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Abstract
A classical result of Wolstenholme in 1862 shows that if p > 5 is a prime

number then

2p—1

( 4 ) =1 (mod p?).

p—1
Its converse, stating that a natural p satisfying this congruence is nec-
essarily a prime number, is commonly helieved to be true, although no
proof hag been given so far. In this note, we present an elementary proof
of a partial result, namely, that the converse is true for even numbers
and for powers of 3. Further, we prove that if n = p' is a prime power

then
2n—1 2p—1 4
= d
(o) = () oa o,

producing a relatively inexpensive converse test for powers of odd prime
numbers.

Resumo

Um resultado classico de Wolstenholme mostra que se p ¢ um namero

primo, entao

2p—1 ;

=1 (mod p?).
p—1
A reciproca desse teorema, indicando que um numero natural p sa-

tisfazendo a congruéncia ¢ nceessariamente um ntimero primo, cmbora
acredita-se verdadeira, ainda ndo tem wma prova. Nesta nota, apresenta-
mos uma prova elementar de um resultado parcial; especificamente, que
a reciproca € verdadeira para niimeros pares e para poténcias de 3. Além
digso, provamos que se n = p* é uma poténcia de nm primo, entio

()= (21 o

que é um teste eficiente para testar a reciproca de poténcia de primos
imparcs.
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1 Introduction

A simple characterization of prime numbers is always an interesting goal, not
only because this may be a hard problem but also because a simple character-
ization may lead to an efficient primality test, a task today sought with great
interest by the scientific community, especially in the area of number theory.
A famous result for prime numbers, called the Theorem of Wolstenholme, is

the following

Property 1 (Wolstenholme, 1862) If p > 5 is a prime number then
25—
( P ) =1 (mod p*).
p—1
Apparently, it was James P. Jones [10, Problem B31,p. 84| who first conjec-
tured that the converse of this theorem is true, namely that a natural number
p satisfying the congruence of Property 1 is necessarily prime. The converse of
Wolstenholme’s Theorem is regarded as a very difficult problem.
In [9], Richard J. Mclntosh obtains restrictive conditions on n for solutions
of @”:11)5 1 (mod n7) and concludes that Wolstenholme’s converse is prob-

ably true. For example, he shows that if p is a prime number and n = p? satisfies

(2” B 1) =1 (mod n?),

m—1

(which would be a counterexample to the converse), then p satisfies

(Qp B 1) =1 (mod p%),

p—1

which is unlikely. MeIntosh also reports that the converse is known to be true
for all composite numbers n < 10°.

No proof, however, has been obtained for the converse of Wolstenholme’s
property. In scction 3 we partially fill this gap, by proving that Property 1 docs

not hold for positive even numbers. This result is probably known to other
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authors who work on the subject, but we are unaware of a published proof.
Morcover, the proof we present uses only elementary mathematics.

For a given composite number n, to show that (Q;f 11) # 1 (mod n?), it
suffices to show that (2?,?__11 ) # 1 (mod R), where R > 1 is any factor of n.
Using this idea, we study the converse of Wolstenholme’s theorem for powers
of primes p, by determining the value of the binomial cocfficient modulo p3, p!
and p°. In section 4 we prove that if n is a power of 3, than it does not satisfy
property 1, proving that the converse is true for n = 3!, Additionally, we prove

that if p is a prime number and n = p%, 1 > 2, then

2n—1 2p—1 1
= Il
o) = (2] moa o, )

which reduces the size of the computational task for testing the converse.
Finally, we clain that the converse of Wolstenholme’s theorem is true for
all powers of primes p < 2.5 x 10° (see section 5), by using the criteria given by

equation (1).

2 Generalities

In this section, we review some well known results that will be used throughout
this note.
First, we make use of a well known equation that is sometimes called Vander-
’ Z +: o L 5 - o i —
monde’s convolution (Ti. 5) =Y (;) (ifj) 6, p. 169]. If we set i = s =r = n,
where 7 is a positive integer, then we obtain

Gﬂ:éﬁf 2)

Also well known is the following equation, true for any positive integers r

(=56 g

Applying this identity, it follows that for any positive integer n,

()2 0) "

and s:
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We see from this equation that
2
( p) =2 (mod p*),
P
true for primes p > 5 (see the paper by D. F. Bailey [4, lemma 1, p. 209]), is
equivalent to the Wolstenholme’s theorem.

Also widely used in this note is the following well known fact.

Lemma 1 Let p be a prime number. If n = p" and 8 < r is the highest power

i
m

of p dividing m, then, the highest power of p dividing ( ) iS T — 8.

3 Even Numbers

In this section we show the following

Theorem 1 If n > 0 is even, then
2n —1
(:: 1) 21 (mod n?).

That is, the converse of Wolstenholme’s Theorem is true for even positive inte-

gers.
We begin by noting

Fact 1 The binomial coefficient

n—-1
n—1
w odd of and only if n is a power of 2.

This is a trivial consequence of a classical result of E. Kummer [7], which
a+b

@

states that the power r to which a prime p divides ( ) is equal to the number of

carries in the addition of @ and b in base p arithmetic. Writing (%?_’11) = % (”::”),
2n—1

it is casy to sce from the binary representation of n that (n_l

) is odd only when

n is a power of 2.
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Faet 1 also follows from Lucas’ Theorem (8], which states that

@ ag\ {a a
()= () G.) ) et

where a = ag +ap+ -+ apb=by+bop+ -+ b0p" 0 <ap, b <p-—1
are the base p representations of @ and b. Employing the usual convention that
(2) = (0 when a < b, it can be seen from the binary representation of 2n — 1
and n — 1 that (27; 'j) is odd only when n is a power of 2. It is also possible to
show fact 1 using only elementary manipulations with binomial coefficients.

Given n a natural number, there are unique integers, ¢ and » such that

(%1):mﬁ+n (5)

n—1

where either r = 0 or 0 < 7 < n®. The number r is, by definition, the modulo
sought, that is r = (2?1":11) (mod n?).

For n even, not a power of two, fact 1 shows that the LHS of equation (5)
is cven, so that » must also be even and the converse of the Wolstenholme's
property is true.

To complete the proof of theorem 1 it remains to show

Lemma 2 Ifn=2"1>1, then

(2?%— 1) =3 (mod 2%).

n—1

Proof. For { > 2, using equation (4), we write

Im—1 N O A A U
=1+ -0
(n -1 ) ?Z::l i 2 (2=t

_ oIy 2 o \2
It remains to show that B = Z?Lll_l (ij) -1 (Zf_il) = 2 (mod 2%). By lemma 1,

4 divides (25) forany j =1,... .21 —1, implying that B = %( 3 )2 (mod 2%).

i 1 oi—1

Lemma 1 also says that ( 2 ) = 2X, with X odd. Hence

=1

g5 5
(21—1) =2X? odd X.
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As X =1 (mod 2), it follows that X = £1 (mod 8) or X = +3 (mod 8). In
any casc we have X* =1 (mod 8) and therefore 2X2 = 2 (mod 16). Thus

B =2 (mod 2%).

4 Odd Prime Powers

In this section we study the binomial congruence (%?__11) =1 (mod n?) forn a

power of an odd prime number. We begin by showing

Theorem 2 Ifn =3 [ > 1, then the converse of Wolstenholme’s Theorem is

true.

Proof. We show that if n = 3¢, { > 1, then

(271 B 1) =10 (mod 3°).

n— 1

n — 1 e I (n)z
=1+ E g 3 =
( n—1 ) =1 \J

Applying lemma 1, we see that () is divisible by 9 for all j, but for 5 = 371,

n
J

(=1)/2 1 N7 g a2 )
G= Y (J) :(331) {mod 3%).

=1

For | > 2, we may write

s0 that

We also know that (3;3_'11) = 3Y, with ¥ and 3 relatively prime. That means
Y = +1 (mod 3), implying that ¥# =1 (mod 3). It follows that

3\’ : ,
G = (3t1) = (3Y)* =9 (mod 3%),

and the theorem is proved.
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We notice that the result of lemma 2 implies that (2"71) Z 1 (mod 4),

n—1
for n = 2! and the result of theorem 2 implies that (27?_’1]) £ 1 (mod 3%), for
n = 3. We conclude that the converse of Wolstenholme’s theorem is true for
powers of 2 and 3.

If n = p', where p is a prime number greater than 3, we need to compute
the value of the hinomial coefficient modulo a power of p higher than 3 because

of the following

Theorem 3 Ifp > 3 is prime and n =p' [ > 1, then

(2” B 1) = 1 {mod 1,

n—1

Proof. Theorem 4 of [4] states that for any nonnegative integers k and r, (:fg) =

(f) (mod p?*). Applying this result [ times, we have

(2:) _ (25) =2 (mod p%).

R (2%1) - % (21?) and p is odd, the result follows.

n—1
0
By considering the binomial cocfficient modulo p?, we obtain the following

reduction theorem:.

Theorem 4 If p > 5 is a prime number, 1 > 1 is an integer and n = p', then
() ()
Proof. Since p is odd, it suffices to show that (27?) = (Q;’) (mod p*). We write
(2”) =2+ E (”.’)2 =2 +p§ (p.z)z,
& =1 \J =1 \J

and notice that if p'! does not divide j then, applying lemma 1, we see that
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p* divides (‘tj) or that @)2 =0 (mod p') and

2n Pl p[ 2
=2+ ) mod p4 ,
( n) ;1 (Jp“) ( )

We quote lemma A of [3]which states that

Uy k=1
(-

pkflb

K. WEBER

Agsuming that I > 3 and setting & = 2, we apply the result and write

‘pz = p%pl_g = p_pl_? (mod p%).
jp! phipt =3 jp'=

We repeat the argument { — 3 more times, following that

(o) = (7)) tmoa ),

ip
forall 0 < § < pand [ > 2. 50 we can write

(2'”) =9 +p§ (pZY (mod p*).

n o \Jp

* - 2 .
We invoke now theorem 2.2 of [5] to claim that (?.p) = (f) (mod p*) and so it

follows that

p—1 D 2
2+Z(_)
i=1 \

8

completing the proof.

(ip) (mod p'),
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This reduction is computational ngeful since one may compute (2;’:11) (mod
p*). If this value is not 1, then the converse of Wolstenholme’s Theorem is true
for all powers of the prime p.

Studying criteria for solutions of (if‘_‘f) = 1 {mod »"), R. J. McIntosh

considers primes p satisfying

2p—-1 ,
(; 1) =1 (mod p*) (6)

and calls them Wolstenholme primes [9)].
Theorem 4 shows that if p is not a Wolstenholme prime, then the converse

of Wolstenholme’s theorem is true for all powers of p.

5 Computer Experiments

We performed the computation of (25:1') (mod p*) for all primes p < 2.5 x 10°

which is, according to the reduction criterion of theorem 4, sufficient to show
that the converse of Wolstenholme’s Theorem is true for all powers of p, when
p is not a Wolstenholme prime.

It is important to notice that computing the binomial coefficient (2;7:11) ( mod

p') is not a trivial task, since the arithmetic involves large numbers.

2p—1
n—1

the search for Wolstenholme primes and several statements equivalent to equa-

The same computation of ( ) (mod p*) was considered by McIntosh in

tion (6) are proven in [9]. The following is the most appealing for computational

purposes (because it reduces to calculations modulo p):

Theorem 5 For all primes p > 11, p is a Wolstenholme prime if and only if

Al
Y. =0 (mod p).
i=lp/6)+17

Using this criterion, we performed the computation for primes p < 2.5 x 108.
This extends the scarch of [9], reporting that there are only two Wolstenholine

primes p < 2 x 108, namely, p; = 16, 843 and p, = 2,124, 679.
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We confirmed this computation and found no other Wolstenholme prime up
to 2.5 x 10%. This implics that for all prime powers !, [ > 1, with p < 2.5 x 10%,
and p # py, pa, the converse of Wolstenholme’s Theorem is true.

For powers of Wolstenholme primes p, we need to work some more in order to
find out whether the converse of Wolstenholme’s Theorem is true. It is possible
to prove that theorem 4 also holds modulo p®. Hence, if (2;:11) Z1 {(mod p°),
then the converse of Wolstenholme’s Theorem is true. We then executed the

computation (Qp_,l) (mod p°). As (2;’__1) =1+ 2‘51;—11)/ ? @)2 and p divides @),

p—1 1
1t follows that

(2= =1ep (pi‘fﬂ((ﬁ) p)? (mod 1), 7

and so this computation can be done modulo p?*. Defining L, = 1, we see that
L; = (3;) /p satisfies
Ljt1 = Lj?Jr{a
for 1 < j < (p—1)/2. Thus the computation induced by equation 7 is accom-
plished with O(p) arithmetic operations with integer of size O(p?).
Using this mcthod, we performed the computations for p; and ps, obtaining

fori>1

2ph — 1
(}il 1) = 267428775549681894924 (mod p°)
o —

(1)
s — 1

implying that the converse of Wolstenholme’s theorem is also true for powers

33102388482153131789208640376695 (mod p5)

of 7 and po.
Table 1 summarizes what is known to the authors about the converse of

Wolstenholme’s theorem at the time this paper was written.
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Integer Type Status
Even True
Prime powers True if p < 2.5 x 10°
o, =3 Unknown if p > 2.5 x 10®
Other n positive True if n < 10°
composite numbers Unknown if n > 10?

Table 1: Status of the converse of Wolstenholme’s theorem
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