CASE REPORT

HUMAN OCULAR SPARGANOSIS IN SOUTHERN BRAZIL

Márcia Bohrer MENTZ(1), Fernando PROCIANOY(2), Marcelo Krieger MAESTRI(2) & Marilise Brittes ROTT(1)

SUMMARY

We report the first case of human ocular sparganosis in the state of Santa Catarina, southern Brazil. A young female patient presented with three periocular moveable inflammatory masses in her right eye, during two years. By surgical excisional biopsy, a helminth larval stage was removed and identified as sparganum. Clinical, laboratory and epidemiological data on this parasite are presented.

KEYWORDS: Human ocular sparganosis; Spirometra; Sparganum.

INTRODUCTION

Sparganosis is a parasitic infection caused by the second larval stage of a cestode of the class Cestoidea, order Pseudophyllida, family Diphyllobothriidae, genus *Spirometra*. The natural hosts are wild and domestic canines and felines. These animals release embryonated eggs (coracidia) in their feces. The parasite then passes through two intermediate hosts: the first is a member of one of several genera of cyclopoid copepod crustaceans. The copepod ingests the coracidia, which then develop in its tissues into the first larva (procercoid). The second larval stage (plerocercoid or sparganum) develops in the second intermediate host, a vertebrate, which may be an amphibian, reptile, bird, small rodent, nonhuman primate, or pig, when it ingests the infected crustacean. Infection of human beings is accidental, and occurs worldwide, most often in Asia where hundreds of cases have been recorded. Asian cases occur mainly through the local application of infected meat of snakes and frogs to the human skin, eyes and vagina, as an anti-inflammatory treatment. American cases occur mainly through the local application of infected copepods. Because the sparganums do not mature to adults in these hosts, they encyst again after passing the intestinal wall, migrating through the tissues. In this manner, the sparganums have been found mainly in subcutaneous tissues, in lymph ganglia, in the conjunctiva, in the viscera and in the cerebrum, where they produce varied pathological changes with corresponding symptoms.

In Brazil, studies by GUTIERREZ et al. (1977) and OGASSAWARA & BENASSI (1980) concluded that the species *Spirometra mansonioides* is indicated as one of the etiological agents of the disease.

The diagnosis is generally based on the identification of the worm, following biopsy.

CASE REPORT

A young adult female patient, native to the interior of Santa Catarina State (SC), was referred to the ophthalmology service of the Hospital de Clínicas of Porto Alegre, in the state of Rio Grande do Sul (RS), complaining of pain in the right eye and frontal region. She reported the presence of three inflammatory nodules that had changed their location in the periocular region, including subpalpebral space, over the last two years. Two of them became stationary in the inferior temporal bulbar conjunctiva three weeks before the hospital consultation. The last one had been developing for three months, and over a 24-hour period, had moved to the nasal bulbar conjunctiva. Clinical examination revealed the presence of three inflammatory nodules that had changed their location in the periocular region, including subpalpebral space, over the last two years. Two of them became stationary in the inferior temporal bulbar conjunctiva three weeks before the hospital consultation. The last one had been developing for three months, and over a 24-hour period, had moved to the nasal bulbar conjunctiva. Clinical examination revealed the presence of three non-specific inflammatory granulomatous masses in the inferior bulbar conjunctiva, with edema, and red spots on the lower eyelid. These granulomatous masses undergone excisional biopsy. During the surgical procedure an inert, whitish structure was identified inside each granuloma. They were enrolled during removal and revealed a flat, resembling a parasite, measuring approximately 0.3 X 5.5 cm.

After three months, the third mass disappeared and became fixed at temporal superior bulbar conjunctiva, at this time without granulomatous reaction (Fig. 1). The third parasite was either removed surgically. All the post-operative recoveries were uneventfully, with no damage to the patient’s eyesight (Fig. 2). After the larvae were removed, the inflammation receded and her clinical picture improved. The formalin-preserved materials were sent to the Parasitology Laboratory of the

(1) Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia do Instituto de Ciências Básicas da Saúde (ICBS/UFRGS), Porto Alegre, RS, Brasil.
(2) Departamento de Oftalmologia e Otorrinolaringologia (FAMED/UFRGS), Serviço de Oftalmologia do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil.
Correspondence to: Dra. Márcia Bohrer Mentz, Laboratório de Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170 Porto Alegre, RS, Brasil. E-mail: m.mentz@uol.com.br; mbmentz@uol.com.br
Instituto de Ciências Básicas da Saúde of the Universidade Federal do Rio Grande do Sul (ICBS/UFRGS), where they were identified as a plerocercoid larva (sparganum), belonging to the genus *Spirometra* (Fig. 3).

DISCUSSION

Resident of a small city in rural area, the patient reported that her diet included pork sausages and cold cuts, and that she had in the past eaten wild game such as paca, armadillo and coati. The water consumed by her family is piped from a hillside spring to a household storage tank that is covered and cleaned annually. No other member of her family showed a similar clinical picture.

The cases of human sparganosis reported in the literature are associated with ingestion of raw or insufficiently cooked meat of wild or domestic animals that are indicated as secondary hosts of the genus *Spirometra*, to the ingestion of water containing infected copepods, or to the topical use of meat from contaminated animals. Until the present time, there is no treatment available. Attempts to treat human cases with mebendazole and praziquantel have not been successful. Therefore, the only available treatment consists of the surgical removal of the larva. Measures to prevent infection include filtering or boiling drinking water, and adequate cooking of all meats that will be consumed, as well as treating parasitized dogs and cats.

The location in the eye can be considered rare, with about 42 known cases worldwide. Most of these cases have been reported in Vietnam, seventeen in Thailand, two in India, three in Korea, and one in Ecuador. In Brazil, up to now only three cases of subcutaneous sparganosis have been described: the first in the state of Rio Grande do Sul, by FRÓES in 1967, and the others in São Paulo. Therefore, because of the uncommon ocular location in humans and the rarity in our country this report is important. Furthermore, this is the first record of ocular sparganosis in southern Brazil.

We suggest that the patient may have become infected in one of two ways: by ingesting inadequately cooked or raw pork (in sausages or cold cuts), or by ingesting water containing copepods.

The diagnosis of this parasitosis is relevant and should be considered in cases of ocular disturbances accompanied by painful moveable masses of the conjunctiva and subpalpebral or periocular structures, in patients from endemic areas or who may have accidentally come in contact with sources of infection.

RESUMO

Esparganose ocular humana no sul do Brasil

Registra-se o primeiro caso de esparganose ocular humana no estado de Santa Catarina, sul do Brasil a partir de paciente adulta que apresentou três massas inflamatórias móveis perioculares, localizadas no olho direito, durante dois anos. Com a excisão cirúrgica o material foi para a biópsia e um estágio larval de helminto foi identificado como espargano. Dados clínicos, laboratoriais e epidemiológicos são apresentados neste trabalho.
REFERENCES

Received: 13 August 2010
Accepted: 3 November 2010