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A New Block Algorithm for Full-Rank Solution of the Here,z(t) is the state vector of thebserversystem
Sylvester-Observer Equation
B _ Z(t) = Fz(t) + Gy(t) + X Bu(t), z(0) = z. 4)
Jodo Carvalho, Karabi Datta, and Yoopyo Hong
The state estimation problem clearly requires that the solution matrix
Abstract—A new block algorithm for computing a full rank solution of X of_(l) has full rank. Necessary conditions for eX|stenc_e of a full-rank
the Sylvester-observer equation arising in state estimation is proposed. The Solution X of (1) are that 4, ') is observable andF, &) is control-
major computational kernels of this algorithm are: 1) solutions of standard  lable [18]. We will assume the observability(o, C') and the matrices

Sylvester equations, in each case of which one of the matrices is of much i and G will be constructed in such a way that the controllability of
smaller order than that of the system matrix and (furthermore, this small (F. G) will be satisfied

matrix can be chosen arbitrarily), and 2) orthogonal reduction of small . .
order matrices. There are numerically stable algorithms for performing A well-known method for solving the Sylvester-observer equation,

these tasks including the Krylov-subspace methods for solving large and based on the observer-Hessenberg decomposition of the observable
sparse Sylvester equations. The proposed algorithm is also rich in Level 3 pair (A4, C) is due to Van Dooren [19]. The method is recursive in na-

Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suit-  ,re and computes the solution matfix and the matriced” and G
able for high performance computing. Furthermore, the results on numer- . .
recursively, one row or column at a time.

ical experiments on some benchmark examples show that the algorithm has ) : . . .
better accuracy than that of some of the existing block algorithms for this Van Dooren’s algorithm has been generalized to a block algorithm in
problem. [5]. The other block algorithms for this problem have been developed
Index Terms—Block algorithm Sylvester-observer equation, state earlier .'n (3], [6], and [17]. ) o o
estimation. In this paper, we present another block algorithm. A distinguishing
feature of this new algorithm, compared to other above existing block
algorithm is that it is guaranteed to give a full-rank solutiérwith a

. INTRODUCTION triangular structure. This structure can be exploited in computing the
The matrix equation first (n—r) components of the vect@st) during the process of solving
the linear algebraic system (3). The algorithm also seems to be more
XA—-FX =GC (1) accurate then some of the other block algorithms.

The block algorithms are composed of Level 3 Basic Linear Algebra
where the matriced € R**™, C' € R"*" are given and the matrices Subroutine (BLAS-3) computations. Such computations are ideally
X e R=xn p g RmIX(=) and @ € R X" are to be suited for achieving high-speed in today’s high performance computers
found, is called the Sylvester-observer matrix equation [7]. [10]. Indeed many traditional numerical linear algebra algorithms

The (1) is a variation of the well-known standard Sylvester equatid®r matrix computations have been re-designed or new algorithms
XA -TX = R, inwhich 4, T, andR are given and\ is unknown. have been created for this purpose and a high-quality mathematical
This is so called, because it arises in the construction of reduced-orgeftware package, called LAPACK [1] have been developed based

observers [16] for the linear system on those block algorithms. Unfortunately, such algorithms in control
are rare.
#(t) = Ax(t) + Bu(t) @
y(t) = Ca(t) Il. NEw BLOCK ALGORITHM
in the context ofstate estimation We propose to solve (1) by imposing some structure on the

There are two basic approaches for state estimation [7]: Eigenvalight-hand side of the equation. This means that (like in the
Assignment approach and the Sylvester-equation approach. SiB&D-based method [6]) no reduction is imposed on the system matrix.
one way of finding feedback matrix for eigenvalue assignment & be more specific, given matricels C' and a stable self-conjugate
via Sylvester equation [2], [12], [19], [20]; here we will pursuesetS, we construct matrice¥’, F and R satisfying
the Sylvester equation approach and, therefore, consider numerical
solution of (1). XA-FX=R QF)=8 (5)

It is well known that the solvability of (1) is guaranteed if
Q(F)N2(4) = 0, whereQ(M) denotes the spectrum of the matrixang such that we are able to sol€ = R for G € R~ %" later.

M. If Fisindeed a stable matrix, then once a solution tigle F, G)  As the solutionX is being computed, a Householder-QR [13] based

of (1) is computed, an estimate(/) to the state vector(t) can be sirategy will be applied so that at the end of the procassill be a
computed by solving the following algebraic system of equations [1§];j-rank upper triangular matrix.

X7 .0 z(t) )
[C‘} B(t) = |:y(t):| : (3) A. Development of the Algorithm

In this section, we propose our new block algorithm for solving (1).
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whereN; € R**",i = 1,...,¢,andn; +na+--+ny = n—r = s,
then we can find a solutio € R(™~"*" of GC = R whereG; R. =

Gi
G=|...
Gy
In particular, the choiceN: = I, ensures thatank(R)

rank(C) = r.
Second, we partitiotX’ and F' conformally

Fyy 0 0
X,
F: F:
X=|...| F=|"7 =
X, :
Frﬂ Fq-,q—1 qu
Note that

rank [G FG---F"77'G]
=rank [GR. FGR.--F" " "'GR.]
(whereR. is afull rankr x » matrix)
=rank [N FN --F"7"7'N].

This shows that if we chosgF, V) as a controllable pair, then auto-
matically (F, G) is controllable. To ensure the controllability of the
pair (F, N), we chooseVy = I, N, = -- = N, = 0, andF as in (8)

)

8)

with full-rank blocksF; ;—, andF;; = 0 forj < ¢ — 1. Then,(F, N)

is controllable.

_After each blockX; of the solutionX has been computed, the matrix
X" defined previously will have the following structure:

X' = % % %

The matrixX "’ is now made upper triangular by premultiplyifig with
an appropriate orthogonal matiiX; (for example?: can be product
of suitable Householder matrices).
Symbolically, we write:X* — QY X' whereX" is updated to the
matrix Q7 X* and the updated matri@? X' is overwritten byX .
The matrix equation

X'A-FX'=@C (13)
is then updated to
QIX'A-Q] - F'Qi-Q/X'=Q/G'C

meaning that it is possible to update the solution matrices, at every step
of the orthogonal reduction, simply by computing

X' —QIX', F' = QI'F'Q,, G — QT G". (14)

B. Proposed Block Algorithm for SolvingA — FX = GC

The aforementioned discussion leads to the following algorithm.

Substituting (6) and (8) into (5) and equating corresponding blockg+ QF)=8 and XA-FX =GC.

on the right and left-hand sides of (5), we obtain

XiA-Fi X, =NQ.
i—1
Xid = FiX; =NiQe + Y Fiy X,
i=1
t=2,...,q.

Therefore, as long as the elements of the giveS s®in be successfully subset of the part of

9)

10)

Input:  Matrices A € R"™™ and C € R™" of
the system (2) and a self-conjugate set
SecCr .

QOutput:  Block matrices X, F and @G, such
Assumption:  System (2) is observable, C
has full rank and QANS =0.

Step 1: Set s =mn-—r, £ = r and Ny = I,

Gy = R;! and ny = 7.

Step 2: Compute the thin R(Q factorization

of C [13] : R.Q. = C where Q. € R"™™ and
R, € R™*",
Step 3: For
Step 4:

1=1,2,... do Steps 4 to 10
Set S; € R’ to be a self-conjugate
S that was not used

distributed in self-conjugate subséise C"i,i = 1,...,q,whichare Yet.

to be assigned as eigenvalues of the block matif¢es = 1

we are able to construct matricés, F* andG from their blocks by trix in upper real Schur form satisfying

computing them recursively using (9) and (10).
Let us define

-_X1 Gl
X'=|...| ¢=]...
L X, G,
T F ... Fii 0
. 0
F= Fi1a Fi1i1 0
. Fi Fi;

Next, we now update eachi’ using QR factorization, so that the matrixof rows of

X has an uppertriangle structure.

11)

(12

Step 5: Set Fj € R“*‘ to be any ma-
Q(F;) = S
Step 6: Free parameter setup. If 7> 1 set

N; € R and F;; € R*ni, j = 1,...,i—1 to
be arbitrary matrices, so that (F,N) is
controllable. Compute G; = N;RL.

Step 7. Solve the Sylvester equation:

i—1
X;A-F.; X, = ]V,;QC —+ Z F,j‘]'ij

7j=1

for X; € Rt*™,

Step 8: Form X/ G' and F? as in (11) and
a2) . f 4 > 1, then set n; as the number
X, that are linearly indepen-

dent of the rows of X1 If mn; < ¢ then
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set ¢/ = mn;, and choose another set S; from 6) The total flop-count of the algorithm is approximately
S and repeat Steps 5-8. 2, ,
Step 9: Find, implicitly, an orthogonal 2lgn” +14-5n7r

matrix  @; that reduces X’ to upper trian-
gular form via left multiplication by
using, say householder matrices

Then compute the matrix updates

flops. This amount is smaller than that of Van Dooren’s method
i [19]: 2rn® 4+ Tn®, if », the number of columns of the matrx,
] h
is grater than 7.

i i i I1l. AN ILLUSTRATIVE NUMERICAL EXAMPLE
X' QX' G «Q/G F «QlFQ

To illustrate the implementation of the proposed algorithm, we take
Step 10: If ny + ...+ n; = s, then let q = ¢ matricesA andC, and the sef given in (I).
and exit loop.
Step 11: Form the matrices X =X4 F=F Stpl [=2N =1DI.
and G = GY. Step 2: The RQ factorization of C qgives
the matrices R, and Q. given in (ll) at
the bottom of the page.
Remarks: Step 3: i=1.
1) Some compatibility between the structure of the veStand the ~ Step 4:
parameters;, i = 1,..., ¢ is required so that Step 4 is always S; = { —1.0000 4+ 1.0000; —1.0000 — 1.0000: }

possible to be accomplished. Step 5: Fy; to be
2) The algorithm does not require reduction of the system matrices -1 —1
A and C. This feature is specially attractive whehis large Fy= { 1 _1] .

and sparse. There now exist Krylov-subspace based methods for

Sylvester equations, suitable for large and sparse computatioslearly — Q(Fi1) = S;.

[8]. If A is small and dense, the standard Hessenberg—Sch&tep 6:  Set

method [14] can be used. 1 0
3) In Step 6, it is possible to exploit the freedom of assignihg Ny = { ]

to facilitate the solution of the Sylvester equation in Step 7. In

particular, the diagonal blocks;; can be chosen in real-Schur for simplicity.

forms, so that if the Hessenberg-Schur algorithm is used, theGtep 7: Solve XA — F;1 X1 = NiQ., using

only the matrix4 needs to be decomposed into Hessenberg fornMATLAB Commandyap .

andthis s to be done once for dhe equations in step 7. . [—134 280 067 —.055 .103 —.444 .235
4) If matrix A is dense, an orthogonal similarity reductidn—  X; = / ) ) - .

PYAP, ¢ — CP, can be used so to bring Hessenberg struc- —398 =104 438 —d24 314 =027 219

ture to the matrix4. This will allow Step 7 to be computed ef- Step 8: n; =2, [ =min{2,7-2-2} =2.

ficiently. If (X}, F, G) is the solution of this reduced problem, Step 9: After the reduction with an or-

thenX = X, P? is the solution of the original problem. thogonal matrix, we have the matrix X,
5) The algorithm is rich in Level 3-BLAS computations and thusas shown in (lll) at the bottom of the

is suitable for high-performance computing using the softwargpage.

LAPACK [1], [10], which is especially designed for such a Step 3: ¢ = 2.

purpose. Step 4: Sy = {—2.00 — 1.00: — 2.00 + 1.004}.
[ 0.995 2.041 —3.162 3.112 —2.689 0.126 2.576
2.694 0.815 2.552 1.953 1.438 —2.547 1.255
1.953 —1.010 0.117 1.144 2.694 3.035 1.739
A= —2.231 —1.635 3.101 1.437 —0.956 —1.430 2.340 (D)
1.462 0.829 0.076 —3.292 —0.852 —2.465 —1.228
3.431 —2.182 —1.959 2.366 3.037 0.544 3.268
| —0.722 —0.419 1.307 —0.590 2.300 0.798 —1.580 |
C = [ .20 5.54 5.06 4.69 4.37 6.42 1.76
L 479 4.51 2.68 5.06 .06 4.37 5.14
S={-1.-1.—-li-1l.41i-2 —1i-2 +1i}.
R - —7.625162 —9.136243
°T { ~11.264 567
0. = { 0.482 —0.474 —0.018 —0.282 0.117 0.637 0.209 (I
¢ —0.425 0.458 0.314 —0.561 0.063 0.308 0.313|°
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Step 5: Set Fy to be Step 8: n3=1, [=min{2,7-24+(2+2+1)} =0.
_o _1 Step 9: After the reduction, we have the
Foy = { 1 _2] final solution X given in (VI) at the
bottom of the page.

Then, clearly Q(Fa) = Ss. Step 10: Since ni+ns+n3=7—2 we set p=3
Step 6: The free assignment is done via and exit the loop.

0 0 10 Step 11: The algorithm finishes with ma-

Ny = {0 0} . Fo = {0 1} trices X e R%*7, F e R>% and G € R>*2.

by simplicity.
Step 7. Solving XA — F5o X1 = NoQ. + Fo1 X1, It can be shown thdtX A — FX — GC||» = 2.4037 x 107*. O
we obtain the matrix given by (IV) at the
bottom of the page. A. Remark

Step 8 n2 =2, l=min{2,7-2+(2+2)} =1.
Step 9: After the reduction, we have the
matrix given in (V) at the bottom of the

In order to solve the state estimation problem, system (3) is reduced
to upper triangular form by premultiplication by an orthogonal matrix

T, given by (VIII) at the bottom of the next page. Because of the
page. . upper triangular structure of the matrk, the matrix@. is obtained
Step 3. i = 3. as the product of six appropriate Householder matrices, (which is not

Step 4: Sz = {~1.0000}. shown here). Therefore, the linear system (3) is reduced to
Step 5: We set F33 = —1.0000.

Step 6: Set N3 =[0 0], Fs2=[1 0]. R 7 [2(t)
Step 7. SOlVing X3A — F33X53 = NgQC + F32X5, U‘/L'(t) =@ |:U(f):|
we obtain X3 given in (VI) at the bottom -
of the page. where the matriX/ is given by (IX) at the top of the page 2228.
- { 420 —.107 271 A71 .263 —.144 .471}
X = - - (D]
—.014 —.198 —.136 —.217 —-.079 421
420 —.107 271 171 .263 —.144 471
|:X1] _ —.014 —.198 —.1359 —-.217 —.079 421 ‘ (V)
Xo 072 —.024 .089 .068 115 —.032 .030
213 —.138 .051 .129 217 —.044 .235
—.476 .160 —.275 —.218 —.347 151 —.525
{Xl] _ 0 .076 0.111 —0.012 -.035 -.011 —.072 L W)
X 0 0 —.187 —.145 —.235 —.078 414 ’
0 0 .001 —.003 .030 —.056
—.476 .160 —.275 —.218 —.347 151 —.525
X, 0 .076 111 —.012 —.035 —.011 —.072
|:X2 = 0 0 —.187 —.145 —.235 —.078 414 | . (VI
X3 0 0 0 .001 —.003 0.030 —.056
.238 —.156 .069 165 270 —.009 .256
032 —=.213 277 .269 431 —.140 084
X 0 —.102 —-.124 0.43 .084 .047 .051
XQ:I = 0 0 188 148 0.239 082  —.417 (D)
X; 0 0 0 —-.007 —-.006 -—-.030 -—.001
0 0 0 0 .004 —-.026 .057
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2. Heren is the size of the system mattik = Pentoep(n), regarded as

. . . . Fig.
Fig. 1. Heren is the size of the system matrik = Pentoep(n), regarded toeplitz. The dash-dotted line corresponds to the proposed algorithm, the dashed

as pentadiagonal. The dash-dotted line corresponds to the proposed algoriffd to the SVD-based algorithm and the solid line to the Hessenberg reduction
the dashed line to the SVD-based algorithm and the solid line to the Hessenb@ggyithm.

reduction algorithm.

IV. COMPARISON OFEFFICIENCY AND ACCURACY WITH EXISTING

Figs. 1 and 2 show a comparison, in terms of accuracy and spegd,A — FX — GC

BLOCK ALGORITHMS ON BENCHMARK EXAMPLES

compares the accuraayis the size of the matriX. The comparison is
made on benchmark testing with the fanigntoe@and with the family

of Riemann matrices [15]. Speed is measured in terms of normalized
CPU-time, that is, the required CPU-time is divided by the CPU-time
of a call to the LAPACK [1]routinedgemm for multiplying two arbi-

trary matrices. Accuracy is measured by computing the Frobenius norm
r. Computations were performed ffatlab 6 in

of the proposed algorithm with the recent SVD-based [6] and the oBentium Il 400 MHz environment. The results of our experiment show
server-Hessenberg reduction based [5] algorithms. The left-hand didat the proposed algorithm can achieve a better accuracy with a com-
graph of each figure compares the CPU-time and the right-hand sjgirable speed for the problems tested.
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—.042 990
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005  —.0449  .001 —.001
010 032 —.001 -0 |
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—4.82 —-4.69 -2.90 -3.7

-.0 5.4 4.9 4.45

.0 .0 —.66 —-.27

U= .0 .0 -.0 16
.0 .0 .0 -0

.0 .0 .0 -.0

L .0 .0 .0 -.0

—.29 —4.6  —5.24]

4.27 6.25 1.52
~1.01  —.209  —.081

163 167 —.137 (IX)
—.148  —.061  —.449

-0 036 —.026

-0 0 039 |

V. CONCLUSION

A new block algorithm for solving the Sylvester-observer equation[13]
is proposed. The algorithm does not require the reduction of the system
matrix A and is then ideally suitable for large and sparse computationg-4]
by using the recently developed Krylov-subspace based methods. This

algorithm is well-suited for implementation on high-performance com-

puting usingLAPACKand it seems to be accurate compared with sim-

ilar ones; however, numerical stability properties have not been studied
[16]

yet.
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