithm based on the parameters (size, shape, and orientation)
6) soybeans clean (soybean). for image classification purposes. In this case, the classification

As the AVIRIS image was collected at the beginning of thgrocedure wquld be based on the_;ecqnd—order statistics only.
growing season, only a small fraction§%) of the ground was T_hus, the unit _el_ement to be classified is unlabeled clusters of
actually covered by the crop. The largest contribution to tHi¥X€ls, not individual pixels. _
spectral response comes from the background, i.e., exposefit this point, we have to deal with three problems:
soil plus debris. This situation results in first-order statistics 1) how to segment a given multispectral image into ho-
that are nearly equal for all six classes. Under these circum- Mogeneous areas (each segmented area would then be
stances, the traditional data classification algorithms based on treated as an individual cluster and would be assumed
low dimensionality data such as Landsat- TM, either yield very ~ to belong to one of the existing classes);
inaccurate results or fail completely. A successful procedure2) Which parameter(s) is (are) more efficient for classifica-
must be based on the class second-order statistics, employing tion purposes;
higher dimensional data. Thus, the AVIRIS data provides 3) Which method is the most adequate for this particular
ideal conditions to test image classification methods based on approach to image classification.
second-order statistics. Also, it provides the right conditions to This study deals basically with problems 2 and 3. As for
investigate the contribution of the three parameters originatipgoblem 1, some initial tests were performed making use of
from the spectral decomposition of the covariance matrix. the first part of the ECHO algorithm as proposed by Kettig and
To test the ability of each of the three parameters imandgrebe [14], [15]. Encouraging results were obtained, but
discriminating between the data classes as a function of theditional work is needed on this topic when high dimensional
data dimensionality, the 30 channel AVIRIS image data wedata is involved. In the experiments performed, the number and
divided into six subsets of 5, 10, 15, 20, 25, and 30 channegtgrticularly the size of the resulting fields showed a tendency
respectively. The Bhattacharyya distances for the 15 pairstofdecrease as the data dimensionality increased, leaving many
classes were then computed. Figs. 1 and 2 illustrate typitdnks across the image. This item is therefore left as a topic
behavior of Bhattacharyya distance for parameters size (@) future investigation.
and orientation (8), respectively, as a function of the dataln order to make possible the investigation into problems
dimensionality. As for the parameter shape, only a few valu8sand 3, clusters are needed for both training and testing
for Bhattacharyya distance were actually computed. Due to therposes for every class. In order to obtain these clusters,
reasons reported in Section 1V, we did not succeed in obtainititge entire data set available for each class was uniformly
a closed-form for Bhattacharyya distance for this parameteliyided into a training set and a test set. A number of
and the numerical approach tested proved to be unsatisfactaiysters were then drawn randomly from both the training
Therefore, Bhattacharyya distance for the parameter shape wad the test sets. Therefore, a number of labeled clusters
not fully estimated in the experiments involving AVIRIS datawere obtained, allowing for the estimation of parameters and
However, the histograms for this parameter, involving thfer the testing of the methods for classification. The results
six classes and the six subsets of channels, tend to sug@gdsained in Section V suggest the idea of carrying out image
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Fig. 1. Bhattacharyya distandefor parameter size as a function of the number of spectral barfds four different pairs of classes.

data classification based on parameter orientation. In this caserease (Table I). Thus, the separability among classes in
each homogeneous image region or cluster can be represetttedeigenvector-orientation space is caused primarily by the
by a point defined by the eigenvector associated with its largesicond-order variation on the orientation of the eigenvectors,
eigenvalue in the p-dimensional multispectral space. The spa¢ by the first-order variation. This fact explains the failure of

defined in this way is herewith designated by “eigenvectoa minimum distance algorithm approach in yielding accurate
orientation” space. results in image classification.

As for the classification method in the eigenvector- To overcome this problem, two different approaches were
orientation space, a conventional minimum distance approgmivrsued and later combined into one. First, additional informa-
was initially tested. The mean value for each class tibn was added to each cluster, i.e., the number of parameters
the eigenvector-orientation space was then estimated fras defined in the aforementioned problem 2 was increased
the corresponding training set. Next, the eigenvectofmm one (orientation) to all the three parameters. The rationale
were calculated for all individual test clusters, and in thfor this approach is provided by the experiments reported in
eigenvector-orientation space each test cluster was assig8edtion V. The parameter orientation proved to be the most
to the class presenting the closest mean. Different siz@®mising one for classification purposes (larger Bhattacharyya
for the test clusters were used: 1.2, 1.3, 2.0, 4.0, and @&lidtance between classes). However, the contribution of the
times the number of spectral bands. This approach, howeuwemaining two parameters (size and shape of the cluster),
did not provide accurate results. The reason can be betiéthough smaller, is not entirely negligible. Thus, adding pa-
understood by examining the two terms of Bhattacharyyameters’ size and shape might improve the accuracy. One way
distance between the classes in the eigenvector-orientatidimplementing this idea is by taking into considerationgall
space as shown in Table I. As is well known, the first termigenvectors associated with each cluster instead of the single
of Bhattacharyya distance estimates the separability cause associated with the largest cluster’s eigenvalue. One possi-
by the first-order statistics whereas the second term estimdtesway of achieving this intent is by weighting theigenvec-
the contribution due to the second-order statistics. At a laters by their associated eigenvalues and calculating their sum.
dimensionality, both terms are small. As the dimensionalifijhe resulting vector, herewith called “weighted eigenvector,”
increases, the first term in Bhattacharyya distance showslefines a point that is then supposed to represent a cluster in a
small increase, whereas the second one shows a much laggdimensional space called the “weighted-eigenvector space.”
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Fig. 2. Bhattacharyya distandefor parameter orientation as a function of the number of spectral bardsfour different pairs of classes.

A minimum distance classifier, similar to the one previunaffected by local variations in the image data. Subsequent
ously applied to the orientation-eigenvector space, was testedts were performed on clusters formed by pixels drawn
on the weighted-eigenvector space. Tables II-VII depict tlsequentially from the test set. Thus, these clusters correspond
accuracies achieved for the six classes involved. The lines approximately to segmented image regions. In this case, the
these tables show the resulting accuracies as a function of thimimum distance classifier on the weighted-eigenvector space
number of spectral bands used (5, 10, 15, 20, 25, and 30), amelded a much lower accuracy. These poorer results can be
the columns display the accuracies as a function of the sigeplained by the local variations across the image, which in
of the test clusters, here expressed as a multiple of the daten cause larger variations on the second-order statistics in
dimensionality (1.2, 1.5, 2.0, 4.0, and 6.0 times the number dfisters belonging to the same class.
spectral bands used). This set of experiments demonstrates the necessity of in-

The results conform with the theoretical predictions. Thgoducing the contribution of the second-order statistics in
accuracy increases both with the data dimensionality atite weighted-eigenvector space, as made clear by the experi-
with the size of the cluster. Higher dimensionality enhancesents summarized in Table I. One simple way of introducing
the separability based on the second-order statistics, wherdéas contribution is by replacing, in the weighted-eigenvector
a larger sample size allows for a more reliable estimati@pace, the conventional minimum distance classifier, which
of the covariance matrix. It also shows that a reasonabiyakes use of the Euclidean distance by a classifier based on
high accuracy can be achieved even for classes that posskesMahalanobis distance
mean values that are nearly equal. Some variations on the Tl
accuracy can be seen acroé/s tﬂese tables and in the case of GX) =X =) 20 (X =) ©)
smaller clusters, are most likely caused by inaccuracies in tvbere X represents the cluster-weighted eigenvegigrrep-
estimation of the covariance matrix in the multispectral spaaesents the mean-weighted eigenvector for classand 3;

However promising, the minimum distance classifier agpresents the weighted-eigenvector covariance matrix for
applied to the weighted-eigenvector space presents some drel@ssw;. Estimates for bothu, and X; were obtained from
backs. The results shown in Tables II-VII were obtaineglach class-training cluster. It must be emphasized that the clas-
for clusters formed by drawing pixels randomly from theification approach implementing the Mahalanobis distance
entire test set. These clusters are therefore formed by pixeplies two distinct natures in the estimation of covariance
spread across the entire test set. Thus, they are likely matrices: 1) the covariance matrix for every segmented image
yield more accurate estimates for the second-order statisti@ea or cluster, in the multispectral space, to estimate the
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Fig. 3. Histogram for parameter shape for four different classes. Experiment using five spectral bands. Parameter shape is represented alomglthe hori
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TABLE |
FIRST AND SECOND TERM OF BHATTACHARYYA DISTANCE FOR PARAMETER ORIENTATION, FOR DIFFERENT PAIRS OF CLASSES AND FOR TWO SETS OF
SPECTRAL BANDS. THE FIRST TERM (UPPERENTRY ON EVERY Box) MEASURES THE CONTRIBUTION DUE TO THE CLASSES MEAN VECTORS
WHEREAS THE SECOND TERM (LOWER ENTRY ON EVERY Box) MEASURES THECONTRIBUTION DUE TO THE CLASSES COVARIANCE MATRICES

Pair of Classes Bhattacharyya distance terms | Bhattacharyya distance terms
5 spectral bands 30 spectral bands
corn_notill and 0.1079 22183
corn_minimum 0.3562 69.0899
corn_notill and 0.1251 1.8476
corn 0.4727 65.5503
corn_notill and 0.0564 7.0056
soybean_notill 0.6545 137.8793
corn_notill and 0.0199 0.7894
soybean_minimum 03124 65.4253
corn_notill and 0.0298 1.9428
soy_clean 0.3665 65.1725
corn_minimum and 0.0483 0.8256
corn 0.1774 9.8284
corn_minimum and 0.0325 1.2763
soybean_ notill 0.3803 83.3849
corn_minimum and 0.1067 0.8116
soybean minimum 0.1257 83095
corn_minimum and 0.0909 0.8941
soybean clean 0.2200 9.2650
corn and 0.0565 2.9888
soybean_notili 0.5304 79.2144
corn and 0.0745 0.7033
soybean minimum 0.3090 6.7028
corn and 0.0832 0.6025
soybean_clean 0.2763 6.5457
soybean_notill and 0.0461 1.5873
soybean minimum 0.1752 79.5270
soybean notill and 0.0519 23716
soybean_clean 0.4746 79.7257
soybean minimum and 0.0357 0.4289
soybean_clean 0.2938 6.5080
TABLE I

CrLass CorN NO TiLL
CLASSIFICATION ACCURACY, YIELDED BY THE MINIMUM DISTANCE CLASSIFIER BASED ON THE WEIGHTED-EIGENVECTOR SPACE.
THE RESULTS ARE SHOWN FOR DIFFERENT NUMBERS OF SPECTRAL BANDs (5, 10, 15, 20, 25aND 30) AND FOR DIFFERENT
CLUSTER SiZES, I.E., NUMBER OF PixELs PER CLUSTER (1.2, 1.5, 2.0, 4.0aND 6.0 TiMES THE NUMBER OF SPECTRAL BANDS)

Cluster Size 1.2 1.5 2.0 4.0 6.0
Dimension
5 21% 20% 39% 36% 46%
10 32% 41% 58% 73% 82%
15 43% 52% 61% 85% 87%
20 51% 63% 64% 86% 94%
25 70% 67% 78% 91% 95%
30 68% 67% 88% 94% 97%

corresponding weighted-eigenvector and 2) the covarianite cluster (the number of pixels), whereas the latter depends
matrix associated with each class in the weighted-eigenvectqmon the number of training clusters (each cluster provides
space, as required by the Mahalanobis distance classifier (#8)e sample). Experiments were then carried out by creating
The reliability of the former basically depends upon the size ofusters from contiguous pixels in the test set rather than from
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TABLE I
CLAass CoRrRN MINIMUM
CLASSIFICATION ACCURACY, YIELDED BY THE MINIMUM DISTANCE CLASSIFIER BASED ON THE WEIGHTED-EIGENVECTOR SPACE.
THE RESULTS ARE SHOWN FOR DIFFERENT NUMBERS OF SPECTRAL BanDs (5, 10, 15, 20, 25AND 30) AND FOR DIFFERENT
CLUSTER SiZES, I.E., NUMBER OF PIXELS PER CLUSTER (1.2, 1.5, 2.0, 4.0aND 6.0 TiMES THE NUMBER OF SPECTRAL BANDS)

Cluster Size 1.2 1.5 2.0 4.0 6.0
Dimension
S 26% 24% 27% 40% 48%
10 38% 44% 41% 63% 70%
15 50% 50% 54% 73% 82%
20 54% 61% 66% 82% 92%
25 60% 63% 68% 90% 91%
30 59% 64% 74% 93% 96%
TABLE IV
CLass CorN

CLASSIFICATION ACCURACY, YIELDED BY THE MINIMUM DISTANCE CLASSIFIER BASED ON THE WEIGHTED-EIGENVECTOR SPACE.
THE RESULTS ARE SHOWN FOR DIFFERENT NUMBERS OF SPECTRAL BANDs (5, 10, 15, 20, 25AND 30) AND FOR DIFFERENT
CLUSTER SiZES, I.E., NUMBER OF PixELs PER CLUSTER (1.2, 1.5, 2.0, 4.0aND 6.0 TiMES THE NUMBER OF SPECTRAL BANDS)

Cluster Size 12 1.5 2.0 4.0 6.0
Dimension
5 53% 63% 52% 60% 56%
10 58% 65% 62% 72% 75%
15 1% 62% 60% 72% 75%
20 64% 64% 63% 72% 80%
25 66% 70% 70% 1% 82%
30 70% 73% 73% 79% 86%
TABLE V

CLAss SoyBeaN No TiLL
CLASSIFICATION ACCURACY, YIELDED BY THE MINIMUM DISTANCE CLASSIFIER BASED ON THE WEIGHTED-EIGENVECTOR SPACE.
THE RESULTS ARE SHOWN FOR DIFFERENT NUMBERS OF SPECTRAL BANDs (5, 10, 15, 20, 25AND 30) AND FOR DIFFERENT
CLUSTER SIZES, I.E., NUMBER OF PIXELS PER CLUSTER (1.2, 1.5, 2.0, 4.0aND 6.0 TiMES THE NUMBER OF SPECTRAL BANDS)

Cluster Size 1.2 15 2.0 4.0 6.0
Dimension
5 80% 86% 87% 97% 99%
10 87% 91% 96% 99% 100%
15 92% 95% 98% 99% 100%
20 93% 96% 99% 100% 100%
25 98% 97% 99% 100% 100%
30 97% 100% 100% 100% 100%

pixels drawn on a random fashion as done in the previousthe weighted-eigenvector space. Four classes were tested,
experiment. These clusters are then likely to be formed laypd the results are shown in Table VIII. As one might have
pixels that are spatially close to each other in the imagexpected, the experiment involving a larger number of pixels
Two experiments were carried out, using 30 spectral banger cluster allowed a more accurate estimation of the initial
In the first case, the size of each test cluster was takencawariance matrices, resulting in a more accurate estimation of
equal to 180 pixels, and in the second case it was takdme parameters (size, shape, and orientation) and therefore, in
as equal to 100 pixels. In both cases, a sufficiently largeore accurate final classification results. However, in digital
number of training clusters were provided in order to allow image classification, smaller clusters are quite often present,
reasonably accurate estimation of the class covariance matriaad a method must be found to deal with them accurately.
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TABLE VI
CLASS SOYBEAN MINIMUM
CLASSIFICATION ACCURACY, YIELDED BY THE MINIMUM DISTANCE CLASSIFIER BASED ON THE WEIGHTED-EIGENVECTOR SPACE.
THE RESULTS ARE SHOWN FOR DIFFERENT NUMBERS OF SPECTRAL BANDs (5, 10, 15, 20, 25aND 30) AND FOR DIFFERENT
CLUSTER SiZES, I.E., NUMBER OF PIXELS PER CLUSTER (1.2, 1.5, 2.0, 4.0aND 6.0 TiMES THE NUMBER OF SPECTRAL BANDS)

Cluster Size 1.2 1.5 2.0 4.0 6.0
Dimension
S 22% 37% 38% 54% 68%
10 48% 63% 57% 3% 83%
15 55% 57% 70% 83% 93%
20 73% 77% 79% 94% 96%
25 69% 75% 82% 95% 99%
30 84% 83% 83% 98% 99%
TABLE VII

CLAss SoYBEAN CLEAN
CLASSIFICATION ACCURACY, YIELDED BY THE MINIMUM DISTANCE CLASSIFIER BASED ON THE WEIGHTED-EIGENVECTOR SPACE.
THE RESULTS ARE SHOWN FOR DIFFERENT NUMBERS OF SPECTRAL BanDs (5, 10, 15, 20, 25AND 30) AND FOR DIFFERENT
CLUSTER SiZES, I.E., NUMBER OF PixELS PER CLUSTER (1.2, 1.5, 2.0, 4.0aND 6.0 TiMES THE NUMBER OF SPECTRAL BANDS)

Cluster Size 12 1.4 2.0 4.0 6.0
Dimension
s 35% 30% 29% 2% 59%
10 44% 46% 48% 68% 70%
15 49% 52% 55% 68% 84%
20 54% 59% 1% 81% 89%
25 56% 63% 76% 89% 90%
30 73% 65% 76% 90% 95%
Here, we come to the well-known and extensively-discussed TABLE VIl

problem of parameter estimation from a sample of limited size. CLASSIFICATION ACCURACY, OBTAINED BY APPLYING THE MAHALANOBIS
Thi bl b f ial i . h ISTANCE ON THE WEIGHTED-EIGENVECTOR SPACE RESULTS ARE SHOWN FOR 30
IS problem becomes of crucial importance In the presen SPECTRAL BANDS AND Two CLUSTER Sizes (180 AND 100 RXELS)

case where the following applies.

1) The algorithm is based solely on the second-order sta, Cluster Size 180 pixels 100 pixels
tistics.
. . . . . 1 0, 0,
2) We are dealing with high dimensional data. corn_notill 100% 93.4%
3) As in most remote sensing applications, the number o§m_minimum 100% 100%
available labeled samples is limited. soy_notill 100% 100%
Methods for the estimation of the covariance matrix when thseoygminimum 93% 2%

number of available samples is small have been extensively

studied, and many approaches to mitigate this problem have

been reported in the literature. In his paper, Friedman [5] VIl. CONCLUSIONS

discusses methods of regularization to improve the estimates of | .

the covariance matrices. Hoffback and Landgrebe [7], among' NS Study deals with some aspects of the problem of

several others, also proposed methods for the estimation of B@SSifying remote sensing image data in which classes with

covariance matrix when the sample size is small. equal or nearly equal first-order statistics are present. In this
Therefore, in order to make the weighted-eigenvector spa&@se, the conventionally-used multispectral image data with a

concept fully operational, further investigation is still requiregmall number of spectral bands, as provided by systems such

into two main topics: as Landsat-TM and Spot, either yield low accuracy results or

1) incorporation into the algorithm of more adequate metf@il completely. The way to deal with this problem involves the
ods to estimate the class covariance matrices when sn#ge of classification procedures relying solely on the second-
clusters are involved; order statistics estimated from high dimensional image data as

2) the development of methods for image segmentation povided by hyperspectral sensors.
high dimensional spaces, i.e., methods to form the initial In order to better understand the role played by the second-
clusters. order statistics in a higher dimensional space, the technique
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known as the spectral decomposition of the covariance mathigmogeneous regions, each of which is assumed to belong to
was used. This decomposition allows for an easier, masegiven class. In other words, we need to start by forming
geometrically-oriented interpretation of the covariance matrotusters. The proposed classification method then can be
components and thus for a better insight into the way it sepapplied, taking these clusters as basic units. Some tests were
rates classes in a higher dimensional space. These compongetfrmed, implementing the first part of the ECHO algorithm
represent the size, shape, and orientation of clusters of pixelagproposed by Kettig and Landgrebe [14]. Additional work
the multispectral space. As these three component parametgrshis topic, however, is still needed when dealing with high
are estimated from the sample covariance matrix, they atienensional image data.
random variables themselves. Except for the parameter shapén this study, we have investigated a more geometrically-
which presents a rather complex form for its density functiooyiented view of the behavior of the second-order statistics for
the ability of each parameter to separate the image clastigscase of image data in high dimensional spaces, and we have
under consideration was estimated by the Bhattacharyya disen how this approach can be used for classification purposes
tance. For the parameter shape, only a few values for tiwben the classes involved possess equal or nearly equal first-
Bhattacharyya distance were actually computed. Histogramrsler statistics. The concept of weighted-eigenvector space
were then used to provide some insight into its behavior. was proposed, and tests were performed. This approach can be
Based on this idea, classification methods were proposagid to develop a method for image data classification when
and tested. Tests were carried out on a 30 channel subsethef classes involved are spectrally very similar and therefore
an AVIRIS image, displaying a number of classes having firstot separable by the more traditional methods based on low
order statistics that were nearly equal. The results suggestistiensional data. In order to fully attain this objective, two
the orientation parameter as the most promising one to sepagtditional topics need to be further investigated and added to
the classes involved, and to a lesser degree, they sugge#ftedprocedure:
the other two parameters. 1) methods to deal with the estimation of the covariance
Based on these initial findings, an attempt was made to  matrix when the number of training samples is small;
perform the classification based only on the parameter orienta2) methods for image segmentation in high dimensional
tion. Following this approach, each image segment or cluster multispectral spaces, to form the clusters required by
is represented by a single point, defined by the eigenvector the approach proposed in this study.

associated with its largest eigenvalue. The mean value fpris also possible that the weighted-eigenvector space may
every class is represented exactly in the same way, Rve to be adequate to implement clustering methods based

eigenvectors being estimated from the corresponding trainiggjely on the second-order statistics. These items, however,
sets. These points lie on the surface of a hypersphere (gfhain as topics for future research.

unit radius. The minimum Euclidean distance classifier was

then applied. The resulting classification accuracy was low, APPENDIX

however. Experiments have shown that this low performance . . . -

is caused by the fact that it is the second-order variation of t eIn _th's Appendlx, we provide the_full derivation of the

parameter orientation, not the first-order variation, that carriagn_s'ty function for th_e trace .Of matrlA..

the discriminant power among the classes. When the euclidear?'nce the elements in. are gl\ien by. ratiog ) ar;nong two

distance was replaced by the Mahalanobis distance, and 1 ep_endent random variableX(Y), i.e., Z = X/Y, and

contribution of the other two parameters (size and shape) Wé?gallmg thatZ 2000' we ;Zave

wgsod;&z?r;ezvery significant improvement in the accuracyP(Z < 2) :/0 dy/o Fxy (@, v) de, 2, y>0
The experiments performed in this study proved that ttand

weighted-eigenvector space based on the parameters (siz 0 vz

shape, and orientation) provide a promising approach for%(Z< z) = /_OO dy/o Fxy(w y)ds, @,y <0.

image data classification, based solely on the second-orcf.?l

statistics. This approach also provides a more geometrically-

oriented insight into the separability of classes possessing Fz(z) =P(Z < z)

equal or nearly equal first-order statistics. i vz
= dy fxv(z, y)dx
0 0

e distribution function can thus be calculated by

Crucial to this image data classification approach is the
estimation of the class covariance matrix in high dimensional 0 yz
spaces from a limited number of training samples. Some —/ dy/ Ixy(z, y)dx z>0.
approaches proposed in the literature must be introduced here. . - 0 _
Also, the problem related to the initial image segmentatiofhe density function can be obtained by
still remains to be solved. As this proposed image data
classification method is based solely on the second-order f2) = g(FZ(z))
statl_sucs, the t_)as_|c_ unit tc_) be clas_5|f|ed has to_pe a C'“Sﬁécalling that in a general case we have
of pixels, not individual pixels as in more traditional data
lassification methods. Thus, the first step needs to be an o 1
classi hods. Thus, p needs to be = | fla)dz=f(q) (P =constan}
image segmentation procedure to segment the image into 9q Jp
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and of the cluster shape, the constant term 1 must be added to the
Ixy(x, y) _ Ofxv(z y) Oyz) _  dfxv(z, y) sum in (Ad)
9z yz) 9z A(yz)
: - : - T—trace(A)——lJrﬁJr e
we can obtain the general expression for the density function - YW A :
of the ratio of two independent random variabl&s= X/Y
0 A theorem in mathematical statistics proves that given a

yfxy(uz, y) dy.

(A1)
For the specific case under consideration, the densities are
given by the Gamma density function

fz(Z)z/:<> vfxy (yz, y) dy—/

— o0

relation involving two random variableX andY such that

Y=aX+0b

¥ ; 1 ot x then
~ 1 C) S~ T exp | —
7( 1 1) bl F(Cl) P |: b1:|
1 - Yy
Y~ by, 02) = oy ex [__}
v(b2, c2) BT () P~y

Since X andY are independent

Here,a, b = 1. Thus, the density function for the shape of the

cluster can be obtained from (A5) by a simple transformation

Ixv (@, y) =fx(@)fr(y)
=k 7y exp [—;—J exp [—%} (A2)

of variables.
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Using this result in A1, and recalling that as an eigenvalue
of S cannot take negative values

exp 2 exp _Y dy.
b, by

Performing the above integration, we obtain

Fe) =k [ ue e
0 @)
[2]

ch—l

Gy (b L),

z > 0.

Equation (A3) represents the density function for the ratio of
two eigenvalues of. To test if (A3) fulfills the condition of
normality as any density function, standard tables of integrals
can be used to show that

(5]

/.OO fz(z)dz=1.
0 [6]

Once the density function for the ratio of eigenvalues hai.7
been defined, the next step consists of defining the densi
function for the summation of the ratios of eigenvalues that
compose the diagonal matrik, i.e., the shape of the cluster (8]

A Ay [0
R=04+ 24 4 2008 (Ad)
Ap [10]

)‘P )‘P
The derivation of the density function for a sum of randorfL1]
variables is a somewhat more complex problem. It can Z :
proved [7] that it is given by the convolution of the densitie
(A3) of the elements in (A4) [13]

A A Ap_
= (3) ()
[15]

where the eigenvalues & are sorted in an ascending order.
Finally, to obtain the density function of the trace Af i.e.,

fz(z) = k

[14]

) (A5)

Computer Engineering, Purdue University, where this work
was done.
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