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ABSTRACT

Triangle meshes are an extremely widespread way to digitally represent geometric
data. With the popularization of widely available graphics-related computational
power, the size and complexity of datasets has increased dramatically. Today it
is not uncommon to find datasets that contain hundreds of thousands or even a
few million triangles. Moreover, improvements in shape acquisition technology
drastically increase the amount of geometric data available for use. This increase in
complexity introduces a critical need to find spatial and topological relationships
between different datasets.

In this context, we introduce a novel inter-surface mapping algorithm, which
builds a smooth correspondence between two different triangle meshes. Our technique
builds a map that allows mesh morphing and detail transfer, among other applications.
Unlike previous work, our method does not explicitly require both models to be
topologically equivalent; instead, when the models are not homeomorphic, we find
a visually pleasing correspondence (since an exact correspondence is, by definition,
impossible). We rely on some degree of user interaction to guide the mapping process,
where the user defines a sparse set of initial correspondences between the two meshes,
using a point-and-click interface.

Our method is entirely based on building a least-squares approximation of the
prescribed meshes, using a set of user-defined correspondences, as well as automati-
cally generated constraints. By forcing all vertex coordinates to satisfy Laplace’s
equation we ensure that points not explicitly constrained are evenly distributed over
the meshes.

Keywords: Inter-surface mapping, Mesh parameterization, Laplace’s equation,
Least-squares meshes.



RESUMO

Mapeamento Inter-Superf́ıcies Robusto Utilizando Métodos Laplacianos
com Restrições

Malhas de triângulos são formas extremamente populares de se representar in-
formação geométrica digitalmente. Com o aumento da disponibilidade de poder
computacional gráfico, o tamanho e complexidade dos conjuntos de dados vem aumen-
tando dramaticamente. Hoje em dia, não é incomum encontrar conjuntos de dados
que possuem centenas de milhares ou até mesmo alguns milhões de triângulos. Além
disso, melhorias em tecnologia de aquisição de objetos 3D aumentam drasticamente a
quantidade de conjuntos de dados dispońıveis para uso. Quando lidamos com tantos
modelos com complexidade e tamanho tão variáveis, a necessidade de se determinar
relações topológicas e geométricas entre malhas torna-se cŕıtica.

Neste contexto, nós introduzimos um novo algoritmo para mapeamento de su-
perf́ıcies, que constrói uma correspondência entre duas malhas de triângulos distintas.
Nossa técnica constrói um mapa que permite fazer o morphing de malhas, bem
como transferência de detalhes, entre outras aplicações. Ao contrário de trabalhos
anteriores, nosso método não requer que ambos os modelos sejam topologicamente
equivalentes; ao invés disso, quando os modelos não são homeomórficos, nossa técnica
determina um mapeamento que seja visualmente agradável (já que uma corres-
pondência exata é, por definição, imposśıvel). Nós precisamos de alguma interação
com o usuário para guiar o processo de mapeamento, onde o usuário define um
conjunto esparso de correspondências iniciais entre as duas malhas utilizando uma
interface point-and-click.

Nosso método é baseado inteiramente em construir uma aproximação de mı́nimos-
quadrados das malhas de entrada, utilizando um conjunto de restrições informado pelo
usuário, bem como correspondências geradas automaticamente. Utilizando a equação
de Laplace para posicionar vértices que não foram explicitamente restringidos, nosso
método garante que estes pontos acabem distribúıdos de forma bem comportada ao
longo das malhas resultantes.

Palavras-chave: Mapeamento inter-superf́ıcies, Parametrização de malhas, Equação
de Laplace, Malhas de mı́nimos quadrados.
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1 INTRODUCTION

Computer-aided geometric modeling is a firmly established technique among
artists and members of the computer graphics community alike. With the continuing
advance of widely available computational resources such as consumer-level Graphics
Processing Units (GPUs), the complexity of digital models increases at a very fast
pace. Today it is not uncommon to find models composed of hundreds of thousands
or even a few million triangles. Moreover, advances in 3D scanner technology enable
artists to obtain high-quality digital representations of real-life objects. Finally, the
popularity of implicit surface extraction algorithms such as the ubiquitous marching
methods [30, 20] enables the automatic construction of digital models from other
representations, such as parametric functions and volume data. This increase in
complexity introduces a critical need to find spatial and topological relationships
between datasets.

Inter-surface mapping techniques exist to solve this exact problem: to determine
a spatial relationship between different geometric models. This relationship defines
a continuous map between the two models, enabling detail transfer (such as colors,
normals or textures), as well as morphing. Naturally, the map should identify
common points between the models: it does not make sense, for instance, to map
one model’s fingers to another’s toes, and so on. However, it is very difficult to find
a high quality mapping in a completely automatic fashion. Therefore, most mapping
techniques, including ours, rely on some degree of user interaction to identify key
points that must be mapped between the models.

In order to discuss inter-surface mapping in more detail, we need to formally
define triangle meshes, which are our choice of representation for digital models in
this work. Triangle meshes are ubiquitous as representations of geometric data in
the computer graphics community, due to their simplicity and flexibility.

1.1 Triangle Meshes

A triangle mesh M is a set of triangles embedded in R3 with 2-manifold con-
nectivity (2-manifolds are mathematical formalizations of continuous 2-dimensional
surfaces). This means that not all sets of triangles form a triangle mesh: in particular,
so-called T-junctions cannot exist in a mesh, as they directly violate the 2-manifold
property. Formally, a meshM consists of a set VM of vertices, a set EM of edges and
a set FM of triangular faces. In order to guarantee that the mesh is a 2-manifold,
each edge must be incident to either one or two faces (an edge that is incident to
only one face is part of the mesh’s boundary).

Triangle meshes are extremely versatile, and can be used to represent geometry
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Figure 1.1: A Gallery of Triangle Meshes. Triangle meshes provide an extremely
versatile way to digitally represent surface data. They can be used to describe models
as varied as human and animal figures (top right and center, respectively), fictitious
creatures (bottom left and bottom right), and mechanical shapes from CAD software
(top right).

ranging from humanoid shapes to digital CAD models (see Figure 1.1). Moreover,
they form convenient discretizations of surfaces embedded in R3, so that continuous
properties such as normals, mean curvatures and other differential operators can be
properly defined for triangle meshes. In this work, we are particularly interested
in the Laplace-Beltrami operator and its discretizations over meshes, as Laplace’s
equation provides a convenient way to define smooth functions over surfaces (for
more details concerning the Laplacian operator, refer to Chapter 4). In particular,
we use Laplace’s equation to approximate a given mesh using a set of user-defined
constraints.

1.2 Inter-surface Mapping

Since different triangle meshes may have widely varying numbers of elements,
inter-surface mapping techniques cannot simply define a one-to-one mapping between
vertices or triangles. Instead, they must rely on more complex data structures to
specify the mapping. Our approach mitigates these issues by framing the mapping
problem as a linear-algebraic change of basis, which can be computed simply by
solving a sparse linear system.

Unlike previous approaches to inter-surface mapping, our technique enforces
user-defined constraints only in a least-squares sense. This relaxation allows us to
build our algorithm around a set of sparse, symmetric linear systems, which can be
easily solved using Cholesky decomposition. Moreover, these relaxed restrictions
allow us to define a “reasonable” mapping even between surfaces of different genus.
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Figure 1.2: Mesh Morphing. One of the main applications of inter-surface mapping
is to define a smooth morphing between two different but partially isometric models.
In this example, a cow model is continuously transformed into a horse model using
our technique.

Although a continuous mapping between such surfaces cannot exist (by definition),
our method nevertheless generates visually pleasing results. To the best of our
knowledge, no other mapping technique can do this. Instead, previous methods make
the explicit assumption that both models being mapped are topologically equivalent.

1.3 Method Overview

In order to compute a mapping between two meshes M1 and M2, our method
requires that the user supply an initial set of correspondences between the models.
Our interface makes this specification a simple process of pointing and clicking,
where the user selects two vertices, one in each mesh, that must be matched in
the mapping. In order to avoid over-taxing the user, our system requires only a
sparse set of correspondences. Once these are constructed, our algorithm uses an
approximate Voronoi diagram-based method to enrich the correspondences with more
vertex pairs. The user can optionally intervene at any time during this process to
specify more constraints. After the number of correspondences reaches past a certain
threshold (e.g. 10% of the number of vertices), our method builds a least-squares
approximation of the geometry of M2 using the connectivity of M1 and vice-versa.

These approximations are enough to compute morphing sequences between the
models (see example in Figure 1.2), but they do not suffice to specify detail transfer.
In order to do this, we build two sparse linear-algebraic bases, one for each mesh.
After this, we take any function (such as colors, texture coordinates or normals)
defined on one mesh and compute its orthogonal least-squares projection onto the
corresponding basis. In order to map the function to the other mesh we must simply
solve a linear system corresponding to the appropriate change of basis. This allows
our method to compute detail transfer without the need for complex data structures.

1.4 Text Structure

The rest of this document is organized as follows: in Chapter 2 we review
relevant previous work. We discuss inter-surface mapping methods, as well as the
related problem of surface parameterization and the study of Laplacian mesh editing.
Chapter 3 presents a thorough overview of all linear-algebraic concepts we use
in our method. We start with the notion of linear transformations, and discuss
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basis vectors, eigenanalysis, and linear systems, among others. We also give a brief
review of computational methods to store and manipulate large, sparse matrices. In
Chapter 4 we discuss in detail the properties and different definitions of the Laplacian
operator. Our discussion is focused on defining the Laplacian over progressively more
complex domains, and culminates in a description of the possible ways to define this
operator directly over triangle meshes. Chapter 5 describes our inter-surface mapping
algorithm in detail. We discuss all phases of our technique, from the user-assisted
correspondence generation to our approximate Voronoi diagram scheme to enrich
the set of correspondences. We also present our method to compute detail transfer,
by solving a sparse linear system corresponding to a change of basis. In Chapter 6
we present experimental results and conduct a brief analysis of the theoretical and
experimental complexity of our method. Finally, in Chapter 7, we conclude the text
with some limitations of our technique, as well as with a discussion of avenues for
possible future work.
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2 RELATED WORK

Geometry processing is a very active topic in the computer graphics literature,
and mesh processing in general has received much attention throughout the years. A
full bibliographical revision is beyond the scope of this text, so we restrict ourselves
to some illustrative examples of the most important techniques related to our inter-
surface mapping framework. We divide our discussion into three main areas: mesh
parameterization, inter-surface mapping and finally Laplacian mesh editing. We
provide a number of references to related work, and point the reader to comprehensive
surveys relevant to each area.

2.1 Mesh Parameterization

Mesh parameterization is concerned with finding a correspondence Φ :M→D
between a complex triangular mesh M and a simpler base domain D (also called
the parameter space). The base domain, which can be a topological disk, a sphere or
even a coarse version of the original mesh, must always have the exact same genus
as M.

The early work of Floater [11] presents three methods for mesh parameterization,
called uniform, weighted least-squares and shape-preserving, respectively. All these
methods use a plane as the parameter space, and differ in how vertices are mapped
from M to D. The uniform parameterization is based on Tutte’s constructive
proof [52, 53] that every planar graph has a straight line drawing (i.e., a plane
embedding where every edge is represented by a straight line), and uses the so-
called barycentric parameterization. On the other hand, the weighted least-squares
parameterization constrains the vertices on the border of the mesh to lie on the border
of a convex polygon in parameter space, and minimizes the Euclidean distance between
all vertices simultaneously using a least-squares formulation. Finally, the shape-
preserving method also constrains the border vertices, but instead of minimizing the
Euclidean distance between vertices, it minimizes the Laplacian of the parameterized
mesh in a least-squares sense. In subsequent work [12], Floater also establishes formal
conditions under which piecewise linear maps over triangle meshes are injective.

In Matchmaker [22], Kraevoy et al. present a method to compute a planar
parameterization of a mesh with user-defined constraints. Their main application
is to generate texture maps for complex geometry, where the added constraints
allow the user to define point correspondences between the original mesh and the
texture map. Thus, the user can specify correspondences for a model’s nose, eyes and
mouth, for instance. One important advantage of the Matchmaker algorithm is that
it enforces the user-defined constraints exactly, while preserving as much as possible
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the geometry of the original triangle mesh. In order to ensure that the constraints
can always be satisfied exactly, the Matchmaker algorithm may introduce Steiner
vertices into the parameterization.

All approaches mentioned so far assume that M is topologically equivalent to a
plane, so that Φ is continuous everywhere. However, this is not the case for most
triangle meshes, which have more complex topology. In order to remedy this, many
authors decompose the input triangle mesh into quasi-planar patches, and then
parameterize these patches separately. The work of Lévy et al. [28] presents a robust
method to generate quasi-conformal maps to aid the generation of automatic texture
atlases (quasi-conformal maps minimize angle distortion in the parameterization).
Lévy et al.’s work is based on minimizing, in a least-squares sense, an objective
function related to a discrete formulation of the Cauchy-Riemann equations. Their
result provides a very well behaved quasi-conformal map, which is ideal for texture
atlases and direct texture painting.

Finally, Floater [14] presents a method to parameterize a disconnected point set,
and uses this technique to propose a simple triangulation method. His work assumes
that some points in the point-set can be placed on the boundary of a convex region
in the plane. Then, the algorithm minimizes the distance distortion between all
points in a least-squares sense. Finally, it uses a Delaunay triangulation of the points
in parameter space to define a triangulation of the original point set.

All methods described above assume that D is a planar domain, and either map
M directly or break it into patches that are mapped in a piecewise-continuous
fashion. However, it is also possible to mapM to base domains other than the plane.
Below we will review previous work that maps the input mesh to a spherical domain
and to a coarse triangulation, respectively.

2.1.1 Spherical Parameterization

Haker et al. [17] present a method to build a conformal map between any simply-
connected triangle mesh and the unit sphere, and use this mapping to automatically
define texture coordinates for complex meshes. They explicitly assume that the
input mesh is topologically equivalent to the sphere, therefore ensuring a continuous
mapping. Praun and Hoppe [39] introduce a similar method that uses a subdivision
scheme to avoid under-sampling problems in the parameter domain, and uses a
stretch metric to minimize scale distortions. They validate their technique with a
remeshing application, where the parameter space is retriangulated, and the new
triangulation is projected back into the input domain. Their technique also assumes
that the input mesh has genus 0. Finally, the work of Gotsman et al. [15] presents a
generalization of Floater’s uniform parameterization [11] to spherical domains. They
also describe a robust algorithm to compute the parameterization based on spectral
graph theory.

2.1.2 Coarse Mesh Parameterization

The main drawback of planar and spherical parameterization methods is that
they require a strong topological equivalence between M and D. In order to remedy
this problem, some techniques explicitly build a simpler base domain that is still
topologically consistent with M.

Eck et al. [10] propose a technique to build a progressive, multi-resolution repre-
sentation of complex triangle meshes. They construct the base domain by considering
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Figure 2.1: MAPS Parameterization. An input mesh (left) M is progressively
simplified to a coarse base domain (center) and then parameterized (right). Observe
how the MAPS algorithm does not require a planar or spherical base domain. Figure
taken and adapted from [26].

a set of seed points on the input mesh, which become cell centers of a Voronoi diagram
defined directly over the surface. The dual of this diagram defines a subdivision of the
input mesh into a set of triangular patches, which corresponds to the coarse base do-
main. Each triangular patch is locally parameterized, creating a piecewise-continuous
function that maps M directly into a topologically correct parameter space. Since
the construction of the triangle patches depends only on choosing a set of points
in the input mesh, this process can be applied to meshes of arbitrary genus. The
authors demonstrate their technique with applications that include multi-resolution
rendering, progressive mesh transmission and high-quality remeshing.

The MAPS algorithm [26] builds a similar parameter space by progressively
simplifying the input mesh until it consists of a small number of triangles, which
are also parameterized independently (see Figure 2.1). Their technique constructs
a hierarchical representation of the mesh which allows efficient and high-quality
multi-resolution editing. Finally, Guskov et al. [16] present Normal Meshes, a surface
representation capable of describing the geometry of a mesh using only a single
floating-point value per vertex. In order to do this, they also build a hierarchical
representation of the mesh. Once they have a coarse domain, they simply store, for
each vertex in the input mesh, an offset in the normal direction of its corresponding
base triangle. For a more thorough examination of literature concerning mesh
parameterization, we recommend Floater’s very comprehensive survey [13].

Mesh parameterizations define a continuous, well behaved mapping between an
input mesh and a simpler parameter space. However, they cannot directly build a
correspondence between two complex meshes. To do this, we must turn our attention
to inter-surface mapping.

2.2 Inter-surface Mapping

Inter-surface mapping considers the problem of finding a continuous map Φ :
M1 → M2 between two meshes M1 and M2. Such a mapping allows many
interesting applications, such as shape morphing and detail transfer.

Lazarus and Verroust present an early survey concerning shape morphing only [24],
where they divide the problem into two main areas: volume-based approaches and
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Figure 2.2: Inter-Surface Mapping. The work of Schreiner et al. [44] describes
the first method capable of computing a high-quality mapping between two triangle
meshes without an intermediate domain. Input meshes are partitioned into topologi-
cally equivalent sets of triangular patches and simplified to rough base domains, which
are optimally mapped in an explicit manner. Figure taken and adapted from [44].

boundary-based approaches. When using triangle meshes we are interested only on
boundary-based methods. Most techniques described in [24] either rely on heavy
user interaction or map both input meshes into an intermediate common domain.

Lee et al. [25] use the MAPS algorithm to parameterize both input meshes into
coarse domains, and employ a further harmonic map to find a correspondence between
the parameter spaces. They then apply the correspondence directly to the shape
morphing problem. A fundamental limitation of this technique is that it requires
both meshes to be topologically equivalent, to allow MAPS to build two compatible
parameter spaces.

The work of Praun et al. [40] presents a technique to build a single base domain
for both meshes, given a set of user-defined correspondence pairs. Their algorithm
decomposes the two input meshes into two sets of equivalent triangular patches. After
a hierarchical simplification, both meshes have the exact same connectivity, which
makes their mapping trivial. One interesting application of their method is to compute
so-called eigenmeshes, which are analogous to eigenfaces in image processing [51].
The work of Kraevoy and Alla [21] also produces a cross-parameterization with
user-defined feature correspondences.

The work of Schreiner et al. [44] presents the first algorithm capable of generating
a high-quality inter-surface correspondence without need of a common intermediate
domain. The algorithm works by progressively simplifying both meshes and explicitly
computing an optimal mapping between the two coarse representations (Figure 2.2).
It then reintroduces the vertices removed during simplification, and optimizes their
mapping to minimize shape distortion. This method generates very high quality
surface mappings and works for meshes of arbitrary genus (as long as both models
have equal topology). However, the implementation of their algorithm is quite
complex and its computational cost is very high (the paper reports execution times
of “a couple of hours”[sic]).

Finally, the work of Zhang et al. [56] presents a fundamentally different approach
to surface matching. Instead of building a data structure which explicitly encodes a
mapping between M1 and M2, they employ a set of user-defined correspondences
to approximate the shape of M2 using the connectivity of M1. Their method uses
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a constrained least-squares solution to a formulation of Laplace’s equation for the
vertex coordinates. This approach has the distinctive advantage of simplicity, since
it only needs to compute the solution to a sparse symmetric linear system. Moreover,
since geometric constraints are satisfied only in a least-squares sense, it is possible to
define a correspondence between surfaces of different genus. However, since Zhang
et al. do not compute an explicit correspondence between the meshes, they cannot
perform detail transfer unless both meshes are mapped to a common domain. Our
inter-surface mapping algorithm is similar to Zhang et al.’s work, but we use a
different approach to build the set of point correspondences, and we also define an
explicit mapping between the meshes (via a linear-algebraic change of basis).

Both Zhang’s approach and ours make heavy use of the Laplacian operator over a
triangle mesh. This operator has received much attention in recent computer graphics
literature, for a variety of applications. Below we give a short overview of relevant
work that uses the Laplacian operator to analyze, process and edit triangulations
(we refer the reader to a survey by Alexa [4] for more references concerning surface
mapping and morphing).

2.3 Laplacian Mesh Editing

Laplacian mesh editing is a very broad area which refers to algorithms and tools
to process triangle meshes using the Laplacian operator. For a thorough description
of the mathematics involved, see Chapter 4.

The work of Taubin [50] in surface design is one of the earliest examples of
methods that consider the Laplacian operator over triangle meshes. This technique
introduces a simple, robust surface smoothing algorithm based on an analogy between
the frequency domain on the real line and the eigenfunctions of the Laplacian operator
over meshes. With this definition, it is possible to consider only the “low-frequency”
contributions of the geometry of a mesh, thus removing noise in a non-shrinking
fashion. Moreover, Taubin’s paper introduces a very simple and elegant two-pass
smoothing algorithm, now known as (λ− µ)-smoothing.

The Laplacian operator over a triangle mesh is a sparse matrix whose non-
zero entries vary depending on the particular formulation chosen by each author.
Different weighting schemes define operators with varying characteristics, such as
symmetry, positive-definiteness and locality, among others. Meyer et al. [34] introduce
a unified framework for the Laplacian operator over triangle meshes, and discuss the
characteristics of different particular formulations. Wardetzky et al. [55] provide a
proof that it is not possible to define a single Laplacian operator that satisfies all
desired properties simultaneously. This explains why there are so many formulations
of the operator in the literature, each fitted to a particular application (refer to
Chapter 4 for more details).

Sorkine and Cohen-Or use a least-squares solution to the Laplacian equation
to define Least-Squares meshes [48]. These meshes are smooth triangulations that
approximate a set of given geometric constraints in a least-squares sense (see Figure 2.3
for an example). They use this approach to define a set of intuitive mesh editing tools,
as well as to approximate a given surface and to perform smooth mesh completion. In
follow-up work [49], Sorkine et al. introduce a geometry-aware method that chooses
the set of geometric constraints in an optimal way.

Lévy considers many applications of the Laplacian operator in [32], where he
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Figure 2.3: Least-Squares Meshes. Sorkine and Cohen-Or introduce Least-Squares
meshes [48], which are used to approximate given geometric constraints with a fair
connectivity. The input connectivity respects the specified constraints (shown here
as red dots) in a least-squares sense, while minimizing the Laplacian of the vertex
coordinates everywhere else.

demonstrates that geometric symmetries in meshes are naturally captured by the
eigenvectors of the Laplacian operator. In follow-up work, Vallet and Lévy introduce
the Manifold Harmonics [54], an explicit generalization of the Fourier domain to
triangulated manifolds. They describe an efficient way to compute the eigenvectors
of the Laplacian (which correspond to sine and cosine waves on the real line), and
perform direct signal processing by orthogonally projecting functions into these
eigenvectors. They also propose a symmetric formulation of the Laplacian operator
based on Discrete Exterior Calculus (DEC). Although their formulation cannot
satisfy all properties of the continuous Laplace-Beltrami operator [55], it nevertheless
yields very high quality results in practice.

The work of Nealen et al. [37] describes a complete framework to optimize triangle
shape and smoothness using the Laplacian operator. They describe some of the
existing weighting schemes and provide a comprehensive set of examples of their
mesh editing technique. Finally, Sorkine and Alexa describe a complete mesh editing
tool that makes extensive use of the Laplacian [47]. This tool allows users to perform
intuitive shape deformation using point constraints and line sketches.

We refer the reader to the State-of-the-art report by Sorkine [46], which presents
a comprehensive guide to advances in mesh editing tools and techniques that use
the Laplacian operator, thus completing our review of previous work. In the next
Chapter, we will review the most important mathematical concepts of linear algebra,
which will provide us with the tools to define the Laplacian operator over triangle
meshes and to solve the subsequent linear systems involved in our algorithm.
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3 LINEAR SYSTEMS AND
TRANSFORMATIONS

Linear systems of equations are a very powerful mathematical tool that appear
in a diversity of applications. They are the direct generalization of equations of the
form ax = b, for constant a and b and for x ∈ R. However, instead of dealing with a
single x, the study of linear systems is concerned with equations that may involve
many variables simultaneously.

In this Chapter, we will review and study the most widely used algorithms to
solve linear systems of equations of the form Ax = b, where A is a matrix and x and
b are vectors. We will review basic linear-algebraic concepts such as the rank of a
matrix, its null space and its eigenvectors and eigenvalues, among others. Much of
our discussion is based on Howard Anton’s Elementary Linear Algebra [5]. We will
also discuss different approaches for the solution of linear systems, including direct
methods such as Gaussian elimination (via the Doolittle algorithm [19]), as well as
iterative methods such as Jacobi [43] and Gauss-Seidel [43] iteration. Finally, we will
discuss the Cholesky decomposition [23], a direct method which can be applied to
symmetric positive-definite matrices, and which is roughly twice as efficient as the
LU decomposition [5].

Linear equations are typically written and solved in terms of vectors embed-
ded into some subspace of Rn for arbitrary n. These vectors are equipped with
three fundamental operations: addition, multiplication by a scalar and an inner
product. Addition takes two n-dimensional vectors x = [x0, x1, . . . , xn−1]

T and
y = [y0, y1, . . . , yn−1]

T and returns a vector z = [x0 + y0, x1 + y1, . . . , xn−1 + yn−1]
T

(see Subsection 3.1.1 for an explanation of the superscript T ). Vector addition can
be understood in terms of the parallelogram rule, which is illustrated in Figure 3.1(a).
Scalar multiplication, on the other hand, takes an n-dimensional vector x and a
scalar α and yields the vector y = [αx0, αx1, . . . , αxn−1]

T . This operation scales the
input vector by a factor of α, and can be seen in Figure 3.1(b). Finally, the inner
product between two vectors x and y returns a scalar, usually denoted by 〈x, y〉,
such that 〈x, y〉 = x0y0 + x1y1 + . . . + xn−1yn−1. The inner product indicates the
length of a vector in Euclidean space, since ‖x‖ =

√
〈x, x〉. Moreover, it can also

be used to compute the orthogonal projection of a vector x onto a vector y, by
considering ŷ = y

‖y‖ , which points in the direction of y but is of unit length. The

value of 〈x, ŷ〉 is the length of x’s orthogonal projection onto y, and the projected
vector is simply 〈x, ŷ〉ŷ. This construction can be examined in Figure 3.1(c). Finally,
the inner product also defines a trigonometric relation between two vectors:

〈x, y〉 = ‖x‖‖y‖ cos(θ),
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(a) (b) (c)

Figure 3.1: Fundamental Vector Operations. The three fundamental operations
on vectors: addition, scalar multiplication and inner product (also known as dot
product). Notice how x + y equals the diagonal of a parallelogram whose sides are x
and y (this is known as the parallelogram rule) (a). Scalar multiplication only alters
a vector’s magnitude (b). Finally, the inner product can be used to project a vector
x onto another vector y (c).

where θ is the angle spanned by x and y (see Figure 3.1(c)). This property
gives us a very convenient way to determine when two vectors are perpendicular
(or orthogonal) to one another: x and y are perpendicular if and only if 〈x, y〉 = 0
(because cos(π/2) = 0).

We can use these three operations to explore other fundamental concepts about
vectors and linear spaces. The first construction we need is a linear combination of vec-
tors. A linear combination of a sequence of m n-dimensional vectors x0, x1, . . . , xm�1

is a new vector z formed by multiplying each vector xi by a scalar yi and adding them
all together. Each yi defines the weighted contribution of the corresponding vector
xi to the linear combination. Notice how we use subscript notation to refer to the
scalars yi; we do this on purpose, because now we can conveniently gather all yi into
a single m-dimensional vector y. By changing the values of yi, we obtain different
linear combinations of xi. This suggests that the vectors xi define an operation which
can be applied to arbitrary m-dimensional vectors y. We call this operation a linear
transformation of y onto z. Notice that we will, throughout the rest of the text, use
subscript notation to refer to individual components in a vector, and superscript
notation to refer to an individual vector in a sequence. Thus, for a column-major
matrix L, element lji belongs to the ith row and jth column.

3.1 Linear Transformations

If we choose a particular sequence of m n-dimensional vectors xi, we can arrange
their elements in a table consisting of n rows and m columns. This arrangement is
convenient because by placing any m-dimensional vector y next to this table, we can
compute the linear combination z using the standard rules for matrix multiplication
(in fact, these rules are defined specifically to make this operation possible):

x0
0 x1

0 xm�1
0

x0
1 x1

1 xm�1
1

. . . . . .

x0
n�1 x1

n�1 xm�1
n�1




y0

y1
...

ym�1

 =


z0

z1
...

zn�1

 (3.1)

A given particular sequence of xi can be applied to any y ∈ Rm, thus defining
a Linear Transformation (or Linear Map) from Rm to Rn. As is obvious from
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Figure 3.2: Matrix Multiplication. The product of two matrices AB = C can
be understood as a sequence of linear combinations. Each column ci of C is formed
using the entries of column bi as weights to a linear combination of all columns of A.
We have annotated the matrices in this example with their dimensionalities (in red)
to clarify the size requirements for two matrices to be compatible for multiplication.

Equation (3.1), any linear transformation can be represented in matrix form, simply
by placing the vectors xi side-by-side, and its application to a given vector is a
matrix-vector multiplication [5].

With this interpretation of linear transformations we can provide a very simple
explanation to the standard matrix-matrix multiplication algorithm: when computing
the matrix product AB = C, each column ci of the result is the linear combination of
all columns of A using bi as the weighting vector. This also explains the dimensionality
requirements for the matrices A and B: if A has n columns, we need exactly n
scalars to build their linear combinations, so each column of B must have exactly n
elements (meaning B must have exactly n rows). C will then have as many columns
as B (since each ci is a linear transformation of the corresponding bi) and as many
rows as A, since ci are linear combinations of the columns of A, and must therefore
have equal dimension.

3.1.1 Matrix Transposition

Observe that we have chosen to represent vectors as (n× 1)-dimensional matrices
to follow convention only. With this representation, linear combinations are realized
by right-multiplying a matrix with a column-vector. However, had we chosen to
represent vectors as (1 × n)-dimensional matrices, linear combinations would be
computed by left-multiplying a matrix with a row-vector. Moreover, this operation
would represent linear combinations of the rows of the matrix, instead of its columns.
These two conventions are equivalent, and they lead us to define an operation to
convert between them, namely matrix transposition.

The transpose of an (m× n)-dimensional matrix A, written AT , is an (n×m)-
dimensional matrix whose rows are the columns of A (and, consequently, whose
columns are the rows of A). Based on our discussion above, it is easy to see the
following important equivalence [5]:

(AB)T = BTAT ,

that is, if we wish to adopt a row-major convention, we must simply transpose all the
arguments and reverse their order of multiplication (recall that a row-vector must
left-multiply a matrix to generate another row-vector).

One of the interesting properties of matrix transposition is that it allows us to
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define inner products directly in terms of a matrix multiplication:

〈x, y〉 = xTy

Notice that, because both x and y are (n × 1)-dimensional vectors, the matrix
multiplication above is possible, and yields a 1× 1 matrix as a result (which is simply
a scalar).

Matrix transposition allows us to define a specific class of matrices, called symmet-
ric matrices, which satisfy the following identity: AT = A. Symmetric matrices have
the property that their eigenvectors are all orthogonal (we will study eigenvectors in
more detail in Section 3.5).

3.1.2 Fundamental Properties

Linear transformations satisfy two very important properties. Given a transfor-
mation represented by the matrix A, two arbitrary vectors x and y, and a scalar α,
we have [5]:

A(x+ y) = Ax+ Ay (additivity)

A(αx) = αAx (homogeneity)

In fact, any function f : Rm → Rn that satisfies these properties is a linear map
and therefore has a corresponding matrix representation.

Given a linear map A : Rm → Rn, we can study the properties of vectors under
A. In particular, we want to analyze A to determine if it is capable of “reaching” Rn

as a whole, or only some linear subspace of it. In order to examine these properties,
we need the concept of linear independence, which we introduce below.

3.2 Linear Independence and Basis Vectors

A set of vectors is said to be linearly independent if and only if none of the
individual vectors in the set can be written as a linear combination of the others [5].
This concept allows us to study properties of the set of all linear combinations of
vectors xi. Linear combinations of a single m-dimensional vector x0 are always of
the form αx0, and inhabit the same one-dimensional space. With two vectors x0 and
x1, however, the situation becomes more interesting: if there exists an α such that
αx0 = x1, then x0 and x1 are linearly dependent, and the vectors obtainable through
their linear combinations are the same as in the single-vector case. On the other
hand, if x0 and x1 are linearly independent, we can build new vectors of the form
y = α0x

0 +α1x
1. The set of all possible y spans a plane embedded in Rm. In general,

a set of n linearly independent m-dimensional vectors defines an n-dimensional linear
subspace of Rm, and whenever we add a new linearly independent vector to this set,
we increase the dimension of the subspace by one. Therefore, linear combinations
of m linearly independent m-dimensional vectors span Rm as a whole. This allows
us to draw a very important conclusion: any vector y ∈ Rm can be written as a
linear combination of m linearly independent vectors xi, also in Rm. Because linear
combinations of xi can be used to obtain any y ∈ Rm, we say that the sequence xi

spans Rm, and we call xi a basis [5] (plural: bases) for Rm. In fact, any set of n
linearly independent vectors forms a basis for some n-dimensional linear subspace of
Rm.
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(a) (b) (c)

Figure 3.3: Basis Vectors. m-dimensional linear spaces can be characterized by a
set of m linearly independent vectors, called the basis for the space. A basis need not
be unique, since any set of linearly independent vectors in a space P can define P
(a). When vectors are expressed in terms of their components, the basis must always
be specified, as the same vector x can have different components depending on the
choice of basis (b), and two different vectors x and y can have the same components
when expressed in different bases (c).

Observe that the mapping between a set of vectors and a linear subspace is not
unique: any set of m linearly independent vectors x0, xi, . . . , xm�1 in the same m-
dimensional space P can be used to define P (see Figure 3.3(a)). Bases in general are
not unique to a space, but they can nevertheless be characterized in the following ways:
a basis whose vectors are all orthogonal to one another is called an orthogonal basis,
and if these vectors are also unit-length, we call this basis an orthonormal basis. In
particular, the vectors x0 = [1, 0, . . . , 0]T , x1 = [0, 1, . . . , 0]T , . . . , xm�1 = [0, 0, . . . , 1]T

form an orthonormal basis for Rm, also called the canonical basis [5].

When a vector is expressed in terms of its components, it typically refers to
the canonical basis. However, the numerical components of vectors in Rm have no
intrinsic meaning — they can only be assigned significance when we specify the basis
vectors with which the vector is expressed. This happens because the components of
a vector are merely weights for a linear combination of the basis vectors which, if
changed, produce arbitrarily different results. Figure 3.3 illustrates these concepts
with two examples, one where the same vector is expressed as two different sets
of components [x0, x1]

T and [x′0, x
′
1]

T (3.3(b)), and the other where the same set of
components defines two different vectors x and y (3.3(c)), depending solely on the
choice of basis. In both these examples, we use the canonical basis for R2 ({i, j}), as
well as a rotated basis {i′, j′}.

The concepts of linear independence and basis vectors provide us the tools to
analyze the dimensionality of the image of a linear transformation A : Rm → D,
for D ⊆ Rn. Even though vectors y ∈ D have n components, D need not be equal
to Rn. As we will see in the next Section, this is the case only if A contains at least
n linearly independent columns.
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(a) (b) (c)

Figure 3.4: Linear Transformations in R2 and their Inverses. A linear trans-
formation A has a well defined inverse if and only if it is a one-to-one mapping where
the domain and the image have the same dimensionality. In (a), a full-rank matrix
maps vectors from R2 to R2, and therefore has a unique inverse. If the mapping
takes a higher dimensional space into a smaller dimensional one, its inverse is not
functional (b). The same is true for the inverse of a mapping that takes a smaller
dimensional space into a larger one (c).

3.3 Rank of a Matrix, Row and Column Spaces

Recall that a sequence of n linearly independent m-dimensional vectors ai forms a
basis for an n-dimensional linear subspace D ⊆ Rm. If these vectors are the columns
of a matrix A, then D is exactly the image of the transformation defined by A.
We call the dimensionality of this space (or, equivalently, the number of linearly
independent columns of A) the rank of A. Because A’s image is formed by linear
combinations of its columns, we call it A’s column space. Furthermore, we can also
consider the space spanned by the rows of A, known as its row space. It is a well
known theorem that the dimensionality of the row and column spaces is always equal
to the rank of the matrix, regardless of its dimensions [5]. If a matrix has dimensions
m× n, it can have at most m linearly independent columns (and at most n linearly
independent rows). Because of this, the rank of an m×n matrix is at most min(m,n).
Matrices whose rank is exactly min(m,n) are called full-rank matrices; otherwise,
they are rank-deficient. Since the rank of a matrix is equivalent to the dimensionality
of its image, we conclude that in a linear transformation A : Rm → D, for D ⊆ Rn,
D is equal to Rn only if rank(A) = n.

Given a linear transformation A : Rm → Rn, we can ask whether there exists
another transformation B : Rn → Rm, such that BAx = x and ABx = x (we will see
very soon that this implies n = m). An equivalent requirement is that BA = AB = I,
where I is the identity transformation for Rm. When such a transformation exists,
we call it the inverse of A, and denote it by A�1. Notice that (A�1)�1 = A. In the
next Section we will investigate conditions under which the inverse can exist, relating
these conditions to the dimensionality of a matrix, as well as its rank.

3.4 The Existence of an Inverse Linear Transformation

The first property required for a linear transformation to have an inverse is that
the dimensionality of its domain and range must be the same, and therefore its
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matrix representation must be square [5]. There is a very strong intuition behind
this requirement: if the domain has higher dimensionality than the image, there
are infinitely many different vectors xi that are transformed to the same value Ax.
This happens because the transformation A must “compress” all vectors of a higher-
dimensional space into a smaller-dimensional subspace, and this subspace does not
contain enough information to uniquely recover all input vectors. Therefore, the
inverse relation, i.e., the relation taking Ax back to each xi is not even functional,
let alone linear (see Figure 3.4(b)). On the other hand, if the domain has smaller
dimensionality than the image (e.g., a matrix with more rows than columns), we
can apply the exact same argument to the inverse transformation: if A were to
map a smaller-dimensional space into a larger one, than A−1 would have to map a
larger-dimensional space back to a smaller one, and would not have an inverse. But
since (A−1)−1 must exist (and must be equal to A), we conclude by contradiction
that A−1 does not exist (see Figure 3.4(c)). Notice that this does not mean that
there is no transformation B such that BA = I. B does indeed exist, and it is called
the Moore-Penrose Pseudo-Inverse of A [6]. B cannot be A’s inverse, however, since
AB 6= I.

A linear transformation whose image has the same dimensionality as its domain
is always represented by a square matrix, but the opposite is not always true. This
means that an invertible matrix is always square, but not every square matrix is
invertible. Consider the following very simple counter-example:

A =

 0 0 0
1 1 1
2 2 2


This matrix is square, but the dimensionality of its image is 1, while its domain
is R3. In the above example it is clearly noticeable that non-invertibility happens
because the columns of the matrix are not linearly independent. This allows us to
formulate a stronger requirement for invertible matrices: an n × n square matrix
is invertible if and only if its columns span Rn. In this case each x ∈ R3 defines
a unique linear combination y = Ax. When this is the case, we can define A−1 as
the linear transformation that maps each y back to its corresponding x, such that
A−1Ax = AA−1x = x.

The action Ax of a linear transformation A on a vector x can seem complex
and difficult to analyze precisely. However, we can use the additivity property to
decompose x into a linear combination of a specific set of vectors whose behavior
under A is simple. These vectors are the eigenvectors of A, which we will study in
more detail below.

3.5 Eigenanalysis

Any linear transformation A has a set of specific vectors xi that satisfy the
following property: Axi = λix

i for some scalar λi. These vectors are called the
eigenvectors of A, and each λi is called a corresponding eigenvalue. The existence
and multiplicity of different eigenvectors are closely related to the rank of the linear
transformation. Naturally, if xi is an eigenvector, then so is αxi for any scalar α, since
Aαxi = λiαxi. Therefore, it makes more sense to think of eigenvectors as particular
directions rather than individual vectors.
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Eigenvectors provide a simple way to understand the action of a linear trans-
formation A, as they formally specify the directions in which A acts simply as a
scaling factor. By decomposing an arbitrary vector x into a linear combination of
A’s eigenvectors, we can derive a strong intuition regarding the behavior of Ax. Any
linear transformation A : Rm → Rn always has a set of m linearly independent
eigenvectors (although some of its eigenvalues may be 0, as we will see in detail
below). Because of this, the set xi of eigenvectors constitutes a proper basis for
Rm, so we can write any m-dimensional vector x as a linear combination of the
eigenvectors xi with weights αi (we assume for convenience that the eigenvectors are
sorted by the magnitude of their eigenvalues, so that x0 has the smallest eigenvalue,
and so on). Thus, if x = α0x

0 + α1x
1 + . . . + αm−1x

m−1, we can use the additivity
property to rewrite Ax as:

Ax = A(α0x
0 + α1x

1 + . . .+ αm−1x
m−1) (3.3a)

= A(α0x
0) + A(α1x

1) + . . .+ A(αm−1x
m−1) (3.3b)

= λ0(α0x
0) + λ1(α1x

1) + . . .+ λm−1(αm−1x
m−1) (3.3c)

Equation (3.3c) allows us to make some important observations: first, notice how
the behavior of A is completely determined by its eigenvectors and corresponding
eigenvalues. In fact, this analysis lets us conclude that the action of a linear
transformation is simply a non-uniform scale on the basis defined by its eigenvectors.
Therefore, if the eigenvectors are orthogonal and we write A in their basis, A becomes
a diagonal matrix whose entries are λ0, λ1, . . . , λm−1. Furthermore, we can see that
a square matrix A will be one-to-one (and hence full-rank) if and only if all its
eigenvalues are non-zero. We now demonstrate this equivalence (we will split the
equivalence into its two implications, and prove each one separately).

If A is one-to-one, then all its eigenvalues are non-zero.

Proof: Assume that the first n eigenvalues of A are 0. Now take two vectors x0

and x1 that, when expressed in the basis formed by A’s eigenvectors, differ by at
most the first n components. Then A cannot be one-to-one, since Ax0 = Ax1. In
essence, A is incapable of “discriminating” between vectors that only differ where
A’s eigenvalues are zero, since it collapses this entire set of vectors to a single point.
Furthermore, the dimension of the subspace where these vectors are located is exactly
n, since we have exactly n “degrees of freedom” from which to choose xi vectors that
are different but get mapped to the same point by A.

If all eigenvalues are non-zero, then A is full-rank.

Proof: Any two vectors x0 6= x1 must, by definition, differ by at least one
component when written in the basis of A’s eigenvectors. We can assume without
loss of generality that they differ in the component for x0. Let us call α0 that
component in x0 and α1 that component in x1. Then, we can write x0 and x1 thus:

x0 = α0x
0 + x0∗

x1 = α1x
0 + x1∗,

where x0∗ and x1∗ are portions of x0 and x1 that we need not characterize precisely.
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Now write out Ax0 and Ax1:

Ax0 = A(α0x
0 + x0∗)

= α0Ax0 + Ax0∗

= α0λ0x
0 + Ax0∗

Ax1 = A(α1x
0 + x1∗)

= α1Ax0 + Ax1∗

= α1λ0x
0 + Ax1∗.

Since α0 6= α1, it follows from the equations above that Ax0 6= Ax1, for all x0 6= x1.
Because we are assuming that A is square (and hence its image has at most the
same dimensionality as its domain), and we have just proved that any two different
vectors in the domain are mapped to two different vectors in the image, this suffices
to prove that A is full-rank, completing our demonstration of the equivalence.

Up to this point we have focused all our attention on the study of situations
where we apply a linear transformation A to a vector x to obtain a new vector y.
However, the concept of an inverse transformation allows us to ask the following
question: given a linear transformation A and a vector b, can we find a new vector x
such that Ax = b? To find x, we must characterize and solve a set of linear equations,
where each equation can be written as 〈ai, x〉 = bi (ai is the ith column of A and bi is
the ith component of b).

3.6 Characterization of a Linear System of Equations

A linear system can be fully characterized by analyzing the properties of its
matrix A. As we observed previously, a matrix is either full-rank or rank-deficient.
If A is full-rank, then any vector b in the image of A can be expressed as a unique
linear combination of A’s columns. This means that Ax = b must have exactly
one solution, where x is precisely the vector of weights that forms b. Under such
conditions, we say that the system Ax = b is exactly determined [5].

On the other hand, if A is rank-deficient, one of two things must happen: Ax = b
must either have no solutions or have infinitely many. If the rank of A is less than
its number of rows, A is taking a small-dimensional domain into a large-dimensional
image. This happens for any A : Rm → Rn where n > m. In this case, there is no
linear combination of A’s columns capable of reaching all vectors in Rn, so Ax = b
has, in general, no solutions. In this case we say that A defines an over-determined [5]
linear system. As we will see in Section 3.9, it is possible to find a vector x whose
transformation Ax is the “best approximation” of b, in a sense that we will make
more precise later. Of course, if we happen to choose one particular b that is in
the image of A, then Ax = b does have a unique solution, but this is not true for
arbitrary b ∈ Rn.

Finally, if A maps a large dimensional domain into a small dimensional image (any
A : Rm → Rn where n > m), the system Ax = y has infinitely many solutions, since
we are “compressing” a large space into a small one, so an infinite number of vectors
x is mapped to a single y. This situation characterizes an under-determined [5]
system. These three situations are direct consequences of the three possibilities we
discussed in Section 3.4 concerning the existence of A−1.
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The most direct way to define the solution to Ax = b for an exactly determined
system is by writing:

Ax = b

A−1Ax = A−1b

∴ x = A−1b

Thus A−1b is the solution to Ax = b, requiring only a matrix-vector multiplication,
provided we have the inverse A−1. Unfortunately, matrix inversion is an expensive
computational task, and inversion of large matrices is rarely practical. Therefore,
we must look for other methods to solve linear systems, especially those involving a
large number of equations and variables.

Observe that up to this point we have discussed aspects of linear spaces, matrices
and transformations mostly in isolation. However, many of the properties that
characterize a matrix are equivalent, so we summarize them below for ease of
reference.

The following statements are all equivalent, for a square n× n matrix A:

• The columns of A are linearly independent

• A is a full-rank matrix

• The column space of A spans Rn

• The columns of A form a basis for Rn

• There exists a matrix A−1 such that A−1A = AA−1 = I

• The eigenvectors of A form a basis for Rn

• All eigenvalues of A are non-zero

• The system Ax = b has exactly one solution for every b

In the next Section we will discuss some of the most widely used iterative and
direct methods to solve linear systems. Iterative methods start with an initial guess
for the solution and repeatedly modify this guess until it converges to x. Direct
methods, on the other hand, typically decompose the matrix A into a product of
simpler matrices, and exploit the structure of these matrices to find the solution.

3.7 Iterative Methods for Linear Systems

Iterative methods attempt to solve a linear system Ax = b by choosing an initial
guess x0, and applying some repeated process to this vector, thus forming a sequence
xi that, under some circumstances, converges to the solution vector x. The particulars
of the iteration and the circumstances under which it converges vary depending on
which method we use, so we will split our discussion below into some of the more
popular iterative methods available. We start our discussion with one of the simplest
iterative methods, known as Jacobi iteration, after German mathematician Carl
Gustav Jacob Jacobi. We base our explanation of the Jacobi method on [45].



34

3.7.1 Jacobi Iteration

The Jacobi iteration method [45] works by splitting A into two parts: D, whose
diagonal elements are those of A, and whose off-diagonal elements are zero; and E,
whose off-diagonal elements are those of A, and whose diagonal elements are zero.
Thus A = D +E (see Figure 3.5). We then write the linear system in terms of these
new matrices:

Ax = b (3.4a)

(D + E)x = b (3.4b)

Dx = b− Ex (3.4c)

x = D−1b−D−1Ex (3.4d)

∴ x = z +Bx, (3.4e)

where B = −D−1E and z = D−1b. The advantage of this formulation is that, since
D is a diagonal matrix, it is easy to compute D−1: we must simply replace the
diagonal entries of D by their reciprocals. To define an algorithm from Equation (3.4),
we convert (3.4e) into the following recurrence:

xi+1 = z +Bxi (3.5)

Given an initial guess x0, this iterative process completely defines Jacobi’s method
for linear systems, where lim

i→∞
xi = x. We will now briefly observe the conditions

which must be true of A to ensure convergence, as well as analyze the rate of
convergence. Notice that, by definition, if xi = x, then xi+1 = x as well. Therefore,
x is a fixed point of the iteration.

We can use the additivity property to split an arbitrary xi into two terms: the
exact solution x and an error term ei, such that xi = x+ ei. Then we can rewrite
our iteration thus:

xi+1 = z +Bxi

= z +B(x+ ei)

= z +Bx+Bei

∴ xi+1 = x+Bei

Because xi+1 = x+Bei+1, we have

ei+1 = Bei

The Equations above demonstrate that the iteration does not affect the correct
term x; instead, it repeatedly multiplies the error terms by B. If the sequence
e0, e1, . . . , ei converges to zero, then the Jacobi method converges to the correct
solution for the system. This is true for matrices A that are strictly diagonally
dominant, that is, matrices where the absolute value of the diagonal element of each
row is larger than the sum of the absolute values of off-diagonal elements in that
row. When this happens, the largest eigenvalue of B will be strictly less than one,
guaranteeing that the sequence of error terms will vanish. Furthermore, the speed of
convergence is dictated by the magnitude of B’s largest eigenvalue, since if ei has a
component in that direction, it will be the slowest component to vanish.
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1 0
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Figure 3.5: Jacobi Iteration Matrices. A is split into D and E, its diagonal and
off-diagonal elements, respectively.

The Jacobi iteration method is the simplest iterative technique for solving linear
systems, and has the distinct advantage of being trivially paralellizable, as each
row xi is entirely independent of all the others. Its general definition, as given in
Equation (3.5), involves a complete matrix-vector multiplication for each iteration.
However, upon closer inspection, we can derive an equivalent formulation where
we compute the value of each component in xi+1 explicitly. First, observe that the
product D−1b yields a vector which is simply b scaled by the reciprocal of A’s main
diagonal. Moreover, the product −D−1E is merely the off-diagonal elements of A,
also scaled by the reciprocal of A’s main diagonal. Therefore, each component xi+1

k

in Equation (3.5) is bk minus the inner product of xi and A’s kth row, scaled by D−1.
We can write this operation in terms of each component of xi+1:

xi+1
k =

1

ak
k

(
bk −

∑
j 6=k

aj
kx

i
j

)
, k = 0, 1, . . . , n− 1 (3.6)

Notice how, in order to compute xi+1, we need the elements in xi. Computationally,
this means that we must keep the two most recent elements in the solution sequence
in memory at all times; on the other hand, this formulation allows us to solve
the equations in parallel for all k. In the next Subsection we will study Gauss-
Seidel iteration, which works in a similar fashion, but computes the elements in xi+1

sequentially.

3.7.2 Gauss-Seidel Iteration

Again we split A into two parts: L, which is A’s lower triangle, and U , which is
A’s upper triangle, such that A = L+ U (Figure 3.6) [43]. Notice how the diagonal
of A is strictly in L. We can then rewrite our original system thus:

Ax = b (3.7a)

(L+ U)x = b (3.7b)

Lx = b− Ux (3.7c)

∴ x = L−1(b− Ux) (3.7d)

Unlike in the Jacobi iteration, it is not generally possible to find a simple analytical
expansion to L−1. However, we can take advantage of L’s triangular structure to
find a straightforward solution to the linear system in Equation (3.7c). The first
equation in that system involves only one variable (since L is nonzero only for xi+1

0 ).
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Figure 3.6: Gauss-Seidel Iteration Matrices. A is split into L, its lower elements,
and U , its strictly upper entries. Notice how A’s diagonal is entirely in L.

We can write and solve this equation directly thus:

l00x
i+1
0 = b0 −

∑
j>0

u0
jxj (1st. row of Lx = b− Ux)

∴ xi+1
0 =

1

l00

(
b0 −

∑
j>0

u0
jxj

)

Once we have the value of xi+1
0 , we can use it in the second equation, which

depends only on xi+1
0 and xi+1

1 :

l01x
i+1
0 + l11x

i+1
1 = b1 −

∑
j>1

u1
jxj (2nd. row of Lx = b− Ux)

∴ xi+1
1 =

1

l00

(
b1 −

∑
j>1

u1
jxj − l01xi+1

0

)

Notice how we need xi+1
0 to compute xi+1

1 . This is not a problem, however,
since we computed xi+1

0 in the previous step. Thus we can sequentially compute all
elements in xi+1:

xi+1
k =

1

lkk

(
bk −

∑
j>k

uk
jxj −

∑
j<k

ljkx
i+1
j

)
, k = 0, 1, . . . , n− 1

Since we know that all values in U and L come from A, we can write the equation
above as:

xi+1
k =

1

ak
k

(
bk −

∑
j>k

ak
jxj −

∑
j<k

aj
kx

i+1
j

)
, k = 0, 1, . . . , n− 1 (3.8)

Compare Equations (3.6) and (3.8). They are very similar: both require all
off-diagonal elements to compute xi+1

k . The only difference is that the Gauss-Seidel
iteration loops through the components of xi+1 sequentially, using some of the previous
results inside a single iteration. This use of extra information makes the Gauss-Seidel
method converge faster, in general, than the Jacobi method [43]. However, it still
requires that A be strictly diagonally dominant to ensure convergence.

In the following section, we will discuss direct methods for linear systems. Unlike
iterative approaches, direct methods decompose A into a product of two or more
matrices with some specific structure, and then exploit this structure to solve Ax = b
directly.
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Figure 3.7: LU Decomposition. A is factored into the product LU , where L is a
lower-triangular matrix and U is an upper-triangular matrix. Notice that, unlike in
the Gauss-Seidel iteration, the components of L and U are not in general taken from
A.

3.8 Direct Methods for Linear Systems

We will review two direct methods: the LU decomposition [5] and the Cholesky de-
composition [23], the latter named after french mathematician André-Louis Cholesky.
The Cholesky decomposition is a specific instance of the LU decomposition, which
can be used for symmetric positive-definite matrices (a positive-definite matrix A
is any matrix that satisfies xTAx > 0 for all x), and it is roughly twice as fast to
compute as the LU decomposition [23].

3.8.1 LU Decomposition

The LU decomposition (named for Lower-Upper decomposition) factors A into a
product of two matrices L and U , such that A = LU , where L and U are lower- and
upper-triangular matrices, respectively (see Figure 3.7). These matrices should not,
however, be confused with the L and U used to split A in the Gauss-Seidel iteration
method.

Now, because A = LU , we can solve Ax = b by first solving Ux = y and then
solving Ly = b. Replacing one linear system by two may seem like a waste of
computational effort. However, we can exploit the diagonal structure of L and U to
solve these two systems in a very efficient fashion.

In order to factor A, we need the concept of elementary row operations : Elemen-
tary row operations are modifications to the rows of a matrix that do not alter the
solution of the linear system [5]. Consider an arbitrary row k of the system Ax = b:

a0
kx0 + a1

kx1 + . . .+ an−1
k xn−1 = bk

If we multiply all the elements in this row (including bk) by a non-zero scalar α,
the solution to the system remains the same, since any changes made to the left
side of the equation are exactly mirrored on the right side. Moreover, if we add the
coefficients of two different rows in the system, the solution also remains constant.
In general, any modification of a row in the system using a linear combination of the
remaining rows does not affect the result.

Any elementary row operation on A can be computed by left-multiplying A by
another matrix. We will use this property to define a sequence of elementary row
operations that places A into upper-triangular form, and we will keep the product of
these operations as another matrix, whose inverse will be in lower-triangular form.
In order to show this, we require the fact that the product of two lower-triangular
matrices is itself a lower-triangular matrix [5].
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Initially, we must find elementary row operations that eliminate all entries below
the main diagonal of A’s first column. We do this by adding to each ith row of A the
first row multiplied by:

l0i = −a
0
i

a0
0

, i = 1, 2, . . . , n− 1 (3.9)

To eliminate elements below the diagonal of a general column j (instead of the
first column, as in the example above), we replace the zero indices in Equation (3.9)
by j:

lji = −a
j
i

aj
j

, i = 1, 2, . . . , n− 1

We then gather all lji into one matrix L(j), which represents the row operation,
thus:

L(j) =



1 0
. . .

1

ljj+1

. . .
...

. . .

0 ljn−1 1


, j = 0, 1, . . . , n− 2

L(j) encodes all the operations needed to eliminate elements below the main
diagonal in column j. Therefore, we can define a sequence of matrices A(i), where:

A(0) = A

A(i) = L(i−1)A(i−1)

Because each L(j) eliminates elements below the diagonal of a single column,
A(n−1) is an upper-triangular matrix, which we take to be the U in A = LU . To
obtain L, first observe that (L−1

(0)(L
−1
(1) . . . (L

−1
(n−2)L(n−2)) . . . L(1))L(0))A = A. Thus,

if L(n−2) . . . L(1)L(0)A = U , we can define L = L−1
(0)L

−1
(1) . . . L

−1
(n−2), guaranteeing, by

definition, that LU = A. Computing the inverses of L(j) is a very straightforward
task. In fact,

L−1
(j) =



1 0
. . .

1

−ljj+1

. . .
...

. . .

0 −ljn−1 1


, j = 0, 1, . . . , n− 2,

that is, we obtain the inverse of L(j) simply by replacing the off-diagonal elements of
L(j) with their additive inverses.

Now that we have L and U , we solve Ax = b in two steps: we first solve
Ly = b, and then Ux = y. But because L and U are lower- and upper-triangular
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matrices respectively, we can solve these systems using forward- and back-substitution.
Forward-substitution is the exact process we used in Equation (3.8) to solve Lx =
b− Ux. Back-substitution, on the other hand, is an analogous method which starts
from the last element xn−1 (instead of x0), thus being suitable for upper-triangular
matrices.

The process of systematically eliminating off-diagonal elements is known as
Gaussian Elimination [5], and the technique to build L as a sequence of matrix
multiplications is called the Doolittle algorithm [19]. One advantage of using LU
decomposition is that, once A is factored, we can solve Ax = b for different b without
having to recompute the decomposition. The time complexity of LU decomposition
is O(n3) [19].

However, there is a variant of LU decomposition, which can be used whenever A is
symmetric and positive-definite, that requires approximately half as many operations.
This variant is called the Cholesky decomposition, which we discuss below.

3.8.2 Cholesky Decomposition

If A is symmetric and positive-definite, there is a unique decomposition of A
such that A = LLT . This decomposition has the advantage that L and LT have the
same non-zero pattern, so we only need to store a single lower-triangular matrix L
in memory. Furthermore, the algorithm to compute the Cholesky decomposition is
roughly twice as efficient as the standard LU decomposition.

The Cholesky decomposition algorithm is also much simpler than the general
LU decomposition method, since it exploits the symmetry of A to directly compute
the elements in L. This obviates the need to compute and store elementary row
operations. To demonstrate this, we will use a 3 × 3 matrix as an example:

A = LLT =

 l00 0 0
l01 l11 0
l02 l12 l22

 l00 l01 l02
0 l11 l12
0 0 l22

 =

 l00
2

Symm.

l01l
0
0 l01

2
+ l11

2

l02l
0
0 l02l

0
1 + l12l

1
1 l02

2
+ l12

2
+ l22

2


This lets us define direct expressions for the values in L:

ljj =

√√√√aj
j −

j−2∑
k=0

lkj
2
, j = 0, 1, . . . , n− 1 (3.10a)

lji =
1

ljj

(
aj

i −
j−2∑
k=0

lki l
k
j

)
, i = j + 1, . . . , n− 1, j = 0, 1, . . . , n− 1 (3.10b)

The condition that A be positive-definite ensures that the term under the square
root in (3.10a) is always positive. Equations (3.10a) and (3.10b) indicate that we can
compute lji using its immediate upper and left neighbors. Therefore, the Cholesky
algorithm initially computes l00 and proceeds through L row by row [23].

Once we have A = LLT , we solve Ax = b in the same way as when using the LU
decomposition: we compute Ly = b and then LTx = y. The Cholesky decomposition
has the same advantage as the LU decomposition: we only need to factor A once to
solve the system for arbitrary b.

One of the main applications of the Cholesky decomposition is to obtain Least-
Squares approximations to over-determined systems of equations. Because the
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equations used to solve linear least-squares problems naturally involve a symmetric,
positive-definite matrix, the Cholesky decomposition is an excellent approach to
solve these systems. We will study Linear Least-Squares methods in detail in the
next Section.

3.9 The Least-Squares Method for Over-determined Sys-
tems

Recall that, in Section 3.6, we explored linear systems that do not have a solution,
that is, systems that are over-determined. These situations arise for m× n matrices
whenever m > n, where the image of the transformation is embedded in a space
larger than the domain of the linear map. In these cases, we can choose a b such
that there is no x satisfying Ax = b. Nevertheless, it makes sense to ask whether
there exists an x∗ that “best approximates” x in some sense. Observe that, for
an exactly determined system Ax = b, ‖Ax − b‖ = 0. Therefore, we can use the
standard Euclidean norm to find an x∗ such that ‖Ax∗ − b‖ is minimized over all
possible x. This is exactly what the method of linear least-squares does. First, we
must write ‖Ax∗ − b‖ in terms of a matrix multiplication (recall that inner products
can be expressed as matrix multiplications, transposing the first argument):

‖Ax∗ − b‖ = 〈Ax∗ − b, Ax∗ − b〉
= (Ax∗ − b)T (Ax∗ − b)

We can distribute the transposition thus:

(Ax∗ − b)T (Ax∗ − b) =
(

(Ax∗)T − bT
)

(Ax∗ − b)

=
(
x∗TAT − bT

)
(Ax∗ − b)

Now we distribute the matrix multiplications over the subtractions:(
x∗TAT − bT

)
(Ax∗ − b) = x∗TATAx∗ − x∗TAT b− bTAx∗ + bT b (3.11a)

Observe that the terms −x∗TAT b and −bTAx∗ are actually the same, since

−x∗TAT b = −(Ax∗)T b

= −〈Ax∗, b〉
−bTAx∗ = −〈b, Ax∗〉

= −〈Ax∗, b〉

This allows us to rewrite Equation (3.11a):(
x∗TAT − bT

)
(Ax∗ − b) = x∗TATAx∗ − 2bTAx∗ + bT b (3.12a)

∴ ‖Ax∗ − b‖ = x∗TATAx∗ − 2bTAx∗ + bT b (3.12b)

We wish to find an x∗ that minimizes this distance, so we take the derivative
of (3.12b) with respect to x∗, and set that to zero:

∂

∂x∗
(
x∗TATAx∗ − 2bTAx∗ + bT b

)
= 0
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Figure 3.8: Normal Equations in R2. The Normal Equations are used to find a
solution x∗ that minimizes the norm of the residual vector (Ax∗ � b). This solution
is the best approximation of b in the range of A. Notice how the residual is exactly
orthogonal to A’s column space.

In this context, the derivative with respect to x∗ means a vector that contains
the partials ∂/∂x∗i for each component i of x∗. With this definition, the derivative
behaves very much like it does in single-valued functions: ∂

∂x∗
(�2bTAx∗) = �2AT b,

and ∂
∂x∗

(x∗TATAx∗) = 2ATAx∗. Naturally, ∂
∂x∗

(bT b) = 0, since bT b is constant with
respect to x∗. Therefore, we can solve the derivatives thus:

2ATAx∗ � 2AT b = 0 (3.13a)

2ATAx∗ = 2AT b (3.13b)

∴ ATAx∗ = AT b (3.13c)

Equation (3.13c) is called the Normal Equation, because the residual Ax∗ � b is
orthogonal to the column-space of A (see Figure 3.8), and its solution x∗ is the vector
that minimizes ‖Ax∗ � b‖.

In order to solve the Normal Equations, we must compute ATA and AT b, which
are simple matrix multiplications, and solve the linear system in Equation (3.13c).
However, since ATA is symmetric positive-definite (for over-determined matrices),
we can use the Cholesky decomposition discussed above to efficiently solve the
system [23].

Up to this point, we discussed aspects of matrices and linear transformations
from a purely algebraic standpoint. However, when designing algorithms that involve
systems containing many hundreds or even thousands of equations, it becomes
necessary to implement data structures that are economical in memory. Obviously,
the direct storage format for a matrix requires O(n2) space. This may be acceptable
for small matrices, but when n is of the order of magnitude of hundreds or thousands,
storing and manipulating data in this format becomes infeasible. Because of this, we
need more space-efficient data structures to represent large matrices. If a matrix is
dense (that is, all or most of its elements are non-zero), then there is little to be done,
since we need information about each individual element in the matrix. However, if
the matrix is sparse, thus containing a large amount of zeros, we can save a lot of
space by explicitly storing only the non-zero elements in the matrix.
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Figure 3.9: Sparse Matrix Representations. The Triplet and CCS formats do
not explicitly store zeroes in the matrix, which makes them very economical for
sparse systems. In the Triplet format, all row- and column-indices are stored along
with the numerical entries, while in the CCS format only pointers to the start of
each column are stored.

3.10 Storing Large Sparse Matrices Efficiently

Compressed storage formats save space by only representing the non-zero elements
in a matrix, along with extra information to locate the row and column indices of
each element. In this Section, will review two popular formats for storing sparse
matrices: the Triplet format and the Compressed Column Storage.

3.10.1 Triplet Storage

The Triplet [8] format is very simple: it stores an array containing nnz entries,
where nnz is the number of non-zero elements in the matrix. Each entry in this
array corresponds to a single non-zero element in the matrix, and is composed of
three fields: two integers i and j, representing the row and column of each element,
respectively, and a single- or double-precision floating point number, which stores
the non-zero value itself. This format requires 3nnz positions in memory, which is
already vastly superior to the n2 positions required by the direct storage.

The CCS format shrinks this representation still further, by compressing the
column index information for the values in the matrix.

3.10.2 Compressed Column Storage

The Compressed Column Storage (CCS) [8] format exploits the fact that non-zero
elements in a column of a sparse matrix are usually placed in consecutive rows.
Therefore, it is only necessary to point to the first element in each column, and to
store explicitly only the row indices.

To implement this, the CCS format uses three arrays: a single- or double-precision
floating point array val, containing nnz entries (one for each non-zero element in the
matrix), and two integer arrays: row ind, also containing nnz entries, and col ptr,
containing n+ 1 entries. row ind indicates the row of each corresponding element in
val, and col ptr indicates, for each column of A, where its values start in val and
row ind. It is conventional to set col ptr[n], the last element in the array, to nnz, to
signal where the last column ends. Observe that CHOLMOD, the computational library
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we use to solve Least-Squares systems in our work, uses CCS matrices throughout its
Application Programming Interface. The CCS format requires 2nnz + n+ 1 memory
positions, which is an improvement over Triplet Storage, since most sparse matrices
have more than a single non-zero element per column. Figure 3.9 illustrates these
two compressed formats with a simple example.

3.11 Final Remarks

In this Chapter, we have reviewed most basic linear-algebraic concepts, including
elementary vector operations, the notion of linear combinations, linear subspaces
and linear independence, as well as basis vectors and orthogonality. We also studied
characterizations of linear systems of equations, including under-determined, exactly
determined and over-determined systems. We observed how these characterizations
are strongly related to the existence of an inverse matrix, and also reviewed the
most popular direct and iterative methods to solve systems of the form Ax = b. We
reviewed how the Least-Squares method can be used to find an approximate solution
to over-determined systems, and explained two compressed storage formats for large
matrices. In the next Chapter, we will turn our attention to the Laplace Operator,
a very useful differential operator that will be of fundamental importance to our
inter-surface mapping algorithm.
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4 THE CONTINUOUS AND DISCRETE
LAPLACE OPERATORS

The Laplace operator (also called the Laplacian) of a function f (denoted by ∆f
or ∇2f) is a widely used differential operator named after the french mathematician
Pierre-Simon de Laplace. Intuitively, it represents the “roughness” of a function,
as it captures how much the function at a given point differs from its immediate
neighbors. In fact, as we will see below, the application of the Laplacian acts exactly
as a high pass filter over a signal, and this property is commonly used in image
processing to design edge-detection filters [57]. The Laplacian is a linear operator
that maps the set of scalar-valued functions to itself, and is formally defined as the
divergence of the gradient of a function [31].

The simplest way to characterize the Laplacian operator works on twice differen-
tiable functions over Euclidean spaces. However, the Laplacian can be easily extended
to regular grids arising from finite-differences methods, to arbitrary weighted graphs
and even to more general Riemannian manifolds (where it is known as the Laplace-
Beltrami operator [42]). In this Chapter, we will review in detail all these approaches
to defining the Laplacian operator, concluding with discrete formulations that are
directly suitable for use with triangle meshes.

4.1 The Continuous Laplace Operator in Rn

As we mentioned previously, the Laplace operator for a twice differentiable
function f : Rn → R is defined as the divergence of the gradient of f . Below we
explore this definition in order to provide some intuition towards the behavior of the
Laplacian operator.

First, recall that the gradient of a scalar field is a vector field whose vectors point
in the direction of steepest ascent for the scalars at each point. The divergence,
on the other hand, is an operator that maps a vector field back to a scalar field
whose elements represent the source or sink magnitude of the input vector field.
Intuitively, sources and sinks are regions in the domain where at least part of the
surrounding vectors point away from or into the same location, respectively. Because
of this, the divergence can be used to indicate how much a vector field changes at an
infinitesimal neighborhood around each point in the domain. For a constant vector
field (i.e. the gradient of a linear function), the divergence will always be zero, as
there are no source or sink components anywhere in the field (vector fields that have
this property are called incompressible [31]).

We can combine these two definitions to conclude that the Laplacian operator
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(a) (b) (c)

Figure 4.1: Continuous Laplacian. Three different functions f : R2 → R, along
with their gradients and associated Laplacians. A linear function (a) has constant
gradient over the entire domain, and therefore zero Laplacian. A positive-definite
quadratic form (b) has a linearly varying gradient field, and a non-zero Laplacian.
Finally, a step function (c) has a characteristic gradient field and a clearly visible
wedge on the Laplacian.

gives a measure of how much a function’s gradient changes around infinitesimal
neighborhoods. This is analogous to a second derivative, in the sense that it gives a
measure of the function’s “roughness” over the domain. In fact, for a continuous
function f : R→ R, the Laplacian operator is the second derivative, and in general
manifolds the Laplacian is the simplest second-order differential operator that can be
defined [42]. Figure 4.1 illustrates these concepts with some simple functions defined
over R2.

4.1.1 Deriving the Laplacian in Cartesian Coordinates

To express the continuous Laplacian operator in Cartesian coordinates, we must
simply expand the definitions of the gradient and divergence of a twice differentiable
function f : Rn → R, where x1, x2, ..., xn denote the coordinate axes for the domain:

grad f = ∇f =

[
∂f

∂x1

,
∂f

∂x2

, ...
∂f

∂xn

]T

(4.1)

The definition of the divergence is also straightforward. For a vector field F, the
divergence operator is defined thus1:

div F = ∇ · F =
n∑

i=1

∂Fi

∂xi

(4.2)

where Fi are the coefficients that multiply the canonical basis vectors for Rn to
form F. The divergence operator can be thought of, with some abuse of notation,
as the “vector” [∂/∂x0, ∂/∂x1, . . . , ∂/∂xn�1]T , which justifies our use of dot product
notation in Equation (4.2).

1We follow the usual notation of boldface uppercase letters to denote vector fields and lowercase
letters to denote scalar fields
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Combining Equations (4.1) and (4.2) trivially gives us the definition of the
Laplacian operator in Cartesian coordinates:

∆f = ∇2f =
n∑

i=1

∂2f

∂x2
i

Because the Laplacian is a linear operator, it is interesting to study its set
of eigenfunctions and their corresponding eigenvalues. Eigenfunctions are exact
analogues of eigenvectors in linear algebra — i.e. functions f where ∆f = λf for
some scalar λ, called the eigenvalue of f . Eigenvalues are in general complex numbers,
but since the Laplacian is a self-adjoint operator [36], all its eigenvalues are real.
This also implies that a discretization of the Laplacian must result in a symmetric
matrix, as we will demonstrate in Section 4.2.

The Spectral Theorem states that any self-adjoint operator can be diagonalized
in some basis. This means that self-adjoint operators can be thought of as non-
uniform scales in some coordinate system. In particular, this coordinate system is
perfectly aligned with the operator’s eigenfunctions, and the scaling factors are the
eigenfunctions’ corresponding eigenvalues. This also motivates what is known as the
eigendecomposition of a symmetric matrix A [6]:

A = QΛQ−1,

where Q is a matrix whose columns are the eigenvectors of A, Λ is a diagonal
matrix consisting of A’s eigenvalues, and Q−1 is the inverse of Q. Notice that, since
the eigenvectors of A are all orthogonal (again via the Spectral Theorem), Q and
Q−1 are unitary transformations. Q−1 can be understood as a rotation that takes
the orthogonal basis formed by the eigenvectors of A to the canonical basis, and Q is
its inverse (taking the canonical basis back to the basis formed by the eigenvectors of
A). Therefore, an eigendecomposition of a matrix A can be understood as a sequence
of three distinct operations: first, vectors are rotated to align themselves with the
canonical basis; then, they are scaled by the eigenvalues of A; and finally, they are
rotated back to their original directions. This observation explains our previous
statement that self-adjoint operators can be understood as a scale in some orthogonal
basis. Below we will explore the eigenfunctions of the Laplacian operator, and show
that its application over a function acts as a high-pass filter.

For 1-dimensional Euclidean spaces, the set of eigenfunctions of the Laplacian
corresponds exactly to sine and cosine waves of increasing frequency. To show this,
we will express a generic trigonometric wave as f(x) = asin(φx + x0), where a
represents the amplitude, φ the frequency and x0 the phase information for the
wave. We use this representation because it contains both sine and cosine waves in
one simple formula (since cos(x) = sin(x + π/2)). Now, we simply carry out the
differentiations:

f(x) = asin(φx+ x0) (4.3a)

∂f

∂x
= φacos(φx+ x0) (4.3b)

∆f =
∂2f

∂x2
= −φ2asin(φx+ x0) (4.3c)
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Figure 4.2: Regular Discretization of a 1-dimensional Grid. A continuous
function f(x) can be approximated by sampling its values at regular intervals of h.

Dividing Equation (4.3c) by (4.3a) gives us �φ2, which corresponds to f ’s eigen-
value λ. Observe that as the frequency of the waves increases, so does the magnitude
of their eigenvalues |�φ2|. This means that the Laplacian operator emphasizes waves
of higher frequencies and attenuates waves of lower frequencies, making it a typical
high-pass filter. Also notice that the Laplacian eigenfunctions correspond exactly to
the basis in which the standard Fourier transform is applied. This property remains
true for Laplacian operators over different domains, including multi-dimensional
Euclidean spaces, as well as regular grids and undirected graphs. We can therefore
build processes analogous to Fourier analysis on these non-standard domains [54].

In many computational applications the domain of interest in discretized with
some small step-size to approximate a continuous region. In the next section we will
derive approximations for the Laplacian operator using finite-differences methods
over n-dimensional Euclidean spaces.

4.2 Discrete Laplacian on a Regular Grid

Suppose we have a twice differentiable function f : R → R which will be
approximated by sampling it over a discrete set of points set a distance of h apart
(see Figure 4.2 for an example). We can find an approximation for ∆f using a finite
difference scheme such as this:

∆f = f ′′(x) ' f ′(x+ h/2)� f ′(x� h/2)

h
(4.4)

We chose a step-size of h/2 because if we expand the derivative terms in Equa-
tion (4.4), again using finite differences, we get

f ′(x+ h/2) =
f(x+ h)� f(x)

h
(4.5a)

f ′(x� h/2) =
f(x)� f(x� h)

h
(4.5b)

which allows us to substitute (4.5a) and (4.5b) into (4.4), resulting in

∆f(x) = f ′′(x) ' f(x+ h)� 2f(x) + f(x� h)

h2
(4.6)

Equation (4.6) defines the standard Laplacian stencil for a 1-dimensional function,
and it can be directly extended to higher dimensional spaces. In the case of a
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Figure 4.3: Five-point Stencil for a 2-dimensional Grid. The Laplacian on a
regular grid can be approximated by sampling a central element i, located at (xi, yi),
and its four immediate neighbors. This process is analogous to what is done in one
dimension, and can be extended to arbitrarily high-dimensional Euclidean spaces.

regular, isotropic two-dimensional grid, we get the widely used five-point stencil (see
Figure 4.3):

∆f(x, y) ' f(x+ h, y) + f(x� h, y) + f(x, y + h) + f(x, y � h)� 4f(x, y)

h2
(4.7)

The five-point stencil approximation to the Laplacian is widely used as an edge-
detection filter in image processing, where it is implemented with a convolution
kernel equivalent to the stencil [57]. The finite differences scheme used to derive
Equations (4.6) and (4.7) is a second-order approximation, and therefore incurs an
error of O(h2) [19].

4.2.1 Matrix Representation of the Laplacian

Let us now assume that f is defined over a finite m× n grid, for positive m and
n, where h = 1. Furthermore, assume that this grid has a toroidal topology, that
is, the rightmost points are actually connected to the leftmost points, “wrapping
around” the x-axis, and that the same is true for the top and bottom points. This is
done merely for convenience, as it obviates the need to construct special cases for
the boundaries. Given this regular grid, we can represent f as a mn�dimensional
vector, that is, f = [f0, f1, . . . , fmn�1]

T . Because the Laplacian is a linear operator,
we can write ∆f in matrix form, thus:

∆x = �Lx,

where L is the following symmetric matrix

L =



4 -1 -1 -1 -1
-1 4 -1 -1 -1
-1 -1 4 -1 -1

. . . . . . . . . . . .

-1 -1 -1 4 -1
-1 -1 -1 -1 4


Notice the difference in sign between the elements of L and our previous formulation
of the stencil. This allows us to bridge the gap between the five-point stencil Laplacian
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Figure 4.4: A Simple Graph and its associated Laplacian Matrix. Notice how
L is symmetric, meaning its eigenvectors and eigenvalues are all real and orthogonal.
Moreover, the number of non-zero eigenvalues of L equal the number of connected
components in the graph.

and the generalized Graph Laplacian, where the standard sign convention is like L
above [41]. With this convention, the eigenvalues of L are all non-negative, instead
of being all non-positive, and the eigenvectors remain unchanged. Furthermore, the
regular structure of the entries of L demonstrates our choice of a toroidal topology:
had we kept the boundary points, rows corresponding to points on the edge would
contain only three �1 elements (and their on-diagonal value would be 3), and the
four rows corresponding to the corner points would contain only two �1 entries, with
a 2 on the main diagonal.

Because L is a symmetric matrix, all its eigenvalues are real, and all its eigenvectors
are orthogonal. As we will see below, the rank of L is mn � 1, which means that
L has only one zero eigenvalue (in fact, the number of zero eigenvalues of the
Laplacian in general is equivalent to the number of connected components in the
domain [7, 41]). Therefore, the eigenvectors of L can be used to define an orthogonal
basis for some (mn� 1)-dimensional subspace of Rmn. This orthogonal basis, along
with the zero-eigenvector of L, defines a full-rank orthogonal basis for Rmn, which
means any function f can be expressed as a linear combination of these basis vectors.
Recall that the eigenvectors of the continuous Laplacian form a basis for the Fourier
domain; this is also the case for 2-dimensional grids (and, in fact, general graphs and
Riemmanian manifolds), meaning that the Laplacian eigenvectors provide us with a
tool to do Fourier analysis on domains other than the real line. As we will see below,
the eigenvectors of a modified graph Laplacian allow us to do signal processing on
functions defined directly over a triangle mesh, including implementing low-pass and
high-pass filters. To do this, however, we must further generalize our definition of
the Laplacian to work on arbitrary undirected graphs.

4.3 Discrete Laplacian on Undirected Graphs

Suppose we have a graph G = (V,E), where V is the set of vertices, E is the
set of edges, and vi is the ith vertex of G. We may use this graph as the domain
for our functions f , which means that f can now be expressed as |V |-dimensional

vectors f =
[
f0, f1, . . . , f|V |�1

]T
, where fi is the value of f on vi. We can define

a Laplacian operator that acts on these functions in much the same way as we did
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Figure 4.5: A Piecewise-constant Function and its Laplacian. In a domain
that has more than one connected component any piecewise-constant function will be
a 0-eigenfunction of the Laplacian, as long as it is constant on each component. In this
example, any particular choice of c0, c1 and c2 will yield a function in the Laplacian’s
null space. This is true for the continuous as well as the discrete formulations of the
Laplacian operator.

previously, by defining the Graph Laplacian L as a |V | × |V | symmetric matrix thus:

lji =


degree(vi) i = j

�1 (i, j) ∈ E
0 otherwise

(4.8)

This definition is equivalent to our previous definition of L for 4-regular graphs
with a toroidal topology, and it respects the usual sign convention for the Graph
Laplacian matrix [41].

As we mentioned in Section 4.2, the multiplicity of the 0 eigenvalue of L equals
the number of connected components in the graph. We can demonstrate this using
two well known facts from Spectral Graph Theory: the eigenvalues of the disjoint
sum of two graphs G and H is the union of the eigenvalues of G and H with the
multiplicities added [41] and the multiplicity of the 0 eigenvalue in a connected graph
is exactly one [7]. Therefore a graph G with k connected components has the 0
eigenvalue with multiplicity k, as G is the disjoint sum of k connected graphs Hi for
0 ≤ i < k, each with the 0 eigenvalue appearing exactly once.

Using the rank-nullity theorem [33], we can show that rank(L) = |V | � k, where
k is the number of connected components in the graph and |V | is the number of
vertices. This means that linear systems involving L have singular solutions with k
degrees of freedom, and therefore we will need to add k linearly independent rows to
L to turn it into a non-singular matrix. This fact is very relevant to our mapping
technique, where we need to add a number of constraints to equations of the form
∆f = 0 to determine f uniquely.

Knowing that a connected graph has the eigenvalue 0 with multiplicity one, it
makes sense to ask what is its corresponding eigenvector. If we take f = [1, 1, . . . , 1]T ,
then ∆f = 0 for any connected graph, since the �1 entries in the matrix negate the
contribution of each vertex’s individual degree. In fact, any constant f will have
this very same effect. This is true for any definition of the Laplacian, including the
continuous definitions we explored in Section 4.1, where this fact can be explained
by the observation that a constant function has zero second derivatives. Notice that
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Laplacian Eigenvectors. The eigenvectors of the Laplacian matrix on
a mesh define functions that share many similarities with sine waves of increasing
frequency. This Figure shows the first non-constant eigenvector (a), also called the
Fiedler vector [32], along with the second (b), 10th (c), 50th (d), 100th (e) and 150th
(f) eigenvectors.

if ∆f = 0 for f = [1, 1, . . . , 1]T , then ∆f = λ0f , where λ0 = 0. Thus we find that
the eigenvector corresponding to the 0 eigenvalue is the constant function. Moreover,
when a graph G is composed of k connected components Hk, any function that
is constant in each component will be a 0-eigenvector of L, despite the fact that
the constants can be different for different connected components. This provides
some intuition to the fact that the dimension of L’s null space equals the number of
connected components in the domain (see Figure 4.5).

The definition of the Graph Laplacian can be directly applied to triangle meshes,
simply by considering a graph G where its vertices and edges are the vertices and edges
of the mesh, respectively. This construction allows us to extend all the properties of
the Laplacian directly to triangle meshes, including a Fourier-like basis to represent
functions over the mesh (see Figure 4.6). Below we will explore some problems
with using the standard Graph Laplacian on triangle meshes, and review existing
literature that proposes modifications to the original Laplacian matrix to overcome
some of these problems.
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Figure 4.7: DEC Cotangent Weights Laplacian. This formulation of the discrete
Laplacian takes mesh geometry into account, using the angles αij and βij as well as
the dual cell areas Ai and Aj . The dual cell areas represent the areas of the Voronoi
cells of vertices vi and vj.

4.4 The Laplacian Operator over Triangle Meshes

The Graph Laplacian operator defined in Section 4.3 is not entirely suitable for
use with a triangle mesh, since it does not take any geometric information about the
vertices’ locations into account. In particular, the Graph Laplacian (which is also
known as the Combinatorial Laplacian) has the same set of eigenfunctions for graphs
with different embeddings [54] and, as an approximation to the continuous Laplacian,
it supposes a uniform sampling of the mesh [34]. Ideally, one would like to define
a discrete Laplacian that is independent of the particular meshing of the surface,
and that maintains desirable properties such as symmetry and positive-definiteness,
among others. However, Wardetzky et. al [55] prove that such an operator does not
exist in general.

Despite these limitations, many different discretized Laplacian operators exist in
the literature [38, 34, 32]. The simplest Laplacian formulation that takes geometry
into account is the ubiquitous cotangent-weights scheme [34, 38]. This approach
involves modifying the Laplacian equations thus:

∆f(vi) =
∑

j∈N1(vi)

[cot(αij) + cot(βij)] (vi � vj) (4.9)

where N1(vi) denotes the 1-ring of the ith vertex, and αij and βij are the angles
opposite the edge (vi, vj) (see Figure 4.7). Equation (4.9) is simply a different
arrangement of terms for a single row of the Laplacian matrix L, since if we distribute
the multiplication over (vi � vj) we get the following entries for the matrix:

lji = � [cot(αij) + cot(βij)]

lii =
∑

j∈N1(vi)

[cot(αij) + cot(βij)]

We will adopt this summation convention to describe the remaining Laplacian
formulations. The cotangent-weights scheme incorporates some geometrical infor-
mation into the Laplacian, and Hildebrandt et. al [18] show that it converges to
the continuous Laplace-Beltrami operator for sufficiently fine meshes, under some
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Discrete laplacian operators

Name Equation

Combinatorial
∑

j∈N1(vi)

(vi − vj)

Cotangent Weights
∑

j∈N1(vi)

[cot(αij) + cot(βij)] (vi − vj)

Normalized Cotangent Weights
∑

j∈N1(vi)

[cot(αij) + cot(βij)] (vi − vj)
Ai

Symmetrized Cotangent Weights
∑

j∈N1(vi)

[cot(αij) + cot(βij)] (vi − vj)
(Ai +Aj)

DEC Cotangent Weights
∑

j∈N1(vi)

[cot(αij) + cot(βij)] (vi − vj)√
AiAj

Table 4.1: Summary of Discrete Laplacians on Triangle Meshes. Different
formulations for the discrete Laplacian operator exist on triangle meshes, each with
its own set of desirable properties. Unfortunately, there is no single discrete Laplacian
that has all the properties present in the continuous operator.

conditions. However, this formulation is still dependent on mesh sampling [54], and
therefore it is usually normalized by the dual cell area Ai of the vertex vi:

∆f(vi) =
∑

j∈N1(vi)

[cot(αij) + cot(βij)] (vi − vj)/Ai

The dual cell area of a vertex is the area of the Voronoi cell corresponding to
that vertex on the mesh. Unfortunately, this normalization scheme violates the
condition that L must be symmetric, since elements lji and lij will be divided by
Ai and Aj respectively, which are in general different values. This normalization is
therefore completely unsuitable for any kind of spectral analysis. Levy [32] proposes
an empirical symmetrization solution that restores eigenvector orthogonality, where
the cotangent weights are normalized by the sum of the dual areas of vertices vi and
vj:

∆f(vi) =
∑

j∈N1(vi)

[cot(αij) + cot(βij)] (vi − vj)/(Ai + Aj)

However, as Vallet and Levy [54] point out, this normalization is still dependent
on the meshing. To remedy this, they use a formulation based on Discrete Exterior
Calculus (DEC) to carefully define and symmetrize a Laplace-Beltrami operator that
is truly mesh-independent (see Figure 4.7):

∆f(vi) =
∑

j∈N1(vi)

[cot(αij) + cot(βij)] (vi − vj)/
√
AiAj

However, not even this careful definition of the Laplacian satisfies all desired
properties, as it is not positive semi-definite for general meshes (it usually requires
meshes with good-quality triangles to maintain positive semi-definiteness). Table 4.1
summarizes this taxonomy of Laplacian operators, including their formulas for ease
of reference. Notice how the only thing that differs between formulations is the
weighing scheme for the term (vi − vj), and also how lii = −

∑
j∈N1(vi)

lji always.
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The Laplacian operator, regardless of the domain in which it is defined, appears
in many physical and computational applications, where it is typically used to solve
Laplace’s Equation, which we will discuss in some detail below.

4.5 Laplace’s Equation

There is a particular set of functions f that have zero Laplacian everywhere, i.e.,
functions for which:

∆f = 0 (4.10)

Equation (4.10) is known as Laplace’s Equation [31], and functions that satisfy
this property are known as harmonic functions. Naturally, harmonic functions
can be defined and studied in any domain in which a Laplacian can be defined,
including all the examples we discussed previously. The non-homogeneous version of
Laplace’s equation, which can be written as ∆f = g, is known as Poisson’s Equation,
after french mathematician Siméon-Denis Poisson [31]. Recall that the Laplacian
informally represents a function’s “roughness”, as it measures how much f(x) differs
from the average of its immediate neighbors. Because of this, harmonic functions
are typically very smooth across their domain.

In order to solve Laplace’s Equation on triangle meshes, we must set up the
following linear system:

−Lf = 0,

where L is any formulation of the discrete Laplacian and f is an n× 1 vector,
where n is the number of vertices in the mesh. However, as we discussed in sections 4.2
and 4.3, L is a rank-deficient matrix; in particular, the rank of L in this case is
n− 1 for a connected mesh. A rank deficient linear system has no unique solution,
since the matrix is not invertible. To remedy this, we must add linearly independent
equations to L until it is full-rank. As we will see in Chapter 5, these extra equations
inform constraints to the Laplacian system, and allow us to guide the harmonic
functions with Dirichlet boundary conditions.

4.6 Final Remarks

In this Chapter, we have explored in detail the Laplacian operator defined over
many different domains, including continuous Euclidean spaces, regular lattice grids,
undirected graphs and finally triangle meshes. We derived some intuition regarding its
geometrical interpretation, in terms of the “roughness” of a function, and also studied
its spectral composition, concluding, among other things, that the eigenvectors of
the Laplacian operator always define an orthogonal basis analogous to the Fourier
domain on the real line, and that the multiplicity of the 0 eigenvalue equals the
number of connected components in the domain. When studying discretizations of
the Laplacian over triangle meshes, we observed that there are different possible
formulations, sharing some properties with the continuous operator. We have also
discussed the fact, due to Wardetzky et al. [55], that there exists no discrete version
of the Laplace operator capable of satisfying all properties of the continuous case.
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5 LAPLACIAN SURFACE MAPPING

In the previous two Chapters, we reviewed all the theoretical machinery necessary
to describe our inter-surface mapping algorithm in detail. Because our method is
loosely based on Least-Squares meshes [48], we will start this Chapter with a review
of this technique.

5.1 Least-Squares Meshes

Least-Squares meshes are triangle meshes with a prescribed connectivity that
approximate a set of user-defined geometric constraints. The connectivity information
is extracted directly from an input mesh, and the geometric constraints are a set
of control points also taken from the input mesh. Figure 5.1 shows examples of
Least-Squares meshes constructed using different sets of constraints.

We are given an input meshM with n vertices, and wish to compute a new mesh,
M′, such that both M and M′ have identical connectivity. Moreover, we are also
given a set of control vertices MC = {c0, c1, . . . , ck−1} ⊂ VM whose spatial positions
must be preserved in M′. The Least-squares meshes method distributes all other
vertices smoothly over the surface ofM′, by minimizing the Laplacian of the vertices’
coordinates. Recall, from Chapter 4, that the Laplacian of a function behaves as
a local measure of its “roughness”. This immediately suggests that the geometric
coordinates of the vertices in M′ can be determined by solving the following linear
systems:

Lx = 0, Ly = 0, Lz = 0, (5.1)

where L is the Laplacian matrix for M (which can be defined in any of the forms
present in Table 4.1), and x, y and z are all n−dimensional vectors that correspond
to the x, y and z spatial coordinates of each vertex in M′.

However, as we discussed in Chapter 4, the Laplacian matrix is rank-deficient,
and therefore the linear systems in (5.1) are under-determined. In order to remedy
this, we must add extra linearly independent rows to L, to raise its rank up to n.
This is where the user-defined constraints are employed: we add k indicator rows to
L, and to the right-hand-side vectors, to ensure that the vertices inMC respect their
constraints. We assume, without loss of generality, that MC consists exactly of the
first k vertices in M. Therefore, the augmented linear system for the x coordinates
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Figure 5.1: Least-Squares Meshes. Least-Squares Meshes approximate a set of
geometric constraints with a prescribed connectivity. In this example, the geometry
of the Stanford Bunny (extreme left) is reconstructed using 10 constraints (mid-left),
100 constraints (mid-right) and finally 1000 constraints (extreme right). Constrained
vertices are drawn as red circles.

is described as (we denote this augmented matrix A):

Ax =


L

α 0 0 . . . 0
0 α 0 . . . 0

. . .

0 0 0 α 0

x =


0
αc0x
αc1x

...
αck−1

x

 = b, (5.2)

where α is a constraint satisfaction weight, and cix are the x-coordinates of the
vertices in MC. We will focus our discussion on solving the equations only for the
x-coordinates of the vertices, as the y- and z-coordinates can be solved in the exact
same manner.

Intuitively, the augmented rows force the linear system to satisfy the identities
αxi = αcix, in addition to satisfying Lx = 0. This is precisely our intention: to
ensure that the vertices in MC have their geometric positions preserved. With this
formulation, the solution vector x contains the x-coordinates for the vertices in
the Least-Squares mesh M′. The values in x not only ensure a fair distribution of
vertices, as the solution is a minimum for the Laplacian operator, but also preserve
the position of constrained points.

When |MC| > 1, however, the augmented linear system becomes over-determined,
and has in general no exact solution. We discussed this problem in detail in Chapter 3,
and reviewed the method of linear least-squares, which provides the best possible
approximation for an over-determined system, by solving the normal equations:

ATAx = AT b.

For a full-rank matrix A, these equations define a symmetric, positive-definite linear
system, which can be directly solved using Cholesky Decomposition. Once x, y and
z are computed as described above, we build M′ simply by using M’s connectivity
information and the newly computed geometry.

Because we solve Equation (5.2) in a least-squares sense, the solution does not
satisfy the user-informed constraints exactly. Rather, it builds an intermediate
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solution that approximates the constraints while still minimizing the Laplacian
operator. The constraint satisfaction weights, introduced in (5.2), exist to control
the balance between minimizing the Laplacian and satisfying the constraints. The
higher their value, the more importance the constraints are given over minimizing
the Laplacian, and vice-versa. In our implementation we adopted a value for α of
106, which causes the constraints to be satisfied exactly up to the numerical precision
of the machine.

Least-Squares Meshes provide an effective way to approximate a set of geometric
constraints with a prescribed connectivity. However, there is no inherent meaning
in the geometric constraints provided. If, for instance, we build a least-squares
mesh M′

1 using geometric information from a second mesh M2, we can immediately
construct an approximate correspondence between M1 and M2. This is precisely
the method of Manifold Parameterization [56], which we describe below.

5.2 Manifold Parameterization

Similarly to Least-Squares Meshes, the Manifold Parameterization method builds
a Least-Squares approximation to a mesh M1 using a set of geometric constraints.
However, these constraints come from a second mesh M2. Therefore, the resulting
meshM′

1 approximates the geometry ofM2 using the connectivity ofM1. Formally,
this requires the specification of two sets of constraintsM1C ⊂ VM1 andM2C ⊂ VM2 .
Moreover, there must be an explicit correspondence between the constraints defined
over both meshes. These correspondences typically match vertices that share some
geometric meaning: if the mapping being computed is between two faces, for instance,
the correspondences must identify geometric features such as the tips of the noses,
or the corners of the mouths and eyes, among others.

Given sufficiently dense sets of correspondences, computing the geometry of
M′

1 becomes a matter of solving (5.2), again in a least-squares sense, with the
difference that c0, c1, . . . , ck−1 now come from the corresponding constraints in M2,
instead of M1. As Figure 5.1 shows, Least-Squares Meshes require a fairly large
number of vertices to accurately reconstruct the desired geometry. It is infeasible
to require a user to specify such a large set of constraints. Rather, the original
Manifold Parameterization method [56] computes a dense set of correspondences
from sparse user input. In order to do this, the method computes an initial guess of
the Least-Squares mapping using only the user-generated constraints. It then builds
new correspondences by choosing local maxima of Mesh Saliency [27] in M2 and
iteratively matching them with the closest points inM′

1. Each match defines a new,
slightly improved, version of M′

1, whose final iteration is the result of the algorithm.

The original Manifold Parameterization method is inherently asymmetric, since
it considers only the mapping of M1 into M2. Moreover, Mesh Saliency is a poor
method to define new correspondences, especially for simpler geometric forms such
as torii and ellipsoids (where the Saliency is mostly uniform). Our method addresses
these issues: we introduce a novel correspondence sorting method that is fully
symmetric, and use an intrinsic technique to find new points which does not depend
on local properties such as Mesh Saliency.
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Figure 5.2: Inter-surface Mapping Workflow. Our inter-surface mapping algo-
rithm is based on computing Least-Squares approximationsM′

1 andM′
2 to two input

meshes M1 and M2. To do this, we iteratively compute new constraint candidates
based on an approximate Voronoi diagram scheme (bottom right), and add them to
the mapping according to a symmetric sorting scheme (bottom left).

5.3 Inter-surface Mapping Algorithm

Our inter-surface mapping algorithm is similar to the Manifold Parameteriza-
tion method: given two partially isometric meshes M1 and M2, we compute an
approximate Least-squares mapping between the models. However, unlike Mani-
fold Parameterization, our method computes both M′

1 and M′
2 (the approximate

geometry of M1 using the connectivity of M2) simultaneously.

Our algorithm starts by requiring the user to inform a sparse set of correspondences
between the two meshes. This is done using a simple point-and-click interface. Once
the user has defined a few dozen correspondences, we compute initial Least-Squares
approximations ofM′

1 andM′
2. Our method then generates a new set of candidate

constraints on both surfaces, using an intrinsic method that we describe in more
detail in Section 5.3.1. We do not, however, create a correspondence for these points
directly. Instead, we sort all candidate points according to a symmetric sorting
scheme, explained in Section 5.3.2, which also determines a pairing vertex for each
candidate. After the new constraints are paired and sorted, our algorithm iteratively
adds these correspondences to the current mappings, slightly improving M′

1 and
M′

2. This entire process is repeated until M′
1 and M′

2 are sufficiently close to M2

and M1, respectively (in our experiments, we set a fixed number of iterations to
generate new constraints). Figure 5.2 shows a simplified workflow of our algorithm.

5.3.1 Intrinsic Point Enrichment

Given a set of constrained vertices in either M1 or M2, we wish to find new
vertices to constrain in the next iteration of our algorithm. For simplicity, we
will focus our discussion on M1 only; the process is entirely analogous for M2.
Notice that in this stage of the algorithm we are not yet interested in finding a
correspondence between vertices on both meshes — this will be done in the next
step, during sorting. Instead, in this step we only wish to find new vertices over a
single mesh that uniformly cover its geometry.

To choose these new vertices, we build an approximate Voronoi diagram over the
surface of the mesh. A Voronoi diagram is a decomposition of a metric space into a
disjoint set of cells, each of which corresponds to a given site [9]. These cells satisfy
the property that all points inside a particular cell are closer to its corresponding
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Figure 5.3: Approximate Voronoi Diagrams. We implemented two approximate
Voronoi diagram schemes, one based on Dijkstra’s algorithm (left) and one based on
solutions to Laplace’s equation (right). We use the nodes in the Voronoi diagram as
new constraints in our inter-surface mapping algorithm. The green dots shown in
this picture are the sites for the diagrams.

site than to any other site. Edges between cells are sets of vertices equally distant
from two sites. Finally, points where more than two cells meet are called Voronoi
nodes, which are equally distant from all the sites corresponding to the cells that
meet at that node. We compute an approximate Voronoi Diagram over M1, whose
sites are the constrained vertices from the previous iteration of our algorithm. Once
this is done, we simply use the nodes in the diagram as new constrained vertices for
the next iteration.

The construction of the Voronoi diagram requires a notion of distance between
points in the mesh and the sites. However, we cannot simply compute the Euclidean
distance in R3, since it does not consider folds and bends in the model. To compute
an exact Voronoi diagram it would be necessary to determine the Geodesic distance
between pairs of points on the surface of the mesh (the Geodesic distance between
two vertices u and v is the length of the shortest continuous path that goes from u
to v). In our algorithm, however, we consider only approximate geodesic distances,
computed using one of the two methods explained below.

The first method is simply Dijkstra’s algorithm over the underlying graph of the
mesh. We use the Euclidean length of the edges as their weights, and execute the
algorithm once for every site. This generates a set of approximate distance fields,
where the distance between an arbitrary vertex v and a site ci is approximated by the
length of the shortest edge-path between v and ci. The second method, on the other
hand, involves solving Laplace’s equation over the mesh, with a set of least-squares
boundary conditions, exactly as explained in Section 5.1. To compute the distance
field corresponding to a site ci, we solve Lx = 0 with augmented rows that enforce
the following boundary conditions:

xj =

{
0 ci = vj

1 otherwise,
j = 0, . . . , k − 1

where vj is the vertex in the mesh corresponding to xj. The vector x therefore
describes the smoothest possible function (since it minimizes the Laplacian) that is
zero in ci and one in every other site. Although this is not an exact distance field, it is
an acceptable approximation to compute the Voronoi diagram. Figure 5.3 illustrates
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Figure 5.4: Approximate Distance Fields. We compute approximate distance
fields based on a set of constrained vertices. The top row shows distance fields
computed using the solution to Laplace’s equation, and the bottom row shows fields
built with Dijkstra’s algorithm. We show results for three different sites ci, which
are represented as red points. All other constraints are drawn as green points.

the diagrams output by our method. Our process is called intrinsic because it
considers only intrinsic surface properties to generate the Voronoi diagrams, i.e.,
properties that are inherent to the surface itself, irrespective of its embedding in R3.
This is particularly true for the distance maps based on Laplace’s equation, as the
(Combinatorial) Laplacian matrix depends only on the connectivity of the mesh.

Both methods described above generate a set of approximate distance fields, each
corresponding to one site. These distance fields are illustrated in Figure 5.4. The
distance fields allow us to compute the Voronoi diagram simply by classifying each
triangle in the mesh as belonging to one of the Voronoi cells. To do this, we find
the distance field that has smallest value in the barycenter of the triangle, and add
this triangle to the field’s corresponding cell. We use linear interpolation to compute
the value of the fields in the triangles’ barycenters. Once all triangles have been
classified, the construction of the Voronoi diagram is complete. We must then find
the nodes in the diagram, to set them as new constrained vertices.

All vertices in the mesh can be classified into one of three categories, depending
on their neighboring faces: if all neighboring faces of a vertex belong to the same
Voronoi cell, we call this vertex an internal vertex. If the neighboring faces belong
to exactly two cells, we call the vertex an edge vertex, as it lies exactly on an edge
between two Voronoi cells. Finally, if the neighboring faces belong to more than
two cells, this vertex corresponds exactly to a node in the Voronoi diagram. This
classification, illustrated in Figure 5.5, suggests an immediate algorithm to find the
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(a) Internal vertex. (b) Edge vertex. (c) Voronoi node vertex.

Figure 5.5: Vertex Classification. We classify a vertex v as being internal (a),
an edge vertex (b) or a node (c). This classification is defined entirely using v’s
neighboring triangles. We then use the node vertices as new constraints for the
surface mapping.

nodes: we traverse all vertices, and choose only those whose neighboring faces belong
to more than two different Voronoi cells.

Once this vertex classification is complete, we have a new set of vertices for each
mesh M1 and M2, which we use as new constraints in our inter-surface mapping.
However, the new vertices in M1 do not yet correspond to any vertex in M2, and
vice-versa. The next step in our algorithm determines this correspondence.

5.3.2 Symmetric Constraint Sorting

After computing and classifying the Voronoi diagrams, our algorithm computes
two sets of new constraint vertices, which we call NC1 and NC2, corresponding to
new constraints in M1 and M2, respectively. For each vertex in NC1 we must find
a corresponding vertex inM2, and vice-versa. We do this via a symmetrized version
of the Manifold Parameterization scheme.

We initially find, for each vertex vi in NC1, its corresponding vertex v′i in M′
1.

The vertex v′i is therefore the position of the new constraint in the current Least-
Squares approximation of M2. We then iterate over all vertices in M2 and find the
one that is closest to v′i. We store this vertex pair, along with their distance, for each
vi in NC1. We apply this process to NC2 analogously. Because of this, we call our
approach symmetric: we do not give any precedence to M1 or M2 in the process,
since we compute both pairings for M′

1 and M′
2 simultaneously.

Once we have candidate pairs for all vertices in NC1 and NC2, we choose the
pair with overall smallest distance and add it to M′

1 and M′
2 (by adding a new

augmented row to the Laplacian matrices). We remove this vertex pair from its
originating set, recompute all pairs and distances, and repeat this process until both
NC1 and NC2 are empty.

The process of building approximate Voronoi diagrams and iteratively adding
new constraints completes one iteration of our algorithm, which increases the number
of Least-Squares constraints in both M′

1 and M′
2 by |NC1|+ |NC2|. We repeat this

process until M′
1 is sufficiently close to M2 and vice-versa. In our experiments, we

required no more than three iterations to ensure a good approximate inter-surface
mapping.

The algorithm we just described builds a geometric approximation of M2 using
the connectivity of M1 and vice-versa. This is enough information for applications
that require only a geometric mapping, such as computing morphing sequences.
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Figure 5.6: Least-Squares Basis. We build a vector basis consisting of k linearly
independent vectors to represent functions over a mesh. In this Figure, vertex
constraints are highlighted in green, and the selected constraint ci is shown in red (in
this example, k = 4). Notice how the values of these basis vectors are approximately
reversed with respect to Figure 5.4 (a consequence of the inverted boundary values).

However, if we wish to transfer information between the surfaces of the two models,
such as colors or texture coordinates, we require extra machinery. We describe our
proposal to perform detail transfer in the next Section.

5.3.3 Information Transfer between M1 and M2

We consider the problem of transferring real-valued functions between M1 and
M2. We deal only with mapping functions in one direction; the reverse is solved
analogously. Given a function f : M1 → R, we wish to find a new function
g :M2 → R such that the values of f and g are the same for matched points. We
restrict ourselves to functions defined over the vertices of each mesh, which can
therefore be represented as column-vectors.

Recall that once we have finished computingM′
1 andM′

2, we also have dense sets
of correspondencesM1C andM2C , with k vertices each. We use these correspondence
points to build two bases for k-dimensional linear spaces embedded in Rn1 and Rn2

(one for each mesh), where n1 and n2 are the number of vertices in M1 and M2,
respectively. To build the basis for M1 (which we denote BM1), for example, we
compute a set of k n1-dimensional vectors using a method similar to what we
described in Section 5.3.1. We solve Laplace’s equation LbM1

i = 0 for each bM1

i

with boundary conditions set thus:

bM1

i
j =

{
1 ci = vj

0 otherwise,
j = 0, . . . , k − 1

where vj is the vertex in the mesh corresponding to bM1

i
j . Instead of a distance field,

these vectors are similar to hat functions with a peak on vi (for the ith constraint).
Figure 5.6 shows an example of a basis built this way. We build BM2 for M2 using
the exact same method.

Now, given a function f :M1 → R we wish to find coefficients x = [x0, x1, . . . , xk−1]T

that represent f as a linear combination of the vectors in BM1 . Recall, from Chapter 3,
that this is equivalent to solving the following linear system:

BM1x = f (5.3)
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In general, however, k < n1, so the system above is over-determined (meaning
BM1 does not span a space capable of exactly representing f). Again we address
this issue by solving (5.3) in a Least-squares sense:

BM1

TBM1x = BM1

Tf

Because BM1 is a full-rank matrix, we can also solve this system using Cholesky De-
composition. The solution vector x represents the coefficients that best approximate
f using b, in a least-squares sense.

We can now build g :M2 → R by considering BM2 , the basis for functions in
M2. Because there is an inherent one-to-one correspondence between vectors in BM1

and BM2 (since they are built with matched correspondences), we use the coefficients
x computed for BM1 to build g in BM2 with a simple matrix-vector multiplication:

g = BM2x

With this method we reduce the problem of transferring real-valued functions
between two meshes to two linear-algebraic computations: a linear system and a
matrix-vector multiplication. In order to transfer multi-dimensional data such as
colors, normals or texture coordinates, we simply transfer each dimension of the data
separately.

5.4 Final Remarks

In this Chapter we introduced and explained in detail our inter-surface mapping
algorithm. Our technique is based on iteratively building two Least-Squares meshes
M′

1 and M′
2, using a set of vertex-to-vertex correspondences between two input

meshes M1 and M2. In order to generate a dense set of constraints, we employ an
approximate Voronoi diagram-based method to generate new candidate constraints,
and a symmetrized point sorting approach that alternates between adding constraints
from M1 and M2.

In the next Chapter, we will present experimental results and discuss them in
detail. We will describe all the datasets used, and also discuss issues such as running
time and memory consumption of our algorithm.
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6 RESULTS AND DISCUSSION

In this Chapter, we discuss the experimental results obtained using our inter-
surface mapping algorithm. We describe all the models we used, as well as the
characteristics of our software and test system. We present results that demonstrate
mesh morphing, both between simple and complex shapes, and also illustrate detail
transfer via a color transfer example. We begin this discussion with a description of
our software and experimental configuration.

6.1 Software and Experimental Testbed

We have implemented our software, LSMapper, entirely in C++, using Nokia’s
Qt library for the interface and OpenGL 3.0 for drawing. We have also implemented
GLSL fragment shaders to generate high quality renderings of our results. The
full code is free software, distributed under the GNU Foundation’s General Public
License v3.0 [3], and is available for download from http://www.inf.ufrgs.br/

~lfscheidegger/lsmapper. In addition to computing the surface maps, our code
also contains functionality to compute Least-Squares Meshes [48], as well as compute
and display the approximate Voronoi diagrams described in Chapter 5. We conducted
all experiments described here on an Intel R© Core2TM Duo E8400@3.00Ghz, with
4Gb of RAM memory, and an NVidia R© GeForce R© 9800GT graphics card, running
the Ubuntu 10.04 Lucid Lynx Linux distribution, and GNU’s gcc compiler, version
4.4.3, with the -O3 full optimization flag set.

Interacting with our system is very simple: the user initially loads a pair of
triangle meshes M1 and M2, which are displayed on the upper left and upper right
viewports, respectively. Once this is done, the user can start choosing the initial
correspondence points. To do this, it is necessary to double-click somewhere over
one of the meshes, thus selecting one vertex for the correspondence, and then to
double-click on the corresponding vertex on the other mesh. The process of picking
the correspondences automatically generates the augmented rows for the Laplacian
matrices, which are initialized when the user loads the meshes. Once the number of
matched pairs is satisfactory, the user clicks on “Bake Mapping”. This computes
one iteration of our algorithm, adding a large number of automatically generated
correspondences. The lower left and lower right viewports display the most up-to-date
versions of the Least-Squares approximations M′

1 andM′
2. The user can repeat this

process arbitrarily, to generate denser correspondences. It is also possible to manually
add more correspondences to the mapping at any time. Figure 6.1 illustrates our
system’s Graphical User Interface.
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Figure 6.1: LS Mapper. Our software interactively computes Least-Squares ap-
proximations to two input meshes, and displays the results graphically. The top left
viewport displays M1 and the top right displays M2. The bottom viewports show
M′

1 and M′
2, respectively.

6.2 Experimental Results

We have conducted experiments on many different triangle meshes. Table 6.1
shows a summary of the relevant information for each model, including their number
of vertices and faces. Although we did not use the Stanford Bunny dataset in any
experiment, we include it in this Table because it appears as an illustrative example
for many concepts in previous Chapters of this text. The Stanford Bunny and
Armadillo models were obtained from the Stanford 3D Scanning Repository [2],
whereas all other models (including the Deformed Armadillo) were obtained via the
Aim@Shape project [1].

Recall from Chapter 5 that our algorithm depends on a choice of approximate
distance map. In our implementation, we have used the formulation based on solving
a set of sparse Laplacian equations, instead of using Dijkstra’s algorithm. Although
Dijkstra’s algorithm provides a better approximation, we have observed that for
situations where the number of constraints is more than a few dozen both methods
generate very similar results, and the Laplacian formulation is much faster to compute.
Moreover, our technique also requires an appropriate choice of Laplacian matrix
(refer to Table 4.1 for a full list of possibilities). For simplicity and stability, our
current implementation uses the Combinatorial Laplacian.

Table 6.2 contains symbolic names for the mapping experiments we conducted.
These names should be used when referring to Table 6.3, which contains relevant
information about all mappings. The largest triangle meshes with which we tested
our method contain more than 300.000 triangles and over 150.000 vertices. Despite
this large size, LSMapper never required more than 30 minutes to obtain a result.
Figure 6.2 illustrates the output of all the experiments. The extreme left and extreme
right columns depict M1 and M2, respectively (constrained vertices are shown in
green). The center left and center right columns illustrate M′

2 and M′
1, in this

order. Observe how M′
2 resembles M1 and how M′

1 resembles M2. We color-map
these models according to the geometric error of the approximation, normalized
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Figure 6.2: Surface Mapping Results. We have conducted four different mapping
experiments, with varying models. The extreme left and extreme right columns
illustrate the input meshes M1 and M2, respectively. The center columns depict
M′

2 and M′
1, in this order. Observe how M′

2 approximates the geometry of M1

and how M′
1 resembles M2. The colormap illustrates the geometric error of the

approximations, normalized by the diagonal of each model’s bounding box. Also,
the final constraints are visible as green dots on M1 and M2.
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Example Datasets

Name Vertices Faces

Stanford Bunny 34834 69451
Cow 2903 5804

Horse 48485 96966
Large Torus 1000 2000
Small Torus 1000 2000

Armadillo 172974 345944
Deformed Armadillo 165954 331904

Left Hand 53054 105860
Right Hand 112729 225152

Table 6.1: Summary of Example Datasets.

Experiment Keys

Experiment M1 M2

E1 Cow Horse

E2 Large Torus Small Torus

E3 Armadillo Deformed Armadillo

E4 Left Hand Right Hand

Table 6.2: Experiment Keys. This Table contains symbolic names for the experi-
ments reported in Table 6.3.

by the diagonal of the model’s bounding box. Notice how none of the models
incur an approximation error of more than 10%. In fact, as is evident by the
models’ predominantly orange colors, geometric error is very close to zero almost
everywhere. Furthermore, the Laplacian solver distributes the vertices evenly across
the surface, ensuring high triangle quality inM′

1 andM′
2, with respect to the popular

incenter/circumcenter radii ratio.

Another very important aspect of our method is its ability to automatically
handle triangle meshes with incompatible topology. To the best of our knowledge,
only LSMapper and the Manifold Parameterization technique are able to do this.
Other algorithms explicitly assume that the input meshes are topologically equivalent.
Although it does not usually make sense to map meshes with different topologies,

Experimental Data

Experiment Initial Const. Total Const. Cholesky Dec. M′
1 and M′

2

E1 52 807 0.03s/1.01s 3m 1.81s
E2 16 245 0.01s/0.01s 1.92s
E3 41 909 1.20s/2.93s 8m 40.01s
E4 53 1297 5.67s/4.37s 29m 29.34s

Table 6.3: Experimental Results. This Table presents the experimental results of
our method. We report the number of user-specified constraints, the number of final
constraints in the mapping, the time taken to compute the Cholesky factorization of
the Laplacian matrices for M1 and M2 and the total time to compute M′

1 and M′
2.

Refer to Table 6.2 for the datasets used in each experiment.
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Figure 6.3: Mapping Meshes with Different Topologies. Our method builds a
surface map even between meshes with different topologies. The Right Hand dataset
has a hole at the tip of the index finger. Even though the Left Hand does not
have the same hole (and hence the same topology), our algorithm can compute a
compatible surface map between the models.

Figure 6.4: Morphing Sequence. Once M′
1 is computed, we trivially compute

a morph sequence between M1 and M′
1. This Figure illustrates M1, 1/3M1 +

2/3M′
1, 2/3M1 + 1/3M′

1 and M′
1 respectively. The boundary next to the wrist

gets distorted because there are no constraints there, and the Laplacian minimizer
does not respect boundaries exactly.

sometimes defects in the models, such as holes and cracks, may invalidate the topology
of otherwise perfectly compatible surfaces. This is exactly the case in Experiment E4:
a small hole on tip of the Right Hand’s index finger went almost entirely unnoticed
by the authors (see Figure 6.3). Although this small defect should not preclude a
mapping between the models, it is sufficient to make them topologically distinct,
and thus render most previous techniques unusable. Our method entirely disregards
this problem, and produces the results shown in Figure 6.2.

6.3 Discussion

6.3.1 Applications

One of the main applications of our technique is to compute mesh morphing
sequences. Once we have, for instance, the Least-Squares approximation M′

1, it
is possible to compute a continuous deformation sequence that smoothly takes
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Figure 6.5: Least-Squares Detail Transfer. We build a pair of Least-Squares
bases on M1 and M2 which allows detail transfer between both meshes. In this
example, we map a circular color pattern directly fromM1 toM2, without the need
for an intermediate, parameterized, domain. However, our method does not exactly
capture high frequency components, such as the sharp edges in the pattern in this
Figure.

the geometry of M1 into M′
1. Since there is an immediate one-to-one mapping

between vertices in M1 and M′
1 (recall that they have, by construction, identical

connectivity), we compute this morphing sequence using a linear interpolation of the
vertices’ coordinates. Figure 6.4 illustrates this for Experiment E4.

Recall, from Chapter 5, that our algorithm not only computes the Least-Squares
approximations M′

1 and M′
2, but also maps real-valued functions between M1 and

M2. It is possible to transfer, e.g., the colors of one model directly onto another,
with different geometry and different connectivity. We illustrate this construction in
Figure 6.5. Our detail transfer method differs from most previous work in the key
sense that we do not require an intermediate domain to compute the transfer — it is
done directly from M1 to M2 via a simple change of basis.

However, one main drawback of our detail transfer algorithm is its inability to
accurately reconstruct high frequencies present in the original function. This happens
because we use a sparse Least-Squares approximation of f , and high frequencies
are lost during the projection. This problem can be addressed by computing more
iterations of the main workflow, thus adding more constraints to both meshes. We
have specifically chosen a signal with strong high frequency components in Figure 6.5
to illustrate this limitation.

6.3.2 Algorithm Complexity

Our method is designed to be separable into a number of iterations of the main
method described in Chapter 5, which can be repeated to improve the quality of the
results. Because of this, we will mainly discuss the complexity of the steps involved
in each iteration.

We use the computational library CHOLMOD for all linear-algebraic operations in
the implementation. This library allows us to compute the Cholesky decompositions
of the Laplacian matrices for each mesh only once, and keep them in memory. This
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computation takes O(nnz
3) for each matrix. However, since this is done only once, it

is not the most expensive part of our algorithm. Table 6.3 reports the time taken,
in seconds, to compute the Cholesky decompositions. Once the factorizations are
computed, it is possible to solve linear systems in O(nnz).

Each new correspondence must modify the Laplacian matrices, adding indicator
rows. However, we do not recompute the factorization every time, since CHOLMOD

contains functionality to update the LLT factorization in O(1), when this update is
restricted to adding or removing rows and columns from the original matrix. This is
exactly our case, as each new constraint adds a single indicator row to the matrix.

Computing the approximate distance maps is a more costly operation. Depending
on the choice of method, this can be done in either O(nc) (using the Laplacian
equations) or O(m log n) (using Dijkstra’s algorithm), where c is the current number
of constraints and m is the number of edges in the mesh. Finally, the symmetrized
constraint sorting is the most expensive part of our algorithm. With a KD-Tree
to optimize Nearest-Neighbor searches, each query takes O(log n) time for points
uniformly distributed in space [35]. Therefore, constraint sorting runs in O(n[c log c+
c log n]). Each step must sort the set of new correspondences, done in c log c, and
find nearest neighbors for all constraints, done in c log n. Observe that, although we
sort the constraints only to pick the one with minimum distance, a Heap would not
improve the complexity of our algorithm. This happens because when adding a new
constraint we must update the distances of all correspondences still in the queue.
This is equivalent to reconstructing the entire Heap at every extraction operation,
thus nullifying any theoretical performance improvement.

In the next Section, we discuss some limitations of our current method. In
particular, we deal with the fact that we do not optimize constraint placement in any
way, and also mention possibilities to turn our correspondence selection technique
into a fully intrinsic method.

6.3.3 Limitations and Future Work

As we have mentioned in Chapter 5, our constraint selection method, especially
the formulation based on solutions to Laplace’s equation, is intrinsic to the model’s
topology: we do not use geometry information such as Mesh Saliency or curvature
to choose new point constraints. However, when determining the pairs between
correspondences, we use the Euclidean distance between vertices on both meshes. In
effect, this means that our method is only partially intrinsic. The main advantage
of a fully intrinsic method would be its ability to compute a mapping between two
models that are homeomorphic, but not isotopic. Homeomorphic models are just
topologically equivalent (i.e., there is some mapping between them which preserves
neighborhoods). Isotopy, on the other hand, is a stronger requirement: two models
are isotopic if and only if there exists a continuous deformation of one model into
the other without any self-intersections. The Trefoil Knot (Figure 6.6) is a classic
example of a model that is homeomorphic, but not isotopic, to the Torus.

We are currently investigating ways with which to turn our technique into a
fully intrinsic method. One possibility we are considering is to maintain the Voronoi
Cells adjacent to the new constraints on each mesh. If, for instance, vertex v on
M1 touches cells c0, c1 and c2, and vertex u on M2 touches these same cells (albeit
on the other mesh), we can immediately place u and v into correspondence. Our
preliminary experiments with this method have shown that merely defining this
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Figure 6.6: Homeomorphism vs. Isotopy. A fully intrinsic surface mapping
method should be capable of mapping homeomorphic models that are not isotopic,
such as the Trefoil Knot (left) and the Torus (right). Even though there is no
morphing sequence without self-intersections, it should still be possible to map
functions between the models, as they are topologically equivalent. Our method
cannot currently do this.

correspondence generates poor mappings. In order to remedy this, it might be
possible to define a metric that measures the quality of a mapping. With this metric,
we may be able to optimize the correspondence, by possibly replacing u or v with
one of their immediate neighbors, and iterating this process while the metric is
improving. In fact, it might even be possible to define correspondences that are not
strictly point-to-point: instead of merely adding an indicator row to the matrix, we
add a row with three non-zero entries α0, α1 and α2 (for the three vertices of an
arbitrary triangle), with the property that α0 + α1 + α2 = α (recall that α is the
constraint satisfaction weight). In effect, this construction allows correspondences to
be enforced between points directly over the triangles on a mesh, instead of just on
its vertices. However, this discussion is highly speculative, and we hope to arrive at
more definite results as we conduct further experiments.



72

7 CONCLUSION

We have presented a novel inter-surface mapping algorithm that computes a
Least-Squares approximation of a mesh M2 using another mesh M1’s connectivity,
and vice-versa. Our method performs an order of magnitude faster than existing
techniques, and is very robust with respect to imperfections in the input data. In
particular, our method is unaffected when mapping models with different numbers of
elements (vertices and faces), as well as models with poor triangle quality. We derive
the robustness of our method from a stable formulation of the discrete Laplacian
operator over triangle meshes, which is guaranteed to be always symmetric positive-
definite. This way, the solutions to linear systems of the form Lx = 0, which
pervade our method, always exist and can be efficiently computed using Cholesky
decomposition.

In this text, we have reviewed the mathematical background necessary to develop
our method, including detailed discussions of many linear-algebraic concepts, as
well as a thorough presentation on the Laplacian operator. We introduce LSMapper

as an extension and improvement over the Manifold Parameterization method,
which is itself loosely based on the technique of Least-Squares Meshes. The main
contributions of our novel technique are a semi-intrinsic constraint selection algorithm
and a symmetric constraint sorting step. These contributions allow us to build the
mapping between M1 and M2 in both directions simultaneously.

There are many interesting avenues for future work to further improve the
technique. As we discussed in Chapter 6, our constraint selection method is still not
fully intrinsic. This means that we cannot yet build a consistent mapping between
two homeomorphic models that are not isotopic (such as the example of the Trefoil
Knot and the Torus). In order to do this, we require a constraint selection and
pairing method that does not consider the Euclidean distance between points on both
meshes to determine the vertex pairs. Moreover, LSMapper determines constraint
pairs only once, and makes no subsequent optimization of these pairs. This can lead
to a poor selection of constraints, especially when the two meshes being mapped are
very different from one another. An interesting approach to remedy this problem is
to define some metric that can measure the quality of a current mapping, and try to
modify the constraint pairs to optimize this metric. Finally, one issue that is left open
in our method is how to determine the initial sparse set of mesh correspondences:
we currently rely on user input for this information. However, the recent work of
Lipman and Funkhouser [29] shows that it is possible to automatically find a set of
point correspondences between partially isometric models. In the future, we plan to
seamlessly integrate their technique into LSMapper, rendering our surface mapping
workflow fully automatic.
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tiresolution mesh morphing. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’99, pages 343–350,
1999.

[26] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David
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conformal maps for automatic texture atlas generation. In Proceedings of the 29th
annual conference on Computer graphics and interactive techniques, SIGGRAPH
’02, pages 362–371, 2002.

[29] Yaron Lipman and Thomas Funkhouser. Möbius voting for surface correspon-
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