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“Time is the father of truth, its mother is our mind.”
— GIORDANO BRUNO
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ABSTRACT

This work introduces novel neural networks algorithms for online spatio-temporal pat-
tern processing by extending the Incremental Gaussian Mixture Network (IGMN). The
IGMN algorithm is an online incremental neural network that learns from a single scan
through data by means of an incremental version of the Expectation-Maximization (EM)
algorithm combined with locally weighted regression (LWR). Four different approaches
are used to give temporal processing capabilities to the IGMN algorithm: time-delay lines
(Time-Delay IGMN), a reservoir layer (Echo-State IGMN), exponential moving average
of reconstructed input vector (Merge IGMN) and self-referencing (Recursive IGMN).
This results in algorithms that are online, incremental, aggressive and have temporal ca-
pabilities, and therefore are suitable for tasks with memory or unknown internal states,
characterized by continuous non-stopping data-flows, and that require life-long learning
while operating and giving predictions without separated stages. The proposed algo-
rithms are compared to other spatio-temporal neural networks in 8 time-series prediction
tasks. Two of them show satisfactory performances, generally improving upon existing
approaches. A general enhancement for the IGMN algorithm is also described, eliminat-
ing one of the algorithm’s manually tunable parameters and giving better results.

Keywords: Neural networks, spatio-temporal Pattern Processing, Gaussian mixtures,
reservoir computing, time-series prediction.



RESUMO

Este trabalho introduz novos algoritmos de redes neurais para o processamento on-
line de padrões espaço-temporais, estendendo o algoritmo Incremental Gaussian Mixture
Network (IGMN). O algoritmo IGMN é uma rede neural online incremental que aprende
a partir de uma única passada através de dados por meio de uma versão incremental do
algoritmo Expectation-Maximization (EM) combinado com regressão localmente pon-
derada (Locally Weighted Regression, LWR). Quatro abordagens diferentes são usadas
para dar capacidade de processamento temporal para o algoritmo IGMN: linhas de atraso
(Time-Delay IGMN), uma camada de reservoir (Echo-State IGMN), média móvel ex-
ponencial do vetor de entrada reconstruído (Merge IGMN) e auto-referência (Recursive
IGMN). Isso resulta em algoritmos que são online, incrementais, agressivos e têm capaci-
dades temporais e, portanto, são adequados para tarefas com memória ou estados internos
desconhecidos, caracterizados por fluxo contínuo ininterrupto de dados, e que exigem
operação perpétua provendo previsões sem etapas separadas para aprendizado e execu-
ção. Os algoritmos propostos são comparados a outras redes neurais espaço-temporais
em 8 tarefas de previsão de séries temporais. Dois deles mostram desempenhos satisfató-
rios, em geral, superando as abordagens existentes. Uma melhoria geral para o algoritmo
IGMN também é descrita, eliminando um dos parâmetros ajustáveis manualmente e pro-
vendo melhores resultados.

Palavras-chave: Redes neurais, processamento de padrões espaço-temporais, misturas
de Gaussianas, computação por reservoir, previsão de séries temporais.
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1 INTRODUCTION

Learning of temporal sequences is a task that applies to areas like time-series predic-
tion and systems control. Sometimes it is necessary for the learned models to be always
up to date (aggressive learning) with a constant real-valued data flow (incremental learn-
ing) while already in operation (online learning). This is the case with monitoring systems
and robotics control, for instance.

Many approaches for learning of temporal data have been proposed, although none of
them can cope with all the needs pointed out in the previous paragraph. Markov Chains
and Hidden Markov Models (HMMs) (BAUM; PETRIE, 1966) (RABINER; JUANG,
1986) are statistical models in which the transition probabilities between each two states
are modeled. To learn these probabilities, HMMs typically use the Baum-Welch algo-
rithm (BAUM et al., 1970), which is not incremental nor online. Markov Chains’ param-
eters can be learned incrementally in an online fashion, but only for discrete variables
and using only current observations (unless higher order models are used). Other sta-
tistical tools for temporal data include the Auto Regressive Integrated Moving Average
(ARIMA) models (BOX; JENKINS, 1994), which make explicit use of past observa-
tions in order to make predictions. Usually, non-linear least squares methods, like the
Levenberg-Marquardt algorithm (HAGAN; MENHAJ, 1994), or maximum likelihood
estimators such as the Kalman Filter (KALMAN, 1960) are used to learn the param-
eters of ARIMA models, making them unsuitable for aggressive, incremental and on-
line learning. Other approaches include using recurrent neural networks like the Time-
Delay Neural Networks (TDNN), Time-Delay Radial Basis Functions Neural Networks
(TDRBFNN) (BERTHOLD, 1994), Elman Networks (ELMAN, 1999), NARX networks
(LIN et al., 1996), Echo-State Networks (JAEGER, 2001) and Long Short-Term Mem-
ories (HOCHREITER; SCHMIDHUBER, 1997). All of them can be trained by online
incremental algorithms, but in an iterative, slow manner, requiring many training epochs.

The Incremental Gaussian Mixture Model (IGMM) (ENGEL; HEINEN, 2010) (EN-
GEL; HEINEN, 2011) and the Incremental Gaussian Mixture Network (IGMN, previ-
ously known as IPNN or Incremental Probabilistic Neural Network) (HEINEN; ENGEL,
2010a) (HEINEN; ENGEL, 2011a) (HEINEN; ENGEL; PINTO, 2011) (HEINEN, 2011)
were recently proposed as novel neural network based algorithms for clustering and clas-
sification/regression, respectively. Those algorithms allow for aggressive online incre-
mental learning, while almost avoiding critical parameter manual tuning.

Albeit being successfully applied to many problems, including robotics control
(HEINEN; ENGEL, 2011b) (HEINEN; ENGEL, 2010b), the IGMM and the IGMN are
static or purely spatial algorithms, meaning that they can not handle problems with in-
ternal states or memory (unless those states are explicitly added by hand). By having a
dynamic version of the IGMN algorithm, it would be possible to handle dynamic, non-
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markovian tasks in an online and incremental way, with a single scan through data, which
is the goal of this work. There are at least two approaches for reaching this goal, namely,
extending online incremental temporal algorithms (like recurrent neural networks) for
aggressive learning, or extending aggressive online incremental algorithms for temporal
processing, which is the approach used here.

1.1 Main Contributions

The present work proposes a few spatio-temporal variants for the IGMN algorithm.
Since the IGMM can be seen essentially as an advanced clustering algorithm, it is ex-
pected that already proven techniques for extending clustering algorithms (specially the
Self-Organizing Map) to the temporal domain should work too with the IGMM, and thus
with the IGMN. In this sense, three novel algorithms are proposed: Echo-State IGMN
(ESIGMN), Merge IGMN (MIGMN) and Recursive IGMN (RecIGMN). Also, the IGMN
with time-delays is evaluated against them and other classic algorithms, and is called
Time-Delay IGMN (TDIGMN) here. Besides the novel algorithms for temporally ex-
tending the static IGMN, a new technique is also introduced to improve it even in its
static form, which also removes one of its parameters that, otherwise, should be manually
selected. Summarizing the contributions:

• Echo-State Incremental Gaussian Mixture Network (ESIGMN)

• Merge Incremental Gaussian Mixture Network (MIGMN)

• Recursive Incremental Gaussian Mixture Network (RecIGMN)

• Outlier-based Component Creation

1.2 Dissertation Structure

This work will start by describing related algorithms in chapter 2, which will serve as
the foundations for the algorithms proposed in this work, as well as to form a basis for
comparison in the experiments later. This chapter is divided into sections for static (2.1)
and temporal (2.2) algorithms. Then, moving to the proposed algorithms of this work,
chapter 3 presents the TDNN, ESIGMN, MIGMN and RecIGMN algorithms, as well as
the new component creation rule. These algorithms will be compared among themselves
and with some related supervised temporal neural networks in various temporal tasks in
chapter 4. Chapter 5 finishes this work with a short revision of achieved results, final
thoughts and plans for future works.
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2 RELATED WORKS

The IGMN, albeit being a supervised algorithm, is very akin to unsupervised neural
networks, due to its origin in the IGMM algorithm. This makes it more suitable for tem-
poral extensions based on the ones already proposed for unsupervised neural networks.
Having this in mind, it is interesting to analyze different proposed temporal neural net-
works, both supervised and unsupervised, in order to adopt similar strategies for extending
the IGMN temporally.

2.1 Static Algorithms

The algorithms presented in this section are purely spatial, and are explained as re-
quirements for their spatio-temporal variants to be seen in section 2.2.

2.1.1 Self-Organizing Map (SOM)

The SOM (KOHONEN, 1982) is an unsupervised neural network, meaning it does
not learn from input-output example pairs, instead just learning the structure of the input
space, in this case in the form of data clusters. It consists of a single competitive layer
(besides the input layer) neural network, and this layer is spatially organized. It is usually
a 2D lattice (could be 1D, 3D or any dimension) and, therefore, the relative position of
the neurons is important, in contrast to more conventional neural networks (a 2D input
space representation in this architecture can be seen in figure 2.1). The weights from
the input layer to the competitive layer represent the learned input vectors’ prototypes
and, therefore, have the same dimensionality as the input space. The input vectors are
presented one-by-one to the algorithm, which finds the most similar prototype so far,

Figure 2.1: SOM in an advanced training state, with bidimensional inputs taken from an
uniform distribution. Each node represents a data cluster, and the edges represent the
neighborhood relations between them.
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Figure 2.2: An example of multilayer perceptron architecture with 3 inputs, 2 hidden
layers with 5 and 4 neurons respectively and 2 output neurons.

based on a distance metric (usually Euclidian or Manhatan distance). The best matching
neuron is then selected as the winner neuron or best matching unit (BMU), according to
the following equation:

b(t) = arg min
i∈VO
{‖x(t)− wi‖} (2.1)

where x(t) is the input vector at time t, b(t) is the index (position) of the winner neuron at
time t in the output / competitive layer space, wi(t) is a prototype to be compared to the
input, also at time t. After finding the winner neuron, its corresponding weights wb (its
prototype vector elements) are adjusted, as well as the weights of its neighbors, according
to the following update rule:

wi(t+ 1) = wi(t) + γ(t)hib(t)(x(t)− wi(t)) (2.2)

where γ is a learning rate between 0 and 1 and hib is a neighborhood function such as:

hib(t) = exp

(
−‖Ii − Ib‖2

2σ(t)2

)
(2.3)

where Ii and Ib are neurons i and b indexes (positions) on the competitive layer, and σ(t)
is the Gaussian standard deviation at time t. Note that γ and σ are time dependent, and
are usually implemented with some decay during the algorithm’s execution time.

2.1.2 Multi-Layer Perceptron

The multilayer perceptron (MLP) (RUMELHART; MCCLELLAND, 1986) is a super-
vised feedforward artificial neural network model that learns non-linear mappings from
input vectors to output vectors (discrete or continuous). It is composed by multiple layers
of non-linear neurons (computational units) which propagate signals until they reach the
output layer. Each neuron computes the scalar product between its inputs and its incom-
ing weights and then applies some non-linear transformation, usually a sigmoid function.
Consecutive layers are fully connected and the number of neurons in each of them (as
well as the number of layers) must be manually specified (other similar neural networks
like Cascade Correlation (FAHLMAN, 1990) and NEAT (STANLEY; MIIKKULAINEN,
2001) can learn the number of layers and neurons as well). This architecture can be seen
in figure 2.2.

Once the signal reaches the output layer, the error of the computed values in relation
to the given output example (the target values) is back-propagated in order to update the
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network weights. This training procedure can be performed in various ways, but here we
will talk about the Stochastic Gradient Descent (SGD) procedure, since it can be used
for online learning, i.e. updating the model after each example pair is presented to the
network. The specialized version of SGD for multilayer perceptrons is called Stochastic
Backpropagation (WERBOS, 1974). Backpropagation tries to minimize a cost function,
usually the mean squared error, in relation to the network weights between the neurons.
Unlike single layer neural networks (e.g. perceptron, adaline), there is no guarantee of
finding the global minimum, just local minima, since the error surface is not convex.
Also, this kind of training procedure requires many epochs for convergence, i.e. scanning
the entire dataset many times for reducing error at small steps.

It is also proven that multilayer perceptrons are universal function approximators
(HORNIK MAXWELL; WHITE, 1989) (CYBENKO, 1989), given necessary number
of neurons. Nevertheless, it is not guaranteed that backpropagation can find those approx-
imations even with enough neurons.

2.1.3 Incremental Gaussian Mixture Network

The IGMN (Incremental Gaussian Mixture Network) is a supervised algorithm
(HEINEN; ENGEL, 2010c) that uses an incremental approximation of the EM algorithm
(DEMPSTER et al., 1977), the IGMM (Incremental Gaussian Mixture Model) (ENGEL;
HEINEN, 2011). It creates and continually adjusts probabilistic models consistent to all
sequentially presented data, after each data point presentation, and without the need to
store any past data points. Its learning process is aggressive, or "one-shot", meaning that
only a single scan through the data is necessary to obtain a consistent model.

IGMN adopts a Gaussian mixture model of distribution components (known as a cor-
tical region) that can be expanded to accommodate new information from an input data
point, or reduced if spurious components are identified along the learning process. Each
data point assimilated by the model contributes to the sequential update of the model pa-
rameters based on the maximization of the likelihood of the data. The parameters are
updated through the accumulation of relevant information extracted from each data point.

Differently from IGMM, however, the IGMN is capable of supervised learning, sim-
ply by assigning any of its input vector elements as outputs (any element can be used
to predict any other element, like with autoassociative neural networks (RUMELHART;
MCCLELLAND, 1986)). This architecture is depicted on figure 2.3. Next subsections
describe the algorithm in more detail.

2.1.3.1 Learning

The algorithm starts with no components, which are created as necessary (see subsec-
tion 2.1.3.2). Given input x, the IGMN algorithm processing step is as follows. First, the
likelihood for each component j is computed:

p̄(x|j) = exp
(
−1

2
(x− µj)

TC−1j (x− µj)
)

(2.4)

p(x|j) =
p̄(x|j)

(2π)D/2
√
|Cj|

(2.5)

whereD is the input dimensionality, µj the jth component mean and Cj its covariance
matrix.

After that, posterior probabilities are calculated for each component as follows:
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Figure 2.3: An example of IGMN with 3 input nodes and 5 Gaussian components. Any
input element can be predicted by using any other element, which means that the input
vector can actually be divided into input and output elements.

p(j|x) =
p(x|j)p(j)

M∑
q=1

p(x|q)p(q)
∀j (2.6)

where M is the number of components. Now, parameters of the algorithm must be
updated according to the following equations:

vj(t) = vj(t− 1) + 1 (2.7)

spj(t) = spj(t− 1) + p(j|x) (2.8)

ej = x− µj (2.9)

ωj =
p(j|x)

spj
(2.10)

∆µj = ωjej (2.11)

µj(t) = µj(t− 1) + ∆µj (2.12)

Cj(t) = Cj(t− 1)−∆µj∆µT
j + ω

[
eeT − Cj(t− 1)

]
(2.13)

p(j) =
spj

M∑
q=1

spq

(2.14)

where spj and vj are the accumulator and the age of component j, respectively, and
p(j) is its prior probability.
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2.1.3.2 Creating New Components

In order to create new components, the cortical region must reconstruct its input x
based on the posterior probabilities obtained in equation 2.6. The reconstruction of the
unknown elements xt is obtained by the following equation:

x̂t =
M∑
j=1

p(j|xi)µj,t (2.15)

in the naïve approach (only diagonal covariance matrixes are used), where xi is the
input vector without the unknown elements and µj,t is the jth component mean without
the unknown elements. Note that it is only an average of the region’s means weighted by
their posterior probabilities. This approach will be called here IGMNn (naïve). The full
multivariate version (IGMN) is as follows:

x̂t =
M∑
j=1

p(j|xi)(µj,t + Cj,tiC−1j,i (xi − µj,i)) (2.16)

where Cj,ti is the submatrix of the jth component covariance matrix associating the
unknown and known parts of the data, Cj,i is the submatrix corresponding to the known
part only and µj,i is the jth’s component mean without the unknown element.

After reconstructing the input, the reconstruction error can be obtained by:

ε = max
i∈D

[
(xi − x̂i)2

max(xi)−min(xi)

]
(2.17)

Note that max(xi) − min(xi) is simply the range of dimension i in the dataset and
is used here for the purpose of rescaling the error. This can be just an estimate (since the
algorithm is incremental, the true range may not be available). If there are no components
or ε is greater than a manually chosen threshold εmax (e.g., 0.1), then a new component j
is created and initialized as follows:

µj = x; spj = 1; vj = 1; p(j) =
1

M∑
i=1

spi

; Cj = σ2
ini

where M already includes the new component and σini can be obtained by:

σini = diag(δ[max(x)−min(x)]) (2.18)

where δ is a manually chosen scaling factor (e.g., 0.1) and diag returns a diagonal
matrix having its input vector in the main diagonal.

2.1.3.3 Removing Spurious Components

A component j is removed whenever vj > vmin and spj < spmin, where vmin and
spmin are manually chosen (e.g., 5.0 and 3.0, respectively). In that case, also, p(q) must
be adjusted for all q ∈M , q 6= j, using equation 2.14. In other words, each component is
given some time vmin to show its importance to the model in the form of an accumulation
of its posterior probabilities spj .
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2.1.3.4 Recalling

In IGMN, any element can be predicted by any other element. This is done by recon-
structing data from the target elements (xt) by estimating the posterior probabilities using
only the given elements, as follows:

p(j|xi) =
p(xi|j)p(j)

M∑
q=1

p(xi|q)p(q)
∀j (2.19)

It is similar to equation 2.6, except that it uses a modified input vector xi with the target
elements xt removed from calculations. After that, xt can be reconstructed using equation
2.15 or 2.16.

2.1.3.5 Confidence Intervals

Besides being able to estimate any missing values in its input, the IGMN can also
estimate their variances and covariances. This is useful for estimating confidence intervals
when using the algorithm for decision making. For a given input [xi; xt], the variances for
xt can be estimated as follows:

σ̂2
t =

M∑
j=1

p(j|xi)(σt
j + ‖µt

j − x̂t‖2) (2.20)

for the naïve case, where x̂t is the estimated output, and

Ĉt =
M∑
j=1

p(j|xi)(Ctt
j − Cti

j Cii−1
j CtiT

j + ‖x̄tj − x̂t‖2) (2.21)

where Ctt is the covariance matrix portion corresponding to the outputs, Cti corresponds
to the portion corresponding to the covariances between inputs and outputs, Cii−1 corre-
sponds to the input portion and x̄t is given as follows:

x̄tj = µt
j + Cti

j Cii−1
j (xij − µi

j) (2.22)

then the confidence margins are given by x̂t± dσ̂t (in the multivariate case, σ̂ is the diag-
onal of Ĉ), where d is the number of standard deviations (e.g., 1.96 for 95% confidence).
σ̂i can be obtained similarly by just swapping input and output portions in previous equa-
tions.

2.2 Temporal Algorithms

The algorithms presented in this chapter have spatio-temporal capabilities, some of
them being temporal counterparts of the ones presented in the previous section.

2.2.1 Time-Delay Neural Network (TDNN)

The time delay neural network (TDNN) extends the simple multilayer perceptron with
a sliding window in its input. It means that the last input signals are stored and presented
to the neural network with current input altogether as an augmented input. How many
past inputs are stored is a design choice, but some techniques from classical statistics
could be used for this decision, like the partial autocorrelation function (BOX; JENKINS,
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Figure 2.4: Example TDNN architecture with originally 3 inputs, plus L delay lines, each
with a past copy of the inputs (empty nodes). It can be seen as a 3(L+ 1) inputs MLP.

1994). This forms a kind of exact short-term memory (could be long-term, but the increase
in complexity may render it impractical, especially for high dimensional input spaces).
Other than that, the algorithm is exactly the same as the multilayer perceptron and can
use all training algorithms and optimizations available to it. An example architecture for
a TDNN can be seen in figure 2.4.

2.2.2 Elman Network

The Elman Network (ELMAN, 1999) also augments the MLP inputs with a kind of
temporal context, but instead of using past copies of the input in a sliding window like the
TDNN, it stores just the last activation vector from the hidden layer. Therefore, it produces
a self-referencing temporal context by learning its own internal state. It can also be seen
as a MLP where its inputs are augmented with the previous hidden neuron activations,
and the same training algorithms and optimizations apply. Another possible view is that
of a dynamical system where the hidden layer is the internal state, which is affected by
past states and external inputs, and some output signal extracted from the state. In fact,
Extended Kalman Filter (which is used for doing exact inference in dynamical systems)
can be used to train an Elman Network (WILLIAMS, 1992). Figure 2.5 shows a possible
architecture for an Elman Network.

Other learning algorithms that can be used with the Elman Networks include Back-
propagation Through Time (BPTT) (WERBOS, 1974), in which the architecture is un-
folded in time and trained by conventional backpropagation, and Real-Time Recurrent
Learning (RTRL) (WILLIAMS; ZIPSER, 1989), in which the gradients of the internal
state (temporal context neurons) in relation to their incoming weights are computed and
used in the update equations, in order to avoid unfolding the network.

2.2.3 Echo-State Network (ESN)

Reservoir Computing (RC) (LUKOŠEVIČIUS; JAEGER, 2009) is a recently coined
term for a (not so recent) neural pattern processing paradigm where a random, non-linear,
fixed and large hidden layer with recurrent connections, called a reservoir, is used as an
excitable medium where interesting dynamic features of the data stream can be extracted.
It is similar to a random filter bank, producing transformations over the input data. Al-
beit the fixed reservoir weights, its output states are sufficient to successfully train linear



25

Figure 2.5: Example Elman Network architecture with originally 3 inputs augmented by
hidden layer (with 5 neurons) activations from the previous time-step (empty nodes). It
can be seen as an 8 inputs MLP.

regression / classification algorithms on non-linear dynamic tasks, thus potentially turn-
ing any static linear algorithm into a non-linear dynamic one. But since the reservoir is
random, large reservoirs are required, to increase the chances of obtaining useful trans-
formations.

This paradigm was found independently by different researchers at different time
points, also in distinct research fields like computational neuroscience and machine learn-
ing: Temporal Recurrent Neural Network (DOMINEY, 1995); Liquid State Machines
(NATSCHLÄGER; MAASS; MARKRAM, 2002); Echo State Networks (JAEGER, 2001);
Decorrelation-Backpropagation Learning (STEIL, 2004).

This work will incorporate the ESN as the base for the new algorithm, since it is com-
posed by the default neuron model used in artificial neural networks (like the Multi-Layer
Perceptron), is very simple to implement, is probably the most widely used RC artificial
neural network in computer science and gave excellent results in previous works, e.g.,
predicting chaotic dynamics (three orders of magnitude improved accuracy (JAEGER;
HAAS, 2004)), nonlinear wireless channel equalization (two orders of magnitude im-
provement (JAEGER; HAAS, 2004)), the Japanese Vowel benchmark (zero test error
rate, previous best was 1.8% (JAEGER et al., 2007)), financial forecasting (winner of
the international forecasting competition NN3), and in isolated spoken digits recognition
(improvement of word error rate on benchmark from 0.6% of previous best system to
0.2% (VERSTRAETEN; SCHRAUWEN; STROOBANDT, 2006)).

The ESN consists basically of an input layer, a reservoir and an output layer. The
weights between input layer and reservoir (here denoted as Win) as well as the recurrent
reservoir weights (W) are randomly chosen and fixed – no training is necessary. The
weights from input layer and reservoir to the output layer (Wout) are trained in batch
mode by linear Least Squares Fitting, or in incremental mode by Recursive Least Squares
(RLS) or any other incremental linear learning algorithm, like conventional Least Mean
Squares (LMS). This work will focus on the incremental mode, since we need to compare
the ESN to an incremental algorithm (ESIGMN). The reservoir activation function (f(.))
is the hyperbolic tangent, and the output layer activation function (g(.)) is usually the
identity, although any differentiable function could be used. An example of an ESN can
be seen in figure 2.6.

In order to have a stable reservoir, however, the echo state property must be assured.
It means that when a null vector is continually fed into the reservoir as its input, its state
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Figure 2.6: An example of Echo State Network with 3 input nodes, 2 output nodes and 8
reservoir nodes. All weights going to the output layer (Wout) must be trained, while every
other weight is fixed.

vector must decay to a null vector too, as time tends towards infinity. In practical terms,
this can be ensured by rescaling the largest absolute eigenvalue |λ|max of the reservoir
recurrent weight matrix W, i.e. its spectral radius, to a value in the interval (0, 1). There
is controversy about the necessity or sufficiency of this condition to ensure the echo state
property (BUEHNER; YOUNG, 2006), but it is known to work well in practice (JAEGER,
2001). A proven and stronger sufficient condition is to rescale the largest singular value
of the weight matrix to the interval (0, 1) (JAEGER, 2001).

Following, a brief explanation of the ESN algorithm is shown. Given input x at time
t, a processing step of the ESN is computed as follows:

The new state s of the reservoir at time t is obtained by the following equation:

s(t) = f(Winx(t) + Ws(t− 1)) (2.23)

while the output y at time t of the ESN is given by (assuming identity activation
function):

y(t) = Wout[x(t); s(t)] (2.24)

where [.; .] is the vector concatenation operation. The prediction error e at time t is given
by:

e(t) = d(t)− y(t) (2.25)

where d(t) is the target vector (teacher signal) at time t. The output weights Wout are
modified, in the online case, by stochastic gradient descent as follows:

∆Wout = ηe(t)[x(t); s(t)]T (2.26)

where η is a learning rate in the interval [0, 1].
The ESN can also be seen as an Elman Network with fixed input-hidden and hidden-

hidden weights and shortcut input-output connections. The kind of temporal context used
by the ESN (the reservoir) is the base of the ESIGMN algorithm, to be seen in section 3.3.

2.2.4 RecSOM

The temporal context of RecSOM (VOEGTLIN, 2002) is inspired by the Elman Net-
work (section 2.2.2). Its temporal capabilities are achieved through feedbacks from the
hidden layer itself, processing it together with the input signal. To transpose that idea
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Figure 2.7: Example RecSOM architecture with 3 inputs and an 1-dimensional map with
5 neurons.

from the supervised to the unsupervised domain, it is enough to remove the output layer
and see the SOM as the hidden layer, as is shown in figure 2.7.

Then, the RecSOM is capable of self-organizing its own neuron activity, which is
now its temporal context. This capability gives it a potentially long-term memory with-
out ambiguities (there is no combination of signals). In fact, it is possible to store arbi-
trary sequences of any finite length, given sufficient neurons (STRICKERT; HAMMER;
BLOHM, 2005). However, for the algorithm to be stable, it is necessary to apply an
activation function at the map outputs, one possibility suggested by Voegtlin being:

yi(t+ 1) = exp{−α‖x(t)− wx
i (t)‖2 − β‖y(t)− wy

i (t)‖2} (2.27)

where yi(t) is the activation of neuron i at time t, α is a constant between 0 and 1 which
defines the contribution from the current input pattern x(t) to the activation, wx

i (t) is the
prototype (mean) vector of neuron i in relation to input patterns, β is a constant between
0 and 1 which defines the contribution of the current context and wy

i (t) is the prototype
vector of neuron i in relation to the context space. Therefore, in the RecSOM algorithm,
each neuron has 2 prototypes instead of 1: the input prototype and the context prototype.
The new equations of winner selection and weight updates are as follows:

b(t+ 1) = arg max
i∈VO
{yi(t+ 1)} (2.28)

wx
i (t+ 1) = wx

i (t) + γ(t)hib(t)(x(t)− wx
i (t)) (2.29)

wy
i (t+ 1) = wy

i (t) + γ(t)hib(t)(y(t)− wy
i (t)) (2.30)

So, for each input vector presented, not only the most similar input prototype is veri-
fied, but also the current map context (previous time step activations) must be compared
with the context prototypes of the neurons. Therefore, each neuron defines a pattern re-
ferring to the input space and a context referring to the map space. It means that some
identical input pattern could select different winner neurons, depending on the input his-
tory.

The RecSOM could be implemented as a conventional SOM by concatenating input
and context, but in this case the capability of weighting the input and context contributions
with the α and β parameters is lost.

This kind of temporal context is the base for the RecIGMN algorithm to be seen in
section 3.5, which is also implemented without the weighting parameters as suggested in
the previous paragraph.
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2.2.5 MSOM

The RecSOM is a very powerful temporal SOM variant, but its time complexity is
very high, due to the huge number of additional inputs and prototype sizes (the context)
equal to the number of neurons in the map. The MSOM (STRICKERT; HAMMER,
2005) can be seen as a compressed version of the RecSOM, with lower time complexity.
Its temporal context is given by an exponential moving average of the winning neurons’
prototypes over time, and thus has the same dimensionality as the input space. The new
equations for this algorithm are as follows:

C(t) = αwc
b(t− 1) + βwx

b (t− 1) (2.31)

yi(t+ 1) = exp{−(1− η)‖x(t)− wx
i (t)‖2 − η‖C(t)− wc

i(t)‖2} (2.32)

b(t) = arg max
i∈VO
{yi(t+ 1)} (2.33)

wx
i (t+ 1) = wx

i (t) + γ(t)hib(t)(x(t)− wx
i (t)) (2.34)

wc
i(t+ 1) = wc

i(t) + γ(t)hib(t)(C(t)− wc
i(t)) (2.35)

Where α and β now weight the last winning neuron weight vectors (context and input
prototypes, wc

b and wx
b , respectively) in order to obtain a context vector C. η plays the role

of the α and β parameters in the RecSOM algorithm, weighting the present in relation to
the past, but now using only a single parameter and its complement.

This kind of temporal context is the base for the MIGMN algorithm, to be seen in
section 3.4.



29

3 ENHANCING THE INCREMENTAL GAUSSIAN MIXTURE
NETWORK

In this chapter, four temporal extensions for the IGMN algorithm are presented. Each
one has a different kind of temporal context with their own advantages and disadvantages:
sliding windows, reservoir layer, exponential moving average and self-referencing. All of
them introduce relatively small modifications to the original IGMN (section 2.1.3), so
only the differences will be highlighted. Also, as they are inspired by temporal extensions
for other algorithms, section 2.2 already covers those approaches in more detail. But
before presenting the temporal extensions, an improvement which applies to both the
static and temporal versions of IGMN is presented in the next section.

3.1 Outlier-Based Component Creation

The default component creation rule in the IGMN algorithm has its drawbacks. First,
it needs the εmax parameter to be set manually beforehand. Second, this parameter is used
as a fraction of the estimated data range, resulting in an error threshold, but the estimated
data range may not be a good starting point for defining maximum acceptable errors. This
can be observed by trying to approximate the following function:

f(x) =


x : x < 90
90 : x >= 90
∀x ∈ [1; 100]

(3.1)

When the IGMN algorithm reaches point (91, 90) (and all subsequent points), the
maximum normalized (by range) error is not sufficient to trigger component creation for
εmax (it is less than 0.1). The result can be seen in figure 3.1(a). Figure 3.1(b) shows that
changing the δ parameter is not sufficient to avoid this problem. In 3.1(c) the problem is
solved, but 1 component is created for each point in the dataset. It happens because the
εmax parameter controls component creation by assuming the same error threshold for the
entire dataset, while we clearly need it to be adaptive.

The proposed solution is to use the IGMN error margin (section 2.1.3.5) as an adaptive
threshold, thus creating a new component whenever a new data point is considered to be
an outlier (we call an "outlier" any point which lies outside the error margins). Thus, the
component creation condition becomes

∃i, |xi − x̂i|
max(xi)−min(xi)

> dσi (3.2)

where the left part is the rescaled absolute error of a single element of input vector x in



30

(a) εmax = 0.1, δ = 0.1 (b) εmax = 0.1, δ = 0.01 (c) εmax = 0.01, δ = 0.01

(d) δ = 0.1 (e) δ = 0.01 (f) δ = 0.001

Figure 3.1: Top: IGMN with default component creation rule. Bottom: IGMN with
outlier-based component creation.

relation to its reconstructed value (equation 2.15 or 2.16) and the right part is the margin
obtained by equation 2.20 or 2.21. In other words, whenever any element of x has an
absolute error greater than the margin value, a component is created. It changes along
the dataset according to the size of each component and hence it can solve that problem
(and others) more efficiently, as can be seen in figures 3.1(d), 3.1(e) and 3.1(f). With
δ = 0.1, only 2 components are created, which is intuitively expected since the function
is composed by only 2 straight lines. This behavior persists even when we decrease δ and
just changes when it reaches 0.01, when 45 components are created (still less than half
the components created with the same value of δ by the default rule). Increasing δ upto
0.2 also keeps the same behavior. With δ = 0.001 it still produces less components (90)
than the default rule with δ = 0.01, as it continues to use just 1 component for the final
portion of the function.

Thus, using outlier-based component creation has at least 2 advantages over the de-
fault rule: first, it eliminates the need to set the εmax parameter. Second, it can adapt to
datasets where the data distribution changes within different regions.

3.2 Time-Delay Incremental Gaussian Mixture Network (TDIGMN)

This IGMN variant was already presented in (HEINEN, 2011), but it was seen as just
an IGMN with extra inputs. Here we will explicitly distinguish it from the static IGMN
by calling it TDIGMN. The TDIGMN, as the TDNN, uses a sliding window of its inputs
(a buffer) as a temporal context, allowing it to use information from past steps (as long
as the size of the window) in posterior computations. It is a time-limited context, but has
perfect memory inside the sliding window range. Besides its limited range nature, another
problem with this kind of approach is the choice of sliding window, which can be defined



31

by its lag size l:
x̂(t) = [x(t); x(t− 1); ...; x(t− l)] (3.3)

where x̂ is the augmented input vector. As in classical autoregressive techniques, the
partial autocorrelation function could be used to choose a reasonable value for l (BOX;
JENKINS, 1994), but this sliding window does not even need to be built from consecutive
values (as with seasonal approaches), leaving it open for yet more fine tuning. Trying to
alleviate the limited range and sliding window choice problems, 3 new temporal exten-
sions are proposed in the next sections, using contexts with unbounded (albeit inexact)
memory range.

3.3 Echo-State Incremental Gaussian Mixture Network (ESIGMN)

The ESIGMN (PINTO; ENGEL; HEINEN, 2011a) augments the IGMN with an ESN-
style reservoir between its input and cortical region. The reservoir is responsible for
mapping the input space into a feature space which captures temporal dynamics of the
data, as with the ESN. But instead of feeding the input and the reservoir state into a
linear output layer, they are fed into an unmodified IGMN in the ESIGMN algorithm.
The IGMN does its usual spatial processing, but its inputs already incorporate temporal
information. Feedback connections from the outputs to the reservoir are also possible, but
they are not explored in this work. This architecture can be seen in figure 3.2.

Therefore, all IGMN equations from section 2.1.3 apply, with a difference only in the
source of the IGMN input. In ESIGMN, the input data x is divided into input xi and
output/target elements xt, and is processed in the following way:

s(t) = f(Win,rxi(t) + Ws(t− 1)) (3.4)

x̄(t) = [s(t); x(t)] (3.5)

where s is the reservoir state, xi is the known part of the input (the actual input portion
of the data), excluding the target values xt, and Win,r are the input weights (without the
target values) to the reservoir (equation 3.4 is analogous to equation 2.23 for the ESN).
The IGMN is trained by receiving x̄ (the concatenation of the full input and reservoir
state) as its input. By omitting xt and using equation 2.19 for recalling, it is possible to
predict the output xt.

3.4 Merge Incremental Gaussian Mixture Network (MIGMN)

The MIGMN is inspired by the MSOM using an exponential moving average of the
network reconstructed input as its temporal context. This context is computed as follows:

c(t) = αc(t− 1) + (1− α)x̂(t) (3.6)

where x̂ is the reconstructed full input (including the portion used as a target/output)
obtained from equation 2.16, α is a merging parameter between 0 and 1 and c(0) = 0D
(the null vector with dimension D, the same as the input dimension). Hence, the context
dimensionality in the MIGMN is equal to the input dimensionality. In other words, the
input size doubles from the point-of-view of the static IGMN (which can be very onerous
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Figure 3.2: An example of ESIGMN with 4 inputs (xi), 2 targets/outputs (xt), 3 Gaussian
components and 8 reservoir neurons. Only the actual input portion of the data is used to
update the reservoir, while the full input data (with target values / teacher signal) is fed
into the IGMN together with the reservoir state s in order to train it. By omitting xt, the
IGMN can be used in recalling mode to predict xt.

for high dimensionalities, due to the matrix inversions inside the IGMN), since the context
is concatenated to the original input:

x̄(t) = [c(t− 1); x(t)] (3.7)

where x̄ is the augmented input. It can also be noted that when α = 0, the context
will simply store the last input vector reconstruction, while with α = 1 the context will
be a constant null vector, turning the MIGMN into almost an IGMN (with extra useless
inputs). Intermediary values will store exponential moving averages of the reconstruction
vectors, which can contain longer term information (the higher the α, longer will be the
memory). Figure 3.3 shows obtained context values for five different α values on a time-
series. The MIGMN’s context can also be seen as a compressed form of the RecIGMN’s
context, to be seen in the next section. Other than that simple modification, the MIGMN
works exactly like the static IGMN. Unlike the MSOM, we do not weight contributions of
the context and original input separately by some β parameter, trying to let the algorithm
figure it out by its own, but it will be included in future works.

3.5 Recursive Incremental Gaussian Mixture Network (RecIGMN)

The RecIGMN augments the IGMN with feedback connections from its cortical re-
gion. This architecture can be seen in figure 3.4. Its feedback connections are analogue
to the ones of the Elman Network and RecSOM, creating additional input in the form of
a context vector, which is processed together with data inputs.

Therefore, all IGMN equations from section 2.1.3 apply, except that the input is aug-
mented with a context vector obtained from each Gaussian component’s unnormalized
likelihood (equation 2.4) in the last processing step, resulting in a new input vector

x̄(t) = [p̄(x(t− 1)|j)t−1; x(t)] (3.8)

where [; ] is the vector concatanation operation and p̄(x|j) is initialized as the null vec-
tor with dimension 0 when the algorithm starts. The unnormalized likelihoods are used as
the temporal context instead of the likelihoods or posterior probabilities for two reasons:
1) the range of likelihood values is not [0;1], which is not good for the scaling oper-
ations inside the IGMN, like error computations and initial Gaussian component sizes;
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(a) α = 0 (b) α = 0.1 (c) α = 0.5

(d) α = 0.9 (e) α = 1

Figure 3.3: MIGMN temporal context along the yearly sunspot numbers time-series.
Original series in solid blue, states in dashed green and red (the two state dimensions
correspond to reconstructed input and output dimensions of the network).

Figure 3.4: An example of RecIGMN with 4 inputs and 3 Gaussian components.
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2) the posterior probabilities will be different for a same input in a same context previ-
ously seen, since a different number of Gaussian components results in different posterior
probabilities.

This kind of context has a huge implementation impact: since the number of Gaus-
sian components in a IGMN is variable, the RecIGMN context will also have variable
size, meaning that the algorithm must cope with variable size inputs now. In the next
subsections, the modifications to the original IGMN are described.

3.5.1 Creating New Components

Whenever a new component is created (subsection 2.1.3.2), all components means
and covariance matrices must be adjusted by adding a new element corresponding to the
activation of the newly created component. For the covariance matrices, it means adding
1 full column and 1 full row. The new element added to the mean vectors must be 0,
since the new component was not activated at the previous time step. The new covariance
matrices elements must be all 0, except for the new element on the main diagonal, which
is initialized as δ2 (since the Gaussian function ranges from 0 to 1, equation 2.18 results
in δ).

3.5.2 Removing Spurious Components

Whenever a component is removed (subsection 2.1.3.3), all components means and
covariance matrices must be adjusted by removing the corresponding element. For the
covariance matrices, it means removing 1 full column and 1 full row from the correct
positions corresponding to the removed element.
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4 EXPERIMENTS AND RESULTS

Experiments both with one-dimensional stochastic (non-deterministic) and chaotic
(deterministic with high sensibility to initial conditions) time-series were performed. The
main task is to predict the scalar value xi(t + 1) given xi(t) (the target value xt(t) is
xi(t + 1)), a one-step prediction. A blind run (long-term prediction) experiment is also
done (giving only the first data point from the test set and predicting the remaining time-
series recursively). Both the naïve and full versions of each IGMN-based algorithm were
compared to the ESN (Echo State Network), Elman Network (also known as Simple Re-
current Network or SRN (ELMAN, 1999)), TDNN (Time-Delay Neural Network) (those
algorithms were selected due to their temporal online incremental learning capabilities,
and that is why more classical algorithms like ARIMA (BOX; JENKINS, 1994) were not
used) – referred as classic neural networks from now on – and static IGMN (using only
current input to predict the next one; both naïve and full versions). The IGMN-based al-
gorithms were tested with and without additional time-delay lines (the same delays used
for TDNN and TDIGMN, and are called from now on TDESIGMN, TDMIGMN and
TDRecIGMN). The used error measure for one-step prediction was the normalized MSE
with respect to the trivial solution (always predicting the latest observation xi(t) for the
expected value xi(t+ 1)) and is defined as

NMSEt =

1
N−1−s

N−1∑
t=s+1

‖y(t)− xi(t+ 1)‖2

1
N−1−s

N−1∑
t=s+1

‖xi(t)− xi(t+ 1)‖2
(4.1)

where N is the number of observations, s is the training set size, xi(t) is the observa-
tion at time t, y(t) is the predicted value at time t and xi(t+ 1) is the desired/target value
at time t. It means that solutions worse than the trivial one will haveNMSEt greater than
1, while better solutions will have NMSEt smaller than 1. For the long-term prediction
experiments, the normalization is relative to the error that would be obtained by guessing
all values using the training set mean, as follows:

M =
1

s

s∑
t=1

xi(t) (4.2)

NMSE =

1
N−1−s

N−1∑
t=s+1

‖y(t)− xi(t+ 1)‖2

1
N−1−s

N−1∑
t=s+1

‖M − xi(t+ 1)‖2
(4.3)
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The runtime (in seconds) and number of epochs are also informed. The Gaussian
components (clusters) information refers to the configuration at the end of training. The
parameters of the IGMN based algorithms were the same for all experiments: δ was set
to 0.1, vmin and spmin were set to 2 and 3, respectively. Outlier-based component cre-
ation (section 3.1) was used instead of the εmax parameter. Due to technical limitations
of the Matlab Neural Networks Toolbox and time constraints, batch learning was used for
the classic neural networks instead of incremental learning (batch algorithms, even more
the ones used here, usually give much better results than the online ones and are slower,
since their online counterparts give only approximations for the true gradients and use
only first-order derivatives (LECUN et al., 1998), so this should be kept in mind in the
comparisons). The ESN output layer was trained with the Conjugate Gradient backprop-
agation with Fletcher-Reeves updates algorithm (SCALES, 1985) (’traincgf’ in Matlab,
which does not allow using the Levenberg-Marquardt training algorithm for recurrent net-
works), with early stopping and default parameters, and this same configuration was used
by both layers of the Elman Network. The TDNN used the Levenberg-Marquardt training
algorithm (HAGAN; MENHAJ, 1994). All networks with hidden layers / reservoirs used
10 neurons in this layer, and all input and output layers had size 1 (plus time-delay lines),
since one-dimensional data was used. All reservoirs, both for ESN and ESIGMN, were
scaled to a spectral radius of 0.9. Each experiment was executed 20 times and results were
summarized by medians and median absolute deviations from the median (MAD):

MAD = median(|x−median(X)|) (4.4)

Those descriptive statistics measures were chosen due to their greater robustness in
comparison to means and standard deviations (HUBER; RONCHETTI; MYILIBRARY,
1981). An Intel Core 2 Quad Q8200 with 4GB RAM was used for running all experiments
on Matlab 2009b without parallelization. Boxplots (including medians, 1st and 3rd quar-
tiles, 1.5 interquartile range intervals and outliers) were produced for each experiment
and statistical significance was determined through the Kruskal-Wallis test (GIBBONS;
CHAKRABORTI, 2003) and Wilcoxon Rank-Sum Test (WILCOXON, 1945).

A summary of features of the time-series used in the experiments can be seen in ta-
ble 4.1. Correlation dimension is a measure of the dimensionality of the space occupied
by a data set and can be seen as a type of fractal dimension (GRASSBERGER; PRO-
CACCIA, 1983). Algorithmic complexity is an estimate of the complexity of a symbolic
sequence (the time-series are discretized in equidistant bins) given by the Lempel-Ziv
algorithm (LEMPEL; ZIV, 1976) (the real algorithmic complexity, or Kolmogorov com-
plexity (KOLMOGOROV, 1965) is not computable and thus an estimate is used). Hjorth
mobility and complexity (HJORTH, 1970) are measures of the signal mean frequency
and its deviation from the sine shape, respectively. The Hurst Exponent is a measure of
long-term memory of time-series (HURST; BLACK; SIMAIKA, 1965), but it is not suit-
able for non-stationary series, so we use here the Detrended Fluctuation Analysis (DFA)
(PENG et al., 1994) descriptor, which is similar to the Hurst Exponent but works with non-
stationary time-series. The other measures are simply descriptive statistics measures. All
the values were obtained using MATS (Kugiumtzis; Tsimpiris, 2010), a MATLAB toolkit
for computation of multiple measures on time-series. Besides those scalar measures, 2
vectorial measures are presented along with each time-series: their autocorrelation and
partial autocorrelation functions, which are useful for verifying long-term dependence,
seasonality and non-stationarity of the series (BOX; JENKINS, 1994).
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Google Interest MG17 MG30 Passengers Passengers LD Monthly Sunspots Yearly Sunspots
Correlation Dimension 0.932 0.997 0.998 0.995 0.826 0.905 0.956 0.851

Algorithmic Complexity 0.515 0.957 0.652 0.875 0.927 1.133 0.699 0.860
Mean 441.975 1.706 0.919 0.895 281.475 0.008 51.925 48.764

Median 467.215 1.541 0.966 0.949 267 0.011 41.500 39.500
Variance 17534.01 0.58 0.05 0.07 14292.40 0.01 1966.24 1556.98

Standard Deviation 132.416 0.762 0.235 0.282 119.550 0.106 44.342 39.458
Interquartile Range 166.900 0.892 0.391 0.376 181.250 0.186 60.375 53.150

Skewness -0.566 1.169 -0.445 -0.523 0.577 -0.064 1.094 1.022
Kurtosis 2.789 4.011 2.277 2.458 2.610 1.941 3.849 3.615

Hjorth Mobility 0.021 0.192 0.048 0.184 0.114 1.258 0.254 0.378
Hjorth Complexity 1.409 1.562 1.016 1.005 1.181 0.987 1.595 0.879

Detrended Fluctuation Analysis 1.420 1.274 0.568 0.286 1.372 0.094 0.964 0.623

Table 4.1: Descriptors summarizing the time-series used in the experiments. Largest and
smallest absolute values in bold.

(a) Original series. (b) Autocorrelation function. (c) Partial autocorrelation func-
tion.

Figure 4.1: The yearly mean sunspot numbers time-series

4.1 Yearly Mean Sunspot Numbers

This dataset consists of 289 yearly (monthly mean) observations of a stochastic time-
series, which can be seen in figure 4.1, along with its autocorrelation and partial autocor-
relation functions. The first 200 observations were used for training, while the remaining
89 were used for testing. For the TD algorithms, 5 extra time-delays were added to in-
put (and 5 data points removed from the training set). For this experiment, NMSEt = 1
corresponds to NMSE = 0.35. Results are summarized in table 4.2 with median values
and MADs, and also in figure 4.2. Comparison of all algorithms accounting for statistical
significance can be seen in tables B.1 for 1-step prediction errors, table B.2 for long-term
prediction errors and table B.3 for runtimes (appendix B). Figures A.1 and A.2 show test
results for all algorithms on the 1-step and long-term tasks, respectively (appendix A),
while figures 4.3 and 4.4 show only best and worst algorithms’ results.

Except for the RecIGMN, all proposed algorithms using full covariance matrices per-
formed statistically better than the trivial solution, the classic neural networks and the
static IGMN. Also, all proposed algorithms with full covariance matrices and time-delays
were better than the trivial solution, the classic neural networks, the static IGMN and
their counterparts without time-delays, with the TDMIGMN being the best performing
algorithm of all. The TDMIGMN was better than the TDIGMN and the MIGMN alone,
meaning that their combination was beneficial for both. None of the naïve version algo-
rithms could outperform the trivial solution, due to a lack of generalization at the highest
peaks. For long-term prediction, the pure MIGMN got the best result. The fastest neural
networks for this experiment were the ESN, TDNN and IGMNn, but taking into account
only the IGMN-based algorithms better than the trivial solution, ESIGMN was the fastest
one. Only the ESIGMN, TDESIGMN and the MIGMN achieved errors less than 1 for
both short-term and long-term experiments, with only ESIGMN being significantly better



38

NMSEt LT NMSE Epochs Runtime Clusters
Elman 0.96 (0.0) 1.57 (0.1) 10.7 (2.5) 0.32 (0.1) 0.0 (0.0)
ESN 0.92 (0.0) 1.01 (0.1) 6.2 (0.0) 0.16 (0.0) 0.0 (0.0)

TDNN 0.70 (0.2) 1.21 (0.3) 13.4 (1.0) 0.26 (0.0) 0.0 (0.0)
IGMN 1.10 (0.0) 1.60 (0.0) 1.0 (0.0) 0.46 (0.0) 4.0 (0.0)

ESIGMN 0.46 (0.0) 0.93 (0.0) 1.0 (0.0) 0.39 (0.0) 1.0 (0.0)
TDIGMN 0.46 (0.0) 1.41 (0.0) 1.0 (0.0) 0.43 (0.0) 3.0 (0.0)
MIGMN 0.61 (0.0) 0.81 (0.0) 1.0 (0.0) 0.54 (0.0) 5.0 (0.0)

RecIGMN 1.26 (0.0) 2.00 (0.0) 1.0 (0.0) 0.42 (0.0) 1.0 (0.0)
IGMNn 1.15 (0.0) 1.05 (0.0) 1.0 (0.0) 0.25 (0.0) 3.0 (0.0)

ESIGMNn 1.74 (0.2) 1.26 (0.1) 1.0 (0.0) 0.30 (0.0) 4.0 (1.0)
TDIGMNn 2.25 (0.0) 0.89 (0.0) 1.0 (0.0) 0.28 (0.0) 3.0 (0.0)
MIGMNn 1.19 (0.0) 1.52 (0.0) 1.0 (0.0) 0.64 (0.1) 6.0 (0.0)

RecIGMNn 2.86 (0.0) 1.59 (0.0) 1.0 (0.0) 0.35 (0.1) 2.0 (0.0)
TDESIGMN 0.43 (0.0) 0.97 (0.1) 1.0 (0.0) 0.43 (0.1) 1.0 (0.0)
TDMIGMN 0.40 (0.0) 1.21 (0.0) 1.0 (0.0) 0.62 (0.0) 5.0 (0.0)

TDRecIGMN 0.61 (0.0) 1.37 (0.0) 1.0 (0.0) 0.50 (0.0) 3.0 (0.0)
TDESIGMNn 2.22 (0.3) 1.32 (0.1) 1.0 (0.0) 0.33 (0.0) 5.5 (1.5)
TDMIGMNn 2.44 (0.0) 1.54 (0.0) 1.0 (0.0) 0.30 (0.0) 6.0 (0.0)

TDRecIGMNn 3.70 (0.0) 1.30 (0.0) 1.0 (0.0) 0.30 (0.0) 1.0 (0.0)

Table 4.2: Results of the mean yearly sunspot numbers experiment. Median values out-
side parenthesis, MADs inside. Best errors and runtimes in bold, accounting for statistical
similarities. Each one-epoch algorithm better than the trivial solution (one-step) and the
mean solution (long-term) is underlined, as well as the best errors and runtimes among
the IGMN-based algorithms, also accounting for statistical similarities.

(a) One-step prediction NMSEt boxplot. (b) Long-term prediction NMSE boxplot.

(c) Training time boxplot.

Figure 4.2: Boxplots for the results from all algorithms on the mean yearly sunspot num-
bers experiment.
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(a) ESIGMN (b) TDESIGMN

(c) TDMIGMN (d) TDRecIGMNn

Figure 4.3: One-step prediction example outputs of best and worst algorithms on the
yearly mean sunspot numbers time-series (test set only). ESIGMN and TDESIGMN are
also shown due to their good performance at this task for both 1-step and long-term pre-
dictions. Original series in black, estimates in blue.
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(a) ESIGMN (b) TDESIGMN

(c) MIGMN (d) RecIGMN

Figure 4.4: Long-term prediction example outputs of best and worst algorithms in the
yearly mean sunspot numbers time-series (test set only). ESIGMN and TDESIGMN are
also shown due to their good performance at this task for both 1-step and long-term pre-
dictions. Original series in black, estimates in blue.

than all classic neural networks and static IGMN too. Overall, the ESIGMN seems to be
a good compromise between prediction performance and speed in this experiment.

4.2 Monthly Sunspot Numbers

This dataset consists of 2987 monthly observations of a stochastic time-series, which
can be seen in figure 4.5 along with its autocorrelation and partial autocorrelation func-
tions. The first 2000 observations were used for training, while the remaining 987 were
used for testing. For the TD algorithms, 16 extra time-delays were added to input (and 16
data points removed from the training set). For this experiment, NMSEt = 1 corresponds
to NMSE = 0.1. Results are summarized in table 4.3 with medians and MADs, and also
in figure 4.6. Comparison of all algorithms accounting for statistical significance can be
seen in tables B.4 for 1-step prediction errors, table B.5 for long-term prediction errors
and table B.6 for runtimes (appendix B). Figures A.3 and A.4 show test results for all
algorithms on the 1-step and long-term tasks, respectively (appendix A), while figures 4.7
and 4.8 show only best and worst algorithms’ results.

Very few algorithms managed to outperform the trivial solution in this experiment
for one-step prediction: ESN, ESIGMN, RecIGMN and TDRecIGMN, which got the
smallest error from all, although not much better than the trivial solution. The MIGMN
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(a) Original series. (b) Autocorrelation function. (c) Partial autocorrelation func-
tion.

Figure 4.5: The monthly mean sunspot numbers time-series

NMSEt LT NMSE Epochs Runtime Clusters
Elman 1.01 (0.0) 1.45 (0.1) 13.1 (4.5) 1.26 (0.6) 0.0 (0.0)
ESN 0.99 (0.0) 0.99 (0.0) 5.0 (0.0) 0.49 (0.1) 0.0 (0.0)

TDNN 1.14 (0.1) 1.25 (0.2) 12.0 (1.5) 1.07 (0.2) 0.0 (0.0)
IGMN 1.07 (0.0) 1.06 (0.0) 1.0 (0.0) 4.87 (0.1) 4.0 (0.0)

ESIGMN 0.86 (0.0) 0.94 (0.1) 1.0 (0.0) 4.21 (0.3) 1.0 (0.0)
TDIGMN 1.28 (0.0) 1.60 (0.0) 1.0 (0.0) 32.20 (3.1) 51.0 (0.0)
MIGMN 13.06 (0.0) 0.86 (0.0) 1.0 (0.0) 6.59 (0.1) 9.0 (0.0)

RecIGMN 0.99 (0.0) 1.20 (0.0) 1.0 (0.0) 3.70 (0.1) 1.0 (0.0)
IGMNn 1.48 (0.0) 1.03 (0.0) 1.0 (0.0) 2.67 (0.1) 4.0 (0.0)

ESIGMNn 2.03 (0.5) 1.20 (0.2) 1.0 (0.0) 3.02 (0.1) 3.5 (0.5)
TDIGMNn 1.77 (0.0) 1.17 (0.0) 1.0 (0.0) 4.32 (0.2) 19.0 (0.0)
MIGMNn 8.26 (0.0) 1.33 (0.0) 1.0 (0.0) 2.78 (0.1) 5.0 (0.0)

RecIGMNn 9.81 (0.0) 1.11 (0.0) 1.0 (0.0) 2.60 (0.1) 1.0 (0.0)
TDESIGMN 1.45 (0.1) 0.98 (0.1) 1.0 (0.0) 28.05 (3.6) 36.0 (3.5)
TDMIGMN 9.01 (0.0) 1.03 (0.0) 1.0 (0.0) 8.51 (0.5) 4.0 (0.0)

TDRecIGMN 0.84 (0.0) 1.98 (0.0) 1.0 (0.0) 9.35 (0.2) 7.0 (0.0)
TDESIGMNn 1.82 (0.1) 1.01 (0.1) 1.0 (0.0) 4.85 (0.4) 23.0 (4.0)
TDMIGMNn 2.65 (0.0) 1.49 (0.0) 1.0 (0.0) 5.03 (0.3) 26.0 (0.0)

TDRecIGMNn 3.21 (0.0) 1.00 (0.0) 1.0 (0.0) 3.93 (0.1) 12.0 (0.0)

Table 4.3: Results of the monthly sunspot numbers experiment. Median values outside
parenthesis, MADs inside. Best errors and runtimes in bold, accounting for statistical
similarities. Each one-epoch algorithm better than the trivial solution (one-step) and the
mean solution (long-term) is underlined, as well as the best errors and runtimes among
the IGMN-based algorithms, also accounting for statistical similarities.
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(a) One-step prediction NMSEt boxplot. (b) Long-term prediction NMSE boxplot.

(c) Training time boxplot.

Figure 4.6: Boxplots for the results from all algorithms on the monthly sunspot numbers
experiment.
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(a) ESIGMN (b) TDRecIGMN

(c) MIGMN

Figure 4.7: One-step prediction example outputs of best and worst algorithms in the
monthly mean sunspot numbers time-series (test set only). ESIGMN is also shown due
to its good performance at this task for both 1-step and long-term predictions. Original
series in black, estimates in blue.

got the best long-term error prediction again, but none of the algorithms could predict
reasonably beyond 10 years worth of data, giving constant predictions afterwards, as
can be seen in figure A.4. This could be explained by the long-term dependency of this
series (as given by its DFA descriptor in table 4.1 and its autocorrelation function in figure
4.5(b)), which is not even handled by the number of time-delays used in the TD versions.
Except for the ESIGMN, all TD versions improved on the basic proposed algorithms for
one-step predictions, being the TDRecIGMN better than the TDIGMN and RecIGMN,
showing the benefit of joining both approaches. ESIGMN was the only algorithm to
overcome both the trivial solution (one-step) and mean solution (long-term), as well as all
classic algorithms and static IGMN in both tasks.

4.3 Airline Passengers

This dataset consists of 143 monthly observations of a stochastic non-stationary time-
series, which can be seen in figure 4.9 along with its autocorrelation and partial autocor-
relation functions. The first 100 observations were used for training, while the remaining
43 were used for testing. For the TD algorithms, 16 extra time-delays were added to the
input (and 16 data points removed from the training set). For this experiment, NMSEt
= 1 corresponds to NMSE = 0.0536. Results are summarized in table 4.4 with median
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(a) ESIGMN (b) TDRecIGMN

(c) MIGMN

Figure 4.8: Long-term prediction example outputs of best and worst algorithms in the
monthly mean sunspot numbers time-series (test set only). ESIGMN is also shown due
to its good performance at this task for both 1-step and long-term predictions. Original
series in black, estimates in blue.
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(a) Original series. (b) Autocorrelation function. (c) Partial autocorrelation func-
tion.

Figure 4.9: The airline passengers time series.

NMSEt LT NMSE Epochs Runtime Clusters
Elman 1.25 (0.2) 0.78 (0.3) 9.9 (2.5) 0.26 (0.1) 0.0 (0.0)
ESN 0.99 (0.0) 0.39 (0.1) 5.3 (0.0) 0.12 (0.0) 0.0 (0.0)

TDNN 2.14 (1.1) 0.53 (0.3) 10.1 (1.0) 0.25 (0.0) 0.0 (0.0)
IGMN 1.26 (0.0) 0.19 (0.0) 1.0 (0.0) 0.17 (0.0) 2.0 (0.0)

ESIGMN 0.90 (0.1) 0.21 (0.1) 1.0 (0.0) 0.21 (0.0) 1.0 (0.0)
TDIGMN 0.08 (0.0) 0.02 (0.0) 1.0 (0.0) 0.14 (0.0) 1.0 (0.0)
MIGMN 1.28 (0.0) 0.25 (0.0) 1.0 (0.0) 0.17 (0.0) 1.0 (0.0)

RecIGMN 1.02 (0.0) 0.56 (0.0) 1.0 (0.0) 0.21 (0.0) 1.0 (0.0)
IGMNn 2.51 (0.0) 0.26 (0.0) 1.0 (0.0) 0.13 (0.0) 6.0 (0.0)

ESIGMNn 6.43 (0.6) 0.37 (0.1) 1.0 (0.0) 0.17 (0.0) 2.0 (0.0)
TDIGMNn 4.28 (0.0) 0.25 (0.0) 1.0 (0.0) 0.12 (0.0) 9.0 (0.0)
MIGMNn 3.45 (0.0) 0.43 (0.0) 1.0 (0.0) 0.33 (0.1) 8.0 (0.0)

RecIGMNn 3.96 (0.0) 0.21 (0.0) 1.0 (0.0) 0.19 (0.1) 2.0 (0.0)
TDESIGMN 0.10 (0.0) 0.04 (0.0) 1.0 (0.0) 0.18 (0.0) 1.0 (0.0)
TDMIGMN 0.15 (0.0) 0.09 (0.0) 1.0 (0.0) 0.17 (0.0) 1.0 (0.0)

TDRecIGMN 0.09 (0.0) 0.03 (0.0) 1.0 (0.0) 0.16 (0.0) 1.0 (0.0)
TDESIGMNn 5.27 (0.3) 0.37 (0.0) 1.0 (0.0) 0.13 (0.0) 7.0 (1.0)
TDMIGMNn 5.03 (0.0) 0.36 (0.0) 1.0 (0.0) 0.12 (0.0) 9.0 (0.0)

TDRecIGMNn 4.65 (0.0) 0.37 (0.0) 1.0 (0.0) 0.13 (0.0) 8.0 (0.0)

Table 4.4: Results of the airline passengers experiment. Median values outside parenthe-
sis, MADs inside. Best errors and runtimes in bold, accounting for statistical similarities.
Each one-epoch algorithm better than the trivial solution (one-step) and the mean solution
(long-term) is underlined, as well as the best errors and runtimes among the IGMN-based
algorithms, also accounting for statistical similarities.

values and MADs, and also in figure 4.10. Comparison of all algorithms accounting for
statistical significance can be seen in tables B.7 for 1-step prediction errors, table B.8 for
long-term prediction errors and table B.9 for runtimes (appendix B). Figures A.5 and
A.6 show test results for all algorithms on the 1-step and long-term tasks, respectively
(appendix A), while figures 4.11 and 4.12 show only best and worst algorithms’ results.

Six algorithms outperformed the trivial (one-step) and mean (long-term) solutions in
this experiment: ESN, ESIGMN, TDESIGMN, TDMIGMN, TDRecIGMN and TDIGMN,
the later being the best in both tasks. Since this is a relatively small experiment, many
algorithms got statistically similar results for the execution time. For this experiment,
it is clear that time-delays played a major role in the prediction performance of IGMN-
based algorithms, maybe because the delays are long enough to capture the trend, growing
variance and seasonality of this time-series (but the ESN’s and ESIGMN’s reservoirs are
good replacements for the time-delays). The naïve algorithms could not generalize well
and simply did not learn the series trend, as can be seen in figures A.5 and A.6.
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(a) NMSEt boxplot. (b) Long-term NMSE boxplot.

(c) Training time boxplot.

Figure 4.10: Boxplots for the results from all algorithms on the airline passengers exper-
iment.

(a) TDIGMN (b) ESIGMNn

Figure 4.11: One-step prediction example outputs of best and worst algorithms in the
airline passengers time-series (test set only). Original series in black, estimates in blue.
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(a) TDIGMN (b) Elman

Figure 4.12: Long-term prediction example outputs of best and worst algorithms in the
airline passengers time-series. Original series in black, estimates in blue.

(a) Original series. (b) Autocorrelation function. (c) Partial autocorrelation func-
tion.

Figure 4.13: The log-differentiated airline passengers time series.

4.4 Log-Differentiated Airline Passengers

In order to assess the importance of the non-stationarity of the airline passengers time-
series to the performance of the evaluated algorithms, a new experiment was done using
the same time-series but now log-differentiated. The resulting time-series can be seen in
figure 4.13 along with its new autocorrelation and partial autocorrelation functions. For
this experiment, NMSEt = 1 corresponds to NMSE = 1.3851. Results are summarized
in table 4.5 with median values and MADs, and also in figure 4.14. Comparison of all
algorithms accounting for statistical significance can be seen in tables B.10 for 1-step
prediction errors, table B.11 for long-term prediction errors and table B.12 for runtimes
(appendix B). Figures A.7 and A.8 show test results for all algorithms on the 1-step and
long-term tasks, respectively (appendix A), while figures 4.15 and 4.16 show only best
and worst algorithms’ results.

It is clear from those results that removing the trend and the growing variance of the
airline passengers time-series allowed many other algorithms to succeed. Actually, the
best predictions were obtained by a simple TDNN. Also, many naïve version algorithms
managed to solve the problem. Based on those two experiments, we conclude that ESN,
ESIGMN, TDESIGMN, TDMIGMN, TDRecIGMN and TDIGMN were more robust to
the trend and the growing variance in the airline passengers time-series, showing good
results in both experiments.
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NMSEt LT NMSE Epochs Runtime Clusters
Elman 0.69 (0.0) 1.13 (0.0) 17.1 (4.0) 0.58 (0.2) 0.0 (0.0)
ESN 0.68 (0.0) 0.99 (0.0) 5.1 (0.0) 0.11 (0.0) 0.0 (0.0)

TDNN 0.18 (0.1) 0.38 (0.2) 7.5 (0.5) 0.12 (0.0) 0.0 (0.0)
IGMN 0.65 (0.0) 1.01 (0.0) 1.0 (0.0) 0.20 (0.0) 2.0 (0.0)

ESIGMN 0.53 (0.1) 0.97 (0.1) 1.0 (0.0) 0.25 (0.0) 2.0 (0.0)
TDIGMN 0.41 (0.0) 0.65 (0.0) 1.0 (0.0) 0.30 (0.0) 5.0 (0.0)
MIGMN 1.08 (0.0) 1.04 (0.0) 1.0 (0.0) 0.26 (0.0) 4.0 (0.0)

RecIGMN 1.59 (0.0) 1.35 (0.0) 1.0 (0.0) 0.27 (0.0) 3.0 (0.0)
IGMNn 0.65 (0.0) 0.99 (0.0) 1.0 (0.0) 0.13 (0.0) 2.0 (0.0)

ESIGMNn 0.76 (0.1) 1.27 (0.1) 1.0 (0.0) 0.15 (0.0) 2.0 (0.0)
TDIGMNn 1.07 (0.0) 1.96 (0.0) 1.0 (0.0) 0.15 (0.0) 3.0 (0.0)
MIGMNn 0.66 (0.0) 0.98 (0.0) 1.0 (0.0) 0.14 (0.0) 2.0 (0.0)

RecIGMNn 0.93 (0.0) 1.07 (0.0) 1.0 (0.0) 0.15 (0.0) 2.0 (0.0)
TDESIGMN 0.29 (0.1) 0.63 (0.4) 1.0 (0.0) 0.37 (0.0) 5.0 (0.0)
TDMIGMN 0.30 (0.0) 2.25 (0.0) 1.0 (0.0) 0.45 (0.0) 6.0 (0.0)

TDRecIGMN 0.41 (0.0) 0.65 (0.0) 1.0 (0.0) 0.36 (0.0) 5.0 (0.0)
TDESIGMNn 0.23 (0.0) 0.42 (0.1) 1.0 (0.0) 0.16 (0.0) 3.0 (0.0)
TDMIGMNn 0.22 (0.0) 0.32 (0.0) 1.0 (0.0) 0.16 (0.0) 3.0 (0.0)

TDRecIGMNn 0.65 (0.0) 1.27 (0.0) 1.0 (0.0) 0.13 (0.0) 2.0 (0.0)

Table 4.5: Results of the log-differentiated airline passengers experiment. Median values
outside parenthesis, MADs inside. Best errors and runtimes in bold, accounting for sta-
tistical similarities. Each one-epoch algorithm better than the trivial solution (one-step)
and the mean solution (long-term) is underlined, as well as the best errors and runtimes
among the IGMN-based algorithms, also accounting for statistical similarities.

(a) One-step prediction NMSEt boxplot. (b) Long-term prediction NMSE boxplot.

(c) Training time boxplot.

Figure 4.14: Boxplots for the results from all algorithms on the log-differentiated airline
passengers experiment.
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(a) TDNN (b) TDMIGMNn (c) RecIGMN

Figure 4.15: One-step prediction example outputs of best and worst algorithms in the
log-differentiated airline passengers time-series (test set only). Original series in black,
estimates in blue.

(a) TDNN (b) TDMIGMNn (c) TDMIGMN

Figure 4.16: Long-term prediction example outputs of best and worst algorithms in the
log-differentiated airline passengers time-series. Original series in black, estimates in
blue.
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(a) Original series. (b) Autocorrelation function. (c) Partial autocorrelation func-
tion.

Figure 4.17: The Mackey-Glass (τ=17) time-series.

4.5 Mackey-Glass (τ=17)

This dataset consists of 1201 observations of a chaotic time-series defined by the
equation

dx

dt
= 0.2

xt−τ
1 + xnt−τ

− 0.1xt (4.5)

with τ = 17, which can be seen in figure 4.17 along with its autocorrelation and partial
autocorrelation functions. The first 1000 observations were used for training, while the
remaining 201 were used for testing. For the TD algorithms, 3 extra time-delays were
added to the input (at lags 6, 12 and 18), and 17 data points were removed from their
training sets. For this experiment, NMSEt = 1 corresponds to NMSE = 0.0196. Re-
sults are summarized in table 4.6 with median values and MADs, and also in figure 4.18.
Comparison of all algorithms accounting for statistical significance can be seen in tables
B.13 for 1-step prediction errors, table B.14 for long-term prediction errors and table B.15
for runtimes (appendix B). Figures A.9 and A.10 show test results for all algorithms on
the 1-step and long-term tasks, respectively (appendix A), while figures 4.19 and 4.20
show only best and worst algorithms’ results.

The TDNN got the best one-step prediction error in this experiment, closely followed
by the TDIGMN. Only the TDMIGMN could overcome the mean solution for the long-
term prediction task, but only by a small amount. It was also the only algorithm with errors
smaller than 1 for both tasks. The ESN was by far the fastest algorithm in this experiment.
Except for the MIGMN, the time-delays improved all algorithms. This, together with the
great one-step prediction performance of the TDNN, could be explained by the carefully
picked lags already consolidated in chaos-theoretic studies (SALMERÓN et al., 2002)
(WEIGEND; GERSHENFELD, 1994).

It is also interesting to note that the ESIGMN could achieve better results (by a large
margin) than the ESN in the one-step prediction task with only a single Gaussian compo-
nent in various runs, meaning that it has found a linear solution over input and reservoir
state space. An ESIGMN with just one component is almost equivalent to an ESN trained
in batch mode, but the ESIGMN linear regression done inside the component is more akin
to a Total Least Squares (TLS), since it is done in both input and output variables, while
the ESN linear regression done in the output layer is closer to a Ordinary Least Squares
(OLS).



51

NMSEt LT NMSE Epochs Runtime Clusters
Elman 1.02 (0.0) 1.14 (0.1) 42.2 (15.0) 3.33 (0.9) 0.0 (0.0)
ESN 1.92 (0.0) 1.00 (0.0) 7.2 (0.0) 0.24 (0.0) 0.0 (0.0)

TDNN 0.01 (0.0) 1.14 (0.0) 13.2 (3.5) 0.54 (0.2) 0.0 (0.0)
IGMN 1.00 (0.0) 1.29 (0.0) 1.0 (0.0) 2.13 (0.1) 3.0 (0.0)

ESIGMN 0.10 (0.0) 1.06 (0.1) 1.0 (0.0) 1.88 (0.2) 1.0 (0.0)
TDIGMN 0.03 (0.0) 1.10 (0.0) 1.0 (0.0) 2.19 (0.1) 3.0 (0.0)
MIGMN 0.25 (0.0) 1.02 (0.0) 1.0 (0.0) 1.99 (0.0) 2.0 (0.0)

RecIGMN 0.84 (0.0) 1.24 (0.0) 1.0 (0.0) 2.38 (0.1) 3.0 (0.0)
IGMNn 2.87 (0.0) 1.06 (0.0) 1.0 (0.0) 1.28 (0.1) 4.0 (0.0)

ESIGMNn 10.55 (3.5) 1.45 (0.2) 1.0 (0.0) 1.56 (0.1) 4.0 (1.0)
TDIGMNn 8.16 (0.0) 1.70 (0.0) 1.0 (0.0) 1.38 (0.1) 5.0 (0.0)
MIGMNn 47.94 (0.0) 1.00 (0.0) 1.0 (0.0) 1.54 (0.1) 7.0 (0.0)

RecIGMNn 52.86 (0.0) 1.28 (0.0) 1.0 (0.0) 1.36 (0.0) 2.0 (0.0)
TDESIGMN 0.05 (0.0) 1.07 (0.1) 1.0 (0.0) 2.08 (0.3) 1.0 (0.0)
TDMIGMN 0.29 (0.0) 0.99 (0.0) 1.0 (0.0) 2.41 (0.1) 3.0 (0.0)

TDRecIGMN 0.05 (0.0) 1.09 (0.0) 1.0 (0.0) 2.70 (0.1) 4.0 (0.0)
TDESIGMNn 8.13 (1.4) 1.66 (0.1) 1.0 (0.0) 1.80 (0.1) 8.0 (1.0)
TDMIGMNn 8.43 (0.0) 1.71 (0.0) 1.0 (0.0) 1.62 (0.1) 13.0 (0.0)

TDRecIGMNn 13.13 (0.0) 1.52 (0.0) 1.0 (0.0) 1.42 (0.1) 5.0 (0.0)

Table 4.6: Results of the Mackey-Glass (τ = 17) experiment. Median values outside
parenthesis, MADs inside. Best errors and runtimes in bold, accounting for statistical
similarities. Each one-epoch algorithm better than the trivial solution (one-step) and the
mean solution (long-term) is underlined, as well as the best errors and runtimes among
the IGMN-based algorithms, also accounting for statistical similarities.

(a) NMSEt boxplot. (b) Long-term NMSE boxplot.

(c) Training time boxplot.

Figure 4.18: Boxplot of the results from all algorithms on the Mackey-Glass (τ = 17)
experiment.
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(a) TDNN (b) TDIGMN

(c) TDMIGMN (d) RecIGMNn

Figure 4.19: One-step prediction example outputs of best and worst algorithms in the
Mackey-Glass (τ = 17)time-series (test set only). The TDMIGMN is also shown due to
its good performance at both 1-step and long-term prediction tasks. Original series in
black, estimates in blue.

(a) TDMIGMN (b) TDMIGMNn

Figure 4.20: Long-term prediction example outputs of best and worst algorithms in the
Mackey-Glass (τ = 17) time-series. Original series in black, estimates in blue.
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(a) Original series. (b) Autocorrelation function. (c) Partial autocorrelation func-
tion.

Figure 4.21: The Mackey-Glass (τ=30) time-series.

NMSEt LT NMSE Epochs Runtime Clusters
Elman 0.91 (0.0) 1.03 (0.0) 25.1 (8.5) 1.81 (0.6) 0.0 (0.0)
ESN 0.93 (0.0) 1.00 (0.0) 8.4 (3.5) 0.51 (0.3) 0.0 (0.0)

TDNN 0.13 (0.0) 2.38 (0.4) 10.2 (2.5) 0.29 (0.1) 0.0 (0.0)
IGMN 0.93 (0.0) 1.04 (0.0) 1.0 (0.0) 2.03 (0.1) 3.0 (0.0)

ESIGMN 0.44 (0.0) 1.00 (0.0) 1.0 (0.0) 2.66 (0.1) 3.0 (0.0)
TDIGMN 0.20 (0.0) 1.22 (0.0) 1.0 (0.0) 3.34 (0.1) 9.0 (0.0)
MIGMN 0.58 (0.0) 1.04 (0.0) 1.0 (0.0) 2.26 (0.1) 3.0 (0.0)

RecIGMN 1.52 (0.0) 1.41 (0.0) 1.0 (0.0) 2.48 (0.1) 3.0 (0.0)
IGMNn 0.94 (0.0) 1.07 (0.0) 1.0 (0.0) 1.28 (0.1) 4.0 (0.0)

ESIGMNn 1.37 (0.2) 1.29 (0.2) 1.0 (0.0) 1.57 (0.1) 4.0 (1.0)
TDIGMNn 0.64 (0.0) 1.14 (0.0) 1.0 (0.0) 1.41 (0.1) 6.0 (0.0)
MIGMNn 1.82 (0.0) 1.22 (0.0) 1.0 (0.0) 1.39 (0.0) 4.0 (0.0)

RecIGMNn 2.28 (0.0) 1.05 (0.0) 1.0 (0.0) 1.48 (0.1) 3.0 (0.0)
TDESIGMN 0.19 (0.0) 1.78 (0.8) 1.0 (0.0) 3.37 (0.4) 5.0 (1.0)
TDMIGMN 0.26 (0.0) 1.72 (0.0) 1.0 (0.0) 5.88 (0.2) 17.0 (0.0)

TDRecIGMN 0.49 (0.0) 1.27 (0.0) 1.0 (0.0) 4.04 (0.3) 7.0 (0.0)
TDESIGMNn 0.74 (0.1) 1.16 (0.0) 1.0 (0.0) 1.86 (0.1) 8.0 (1.0)
TDMIGMNn 1.10 (0.0) 1.14 (0.0) 1.0 (0.0) 1.61 (0.0) 7.0 (0.0)

TDRecIGMNn 1.90 (0.0) 1.05 (0.0) 1.0 (0.0) 1.65 (0.0) 3.0 (0.0)

Table 4.7: Results of the Mackey-Glass (τ = 30) experiment. Median values outside
parenthesis, MADs inside. Best errors and runtimes in bold, accounting for statistical
similarities. Each one-epoch algorithm better than the trivial solution (one-step) and the
mean solution (long-term) is underlined, as well as the best errors and runtimes among
the IGMN-based algorithms, also accounting for statistical similarities.

4.6 Mackey-Glass (τ=30)

This dataset with 1500 observations is generated by the same equation 4.5 but with
τ = 30, and can be seen in figure 4.21. The first 1000 observations were used for training,
while the remaining 500 were used for testing. For the TD algorithms, 3 extra time-
delays were added to the input (at lags 6, 12 and 18), and 17 data point were removed
from the training set. For this experiment, NMSEt = 1 corresponds to NMSE = 0.359.
Results are summarized in table 4.7 with median values and MADs, and also in figure
4.22. Comparison of all algorithms accounting for statistical significance can be seen in
tables B.16 for 1-step prediction errors, table B.17 for long-term prediction errors and
table B.18 for runtimes (appendix B). Figures A.11 and A.12 show test results for all
algorithms on the 1-step and long-term tasks, respectively (appendix A), while figures
4.23 and 4.24 show only best and worst algorithms’ results.

Again, the TDNN got the best one-step prediction error, closely followed by the
TDIGMN and TDESIGMN. There was no algorithm capable of overcoming the mean
solution in the long-term prediction task in this experiment, but the ESN and ESIGMN
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(a) NMSEt boxplot. (b) Long-term NMSE boxplot.

(c) Training time boxplot.

Figure 4.22: Boxplot of the results from all algorithms on the Mackey-Glass (τ = 30)
experiment.
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(a) TDNN (b) TDIGMN

(c) TDESIGMN (d) RecIGMNn

Figure 4.23: One-step prediction example outputs of best and worst algorithms in the
Mackey-Glass (τ = 30) time-series (test set only). Original series in black, estimates in
blue.

(a) ESN (b) ESIGMN (c) TDNN

Figure 4.24: Long-term prediction example outputs of best and worst algorithms in the
Mackey-Glass (τ = 30) time-series. Original series in black, estimates in blue.
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(a) Original series. (b) Autocorrelation function. (c) Partial autocorrelation func-
tion.

Figure 4.25: The Google stock time-series.

NMSEt LT NMSE Epochs Runtime Clusters
Elman 1.00 (0.0) 0.15 (0.0) 24.0 (12.5) 1.78 (1.1) 0.0 (0.0)
ESN 1.00 (0.0) 0.31 (0.1) 6.2 (0.0) 0.49 (0.1) 0.0 (0.0)

TDNN 1.00 (0.0) 0.24 (0.1) 16.6 (1.5) 0.73 (0.2) 0.0 (0.0)
IGMN 1.00 (0.0) 0.25 (0.0) 1.0 (0.0) 3.78 (0.8) 2.0 (0.0)

ESIGMN 1.00 (0.0) 0.25 (0.0) 1.0 (0.0) 3.03 (0.2) 1.0 (0.0)
TDIGMN 1.72 (0.0) 0.17 (0.0) 1.0 (0.0) 3.03 (0.0) 5.0 (0.0)
MIGMN 5.43 (0.0) 0.14 (0.0) 1.0 (0.0) 2.80 (0.1) 3.0 (0.0)

RecIGMN 1.00 (0.0) 0.14 (0.0) 1.0 (0.0) 2.96 (0.0) 3.0 (0.0)
IGMNn 1.57 (0.0) 0.40 (0.0) 1.0 (0.0) 2.18 (0.1) 9.0 (0.0)

ESIGMNn 11.46 (2.5) 0.40 (0.1) 1.0 (0.0) 2.43 (0.1) 5.0 (1.5)
TDIGMNn 5.86 (0.0) 0.48 (0.0) 1.0 (0.0) 2.31 (0.1) 12.0 (0.0)
MIGMNn 64.20 (0.0) 0.23 (0.0) 1.0 (0.0) 2.39 (0.1) 12.0 (0.0)

RecIGMNn 83.70 (0.0) 0.41 (0.0) 1.0 (0.0) 2.40 (0.1) 5.0 (0.0)
TDESIGMN 1.05 (0.0) 0.23 (0.1) 1.0 (0.0) 3.49 (0.2) 3.0 (0.0)
TDMIGMN 10.81 (0.0) 0.26 (0.0) 1.0 (0.0) 3.25 (0.2) 3.0 (0.0)

TDRecIGMN 1.02 (0.0) 0.19 (0.0) 1.0 (0.0) 3.42 (0.1) 3.0 (0.0)
TDESIGMNn 6.49 (1.6) 0.44 (0.0) 1.0 (0.0) 2.81 (0.2) 10.0 (1.0)
TDMIGMNn 27.26 (0.0) 0.45 (0.0) 1.0 (0.0) 2.60 (0.2) 14.0 (0.0)

TDRecIGMNn 20.10 (0.0) 0.12 (0.0) 1.0 (0.0) 2.77 (0.2) 9.0 (0.0)

Table 4.8: Results of the Google stock experiment. Median values outside parenthesis,
MADs inside. Best errors and runtimes in bold, accounting for statistical similarities.
Each one-epoch algorithm better than the trivial solution (one-step) and the mean solution
(long-term) is underlined, as well as the best errors and runtimes among the IGMN-based
algorithms, also accounting for statistical similarities.

were able to, at least, match it. Many naïve version algorithms did well in this experiment.
The ESN and TDNN algorithms were the fastest ones in this experiment.

4.7 Google Stock Prices

This financial dataset consists of 1803 observations from the Google stock prices
(closing values), and can be seen in figure 4.25. The first 1500 observations were used for
training, while the remaining 303 were used for testing. For the TD algorithms, 4 extra
time-delays were added to the input (and 4 data points were removed from the training
set). For this experiment, NMSEt = 1 corresponds to NMSE = 0.005. Results are
summarized in table 4.8 with median values and MADs, and also in figure 4.26. Com-
parison of all algorithms accounting for statistical significance can be seen in tables B.19
for 1-step prediction errors, table B.20 for long-term prediction errors and table B.21 for
runtimes (appendix B). Figures A.13 and A.14 show test results for all algorithms on the
1-step and long-term tasks, respectively (appendix A), while figures 4.27 and 4.28 show
only best and worst algorithms’ results.
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(a) NMSEt boxplot. (b) Long-term NMSE boxplot.

(c) Training time boxplot.

Figure 4.26: Boxplot of the results from all algorithms on the Google stock experiment.

(a) ESIGMN (b) RecIGMN (c) RecIGMNn

Figure 4.27: One-step prediction example outputs of best and worst algorithms in the
Google stock time-series (test set only). Original series in black, estimates in blue.

(a) TDRecIGMNn (b) TDIGMNn

Figure 4.28: Long-term prediction example outputs of best and worst algorithms in the
Google stock time-series. Original series in black, estimates in blue.
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(a) Autocorrelation Function (b) Partial Autocorrelation Func-
tion

Figure 4.29: Autocorrelation and partial autocorrelation functions of the differentiated
google stock prices time-series.

No algorithm was capable of overcoming the trivial solution in the one-step predic-
tion task of this experiment. This is due to the random walk nature of the stock market
(MALKIEL; MCCUE, 1985) (SITTE; SITTE, 2002), which can also be observed in this
time-series’ partial autocorrelation function (figure 4.25(c)): except for an almost max-
imum correlation for the first lag (which can be eliminated by differentiating the time-
series), almost all remaining lags are not statistically significant, resulting in a random
walk (figures 4.29(a) and 4.29(b)).

Hence, we can only point out the algorithms that at least matched the trivial solution
in the one-step prediction task: Elman, ESN, TDNN, IGMN, ESIGMN and RecIGMN.
For the long-term prediction task, TDRecIGMNn got the best result, with all algorithms
being better than the mean solution. ESN was the fastest algorithm in this experiment.

4.8 U.S. Interest Rate

This financial dataset consists of 102 observations from the U.S. interest rates, and
can be seen in figure 4.30. The first 80 observations were used for training, while the
remaining 22 were used for testing. For the TD algorithms, 1 extra time-delay was added
to the input (and 1 data point was removed from the training set). For this experiment,
NMSEt = 1 corresponds to NMSE = 0.3421. Results are summarized in table 4.9
with median values and MADs, and also in figure 4.31. Comparison of all algorithms
accounting for statistical significance can be seen in tables B.22 for 1-step prediction
errors, table B.23 for long-term prediction errors and table B.24 for runtimes (appendix
B). Figures A.15 and A.16 show test results for all algorithms on the 1-step and long-term
tasks, respectively (appendix A), while figures 4.32 and 4.33 show only best and worst
algorithms’ results.

For this experiment, ESN achieved the best result for one-step predictions, followed
by the RecIGMN, being both the only algorithms better than the trivial solution. The
ESN was also the best algorithm for long-term predictions in this time-series, followed
by the IGMNn and the TDRecIGMNn, those three also being the only ones to overcome
the mean solution. The ESN and IGMNn were the fastest algorithms in this experiment.

4.9 Parameter Tuning

The ESIGMN and MIGMN introduce extra parameters to the IGMN algorithm: the
reservoir size for ESIGMN and the merging parameter for MIGMN. This section aims to
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(a) Original series. (b) Autocorrelation function. (c) Partial autocorrelation func-
tion.

Figure 4.30: The U.S. interest rate time-series.

NMSEt LT NMSE Epochs Runtime Clusters
Elman 1.10 (0.2) 2.86 (1.3) 17.1 (5.0) 0.46 (0.2) 0.0 (0.0)
ESN 0.89 (0.0) 0.37 (0.1) 6.8 (0.0) 0.10 (0.0) 0.0 (0.0)

TDNN 2.45 (0.6) 6.86 (3.0) 8.4 (1.0) 0.14 (0.0) 0.0 (0.0)
IGMN 1.06 (0.0) 3.53 (0.0) 1.0 (0.0) 0.15 (0.0) 4.0 (0.0)

ESIGMN 2.18 (0.8) 3.12 (0.2) 1.0 (0.0) 0.18 (0.0) 3.0 (0.0)
TDIGMN 1.17 (0.0) 4.61 (0.0) 1.0 (0.0) 0.16 (0.0) 4.0 (0.0)
MIGMN 1.88 (0.0) 2.52 (0.0) 1.0 (0.0) 0.18 (0.0) 6.0 (0.0)

RecIGMN 0.92 (0.0) 2.28 (0.0) 1.0 (0.0) 0.17 (0.0) 2.0 (0.0)
IGMNn 1.19 (0.0) 0.82 (0.0) 1.0 (0.0) 0.10 (0.0) 6.0 (0.0)

ESIGMNn 6.63 (3.2) 3.06 (0.3) 1.0 (0.0) 0.13 (0.0) 4.0 (0.0)
TDIGMNn 1.00 (0.0) 4.00 (0.0) 1.0 (0.0) 0.11 (0.0) 5.0 (0.0)
MIGMNn 8.19 (0.0) 2.02 (0.0) 1.0 (0.0) 0.12 (0.0) 7.0 (0.0)

RecIGMNn 3.15 (0.0) 4.68 (0.0) 1.0 (0.0) 0.12 (0.0) 4.0 (0.0)
TDESIGMN 1.98 (0.1) 4.78 (0.2) 1.0 (0.0) 0.18 (0.0) 2.0 (0.0)
TDMIGMN 16.49 (0.0) 4.91 (0.0) 1.0 (0.0) 0.18 (0.0) 5.0 (0.0)

TDRecIGMN 1.70 (0.0) 3.91 (0.0) 1.0 (0.0) 0.18 (0.0) 4.0 (0.0)
TDESIGMNn 5.43 (1.9) 5.06 (0.9) 1.0 (0.0) 0.12 (0.0) 4.0 (0.5)
TDMIGMNn 18.15 (0.0) 5.64 (0.0) 1.0 (0.0) 0.12 (0.0) 7.0 (0.0)

TDRecIGMNn 1.15 (0.0) 0.65 (0.0) 1.0 (0.0) 0.12 (0.0) 5.0 (0.0)

Table 4.9: Results of the U.S. interest rate experiment. Median values outside parenthesis,
MADs inside. Best errors and runtimes in bold, accounting for statistical similarities.
Each one-epoch algorithm better than the trivial solution (one-step) and the mean solution
(long-term) is underlined, as well as the best errors and runtimes among the IGMN-based
algorithms, also accounting for statistical similarities.
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(a) NMSEt boxplot. (b) Long-term NMSE boxplot.

(c) Training time boxplot.

Figure 4.31: Boxplot of the results from all algorithms on the U.S. interest rate experi-
ment.

(a) ESN (b) RecIGMN (c) TDMIGMNn

Figure 4.32: One-step prediction example outputs of best and worst algorithms in the U.S.
interest rate time-series (test set only). Original series in black, estimates in blue.

(a) ESN (b) IGMNn (c) TDRecIGMNn (d) TDNN

Figure 4.33: Long-term prediction example outputs of best and worst algorithms in the
U.S. interest rate time-series. Original series in black, estimates in blue.
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evaluate those algorithms (and their variants) with different values for those extra param-
eters (the reservoir spectral radius will not be analyzed).

4.9.1 Reservoir Size

In this section, all reservoir-based algorithms (ESN, ESIGMN, ESIGMNn, TDE-
SIGMN and TDESIGMNn) are evaluated with different reservoir sizes in the same 8
time-series used in previous experiments. Figure 4.34 shows how the number of created
Gaussian components is affected by the reservoir size (ESN is not included here since
it does not have Gaussian components). Figure 4.35 shows how the one-step prediction
error is affected by the reservoir size, and figure 4.36 does the same in relation to the
long-term prediction error.

As can be seen in figure 4.34, there is a slight pattern of decreasing the number of
created Gaussian components in the ESIGMN as the reservoir size increases. This can
be attributed to the fact that the reservoir layer is doing, besides temporal processing, a
linearization of the input space, such as what happens in the hidden layer of multilayer
perceptrons in general. Since each Gaussian component does a local linear regression, it
is expected that the more linearized the input space is, more of it can be modeled by a
single Gaussian component. The TDESIGMN has a similar pattern, although an oppo-
site behavior can be observed in the airline passengers experiment. The large number of
time-delays in this experiment could be an explanation, since the reservoir spectral radius
and scaling parameters were not adjusted to handle such a large input dimension. The
naïve versions, on the other hand, had a somewhat evident increasing number of Gaussian
components as the reservoir size increases, which could be attributed to their inability to
handle covariances inside reservoir activations (which are huge, since they are all pro-
duced from the same sources). Thus, we conclude that the full versions can exploit the
reservoir much better, creating more economical representations.

In figure 4.35 it can be seen that there is a exponential decayment in one-step predic-
tion error for the chaotic time-series as the reservoir size increases, except for the naïve
versions. Since those time-series are deterministc, it is expected that we can not observe
any overfitting effect. On the other hand, this effect can be observed in the stochastic time-
series, showing that the IGMN-based algorithms are not immune to overfitting, needing
some careful choice of reservoir size. This is not so apparent in long-term predictions
(figure 4.36), as the ESIGMN did not increase significantly in almost all experiments.
There is not a clear pattern for the other algorithms in long-term predictions.

4.9.2 Merging Parameter

In this section, all MIGMN-based algorithms (MIGMN, MIGMNn, TDMIGMN and
TDMIGMNn) are evaluated with different alpha values (the merging parameter) in the
same 8 time-series used in previous experiments. Figure 4.37 shows how the number of
created Gaussian components is affected by the alpha value. Figure 4.38 shows how the
one-step prediction error is affected by the alpha value, and figure 4.39 does the same in
relation to the long-term prediction error.

Apparently, there is no significant pattern for the number of created Gaussian compo-
nents in relation to the alpha parameter, except when α = 1. On this extreme, the MIGMN
acts almost like a simple IGMN, since the context stays constant for all the algorithm’s
lifetime. Thus, there is less complexity to be encoded in Gaussian components and less
of them are created.

There is no consistent visible pattern for the one-step and long-term prediction errors
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(a) Yearly Sunspot Numbers. (b) Monthly Sunspot Numbers.

(c) Airline Passengers. (d) Log-Differentiated Airline Passengers.

(e) Mackey-Glass (τ = 17). (f) Mackey-Glass (τ = 30).

(g) Google Stock Prices. (h) U.S. Interest Rates.

Figure 4.34: Number of created Gaussian components in relation to reservoir size.
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(a) Yearly Sunspot Numbers. (b) Monthly Sunspot Numbers.

(c) Airline Passengers. (d) Log-Differentiated Airline Passengers.

(e) Mackey-Glass (τ = 17). (f) Mackey-Glass (τ = 30).

(g) Google Stock Prices. (h) U.S. Interest Rates.

Figure 4.35: One-step prediction error in relation to reservoir size.
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(a) Yearly Sunspot Numbers. (b) Monthly Sunspot Numbers.

(c) Airline Passengers. (d) Log-Differentiated Airline Passengers.

(e) Mackey-Glass (τ = 17). (f) Mackey-Glass (τ = 30).

(g) Google Stock Prices. (h) U.S. Interest Rates.

Figure 4.36: Long-term prediction error in relation to reservoir size.
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(a) Yearly Sunspot Numbers. (b) Monthly Sunspot Numbers.

(c) Airline Passengers. (d) Log-Differentiated Airline Passengers.

(e) Mackey-Glass (τ = 17). (f) Mackey-Glass (τ = 30).

(g) Google Stock Prices. (h) U.S. Interest Rates.

Figure 4.37: Number of created Gaussian components in relation to alpha parameter.
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(a) Yearly Sunspot Numbers. (b) Monthly Sunspot Numbers.

(c) Airline Passengers. (d) Log-Differentiated Airline Passengers.

(e) Mackey-Glass (τ = 17). (f) Mackey-Glass (τ = 30).

(g) Google Stock Prices. (h) U.S. Interest Rates.

Figure 4.38: One-step prediction error in relation to alpha parameter.
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Corr.Dim.Alg.Compl. Mean MedianVarianceStd.Dev. IQR SkewnessKurtosisHjorth Mob.Hjorth Compl.Detr.Fluct. Analysis
Elman 0.012 0.080 0.185 0.195 0.227 0.067 0.085 -0.848 -0.942 0.097 -0.499 -0.331
ESN -0.281 0.204 0.349 0.334 0.440 0.325 0.380 -0.533 -0.772 0.040 -0.302 -0.025

TDNN -0.090 -0.442 -0.009 -0.012 -0.040 0.032 0.017 0.195 0.282 -0.370 -0.165 0.175
IGMN 0.017 -0.004 0.324 0.340 0.352 0.173 0.178 -0.872 -0.929 0.083 -0.380 -0.196

ESIGMN -0.233 -0.121 -0.250 -0.258 -0.270 -0.176 -0.176 -0.023 -0.008 -0.107 -0.723 -0.406
TDIGMN 0.303 -0.338 -0.118 -0.133 -0.132 0.001 -0.002 0.658 0.865 -0.490 0.741 0.472
MIGMN 0.475 0.213 -0.327 -0.319 -0.333 -0.356 -0.356 0.543 0.662 -0.150 0.616 0.336

RecIGMN 0.277 0.213 -0.127 -0.107 -0.125 -0.247 -0.251 -0.689 -0.626 0.183 -0.400 -0.550
IGMNn -0.175 -0.004 0.313 0.288 0.419 0.335 0.405 -0.245 -0.474 -0.276 -0.027 0.304

ESIGMNn -0.365 -0.180 0.060 0.011 0.116 0.305 0.356 0.558 0.375 -0.206 0.277 0.291
TDIGMNn -0.157 -0.272 0.361 0.323 0.445 0.499 0.556 0.119 0.027 -0.464 0.401 0.495
MIGMNn -0.182 -0.095 0.050 0.009 0.101 0.261 0.304 0.598 0.466 -0.151 0.560 0.367

RecIGMNn -0.094 -0.134 0.042 0.006 0.084 0.233 0.268 0.547 0.452 -0.146 0.608 0.350
TDESIGMN -0.165 -0.041 -0.088 -0.101 -0.105 0.003 0.002 0.724 0.794 -0.297 0.172 0.402
TDMIGMN -0.053 0.075 -0.328 -0.342 -0.356 -0.195 -0.200 0.869 0.915 -0.065 0.301 0.195

TDRecIGMN -0.591 -0.156 0.167 0.158 0.123 0.249 0.224 0.078 0.076 0.099 -0.517 -0.172
TDESIGMNn -0.528 -0.280 0.293 0.245 0.351 0.514 0.562 0.515 0.338 -0.330 0.219 0.494
TDMIGMNn -0.226 -0.229 -0.087 -0.118 -0.095 0.127 0.134 0.660 0.628 -0.081 0.323 0.158

TDRecIGMNn -0.067 -0.228 0.141 0.110 0.176 0.304 0.331 0.435 0.365 -0.162 0.643 0.390

Table 4.10: Correlation between each algorithm’s one-step prediction error and each time-
series descriptor. Significant values in bold.

Corr.Dim.Alg.Compl. Mean MedianVarianceStd.Dev. IQR SkewnessKurtosisHjorth Mob.Hjorth Compl.Detr.Fluct. Analysis
Elman 0.602 -0.343 -0.109 -0.084 -0.121 -0.247 -0.260 -0.266 -0.045 -0.514 0.088 0.184
ESN 0.675 -0.394 -0.252 -0.246 -0.241 -0.274 -0.267 -0.289 -0.156 -0.346 0.256 -0.092

TDNN -0.219 0.589 -0.328 -0.319 -0.330 -0.363 -0.360 -0.032 -0.395 0.917 -0.369 -0.544
IGMN -0.418 -0.480 0.893 0.877 0.906 0.925 0.920 -0.082 0.092 -0.593 0.261 0.717

ESIGMN 0.014 -0.165 -0.340 -0.370 -0.306 -0.164 -0.125 0.129 0.113 -0.284 -0.232 -0.282
TDIGMN -0.018 0.396 -0.031 -0.023 -0.047 -0.068 -0.080 0.547 0.555 0.161 0.411 0.360
MIGMN 0.065 0.077 -0.431 -0.443 -0.389 -0.377 -0.335 -0.394 -0.516 0.015 -0.711 -0.680

RecIGMN 0.287 -0.108 0.258 0.297 0.235 0.020 -0.015 -0.831 -0.751 0.107 -0.176 -0.119
IGMNn 0.507 -0.223 -0.211 -0.216 -0.193 -0.165 -0.152 0.009 0.064 -0.154 0.508 0.000

ESIGMNn -0.075 0.388 -0.139 -0.173 -0.024 -0.030 0.057 0.116 -0.252 0.147 0.159 0.004
TDIGMNn -0.173 0.316 -0.163 -0.208 -0.056 0.013 0.101 0.255 0.038 -0.166 -0.014 -0.003
MIGMNn 0.763 -0.122 -0.173 -0.128 -0.223 -0.383 -0.430 -0.264 -0.046 -0.035 0.371 0.058

RecIGMNn -0.317 -0.517 0.526 0.499 0.517 0.673 0.665 0.379 0.557 -0.520 0.465 0.603
TDESIGMN -0.398 0.687 -0.253 -0.255 -0.247 -0.234 -0.225 0.071 -0.314 0.983 -0.344 -0.548
TDMIGMN 0.005 0.585 -0.385 -0.370 -0.400 -0.436 -0.444 -0.282 -0.420 0.750 -0.460 -0.782

TDRecIGMN 0.173 0.397 -0.143 -0.132 -0.152 -0.197 -0.204 0.511 0.532 0.114 0.482 0.338
TDESIGMNn -0.687 -0.086 0.341 0.292 0.421 0.547 0.608 0.383 0.062 -0.106 0.056 0.390
TDMIGMNn -0.422 0.027 0.282 0.247 0.343 0.423 0.469 0.708 0.520 -0.243 0.478 0.745

TDRecIGMNn -0.064 -0.062 0.355 0.340 0.448 0.337 0.394 -0.464 -0.563 -0.378 -0.115 0.212

Table 4.11: Correlation between each algorithm’s long-term prediction error and each
time-series descriptor. Significant values in bold.

in relation to the alpha parameter, seeming that it needs specific tuning for each problem.

4.10 Summary

Global statistics for all algorithms were gathered in order to provide more general
comparisons.

Table 4.10 shows correlations of each algorithm’s one-step prediction error with each
time-series descriptor (table 4.1). It shows that many tested algorithm were not signifi-
cantly sensitive to any of the descriptors for one-step predictions, except for the Elman
Network, ESN, IGMN, TDIGMN, TDESIGMN, TDMIGMN, which are specially sen-
sitive to the skewness and kurtosis of the time-series, and ESIGMN, which is sensitive
to the Hjorth Complexity parameter (its performance increases with higher values of this
descriptor). The TDMIGMN is also sensitive to the Hjorth Complexity (its performance
degrades with higher values of this descriptor).

Table 4.11 shows correlations of each algorithm’s long-term prediction error with each
time-series descriptor. The following algorithms were significantly sensitive to any of the
descriptors for long-term predictions: TDNN, IGMN, MIGMN, RecIGMN, MIGMNn,
TDESIGMN and TDMIGMN.

Table 4.12 shows robust estimates of general performance of each algorithm by using
MAD-scores (JAIN; NANDAKUMAR; ROSS, 2005), which are robust alternatives to the
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(a) Yearly Sunspot Numbers. (b) Monthly Sunspot Numbers.

(c) Airline Passengers. (d) Log-Differentiated Airline Passengers.

(e) Mackey-Glass (τ = 17). (f) Mackey-Glass (τ = 30).

(g) Google Stock Prices. (h) U.S. Interest Rates.

Figure 4.39: Long-term prediction error in relation to alpha parameter.
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One-Step Long-Term Runtime
Elman -0.14 (0.1) 0.21 (0.8) 1.06 (1.6)
ESN -0.20 (0.1) -0.15 (0.0) -0.80 (0.2)

TDNN -0.34 (1.1) 0.30 (1.8) -0.60 (0.4)
IGMN -0.10 (0.1) -0.01 (1.0) 1.91 (2.7)

ESIGMN -0.59 (0.4) -0.23 (0.2) 1.62 (2.4)
TDIGMN -0.98 (0.6) 0.26 (1.2) 2.06 (3.0)
MIGMN 0.12 (1.0) -0.28 (0.3) 1.95 (2.7)

RecIGMN -0.13 (0.2) 0.59 (1.0) 2.31 (3.0)
IGMNn 0.35 (0.5) -0.11 (0.1) 0.66 (1.6)

ESIGMNn 4.61 (3.9) 0.52 (0.3) 1.10 (2.0)
TDIGMNn 1.34 (1.8) 0.25 (1.5) 0.83 (1.8)
MIGMNn 6.95 (6.4) 0.13 (0.8) 1.31 (2.0)

RecIGMNn 3.61 (2.9) 0.09 (0.8) 0.90 (1.8)
TDESIGMN -1.08 (0.4) -0.19 (1.3) 1.93 (2.8)
TDMIGMN -1.11 (0.2) 0.17 (1.8) 2.59 (3.4)

TDRecIGMN -0.81 (0.6) 0.31 (1.6) 2.82 (3.7)
TDESIGMNn 3.89 (3.4) 0.08 (1.5) 1.44 (2.4)
TDMIGMNn 4.03 (4.7) 0.65 (1.5) 1.16 (2.1)

TDRecIGMNn 3.47 (2.8) -0.06 (0.8) 0.91 (1.9)

Table 4.12: Median MAD-scores for all algorithms in all experiments (less is better).
MADs for these values inside parenthesis. Best scores in bold, best IGMN-based algo-
rithms’ scores underlined.

z-score, used to do scale-invariant comparisons of values from different distributions. The
MAD-score formula is as follows:

MAD − score(x) =
x−median(X)

MAD
(4.6)

Those scores were computed for each one-step prediction errors, long-term prediction
errors and runtimes in each experiment, and the median was taken. As can be seen in
the table, TDMIGMN was the best algorithm for one-step predictions in general, closely
followed by TDESIGMN and TDIGMN, while the MIGMN was the best one for long-
term predictions, followed by the ESIGMN. Averaging these two columns, TDESIGMN
and ESIGMN show up as the best algorithms overall. The ESN was the fastest algorithm,
while the IGMNn was the fastest IGMN-based algorithm, which was expected since it
has not any context and is a naïve implementation. Accounting only for the non-TD,
non-naïve proposed approaches, ESIGMN was the fastest one.

As for the inclusion of time-delays, all algorithms, except for the IGMNn, benefited
from it in general for one-step predictions, probably because it augments them with an
exact short-term memory. This may be an indication that the ESIGMN, MIGMN and
RecIGMN memory contexts are complementary with time-delay lines (like human short-
term memory and working memory, respectively). For long-term predictions, time-delays
inclusion was beneficial only for RecIGMN, IGMNn, and RecIGMNn. The naïve ver-
sions were worse for all algorithms in the one-step prediction task, but the naïve versions
of IGMN, TDIGMN, RecIGMN and TDRecIGMN were better than their full counterparts
for long-term predictions.

From all those experiments and results, we conclude that the ESIGMN and the MIGMN
(and their TD versions) improve upon classic temporal neural networks and the simple
time-delayed IGMN (TDIGMN) in general, although with not very much confidence due
to large MADs and small time-series sample size. They have also a reasonable speed,
which along with the IGMN one-shot learning capabilities, turn them into good options
for real-time applications. The RecIGMN algorithm would need to be improved in order
to become competitive in general. Since its temporal context is inspired by the RecSOM,
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which is one of the best temporal SOM variants, we expect it (as a general idea) to be
much better, and attribute its present failure to our particular implementation, which may
not be a reasonable adaptation of the RecSOM for the IGMN algorithm. One possible so-
lution is to weight the contributions of the current input and temporal context differently,
by calculating the likelihoods in two parts. This approach was tried in (PINTO; ENGEL;
HEINEN, 2011b) with success, but the extra weighting α parameter was removed from
this dissertation due to implementation issues, and also to verify the RecIGMN capabil-
ity of self-adjusting the importance of the temporal context in relation to current input
without additional parameters.
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5 CONCLUSIONS

This work presented 3 novel temporal extensions for the IGMN algorithm, as well as
a new component creation rule.

Chapter 2 presented all algorithms used as the base for the new extensions, covering
most aspects needed to implement them.

Chapter 3 described all contributions of this work, starting with the new component
creation rule. This rule has enabled the IGMN to successfully learn without the need for
the εmax parameter, and gave better (more intuitive) solutions in a simple experiment. This
is very important in order to achieve truly autonomous and general learning, since manu-
ally tuning some parameter involves human knowledge of each problem. Eliminating the
remaining training parameters from the IGMN algorithms is something to explore in fu-
ture works. After that, the TDIGMN, which uses a sliding window with past inputs, was
revised (it is not a novel algorithm, but was not described before explicitly as a temporal
algorithm) as a temporal enhancement for the IGMN. Then, the 3 novel extensions were
described by reusing the previously shown techniques from other temporal neural net-
works: ESIGMN with its dynamic reservoir layer inspired by the ESN; MIGMN, which
uses an exponential moving average of the reconstructed inputs and outputs as its tempo-
ral context, similar to the MSOM; and RecIGMN, inspired by the RecSOM and Elman
Network, which adds feedback connections from its Gaussian components’ activations to
its inputs.

In chapter 4, those new algorithms were compared to classic temporal neural networks
and static IGMN, in order to assess their performances on the time-series prediction task,
using 8 different time-series. The new algorithms were tested with their naïve and multi-
variate versions, as well as with and without additional time-delays (such as the ones used
by TDIGMN). A total of 19 algorithms were tested and results analyzed. We found the
ESIGMN and MIGMN to be useful as online incremental one-shot temporal algorithms,
even being better than classic temporal neural networks in many experiments. We think
that the RecIGMN, although not being a good addition to this set, has potential if properly
implemented, with a present-past weighting parameter and maybe more information from
the Gaussian component’s activations as feedback, such as error terms. The MIGMN was
also presented without a present-past weighting parameter, and this possibility should be
explored. The ESIGMN has external connection to its reservoir coming only from its
inputs, and a version with feedback connections from outputs is yet to be explored. We
also found that time-delays are generally beneficial to the new algorithms, complement-
ing their unbounded inexact memories with a bounded exact one (this could be seen as the
complimentary roles of short-term memory and working memory in our brains, respec-
tively). All proposed algorithms achieved very good performance in terms of execution
time too, making them good candidates for real-time applications. It is yet to be explored
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how they handle higher dimensionality inputs, such as videos. The matrix inversion is
still the bottleneck of all multivariate IGMN algorithms, and the naïve versions proved to
be inefficient for temporal tasks, due to their inability to capture the covariances between
the highly correlated values of the temporally augmented inputs of the new algorithms.

Therefore, we conclude that the initial goals of this work were reached, which were
to create online incremental one-shot temporal algorithms using the IGMN as a base.
Summarizing the contributions and conclusions in this work:

• New component creation rule for the IGMN algorithm and its extensions, resulting
in better performance and eliminating one manually tunable parameter;

• ESIGMN algorithm, which achieved very good results in general. It was also pub-
lished in the proceedings of a national conference (PINTO; ENGEL; HEINEN,
2011a);

• MIGMN algorithm, which also achieved very good results;

• RecIGMN algorithm, which need some improvement in order to become competi-
tive. A more complete version of the algorithm was also published in the proceed-
ings of a national conference (PINTO; ENGEL; HEINEN, 2011b);

• Matlab implementations of all proposed algorithms and the IGMN itself, which
will be reused in future works and also by our research group and external re-
searchers (in fact, they are already being used by another artificial intelligence re-
search groups at Universidade Federal do Rio Grande do Sul (UFRGS) and Univer-
sidade Federal de Santa Catarina (UFSC)).

As future works, we can enumerate the following:

• Verifying the benefits of including output feedback in the ESIGMN, as well as using
better reservoir initialization techniques;

• Verifying the benefits of including past-present weighting parameters into the MIGMN
and RecIGMN algorithms (and trying to automatically tune them online);

• Analyzing different temporal contexts for the RecIGMN, by using more informa-
tion from its Gaussian components;

• Application of the proposed algorithms in reinforcement learning tasks in partially
observable Markov decision processes (POMDP);

• Research for longer-term memories;

• Verifying the viability of the proposed algorithms in higher dimensional problems
and also more real-world problems such as robotics.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.1: One-step prediction example outputs of best and worst algorithms on the
yearly mean sunspot numbers time-series (test set only). Original series in black, esti-
mates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.2: Long-term prediction example outputs of best and worst algorithms in the
yearly mean sunspot numbers time-series (test set only). Original series in black, esti-
mates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.3: One-step prediction example outputs of best and worst algorithms in the
monthly mean sunspot numbers time-series (test set only). Original series in black, esti-
mates in blue.



82

(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.4: Long-term prediction example outputs of best and worst algorithms in the
monthly mean sunspot numbers time-series (test set only). Original series in black, esti-
mates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.5: One-step prediction example outputs of best and worst algorithms in the
airline passengers time-series (test set only). Original series in black, estimates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.6: Long-term prediction example outputs of best and worst algorithms in the
airline passengers time-series. Original series in black, estimates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.7: One-step prediction example outputs of best and worst algorithms in the
log-differentiated airline passengers time-series (test set only). Original series in black,
estimates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.8: Long-term prediction example outputs of best and worst algorithms in the
log-differentiated airline passengers time-series. Original series in black, estimates in
blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.9: One-step prediction example outputs of best and worst algorithms in the
Mackey-Glass (τ = 17) time-series (test set only). Original series in black, estimates in
blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.10: Long-term prediction example outputs of best and worst algorithms in the
Mackey-Glass (τ = 17) time-series. Original series in black, estimates in blue.



89

(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.11: One-step prediction example outputs of best and worst algorithms in the
Mackey-Glass (τ = 30) time-series (test set only). Original series in black, estimates in
blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.12: Long-term prediction example outputs of best and worst algorithms in the
Mackey-Glass (τ = 30) time-series. Original series in black, estimates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.13: One-step prediction example outputs of best and worst algorithms in the
Google stock time-series (test set only). Original series in black, estimates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.14: Long-term prediction example outputs of best and worst algorithms in the
Google stock time-series. Original series in black, estimates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.15: One-step prediction example outputs of best and worst algorithms in the
U.S. interest rate time-series (test set only). Original series in black, estimates in blue.
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(a) Elman (b) ESN (c) TDNN (d) IGMN

(e) ESIGMN (f) TDIGMN (g) MIGMN (h) RecIGMN

(i) IGMNn (j) ESIGMNn (k) TDIGMNn (l) MIGMNn

(m) RecIGMNn (n) TDESIGMN (o) TDMIGMN (p) TDRecIGMN

(q) TDESIGMNn (r) TDMIGMNn (s) TDRecIGMNn

Figure A.16: Long-term prediction example outputs of best and worst algorithms in the
U.S. interest rate time-series. Original series in black, estimates in blue.
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APPENDIX B OTHER TABLES

For all the following tables, an arrow pointing upwards means the column algorithm
was statistically better than the row algorithm. An arrow pointing leftwards means the
row algorithm was statistically better than the column algorithm. A hyphen means both
row and column algorithms are statistically similar.

TrivialElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Trivial - ↑ ↑ ↑ ← ↑ ↑ ↑ ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←
Elman ← - ↑ ↑ ← ↑ ↑ ↑ ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←
ESN ← ← - ↑ ← ↑ ↑ ↑ ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←

TDNN ← ← ← - ← ↑ ↑ - ← ← ← ← ← ← ↑ ↑ - ← ← ←
IGMN ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←

ESIGMN ← ← ← ← ← - - ← ← ← ← ← ← ← - ↑ ← ← ← ←
TDIGMN ← ← ← ← ← - - ← ← ← ← ← ← ← ↑ ↑ ← ← ← ←
MIGMN ← ← ← - ← ↑ ↑ - ← ← ← ← ← ← ↑ ↑ ← ← ← ←

RecIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ← ↑ ← ↑ ↑ ↑ ← ← ←
IGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← - ← ← ← ← ↑ ↑ ↑ ← ← ←

ESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ← ↑ ↑ ↑ ← ← ←
TDIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ↑ ↑ ↑ - ← ←
MIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ← ← - ← ↑ ↑ ↑ ← ← ←

RecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ←
TDESIGMN ← ← ← ← ← - ← ← ← ← ← ← ← ← - ↑ ← ← ← ←
TDMIGMN ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← - ← ← ← ←

TDRecIGMN ← ← ← - ← ↑ ↑ ↑ ← ← ← ← ← ← ↑ ↑ - ← ← ←
TDESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ↑ ↑ ↑ - - ←
TDMIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ - - ←

TDRecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -

Table B.1: Statistical comparison of obtained one-step prediction errors for all algorithms in the yearly sunspot
numbers experiment.

MeanElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Mean - ← - ← ← ↑ ← ↑ ← ← ← ↑ ← ← - ← ← ← ← ←
Elman ↑ - ↑ ↑ - ↑ ↑ ↑ ← ↑ ↑ ↑ - - ↑ ↑ ↑ ↑ - ↑
ESN - ← - ← ← ↑ ← ↑ ← ← ← ↑ ← ← - ← ← ← ← ←

TDNN ↑ ← ↑ - ← ↑ - ↑ ← ↑ - ↑ - ← ↑ - - - - -
IGMN ↑ - ↑ ↑ - ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

ESIGMN ← ← ← ← ← - ← ↑ ← ← ← ↑ ← ← - ← ← ← ← ←
TDIGMN ↑ ← ↑ - ← ↑ - ↑ ← ↑ ↑ ↑ ← ← ↑ ↑ ↑ ↑ ← ↑
MIGMN ← ← ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ←

RecIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
IGMNn ↑ ← ↑ ← ← ↑ ← ↑ ← - ← ↑ ← ← - ← ← ← ← ←

ESIGMNn ↑ ← ↑ - ← ↑ ← ↑ ← ↑ - ↑ ← ← ↑ - ← - ← -
TDIGMNn ← ← ← ← ← ← ← ↑ ← ← ← - ← ← ← ← ← ← ← ←
MIGMNn ↑ - ↑ - ← ↑ ↑ ↑ ← ↑ ↑ ↑ - ← ↑ ↑ ↑ ↑ ← ↑

RecIGMNn ↑ - ↑ ↑ ← ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑
TDESIGMN - ← - ← ← - ← ↑ ← - ← ↑ ← ← - ← ← ← ← ←
TDMIGMN ↑ ← ↑ - ← ↑ ← ↑ ← ↑ - ↑ ← ← ↑ - ← ← ← ←

TDRecIGMN ↑ ← ↑ - ← ↑ ← ↑ ← ↑ ↑ ↑ ← ← ↑ ↑ - ↑ ← ↑
TDESIGMNn ↑ ← ↑ - ← ↑ ← ↑ ← ↑ - ↑ ← ← ↑ ↑ ← - ← -
TDMIGMNn ↑ - ↑ - ← ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ - ↑

TDRecIGMNn ↑ ← ↑ - ← ↑ ← ↑ ← ↑ - ↑ ← ← ↑ ↑ ← - ← -

Table B.2: Statistical comparison of obtained long-term prediction errors for all algorithms in the yearly
sunspot numbers experiment.
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Elman - ↑ - ← ← ← ← ← ↑ - - ← - ← ← ← - - -
ESN ← - - ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ←

TDNN - - - ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ←
IGMN ↑ ↑ ↑ - ↑ ↑ ← ↑ ↑ ↑ ↑ ← ↑ - ← ← ↑ ↑ ↑

ESIGMN ↑ ↑ ↑ ← - ← ← ← ↑ ↑ ↑ ← - ← ← ← ↑ ↑ ↑
TDIGMN ↑ ↑ ↑ ← ↑ - ← - ↑ ↑ ↑ ← - - ← ← ↑ ↑ ↑
MIGMN ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ - ↑ - ← ↑ ↑ ↑ ↑

RecIGMN ↑ ↑ ↑ ← ↑ - ← - ↑ ↑ ↑ ← - - ← ← ↑ ↑ ↑
IGMNn ← - - ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ←

ESIGMNn - ↑ ↑ ← ← ← ← ← ↑ - - ← - ← ← ← ← - -
TDIGMNn - ↑ ↑ ← ← ← ← ← ↑ - - ← ← ← ← ← ← ← -
MIGMNn ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ - ↑ ↑ - ↑ ↑ ↑ ↑

RecIGMNn - ↑ ↑ ← - - ← - ↑ - ↑ ← - ← ← ← - - ↑
TDESIGMN ↑ ↑ ↑ - ↑ - - - ↑ ↑ ↑ ← ↑ - ← - ↑ ↑ ↑
TDMIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ - ↑ ↑ ↑ ↑

TDRecIGMN ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ← ↑ - ← - ↑ ↑ ↑
TDESIGMNn - ↑ ↑ ← ← ← ← ← ↑ ↑ ↑ ← - ← ← ← - ↑ ↑
TDMIGMNn - ↑ ↑ ← ← ← ← ← ↑ - ↑ ← - ← ← ← ← - -

TDRecIGMNn - ↑ ↑ ← ← ← ← ← ↑ - - ← ← ← ← ← ← - -

Table B.3: Statistical comparison of obtained runtimes for all algorithms in the yearly sunspot numbers ex-
periment.

TrivialElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Trivial - ← ↑ ← ← ↑ ← ← ↑ ← ← ← ← ← ← ← ↑ ← ← ←
Elman ↑ - ↑ ← ← ↑ ← ← ↑ ← ← ← ← ← ← ← ↑ ← ← ←
ESN ← ← - ← ← ↑ ← ← - ← ← ← ← ← ← ← ↑ ← ← ←

TDNN ↑ ↑ ↑ - - ↑ ← ← ↑ ← ← ← ← ← ← ← ↑ ← ← ←
IGMN ↑ ↑ ↑ - - ↑ ← ← ↑ ← ← ← ← ← ← ← ↑ ← ← ←

ESIGMN ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ← ↑ ← ← ←
TDIGMN ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ← ← ← ← ← ← ← ↑ ← ← ←
MIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

RecIGMN ← ← - ← ← ↑ ← ← - ← ← ← ← ← ← ← ↑ ← ← ←
IGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ - ← ← ← ← - ← ↑ ← ← ←

ESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ - ↑ ← ← ↑ ← ↑ - - ←
TDIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ← - ← ← ↑ ← ↑ - ← ←
MIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ - ← ↑ ← ↑ ↑ ↑ ↑

RecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑
TDESIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ - ← ← ← ← - ← ↑ ← ← ←
TDMIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ← ↑ - ↑ ↑ ↑ ↑

TDRecIGMN ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← - ← ← ←
TDESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ - - ← ← ↑ ← ↑ - ← ←
TDMIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ - ↑ ← ← ↑ ← ↑ ↑ - ←

TDRecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ← ← ↑ ← ↑ ↑ ↑ -

Table B.4: Statistical comparison of obtained one-step prediction errors for all algorithms in the monthly
sunspot numbers experiment.

MeanElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Mean - ← - - ← ↑ ← ↑ ← ← - ← ← ← - ← ← - ← ↑
Elman ↑ - ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ - ↑
ESN - ← - ← ← ↑ ← ↑ ← ← - ← ← ← - ← ← - ← -

TDNN - ← ↑ - - ↑ ← ↑ - - - - - - ↑ - ← ↑ ← -
IGMN ↑ ← ↑ - - ↑ ← ↑ ← ↑ - ← ← ← ↑ ↑ ← ↑ ← ↑

ESIGMN ← ← ← ← ← - ← ↑ ← ← - ← ← ← - ← ← - ← ←
TDIGMN ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑
MIGMN ← ← ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ←

RecIGMN ↑ ← ↑ - ↑ ↑ ← ↑ - ↑ - ↑ ← ↑ ↑ ↑ ← ↑ ← ↑
IGMNn ↑ ← ↑ - ← ↑ ← ↑ ← - - ← ← ← ↑ ↑ ← - ← ↑

ESIGMNn - ← - - - - ← ↑ - - - - ← - - - ← - ← -
TDIGMNn ↑ ← ↑ - ↑ ↑ ← ↑ ← ↑ - - ← ↑ ↑ ↑ ← ↑ ← ↑
MIGMNn ↑ ← ↑ - ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ← ↑ ← ↑

RecIGMNn ↑ ← ↑ - ↑ ↑ ← ↑ ← ↑ - ← ← - ↑ ↑ ← ↑ ← ↑
TDESIGMN - ← - ← ← - ← ↑ ← ← - ← ← ← - ← ← - ← -
TDMIGMN ↑ ← ↑ - ← ↑ ← ↑ ← ← - ← ← ← ↑ - ← - ← ↑

TDRecIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑
TDESIGMNn - ← - ← ← - ← ↑ ← - - ← ← ← - - ← - ← -
TDMIGMNn ↑ - ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ - ↑

TDRecIGMNn ← ← - - ← ↑ ← ↑ ← ← - ← ← ← - ← ← - ← -

Table B.5: Statistical comparison of obtained long-term prediction errors for all algorithms in the monthly
sunspot numbers experiment.
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Elman - ↑ - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
ESN ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←

TDNN - ↑ - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
IGMN ↑ ↑ ↑ - ↑ ← ← ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← - - ↑

ESIGMN ↑ ↑ ↑ ← - ← ← ↑ ↑ ↑ - ↑ ↑ ← ← ← ← ← ↑
TDIGMN ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
MIGMN ↑ ↑ ↑ ↑ ↑ ← - ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑

RecIGMN ↑ ↑ ↑ ← ← ← ← - ↑ ↑ ← ↑ ↑ ← ← ← ← ← ←
IGMNn ↑ ↑ ↑ ← ← ← ← ← - ← ← - ↑ ← ← ← ← ← ←

ESIGMNn ↑ ↑ ↑ ← ← ← ← ← ↑ - ← ↑ ↑ ← ← ← ← ← ←
TDIGMNn ↑ ↑ ↑ ← - ← ← ↑ ↑ ↑ - ↑ ↑ ← ← ← - ← ↑
MIGMNn ↑ ↑ ↑ ← ← ← ← ← - ← ← - ↑ ← ← ← ← ← ←

RecIGMNn ↑ ↑ ↑ ← ← ← ← ← ← ← ← ← - ← ← ← ← ← ←
TDESIGMN ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑
TDMIGMN ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← - ← ↑ ↑ ↑

TDRecIGMN ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ - ↑ ↑ ↑
TDESIGMNn ↑ ↑ ↑ - ↑ ← ← ↑ ↑ ↑ - ↑ ↑ ← ← ← - ← ↑
TDMIGMNn ↑ ↑ ↑ - ↑ ← ← ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ - ↑

TDRecIGMNn ↑ ↑ ↑ ← ← ← ← ↑ ↑ ↑ ← ↑ ↑ ← ← ← ← ← -

Table B.6: Statistical comparison of obtained runtimes for all algorithms in the monthly sunspot numbers
experiment.

TrivialElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Trivial - ← - ← ← ↑ ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←
Elman ↑ - ↑ - - ↑ ↑ - ↑ ← ← ← ← ← ↑ ↑ ↑ ← ← ←
ESN - ← - ← ← ↑ ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←

TDNN ↑ - ↑ - ↑ ↑ ↑ ↑ ↑ - ← ← ← ← ↑ ↑ ↑ ← ← ←
IGMN ↑ - ↑ ← - ↑ ↑ ← ↑ ← ← ← ← ← ↑ ↑ ↑ ← ← ←

ESIGMN ← ← ← ← ← - ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←
TDIGMN ← ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ←
MIGMN ↑ - ↑ ← ↑ ↑ ↑ - ↑ ← ← ← ← ← ↑ ↑ ↑ ← ← ←

RecIGMN ↑ ← ↑ ← ← ↑ ↑ ← - ← ← ← ← ← ↑ ↑ ↑ ← ← ←
IGMNn ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ - ← ← ← ← ↑ ↑ ↑ ← ← ←

ESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
TDIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← - ↑ ↑ ↑ ↑ ↑ ← ← ←
MIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← - ← ↑ ↑ ↑ ← ← ←

RecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ - ↑ ↑ ↑ ← ← ←
TDESIGMN ← ← ← ← ← ← ↑ ← ← ← ← ← ← ← - ← ↑ ← ← ←
TDMIGMN ← ← ← ← ← ← ↑ ← ← ← ← ← ← ← ↑ - ↑ ← ← ←

TDRecIGMN ← ← ← ← ← ← ↑ ← ← ← ← ← ← ← ← ← - ← ← ←
TDESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑
TDMIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ← - ↑

TDRecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ← ← -

Table B.7: Comparison of obtained one-step prediction errors for all algorithms in the airline passengers
experiment.

MeanElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Mean - - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Elman - - ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
ESN ← ← - - ↑ ↑ ↑ ↑ ← ↑ - ↑ - ↑ ↑ ↑ ↑ - - -

TDNN ← - - - ↑ ↑ ↑ ↑ - ↑ - ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑
IGMN ← ← ← ← - ← ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←

ESIGMN ← ← ← ← ↑ - ↑ - ← - ← - ← - ↑ ↑ ↑ ← ← ←
TDIGMN ← ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ←
MIGMN ← ← ← ← ↑ - ↑ - ← ← ← ← ← ↑ ↑ ↑ ↑ ← ← ←

RecIGMN ← ← ↑ - ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
IGMNn ← ← ← ← ↑ - ↑ ↑ ← - ← ↑ ← ↑ ↑ ↑ ↑ ← ← ←

ESIGMNn ← ← - - ↑ ↑ ↑ ↑ ← ↑ - ↑ - ↑ ↑ ↑ ↑ - - -
TDIGMNn ← ← ← ← ↑ - ↑ ↑ ← ← ← - ← ↑ ↑ ↑ ↑ ← ← ←
MIGMNn ← ← - - ↑ ↑ ↑ ↑ ← ↑ - ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑

RecIGMNn ← ← ← ← ↑ - ↑ ← ← ← ← ← ← - ↑ ↑ ↑ ← ← ←
TDESIGMN ← ← ← ← ← ← ↑ ← ← ← ← ← ← ← - ← ↑ ← ← ←
TDMIGMN ← ← ← ← ← ← ↑ ← ← ← ← ← ← ← ↑ - ↑ ← ← ←

TDRecIGMN ← ← ← ← ← ← ↑ ← ← ← ← ← ← ← ← ← - ← ← ←
TDESIGMNn ← ← - ← ↑ ↑ ↑ ↑ ← ↑ - ↑ ← ↑ ↑ ↑ ↑ - ↑ -
TDMIGMNn ← ← - ← ↑ ↑ ↑ ↑ ← ↑ - ↑ ← ↑ ↑ ↑ ↑ ← - ←

TDRecIGMNn ← ← - ← ↑ ↑ ↑ ↑ ← ↑ - ↑ ← ↑ ↑ ↑ ↑ - ↑ -

Table B.8: Comparison of obtained long-term prediction errors for all algorithms in the airline passengers
experiment.
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Elman - ↑ - ↑ ↑ ↑ ↑ - ↑ ↑ ↑ - - ↑ ↑ ↑ ↑ ↑ ↑
ESN ← - ← ← ← - ← ← - ← - ← ← ← ← ← - - -

TDNN - ↑ - ↑ ↑ ↑ ↑ - ↑ ↑ ↑ - - ↑ ↑ ↑ ↑ ↑ ↑
IGMN ← ↑ ← - ← ↑ - ← ↑ - ↑ ← - - - ↑ ↑ ↑ ↑

ESIGMN ← ↑ ← ↑ - ↑ ↑ - ↑ - ↑ - - ↑ ↑ ↑ ↑ ↑ ↑
TDIGMN ← - ← ← ← - ← ← - ← ↑ ← ← ← ← ← ↑ ↑ ↑
MIGMN ← ↑ ← - ← ↑ - ← ↑ - ↑ ← ← - - ↑ ↑ ↑ ↑

RecIGMN - ↑ - ↑ - ↑ ↑ - ↑ ↑ ↑ - - ↑ ↑ ↑ ↑ ↑ ↑
IGMNn ← - ← ← ← - ← ← - ← - ← ← ← ← ← - ↑ ↑

ESIGMNn ← ↑ ← - - ↑ - ← ↑ - ↑ ← - - - - ↑ ↑ ↑
TDIGMNn ← - ← ← ← ← ← ← - ← - ← ← ← ← ← - - -
MIGMNn - ↑ - ↑ - ↑ ↑ - ↑ ↑ ↑ - - ↑ ↑ ↑ ↑ ↑ ↑

RecIGMNn - ↑ - - - ↑ ↑ - ↑ - ↑ - - - ↑ ↑ ↑ ↑ ↑
TDESIGMN ← ↑ ← - ← ↑ - ← ↑ - ↑ ← - - - ↑ ↑ ↑ ↑
TDMIGMN ← ↑ ← - ← ↑ - ← ↑ - ↑ ← ← - - ↑ ↑ ↑ ↑

TDRecIGMN ← ↑ ← ← ← ↑ ← ← ↑ - ↑ ← ← ← ← - ↑ ↑ ↑
TDESIGMNn ← - ← ← ← ← ← ← - ← - ← ← ← ← ← - ↑ -
TDMIGMNn ← - ← ← ← ← ← ← ← ← - ← ← ← ← ← ← - -

TDRecIGMNn ← - ← ← ← ← ← ← ← ← - ← ← ← ← ← - - -

Table B.9: Comparison of obtained runtimes for all algorithms in the airline passengers experiment.

TrivialElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Trivial - ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Elman ← - ↑ ↑ ↑ ↑ ↑ ← ← ↑ ← ← ↑ ← ↑ ↑ ↑ ↑ ↑ ↑
ESN ← ← - ↑ ↑ ↑ ↑ ← ← ↑ ← ← ↑ ← ↑ ↑ ↑ ↑ ↑ ↑

TDNN ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← - ←
IGMN ← ← ← ↑ - ↑ ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ↑ ↑ ←

ESIGMN ← ← ← ↑ ← - ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ↑ ↑ ←
TDIGMN ← ← ← ↑ ← ← - ← ← ← ← ← ← ← ↑ ↑ ← ↑ ↑ ←
MIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

RecIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
IGMNn ← ← ← ↑ ↑ ↑ ↑ ← ← - ← ← ← ← ↑ ↑ ↑ ↑ ↑ ←

ESIGMNn ← ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ - ← ↑ ← ↑ ↑ ↑ ↑ ↑ ↑
TDIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
MIGMNn ← ← ← ↑ ↑ ↑ ↑ ← ← ↑ ← ← - ← ↑ ↑ ↑ ↑ ↑ ↑

RecIGMNn ← ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ ↑ ← ↑ - ↑ ↑ ↑ ↑ ↑ ↑
TDESIGMN ← ← ← ↑ ← ← ← ← ← ← ← ← ← ← - - ← - ↑ ←
TDMIGMN ← ← ← ↑ ← ← ← ← ← ← ← ← ← ← - - ← ↑ ↑ ←

TDRecIGMN ← ← ← ↑ ← ← ↑ ← ← ← ← ← ← ← ↑ ↑ - ↑ ↑ ←
TDESIGMNn ← ← ← ↑ ← ← ← ← ← ← ← ← ← ← - ← ← - ↑ ←
TDMIGMNn ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← - ←

TDRecIGMNn ← ← ← ↑ ↑ ↑ ↑ ← ← ↑ ← ← ← ← ↑ ↑ ↑ ↑ ↑ -

Table B.10: Comparison of obtained one-step prediction errors for all algorithms in the log-differentiated
airline passengers experiment.

MeanElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Mean - ← ↑ ↑ ← - ↑ ← ← ↑ ← ← ↑ ← ↑ ← ↑ ↑ ↑ ←
Elman ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ - ← ↑ ↑ ↑ ← ↑ ↑ ↑ ←
ESN ← ← - ↑ ← - ↑ ← ← ↑ ← ← ↑ ← ↑ ← ↑ ↑ ↑ ←

TDNN ← ← ← - ← ← ← ← ← ← ← ← ← ← - ← ← - - ←
IGMN ↑ ← ↑ ↑ - ↑ ↑ ← ← ↑ ← ← ↑ ← ↑ ← ↑ ↑ ↑ ←

ESIGMN - ← - ↑ ← - ↑ ← ← - ← ← - ← ↑ ← ↑ ↑ ↑ ←
TDIGMN ← ← ← ↑ ← ← - ← ← ← ← ← ← ← - ← ↑ ↑ ↑ ←
MIGMN ↑ ← ↑ ↑ ↑ ↑ ↑ - ← ↑ ← ← ↑ ← ↑ ← ↑ ↑ ↑ ←

RecIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ← ↑ ↑ ↑ ← ↑ ↑ ↑ ↑
IGMNn ← ← ← ↑ ← - ↑ ← ← - ← ← ↑ ← ↑ ← ↑ ↑ ↑ ←

ESIGMNn ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ - ← ↑ ↑ ↑ ← ↑ ↑ ↑ -
TDIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ← ↑ ↑ ↑ ↑
MIGMNn ← ← ← ↑ ← - ↑ ← ← ← ← ← - ← ↑ ← ↑ ↑ ↑ ←

RecIGMNn ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ← ← ↑ - ↑ ← ↑ ↑ ↑ ←
TDESIGMN ← ← ← - ← ← - ← ← ← ← ← ← ← - ← - - ↑ ←
TDMIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑

TDRecIGMN ← ← ← ↑ ← ← ← ← ← ← ← ← ← ← - ← - ↑ ↑ ←
TDESIGMNn ← ← ← - ← ← ← ← ← ← ← ← ← ← - ← ← - ↑ ←
TDMIGMNn ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← - ←

TDRecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ - ← ↑ ↑ ↑ ← ↑ ↑ ↑ -

Table B.11: Comparison of obtained long-term prediction errors for all algorithms in the log-differentiated
airline passengers experiment.
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Elman - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
ESN ← - - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←

TDNN ← - - ← ← ← ← ← - - - - - ← ← ← - ← -
IGMN ← ↑ ↑ - ← ← ← ← ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑

ESIGMN ← ↑ ↑ ↑ - ← ← ← ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑
TDIGMN ← ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑
MIGMN ← ↑ ↑ ↑ ↑ ← - - ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑

RecIGMN ← ↑ ↑ ↑ ↑ ← - - ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑
IGMNn ← ↑ - ← ← ← ← ← - ← ← ← ← ← ← ← ← ← -

ESIGMNn ← ↑ - ← ← ← ← ← ↑ - - ↑ - ← ← ← - - ↑
TDIGMNn ← ↑ - ← ← ← ← ← ↑ - - ↑ - ← ← ← ← - ↑
MIGMNn ← ↑ - ← ← ← ← ← ↑ ← ← - ← ← ← ← ← ← -

RecIGMNn ← ↑ - ← ← ← ← ← ↑ - - ↑ - ← ← ← - - ↑
TDESIGMN ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← - ↑ ↑ ↑
TDMIGMN ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑

TDRecIGMN ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← - ↑ ↑ ↑
TDESIGMNn ← ↑ - ← ← ← ← ← ↑ - ↑ ↑ - ← ← ← - - ↑
TDMIGMNn ← ↑ ↑ ← ← ← ← ← ↑ - - ↑ - ← ← ← - - ↑

TDRecIGMNn ← ↑ - ← ← ← ← ← - ← ← - ← ← ← ← ← ← -

Table B.12: Comparison of obtained runtimes for all algorithms in the log-differentiated airline passengers
experiment.

TrivialElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Trivial - ← ← ↑ ← ↑ ↑ ↑ ↑ ← ← ← ← ← ↑ ↑ ↑ ← ← ←
Elman ↑ - ← ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ← ← ↑ ↑ ↑ ← ← ←
ESN ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ← ← ↑ ↑ ↑ ← ← ←

TDNN ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
IGMN ↑ ← ← ↑ - ↑ ↑ ↑ ↑ ← ← ← ← ← ↑ ↑ ↑ ← ← ←

ESIGMN ← ← ← ↑ ← - ↑ ← ← ← ← ← ← ← ↑ ← ↑ ← ← ←
TDIGMN ← ← ← ↑ ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ←
MIGMN ← ← ← ↑ ← ↑ ↑ - ← ← ← ← ← ← ↑ ← ↑ ← ← ←

RecIGMN ← ← ← ↑ ← ↑ ↑ ↑ - ← ← ← ← ← ↑ ↑ ↑ ← ← ←
IGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ← ← ← ↑ ↑ ↑ ← ← ←

ESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ← ↑ ↑ ↑ ↑ ↑ -
TDIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← - ← ← ↑ ↑ ↑ - ← ←
MIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑ ↑ ↑ ↑

RecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑
TDESIGMN ← ← ← ↑ ← ← ↑ ← ← ← ← ← ← ← - ← ↑ ← ← ←
TDMIGMN ← ← ← ↑ ← ↑ ↑ ↑ ← ← ← ← ← ← ↑ - ↑ ← ← ←

TDRecIGMN ← ← ← ↑ ← ← ↑ ← ← ← ← ← ← ← ← ← - ← ← ←
TDESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← - ← ← ↑ ↑ ↑ - - ←
TDMIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ← ← ↑ ↑ ↑ - - ←

TDRecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ← ↑ ↑ ↑ ↑ ↑ -

Table B.13: Comparison of obtained one-step prediction errors for all algorithms in the Mackey-Glass (τ =
17) experiment.

MeanElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Mean - ← ↑ ← ← - ← ← ← ← ← ← ↑ ← ← ↑ ← ← ← ←
Elman ↑ - ↑ - ← ↑ ↑ ↑ ← ↑ ← ← ↑ ← ↑ ↑ ↑ ← ← ←
ESN ← ← - ← ← - ← ← ← ← ← ← ← ← ← ↑ ← ← ← ←

TDNN ↑ - ↑ - ← - ↑ ↑ ← ↑ ← ← ↑ ← ↑ ↑ ↑ ← ← ←
IGMN ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ← ← ↑ ↑ ↑ ↑ ↑ ← ← ←

ESIGMN - ← - - ← - - - ← - ← ← - ← - - - ← ← ←
TDIGMN ↑ ← ↑ ← ← - - ↑ ← ↑ ← ← ↑ ← ↑ ↑ ↑ ← ← ←
MIGMN ↑ ← ↑ ← ← - ← - ← ← ← ← ↑ ← ← ↑ ← ← ← ←

RecIGMN ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ - ↑ ← ← ↑ ← ↑ ↑ ↑ ← ← ←
IGMNn ↑ ← ↑ ← ← - ← ↑ ← - ← ← ↑ ← - ↑ ← ← ← ←

ESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑ ↑ ↑ ← ← ←
TDIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ - ← ↑
MIGMNn ← ← ↑ ← ← - ← ← ← ← ← ← - ← ← ↑ ← ← ← ←

RecIGMNn ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ← ← ↑ - ↑ ↑ ↑ ← ← ←
TDESIGMN ↑ ← ↑ ← ← - ← ↑ ← - ← ← ↑ ← - ↑ ← ← ← ←
TDMIGMN ← ← ← ← ← - ← ← ← ← ← ← ← ← ← - ← ← ← ←

TDRecIGMN ↑ ← ↑ ← ← - ← ↑ ← ↑ ← ← ↑ ← ↑ ↑ - ← ← ←
TDESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ - - ↑
TDMIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - - ↑

TDRecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ← ← -

Table B.14: Comparison of obtained long-term prediction errors for all algorithms in the Mackey-Glass (τ =
17) experiment.
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Elman - ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑
ESN ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←

TDNN ← ↑ - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
IGMN ← ↑ ↑ - ↑ - ↑ ← ↑ ↑ ↑ ↑ ↑ - ← ← ↑ ↑ ↑

ESIGMN ← ↑ ↑ ← - ← - ← ↑ ↑ ↑ ↑ ↑ - ← ← - ↑ ↑
TDIGMN ← ↑ ↑ - ↑ - ↑ ← ↑ ↑ ↑ ↑ ↑ - ← ← ↑ ↑ ↑
MIGMN ← ↑ ↑ ← - ← - ← ↑ ↑ ↑ ↑ ↑ - ← ← ↑ ↑ ↑

RecIGMN - ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑
IGMNn ← ↑ ↑ ← ← ← ← ← - ← - ← ← ← ← ← ← ← ←

ESIGMNn ← ↑ ↑ ← ← ← ← ← ↑ - ↑ - ↑ ← ← ← ← ← ↑
TDIGMNn ← ↑ ↑ ← ← ← ← ← - ← - ← - ← ← ← ← ← ←
MIGMNn ← ↑ ↑ ← ← ← ← ← ↑ - ↑ - ↑ ← ← ← ← ← ↑

RecIGMNn ← ↑ ↑ ← ← ← ← ← ↑ ← - ← - ← ← ← ← ← ←
TDESIGMN ← ↑ ↑ - - - - ← ↑ ↑ ↑ ↑ ↑ - ← ← ↑ ↑ ↑
TDMIGMN ← ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑

TDRecIGMN - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑
TDESIGMNn ← ↑ ↑ ← - ← ← ← ↑ ↑ ↑ ↑ ↑ ← ← ← - ↑ ↑
TDMIGMNn ← ↑ ↑ ← ← ← ← ← ↑ ↑ ↑ ↑ ↑ ← ← ← ← - ↑

TDRecIGMNn ← ↑ ↑ ← ← ← ← ← ↑ ← ↑ ← ↑ ← ← ← ← ← -

Table B.15: Comparison of obtained runtimes for all algorithms in the Mackey-Glass (τ = 17) experiment.

TrivialElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Trivial - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ← ↑ ← ← ↑ ↑ ↑ ↑ ← ←
Elman ← - ← ↑ ← ↑ ↑ ↑ ← ← ← ↑ ← ← ↑ ↑ ↑ ↑ ← ←
ESN ← ↑ - ↑ ↑ ↑ ↑ ↑ ← - ← ↑ ← ← ↑ ↑ ↑ ↑ ← ←

TDNN ← ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
IGMN ← ↑ ← ↑ - ↑ ↑ ↑ ← ← ← ↑ ← ← ↑ ↑ ↑ ↑ ← ←

ESIGMN ← ← ← ↑ ← - ↑ ← ← ← ← ← ← ← ↑ ↑ ← ← ← ←
TDIGMN ← ← ← ↑ ← ← - ← ← ← ← ← ← ← - ← ← ← ← ←
MIGMN ← ← ← ↑ ← ↑ ↑ - ← ← ← ← ← ← ↑ ↑ ↑ ← ← ←

RecIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ - ↑ ← ← ↑ ↑ ↑ ↑ ↑ ←
IGMNn ← ↑ - ↑ ↑ ↑ ↑ ↑ ← - ← ↑ ← ← ↑ ↑ ↑ ↑ ← ←

ESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ - ↑ ← ← ↑ ↑ ↑ ↑ ↑ ←
TDIGMNn ← ← ← ↑ ← ↑ ↑ ↑ ← ← ← - ← ← ↑ ↑ ↑ ← ← ←
MIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑ ↑ ↑ ←

RecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑
TDESIGMN ← ← ← ↑ ← ← - ← ← ← ← ← ← ← - ← ← ← ← ←
TDMIGMN ← ← ← ↑ ← ← ↑ ← ← ← ← ← ← ← ↑ - ← ← ← ←

TDRecIGMN ← ← ← ↑ ← ↑ ↑ ← ← ← ← ← ← ← ↑ ↑ - ← ← ←
TDESIGMNn ← ← ← ↑ ← ↑ ↑ ↑ ← ← ← ↑ ← ← ↑ ↑ ↑ - ← ←
TDMIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ← ↑ ← ← ↑ ↑ ↑ ↑ - ←

TDRecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ -

Table B.16: Comparison of obtained one-step prediction errors for all algorithms in the Mackey-Glass (τ =
30) experiment.

MeanElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Mean - ← ↑ ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ←
Elman ↑ - ↑ ← - ↑ ← - ← ← ← ← ← ← ← ← ← ← ← ←
ESN ← ← - ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ←

TDNN ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
IGMN ↑ - ↑ ← - ↑ ← ↑ ← ← ← ← ← ← ← ← ← ← ← ←

ESIGMN - ← - ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ←
TDIGMN ↑ ↑ ↑ ← ↑ ↑ - ↑ ← ↑ - ↑ ↑ ↑ ← ← ← ↑ ↑ ↑
MIGMN ↑ - ↑ ← ← ↑ ← - ← ← ← ← ← ← ← ← ← ← ← ←

RecIGMN ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑ ↑
IGMNn ↑ ↑ ↑ ← ↑ ↑ ← ↑ ← - ← ← ← ↑ ← ← ← ← ← ↑

ESIGMNn ↑ ↑ ↑ ← ↑ ↑ - ↑ ← ↑ - ↑ - ↑ ← ← - - ↑ ↑
TDIGMNn ↑ ↑ ↑ ← ↑ ↑ ← ↑ ← ↑ ← - ← ↑ ← ← ← - ← ↑
MIGMNn ↑ ↑ ↑ ← ↑ ↑ ← ↑ ← ↑ - ↑ - ↑ ← ← ← ↑ ↑ ↑

RecIGMNn ↑ ↑ ↑ ← ↑ ↑ ← ↑ ← ← ← ← ← - ← ← ← ← ← ↑
TDESIGMN ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ - - ↑ ↑ ↑ ↑
TDMIGMN ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - - ↑ ↑ ↑ ↑

TDRecIGMN ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ← ↑ - ↑ ↑ ↑ ← ← - ↑ ↑ ↑
TDESIGMNn ↑ ↑ ↑ ← ↑ ↑ ← ↑ ← ↑ - - ← ↑ ← ← ← - - ↑
TDMIGMNn ↑ ↑ ↑ ← ↑ ↑ ← ↑ ← ↑ ← ↑ ← ↑ ← ← ← - - ↑

TDRecIGMNn ↑ ↑ ↑ ← ↑ ↑ ← ↑ ← ← ← ← ← ← ← ← ← ← ← -

Table B.17: Comparison of obtained long-term prediction errors for all algorithms in the Mackey-Glass (τ =
30) experiment.
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Elman - ↑ ↑ - ← ← - ← ↑ ↑ ↑ ↑ - ← ← ← - - -
ESN ← - - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←

TDNN ← - - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
IGMN - ↑ ↑ - ← ← ← ← ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑

ESIGMN ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑
TDIGMN ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ← ↑ ↑ ↑
MIGMN - ↑ ↑ ↑ ← ← - ← ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑

RecIGMN ↑ ↑ ↑ ↑ ← ← ↑ - ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑
IGMNn ← ↑ ↑ ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ←

ESIGMNn ← ↑ ↑ ← ← ← ← ← ↑ - ↑ ↑ ↑ ← ← ← ← - ←
TDIGMNn ← ↑ ↑ ← ← ← ← ← ↑ ← - - ← ← ← ← ← ← ←
MIGMNn ← ↑ ↑ ← ← ← ← ← ↑ ← - - ← ← ← ← ← ← ←

RecIGMNn - ↑ ↑ ← ← ← ← ← ↑ ← ↑ ↑ - ← ← ← ← ← ←
TDESIGMN ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ← ↑ ↑ ↑
TDMIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑

TDRecIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← - ↑ ↑ ↑
TDESIGMNn - ↑ ↑ ← ← ← ← ← ↑ ↑ ↑ ↑ ↑ ← ← ← - ↑ ↑
TDMIGMNn - ↑ ↑ ← ← ← ← ← ↑ - ↑ ↑ ↑ ← ← ← ← - -

TDRecIGMNn - ↑ ↑ ← ← ← ← ← ↑ ↑ ↑ ↑ ↑ ← ← ← ← - -

Table B.18: Comparison of obtained runtimes for all algorithms in the Mackey-Glass (τ = 30) experiment.

TrivialElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Trivial - - - ← ← - ← ← ↑ ← ← ← ← ← ← ← ← ← ← ←
Elman - - - - - - ← ← - ← ← ← ← ← ← ← ← ← ← ←
ESN - - - ← - - ← ← - ← ← ← ← ← ← ← ← ← ← ←

TDNN ↑ - ↑ - ↑ ↑ ← ← ↑ ← ← ← ← ← - ← ↑ ← ← ←
IGMN ↑ - - ← - - ← ← ↑ ← ← ← ← ← ← ← ← ← ← ←

ESIGMN - - - ← - - ← ← - ← ← ← ← ← ← ← ← ← ← ←
TDIGMN ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ← ← ← ← ↑ ← ↑ ← ← ←
MIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ← ← ← ← ↑ ← ↑ ← ← ←

RecIGMN - - - ← ← - ← ← - ← ← ← ← ← ← ← ← ← ← ←
IGMNn ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ - ← ← ← ← ↑ ← ↑ ← ← ←

ESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ← ↑ - ↑ ↑ ← ←
TDIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← - ← ← ↑ ← ↑ ← ← ←
MIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ ↑ ↑ ↑ ↑ ↑

RecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑
TDESIGMN ↑ ↑ ↑ - ↑ ↑ ← ← ↑ ← ← ← ← ← - ← ↑ ← ← ←
TDMIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ← ↑ - ↑ ↑ ← ←

TDRecIGMN ↑ ↑ ↑ ← ↑ ↑ ← ← ↑ ← ← ← ← ← ← ← - ← ← ←
TDESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ← ← ↑ ← ↑ - ← ←
TDMIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ ↑ ↑ ↑ - ↑

TDRecIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ ↑ ↑ ↑ ← -

Table B.19: Comparison of obtained one-step prediction errors for all algorithms in the Google stock experi-
ment.

MeanElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Mean - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Elman ← - ← - ← - - - - ← ← ← ← ← - ← - ← ← ↑
ESN ← ↑ - - - - ↑ ↑ ↑ ← - ← - ← - - ↑ ← ← ↑

TDNN ← - - - - - ↑ ↑ ↑ ← ← ← - ← - - ↑ ← ← ↑
IGMN ← ↑ - - - - ↑ ↑ ↑ ← ← ← ↑ ← - ← ↑ ← ← ↑

ESIGMN ← - - - - - ↑ ↑ ↑ ← ← ← - ← - - ↑ ← ← ↑
TDIGMN ← - ← ← ← ← - ↑ ↑ ← ← ← ← ← ← ← ← ← ← ↑
MIGMN ← - ← ← ← ← ← - ↑ ← ← ← ← ← ← ← ← ← ← ↑

RecIGMN ← - ← ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ← ↑
IGMNn ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - - ← ↑ ← ↑ ↑ ↑ ← ← ↑

ESIGMNn ← ↑ - ↑ ↑ ↑ ↑ ↑ ↑ - - ← ↑ - ↑ ↑ ↑ ← ← ↑
TDIGMNn ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
MIGMNn ← ↑ - - ← - ↑ ↑ ↑ ← ← ← - ← - ← ↑ ← ← ↑

RecIGMNn ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ← ↑ - ↑ ↑ ↑ ← ← ↑
TDESIGMN ← - - - - - ↑ ↑ ↑ ← ← ← - ← - - - ← ← ↑
TDMIGMN ← ↑ - - ↑ - ↑ ↑ ↑ ← ← ← ↑ ← - - ↑ ← ← ↑

TDRecIGMN ← - ← ← ← ← ↑ ↑ ↑ ← ← ← ← ← - ← - ← ← ↑
TDESIGMNn ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ - - ↑
TDMIGMNn ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ - - ↑

TDRecIGMNn ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← -

Table B.20: Comparison of obtained long-term prediction errors for all algorithms in the Google stock exper-
iment.
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Elman - ↑ ↑ ← - ← - ← - - - - - ← ← ← ← ← ←
ESN ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←

TDNN ← ↑ - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
IGMN ↑ ↑ ↑ - ↑ - ↑ - ↑ ↑ ↑ ↑ ↑ - - - ↑ ↑ -

ESIGMN - ↑ ↑ ← - - ↑ - ↑ ↑ ↑ ↑ ↑ ← ← ← - - -
TDIGMN ↑ ↑ ↑ - - - ↑ - ↑ ↑ ↑ ↑ ↑ ← ← ← - - -
MIGMN - ↑ ↑ ← ← ← - ← ↑ ↑ ↑ ↑ ↑ ← ← ← - - -

RecIGMN ↑ ↑ ↑ - - - ↑ - ↑ ↑ ↑ ↑ ↑ ← ← ← - ↑ -
IGMNn - ↑ ↑ ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ←

ESIGMNn - ↑ ↑ ← ← ← ← ← ↑ - ↑ - - ← ← ← ← ← ←
TDIGMNn - ↑ ↑ ← ← ← ← ← ↑ ← - ← - ← ← ← ← ← ←
MIGMNn - ↑ ↑ ← ← ← ← ← ↑ - ↑ - - ← ← ← ← ← ←

RecIGMNn - ↑ ↑ ← ← ← ← ← ↑ - - - - ← ← ← ← ← ←
TDESIGMN ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ - ↑ ↑ ↑
TDMIGMN ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← - ← ↑ ↑ -

TDRecIGMN ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ - ↑ ↑ ↑
TDESIGMNn ↑ ↑ ↑ ← - - - - ↑ ↑ ↑ ↑ ↑ ← ← ← - - -
TDMIGMNn ↑ ↑ ↑ ← - - - ← ↑ ↑ ↑ ↑ ↑ ← ← ← - - -

TDRecIGMNn ↑ ↑ ↑ - - - - - ↑ ↑ ↑ ↑ ↑ ← - ← - - -

Table B.21: Comparison of obtained runtimes for all algorithms in the Google stock experiment.

TrivialElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Trivial - - ↑ ← ← ← ← ← ↑ ← ← ← ← ← ← ← ← ← ← ←
Elman - - ↑ ← - ← - ← ↑ - ← - ← ← ← ← ← ← ← -
ESN ← ← - ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ← ←

TDNN ↑ ↑ ↑ - ↑ - ↑ ↑ ↑ ↑ ← ↑ ← - - ← ↑ ← ← ↑
IGMN ↑ - ↑ ← - ← ← ← ↑ ← ← ↑ ← ← ← ← ← ← ← ←

ESIGMN ↑ ↑ ↑ - ↑ - ↑ - ↑ ↑ ← ↑ ← ← - ← ↑ ← ← ↑
TDIGMN ↑ - ↑ ← ↑ ← - ← ↑ ← ← ↑ ← ← ← ← ← ← ← ↑
MIGMN ↑ ↑ ↑ ← ↑ - ↑ - ↑ ↑ ← ↑ ← ← ← ← ↑ ← ← ↑

RecIGMN ← ← - ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ← ←
IGMNn ↑ - ↑ ← ↑ ← ↑ ← ↑ - ← ↑ ← ← ← ← ← ← ← ↑

ESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ↑ ↑ ← ↑ - ← ↑
TDIGMNn ↑ - ↑ ← ← ← ← ← ↑ ← ← - ← ← ← ← ← ← ← ←
MIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ← ↑ ↑ ← ↑

RecIGMNn ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ← - ↑ ← ↑ ← ← ↑
TDESIGMN ↑ ↑ ↑ - ↑ - ↑ ↑ ↑ ↑ ← ↑ ← ← - ← ↑ ← ← ↑
TDMIGMN ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ← ↑

TDRecIGMN ↑ ↑ ↑ ← ↑ ← ↑ ← ↑ ↑ ← ↑ ← ← ← ← - ← ← ↑
TDESIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ← ↑ ↑ ← ↑ - ← ↑
TDMIGMNn ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑

TDRecIGMNn ↑ - ↑ ← ↑ ← ← ← ↑ ← ← ↑ ← ← ← ← ← ← ← -

Table B.22: Comparison of obtained one-step prediction errors for all algorithms in the U.S. interest rate
experiment.

MeanElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Mean - ← - ← ← ← ← ← ← ↑ ← ← ← ← ← ← ← ← ← ↑
Elman ↑ - ↑ ← ← - ← - - ↑ - ← ↑ ← ← ← ← ← ← ↑
ESN - ← - ← ← ← ← ← ← - ← ← ← ← ← ← ← ← ← -

TDNN ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - - ↑ ↑ - ↑
IGMN ↑ ↑ ↑ ← - ↑ ← ↑ ↑ ↑ ↑ ← ↑ ← ← ← ← ← ← ↑

ESIGMN ↑ - ↑ ← ← - ← ↑ ↑ ↑ - ← ↑ ← ← ← ← ← ← ↑
TDIGMN ↑ ↑ ↑ ← ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ - ← ↑
MIGMN ↑ - ↑ ← ← ← ← - ↑ ↑ ← ← ↑ ← ← ← ← ← ← ↑

RecIGMN ↑ - ↑ ← ← ← ← ← - ↑ ← ← ↑ ← ← ← ← ← ← ↑
IGMNn ← ← - ← ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ↑

ESIGMNn ↑ - ↑ ← ← - ← ↑ ↑ ↑ - ← ↑ ← ← ← ← ← ← ↑
TDIGMNn ↑ ↑ ↑ ← ↑ ↑ ← ↑ ↑ ↑ ↑ - ↑ ← ← ← ↑ ← ← ↑
MIGMNn ↑ ← ↑ ← ← ← ← ← ← ↑ ← ← - ← ← ← ← ← ← ↑

RecIGMNn ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - - ← ↑ - ← ↑
TDESIGMN ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - - - ↑ - ← ↑
TDMIGMN ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - - ↑ - ← ↑

TDRecIGMN ↑ ↑ ↑ ← ↑ ↑ ← ↑ ↑ ↑ ↑ ← ↑ ← ← ← - ← ← ↑
TDESIGMNn ↑ ↑ ↑ ← ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ - - - ↑ - ← ↑
TDMIGMNn ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑

TDRecIGMNn ← ← - ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← -

Table B.23: Comparison of obtained long-term prediction errors for all algorithms in the U.S. interest rate
experiment.
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ElmanESNTDNNIGMNESIGMNTDIGMNMIGMNRecIGMNIGMNnESIGMNnTDIGMNnMIGMNnRecIGMNnTDESIGMNTDMIGMNTDRecIGMNTDESIGMNnTDMIGMNnTDRecIGMNn
Elman - ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
ESN ← - - - - - - - - - - - - - - - - - -

TDNN ← - - - ← ← ← ← ↑ - ↑ ↑ - ← ← ← - ↑ -
IGMN ← - - - ← ← ← ← ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑

ESIGMN ← - ↑ ↑ - ↑ - - ↑ ↑ ↑ ↑ ↑ - - - ↑ ↑ ↑
TDIGMN ← - ↑ ↑ ← - ← - ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ↑
MIGMN ← - ↑ ↑ - ↑ - - ↑ ↑ ↑ ↑ ↑ - - - ↑ ↑ ↑

RecIGMN ← - ↑ ↑ - - - - ↑ ↑ ↑ ↑ ↑ - - - ↑ ↑ ↑
IGMNn ← - ← ← ← ← ← ← - ← ← ← ← ← ← ← ← ← ←

ESIGMNn ← - - ← ← ← ← ← ↑ - ↑ ↑ - ← ← ← ↑ ↑ ↑
TDIGMNn ← - ← ← ← ← ← ← ↑ ← - ← ← ← ← ← ← ← ←
MIGMNn ← - ← ← ← ← ← ← ↑ ← ↑ - ← ← ← ← - - -

RecIGMNn ← - - ← ← ← ← ← ↑ - ↑ ↑ - ← ← ← - ↑ -
TDESIGMN ← - ↑ ↑ - ↑ - - ↑ ↑ ↑ ↑ ↑ - - - ↑ ↑ ↑
TDMIGMN ← - ↑ ↑ - ↑ - - ↑ ↑ ↑ ↑ ↑ - - - ↑ ↑ ↑

TDRecIGMN ← - ↑ ↑ - ↑ - - ↑ ↑ ↑ ↑ ↑ - - - ↑ ↑ ↑
TDESIGMNn ← - - ← ← ← ← ← ↑ ← ↑ - - ← ← ← - - -
TDMIGMNn ← - ← ← ← ← ← ← ↑ ← ↑ - ← ← ← ← - - -

TDRecIGMNn ← - - ← ← ← ← ← ↑ ← ↑ - - ← ← ← - - -

Table B.24: Comparison of obtained runtimes for all algorithms in the U.S. interest rate experiment.
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APPENDIX C RESUMO EM PORTUGUÊS

C.1 Introdução

O aprendizado de sequências temporais é uma tarefa que se aplica a áreas como pre-
visão de séries temporais e controle. Às vezes é necessário que os modelos aprendidos
estejam sempre atualizados (aprendizado agressivo) com um fluxo constante de dados
(aprendizado incremental) enquanto em operação (aprendizado online). Este é o caso
com sistemas de monitoramento e controle em robótica, por exemplo.

Os algoritmos Incremental Gaussian Mixture Model (IGMM, ou Modelo de Mis-
tura de Gaussianas Incremental, em português) (ENGEL; HEINEN, 2010) (ENGEL;
HEINEN, 2011) e Incremental Gaussian Mixture Network (IGMN, ou Rede de Mistura
de Gaussianas Incremental, em português) (HEINEN; ENGEL, 2010a) (HEINEN; EN-
GEL, 2011a) (HEINEN; ENGEL; PINTO, 2011) (HEINEN, 2011) foram recentemente
propostos como novos algoritmos baseados em redes neurais para clustering e classifi-
cação/regressão, respectivamente. Estes algoritmos permitem um aprendizado agressivo
online e incremental, enquanto evitam em grande parte o ajuste manual de parâmetros
críticos para este aprendizado.

Apesar de terem sido aplicados com sucesso a muitos problemas, incluindo controle
de robôs
(HEINEN; ENGEL, 2011b) (HEINEN; ENGEL, 2010b), o IGMM e a IGMN são algorit-
mos estáticos ou puramente espaciais, o que significa que eles não conseguem lidar com
problemas com estados internos ou memória (a menos que esses estados sejam explicita-
mente adicionados aos dados manualmente). Possuindo uma versão dinâmica da IGMN,
seria possível lidar com problemas dinâmicos e não-markovianos de uma forma online
e incremental, com uma única passada sobre os dados, que é o objetivo deste trabalho.
Existem ao menos duas abordagens para atingir este objetivo, a saber, estender algoritmos
online incrementais temporais (como redes neurais recorrentes) para aprendizado agres-
sivo, ou estender algoritmos online incrementais agressivos para processamento temporal,
que é a abordagem usada aqui.

C.1.1 Principais Contribuições

Este trabalho propõe algumas variações espaço-temporais para o algoritmo IGMN.
Devido ao IGMM poder ser visto essencialmente como um algoritmo avançado de clus-
tering, espera-se que técnicas já verificadas para estender algoritmos de clustering (espe-
cialmente os Mapas Auto-Organizáveis) para o domínio temporal devam funcionar tam-
bém com o IGMM, e portanto com a IGMN. Neste sentido, três novos algoritmos são
propostos: Echo-State IGMN (ESIGMN), Merge IGMN (MIGMN) e Recursive IGMN
(RecIGMN). Além disso, a IGMN com linhas de atraso é avaliada contra eles e outros al-
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goritmos clássicos, e é chamada de Time-Delay IGMN (TDIGMN) aqui. Além dos novos
algoritmos para estender temporalmente a IGMN estática, uma nova técnica é também in-
troduzida para melhorará-la mesmo em sua forma estática, o que também remove um de
seus parâmetros que, de outra forma, deveria ser selecionado manualmente. Sumarizando
as contribuições:

• Echo-State Incremental Gaussian Mixture Network (ESIGMN)

• Merge Incremental Gaussian Mixture Network (MIGMN)

• Recursive Incremental Gaussian Mixture Network (RecIGMN)

• Criação de componentes baseada em "outliers"

C.2 Conclusões

Este trabalho apresentou três novas extensões temporais para o algoritmo IGMN, bem
como uma nova regra para criação de componentes.

O capítulo 2 apresentou todos os algoritmos usados como base para as novas exten-
sões, cobrindo a maioria dos aspectos necessários para implementá-los.

O capítulo 3 descreveu todas as contribuições deste trabalho, começando com a nova
regra para criação de componentes. Essa regra permitiu que a IGMN aprendesse com
sucesso sem a necessidade do parâmetro εmax, e resultou em melhores (mais intuitivas e
econômicas) soluções em um experimento simples. Isto é muito importante para fins de
obter um aprendizado verdadeiramente autônomo e genérico, já que o ajuste fino manual
de parâmetros envolve conhecimento humano de cada problema. Eliminar os parâmet-
ros restantes da IGMN é algo para ser explorado em trabalhos futuros. Depois disto, a
TDIGMN, que usa uma janela deslisante com entradas passadas, foi revisada (ela não é
um novo algoritmo, mas não foi descrita explicitamente como um algoritmo temporal em
trabalhos anteriores) como um aperfeiçoamento temporal para a IGMN. Então, as três no-
vas extensões foram descritas reusando as técncias mostradas anteriormente para outras
redes neurais temporais: ESIGMN com sua camada de reservoir dinâmico inspirada pela
ESN; MIGMN, que usa uma média móvel exponencial das entradas e saídas reconstruídas
como seu contexto temporal, similar ao MSOM; e a RecIGMN, inspirada pelo RecSOM e
a rede de Elman, acrescentando conexões de realimentação a partir das ativações de suas
componentes Gaussianas de volta para a entrada.

No capítulo 4, esses novos algoritmos foram comparados com redes neurais tempo-
rais clássicas e a IGMN estática, para verificar seus desempenhos na tarefa de previsão
de séries temporais, usando 8 diferentes séries-temporais. Os novos algoritmos foram
testados com suas versões naïve e multivariadas, bem como com e sem linhas de atraso
adicionais (como as usadas pela TDIGMN). Um total de 19 algoritmos foram testados e
os resultados analisados. Nós descobrimos que a ESIGMN e a MIGMN são úteis como
algoritmos online, incrementais, agressivos e temporais , até mesmo superando as redes
neurais temporais clássicas em diversos experimentos. Nós achamos que a RecIGMN,
apesar de não ter sido uma boa contribuição para este conjunto, tem potencial se correta-
mente implementada, com um parâmetro de ponderação entre passado e presente e talvez
mais informações de suas componentes Gaussianas sendo realimentadas, tais como val-
ores de erro. A MIGMN também foi apresentada sem um parâmetro de ponderação de
passado e presente, e esta possibilidade deve ser explorada. A ESIGMN tem conexões
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externas para o seu reservoir apenas vindo das entradas, e uma versão com realimentação
das saídas ainda está por ser explorada. Também descobrimos que linhas de atraso são
benéficas em geral para os novos algoritmos, complementando suas memórias irrestri-
tas e inexatas com uma memória limitada e exata (isto pode ser visto como os papéis
complementares da memória de curto prazo e memória de trabalho em nossos cérebros,
respectivamente). Todos os algoritmos propostos obtiveram resultados muito bons em
termos de tempo de execução também, tornando-os bons candidatos para aplicações de
tempo real. Ainda está por ser explorado como eles lidam com entradas de mais alta di-
mensionalidade, como vídeos. A inversão de matriz ainda é o gargalo de todas as versões
multivariadas dos algoritmos apresentados, e as versões naïve provaram-se ineficientes
para tarefas temporais, já que elas não conseguem capturar as covariâncias entre as en-
tradas temporalmente aumentadas altamente correlacionadas dos novos algoritmos.

Portanto, concluímos que os objetivos iniciais deste trabalho foram atingidos, que
eram de criar algoritmos online, incrementais, agressivos e temporais usando a IGMN
como base. Sumarizando as contribuições e conclusões neste trabalho:

• Nova regra para criação de componentes para a IGMN e suas extensões, resultando
em melhor performance e eliminando um parâmetro ajustável manualmente;

• Algoritmo ESIGMN, que obteve resultados muito bons em geral;

• Algoritmo MIGMN, que também obteve resultados muito bons;

• Algoritmo RecIGMN, que requer melhoramentos para tornar-se competitivo;

• Implementações em Matlab de todos os algoritmos propostos e da própria IGMN,
que serão reusadas em trabalhos futuros e também pelo nosso grupo de pesquisa e
pesquisadores externos (de fato, já estão sendo usadas).

Como trabalhos futuros, podemos enumerar os seguintes:

• Verificar os benefícios da inclusão de realimentação das saídas da ESIGMN, bem
como melhores técnicas de inicialização do reservoir;

• Verificar os benefícios da inclusão de parâmetros de ponderação entre passado e
presente na MIGMN e RecIGMN (e tentar ajustá-los automaticamente);

• Analisar diferentes contextos temporais para a RecIGMN, usando mais informações
de suas componentes gaussianas;

• Aplicação dos algoritmos propostos em tarefas de aprendizado por reforço em pro-
cessos Markovianos parcialmente observáveis (POMDP);

• Pesquisar memórias de mais longo prazo;

• Verificar a viabilidade dos algoritmos propostos em problemas de mais alta dimen-
sionalidade e também em problemas mais do mundo real como robótica.


