
1950 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 4, AUGUST 2009

A Self-Checking Scheme to Mitigate Single Event
Upset Effects in SRAM-Based FPAAs
Tiago R. Balen, Student Member, IEEE, Franco Leite, Student Member, IEEE,

Fernanda Lima Kastensmidt, Member, IEEE, and Marcelo Lubaszewski, Member, IEEE

Abstract—In this work the problem of Single Event Upset
(SEU) is considered in a recent analog technology: The Field
Programmable Analog Arrays (FPAAs). Some FPAA models
are based on SRAM memory cells to implement the user pro-
grammability, which makes this kind of device vulnerable to SEU
when employed in applications susceptible to the incidence of
radiation. In the former part of this work some fault injection
experiments are made in order to investigate the effects of SEU in
the SRAM blocks of a commercial FPAA. For this purpose, single
bit inversions are injected in the FPAA programming bitstream,
when an oscillator module is programmed. In a second moment,
a self-checking scheme using the studied FPAA is proposed. This
scheme, which is built from the FPAA programming resources,
is able to restore the original programming data if an error is
detected. Fault injection is also performed to investigate the reli-
ability of the proposed scheme when the bitstream section which
controls the checker blocks is corrupted due to a SEU.

Index Terms—Field programmable analog arrays, self-checking,
self-recovering, single event upset.

I. INTRODUCTION

F IELD Programmable Analog Arrays (FPAAs) are analog
integrated circuits based on configurable analog blocks

and programmable interconnections. They provide to the analog
world the same flexibility as their digital counterparts, Field Pro-
grammable Gate Arrays (FPGAs), provide to digital circuits.
They allow fast prototyping and offer some interesting features
for applications such as adaptive control and instrumentation
and evolvable analog hardware [1], [2]. These features can be
very useful when the environmental variables can assume a wide
range of values and the system must respond properly to these

Manuscript received September 07, 2008; revised December 29, 2008. Cur-
rent version published August 12, 2009. This work was supported in part by
CNPq and CAPES Brazilian Agencies.

T. R. Balen is with the Centro Universitário Lasalle—UNILASALLE,
Canoas, RS, Brazil, and also with the Universidade Federal do Rio Grande
do Sul CEP 90040-060 Porto Alegre, Brazil (e-mail: balen@unilasalle.edu.br;
tiago.balen@ufrgs.br).

F. Leite was with the Electrical Engineering Department, Universidade Fed-
eral do Rio Grande do Sul, CEP 90040-060 Porto Alegre, Brazil. He is now with
Mectron Engenharia, 12227-000 São José dos Campos, SP Brazil

M. Lubaszewski is with the Electrical Engineering Department, Universidade
Federal do Rio Grande do Sul, CEP 90040-060 Porto Alegre, Brazil (e-mail:
luba@ece.ufrgs.br).

F. L. Kastensmidt is with the Informatics Department, Universidade Fed-
eral do Rio Grande do Sul, CEP 90040-060 Porto Alegre, Brazil (e-mail:
fglima@inf.ufrgs.br).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2009.2013347

variations. As an example one can consider the avionics applica-
tions, where the external temperature and pressure can vary sig-
nificantly in few minutes of flight. Another possible application
is in the space exploration missions, where it can be necessary
to re-calibrate the sensor conditioning circuits of spacecrafts to
correct errors or improve system performance, for example.

For all these reasons, FPAAs have become an important plat-
form to analog circuit design, thus, it is important to ensure the
correctness condition of the analog functions implemented into
these devices.

Single Event Upsets (SEU) and Single Event Transients
(SET), as well as their effects on digital circuits, have been
widely studied from more than a decade [3], [4] and several
techniques to implement fault tolerant digital circuits have been
devised, for example [5]–[7]. However, not much work has
been done so far concerning these problems in analog circuits
[8]–[10].

Some FPAA architectures are based on SRAM memory
to implement the user programmability. In this case, as it is
for SRAM-based FPGAs, a SEU can affect the programming
memory and change the device configuration, which can
modify the analog circuit behavior.

The preliminary goal of this work is to analyze the effect
of SEU in a commercial FPAA from Anadigm [11]. The ex-
periment consists in injecting bit-flips in the FPAA program-
ming bitstream, where an oscillator module is considered as
design under test. An error detection circuit allows the evalu-
ation of the effects of these bit inversions in the functional be-
havior of the circuit. The second aim of this work is to propose a
self-checking scheme that allows the FPAA programming data
reloading if an error is detected. This scheme is built by using
the internal programmable resources of the studied FPAA.

The reliability of the proposed scheme is investigated by
means of two sets of fault injection experiments. First, faults
are exhaustively injected in the checker bitstream when the
blocks under test are considered fault-free. Then, in the second
part of these experiments, a functional deviation between the
design and redundant blocks is programmed, while faults are
injected in the checker bitstream. Some conclusions are drawn
considering the results of these experiments.

This paper is organized as follows: in Section II the effects of
SEU in generic SRAM-based FPAAs are discussed. Section III
describes the fault injection experiments for an oscillator block
programmed in the commercial FPAA considered in this work.
Section IV presents the proposed self-recovering scheme,
while Section V shows the checker fault injection experiments.
Section VI concludes this work.

0018-9499/$26.00 © 2009 IEEE

BALEN et al.: SELF-CHECKING SCHEME TO MITIGATE SINGLE EVENT UPSET EFFECTS IN SRAM-BASED FPAAS 1951

Fig. 1. Variation in the programmed circuit due to a SEU in the programming
memory of a SRAM-based FPAA.

II. THE EFFECT OF SEU IN SRAM-BASED FPAAS

A typical FPAA structure comprises Configurable Analog
Blocks (CABs), I/O blocks, an interconnection network and
memory blocks for device programming. In some FPAAs the
programming memory is based on SRAM blocks, which is the
case of the Anadigm FPAA [11], the scope of this work.

Usually the programmability of FPAAs is allowed through
switches that set the routing and the values of components
within the array. The state of such switches is defined through
the value of a bitstream stored in a shift register that is loaded
during the device configuration in the power up cycle. If the
programming shift register is based on SRAM-type memory
cells the impact of a charged particle in one or more transistors
of the memory blocks can result in a bit-flip in the previous
stored bitstream. This inversion may change the state of a
switch used in the circuit and modify parameters like values of
components or change the routing in or between the CABs of
the FPAA. In some cases a SEU in the programming memory
can result in a very different configuration from that previously
programmed, which can be critical to the system operation.
Fig. 1 illustrates such event considering a typical SRAM-based
FPAA architecture.

Fig. 1 shows the typical FPAA and CAB architectures. Each
CAB is composed of an analog programmable component
array, local and global interconnection blocks and at least
one operational amplifier with global and local programmable
feedback loops. The components within the array can be
implemented as simple wires, passive or active components
or other more complex parts. In general, the programmable
parameters of CABs are gain of amplifiers, values of resistors
and capacitors, as well as setting global and local feedback
loops. In some FPAA models, the resistors are implemented
through the switched-capacitor technique and the value of its
resistance can be programmed by the value of the capacitor
and its switching frequency. The value of the capacitors (either
switched or static ones) is programmed through a bank in

Fig. 2. Block Diagram of AN10E40 FPAA [11].

which a set of programmable switches is used to connect or
disconnect the capacitors to configure the desired value.

In the example of Fig. 1, a previous programmed circuit is set
with a capacitor whose relative value is 24C . If a
SEU occurs in the programming memory cells it is possible that
a component used in the circuit implementation has its value
changed. In this hypothetic case a bit-flip was considered in one
of the switches that compose a programmable capacitor bank,
provoking a short in the programmed capacitor.

One can see that a SEU can be catastrophic in SRAM-based
FPAAs since, in some cases, the correct functioning of a single
switch is crucial to the system operation. Besides modifications
in the programmed values, a bit-flip in the memory cells can re-
sult in the disconnection of components, connections of unde-
sirable components in the circuit (parasitics) and even an inter-
ruption in the signal path. Such interruption can invalidate the
affected analog blocks or even the entire system in which the
FPAA is inserted.

If one or more bits of the original configuration are modified
during the operation of the circuit the only way to restore the
original configuration is reloading the bitstream into the FPAA
programming shift register. In some FPAA models this reload
can be done in fractions of milliseconds.

III. FAULT INJECTION EXPERIMENTS WITH AN10E40 FPAA

A. Fault Injection Procedure

In order to perform some experiments to study the effect of
bit-flips in the programming memory of FPAAs a commercial
device is used. The device studied in this work is the AN10E40
from Anadigm Company [11], a switched capacitor FPAA. It
has 20 CABs distributed in a 4 5 array. Each CAB can be con-
nected to any other CAB or to one of the 13 I/O cells through an
interconnection network. The block diagram of the AN10E40
is shown in Fig. 2, in which one can see the global wiring sur-
rounding the 20 CABs.

This network comprises horizontal and vertical buses orga-
nized in 5 rows and 6 columns, each one composed of two wires.
Besides the global buses, the connections between the CABs can

1952 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 4, AUGUST 2009

Fig. 3. Schematic view of the AN10E40 CAB [11].

Fig. 4. Examples of Default Bitstream of IP-Modules.

be made by means of local interconnections. A schematic view
of the AN10E40 CAB is depicted in Fig. 3. Each CAB has 5
capacitor banks that can implement a programmable capacitor
or a programmable resistor (switched-capacitor).

The values of the programmable components of the CABs
cannot be changed directly by the user, since the programming
and constructive details are unknown. In order to configure the
desired circuit into the FPAA one can use the Anadigm Designer
Software, which provides a set of pre-built IP modules. One can
link these modules and set parameters like block gain, central
frequency of filters, integration constants and thresholds of com-
parators, for example.

However, in one of the data directories of the programming
software it is possible to find the files that contain the default
bitstream for each module available in the programming library.
Fig. 4 shows the default bitstream for two of these IP-modules
(a simple gain stage and a rectifier).

In the example of the Fig. 4, both considered analog IP-mod-
ules are built using only one CAB of the FPAA. Each CAB com-
prises 208 programmable switches [11], therefore, each one of
these blocks is programmed through a stream of 208 bits. There
are other analog modules built with 2 or 3 CABs, therefore, one
single analog function can be programmed with up to 624 bits.
As there are 20 CABs in this device the total amount of memory
dedicated to the CABs programmability is 4160 bits.

The other programmable resources of the device (global
routing, IO, programmable voltage reference and clock) are set
by means of 2704 switches, therefore the whole bitstream of
the AN10E40 is composed of 6864 bits [11].

The fault injection experiments are carried out by modifying
the default bitstream of the IP-modules. For this purpose a copy
of the files that contain the bitstream was made in such a way that
two module libraries are now available, one with the fault-free
bitstream and the other with single bit-flips in the configura-
tion bitstream. This approach does not allow injecting faults in
the bits that program the global interconnections or the IO cells
of the device because the modified files only comprise the bit-
stream of the CAB switches.

Fig. 5. Default bitstream of oscillator and expected behavior.

Fig. 6. Examples of modified bitstream of oscillator and resultant behaviors.

The analog module used in this experiment is a sinewave
oscillator. The default bitstream of both CABs used in this
module implementation and the expected parameters of the
output signal are shown in Fig. 5 (where is the oscillation
frequency and is the amplitude of the signal).

Each digit of the above bitstream is a hexadecimal represen-
tation, therefore comprising 4 bits. The faults where injected in
the oscillator by changing (inverting) the values of one bit at a
time of each CAB. A total of 416 faults where injected (208 in
each CAB). Examples of the implication of single flips in the
considered bitstream are shown in Fig. 6.

B. Error Detection and Experimental Results

In order to assist the evaluation of the fault injection exper-
iments a specific error detection circuit was built using the in-
ternal programmable resources of the FPAA. Such error detec-
tion circuit is based on a very selective Band-Pass (BP) filter
that attenuates the signal if the frequency of the oscillator (tuned
with the central frequency of the filter) is different from that pre-
viously programmed. The output of the BP filter is rectified and
filtered in order to generate a DC level, which is compared to a
reference window.

Variations in the amplitude or frequency of the oscillation
signal will generate a DC signal whose amplitude are out of the
considered window, thus being detected by the comparators.
Fig. 7 shows the block diagram of the error detection scheme.
The oscillator frequency and amplitude are programmed as
20 kHz and 4 Vpp respectively. The filter central frequency
and gain are programmed as 20 kHz and 0 dB, while the
programmed quality factor is 100. The reference window is set
to around the DC level generated in the output of the
rectifier/filter block. With this scheme variations of
in the amplitude and in the oscillator frequency are
detected by the evaluation circuit.

For a total of 416 injected bit-flips into the oscillator module
only 140 faults (33.65%) affected the functional behavior of the
circuit in a way that the amplitude or frequency of the oscillator
deviates from the nominal programmed value. For the first CAB
of the oscillator 57 of the 208 injected bit-flips (27.5%) modified
the circuit behavior. For the second CAB 83 injected bit-flips

BALEN et al.: SELF-CHECKING SCHEME TO MITIGATE SINGLE EVENT UPSET EFFECTS IN SRAM-BASED FPAAS 1953

Fig. 7. Oscillator and error detection circuit.

Fig. 8. Error detection results for the injected bit-flips.

Fig. 9. Oscillator schematic (built with two CABs) [12].

(39.9%) resulted in a detectable behavior change, as it can be
seen in Fig. 8.

This low occurrence of errors caused by the injected faults is
due to the fact that the CAB resources are partially used to im-
plement the oscillator. Therefore, many programmable switches
of the CABs are not in the signal path and do not affect the be-
havior of the circuit. Fig. 9 shows the schematic of the oscillator
according to the Anadigm IP-Modules Manual [12] and Fig. 10
shows the possible implementations of this scheme by using the
CAB depicted in Fig. 3. The comparator in Fig. 9 is a control
block and is not considered in this fault injection experiment.

One can see that this implementation does not use all the pro-
grammable components or the entire local routing of the CABs.
For this reason, a SEU in a bit that controls some component or
branch not used in the circuit can maintain the functionality of
the programmed blocks unaltered. Furthermore, the difference
observed in the error detection rates of the two oscillator CABs
are due to the higher number of programmable resources used
in the second block, as one can see in Fig. 10.

IV. A SELF-CHECKING SCHEME WITH AN10E40

The error detection circuit used in the previous fault injec-
tion experiments is applicable to the specific circuit considered
as block under test, in that case an oscillator module. Further-
more, the test setup is an off-line scheme since the purpose
of that circuit is only to ease the evaluation of bit-flip effects

Fig. 10. Example of not used resources in the oscillator implementation.

in the programming bitstream of the considered module. How-
ever, it is possible to take advantage of the FPAA programma-
bility to build on-line checkers and consequently to implement
self-checking and self-recovering mechanisms.

If a bit-flip occurs in a memory cell, a possible way to restore
the original programming data is to reload the default bitstream
into the FPAA configuration shift register. The programming
shift register is loaded during the power up or reset cycles of the
device.

The simplest way to perform the AN10E40 programming is
through a serial interface. In this case the configuration data
is stored in an external serial ROM. Since this configuration
scheme is widely used to set up the FPGAs boot configuration,
the use of a standard serial EEPROM can be a low cost program-
ming alternative.

The self-recovering scheme proposed here consists in an
on-line checker that forces the device reset, and consequently
the programming data reloading, if a functional deviation is
detected in the circuit. The whole scheme is based on redun-
dancy. The programmed circuit is duplicated, then, the checker
subtracts the outputs of the circuit and its replica, generating an
error signal. This error signal is then compared to a pre-defined
reference window. If the error signal deviates from the tolerance
limits the window comparator activates the FPAA reset and the
original configuration is reloaded. A very simple external logic
is also required.

Fig. 11 shows the block diagram of the proposed scheme, con-
sidering a band-pass (BP) filter as target design block. Although
in this work a BP filter is considered, this scheme applies to any
functional block that can be programmed into the device. The
frequency response of the BP filter considered as design block
is shown in Fig. 12.

The error detection circuit (checker) and the redundant block
are built from the internal FPAA resources. Therefore, as the
device comprises a limited number of CABs, this restricts the
number of programmable blocks available to build the func-
tional design module. Fig. 13 shows the Anadigm Designer

1954 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 4, AUGUST 2009

Fig. 11. Block diagram of the self-recovering scheme with the AN10E40
FPAA.

Fig. 12. Specifications of the BP filter programmed as functional design block.

Fig. 13. Block diagram of the self-recovering scheme programmed into the
AN10E40 FPAA.

software screen with the block representation of the proposed
scheme.

Fig. 14 shows the waveforms at the output of both filters
and the error signal acquired during a functional fault injec-
tion experiment. The setup is the same depicted in Figs. 11 and
13. A functional deviation of in the higher corner fre-
quency parameter (from 10 to 11 kHz) is injected in one of the
two BP filters. A 10 kHz square signal is applied at the func-
tional input. The considered tolerance window in this experi-
ment is . Fig. 15 shows the output of both comparators
of the checker when the error signal exceeds the tolerance
window limits.

Fig. 14. Waveforms at the output of the filters and error signal acquired during
a fault injection experiment.

Fig. 15. Output of comparators when the error signal exceeds the tolerance
limits.

From Fig. 13 one can see that the checker circuit requires 8
CABs when built with the Anadigm Designer software basic
IP library. Thus, 12 CABs are available to implement the func-
tional circuit and the redundant part. This way, the number of
CABs available to implement the desired functional circuit is 6.
This is a low number since only 30% of the whole device can
be used in the functional design when using this self-recovering
scheme. However, the checker is not a complex circuit, thus, if
a customized design is used (IP provided by vendor) and the
reference voltages of the window comparator are set externally,
the error detection circuit can be built with 3 or 4 CABs (20% of
available CABs). The remaining 80% are divided between the
functional and redundant block, which means that 8 CABs can
be available to the user defined design.

Depending on the design complexity, 8 CABs can be a rea-
sonable number of blocks, since one can implement 4 second
order filters, for example, or even a set of different linear and
nonlinear functional blocks. Additionally, in critical applica-
tions, the implementation cost can be a secondary concern, as
it is the case of radiation-exposed circuits. This way, if it is nec-
essary to use more than one FPAA device, the increasing on
system costs can be compensated by the fault tolerant charac-
teristic associated to redundant schemes.

V. FAULT INJECTION INTO THE CHECKER

The basic assumption to justify looking only at the checker
in the remainder of this work is that the probability of multiple
faults to affect the design block and the redundant block of the
duplication scheme at exactly the same programming bits is ex-
tremely low. Thus, a given fault or (set of faults) will maintain
the outputs of both functional blocks unaltered or cause the de-
viation of one or both blocks to be greater than the tolerance
limits. This ensures that even under a collection of successive
SEUs affecting the programming bits of the functional blocks,

BALEN et al.: SELF-CHECKING SCHEME TO MITIGATE SINGLE EVENT UPSET EFFECTS IN SRAM-BASED FPAAS 1955

it will be highly probable that an error indication will be deliv-
ered to the checker. Additionally, analyzing further the faulty
behavior of the checker becomes essential since it is a universal
block that can be used in any analog self-checking scheme in-
dependently of the analog function implemented.

Next, some definitions employed in digital self-checking
schemes [13] are used to analyze the self-checking properties
of the checker proposed in the previous section. These defini-
tions consider a functional design block (the checker, in our
particular analysis), with input code space , output code space

and a given fault set , and are as follows:
• Definition D1: “ is fault secure with respect to if, for all

faults in and all code inputs, the output is either correct
or is a noncode word.”

• Definition D2: “ is self-testing with respect to if, for
each fault in , there is at least one code input that produces
a noncode output.”

• Definition D3: “ is totally self-checking (TSC) with re-
spect to if it is fault secure and self-testing with respect
to .”

For analog circuits we may consider that the code space cor-
responds to the limits expected to a given signal, regarding fea-
tures such as amplitude, fundamental frequency and harmonic
content (features that impact the signal waveform). Concerning
the redundant scheme proposed in this work and the voltage at
the outputs of the design block and the redundant block

, the checker input code space must satisfy the following
equation:

(1)

where is the absolute value of the window comparator ref-
erences.

In the previous section the mechanisms that make it possible
the proposed checker to detect behavioral deviations between
the functional design block and its replica were demonstrated.
Although no exhaustive fault injection campaign has been ap-
plied to the proposed checker to this point, the results obtained
in the first part of this work for the oscillator module and the
condition imposed by (1), allow us to conclude that it is highly
probable that the checker be fault secure (considering a single
fault hypothesis). However, these same results lead us also to
the conclusion that it is highly probable that the checker is not
self-testing (and consequently, not TSC) because some faults of
the considered fault model can affect a unused resource of the
DUT, and, for these faults, the output signals will belong to the
code space regardless the faulty DUT.

Nevertheless, according to [14], in a self-checking scheme
there is no need for the checker to be TSC, it suffices that it
be strongly code disjoint, according to Definitions D4 and D5
below:

• Definition D4: “A network is code disjoint if it always
maps code inputs onto code outputs and noncode inputs
onto noncode outputs.”

• Definition D5: “A circuit is strongly code disjoint for a
fault set if before the occurrence of any fault, is code
disjoint and for every fault in , either a) is self-testing

Fig. 16. Results of fault injection in the checker when the DUT is fault-free.

or b) modified by a fault maps always noncode inputs
onto noncode outputs, and if a new fault in occurs, for
the obtained multiple fault case a) or b) is true.”

To check whether the block we are dealing with is strongly
code disjoint, two sets of experiments are performed. First,
bit-flip faults are injected in the checker bitstream when the
DUT is considered fault-free. This experiment investigates the
self-testing propriety of the checker. In the second set of the
experiments, the procedure is repeated when a functional devi-
ation is injected in one of the functional blocks. For both sets
of experiments the input stimulus is a 2 V (peak) and 10 kHz
square signal. The main objective of the latter is to investigate
the checker reliability and the fault aliasing phenomenon that
can occur when a fault in the functional block is not detected
due to a fault that occurs at the same time in the checker. The
results of these two sets of experiments are reported next.

A. Fault Injection in the Checker While DUT Is Fault-Free

In this set of experiments, bit-flips are injected in the 5 blocks
that compose the checker, comprising 8 CABs. As each CAB is
programmed through 208 configuration bits, and the fault in-
jection is performed exhaustively, a total of 1664 faults are in-
jected. Unlike some FPGAs that have special tools that allow
the bitstream manipulation according to the FPGA resources,
there is no such tool in the FPAA. In our case, the fault injection
procedure was made in an exhaustive way, to guarantee that all
programmable resources were affected by a bit-flip.

The DUT is kept with its original configuration (Fig. 12)
with the functional and redundant blocks working properly. In
this case the error signal must lie within the tolerance limits
(checker input code space) and the output of the comparators
of the checker must be at the zero value. However, if a fault af-
fects the checker an error indication may occur, but, in this case,
the checker detects an error originated in its own blocks.

From the 1664 injected faults, 283 (17%) generated an error
indication at the checker outputs while 1381 (83%) did not
change the checker outputs. These results are shown in Fig. 16.

These results show that only 17% of the injected faults in
the checker programming bitstream where detected while most
faults did not affect the checker output behavior. At a first look
this can be considered a bad result, since the checker is not
self-testing in respect to the fault model considered. However,
as mentioned in Section II.B, and exemplified in Fig. 10, this
low error detection rate is due to the low usage of the internal
resources of the CABs that compose the checker. Additionally,
this low error detection rate does not mean that the checker is un-
reliable since these experiments where performed considering
the DUT and its replica as fault-free blocks. The reliability of
this scheme is tested in the following described experiments
in which the ability of the checker to detect deviations in the

1956 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 4, AUGUST 2009

Fig. 17. Results of fault injection in the checker when a functional deviation is
injected in the DUT.

DUT, while bit-flip faults affect the checker blocks, is investi-
gated (strongly code disjoint property).

B. Fault Injection in the Checker While DUT is Faulty

In this set of experiments bit-flip faults are injected in the
checker, just like the procedure described before. However, dif-
ferently from that experimental setup, in this essay the DUT is
considered faulty. A functional deviation is injected in one of
the duplicated blocks. The higher corner frequency of the BP
filter is deviated in from its nominal value (from 10 kHz
to 11 kHz). This variation is sufficient to result in an error indi-
cation at the outputs of the checker if it is working properly. The
goal of these specific experiments is to investigate weather fault
aliasing can occur when a bit-flip affects the checker blocks, or,
in other words, if the checker can be considered strongly code
disjoint. In this case, fault aliasing is considered as the inability
of the checker to indicate that there is discrepancy among the
functional and redundant blocks when actually there is an in-
jected functional deviation in one of them.

Results show that from the 1664 injected faults only 4
(0,24%) caused the fault aliasing phenomenon, while the
remaining faults (99,76%) did not affect the ability of the
checker to indicate the functional deviation injected into the
DUT, as shown in Fig. 17. This can be considered a good result
concerning the checker reliability, since it represents a low
probability of fault aliasing, although it cannot yet be formally
considered strongly code disjoint.

It is possible to conclude that this low aliasing probability is
due to the natural redundancy of the proposed checker, since
there are two comparators to indicate a possible discrepancy in
the duplicate blocks. The experiments show that, in most cases,
when one of the comparators fails to indicate an error, the other
is able to detect it. These specific cases, and other faults detected
when the outputs of comparators are different from the fault-
free case (noncode words at the checker comparators outputs),
represent near 10% of the total injected faults and are shown in
Fig. 17 as “detected with different behavior.”

Although the checker presents a natural redundancy, from
Fig. 11 one can see that it has a weak point, which is not dupli-
cated: the output of the subtractor block, more specifically the
adder block (as mentioned before, the subtractor is composed
of an adder with an inverter in one of its inputs). If a fault in
this block (or in neighboring blocks) makes the error signal to
be zero when actually it should be not null, fault aliasing will
occur. In fact, for all faults that generate aliasing, the error signal
at the output of the subtractor is within the considered tolerance
window.

In order to identify how this four faults cause the aliasing,
another set of experiments is carried out. The first step is to

identify what blocks of the checker the affected bits belong to.
Although the weak point mentioned before is the output of the
subtractor block (adder), only two of the four aliasing cases are
originated from a fault in the adder bitstream. The other two
cases are due to faults in the inverter (one of the subtractor in-
puts) and in the comparator whose reference is positive (top
comparator in Fig. 13). Results showed that these faults forced
the error signal to be zero. However, the inverter fault did not
affect the inverter behavior and the same occurred to the com-
parator. A possible reason for that is the interaction between the
neighboring blocks, by means of local interconnections. As the
inverter and the comparator are neighbors to the adder, faults
in these blocks can activate the local interconnections that link
these blocks to the adder and possibly deviate the error signal to
the internal reference, for example.

The hypothesis of interaction with neighboring blocks was
confirmed by changing the location of the blocks in the pro-
grammable array and injecting the same faults that generated
aliasing. In this case the bit inversions that had previously gen-
erated fault aliasing, no longer affected the checker correct be-
havior. In fact, when changing the location of the blocks it is
possible that only the location of the sensitive bits in the pro-
gramming bitstream is changed. Therefore, if interconnection
constructive and programming details are available, it may be
possible to distribute the checker blocks in the array in a way
that this neighbor interaction is reduced and, finally, make the
checker strongly code disjoint by construction!.

VI. CONCLUSIONS

Some recent analog programmable components, the FPAAs,
may have its programmability based on SRAM memory blocks.
This fact can make the SEU problem in FPAAs as critical as it
is for the FPGAs.

The preliminary goal of this paper was to study the effects
of bit-flips potentially caused by SEU in the programming
memory of SRAM-based FPAAs. The early results of this part
of the work were presented in a previous paper [15]. In this
study a series of bit-flip faults were injected in the considered
device by modifying the value of the default bitstream of a
programmable analog module (oscillator). The experiments
showed that a single bit inversion can result in a very different
configuration of that previously programmed, and, in some
cases, the whole analog application can be affected. The exper-
iments also showed that a SEU affecting a memory cell that
controls a not used resource can result in a correct functional
behavior and the fault can remain undetectable. Only 33.65% of
injected faults resulted in a detectable modification of behavior
given to the high number of not used CAB programmable
resources in the module implementation. However, when a
SEU occurs in some memory cell that controls a used resource
the consequences can be catastrophic to the system.

In the second part of the paper, the major and novel contri-
butions of this work were presented. It was shown that when
using the device considered in this work, a simple scheme can
be implemented to allow on-line error detection and self-recov-
ering of programming data if a functional behavior modification
occurs. In this scheme the analog functional hardware is dupli-
cated and a built-in error detection circuit compares the output

BALEN et al.: SELF-CHECKING SCHEME TO MITIGATE SINGLE EVENT UPSET EFFECTS IN SRAM-BASED FPAAS 1957

of both blocks. If the signals at the output of both blocks are sig-
nificantly different the error detection circuit activates the reset
sequence of the FPAA and the programming data is reloaded,
correcting the error.

The reliability of the self-recovering scheme proposed was
studied by injecting bit-flip in the section of the programming
bitstream that controls the checker block. First, fault injection
was performed when the functional and redundant block are
working properly (error signal is within the tolerance window).
In this case 17% of the injected faults make the checker outputs
deviate from the fault-free operating values, while the remaining
faults did not change the checker behavior, which means that
the checker is not self-testing regarding the fault model consid-
ered. However it is not considered a major problem, if the design
block is working properly.

The most important set of experiments carried out in this work
was the checker fault injection when a functional deviation was
also injected in one of the duplicated blocks (making the error
signal to exceed the tolerance limits). In these experiments the
fault aliasing probability of the scheme (considering the bit in-
version fault model) was studied. Results showed a very small
aliasing occurrence (0.24% of the injected faults), which means
that the checker is intrinsically robust considering the faults that
affect its own programming memory blocks. Furthermore, it
was discussed how these aliasing cases can be overcame in such
a way that the checker becomes strongly code disjoint by con-
struction.

We also performed an estimate of the Soft Error Rate (SER)
for the FPAA at sea level. In this estimate it was considered a FIT
(Failure in Time) rate of 1000/MBit for the FPAA technology

[16]. Considering that all CABs are occupied and that
35% of the programmable resources are used in the circuit im-
plementation (according to our experimental data), we estimate
a SER of approximately errors per hour at sea level.

Regarding the time needed to data reloaded when an error is
detected, it depends on the programming timing of the device.
When using the serial ROM mode for the AN10E40 FPAA con-
figuration, this time can be as fast as 705 [11]. This inter-
ruption time can be tolerable in several analog applications, like
instrumentation and audio, for instance. It is important to point
out that the analog operation bandwidth of the AN10E40 FPAA
is limited to 500 kHz [11]. Furthermore, there is another way to
set up the FPAA programming: by using a dedicated micropro-
cessor. In this programming mode the data is loaded through a
byte-wide interface and the complete programming cycle can be
accomplished in 125 [11]. This approach raises the system

implementation costs, but, besides the faster programming time,
it allows different configurations to be loaded into the device,
which, depending on the application, can be a very useful fea-
ture.

Finally, with all these results, it is possible to conclude that,
by using the available programmable resources of the FPAA, a
reliable and cost-effective scheme can be built in order to miti-
gate SEU effects in the considered device.

REFERENCES

[1] L. Znamirowski, O. A. Paulusinski, and S. B. K. Vrudhula, “Pro-
grammable analog/digital arrays in control and simulation,” in Analog
Integrated Circuits and Signal Processing. Norwell, MA: Kluwer
Academic Publishers, 2004, vol. 39, pp. 55–73.

[2] J. Hereford and C. Pruitt, “Robust sensor systems using evolvable hard-
ware,” in NASA/DoD Conf. Evolvable Hardware (EH’04), 2004, p. 161.

[3] G. C. Messenger, “A summary review of displacement damage from
high energy radiation in silicon semiconductors and semiconductors
devices,” IEEE Trans. Nucl. Sci., vol. 39, no. 3, Jun. 1992.

[4] F. L. Yang and R. A. Saleh, “Simulation and analysis of transient faults
in digital circuits,” IEEE Journal of Solid-State Circuits, vol. 27, Mar.
1992.

[5] A. Anghel, D. Alexandrescu, and M. Nicolaidis, “Evaluation of a soft
error tolerance technique based on time and or hardware redundancy,”
Proc. of IEEE Integrated Circuits and Systems Design (SBCCI), pp.
237–242, Sep. 2000.

[6] C. Carmichael, “Triple module redundancy design techniques for virtex
series FPGA,” Xilinx Application Notes 197, vol. 1.0, Mar. 2001.

[7] F. Lima, L. Carro, and R. Reis, “Designing fault tolerant systems into
SRAM-based FPGAs,” in Proc. of Design Automation Conf. (DAC’03),
2003, pp. 250–255.

[8] P. Adell, R. D. Schrimpf, H. J. Barnaby, R. Marec, C. Chatry, P. Calvel,
C. Barillot, and O. Mion, “Analysis of single-event transients in analog
circuits,” IEEE Trans. Nucl. Sci., vol. 47, Dec. 2000.

[9] T. L. Turflinger, “Single-event effects in analog and mixed-signal in-
tegrated circuits,” IEEE Trans. Nucl. Sci., vol. 43, pp. 594–602, Apr.
1996.

[10] R. Leveugle and A. Ammari, “Early SEU fault injection in digital,
analog and mixed signal circuits: A global flow,” in Proceedings of
the Design, Automation and Test in Europe Conf. and Exhibition
(DATE’04), 2004, pp. 1530–1591.

[11] Anadigm AN10E40 User Manual Anadigm Company, 2002 [Online].
Available: www.anadigm.com

[12] Anadigm Designer IP Module Manual Anadigm Company, 2002 [On-
line]. Available: www.anadigm.com

[13] D. A. Anderson, Design of Self-Checking Digital Networks Using
Coding Techniques CSLiUniv, Illinois, 1971, Rep. 527.

[14] M. Nicolaidis and B. Courtois, “Stongly code disjoint checkers,” IEEE
Trans. Computers, vol. 37, pp. 751–756, 1988.

[15] T. R. Balen, F. L. Kastensmidt, M. Lubaszewski, and M. Renovell,
“Single event upset in SRAM-based field programmable analog arrays:
Effects and mitigation,” in Proc. of IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2007, pp. 192–197.

[16] Soft Errors in Electronic Memories—A White Paper Tezzaron Semi-
conductor, 2004 [Online]. Available: www.tezzaron.com

