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“If P = NP, then the world would be a profoundly different place than we usually
assume it to be. There would be no special value in creative leaps, no fundamental

gap between solving a problem and recognizing the solution once it’s found.
Everyone who could appreciate a symphony would be Mozart; everyone who could

follow a step-by-step argument would be Gauss.”
— Scott Aaronson, MIT
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ABSTRACT

Modern games and animation films use hundreds of extremely complex models.
At the beginning of the modeling pipeline, artists sketch the object as seen from dif-
ferent points of view. These sketches normally do not comply with the 3D geometry
of the objects and are often inconsistent.

The purpose of our work is to investigate the problem of creating meshes that
respect every 2D view of an object as much as possible. In our algorithm, each
view imposes some restrictions to the final geometry, which will be found through
the solution of an optimization problem. Our main goal is to generate meshes that
approximate sets of views that would be intuitively classified as conflictuous.

Our results show that many apparently inconsistent sets of views can be repre-
sented by a single mesh. Even in cases where the representation using one mesh is
not adequate, we believe that a mesh that maximizes the similarity to all views can
be used to improve interpolation between views (which is used to render the mesh,
when seen from arbitrary points of view).

Another interesting application of our technique is the creation of realizable
shapes that approximate impossible objects, at least when observed from a specific
point of view. Sometimes artists will impose restrictions that are topologically
and/or geometrically unfeasible. Two examples of that are the PenRose Triangle
and Escher’s Impossible Cube. In these cases, we generate objects that look like the
provided shapes as much as possible, when seen from a particular point of view.

Keywords: Mesh Editing Preserving Detail, View-Dependent Geometry, Impossi-
ble Figures.



RESUMO

Malhas de Poĺıgonos Consistentes com Vistas 2D

Jogos e filmes de animação utilizam centenas de modelos geométricos extrema-
mente complexos. O ińıcio do processo de criação desses modelos passa pelo esboço
da aparência dos objetos em 2D, a partir de vários pontos de vista. Como resultados,
não é incomum a ocorrência de inconsistências entre as várias vistas.

O objetivo do nosso trabalho é investigar a relação entre uma ou mais projeções
de um objeto no plano e sua geometria. Formalizamos essa relação de modo que
cada vista impõe restrições à forma 3D, que pode então ser calculada como a solução
de um problema de otimização. Nosso principal foco é a criação de geometrias que
aproximem, tanto quanto posśıvel, conjuntos de vistas que intuitivamente seriam
classificados como inconsistentes entre si.

Os resultados obtidos demonstram que muitos conjuntos de vistas aparentemente
conflitantes podem ser aproximados por uma única malha de poĺıgonos, sem que o
resultado final sofra perdas significativas. Mesmo em casos onde a representação
por um só objeto não é adequada, acreditamos que a criação de uma malha que
maximiza a similaridade com todas as vistas pode ser usada para melhorar a quali-
dade da interpolação (utilizada para renderizar o objeto a partir de pontos de vista
arbitrários).

Uma segunda aplicação da técnica desenvolvida é a criação de modelos geométricos
realizáveis, mas que aproximam, pelo menos a partir de uma vista, a aparência de
objetos que são geométrica e/ou topologicamente imposśıveis. Em alguns casos, o
artista impõe propositalmente restrições que não podem ser satisfeitas, como, por
exemplo, no Triângulo de PenRose e no Cubo Imposśıvel de Escher. Nesses casos,
criamos objetos que, quando observados a partir de um ponto espećıfico, se parecem
tanto quanto posśıvel com as formas imposśıveis desejadas.

Palavras-chave: Geometria Dependente de Vistas, Edição de Malhas Preservando
Detalhes, Figuras Imposśıveis.
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1 INTRODUCTION

Three-dimensional modeling has become very popular in the last decade. Modern
games and animation films include hundreds of extremely complex models and the
industry provides advanced software to allow artists to keep up with this demand.
The very beginning of the modeling pipeline is, however, still the same as in the
1920s when Walt Disney first created Mickey Mouse: sketching how an object is
supposed to look like.

When constructing 3D shapes, artists typically begin by approximating a set
of drawings from different views of the target object. These drawings are meant
to capture the look and feel of the object and frequently include some distortions
that cannot be represented by static geometry. An example of this can be seen in
Figure 1.1, where the ears of the bunny are in different positions at each view.

Figure 1.1: View-specific distortions in reference sketches for modeling.
The ears and the tail of the bunny are in different positions at each view. This may
lead to unfeasible geometry.

The purpose of our work is to investigate the problem of modeling shapes that
are consistent with 2D views. We use equations on the vertices of the mesh to
formalize the way the object should look like, when seen from a specific point of
view. Then we solve a linear system, trying to match the equations provided by
every view as closely as possible.

Our results show that, frequently, views that would be intuitively classified as
conflicting can be represented without significant loss by one consensus mesh. Even
in the cases where views cannot be satisfyingly represented by a single mesh, we
believe the consensus mesh can be used to improve the interpolation between two
different views of the object.
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Our approach is based on projective geometry principles, where a point on the
screen maps to a line in R3, going through the point and the center of projection
of the camera, as shown in Figure 1.2(a). Thus, we can move every point along its
projective line without changing the projection.

Figure 1.2: Restrictions a view imposes to the geometry of the object. (a)
All points in the projective line l going through vertex p project to the same screen
pixel. (b) A bad estimation of p’s relation to its neighbors. (c) A better estimation
of p’s relative coordinates.

Because we are dealing with shaded views of the object, and not only shadows,
some extra care must be taken. The shading of the image gives us information about
the curvature of the object. We formalize that as the position of a vertex in relation
to its neighbors. We can see a vertex in Figure 1.2(b) and (c), in the same position,
surrounded by neighbors shifted along the projective line. We can clearly notice the
distortion caused by this change in the angle of the faces, and consequently, in the
shading of the object.

It is important to note that small errors in the relative position of a vertex to its
neighbors do not significantly affect the final result. Respecting a line constraint and
the exact relative coordinates for every vertex would leave little room for optimiza-
tion. More specifically, we would only be able to translate the unchanged mesh in
the view direction of the camera. We will elaborate on this when discussing Laplace
Surface Editing [19], in chapter 2.

Another interesting application of our technique is to investigate cases where an
artist intentionally generates a view which cannot be realized. Two examples of this
can be seen in Figure 1.3. We construct three-dimensional shapes that approximate
these impossible objects when seen from one specific view.

1.1 Thesis Organization

The remaining of this thesis is organized as follows. Chapter 2 reviews some
related work. We will discuss the latest advances in acquiring a shape from multiple
views and representing the details of a model as intrinsic characteristics.

Chapter 3 introduces our novel technique. We will explain the basic ideas that
motivated the work and give more details on the construction of the linear system
of equations.
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Figure 1.3: Impossible objects. (a) PenRose Triangle. (b) Escher’s Cube.

Chapters 4 and 5 show two applications where we used our technique. In the
former, we used an already existent pipeline where sketches are used to deform three
dimensional shapes. The latter discusses the approximation of impossible objects
when seen from an specific viewpoint.

Finally, Chapter 6 discusses the achieved results and possible directions for future
exploration.
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2 RELATED WORK

This chapter discusses existent research related to our work. We divided this
review into two main sections: (1) calculating the geometry of an object from multi-
ple views, and (2) editing objects preserving its details (which is the same as saying
that the details are an intrinsic part of the object).

2.1 Geometry of an object from multiple views

There is some significant amount of research devoted to investigate the relation
between the shape of an object and its views. In this section, we will review the
works that are most closely related to ours.

2.1.1 Estimating a shape from multiple views

Laurentini [15] introduced the concept of visual hull. The visual hull of an
object is the maximal volume that can generate the exact same silhouette as the
object itself, when projected onto any plane. Kutulakos [14] discussed the intrinsic
ambiguities when characterizing an object by its silhouettes.

More recently, Mitra [17] introduced a system that generates objects from given
shadows. The user provides a small number of images that he wants to be the
projected shadows of the object, when illuminated from specific points. The images
are deformed such that they can all be represented by the same geometry, while
still preserving their main features. Figure 2.1 shows some results achieved by this
algorithm, obtained using the demo provided by the authors.

Figure 2.1: Shadow Art. A shape is optimized to project the shadows specified
by the user. (a) Input shadows (b) Optimized shape, as projected in the x-, y- and
z-axis.
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Another branch of research is Shape-from-Shading (SFS), first implemented by
Horn [11] in the early 1970s. The idea of the technique is to create shape based on
the shading of one or more images of an object. Shading refers to smooth variations
of color in a surface and can provide information about the curvature of the object
(or, as we mentioned before, the relative position of a vertex to its neighbors). There
are many approaches to calculate SFS, yet two groups seem to have received most
of the attention:

- Minimization. The geometry is calculated using minimization of an energy
function;

- Propagation. The geometry is estimated at some points, and these results
are propagated to the rest of the shape.

The works contained in these two categories vary from assuming a fixed model
of reflection to finding parts of the image where the shape can be determined. The
entire body of research dedicated to this problem is too extensive to discuss in
this section. Please see Zhang et al. [21] for a comprehensive discussion of these
techniques.

2.1.2 View-Dependent Geometry

Rademacher [18] addressed the problem of creating models from conflicting
views. He introduced a technique called View-Dependent Geometry to cope with
the view-specific differences. The idea is to create multiple geometries, one for each
view, and choose the geometry to be rendered based on the angle from which the
object is observed. The deformations would be inherent to one object, instead of
different instances of an object. The contributions of the work are how to represent
and render this kind of model.

This approach is different from the ones we mentioned in Section 2.1.1 in two
major points: First, the shape of the object at each view is created by the user,
not estimated by the system. The user himself will deform the mesh to achieve
the view-specific look. Second, the technique is not concerned in resolving the
inconsistencies in the views, but in representing them and rendering the object in a
way that approximates user expectation.

Figure 2.2: Sphere-Hull Equivalence. The convex hull of the key views is home-
omorphic to the sphere and thus can replace it. (From [18])
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The first steps of the algorithm can be seen as setting up the view-dependent
geometry. The initial input is a small number of views, that the user will position
in space. These initial views of the object will be referred as keyviews. The user
will create a mesh for each key view, and deform it to respect the view-specific
constraints. At the end of this phase, we will have a small number of models and
their respective positions in space.

Once the key meshes are placed, we want to use them to render the object from
every view point. Suppose we have three main views a, b and c, placed respectively
at (1, 0, 0), (0, 1, 0), (0, 0, 1). Obviously, when observing the object from (1, 0, 0),
the user will see the object as deformed for view a (and analogously for b and c),
but we need a way to cover every direction.

The most intuitive geometry to parameterize all views is a sphere of radius 1
(for simplicity, in fact any sphere would work) centered at the origin. Each point in
the surface of the sphere represents a viewing direction. We would then search the
sphere for the key deformations that are nearest to the desired point of view: the
three nearest points in the surface of the convex hull of the key views, as shown in
Figure 2.2.

To find the key points to be used in the arbitrary view creation, we first find the
intersection of the convex hull of the views and the desired view direction. The key
views selected are the vertices incident to the face intersected by the ray. The last
step in rendering the mesh is to interpolate the three views. We need to find weights
that vary according to the distance, so that there are no abrupt changes in the mesh
deformation, which would look unintuitive for the user. An elegant solution is to
use the barycentric coordinates of the intersection point in the selected face. The
barycentric coordinates are the proportion between the area of the face and the area
of the triangles formed by the point, as shown in Figure 2.3.

Figure 2.3: Barycentric Coordinates of a Triangle. (a) vnew ≈ (0.33, 0.33,
0.33) (b) vnew = (0.5, 0.0, 0.5) (c) vnew = (1.0, 0.0, 0.0).

The author used the barycentric coordinates (α, β, γ) associated with the desired
view vnew as the weights of the contribution of each key mesh. The position of each
vertex would then be interpolated as vnew = α× vkey1 + β × vkey2 + γ × vkey3. This
provides a smooth variation between the views.

There are some cases where the view direction ray will not intersect the convex
hull. This may happen because the key views cover only one side of the object. One
of the strategies suggested by Rademacher is to use one of the existent meshes in
this situation.
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2.2 Detail as Intrinsic to the Mesh

A very important part of our technique is based in representing the details of a
mesh as an intrinsic part of it. Our goal is to keep the details imposed by the views,
while allowing the vertices to move. One approach that tries to separate the object
transformation from its intrinsic geometry is to use several levels of refinement,
introduced by Kobbelt [13]. In this paper, the author uses a hierarchy of different
resolutions, where the coarse resolution is the base shape and the finer resolutions
will add details to the mesh. We can see four resolutions of the Stanford Bunny in
2.4.

Figure 2.4: Multi-Resolution Hierarchies. Four resolutions of the Stanford
Bunny, varying from fine to coarse. (From [13])

There were many other works in the same direction. In the next two Sections we
will review the one most closely related to our approach, and the one we consider
to be the state-of-art in the subject.

2.2.1 Laplacian Surface Editing

Sorkine et al. [19] represent detail by replacing the coordinates of each vertex vi
by the difference from its position to the average of the positions of its neighbors.
The difference to the coordinate of a vertex to the centroid of its neighbors is called
Laplacian coordinate of vi [12], [2].

Let A be the matrix that encodes the adjacency of the mesh

Aij =

{
1, if vi and vj are connected by an edge
0, otherwise

}
(2.1)

and D be a diagonal matrix where each element Dii is the degree of the vertex
vi, we can encode the calculation of the Laplacians of a mesh as L = I − D−1A.
The matrix L is called the Laplacian operator.

In Figure 2.5 we show a triangle mesh and the respective matrices. Note that
the inverse of a diagonal matrix is the matrix with the non-zero elements replaced
by their multiplicative inverses (x→ 1/x).

The matrix L has rank n− 1, where n is the number of the vertices. This means
that the linear system of equations that solves the geometry of a mesh from its
Laplacian coordinates, i.e., Lx = b, is underdetermined. The geometrical interpre-
tation for that is straightforward: Laplacian coordinates are invariant to translation,
so we can only reconstruct the mesh from its Laplacians if we specify where the mesh
will be (fixing at least one vertex to a static position, vi = ui).

We can even have additional constraints that model, for example, editions applied
to an object by the user. In this case, we would convert user modifications into
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Figure 2.5: Laplacian Coordinates. (a) Polygonal Mesh. (b) Adjacency Matrix
A (c) Diagonal of Matrix D−1 (d) Laplacian Operator

constraints of the type v′i = ui, where v′i is the position of vertex vi to be optimized
and ui is the user provided position. The coordinates of the object would be solved
by minimizing the following error function on V ′ (the set of all vertices)

Error(V ′) =
n∑

i=1

(L(v′i)− L(vi))
2 +

k∑
j=1

(v′j − uj)2 (2.2)

where L(v′i) − L(vi) is the difference between the Laplacians before (v) and after
the optimization (v′), and v′j −uj is the distance from the optimized vertex position
to the user provided one. Note that the first sum goes from 1 to n, the number
of vertices in the mesh, and the second one from 1 to k, the number of provided
constraints.

This is the base of the edition of surfaces preserving details: to respect constraints
given by editions while keeping the local geometry.

To represent detail as an intrinsic part of a model, it would be necessary to
expand Laplacians’ invariance to rotations (a rotated model is clearly still the same
object and we would like the representation of its details to stay the same). The
solution presented by [19] is to calculate a transformation Ti for each vertex vi based
on the position of its neighbors after the optimization. Using the notation we applied
in the last equation, we would find a transformation that maps vi and its neighbors
to v′i and its neighbors. The equation would be modified as follows:

Error(V ′) =
n∑

i=1

(Ti × L(v′i)− L(vi))
2 +

k∑
j=1

(v′j − uj)2 (2.3)

The authors restrict the transformations to rotations and isotropic scaling. That
way, the T matrix can be represented as T = s × exp(H), where s is a scalar and
H is restricted to be a skew-symmetric matrix. The exponential of a matrix is the
matrix analogous to the ordinary exponential function, and can be calculated by
expanding a power series. Deeper mathematical background is out of the scope of
this work (refer to [3]). The authors rely on some properties of skew-symmetric
matrices (refer to [19] for more information) to derive the following approximate
representation for T .
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T =


s −h3 h2 tx
h3 s −h1 ty
−h2 h1 s tz

0 0 0 1

 (2.4)

The tx, ty and tz values encode the translational part, while s and h encode the
scaling and rotation. These variables do not have a meaningful interpretation when
analyzed individually. This matrix is a good approximation for isotropic scaling
and small rotations. It was necessary to use an approximate matrix, since the exact
matrix would not depend linearly in V ′. Now we can the write the linear dependency
of Ti (the T matrix, calculated for vertex v′i) on v′i as minimizing the equation

(Ai(si, hi, ti)
T
i − bi)2 (2.5)

where Ai contains vi and its neighbors and bi contains v′i and its transformed neigh-
bors. Matrix A is structured as follows, in order to express the transformation
Tivi.

Ai =

vkx 0 vkz −vky 1 0 0
vky −vkz 0 vkx 0 1 0
vkz vky −vkx 0 0 0 1

 (2.6)

Once we have the values for s, h and t, we can add them to our initial system,
as in Equation 2.2. We can see some results from the technique in Figure 2.6

Figure 2.6: Results of Laplacian Surface Editing. Deforming Dragon’s upper
lip. (From [19]).

The authors present other applications of their method, for example creating
models with the base geometry of one object and the details of another. We will
not discuss these applications, since they do not add much to the method itself, and
are not relevant to our work.

2.2.2 Coupled Prisms for Intuitive Surface Modeling

Rather recently, Botsch et al. [5] introduced a system to create physically plau-
sible deformations. The system is based on the usage of prisms connected by elastic
forces. One of the main advantages is that the method will prevent degenerations
(that the mesh intersects itself, for example) even in extreme cases. Also, while for-
mer methods often had problems handling substantial transformations, this system
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can handle them elegantly. The most significant disadvantage is that it is compu-
tationally more expensive than other methods for the same problem.

The first step of the technique is to attach a set of prisms to the mesh, as shown
in Figure 2.7a). Users’ interaction will be applied to the prisms and the position
and orientation of the prisms will be converted to mesh deformation.

Figure 2.7: PriMo: Coupled Prisms for Interactive Surface Modeling. (a)
Prisms configuration around an object (From [5]). (b) As objects are deformed,
elastic forces stretch.

The configurations generated by user interaction are likely to be extreme, which
often leads to the degeneration of the mesh. To prevent prisms from degenerating,
they are made rigid, and connected by elastic joints, that will stretch as the user
deforms the object. The deformation of the set of prisms is solved by minimizing
an energy function, more specifically, the volume between the two prisms.

Eij =

∫ u=1

u=0

∫ v=1

v=0

‖fij − fji‖dvdu (2.7)

where fij is the retangular bi-linear patch between fij(u, v), for (u, v) ∈ [0, 1]2, that
interpolates the four elastic forces in the face from Pi facing Pj. fji is the analogous
construction in Pj. This can be seen in Figure 2.7(b). To create the global energy
function, the authors sum the volumes pairwise, weighting each of them by the
length of the correspondent faces Fi and Fj in the mesh and their shared edgeij
(Equation 2.8). Note the difference between fij and Fi: while fij is the face of a
prism, Fi is the correspondent face on the mesh.

E =
∑
i,j

Eijwij, wij =
eij

|Fi|+ |Fj|
(2.8)

The system works as follows: the user selects a subset of the prisms and determine
their positions. The position of other prisms are calculated by the minimization
of the Equation 2.7. Once we have minimized the energy and found the optimal
position for the prisms, the position of an unconstrained vertex (as opposed to the
vertices that are constrained by the user) is calculated by transforming it by the
average of the transformations of its incident prisms. In Figure 2.8 we can see some
results of the technique.
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Figure 2.8: Results of PriMo: Coupled Prims for Intuitive Surface Mod-
eling . The Dragon was updated by fixing the feet (in white) and moving the head
up (yellow) (From [5]).

2.3 Summary

In this chapter we reviewed some works that are closely related to ours. We
focused on View-Dependent Geometry and Laplacian Surface Editing, since the
comprehension of these works is essential to understand our project.
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3 VIEW-CONSISTENT MESHES

Views of a three-dimensional object are generated by projecting its vertices onto
a two-dimensional view plane. When projecting, we lose information about depth.
Thus, theoretically, a view of the object only gives us two-dimensional information
about the position of its vertices (in practice shading will give us some information
about the vertex position in relation to its neighbors). Our project attemps to solve
conflicts between the views of the object and its geometrical representation, by
adding a new degree of freedom to the optimization: each vertex is allowed to move
along its projective line, as long as its relative position to the neighbors vertices
stays roughly the same.

We will represent each point by the line that goes from the center of projection
exactly through it. In order to add the curvature factor to the equation (needed to
keep the shading of the projection unchanged), we will minimize the difference from
the initial Laplacians to the Laplacians after the deformation.

3.1 View-Consistent Meshes

The basic idea that motivated our project is the fact that a position on the screen
really only restricts the position of the vertex to the projective line going from the
camera’s center of projection through that screen point. In other words, a vertex
would be constrained in space by an equation of the form:

vi ≈ e+ siri, ‖ri‖ = 1 (3.1)

where e is the center of projection and ri the direction of the ray going through vertex
vi. The variable si is a multiplier of the ray and will represent the distance of the
vertex to the center of projection. This distance will be added to the optimization.
When we discussed Laplacian Surface Editing, we had to minimize:

Error(V ′) =
n∑

i=1

(L(v′i)− L(vi))
2 +

k∑
j=1

(v′j − uj)2 (3.2)

where L(v′i)−L(vi) is the difference between the Laplacians before (v) and after the
optimization (v′), and v′j − uj is the distance from the optimized vertex position to
the user provided one. Note that n is the number of vertices in the mesh and k the
number of provided constraints.
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We will apply a very similar algorithm. The only difference will be that we are
now using the projective lines as the constraints. The equation will be modified to:

Error(V ′) =
n∑

i=1

(L(v′i)− L(vi))
2 +

k∑
j=1

(vj − e− sjrj)2 (3.3)

Minimizing the quadratic distance from a vertex to a ray, ‖vj − e− sjrj‖2, is still
a linear problem, not only in vj but also in sj. The usage of lines instead of points
causes a problem, since for each additional constraint we are also adding a new
variable s, which means that the Laplacian will continue to have rank n−1. We can
solve that either by adding “anchor” constraints, a small number of constraints of
the type vj ≈ uj or by using perspective projection (only in orthographic projection
we can move the object along the projective lines without affecting the relation
between neighbors). Also, if we set the equations for the x, y and z coordinates of
the vertex in the same system, this will solve the problem, because every new line
will add three equations (one for each dimension) and only one variable.

In our implementation, we used orthographic projection and solved the problem
by having all dimensions in one system. We also needed the anchor variables for
specific application purposes, in both applications, so linear dependency was not an
issue.

3.2 Constructing the Linear System of Equations

As we mentioned in Chapter 2, the Laplacian operator of a mesh is a matrix of
rank n − 1, where n is the number of vertices of the mesh. Since we have n vari-
ables, we need at least one additional contraint, otherwise the system of equations
is underdetermined. In our case, this is made worse by the fact the each additional
constraint also adds a s variable. We solved this by having all three dimensions in
the same linear system.

Additionally to the line constraints, we restricted some vertices in the old vi ≈ ui
way. The use of these constraints was specific to the application. In the sketching
contours application (Chapter 4), we used these restrictions to avoid having to solve
the position of each vertex in the mesh. In the generation of impossible geometry
(Chapter 5), we used these to add the topological features that make the object
impossible. We will discuss this in more detail when explaining both applications.

In the end, the linear system of equations (without the anchor constraints) looks
as following:



L

ej.x . . . 0 . . . 0 . . . − rij.x
0 . . . ej.y . . . 0 . . . − rij.y
0 . . . 0 . . . ej.z . . . − rij.z





xi
...
yi
...
zi
...
sj
...


=



L(vi)x
...

L(vi)y
...

L(vi)z
...
0
0
0


(3.4)
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where ej is the eye position in the view j and rij is the ray going from the eye
ej through the vertex vi. To change the contribution of each constraint to the final
position of a vertex, we can multiply the whole equation by a constant.

We solved the system using the Cholesky Decomposition [9] provided in the
TAUCS Library [20]. Solving the linear system of equations is the performance
bottleneck of our framework, a transition to the state-of-art library Cholmod [7] or
to an implementation that uses GPUs is a possible future improvement.

3.3 Summary

In this chapter, we described the main idea that motivated our technique. This
idea is straightforward, yet it gives us a powerful tool to describe the look of an
object, while restricting its geometry the least we can. In the next two chapters, we
will see applications where we demonstrate the possibilities enabled by our technique.
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4 SKETCHING CONTOURS

In this chapter, we discuss the first application of our method. We extended
an existent system introduced by [22], where sketches are used to edit a three-
dimensional model preserving its details. The user will make a sketch over a mesh,
and the mesh will deform accordingly. We can see some results in Figure 4.1.

Since we are using an edition that preserves detail, we have to make an important
distinction between two different kinds of optimizations: the one that optimizes
single-view geometry with respect to user editions and the one that optimizes the
consensus mesh in respect to every view. In the next section, we will discuss the
pipeline we followed to perform the first one. The latter will be discussed in the
following sections.

4.1 Modified Framework for Single-View

Most of the pipeline we will follow to edit meshes is derived from [22]. In the
existent work, one of the main goals is to make the whole process transparent to the
user, and efficient enough to be interactive. Our goal is to edit the view as closely
as possible to user’s intention, so we can focus on creating the consensual geometry
and interpolating it. We replaced automatic estimation at points where it was not
reliable enough. By not reliable, we mean that very similar inputs generated different
results, which made it hard to evaluate the effect of changes in the second part of
the algorithm. The overview of the modified pipeline can be seen in Figure 4.1.

According to [10], humans recognize objects by its feature lines. The sketch-
based editing uses this assumption. Thus, the first step of the algorithm is to detect
the silhouettes of the object. The user only has information about the projection of
the object, so the most obvious approach is to detect the main lines in image-space.
The silhouettes have to be segmented in meaningful parts, such that they have an
adequate 3D correspondent. Even when two vertices that are part of the silhouette
are neighbors in image space, they may be distant in the model.

After showing the user which feature lines the algorithm detected, we ask the
user to choose the one he wants to deform. The user will also inform which is
the region of interest, i.e. the region of the object that should be affected by the
operation. The region of interest is necessary to prevent the object from deforming
globally, as will be discussed in Section 4.4. These two steps were modified from
the original framework because the automatic estimation often did not generate the
results we expected.

The user will then make a sketch, to inform where he wants the selected feature
line to go. The system will automatically find correspondences between the vertices
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Figure 4.1: Pipeline of Sketching Contours. (a) Automatically detect silhou-
ettes. (b) User provides handle. (c) User provides Region of Interest. (d) Sketch.
(e) Vertex Correspondences. (f) Deformation.

in the mesh and positions in the sketch. Finally, the mesh will be deformed to
respect the sketch, while trying to preserve the details of the shape as much as
possible. In the next sections we will describe every step presented in more detail.

4.1.1 Silhouette Detection

To detect the silhouettes, we used the algorithm suggested by [22]. The final
result we want to achieve is a set of disjoint lines, each one representing a meaningful
part of the object.

To find the parts of the object that consist of feature lines, we simply detected
the highest frequencies in the depth map (Z-Buffer), using a Laplacian filter (note
the difference between a Laplacian filter, applied to 2D images, and the Laplacian
operator, applied to 3D meshes). We use a 3x3 Laplacian filter, as we can see below.

L =

 0 −1 0
−1 4 −1
0 −1 0

 (4.1)

A pixel is determined to be part of the silhouette if the difference from its depth
to the depth of its neighbors (the result of the Laplacian) is greater than a small
constant ε.

isSilhouette(p) = Lxy(depthMap[p]) > ε (4.2)

After determining which pixels are part of the silhouette, it is necessary to seg-
ment these pixels into lines that make sense in the mesh. The first condition used by
the authors is the depth difference between elements - pixel paths that are continu-
ous in 2D may have discontinuities in 3D, and vertex paths that are not continuous
in 3D should not be part of the same silhouette segment. It is possible though,



27

Figure 4.2: Silhouette Detection. Results of silhouette detection algorithm ap-
plied to Stanford Bunny, Camel and Tweety.

that more than one neighbor pixel obey this condition. To handle these situations,
the pixels are inserted in a priority queue ordered by curvature, where pixels with
less curvature (i.e. that form a straight line) come first. Some results of silhouette
detection and segmentation can be seen in Figure 4.2.

4.1.2 Handle Estimation

At this point, we decided that the algorithm used in [22] often generates unex-
pected results. This happens mostly because the sketch can be very different from
the silhouette (for extreme deformations). Since handle estimation is an activity
where user interaction can quickly provide a good answer, we ask the user for input
in our framework.

It is worth mentioning, however, that the algorithm we use is the same used
by [22] (we will review the algorithm in this section). The authors tested the sim-
ilarity from the handles to the user sketch, whereas we tested the similarity to the
user input of which handle he desired. By asking the user to draw exactly over the
feature line, we avoid having to decide between choosing handles that are similar to
the sketch or handles that are near it. A user study conducted in the original work
showed that there is no right answer for this choice.

We used the algorithm by Cohen and Guibas [6]. The method extracts the
cumulative turning angle and the length of the edges from the two lines.

lengthi = ‖edgei‖ , tAnglei =

{
0,
edgei − edgei−1 + ti−1,

i = 0
i 6= 0

}
(4.3)

We can see the graphical representation of two lines in Figure 4.3 (Turning Angle
Summaries - TAS). The blue part of the red line is the most similar to the green
line. We compute the similarity of two line segments by estimating the difference
between a scaled, translated and/or rotated version of one of the lines and the other.

Before testing the similarity between the two lines, we simplified the user pro-
vided line using the algorithm by Douglas and Peucker [8]. The algorithm starts
with a bad estimation of the line and iteratively improves it. At each step, the
algorithm chooses the vertex v that is most distant to the line approximation, and
divides the vertices in “right from v” and “left from v”. The algorithm is then
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Figure 4.3: Matching two lines. (a) Result. (b) Tuple of edge lengths and turning
angles. (From [22])

recursively applied to each side, until there are no more vertices more distant than
a provided ε.

4.1.3 Handle-Target Correspondences

Given the handle and the sketch, we need to decide which vertices are the three-
dimensional correspondents to the feature line we selected and where we are going
to position them.

We start by finding the vertices. Based on the 2D position of the handle pixels
and on the depth map, we are able to create a 3D bounding volume that will contain
some of the vertices that are near the projected pixel in 3D space. These are the
handle vertices, that will be mapped to sketched positions. To create a more robust
set of handle vertices, we also add every vertex v that respects the two following
conditions:

- Adjacency: v is adjacent to the at least one of the vertices already classified
as handle.

- Image-Space Proximity: when projected to the image-space, v is contained
inside the 2D area formed by the projection of the 3D bounding volume.

In Figure 4.4 we can see the effect of the handle growth. The first handles are
sparse and randomly placed over the region whereas the new handle set is more
compact and will create smoother deformations.

To decide where in space the handle vertices should go, we need to map from
their distance to the chosen feature line to a distance from the sketch. Specifically,
we determine the coordinate of each vertex to be the position it occupies in relation
to the total length of the line. We parametrized both the feature line and the sketch
from [0,1], i. e. a point in the middle of the line will have the coordinate 0.5. In this
way, we can map the middle point of the handle to the middle point of the sketch
and so forth.

4.1.4 Region of Interest Estimation

The region of interest estimation used in the existent pipeline often had such
an influence on the results, that it was hard to evaluate whether changes in other
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Figure 4.4: Handle Growth. Top row - deformation without growing the handles;
bottom row - improved handle set using the region growth. (From [22])

parts of the technique were having the expected effect. Also, it only considered the
vertices on the surface (and not their future positions), which generated bad results
when the user deformed the vertices to go inside the mesh (see Figure 4.5).

We changed the pipeline to allow the user to provide the region of interest, by
drawing a sketch around the desired region in the model. To test whether a vertex
is part of the selected region, we create a polygon from the sketch segments and test
whether the projection of the vertex in the screen is inside this polygon. We used
the CGAL Library [1] to perform this operation.

It would be reasonable to use the depth of a vertex to check whether the user can
see it, before adding it to the region of interest. We did not implement this check
because handle estimation already makes sure we will not deform vertices that are
not visible from our point of view.

The region of interest is important to prevent the mesh from deforming too
much or in areas not intended by the user. Also, since Laplacians are invariant
to translation, it may happen that moving the whole mesh toward the sketch is
a better approach than deforming it, from the optimization point of view. This
behavior would be unintuitive for the users and, as such, should be avoided.

To guarantee that the region of interest will be the only part of the mesh to be
deformed, we add anchor constraints, i.e., equations of the form vi = ui, that tell a
vertex to stay where it is. The vertices constrained by these equations are inserted
in the border of the region of interest forming a ring that separates the part of the
object to be optimized and the part supposed to stay the same.

Having anchor vertices also allows us to improve performance significantly, since
we do not need to add the vertices outside the ring to the linear system anymore.
Note that this would not be possible if we did not have these constraints because
the vertices in the system would not take the other ones into account, generating
discontinuities. An example showing an anchors’ ring can be seen in Figure 4.6.

4.1.5 Mesh Deformation

The mesh deformation is done in the same way as in Laplacian Surface Editing.
We add a Laplacian matrix and use the handle-target the correspondence (handle
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Figure 4.5: Problems estimating the Region of Interest. (a) Result using [22].
(b) Result using our modification, asking the user for input.

vertices’ position should equal the target) and the anchors (anchor vertices’ position
should stay the same) as vi ≈ ui equations. In our framework, we did not use the
rotation and scaling invariance presented in [19], but the results were satisfactory
anyway.

4.2 Consensual Mesh Generation

In the second part of our algorithm, we assume we have many different meshes,
already positioned in R3. Note this is the same configuration as in View-Dependent
Geometry.

We are now able to apply the concept we developed in Chapter 3, that each
vertex position only constrains the vertex to a half-line. To calculate the position
of a vertex at the consensual mesh, we compute a line going through the vertex at
each view. These are the constraints that we are going to use when optimizing the
mesh using the Laplacians.

4.2.1 Generating the Consensus Mesh

Generating the consensual mesh is not very different from applying user trans-
formations to single-view meshes. We will create a system like the one presented in
Chapter 3. The Laplacian matrix used will contain the Laplacian coordinates cal-
culated in the mesh before doing any optimization. We will also restrict the vertices
according to their positions in the views.

The first issue is how to decide which will be the region of interest of the con-
sensual mesh. The first implementation was to use the whole set of vertices as the
region to be deformed. This is possible since optimization between views differs
from the one applied for a sketch. For example, many of the vertices will be asked
to stay where they are, which prevents the mesh from respecting another view by
translating in its direction.



31

Figure 4.6: Region of Interest and Anchor Vertices. To deform the ear of the
bunny, we fix the base so that only the positions of the ear need to be calculated.

The problem on using the whole set of vertices as the region of interest is perfor-
mance, since we will be adding many vertices to the system that are not supposed
to move at all. As an alternative, we decided to use the region of interest as the
union of the regions of interest from each view. In the worst case, it will lead to
the whole mesh, but we found that the performance gain was worth it. For a small
number of deformations in the Stanford Bunny, we improve response time from 20
to 2 seconds. We added anchors in the border of the region of interest, as we did in
single-view optimization. We are not worried about the mesh deforming too much
anymore, but we still need to prevent discontinuities between vertices that are part
of the system (and as such are going to be updated) and the ones that are not.

4.2.2 A Note on Implementation

There are many different options on how to represent a triangle mesh. Some data
structures will prioritize small size, while others will focus on efficiently providing
information about the mesh. We chose the implementation of the Half-Edge Data
Structure [16] in the OpenMesh Library [4]. The Half-Edge structure provides very
efficient queries about the topology of the mesh.

Another important observation is that the meshes that represent each view share
the same topology. To save memory, we use a single half-edge structure and different
geometries, i.e., arrays containing the positions of vertices and normals.

4.3 View Interpolation

There are some cases where the representation using only one mesh is not ad-
equate. In these situations, to render the object as observed from an arbitrary
viewpoint, we need to calculate the interpolation between two views. Our first
approach to the interpolation of views is the same as in [18].

We start with a set of key views (containing the respective meshes), and a point
in space where the viewer is located. We calculate the convex hull of the points
where the key views are located, and then find the intersection of the hull with a
ray going from the viewer position in the direction of the object. For now, we will
assume that the convex hull of the views covers all possible directions; if this is not
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true, we must have an alternative for cases where the ray will not intersect it.
There are three possible cases:

- If the ray intersects the hull exactly on a vertex, the key view at that point is
the one to be rendered;

- If the ray intersects the hull on an edge, the two key views that are connected
by the edge should be linearly interpolated;

- If the ray intersects the hull on a face, the three key views that are connected
by the face should be linearly interpolated.

An elegant solution that generalizes these three cases is to use the barycentric
coordinates of the face. The barycentric coordinates of a point are the proportion
between the area of the face and the area of the triangles formed by the three edges
and the point. This can be seen in Figure 2.3, in Chapter 2. As we can see, the
barycentric coordinates provide a robust solution to weight the contribution of each
view in the final position of the vertices.

A second approach, would be to use the direction of the constraints to measure
how far a key view is from the arbitrary view. The dot product of the vectors, for
example, could give this information. The linear system could be solved again using
these weights. Due to time restrictions, we were not able to further investigate this
alternative.

4.4 Results

We achieved positive results applying our technique. Many objects that have
conflicting appearance may be represented using a single geometry. As we can
see in Figure 4.7, we show two views of the Stanford Bunny (top row), and the
correspondent consensual mesh (bottom row), when seen from the respective key
positions. We believe this is an useful extension of the View-Dependent Geometry
work [18].

In Figure 4.8, we can see some results for the interpolation of the views. Besides
generating meshes for the arbitrary view, interpolation between meshes of same
topology is useful in many other applications. In our result, for example, we can see
the interpolation between different features of the object.
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Figure 4.7: Results of applying View-Consistent Meshes to Sketching Con-
tours Framework. Top row - each separated view; Bottom row - representation
using a single mesh.
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Figure 4.8: Results of the Interpolation between Views. Top - Key meshes.
Bottom - Interpolation result and respective position in the face.
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5 GENERATING IMPOSSIBLE GEOMETRY

An interesting application of our method is to study views that suggest impos-
sible geometry, even when not conflicting with other views. Examples of that are
the PenRose Triangle and Escher’s Impossible Cube. To optimize one view to look
as though generated by this kind of object we must change our pipeline.

Since the objects desired are not feasible, we cannot start from a mesh that re-
spects the specified view. Instead the user will provide some points of the object and
place them in space as they are projected on the image. There is no need to pro-
vide information about depth, the optimal depth of each point will be found by our
algorithm. Each point provided will be represented by a cube. This representation
is important for adding the topological constraints in the next step.

After placing the points, the user will connect the faces of the cubes by strings.
These strings represent the topological constraints, i.e., the connectivity of the
points. Finally, the user will select which view should be optimized to look like
the impossible object. Some views of the setup process for a Penrose Triangle can
be seen in Figure 5.1.

Figure 5.1: Setting up a Penrose Triangle. (a) Add points (b) Connect point
faces by strings (c) Select view to be optimized

5.1 The Algorithm

The optimization will be done in two steps. At the first step, we will optimize
the positions of the points along their projective lines. After that we will find the
strings with least curvature that can be used without changing the projection. We
will discuss each part separately in the next sections.
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5.1.1 Optimizing point position

The first step is to optimize the positions of user provided points along the
respective projective lines. The goal of this step is to create a better environment
for the string optimization. Since we are creating “impossible objects”, topology
constraints can conflict with the positions a user intuitively gives to the points. A
bad positioning would diminish the quality of the final result.

To represent the constraints, we will use the tools we developed in Chapter 3.
Each point will be restricted to a line going from the center of projection through
it. Also, we want the points to be located where they minimize the curvature of
hypothetical strings connecting the faces. To formalize this, we set the Laplacians
of the string to zero. In Figure 5.5 we can see the result of a first step optimization.
The purple lines represent the projective lines while the blue line represents the
“minimal curvature”. The result is not optimal, as we will discuss in Section 5.2.

5.1.2 Optimizing string curvature

To optimize string curvature, we first need to map it to the projective plane.
By doing this, we do not need to worry about the projection anymore, since we are
working in the projective space of the string. The projective space of a curve that
does not have self-intersections is homeomorphic to a plane (when using orthographic
projection).

The first step is to convert the coordinates of the string to the coordinate system
of the view we want to optimize. We mapped the 3D string to a 2D curve, using
as (x,y) coordinates the arc-length of the projection(

√
x2 + y2) and the depth(z),

respectively. The geometric interpretation would be to map the projective space of
the string to a plane, as shown in Figure 5.2.

Figure 5.2: Mapping a String to 2D.(a) String in R3 (b) Projective Space of the
String (c) Projective space mapped to a plane.

Once again, we used Laplacians = 0 to minimize the curvature between two
points. We could not have solved the problem in 3D, however, because our mapping
is what avoids the necessity of additional constraints to respect the projection.

After optimizing the curve, we can map it back to R3. We only need to update
the z coordinate and map back to the coordinate system we were using before the
optimization.
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5.1.3 Creating the mesh from the strings

Once we have placed the strings, we need to create a mesh around it. We already
have the vertices of the cubes. To complete the mesh, we go through each connection
between faces and add vertices around the string.

Figure 5.3: Creating a mesh from the strings. (a) Square to be rotated. (b)
First and last edges of a connection are used to calculate the orientation of the
first and last squares. (c) Quaternions are used to linearly interpolate the two
orientations.

We start with a square S in the xz plane. Given the initial (edgei) and the final
edges (edgef ) of the connection, we compute quaternions Q̂ and R̂ with the rotation
transform that would rotate a vector v(0.0, 1.0, 0.0) into the direction of the edge.
These are the transformations we will use to rotate the square along the string. If
the quaternions are different, they can be interpolated along the string. We can see
this operation in Figure 5.3.

5.2 Limitations

The most relevant problem we found in our technique is that the standard tech-
nique for minimizing curvature, setting Laplacians to zero, led to problems. When
connecting four points by a string whose Laplacian is minimized, we expected that
the result would always be the minimal curvature. The problem, however, is that
even a straight line may have Laplacians different from zero, if the points are not
evenly distributed.

As we discussed in Chapter 2, the definition of the Laplacian coordinate is the
difference between the position of a vertex and the centroid of its neighbors. Even
in a straight line, it is possible that the vertex does not lie exactly in the centroid
of its neighbors, as shown in Figure 5.4.

In our technique, we have to fix the position of the point inside the cube and the
one going through the face, when optimizing the strings. When we fix the distance
between these two points, the only way to guarantee that all vertices on the line are
evenly distributed would be if we knew the length of string. The length, however,
is solved dynamically by our system, such that there is no way of calculating the
ideal number of vertices before the optimization. Figure 5.5 shows the result of our
“curvature minimization” to exemplify the problem. The result we would like to
have is a straight line.
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Figure 5.4: Problem using Laplacian = 0 to minimize curvature. (a) Straight
line (b) Laplacian coordinate of vertex v1 (difference from v1 to centroid c) is not
zero

Figure 5.5: Problem minimizing curvature. The purple lines represent the
projective lines while the blue line represents the “minimal curvature”. The ideal
solution would be a straight line (not moving the cube above along its projective
line).

5.3 Results

In Figure 5.6, we can see the result of generating a PenRose Triangle using our
algorithm. The results are still far from the desired object, but demonstrate the
potential of the technique.

Figure 5.6: Two views of our PenRose Triangle. Left - Optimized View. Right
- Another view.
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6 CONCLUSIONS AND FUTURE WORK

We introduce a system to generate a mesh from possibly unconsistent projections
of an object into two-dimensional planes. We believe that this is an advance, mainly
because these models are not intuitive to create manually.

In the sketching contours application, we believe that the optimization we in-
troduced can be used to improve the quality of the interpolation between different
views of an object. Due to time restrictions, these possibilities were not explored.
Also, performance could probably be improved with the use of newer libraries or
even GPU implementations for the Cholesky Decomposition.

In the generation of realizable geometry that looks like impossible objects, there
are still many possibilities to explore. We would like to extend our work to place
complex meshes around the strings. Also, the optimization we used to minimize
curvature needs to be improved.
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