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Local Stabilization of Linear Systems Under Amplitude
and Rate Saturating Actuators

João Manoel Gomes da Silva, Jr., Sophie Tarbouriech, and
Germain Garcia

Abstract—This note addresses the problem of local stabilization of linear
systems subject to control amplitude and rate saturation. Considering the
actuator represented by a first-order system subject to input and state satu-
ration, a condition for the stabilization of an a priori given set of admissible
initial states is formulated from certain saturation nonlinearities represen-
tation and quadratic stability results. From this condition, an algorithm
based on the iterative solution of linear matrix inequalities-based problems
is proposed in order to compute the control law.

Index Terms—Constrained control, control saturation, linear matrix in-
equality (LMI), stabilization.

I. INTRODUCTION

Physical and technological constraints do not allow that control
actuators provide unlimited amplitude signals neither react unlimited
fast. The negligence of both amplitude and rate control bounds
can be source of limit cycles, parasitic equilibrium points and even
instability of the closed-loop system. In particular, the problem of
stabilization of linear systems only with amplitude saturation has been
exhaustively addressed in the literature (see, among others, [1]–[3]
and the references therein). On the other hand, the rate saturation
problem has first received a special interest in the aeronautic field,
where the tradeoff between high performance requirements and the
use of hydraulic servos presenting rate limitations is always present
(see, for instance, [4], [5], and the references therein).

Studies addressing the stabilization in the presence of both the am-
plitude and the rate saturation, as a more generic problem, have started
to appear in the last few years. In [6] and [7], the semiglobal stabi-
lization of linear systems with both amplitude and rate constraints is
addressed. Considering a low-gain approach (the actuator does not ef-
fectively saturate), in [6], solutions to the problem via both state feed-
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back and observer based output feedback are stated. In [7], the notion
of an operator for modeling the amplitude and the rate saturation is
introduced. Based on this modeling, a low and high gain approach is
used for addressing the problem of semiglobal output regulation via
both state and dynamic output feedback. In [8], the problem of external
Lp-stabilization with internal global stabilization via a scheduled low
gain (saturation is avoided) state feedback is addressed. It should be
pointed out that, since the objective is the semiglobal or global stabi-
lization, these results can be applied only when the open-loop system
is null-controllable (i.e., all the poles are in the closed left half plane).

On the other hand, we can identify some works dealing with local
stabilizing solutions (see, among others, [9]–[12]). In [9], a method for
designing dynamic output controllers based on aposition type feedback
modeling of the rate saturation and the use of the positive real lemma is
proposed. The main objective pursued in that paper is the minimization
of a linear quadratic Gaussian criterion. A region of stability (region of
attraction) is associated to the closed-loop system. However, it should
be pointed out that the size and the shape of this region are not taken into
account in the design procedure which can lead to very conservative
domains of stability. Furthermore, the controller is computed from the
solution of strong coupled equations which, in general, are not simple
to solve. A different modeling for the actuator, subject to both rate and
amplitude limitations, is considered in [10] and [12]. In these papers,
the actuator is modeled by a pure integrator: the control rate appears
as the system input and the original control signal becomes a state of
the system. The physical meaning of this kind of modeling is not clar-
ified in these papers. Parallel to these works, in [11], the problem of
disturbance attenuation in the presence of rate and amplitude actuator
saturation is addressed. In that paper, however, no explicitely consider-
ation is made about the region of attraction associated to the controller.

Since we also aim to consider strictly unstable systems, our note fig-
ures in the context of local stabilization of linear systems subject to
both actuator amplitude and rate saturation. In this case, two objectives
are quite natural: the control law should guarantee a certain time-do-
main performance for the closed-loop system and the associated region
of attraction should be as large as possible. Regarding these objectives,
a fundamental issue is whether the use of effective saturating control
laws can be advantageous or not. In a recent work considering only
amplitude saturation [13], it was shown that, at least in some cases, the
use of the saturating control laws does not help in obtaining larger re-
gions of stability. It is, however, very important to highlight that no con-
straints concerning neither the performance, nor the robustness, were
taken into account in this analysis. In this case, although the optimal
region of stability is obtained with a linear control law, the closed-loop
poles associated to this solution can be very close to the imaginary axis,
which implies a very slow behavior.

The objective of this note is then to propose a method for computing
state feedback saturating control laws, that ensure both asymptotic sta-
bility of the closed-loop system with respect to a given set of admissible
initial conditions, and a certain degree of time-domain performance in
a neighborhood of the origin. We also aim to emphasize the compro-
mise between performance and the size of the region of attraction. As
we will see, over performance constraints, the use of saturating control
laws can ensure larger regions of stability. As in [9], our approach is
based on the modeling of the actuator by a first-order system subject
to input and state saturation (position-feedback-type model with speed
limitation). Differently, however, from [9] and [11], the objective in the
synthesis is explicitely to enlarge the region of attraction. Moreover, the
stabilization conditions are based on a mixed polytopic/norm-bounded
differential inclusion for modeling the behavior of the closed-loop non-
linear system. Comparing to the polytopic approach used in [11] and
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[12], our approach allows to reduce, considerably, the number of ver-
tices tests. It should be pointed out that, unlike [6], [8], and [10], in
our approach effective saturation is allowed and no open-loop stability
assumptions are made.

Notations: For any vectorx 2 <n, x � 0 means that all the com-
ponents ofx, denotedx(i), are nonnegative. For two vectorsx, y of<n,
the notationx � y means thatx(i) � y(i) � 0, 8i = 1; . . . ; n. The
elements of a matrixA 2 <m�n are denoted bya(i;l), i = 1; . . . ;m,
l = 1; . . . ; n.A(i) denotes theith row of matrixA. For two symmetric
matrices,A andB, A > B means thatA�B is positive definite.AT

denotes the transpose ofA. Forx 2 <m, (x) = diag(x) 2 <m�m

denotes a diagonal matrix obtained from vectorx, i.e.,d(i;i)(x) = x(i).
Cof�g denotes a convex hull.1m denotes am-dimensional vector of
ones, i.e.,1m

�
=[1 1; . . . ; 1]T 2 <m.

II. PROBLEM STATEMENT

Consider the following linear continuous-time system:

_x(t) = Ax(t) +Bu(t) (1)

wherex(t) 2 <n andu(t) 2 <m are, respectively, the state vector
and the control vector. MatricesA andB are real constant matrices
of appropriate dimensions. The pair (A, B) is supposed to be control-
lable. Each control actuator is supposed to be a first-order system, that
presents both position and rate limitations, that is,8i = 1; . . . ;m we
have

_u(i)(t) = satr(i) �(i) �u(i)(t) + satp(i) v(i)(t) (2)

wherev(i) andu(i) are, respectively, the input and the output (state)
of the actuator,��(i) < 0, corresponds to the pole of the actuator,

satr(i)(:)
�
=sign(:)min(�(i); j:j), satp(i)(:)

�
=sign(:)min(�(i); j:j)

with �(i) and �(i) denoting, respectively, the rate and amplitude
bounds.

Consider now a state feedback defined as follows:

v(t) = Kxx(t) +Kuu(t): (3)

Let T 2 <m�m be a diagonal matrix wheret(i;i) = �(i), i =
1; . . . ;m. The closed-loop system can be described by

_x(t) =Ax(t) +Bu(t)

_u(t) = satr (�Tu(t) + Tsatp (Kxx(t) +Kuu(t))) : (4)

Define the regionsRLp andRLr , respectively, as the region where
there is no occurrence of amplitude saturation and the region where
there is no occurrence of rate saturation

RLp
�
= x 2 <n; u 2 <m; [Kx Ku]

x

u
� �

RLr
�
= fx 2 <n; u 2 <m; j�Tu+Tsatp(Kxx+Kuu)j � �g :

It follows thatRL
�
=RLp \ RLr is the region of linear behavior of

(1), i.e., where no saturation occurs.
Define now the augmented state vectorz(t)

�
= x(t)

u(t)
2 <n+m. Let

Z0 be a set of admissible initial states in the state space<n+m. This set
can be viewed as thezone of operationof (4). From the aforementioned
definitions and considerations, the problem we intend to solve is stated
as follows.

Problem 1: Find matricesKx andKu such that the following hold.

1) System (4) is locally asymptotically stable inZ0, that is,
8z(0) = [x(0)T u(0)T ]T 2 Z0, the corresponding trajectories
converge asymptotically to the origin.

2) When the system operates inside the linearity regionRL, a cer-
tain time-domain performance specification is satisfied.

Remark 1: The model of rate-limiting we consider, is known as the
classicalrate limiter and can be viewed as a position-feedback-type
model with speed limitation [9]. As pointed in [9], for�(i) ! 1,
this model corresponds to the ideal rate limiter of Simulink. This case
corresponds also to the rate operator defined in [7].

III. SYSTEM REPRESENTATION

In order to carry out a solution to Problem 1, in this section we de-
duce a locally valid representation for system (4). The first step consists
in rewriting the saturation terms as varying parameters that depend on
the state of the system at each instant. For this, consider

• a vector�(t) 2 <m with �(i)(t)
�
=min(1; �(i)=jKx(i)x(t) +

Ku(i)u(t)j) i = 1; . . . ;m;

• a vector�(t) 2 <m with �(i)(t)
�
=min(1; �(i)=j � T(i)u(t) +

T(i)satpKxx(t) +Kuu(t)j) i = 1; . . . ; m.
From these definitions, it follows that

satp(v(t)) = (�(t))(Kxx(t) + Kuu(t)) and
satr(�Tu(t) + T satp(Kxx(t) + Kuu(t)) =
(�(t))(�Tu(t) + T (�(t))(Kxx(t) + Kuu(t))). Hence, the

closed-loop system (4) is equivalent to the following one:

_z(t) = (A (�(t)) + B (�(t)) (�(t))K) z(t) (5)

where

A(�(t)) =
A B

0 � (�(t))T

B(�(t)) =
0

(�(t))T

K =[Kx Ku]:

In particular, if z(t) belongs to the linearity regionRL it follows
that�(t) = �(t) = 1m and the behavior of the system is given by the
linear equation

_z(t) = (A+ BK)z(t) (6)

with A =
A B

0 �T
andB =

0

T
.

Consider now thatz(t) belongs to some region in the state space, not
contained inRL, such that

0 < �(i) � �(i)(t) � 1

0 < �
(i)
� �(i)(t) � 1

8i = 1; . . . ; m (7)

where�(i) and�
(i)

are lower bounds for�(i)(t) and�(i)(t). From
convexity arguments, for allz(t) belonging to the considered region
it follows that: (�(t)) 2 Cof 1(�); 2(�); . . . ; 2 (�)g and
(�(t)) 2 Cof 1(�); 2(�); . . . ; 2 (�)g where j(�) (respec-

tively j(�)) are the vertices of a polytope of diagonal matrices
whose diagonal elements can assume the value 1 or�(i) (respectively,
�
(i)

), i = 1; . . . ;m. From the matrices j(�), j = 1; . . . ; 2m, define

Aj(�) =
A B

0 � j(�)T
andBj(�) =

0

j(�)T
.

Now, from the previous definitions, we state a lemma that, as we
will see in the next section, will allow to use a mixed polytopic/norm-
bounded differential inclusion in order to conclude about the local sta-
bility of (4).

Lemma 1: Consider a vector� 2 <m and a vector� 2 <m whose
components�(i), �(i), i = 1; . . . ;m belong to the interval (0,1], and
define the following polyhedral sets:

RLp(�) = z 2 <n+m jKzj � �(�) (8)

RLr(�) = \2j=1 RLr(�)j (9)
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where RLr(�)j
�
=fz 2 <n+m; j[T j(�)Kx (�T +

T j(�)Ku)]zj � �(�)g with �(i)(�)
�
=(�(i)=�(i)),

�(i)(�)
�
=(�(i)=�(i)), 8i = 1; . . . ;m.

If z(t) 2 RLp(�) \RLr(�), then _z(t) can be computed as

2

j=1

�j (z(t)) Aj(�)+Bj(�)�1(�)K +Bj(�) (�(t))K z(t)

(10)
with�1(�)

�
= (0:5(1m+�)), j�(i)(t)j � 0:5(1��(i)),�j(z(t)) � 0,

8j = 1; . . . ; 2m and 2
j=1 �j(z(t)) = 1.

Proof: For all z(t) 2 RLp(�) \ RLr(�), one sat-
isfies (7). Consider now an auxiliary vector�(t) such that
�(i)(t) = �(i)(t) � 1 + 0:5(1 � �(i)) i = 1; . . . ; m. Hence,
8z(t) 2 RLp(�), it follows that j�(i)(t)j � 0:5(1 � �(i))
and we can conclude that_z(t) can be computed by_z(t) =
(A(�(t)) + B(�(t))�1(�)K)z(t) + B(�(t)) (�(t))Kz(t)

with j�(i)(t)j � 0:5(1 � �(i)), �1(�)
�
= (0:5(1m + �)) =

(�(t)) � (�(t)).
Considering the matrices j(�), defined from the vector�,

it follows that the matricesAj(�) and Bj(�) are the vertices
of convex polytopes of matrices. It follows that at instantt, if
z(t) 2 RLp(�) \ RLr(�) there exist scalars�j(z(t)) � 0,
8j = 1; . . . ; 2m, 2

j=1 �j(z(t)) = 1, such that_z(t) can be computed
by (10). �

IV. M AIN RESULTS

In order to solve Problem 1, we should compute a state feedback that
guarantees the local stability of system (4) in a region that contains the
setZ0. Furthermore, when this system operates in the region of lin-
earity, i.e., the closed-loop system is described by (6), a certain degree
of time-domain performance should be guaranteed. This kind of speci-
fication can, in general, be achieved by placing the poles of(A+BK)
in a suitable region of the half left complex plane. Hence, consider the
following data:

• a set of initial conditionsZ0 defined by a polyhedral set in<n+m

described by its vertices

Z0
�
=Co fv1; . . . ; vn g vs 2 <

n+m 8s = 1; . . . ; nn (11)

• a regionDp, contained in the left-half complex plane

Dp
�
=fs 2 C; (H + sG+ �sGT ) < 0g (12)

whereH = HT 2 <l�l, G 2 <l�l ands is a complex number
with its conjugate�s. This is an LMI region as defined in [14]. We
assume that if the poles of(A + BK) are located in the region
Dp, the time-domain performance specifications in the linearity
region of (4) are satisfied.

Hence, considering this data, if we are able to find a matrixK, vec-
tors�, �, and a setE in the state–space such that the setE is contrac-
tive with respect to the trajectories of the differential inclusion (10),
andZ0 � E � (RLp(�) \ RLr(�)), then we can conclude that all
the trajectories of the saturated system (4) starting inE (and, in conse-
quence, all the trajectories starting inZ0) converge asymptotically to
the origin. In this case, the setE is adomain of asymptotic stabilityfor
(4). If, in addition, the poles of(A+BK) are contained inDp, Problem
1 is solved. These ideas are formalized in the following proposition.
For notational simplicity we consider:Aj(�) = Aj , Bj(�) = Bj and
�j(z(t)) = �j .

Proposition 1: If there exist a matrixW = WT > 0, W 2
<(n+m)�(n+m), a diagonal matrixS > 0, S 2 <m�m, a matrix
Y 2 <m�(n+m), and vectors� 2 <m and� 2 <m, satisfying the
following matrix inequalities:

i)
Mj ?

�2(�)Y S
> 0, j = 1; . . . ; 2m;

ii)
W ?

�(i)Y(i) �2(i)
� 0, i = 1; . . . ;m;

iii)
1 ?

vs W
� 0, s = 1; . . . ; nv ;

iv)
W ?

�[0 T(i)]W + �(i)T(i)Y (�(i)=�(i))
2 � 0 i = 1; . . . ; m;

v)
W ?

�[0 T(i)]W + T(i)Y (�(i)=�(i))
2 � 0, i = 1; . . . ;m;

vi)
0 < �(i) � 1

0 < �
(i)
� 1 i = 1; . . . ; m;

vii) h(i;j)W + g(i;j)(AW + BY ) + g(i;j)(AW + BY )T < 0
1 � i, j � l

whereMj = �WAT
j �Bj�1(�)Y �AjW�Y T�1(�)B

T
j �BjSB

T
j ,

�1(�)
�
= (0:5(1m + �)), �2(�)

�
= (0:5(1m� �)), thenK

�
=YW�1

solves Problem 1.
Proof: Consider the setE

�
=fz 2 <n+m; zTPz � 1g with

P
�
=W�1 and the regionsRLp(�) andRLr(�) defined, respectively,

in (8) and (9). Consider alsoK = YW�1.

Satisfaction of conditions i)–vii) leads to the following facts.

1) Pre- and postmultiplying i) by
P 0

0 I
, considering

K = YW�1 and applying Schur’s complement it follows that

i) is equivalent to
Lj �KT�2(�)S

�1�2(�)K PBj
BT
j P S�1

> 0,

where Lj = �(Aj + Bj�1(�)K)TP � P (Aj +
Bj�1(�)K). Since i) holds for j = 1; . . . ; 2m, by
convexity one obtains 2

j=1 �j(z
TLjz + zTPBjq +

qTBTj Pz�
m

i=1 �(i)[z
T �(i)K

T
(i)K(i)�(i)z � q2(i)]) > 0,

8z, q and�j � 0, j = 1; . . . ;m, such that 2
j=1 �j = 1,

with �(i) denoting theith diagonal component ofS�1 and
�(i) = 0:5(1 � �(i)).

2) ii) and iv)–vi) ensure thatE � RLp(�) \RLr(�) [15], [16].
3) iii) ensures thatZ0 � E [16].
4) vii) ensures that the poles of(A+ BK) are placed in the region
Dp defined in (12) [14].

From Lemma 1, ifz(t) 2 (RLp(�) \ RLr(�)), then there
exist �j � 0, j = 1; . . . ; 2m, with 2

j=1 �j = 1, such that
_z(t) can be computed by (10) withj�(i)(t)j � �(i). Suppose
now that z(t) 2 Z0. Since ii)–v) are verified, we have that
z(t) 2 E � (RLp(�) \RLr(�)), andj�(i)(t)j � �(i), i = 1; . . . ;m.
Therefore, _z(t) can be computed by (10). Consider now that
q(t) = � (�(t))Kz(t). Since j�(i)(t)j � �(i), it follows that
z(t)T �(i)K

T
(i)K(i)�(i)z(t) � q2(i)(t). Hence, from fact 1) and taking

into account that�(i) > 0, one obtains 2
j=1 �jz(t)

TLjz(t) �

z(t)TP 2
j=1 �jBj (�(t))Kz(t)�z(t)TKT (�(t)) 2

j=1 �jB
T
j

Pz(t) > 0. Therefore, from (10), one has_z(t)TPz(t) +
z(t)TP _z(t) < 0.

Since this reasoning is valid8z(t) 2 E , we can conclude thatE is
a positively invariant and contractive set w.r.t (5) [or, equivalently, (4)]
andV (z(t)) = zT (t)Pz(t) is a strictly decreasing Lyapunov function
for (5) [or, equivalently, (4)]. Hence, we can conclude that if condi-
tions i)–vi) are satisfied withK = YW�1, it follows that8z(0) 2 Z0
the corresponding trajectory does not leaveE and converges asymptot-
ically to the origin. Furthermore, the poles of(A+ BK) are placed in
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Dp guaranteeing the performance specification in the linearity region
RL. Problem 1 is then solved if conditions i)–vii) are fulfilled.�

Remark 2: Proposition 2 gives only a sufficient condition for the
solution of Problem 1. The main sources of conservatism here are the
use of quadratic Lyapunov functions and the modeling of the system
by a differential inclusion. Note that all the trajectories of (4) inE are
trajectories of (10) but the converse is not true.

Remark 3: Although our main concern is to ensure stability when
the actuators saturate, a certain degree of time-domain performance can
be also considered when the system operates in the nonlinear region.
For example, it can be considered an eigenvalue shift in i) in order to
ensure a convergence rate and improve robustness. However, it should
be pointed out that it is not realistic to impose the same performance
requirements for the system over the linear and the saturated actuator
region.

V. COMPUTATION OF THECONTROL LAW

The variables to be found by applying Proposition 1 areW , Y , S,
� and�. Due to terms involving products between these variables, in-
equalities i), ii), iv), and v) of Proposition 1 are nonlinear, whereas rela-
tions iii), vi), and vii) are linear (i.e., they are LMIs). This fact implies
that the attempt to computeK by solving constraints i)–vii) directly as
a feasibility problem, in the variablesW , Y , S, �, and�, is very diffi-
cult (it is an NP-hard problem) or even impossible.

A way to overcome this problem is to fix,a priori, the value of the
components of� [11], [15] and�. In this case, all inequalities become
LMIs and, given (Z0,Dp), it is possible to solve constraints i)–vii) of
Proposition 1, as a feasibility problem, with efficient numerical algo-
rithms [16]. Of course, considering the fixed vectors� and� and the
given data, it may actually be impossible to find a feasible solution. In
fact, considering a scaling factor�, � > 0, the maximum homothetic
set toZ0, denoted�?Z0, that can be stabilized using the proposed ap-
proach, considering the fixed� and�, can be obtained by solving the
following convex optimization problem with LMI constraints:

max �
subject to

1 �vTs

�vs W
> 0 8s = 1; . . . ; nv

i),ii),iv),v) ; and vii) of Proposition 1.

(13)

Hence, if the optimal value of�, �?, is greater or equal to 1, it means
that it is possible to find a solution considering the fixed� and� for
the given data (Z0, Dp).

If a linear solution for Problem 1 is desired, that is, if one does not
want to excite the saturation nonlinearities, it suffices to consider� =
� = 1m in the optimization problem (13). In this case,Aj = A,
Bj = B, 8j = 1; . . . ; 2m; �1(�) = Im, �2(�) = 0 The optimal
solution for (13) obtained with� = � = 1m corresponds then to the
larger� achievable with a linear controller, i.e., the larger region�Z0,
for which it is possible to ensure quadratic stability with a linear control
law v(t) = Kz(t) = YW�1z(t). On the other hand, we conjecture
that the choice of the components of� and� smaller than 1 can be
useful in order to obtain a greater value for� in (13). In other words, the
degree of freedom in the choice of� and� can be explored to stabilize
larger domains of admissible initial states in the presence of the pole
placement constraints (see the numerical example). In fact, smaller are
the components of� and�, larger is the region(RLp(�) \ RLp(�))
where the invariant ellipsoid containingZ0 can be included.

In this case, two issues arise: how to choose the initial vectors� and
� and how exactly to decrease the components of� and� (if �? < 1).

One simple way of handling these issues is to apply trial and error
procedures. In particular, for the single-input case, it is possible to seek
the optimal solution of (13) over a grid on� and�. For the general
multiple-input case, we can seek for a suboptimal solution by using an
iterative algorithm, where in each step, two or three variables are fixed
and a convex optimization problem with LMI constraints is solved.

Algorithm 1:

• Step 1: Fix � and�, solve (13) forW , Y , S, and�.
• Step 2: Fix � andY , solve (13) forW , S, �, and�.
• Step 3: Fix W , Y , S, and� solve the following optimization

problem:

min
�

m

i=1

�
(i)

subject to
i),iv),v), and vi) of Proposition 1:

(14)

The iteration between these three steps stops when a desired preci-
sion for� is achieved. If�? � 1, it means that it is possible to stabilize
(4) for all initial conditions inZ0 by considering the pole placement
of (A + BK) insideDp. In particular, all intermediate solutions with
� > 1 are solutions to Problem 1. In this case, another optimization
scheme can be used in order to select a gain, under a performance cri-
terion (see, for example, [3]). Although conservative (in the sense that,
in general, the optimal solution is not achieved) this kind of approach
solves, in part, the problem of the choice of vectors� and� by using
robust and available packages to solve LMIs [17]. Furthermore, it is
worth noticing that since pair (A, B) is controllable, there will always
exist a solution for (13) for� = � = 1m. Hence, if we start the al-
gorithm with� = � = 1m, the convergence to a solution (W ?, Y ?,
S?, �?, �?, �?) is ensured. This follows from the fact that an optimal
solution for one step, is also a feasible solution for the next step. Of
course, taking different initial vectors� and�, the proposed algorithm
can converge to different values of (W ?, Y ?, S?, �?, �?, �?). Fur-
thermore, other relaxation schemes can be considered. For example, a
fourth step considering the minimization of the sum of�(i), could be
added to the algorithm.

Remark 4: Although we claim that the fact of taking smaller values
for �(i) and�

(i)
can lead to obtain larger� in the presence of the pole

placement constraint, it does not mean that the components of� and
� can be indefinitely decreased. In fact, considering� and� as free
variables in (13), the optimal� is not obtained for�(i) ! 0 and�

(i)
!

0 (see examples in Section VI). Furthermore, note that if�(i) and�
(i)

are excessively reduced, (13) may be not feasible. This can be justified
by the following.

• We consider a differential inclusion for representing the behavior
of the nonlinear system. Hence, implicitly, we are somewhat
dealing with the stabilization of an uncertain system. In this case,
the uncertainty degree is greater for smaller�(i) and�

(i)
.

• Considering strictly unstable open-loop systems it is well known
that the global stabilization cannot be achieved. Considering
�(i) ! 0 and�

(i)
! 0, RL(�) \ RL(�) would approach the

whole state–space, however the region of attraction would be
limited.

Remark 5: It should be pointed out that, during the review process
of this note, a conference paper addressing the problem of linear sys-
tems with nested saturations has been published [18]. It appears that the
approach proposed in that paper (similar, in the principle, to our first re-
sults concerning the rate saturation problem published in [19]) can pro-
vide a way of avoiding the nonlinearities and the relaxation schemes,
by a direct LMI formulation.
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TABLE I
= 1, = 10

VI. EXAMPLES AND CONCLUDING REMARKS

Example 1: Let (1) be described by the following matrices:

A =
0 1

10 �0:1
B =

0

1
T = 20:

Let the set of admissible initial conditions be given by an hypercube in
<3 : Z0 = fz 2 <3; �1 � z(i) � 1; 8i = 1; . . . ; 3g. Given these
data, the objective is to solve Problem 1. We consider that the perfor-
mance specification in the linearity region was translated as the place-
ment of the poles of(A+BK) in the regionDp = fs 2 C; Refsg <
��; � > 0g. Notice that the greater is�, the farther from the origin
are the poles of(A+BK), and greater tends to be the speed of the con-
vergence of the trajectories to the origin inside the region of linearity.

Considering� = 1, � = 10 and the scaling factor�, Table I shows
the value of�(�lin) obtained in the linear case (i.e. for� = 1 and
� = 1), and optimal values of�(�?), �(�?) and�(�?), obtained from
the solution of (13) considering different values for�. eigmax denotes
the maximal eigenvalue of(A + BK) corresponding to the optimal
solution.1

The following facts can be noticed.

— If no performance constraint is considered(� = 0), the best
value of� is obtained. However, the poles of(A+ BK) are
very close to the imaginary axis.

— For� 6= 0, the best solution is obtained in the saturated case.
Note that the optimal values for� and� are smaller than 1.
For instance, the optimal� obtained for� = 5 is about 40%
larger than the one obtained in the saturation avoidance case
(i.e., for� = 1 and� = 1). This means that the proposed
approach allows to obtain solutions to Problem 1 for larger
sets of admissible initial states when performance (or robust-
ness) constraints are considered.

Considering the case with� = 0:5, one obtains

W =

0:0048 �0:0238 0:0501

�0:0238 0:1381 �0:4387

0:0501 �0:4387 3:1613

:

Fig. 1 depicts the control response for this case considering two initial
conditions belonging to the stability setE . It can be noticed the effective
saturation of_u(t) andv(t).

Consider now the case without rate saturation(� =1). Table II de-
picts the optimal values for the optimization problem (13). The max-
imum � is obtained for the linear case(� = 1) with � = 0. This is in
accordance with the result of [13]. Note, however, that in this case the
eigenvalues of the linear system are very close to the imaginary axis.
Considering� 6= 0, the best� is achieved considering saturation, i.e.,
� 6= 1.

1Since the system is single-input the optimal solution can be approached with
a desired precision by a gridding procedure.

Fig. 1. Simulation results considering: (0) = [0 0326
0 2803 1 2994] (dashed–dotted); (0) = [ 0 0028 0 0306
1 0440] (continuous).

TABLE II
NO-RATE CONSTRAINTS, = 1

TABLE III
ALGORITHM PERFORMANCE

Example 2: Consider the matrices of the system given by [12]

A =

�0:0366 0:0271 0:0188 �0:4555

0:0482 �1:0100 0:0024 �4:0208

0:1002 0:2855 �0:7070 1:3230

0 0 1:0000 0

B =

0:4422 0:1761

3:0447 �7:5922

�5:5200 4:4900

0 0

T =
20 0

0 15
:

Notice that matrixA is unstable (the eigenvalues ofA are:�1.9809,
�0.3340,0:2807� j0:0952). Consider that the bounds on the control
are given by� = [5 2]T and� = [2 5]T and the set of admissible
initial conditions is an hypercube in<4 : Z0 = fx 2 <4; u = 0;
�1 � x(i) � 1; 8i = 1; . . . ; 4g. LetDp be defined as in Example 1.

Considering the aforementioned data, Table III shows the final
values of�, � and� obtained from the iterative algorithm proposed
in Section V for different�, considering the initialization of� and�
as[1 1]T . �lin corresponds to the best solution considering the linear
case(� = � = [1 1]T ).

Regarding Table III, the same comments done in the previous ex-
ample apply now for the multiple-input case. Note that for� = 0,
the best solution is obtained for the linear case. However, the poles of
(A + BK) are in this case very close to the imaginary axis. On the
other hand, it can be noticed that for� 6= 0, by allowing saturation, it
is possible to stabilize the system for a larger set of initial conditions.
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Solving the Scalar Feedback Nash Algebraic Riccati
Equations: An Eigenvector Approach

Jacob C. Engwerda

Abstract—In this note, we present an algorithm to compute all solutions
of the scalar algebraic Riccati equations that play an important role in
finding feedback Nash equilibria of the scalar -player linear-quadratic
differential game. We show that all appropriate solutions can be obtained
by analyzing the eigenstructure of a related matrix.

Index Terms—Eigenvalue problem, feedback Nash equilibria,
nonzero-sum linear quadratic differential games, Riccati equations.

I. INTRODUCTION

A well-known open problem in the area of differential games is to
find a numerical algorithm to calculate all stabilizing solutions of the
feedback Nash algebraic Riccati equations (AREs) (see, e.g., [2, Sec.
6.5] for precise definitions and survey of relevant literature). Each
stabilizing solution of these equations determines a so-called feedback
Nash equilibrium in a noncooperative linear quadratic differential
game. Problems of this type were first analyzed by Case [4] and Starr
and Ho [15]. Nowadays, these games are, e.g., often used in studying
problems in the area of environmental economics and macroeconomic
policy coordination (see, e.g., [6] for references). For the multivariable
case a number of algorithms have been proposed for calculating a
solution of the ARE (see, e.g., [8], [16], [13], and [9]). All these
algorithms have in common that whenever they converge, they only
provide one solution of the ARE. Obviously, particularly when there
is no additional information that a certain type of equilibrium point is
preferred, one would like to have an overview of all possible equilibria.
In this note, we will present an eigenvalue-based algorithm which
gives us all equilibrium points. In [1] (see also [5]), it was shown that
the solutions of the ARE corresponding with the open-loop Nash game
can be obtained by analyzing the eigenstructure of a matrix that can be
deduced from the system matrices. Papavassilopouloset al.considered
in [14] already a similar geometric approach for the feedback Nash
ARE. Their approach requires the finding of subspaces which satisfy
simultaneously some invariance properties. However, up to now, it is
unknown how to find these subspaces. Two other different interesting
methods that have been proposed in the past for finding all isolated
solutions to a system of polynomial constraints over real numbers
are interval methods (see, e.g., [17] for references) and continuation
methods (see, e.g., [12] and [18]). Continuation methods have been
shown to be effective for problems for which the total degree is not too
high, since the number of paths explored depends on the estimation
of the number of solutions. Interval methods are generally robust but
used to be slow. The recent approach taken in [17], however, seems to
overcome this bottleneck and be rather efficient.1

In this note, we present an algorithm which is comparable to the
aforementioned eigenstructure algorithm for determining the solutions
of the open-loop ARE. Again, first one has to construct from the system
parameters a certain matrixM . The equilibria of the game can then
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