Análise Metalúrgica de Reparos Realizados Através de Soldagem de Fricção por Costura

Márcio Medeiros de Magalhães, Pedro H. C. P. da Cunha, Márcio L. K. de Macedo , Telmo R. Strohaecker

1. Introdução

Reparos realizados pelas indústria naval, petrolífera e de gás que utilizam processos de soldagem por atrito tornam-se vantajosos devido ao baixo nível de calor gerado, de gases residuais excessivos e pela ausência de fumos. Adicionalmente, pelo caráter do processo de soldagem no estado sólido, é possível obter reparos com a ausência de problemas associados ao desenvolvimento de trincas por ação do hidrogênio e aos fenômenos de solidificação. O processo de fricção por costura (*Stitch Welding*) é uma variação da soldagem por *"Friction Hydro Pillar Processing"* (FHPP), ele consiste em produzir reparos sucessivos e sobrepostos utilizando pinos consumíveis até que o defeito seja completamente restaurado. O objetivo deste estudo foi caracterizar as propriedades mecânicas e metalúrgicas de reparos realizados através de *"Stitch Welding"* utilizando dois materiais distintos de pinos consumíveis.

2. Materiais e Métodos

Os pinos processados foram BS EN14 e API 5L X65, em chapas BS EN10025, as composições químicas estão na Tabela 1. Todos os reparos utilizaram pré-aquecimento de 300°C, força axial de 400 kN e "burn-off" de 12mm..

Tabela1. Composições químicas dos materiais avaliados, porcentagem em peso.

	С	Si	Mn	Р	s	Cr	Мо	Ni	AI	Cu	Ti	v	w
EN14	0,185	0,265	1,450	0,017	0,031	0,160	0,024	0,125	0,007	0,230	0,010	0,007	0,008
X65	0,030	0,240	1,350	0,006	0,001	0,230	0,260	0,240	0,001	0,010	0,008	0,001	0,010
EN10025	0,150	0,400	1,380	0,013	0,009	0,021	0,004	0,027	0,034	0,030	0,002	0,001	-

Para a realização dos perfis de microdureza foi utilizado o equipamento modelo Tukon 2100 B do fabricante INSTRON. Foi utilizada carga de 300g e distância entre indentações de 0,2mm. Foram feitos dois perfis, um horizontal (15mm da superfície da chapa) e um vertical no eixo simétrico ao pino conforme esquematiza a Figura 1 (a), as setas vermelhas indicam o sentido de medição. Foram realizadas avaliações de microestrutura nas regiões de 10, 15 e 20mm da superfícies conforme ilustra os pontos da Figura 1 (b). Foi utilizado reagente Nital 2%.

Figura 1. Esquema dos perfis (horizontal e vertical) de microdureza e das 3 regiões avaliadas através da metalografia.

3. Resultados e discussão

Figura 2. Resultados dos perfis de microdureza vertical e horizontal dos pinos X65

Figura 3. Resultados dos perfis de microdureza vertical e horizontal dos pinos EN14.

Através das montagens (feitas a partir de micrografias com aumento de 50x, Tabela 2) foi possível obter uma melhor definição das "descontinuidades" presentes nos pinos X65.

4. Conclusões

Bainita e Ferrita

Foram observados gradientes microestruturais em ambos os pinos em decorrência de diferentes gradientes térmicos e taxas de resfriamentos. A sequência dos reparos também influenciou na ocorrência das diferenças de microestrutura ao longo dos pinos.

Bainita e Ferrita

Para melhor diferenciação e quantificação das fases para o pino X65 é necessária a utilização de outros reagentes químicos, como Le Pera.

Os perfis verticais apresentaram oscilações de tendência de valores devido a gradientes microestruturais, e os perfis horizontais apresentaram valores mais homogêneos ao longo da linha de varredura devido a maior homogeneidade de microestrutura.

O pino X65 apresentou características mecânicas e metalúrgicas mais homogêneas, porém apresentou "descontinuidades" e "desalinhamentos" que devem ser estudadas mais profundamente.

Laboratório de Metalurgia Física

Bainita e Ferrita