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Robustness of Global Asymptotic Stability in Indirect
Field-Oriented Control of Induction Motors

R. Reginatto and A. S. Bazanella

Abstract—The influence of the rotor time constant mismatch on the
global stability of induction motors under indirect field oriented control
(IFOC) is analyzed. A test for global stability is provided, based on neces-
sary and sufficient conditions for the existence of quadratic Lyapunov func-
tions for IFOC drives. This test yields robustness margins with respect to
rotor time constant mismatches. A typical example is presented to show that
the robustness margins obtained are significantly less conservative than the
ones obtained with previously proposed stability criteria.

Index Terms—Global asymptotic stability, indirect field-oriented control
(IFOC), induction motors, robustness.

I. INTRODUCTION

The indirect field oriented control (IFOC) methodology is widely
and successfully applied to meet high performance requirements with
induction motor drives. The commissioning of an IFOC drive requires
the knowledge of the rotor time constant, a parameter which can vary
largely during the drive’s operation. The consequent mismatch between
the actual value and the commissioned value causes loss of field ori-
entation, implying important performance and stability problems [6],
[9]–[12]. Analysis of the robust stability of IFOC drives is therefore a
major issue and as such has been pursued in [1], [3]–[5], [7], [13], and
[14].

The existence of parameter ranges for which IFOC drives can present
several equilibrium points has been proved in [7] and a complete char-
acterization of the dependence of the equilibria on the rotor time con-
stant mismatches has been given in [4]. Local stability properties of
these equilibria have been investigated in [1], [4], [14] through bifur-
cation analysis; conditions for nonexistence of neither saddle-node nor
Hopf bifurcations were provided. Guidelines for setting the speed or
position controller in order to guarantee a certain local asymptotic sta-
bility margin with respect to rotor time constant mismatches for a prac-
tical load range were given [2].

A quadratic Lyapunov function for IFOC drives has been derived in
[7], proving its robust global asymptotic stability. A generalization of
this Lyapunov function has allowed to derive explicit formulae to con-
clude about robust global asymptotic stability in [4]. A passivity based
analysis has been used in [8] to conclude about robust global asymp-
totic stability in the special case of zero load operation. In this note, we
completely characterize quadratic Lyapunov functions for IFOC drives
in speed or position control tasks, thus generalizing the aforementioned
results. A procedure for determining guaranteed global asymptotic sta-
bility margins is presented which is significantly less conservative than
the ones obtained with the previous results, and guidelines for setting
the speed (or position) controller are derived from these calculations.

The note is organized as follows. Section II formulates the problem
and provides the complete model for the induction motor with IFOC;
the model is valid both for proportional-integral rotor speed regulation
and for rotor position regulation through proportional-derivative con-
trol. The model is parameterized in the rotor time constant mismatch,
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which allows for the robustness analysis. In Section III, an explicit
condition to conclude about global asymptotic stability is provided,
which also yields a test for robustness of the global stability property
regarding rotor time constant mismatches. This test is explored in Sec-
tion IV to obtain robust global asymptotic stability margins in an ex-
ample, showing that it is much less conservative than the ones previ-
ously presented [3], [7]. Finally, Section V provides a discussion on the
results obtained.

II. SYSTEM MODEL AND EQUILIBRIA

A. IFOC Modeling

We consider the current fed induction motor model expressed in a
reference frame rotating at synchronous speed. In terms of state vari-
ables, this model can be written as

_x1 = � c1x1 � u1x2 + c2u3 (1)

_x2 = � c1x2 + u1x1 + c2u2 (2)

_w = � c3w + c4 [c5(x2u3 � x1u2)� Tm] (3)

wherex1 andx2 represent theq-axis andd-axis rotor fluxes, respec-
tively, w is the rotor speed,u1, u2 andu3 stand for the inputs—the
slipping frequency, thed-axis andq-axis stator current components,
respectively;Tm is the load torque, which is assumed constant, and the
“c” parameters are all positive. In particular,c1 represents the inverse
of the rotor time constant, which is a critical parameter for indirect field
oriented control.

In speed regulation applications the IFOC strategy is usually applied
along with a PI speed loop as described by the following equations [7],
[12]:

u1 = ĉ1
u3

u2
(4)

u2 =u
0

2 (5)

u3 = kp(wref � w) + ki

t

0

(wref � w)(�)d� (6)

whereĉ1 is an estimate for the inverse rotor time constantc1, kp andki
are the gains of the PI speed controller,wref is the constant reference
velocity andu02 is a constant which defines the flux level.

The knowledge ofc1 is a key issue in IFOC commissioning. Ifĉ1 =
c1, that is, if we have a perfect estimate of the rotor time constant, we
say that the IFOC is tuned, otherwise, it is said to be detuned. Accord-
ingly, we define

�
�
=

ĉ1

c1
(7)

as the degree of tuning. It is clear that� > 0 and the IFOC is tuned if
and only if� = 1.

We parameterize the closed-loop system (1)–(3) with the control
(4)–(6) (see Fig. 1) in terms of the degree of tuning�, yielding a fourth-
order system that can be described as

_x1 = � c1x1 + c2x4 �
�c1

u0
2

x2x4 (8)

_x2 = � c1x2 + c2u
0

2 +
�c1

u0
2

x1x4 (9)

_x3 = � c3x3 � c4 c5 x2x4 � u
0

2x1 � Te (10)

_x4 = kcx3 � kpc4 c5 x2x4 � u
0

2x1 � Te (11)

where we have defined the new state variablesx3
�
= wref � w and

x4
�
= u3 and the new parameters

kc
�
= ki � kpc3 Te

�
= Tm +

c3

c4
wref : (12)
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Fig. 1. Block diagram of IFOC.

For position regulation (6) is substituted by a proportional-derivative
controller

u3 = Kp(�ref � �) +Kd

d(�ref � �)

dt
(13)

where� is the rotor position and�ref is the constant position reference.
Defining the new state variablesx3 andx4 as before (withwref = 0)
and observing that_�ref = 0 almost everywhere yields

_x4 = �Kp
_� �Kd

�� = Kpx3 �Kd _w

=Kcx3 �Kdc4 c5 x2x4 � x1u
0
2 � Tm (14)

which is the same as (11) but withKc = Kp �Kdc3 in lieu of kc and
Kd in lieu of kp. Since the resulting dynamic model for the position
regulation is the same as for speed regulation with zero reference speed,
all the results derived for speed regulation are also valid for position
regulation, and we henceforth treat only the constant speed regulation
case.

B. Tuned System

A constant rotor flux must be established inside the motor before
the systems can be operated. This is called the magnetization phase
of IFOC, and is achieved by applyingu2 = u02, u1 = 0, wref = 0
to the motor in stand-still condition. The steady-state reached under
these conditions is given byx = xo = [0; (c2=c1)u

0
2; 0; 0]

0, which is
considered the initial state for IFOC operation.

In the case of tuned operation,� = 1, the model (8)–(11) simplifies
considerably. First, notice that starting fromx(0) = xo, the fluxes
x1 andx2 remain constant for all times, regardless of the behavior
of x4. Now, taking this into account, the remaining (10)–(11) can be
rearranged as

_x3
_x4

=
�c3 �

c c c u

c

(ki � kpc3) �

k c c c u

c

x3
x4

+
c3 c4
kpc3 kp

wref

Tm
(15)

which is a second-orderlinear system. We shall refer to the dynamic
system (15) as thetuned system, which is usually taken as a base for
setting the PI gains.

C. Shifting the Equilibrium

The equilibria of (8)–(11) are given by

xe1
xe2
xe3
xe4

=

c u

c

1��

1+� r
r

c u

c

1+�r

1+� r

0

u02r

(16)

where the dimensionless variablesr
�
= xe4=u

0
2 and r�

�
=

(Tec1)=(c5c2(u
0
2)

2
), have been defined. The constantr� repre-

sents the normalized load, since it is proportional to the electrical

torque developed in steady state. The parameterr can be shown to
satisfy the polynomial equation [4]

�r3 � r��2r2 + �r � r� = 0: (17)

The equilibria are parameterized in terms of a single dimensionless
quantityr, which satisfies (17). Each real solution of (17) represents
an equilibrium. Since this is a third-order polynomial equation, there
are either one or three equilibria. Since the coefficients of this equation
are functions only of the degree of tuning� and the normalized load
r�, these two parameters completely define the equilibria. A complete
characterization of equilibria has been given in [4] where it has been
shown that the equilibrium is unique if and only if� � 3.

Consider an arbitrary equilibrium and define the change of coordi-
natesz

�
= x�xe. Writing the system (8)–(11) in these new coordinates

and using (16) yields

_z= [A0(�; r
?) + z4A1(�)] z (18)

with

A0(�; r
?)=

�c1 �c1r� 0 c2(1� �) 1+�r

1+k r

r�c1 �c1 0 �c2
1��

1+� r
r

c4c5u
0
2 �c4c5u

0
2r �c3 �

c c c u

c

1+�r

1+� r

kpc4c5u
0
2 �kpc4c5u

0
2r kc �

k c c c u

c

1+�r

1+� r

(19)

A1(�)=

0 �
�c

u
0 0

�c

u
0 0 0

0 �c4c5 0 0

0 �kpc4c5 0 0

(20)

which presents an equilibrium at the originz = 0.
It can be seen from (16) and (17) that an operating condition is

uniquely defined by the values of normalized loadr� and degree of
tuning�. For any given operating condition,A0 andA1 are constant
matrices, so that the system equation presents two terms: a linear term
due toA0 and a bilinear term given byA1.

III. M AIN RESULT

Let us take a quadratic Lyapunov candidate

V (z) = zTPz; P = P T > 0: (21)

Then the derivative ofV along the trajectories of (18) is

_V (z) = zT AT
0 (�; r

�)P + PA0(�; r
�) z

+z4z
T AT

1 (�)P + PA1(�) z (22)

and we have the following result.
Theorem 1: Consider a given parameter mismatch� and normal-

ized loadr�. If there exists a matrixP satisfying the following condi-
tions:

AT
1 (�)P + PA1(�) = 0 (23)

AT
0 (�; r

�)P + PA0(�; r
�) < 0 (24)

P = P T > 0 (25)

then the origin of (18) is globally asymptotically stable.
Proof: It is clear that (23) and (24) imply that the Lyapunov

derivative (22) is negative definite globally and (25) implies that the
Lyapunov candidate (21) is positive–definite globally.

Notice that these conditions are actually necessary and sufficient for
a quadratic Lyapunov function to guarantee global asymptotic stability
(g.a.s.).

Theorem 2: A quadratic Lyapunov function of the form (21) ensures
global asymptotic stability of the origin of the system (18) for given
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parameter mismatch� and loadr� if and only if there exists a matrix
P such that the matrix relations (24), (23), and (25) are satisfied.

Proof: The “if” part is given in the previous theorem. On the other
hand, if (23) is violated there will always exist az4 which will make
the second term in the derivative positive and larger in modulus than
the first term, so that the derivative can not be globally negative in this
case.

Conditions (24), (23) and (25) define a class of Lyapunov functions
for the system (18) of quadratic form. Interestingly, any quadratic Lya-
punov function must satisfy these conditions. Thus, in particular, the
Lyapunov functions proposed in [3] and [7], which are also quadratic,
are special cases belonging to this class. Indeed, the Lyapunov func-
tion proposed in [3] corresponds to a special choice of theP matrix
and satisfiesAT

1 (�)P + PA1(�) = 0 for all �.
These conditions are in the standard form of linear matrix inequali-

ties and equalities (LMIs and LMEs, respectively) and as such can be
solved with standard software. They provide a simple verification pro-
cedure to conclude about global asymptotic stability for any particular
IFOC induction motor drive in any particular operating condition. They
also provide a way to determine robust global asymptotic stability mar-
gins with respect to� for such systems, i.e., for a given PI setting and
loading conditionr� find, if possible, a range of� for which global
asymptotic stability of system (18) is guaranteed. That such a range
does exist around� = 1 for any PI setting and load condition has
been proven elsewhere [3], [7]. Its determination can be accomplished
through the following steps.

4) Define the range of interest for variation of the parametersP
�
=

f[�min; �max] � [r�min; r
�

max]g and a mesh of points inside this
range.

5) For each point in the mesh above, run the LMI/LME problem
(23), (24), and (25).

6) All the points in the mesh for which the problem is feasible rep-
resent a globally asymptotic stable operating condition.

IV. DETERMINATION OF ROBUSTNESSMARGINS

The real solutions of (17) give the equilibrium values ofr for any
given degree of tuning -�- and any given load -r�. We know that (17)
has a unique real solution for any load if and only if� � 3 [4]. Hence,
g.a.s. can be obtained for all load only within this range of parameter
mismatch. This is also the practical range of variation of this parameter
in most drives, as practical variations of the rotor time constant due to
temperature and load variations are usually within 200% [9]. Accord-
ingly, since in this note we are concerned with g.a.s., we consider only
the parameter range� � r� 2 f(0;3)� <g.

Theorem 1 provides a test for global stability which can be applied
for any motor in any operating condition. This test is a generalization
of the previously presented robustness criteria [4], [7], [8]. The matrix
equations in the test depend on all the parameters of the drive, which
can be divided into four sets

• the physical parameters of the motor (the ‘c’ parameters);
• the setting of the PI (kp andki);
• the load(r�);
• the mismatch in the rotor time constant(�).

In order to get a better insight to the problem and establish typical
robustness margins we apply the global stability test to data taken from
a real induction motor. We aim to study, for a given motor and a given
setting of the PI speed loop, what is the region of the parameter plane
�� r� for which global stability is achieved. To this end, we apply the
test with thec parameters,kp andki fixed, varying� andr� in the set
of practical significance(�; r�) 2 (0; 3)� [0; 2].

Furthermore, we perform this procedure for different settings of the
PI speed loop, in order to verify its influence on the robustness of the

(a)

(b)

Fig. 2. Parameter range of g.a.s. for the 1-HP motor,� = 2.

global stability. The PI parameters are usually set in order to provide
a desired performance to the system under the assumption of perfect
tuning (� = 1). The closed-loop poles of the tuned system are the
roots of the characteristic polynomial

pT (s) = s2 + (c2 + kpK)s+ kiK (26)

whereK
�
= (c2c4c5u

0

2)=c1, which can be arbitrarily assigned by
choosingkp andki. We assume that the PI is set so that the tuned
system’s transient response is over damped and is� times faster than
the rotor time constantc1, i.e,

s2 + (c2 + kpK)s+ kiK = (s+ �c1)
2: (27)

Then the parameter� is used to represent the PI setting. That this
is a one to one parameter mapping has been shown in [2]. It was also
shown in [2] that the equilibrium point is locally asymptotically stable
for all � 2 (0; 3) andr� 2 [0; 2] provided that� � 23.

Remark 1: Other choices of closed-loop poles in (27) could be
considered for this analysis. For instance,pT (s) = s2+2�c1s+2�2c21
would be a choice for a critically damped transient response and the
above analysis could be easily replicated for this case. The choice (27)
is motivated by the observation that the choice of real eigenvalues
seems to be the most favorable one regarding the stability margins and
transient performance [2].

In order to verify the effectiveness of the proposed global stability
test (Theorem 1), we compare the region in the parameter space� �
r� for which global asymptotic stability of IFOC is guaranteed by the
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Fig. 3. Parameter range of g.a.s. for the 1–HP motor,� = 10.

proposed test with the one guaranteed by the test given in [4]. Recall
that the class of Lyapunov functions from which the test of [4] is derived
is a subset of the class defined in this note. Recall also that the Lyapunov
function given in [7] is a particular case in this subset.

We take data from a three phase induction motor, with 1-HP rated
power output and 220-V rated line voltage. The parameters of the motor
are given in the Appendix. Let the parameters of the PI be chosen as in
(27) with � = 2. Then, we apply the global stability test for� andr�

over a grid in the rectangle(0; 3)� [0; 2]. Fig. 2 shows the region of
the parameter space�� r

� for which the test gives a positive answer:
plot (b) shows the results obtained with the LMI/LME criterion in this
note; the results obtained with the criterion in [4] are shown in plot (a).
The operating point is guaranteed to be globally asymptotically stable
for all load and parameter mismatch in the dotted region.

One can see that the range of parameters for which g.a.s. is guaran-
teed is larger with the proposed LMI/LME criterion. As faster response
is assigned through the PI settings, the improvement on the stability
margins is even more evident. This can be seen in Figs. 3 and 4, which
show the cases for� = 10 and� = 20. For faster system’s response
the new LMI/LME is far less conservative.

For moderate values of�, that is, when the system is not made too
fast by the PI settings, global asymptotic stability is guaranteed for
most practical values of� andr�. As the system is made faster, the
range of parameter values for which g.a.s. is guaranteed gets smaller,
particularly for� < 1. For � = 20 this range is much smaller than
the practical range of interest. Recall that for� > 23 not even local
stability is obtained for all� in the range(0; 3).

Fig. 4. Parameter range of g.a.s. for the 1–HP motor,� = 20.

V. DISCUSSION

We have provided a test for robust global asymptotic stability of
IFOC which can be easily implemented provided the physical param-
eters of the motor are known. This test provides allowable margins of
errors in the rotor time constant for any given IFOC drive.

The proposed test generalizes previous results based on quadratic
Lyapunov functions. It provides the largest global asymptotic stability
margins for IFOC, with respect to rotor time constant mismatches, that
can be estimated by means of quadratic Lyapunov functions. Results
provided for a particular IFOC drive have confirmed such improvement
with respect to previous methods.

The proposed robust stability test also provides a means to tuning
the PI speed/position regulators for IFOC drives. By choosing prac-
tical ranges of parameter and load variations (� andr�), global asymp-
totic stability can be ensured for that range by iteratively applying the
stability test for different PI settings. Rules of thumb can also be de-
rived from these results as guidelines for such tuning: the speed loop
should not be made too fast, as the robustness margins would become
too small. This rule is consistent with the local asymptotic stability
analysis provided in [1], [3], [7], and [8].

APPENDIX
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Universal Disturbance Rejection for Nonlinear Systems
in Output Feedback Form

Zhengtao Ding

Abstract—This note deals with global disturbance rejection via output
feedback of a class of uncertain nonlinear systems subject to a class of un-
known disturbances. Both the uncertainty in the system model and the
uncertainty in the exosystem are tackled concurrently. The disturbances
generated from an unknown linear exosystem are completely rejected. The
order of the exosystem is assumed known, and the eigenvalues are distinct.
The system is assumed in the format of the minimum-phase output feed-
back form, with no knowledge of the values of any system parameters, in-
cluding the high-frequency gain. No other assumptions are needed in the
control design. A new set of filters are introduced for state estimation. The
stability of the internal model is exploited to design a new auxiliary error,
involving both the unknown parameters of the reformatted exosystem and
those of the system, which makes it possible to group all the unknown pa-
rameters in a format suitable to adaptive control design. A Nussbaum gain
is introduced in adaptive control design to tackle the unknown high-fre-
quency gain and a number of control coefficients are also made adaptive so
that the disturbance rejection is global with respect to unknown frequen-
cies in the disturbances.

Index Terms—Adaptive control, backstepping, disturbances rejection,
nonlinear systems, output regulation, uncertainty.

I. INTRODUCTION

One of the important concepts for disturbance rejection is the in-
ternal model principle. Recently, the internal model principle has been
extensively exploited in the context of output regulation for nonlinear
systems. In the seminal results shown in [1] and [2], the necessary and
sufficient conditions for the existence of a local full information reg-
ulator are that the linearized system is stabilizable and there exists a
certain invariant manifold [1]. A semiglobal extension to these results
for a class of feedback linearizable systems is reported in [3] using
a saturated high-gain observer [4]. Output regulation by error feed-
back is solved [5], [6] with the application of system immersion tech-
nique. A semiglobal adaptive output feedback control is presented in
[7] for nonlinear systems represented by input–output models, using a
high-gain observer. Global solutions for output regulation using state or
partial-state feedback are shown for strict feedback systems in [8] and
for extended strict feedback systems in [9]. Recently, a global result
of robust regulation has been achieved for a class of nonlinear output
feedback systems that cannot be linearized [10]. For the same class of
nonlinear systems considered in [10], but with unknown parameters, an
adaptive version of global output regulation has been achieved using a
new dynamic swapping technique for state estimation in [11], and the
result is extended to the case where the sign of high-frequency gain is
unknown as well in [12].

A breakthrough in rejecting disturbances generated by an unknown
exosystem is reported in [13], where an adaptive internal model is
used to generate the parallel forward control component, based on a
new formulation of the exosystem, for the complete rejection of distur-
bances with unknown frequencies for parametric-strict-feedback sys-
tems using state feedback. The new formulation of exosystem is soon
used in semiglobal output regulation for nonlinear systems in normal
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