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micturition process. Here, we have used the new algorithm to examine
more clearly the signal frequencies and persistent signal intensities of
EUS and bladder at the same time.

The datasets can be obtained from: http://oz.nthu.edu.tw/
~d907911/FD.html

IV. CONCLUSION

The main advantage in our approach is that the signal frequencies
and fractal dimensions can be obtained via the SDF simultaneously.
The only demerit in this approach is that the computational amount is
not of the same order as conventional FFT. However, when accuracy
is more important, the proposed method will be more desirable. It is
believed that one can benefit from using this proposed method in the
evaluation of physiological functions.
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The Use of Wavelet Packet Transform and Artificial
Neural Networks in Analysis and Classification

of Dysphonic Voices

César David Paredes Crovato and Adalberto Schuck*

Abstract—This paper presents a dysphonic voice classification system
using the wavelet packet transform and the best basis algorithm (BBA) as
dimensionality reductor and 06 artificial neural networks (ANN) acting as
specialist systems. Each ANN was a 03-layer multilayer perceptron with 64
input nodes, 01 output node and in the intermediary layer the number of
neurons depends on the related training pathology group. The dysphonic
voice database was separated in five pathology groups and one healthy con-
trol group. Each ANN was trained and associated with one of the 06 groups,
and fed by the best base tree (BBT) nodes’ entropy values, using the mul-
tiple cross validation (MCV) method and the leave-one-out (LOO) variation
technique and success rates obtained were 87.5%, 95.31%, 87.5%, 100%,
96.87% and 89.06% for the groups 01 to 06, respectively.

Index Terms—Acoustical analysis of voices, artificial neural network,
dysphonic voice classification, wavelet packet transform.

I. INTRODUCTION

The Videolaringoscopy and the Videostrobolaringoscopy are well
established procedures for larynx pathology diagnosis [1]. However,
many alternative techniques for automatic classification of voice
quality have been proposed, based on linear prediction coding (LPC)
and inverse filtering [2]–[4], artificial neural network (ANN) [5]–[7],
acoustical indexes [8]–[10] and time-frequency techniques [11]–[15].

Because of insufficient number of subjects in some pathology group,
in [10] the voice samples were grouped in six clusters based on acoustic
and similarity of sounds. These groups are Chronic Laryngitis, Degen-
erative, Incorrect Mobility, Organic Alterations, Organic Growths, and
Normal.

In [13], a linear discriminator between normal and pathological sub-
jects based on wavelet packet (WPT) and best basis algorithm (BBA)
is presented. This classifier is based on the presence or absence of cer-
tain best base tree (BBT) nodes for each sample of voice. The base
function and cost function were Symlet 5 and Shannon Entropy, respec-
tively; this choice gave better sensibility for detecting pathologies and
higher gender insensibility. In [14], the authors proposed an extension
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TABLE I
NUMBER OF HIDDEN NEURONS VERSUS FINAL ERRORS

of [13], using a multilayer perceptron (MLP) to obtain a nonlinear dis-
criminator between normal and dysphonic subjects’ voices. The ANN
was fed by the BBT nodes entropy values, and cross validation (CV)
[16] for performance evaluation.

This paper proposes the use of WPT, BBA, and ANN to classify
the voices in the database used in [13] and [14], in some of the
pathology groups proposed in [10], now using the multiple cross
validation (MCV) validation method and the leave-one-out (LOO)
technique [16].

II. SYSTEM PROPOSED

A. Feature Extraction System: WPT, BBA, and BBT

According to [17], the wavelet packet (WP) coefficients can be cal-
culated by

�sf (p) = hwsfp; xi =
<

2�s=2
wf(2

�s
t� p)x(t)dt (1)

where s is the scale index, p is the translation index, and ef is the
frequency index; f; s; p 2 <.

As described in [18], to perform the WPT, the wavelet function (wf)
used was Symlet 5 up to level s = 5. The BBA chooses the BBT based
on the analysis of some cost function, all the other bases are pruned. In
[13], [14] and this paper, the cost function used was Shannon Entropy.
It is interesting to note that the morphology of the orthogonal BBT
obtained, depends on the characteristics of the original signal x, and
the wavelet and cost functions chosen to decompose the signal. This
feature makes the WPT and BBT a preclassifier system, as discussed
in [13].

B. Classification System: A Neural Network System

Classification is performed by a system composed by 6 ANN trained
to identify each pathology group proposed in [10]. The use of 6 ANN,
instead of one with 6 outputs, is justifiable by the fact that the non-
linearity degree in the input space can be evaluated, according to the
number of hidden neurons [16], the number of hidden neurons increase
if the input space heave more relevant characteristics for classification.

The entries were the BBT entropy values. These ANN are MLP with
3 layers with tanh as activation function and were trained by a BKP
algorithm. The output can be evaluated by looking for the i-esim output
of each i independent ANN. The threshold of acceptance of positive
identification in the group i is: yi � 0, PAC 2 Groupi. The statistic
tool used to select and test the models was MCV. The metric used to
evaluate the evolution of training and validation was the mean average
percentual error (MAPE). [16].

III. METHODS AND MATERIALS

A. Pathologic Voices Database

The voices in the database (as described in detail in [18]) were
recorded at Dr. N. Steffen’s office, at PUCRS Hospital. Each subject
was diagnosed using videolaryingoscopy and videostrobolaryin-
goscopy. The sounds recorded were the emissions of the sustained
vowel /a/. Each recording was digitized with a rate of 25 ksps [14], and
the most stable part of the signal was chosen to be analyzed. A total
of 64 voice samples were effectively used. This number of samples is
realistic and compatible with the existing works. Besides, a 7th group
containing all the pathologies not quoted in the other groups in [10],
was added to test the generalization power of ANN.

B. WPT, BBA, and BBT

All the calculations were performed by Matlab v5.3. A full binary
tree was generated by means of WPT with 64 nodes. Then the BBA was
applied to obtain a BBT. All the nodes’ entropy values were arranged in
a 64-element row vector. The vector entropy’s value used for the pruned
nodes is zero. These vectors were arranged in matrix form, where each
line of the matrix is related to each subject. The procedure adopted was
to normalize each line by its maximum absolute number [18].

C. Training, Validation, and Testing of the Independent Pathologies
Groups Neural Networks

In each MLP, the first layer contains 63 input neurons, receiving
the normalized entropy node value of the BBT. The number of hidden
neurons was chosen by experimentation, using the MCV method. The
output layer contains just 01 neuron, which gave an error/hit output. In
the MCV method, all the N available (patients) must be grouped in k

subsets. Since there are 64 subjects, but 14 of them belonging to the
7th group, so there are 50 subjects (N = 50) and k was 5. Then, sub-
sets M1 to M5 were created with 10 subjects from all of the pathology
groups. With the combination of these subsets someone will be able
to create 5 new subsets, using 4 of them for training and one of them
for validation. The number of neurons in the hidden layer was limited
to half the number of input neurons [16]. ANN with different numbers
of hidden neurons, was tested, choosing the topology which gave the
lesser validation MAPE. After chosen the optimum number of neurons
in the hidden layer, the ANN was trained again, with the LOO method.

IV. RESULTS, DISCUSSION, AND CONCLUSION

The final results, which specify the final configurations and the av-
erage generalization errors, are shown in Table I. A global success rate
of 89.07% was obtained and this result is compatible with those found
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in the literature: In [2], 69%; in [4], 54.79%; in [5], 95.1%; in [10],
62.33%; in [12], 91%; in [13], 67.2%; in [14], 84%; in [18], 86.89%
were 13.11%, 4.92%, 4.92%, 6.56%, 8.20%, and 13.11% for groups 1
to 6, respectively. In assessing the subjects belonging to the 7th group,
the system gave some incorrect classifications, patients from postoper-
atory were identified as belonging to the chronic laryngitis because of
the extreme similarity of voice quality. Due to the high averageGerror,
causal by the small number of subjects, it is interesting that future
works use bigger databases. Other suggestions are: assessing different
cost functions in BBA and/or the use of radial base function ANN. All
in all, it is important to remark that this system is able to classify the
probability of some subject having a specific disease in physicians’ of-
fice, using just a simple set of hardware/software. This approach can
be very useful to help diagnosis.
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Use of Sample Entropy Approach to Study Heart Rate
Variability in Obstructive Sleep Apnea Syndrome

Haitham M. Al-Angari* and Alan V. Sahakian

Abstract—Sample entropy, a nonlinear signal processing approach, was
used as a measure of signal complexity to evaluate the cyclic behavior
of heart rate variability (HRV) in obstructive sleep apnea syndrome
(OSAS). In a group of 10 normal and 25 OSA subjects, the sample entropy
measure showed that normal subjects have significantly more complex
HRV pattern than the OSA subjects (p 0 005). When compared with
spectral analysis in a minute-by-minute classification, sample entropy
had an accuracy of 70.3% (69.5% sensitivity, 70.8% specificity) while
the spectral analysis had an accuracy of 70.4% (71.3% sensitivity, 69.9%
specificity). The combination of the two methods improved the accuracy to
72.9% (72.2% sensitivity, 73.3% specificity). The sample entropy approach
does not show major improvement over the existing methods. In fact, its
accuracy in detecting sleep apnea is relatively low in the well classified
data of the physionet. Its main achievement however, is the simplicity
of computation. Sample entropy and other nonlinear methods might be
useful tools to detect apnea episodes during sleep.

Index Terms—Approximate entropy, heart rate variability, nonlinear
signal processing, obstructive sleep apnea, power spectral density, sample
entropy.

I. INTRODUCTION

Heart rate variability (HRV) varies from wakefulness to sleep due
to normal changes in the autonomic system activities. Sympathetic
tone drops from wakefulness over nonrapid eye movement (NREM)
sleep stages, while it shows an increase in REM sleep [1]. Parasympa-
thetic activity increases from wakefulness over NREM sleep [2]. Spec-
tral analysis of HRV is used to evaluate the activity of the autonomic
nervous system. Low-frequency (LF) components (0.04–0.15 Hz) eval-
uate the sympathovagal balance while high-frequency (HF) compo-
nents (0.15–0.4 Hz) estimate the parasympathetic tone related to res-
piratory rhythm [3]. In sleep disorders, impairment of the autonomic
nervous system is observed. Studies of muscle sympathetic nerve ac-
tivity (MSNA) have shown an increase in sympathetic tone in patients
with obstructive sleep apnea syndrome (OSAS) during sleep and wake-
fulness [4], [5]. These findings were supported by results from spec-
tral analysis. The HF power was significantly diminished and LF/HF
ratio was enhanced in awake OSA patients, which indicates a drop in
the parasympathetic tone associated with an increase in the sympa-
thetic tone [6]. At the start of the apnea episode however, RR inter-
vals lengthen which indicates an increase in the vagal activation [7].
There is also a noticeable increase in MSNA, peaking immediately
prior to apnea cessation. Arousal at the termination of an apnea ini-
tiates a burst of sympathetic activity (associated with an increase in
blood pressure and heart rate). This is observed as cyclical variation
(progressive bradycardia followed by abrupt tachycardia) of the heart
rate [8].

Nonlinear analysis of time series provides a parameter set that quan-
tifies the characteristics of the system attractor even when the model
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