
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CIÊNCIA DA COMPUTAÇÃO (COMPUTER SCIENCE)

BRUNO COSWIG FISS

Exact and Metaheuristic Algorithms for the
Urban Transit Routing Problem

Final Report presented in partial fulfillment of the
requirements for the degree of Bachelor of
Computer Science

Prof. Dr. Marcus Rolf Peter Ritt
Advisor

Porto Alegre, July 2012

CIP – CATALOGING-IN-PUBLICATION

Fiss, Bruno Coswig

Exact and Metaheuristic Algorithms for the Urban Transit
Routing Problem / Bruno Coswig Fiss. – Porto Alegre: PPGC
da UFRGS, 2012.

69 f.: il.

Final Report (Bachelor) – Universidade Federal do Rio
Grande do Sul. Ciência da Computação (Computer Science),
Porto Alegre, BR–RS, 2012. Advisor: Marcus Rolf Peter Ritt.

1. Urban Transit Routing Problem. 2. Mixed Integer Program-
ming. 3. Metaheuristics. I. Ritt, Marcus Rolf Peter. II. Tı́tulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Inforḿatica: Prof. Lúıs da Cunha Lamb
Coordenador do CIC: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Inforḿatica: Beatriz Regina Bastos Haro

“The real voyage of discovery consists not in
seeking new lands, but seeing with new eyes.”

— MARCEL PROUST

ACKNOWLEDGEMENTS

I would like to thank my advisor, professor Marcus Ritt, whosesupport, effort and
knowledge were essential during the whole work.

I am also grateful for my colleagues and professors, who always encouraged me to
strive for knowledge and attempt new challenges.

At last, and most importantly, I would like to thank my family. Besides always be-
ing there for me, they taught me the most important concepts in life, including honesty,
friendship and morality.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF FIGURES . 11

LIST OF TABLES . 13

LIST OF ALGORITHMS . 15

ABSTRACT . 17

RESUMO . 19

1 INTRODUCTION . 21

1.1 Related Work . 23

2 PROBLEM STATEMENT . 27

2.1 Urban Transit Network Design Problem 27

2.1.1 Urban Transit Scheduling Problem 28

2.1.2 Urban Transit Routing Problem .. . 28

2.2 UTRP Definition . 28

2.2.1 Objective Function .29

2.2.2 Restrictions . 30

2.2.3 Bounds on the Number of Routes and on the Objective Functions 30

3 MIXED INTEGER PROGRAMING FORMULATION 33

3.1 Variables . 33

3.2 Constraints . 33

3.3 Objective Functions . 34

3.4 Discussion. 35

3.5 Modeling the Redesign of an Existing Network 36

3.6 Divide-and-Conquer Approach . 36

4 METAHEURISTIC APPROACH . 39

4.1 Generation of Initial Solutions . 39

4.1.1 Route Suggestions from MIP Relaxed Solution 43

4.2 Mutation . 45

4.3 Route Set Simplification . 45

4.4 Operators . 47

4.4.1 Exchange . 47

4.4.2 Crossover . 47

4.5 General Considerations . 47

4.6 Performance Analysis . 49

5 EXPERIMENTAL RESULTS . 51

5.1 Mixed Integer Programming Approach 52

5.2 Metaheuristic approach . 53

5.2.1 Mandl’s Network . 53

5.2.2 British City Based Network . 56

5.3 Reproducibility and Difficulties with Previous Results 58

6 CONCLUDING REMARKS AND FUTURE WORK 65

REFERENCES . 67

LIST OF ABBREVIATIONS AND ACRONYMS

ATT Average Travel Time

DFS Depth First Search

GA Genetic Algorithm

MIP Mixed Integer Programming

OD Origin-Destination

TTT Total Travel Time

UTNDP Urban Transit Network Design Problem

UTRP Urban Transit Routing Problem

UTSP Urban Transit Scheduling Problem

LIST OF FIGURES

Figure 1.1: Mandl’s Swiss road network. 23

Figure 2.1: Route set obtained by applying Algorithm 1 to Mandl’s Swiss road
network. 31

Figure 4.1: Route containing cycles before and after extraction. 41

Figure 4.2: Route suggestion network for one route. 44

Figure 4.3: Route suggestion network with global importances. 44

Figure 4.4: Route set before and after simplification. 46

Figure 4.5: A pair of route sets before an exchange (above) and after it (below). . 47

Figure 4.6: Routes before and after a crossover (n9 is the cut point). 48

Figure 4.7: Profiling results for the implementation of the genetic algorithm. . . . 50

Figure 5.1: Global best route set for two routes. 52

Figure 5.2: Global best route set for three routes. 53

Figure 5.3: Route sets corresponding to Table 5.3. 55

Figure 5.4: Pareto-optimal curves for Mandl’s network. 56

Figure 5.5: British city based network. 57

Figure 5.6: Operator-oriented route set for British city based network. 60

Figure 5.7: Passenger-oriented route set for British city based network. 61

Figure 5.8: Balanced route set for British city based network.. 62

LIST OF TABLES

Table 5.1: Best possible route sets found using the Mixed Integer formulation . . 52

Table 5.2: Comparison between best UTRP multi-objective solutions on Mandl’s
Network . 54

Table 5.3: Route sets found by our metaheuristic for the UTRP onMandl’s Net-
work . 54

Table 5.4: Comparison between best single-objective UTRP solutions on Mandl’s
Network . 55

Table 5.5: Comparison between best UTRP multi-objective solutions on artifi-
cial British city . 59

LIST OF ALGORITHMS

1 Greedy demand coverage. 32

2 Genetic algorithm for the UTRP. 40

3 Greedy demand coverage using best paths. 42

ABSTRACT

The urban transit routing problem (UTRP) consists of finding satisfying routes for
public transportation within a city or region. Urban scenarios get more complex as time
goes by, making the design of routes an overwhelming task whose results are often un-
satisfactory, with high costs and travel times. We develop an exact MIP formulation for
the problem and obtain best solutions, which were previously unknown, for common
benchmarks. We also develop a multi-objective genetic algorithm to solve thie problem
with higher quality and more efficiently than with current techniques. We benchmark our
solutions on generally available real and artificial test cases and achieve better results.

Keywords: Urban Transit Routing Problem, Mixed Integer Programming, Metaheuris-
tics.

RESUMO

Algoritmos exatos e metaheuŕısticos para o Problema de Roteamento de
Transporte Urbano

O problema de roteamento de transporte urbano consiste em encontrar rotas satis-
fatórias para transporte público em uma cidade ou região. Ceńarios urbanos se tornam
mais complexos com o passar do tempo, tornando o planejamento de rotas uma tarefa
proibitivamente dif́ıcil, cujos resultados são frequentemente insatisfatórios, com altos cus-
tos e tempos de viagem. Nós propomos uma formulação MIP exata para o problema e
obtemos resultadośotimos, que at́e ent̃ao ñao eram conhecidos, para casos de teste usa-
dos na literatura. Ńos tamb́em desenvolvemos um algoritmo genético multiobjetivo para
resolver o problema com mais qualidade e eficiência do que com técnicas atuais. Testa-
mos nossas soluções com ceńarios reais e artificiais publicados anteriormente e obtemos
resultados superiores.

Palavras-chave:Problema de Roteamento Urbano, Programação Inteira Mista, Metaheurı́sticas.

21

1 INTRODUCTION

Public transportation is of vital importance in almost every place in the world. It
shrinks distances and allows a population to interact and produce more. In comparison
to private transportation, it utilizes less space, allowing more people to benefit from it,
preventing jams, and is less harmful to the environment.

But, traffic is growing substantially, even in places where the number of people is
stable. This creates complex scenarios, with lots of demandthat must be fulfilled, making
an efficient public transport system mostly desirable. The task of designing a public transit
network is commonly performed by traffic engineers and specialists, planners that attempt
to satisfy passengers, or generate profit, while also attending stake-holders wishes, such
as government, businesses and taxpayers.

This complicated task can surely benefit from computer assistance. The study of
urban transit network design under the name Urban Transit Network Design Problem, the
UTNDP, aims at obtaining good knowledge, tools and techniques for the design of public
transport systems, observing the mentioned restrictions and demands. It is anNP-hard
problem with multiple criteria. Because of its complexity, this problem is commonly
divided in two parts: the Urban Transit Routing Problem (UTRP)and the Urban Transit
Scheduling Problem (UTSP) (CHAKROBORTY, 2004).

The UTRP concerns deciding routes where public traffic will flow in such a way that it
can provide good service (short travel times and low number of transfers) for passengers,
with an acceptable cost and satisfying stake-holder demands. It is of vital importance in
public transport systems since it directly defines the routes taken by city dwellers on their
daily tasks. The UTSP decides the exact schedule of vehiclesin a given set of routes
so that the demand at each time period is satisfied, also taking many restrictions into
consideration. Because the step that requires most planningis the UTRP, since changes to
routes are normally harder to implement, and of the complexity of the problem, we focus
only on the UTRP in this work.

Our main goal in this work is to create, implement and describe algorithms to solve the
UTRP. We do not intend to create a tool or a fully ready to use application for specific traf-
fic scenarios, but rather to develop successful algorithms and techniques for the problem
in general, which can later prove useful for other, more specialized real life applications.

We notice, as is explained in Section 1.1, that thorough comparison of techniques is
not commonly done, since most works adapt problem definitions to a scenario, with new
constraints or objective functions. But since problem statements differ, comparison of

22

solutions is not possible. Another frequent issue is the lack of common available and
used benchmarks for the problem, necessary for good comparisons.

Comparison is but very important. With a well performed evaluation, specialists and
tool developers will possess better knowledge for the selection of the right algorithms and
techniques, and will thus make better informed decisions for the UTRP and the UTNDP.

Therefore, we use a simple and generic problem definition that is compatible with
many previous works. Our definition is based on the definitionused by Lang Fanet al.
(2009), and is described in detail in Chapter 2.

After formally defining the problem, we give two solutions toit. The first one is based
on Mixed Integer Programming, and solves the problem completely, without human aid.
To the best of our knowledge, no full multi-objective linearmodel for UTRP has been
published before. Exact solutions are often used to optimize one or two parameters in an
existing network, or for small-sized networks. It has even been said that Mixed Integer
Programming cannot model the UTRP (CHAKROBORTY, 2004). We prove it to be pos-
sible, and obtain optimal results for a well known benchmark, to be described in Section
1.1. We also propose two applications for the model when dealing with larger networks:
using it in adivide-and-conquerfashion, handling small groups of nodes at each time,
until the optimization of the whole network is ready, and using the linear relaxation of
the model to obtain scores between0 and1 that characterize how important an edge is,
information that can then be used in the generation of routesin another approach. Our
formulation is described in Chapter 3.

The second solution is a genetic algorithm. Heuristics and metaheuristics are the com-
mon choice for solving the UTRP (ÁLVAREZ et al., 2010), given the problem complexity
and high number of constrains. We base our solution on a genetic algorithm since pre-
vious works were able to achieve good results with it. We takeadvantage of key aspects
that were not used before, and attempt to achieve a more effective algorithm by:

• carefully selecting initial solutions from many differentsources, including MIP re-
laxation, minimum spanning tree, shortest paths and from greedy algorithms;

• applyingsimplificationto prevent unnecessary routes;

• using operators such asexchangeandcrossover, that exchange characteristics be-
tween routes and route sets;

• not letting a feasible solution be removed if it isundominated(term which is defined
in Section 2.2.1 and by allowing different route set sizes inthe same population.

We present the whole algorithm in detail, allowing a reader to reproduce our exper-
iments completely. An important step that is sometimes not well documented (FAN;
MUMFORD; EVANS, 2009) is how the initial population is created. In Chapter 4, this
and all other involved procedures are described in detail.

Finally, to assess the quality of our solutions, we compare our work with previous
ones that use a common benchmark to be described in Section 1.1. The results are listed
and analyzed in Chapter 5.

Finally, our conclusions and final remarks are then presented in Chapter 6.

23

1.1 Related Work

Given our goal of developing successful algorithms and techniques for the UTRP, we
are mostly focused on studying generic problem definitions and solutions that allow fair
comparison of results and thus make it possible to rate the used algorithms and techniques.
Furthermore, since this work follows two main solution ideas, namely mathematical pro-
gramming and metaheuristic (or, more specifically,evolutive), we analyze the literature
in these areas.

One of the first attempts to tackle the UTNDP generically, andwith computer aid,
was done by Christoph Mandl (1980). He modeled the problem anddesigned a two-step
solution to solve it: first generating a set of initial feasible routes, and then modifying
them heuristically. Most of his techniques were tested whendeveloping the operators
of our genetic algorithm, and they include: adding a node to aroute if the demand that
gets covered by doing so is high enough, removing a node if thedemand that stops being
covered by doing so is low enough, and exchanging parts of routes. We make use of
similar operators when generating initial solutions for our genetic algorithm, as will be
described in Chapter 4.

In the work of Mandl, a well-known benchmark was published: Mandl’s Swiss road
network. It can be seen in Figure 1.1. Many authors have used this benchmark to test
their solutions, thus producing a good amount of data and results that become very useful
when evaluating new solutions to the UTRP. As an aside, our graphical representation of
the network is not the same as the original one, even though every edge has the correct
length. That happens because we do not have the distances between every node, and this
is a possible configuration of the network, even if not planar. The edge betweenn3 and
n11 crosses two nodes. This may be imagined as a bridge that crosses over two bus stops
on a lower road, and is not physically connected to them. Throughout this work, we use
this representation for Mandl’s network.

n 0

n 1

n 2

n 3

n 4

n 5

n 1 1

n 7

n 1 4

n 1 0

n 9

n 6

n 8

n 1 2

n 1 3

Figure 1.1: Mandl’s Swiss road network.

As an example for real world directed solutions, Israeli andCeder (1989) created

24

a complex and interactive multi-step approach, where some steps were to be computed
with exact methods, and others decided by the traffic planner. The approach was not fully
implemented, having been tested only for the first steps. Even though a practical solution
to the problem is the actual goal when solving the UTNDP, using a more abstract version
of the problem facilitates research and allows better comparison of intrinsics, such as
algorithms and techniques. This leads to better knowledge about the problem, which will
then lead to better real word solutions.

K. Wan et al. (2003) proposed a Mixed Integer Formulation for Multi-RouteTransit
Network Design. It attempts to attend all demand while minimizing total operator costs.
While resembling our formulation, they have a more complex definition that handles route
frequencies, and their model is non-linear, also because ofthe more detailed definition of
the problem. Therefore, their formulation getslinearized. It is also not multi-objective,
only considering total operator costs. If using our problemdefinition, assuming every
node has demand, and only considering total operator costs,the solutions to this hypo-
thetical single-objective version would be trivial and directly derived from the minimum
spanning tree of the network, as will be discussed in Chapter 4.

In the exact approach of Borndörfer et al. (2007), a multi-commodity flow model is
proposed. It generates line routes dynamically, much like our approach, but it assumes
that aprecomputedsmall set of possible routes is available, in order to decrease the search
space. Further, it considers the maximization of the demandcovered without transfers as
a main goal, but thus ignoring transfer waiting times in optimization. It can be employed
to test bigger instances, and was tested with data of Potsdam, a medium-sized city in
Germany.

Considering a problem definition equivalent to the one used here, Chakrobortyet al.
(2002; 2004) use a genetic algorithm and propose a newfitnessfunction that measures
how good the genetic pool of potential solutions is. It uses the absolute difference between
the path a passenger takes and the shortest possible path (ifthere were routes everywhere).
Then it scales this value according to the demand covered by the path. It also takes
unsatisfied demand into consideration.

The algorithm was tested with Mandl’s Swiss road network, and it achieved better
results than what was known at that time, showing the potential of genetic algorithms in
solving the UTRP. This work used a very different approach from ours for initial route
set generation and different genetic algorithm operators,and it did not treat the multi-
objectiveness of the UTRP, optimizing only the user satisfaction.

When experimenting and comparing results with the work of Chakrobortyet al., we
found some inconsistencies in the published quality factors for their obtained route sets.
This will be discussed in more detail in Chapter 5.

When generating and selecting route sets, the user travel times, considering transfers,
is the most often used decision factor. In contrast with that, in the genetic algorithm of
Tom (2003)et al., a bigger set of criteria is considered, such as operator costs, highest
directly covered demand and fleet sizes (given their problemdefinition included frequen-
cies for each route). It is worthy to note that our initial solution generating procedure also
selects routes using different criteria, such as operator costs and covered demand. This
leads to higher quality and differentiation in initial route sets.

25

Agrawalet al. (2004) focus on parallelizing genetic algorithms for the UTNDP. They
use a large benchmark, with1332 nodes and4076 edges to test their techniques. They
achieved a performance improvement of about half times the number of processors, i.e.
with 2x processors their experiments ranx times faster than with one processor. Our
metaheuristic approach is also theoretically parallelizable and could take advantage of
speed-ups in order to process larger networks, although a coordination system would have
to be implemented in order to distribute work among processors. The largest benchmark
tested in our work has110 nodes and275 links.

A genetic algorithm was also proposed by Wei Fanet al. (2006). Their problem def-
inition is more complex, dividing nodes into centroid and non-centroid, and considering
multiple transport modes (e.g. bus and train), each with different and dynamic demands.
Their solution is based on creating an initial set of feasible solutions, given restrictions on
route size, based on the shortest paths of the network. Then,the genetic algorithm is used
to select and optimize a best route set out of the initial set.The operators of the genetic
algorithm are the same as in previous works. They shortly discuss the redesign of existing
networks as well, tackling the problem mainly by fixing some of the existing routes and
only optimizing the others.

Wei Fanet al. (2008) also used Tabu search to solve the more specialized version of
the UTRP discussed in the previous paragraph. They propose three different Tabu search
algorithms and compare them with their previous genetic algorithm. Sensibility analysis
is also performed, after which numerical results are obtained. The algorithm is, however,
also based on initially generating all feasible routes incorporating problem constraints.
This would not be (generally) applicable using our problem definition since there would
be too many feasible routes. Furthermore, the used benchmarks are not openly available,
which prevents direct comparison of techniques and results.

As an example of a relatively new ad-hoc graphical tool developed and used for a
specific city is presented in the work ofÁlvarezet al. (2010). They created an interactive
and attractive tool to design routes and position bus stops automatically. They divide their
data, for the city of Burgos, Spain, in four types, one for eachtype of day, e.g. school
day and holiday. This corresponds to using four different Origin-Destination demand
matrices. The approach fixes the number of routes, and the initial and final destination of
each route. The process of generating routes is based on inserting nodes within existing
routes, and applying local search operators, such as operators that exchange parts of routes
between each other. It also takes turns optimizing bus schedules and routing. But, since
it is an ad-hoc solution and it has not been tested on common benchmark instances, its
techniques cannot be directly compared to our algorithms.

An interesting approach to the UTRP, differing from most, is that of Curtinet al.
(2011). Instead of minimizing the cost for user or operator,they maximize the service
level of each edge. This level attempts to take into consideration more factors, such as
the importance of the route for political and geographical reasons, and combines user
and operator costs as constraints to the problem, rather than as objectives. The problem
is solved using mixed integer programming, and optimizes one route at a time, thus not
calculating the interplay of multiple routes in service quality. The authors also assume
that more potential stops along an edge equates to more potential served demand, even
though demand coverage relates more to where the route leadsto than to the number of
covered stops. To solve the problem formulation in reasonable time, certain restrictions

26

on route size are taken advantage of in order to limit the number of nodes that must
be considered simultaneously. Such a divide-and-conquer approach is useful to allow
mathematical formulations to be applied to bigger networks.

A recent article by Mazloumi (2012) makes a comparison between the ant colony and
genetic algorithm metaheuristics in the context of scheduling (UTSP). Here one is inter-
ested in an optimal timetable, avoiding too full or empty transport vehicles. The meta-
heuristics are compared in terms of efficiency and accuracy to provide optimal solutions.
Both had similar accuracy, finding near optimal solutions, but ant colony achieved the
solution in less iterations, showing it has a more intelligent search approach. Even though
interesting, this is more strongly connected to the actual problem being treated (UTSP)
and how the operators and evaluation functions were defined than to intrinsic differences
between the metaheuristics. It has therefore no direct implications when considering ant
colony and genetic algorithms for the UTRP.

The most closely related work to ours has been by Lang Fanet al. (FAN, 2009; FAN;
MUMFORD; EVANS, 2009; FAN; MUMFORD, 2010). Their main idea is to define the
problem more generically to allow comparison of techniquesand algorithms rather than
problem statements and restrictions.

It is, of course, important to characterize the problem completely and exactly in order
to achieve good solutions for real world scenarios. But, whendeveloping and testing new
algorithms, the definition should remain the same, and as general as possible, so that it
does not stand in the way of evaluating these techniques.

Lang Fanet al. focus on that, and we enforce it, following the same definition they
use, with exception of making it more general in regard to constraints on the number
of routes and on cycle allowance. We also employ themutatoroperator of the genetic
algorithm of Lang Fanet al. Finally, we use this and previous work, based on Mandl’s
network, to test and compare our techniques

27

2 PROBLEM STATEMENT

2.1 Urban Transit Network Design Problem

The Urban Transit Network Design Problem consists in findingand defining adequate
vehicle routes for an urban network that satisfies user demand over the region while ful-
filling practical constraints. The user demands include: being able to get to destinations
fast, with the least number of transfers, not having to wait much for the transport and
avoiding crowded vehicles.

It is important to notice that the first two items are mostly affected by where the trans-
portation goes through, that is, the routes used. The last two aspects are more related to the
frequency and scheduling of vehicles in a route. When considering practical constraints,
one normally has to deal with limits in the number of routes and their lengths, possibility
to cross certain regions, and the costs of creating and maintaining the public transport
system. Other constraints are due to stake-holders, such asgovernment, businesses and
taxpayers. Citing Lang Fan (2009), while many parties will benefit from an efficient
public transport service, each one will evaluate its service from their own perspective.

As can be seen from the above description, two main parts of the UTNDP may be
pointed out: the routing of vehicles and their scheduling. This classification is widely
used, and the name of these parts are: the Urban Transit Routing Problem and the Urban
Transit Scheduling Problem. Often, solutions to the UTNDP tackle each of these two
aspects separately.

Changing transit routes is often more costly, as it may involve actually constructing
the route (e.g. with railroads), and because the populationliving next to the network,
including public transport users, drivers and others, may be affected. Therefore planning
is a very important and decisive step. On the other hand, scheduling is adapted throughout
the day, and, even though there are also costs involved in changing scheduling, they are
of lesser magnitude when compared to routing change expenses.

Therefore, we attempt to focus mainly on the UTRP, considering it the step that de-
mands highest attention currently. In the next two sections, the UTSP and UTRP are
described in more detail, and then we present the formal definition used for the UTRP
throughout our work.

28

2.1.1 Urban Transit Scheduling Problem

Given a set of routes and a number of available vehicles, deciding the exact times
and frequencies at which vehicles will pass through every access point and thus make
routes is the concern of the UTSP. The effects of scheduling are mainly the passenger’s
waiting times, the crowdedness and the costs in fulfilling defined timetables, including
fuel, energy, personnel and maintenance associated.

Waiting times may be further divided, since the initial waiting time, i.e. prior to
beginning the public transport part of the trip, can be avoided if a user heads to the access
point at the right time and schedules are maintained. The waiting time outside of a vehicle
and before getting to the destination is the transfer time and is often unavoidable. The last
waiting time, sometimes neglected, but also important, is caused by the time distance
between different vehicles in a route. Even if the schedulesare maintained and the user
plans ahead, it may still have to wait at his destination after arriving, because every public
transport option is either too late or too early.

Mixed Integer Programming solutions are commonly proposedfor scheduling, mostly
with non-linear objective functions. Nevertheless, sinceit is also a hard problem with an
unfeasibly high number of possibilities, scheduling is often targeted by heuristics and
metaheuristics. These algorithms have to deal with constraints such as: limited fleet
size, limited vehicle capacity, stopping time bounds (in anaccess point), interdependence
between stopping times in consecutive access points, nondeterministic travel times due to
traffic and nonuniform arrival of passengers (CHAKROBORTY, 2004).

2.1.2 Urban Transit Routing Problem

The urban transit routing problem consists of finding a set oftraffic routes, given
passengers, operator and further constraints, that achieves good average travel times, low
number of transfers, low costs for the operator, or a combination of these goals. Since
scheduling is unknown in this step, a frequency value is often associated with each route,
or the frequencies are considered equal. Here we assume equal frequency per route to
maintain simplicity and compatibility with previous works. Passenger cost is proportional
to the time in order to fulfill the demand represented by the ODmatrix, while operator
cost is often associated to the length of routes.

To develop algorithms for it, we must precisely define the UTRP. We choose a more
general definition in order to allow a comparison with previous work and focus on tech-
niques and algorithms rather than problem fidelity. The nextdefinition follows the work
of Lang Fanet al. (2009).

2.2 UTRP Definition

A graphG(V,E) represents thetransport network, whereV = {v1, . . . , vn} is the
set of nodes representing predefined bus stops, train stops,or more broadly, access points
where the transport is able do pick up and drop off passengers, and whereE = {e1, . . . , en} ⊆
V × V represents the set of direct physical connections between nodes.

29

A route in the transport networkG(V,E) is a pathra = (vi1 , . . . , viq), whereik ∈
{1, . . . , n}. A set of routesR = {ra : 1 ≤ a ≤ N}, whereN is the number of possible
routes, defines a solution to the UTRP problem.

2.2.1 Objective Function

To evaluate the quality of a route set, one must first define aroute network, which
contains only the edges of the respective route. We define asEa the set of edges of the
routera. Then, thetransit graphcan be defined as a graphH(V ′, E ′) in which V ′ ⊆
R × V . The nodewia ∈ V ′ in the transit graphis a pair that combines the routera and
the nodevi ∈ V from thetransport network. Consequently, we define the edges inE ′ in
two parts.E ′

1 corresponds to the set of edges within individual routes, and E ′
2 represents

transfers:

E ′
1 =

⋃

ra∈R

{(wia, wja) : (vi, vj) ∈ Ea}, E ′
2 =

⋃

vi∈V

{(wia, wib) : vi ∈ ra ∩ rb}.

Given thetransit graph, one can define two cost functions, one measuring the user
cost and one the operator cost. The operator objective function is defined as:

CO(R) =
∑

ra∈R

∑

e∈Ea

c(e),

wherec(e) is the cost of operating edgee.

To define the user cost, we usete, the time required to travel through edgee, and the
travel penaltytpen, which is the time it takes to make a transfer. The valuetpen is assumed
to be constant since we do not deal with scheduling. The valuetpen also includes a time
penalty regarding the inconvenience of having to make a transfer instead of staying on the
same route. Given that, the edges inE ′

2 have lengthtpen, while the edges(wia, wja) ∈ E ′
1

have lengtht(vi,vj). Now, the minimum journey time in thetransit graphTG from vi to
vj, αij(TG), is defined as the shortest path from a node in{wia : vi ∈ ra} to a node in
{wjb : vj ∈ rb}.

Let dij denote the transit demand from nodevi to nodevj (defined as the number of
passengers wishing to travel fromvi to vj). Assuming the passengers will always choose
to travel on the shortest paths, the user cost functionsTTT (Total Travel Time) andATT
(Average Travel Time) can be defined as follows:

TTT =
∑

(vi,vj)∈V×V

dijαij(R), ATT =
TTT∑

(vi,vj)∈V×V dij

Since there is more than one objective function to be optimized in this problem, so-
lutions can be classified asdominatedor undominated. In a set of solution candidates, a
solutions is undominatedif and only if no other candidate in the set is better thans on
both quality measurements.

30

2.2.2 Restrictions

Two main restrictions are the only applied in our definition:every route must be a
path, and a route set must cover the whole demand (without limits on transfers), i.e. not
leave any passengers unattended or unable to reach their destinations. In variants of the
problem, further restrictions are often enforced. It is common not to allow cycles or
backtracks within routes, or to limit the size of routes, andit is often assumed that routes
are undirected, i.e., that the public transport travels in both directions of a route.

Nevertheless, it is not uncommon there to be different pathsdepending on the direction
of the route, and cycles are known to occur. Therefore, and inorder to obtain greater gen-
erality, we do not assume any of those restrictions as necessary, and all of our algorithms
are able to deal with any subset of desired restrictions, within those mentioned above,
and produce solutions that satisfy them. This facilitates comparison with algorithms for a
broader class of problem definitions.

Another common characteristic in previous models of the UTRPis fixing the number
of desired routes. This may or may not be realistic, since on the one hand having more
routes may result in more costs, but on the other hand, one already considers operator
costs within the operator cost function. Thus, we choose to allow setting of a lower and
upper bound on the number of routes. We do this since implementing our solutions for a
variable number of routes is not a burden, and it allows more generality and thus broader
comparison possibilities.

2.2.3 Bounds on the Number of Routes and on the Objective Functions

Given atransport network, one can extract minimum bounds on both objective func-
tions. These can be used to measure the quality of achieved results when other experi-
ments have not been performed on the same network, or just to calculate the maximum
possible optimality gap.

To obtain the best possible value for the passenger travel time, it is enough to assume
that every passenger will travel through the best path in thetransport network(as op-
posed to thetransit graph). This clearly gives the minimum obtainable travel time since
every value in the OD matrix is multiplied by the lowest number possible. To calculate
minimum paths in a graph, Dijkstra’s or Floyd-Warshall’s algorithm (DIJKSTRA, 1959;
FLOYD, 1962) can be utilized.

To minimize operator cost, one must find the route set with theleast cost that allows
demand to be fulfilled, i.e. that connects every node on the network. This is solved by
calculating the minimum spanning tree of thetransport network(KRUSKAL, 1956). By
definition, a minimum spanning tree is the subset of edges that connects the graph with
the least weight. This is exactly the same structure needed to minimize operator costs: a
subset of edges that connects the graph with the least cost. Asolution with the same cost
as the minimum spanning tree is the solution where every edgein the minimum spanning
tree is a route. Also, many of these routes may be combined in order to obtain a smaller
number of routes, as is discussed in Section 4.3.

An exception has to be made in the case that not every node possesses demand. In
this case, connecting the demand nodes with the least weightcorresponds to finding a

31

minimum Steiner tree (HWANG; RICHARDS, 1992), and not a minimumspanning tree.
Nevertheless, given that the edge lengths in thetransport networkare usually metric,
the network satisfies the triangle inequality. Therefore, the minimum spanning tree for
the nodes with demands costs no more than double the cost of the optimal Steiner tree
(VAZIRANI, 2001), and is thus a reasonable approximation forthe optimal solution.

Finally, we also attempt to obtain upper bounds on the numberof nodes needed to
fulfill all demand without any transfers. This time, the approach is not exact, and is
based on a greedy algorithm, Algorithm 1. It create routes that maximize instant demand
coverage gain (without transfers). The final route set’s size can be used as an estimator
of the number of routes to be used on the network. The algorithm tends to create routes
that are as long as possible, since they cover more demand, until no more neighbors that
enhance demand coverage are found, or if the route length limit is reached. An example
for a route set created using this algorithm on Mandl’s network is shown in Figure 2.1.

n 0

n 1

n 2

n 3

n 4

n 5

n 1 1

n 7

n 1 4

n 1 0

n 9

n 6

n 8

n 1 2

n 1 3

Figure 2.1: Route set obtained by applying Algorithm 1 to Mandl’s Swiss road network.

32

Algorithm 1 : Greedy demand coverage.

Data: networkG = (V,E), demand matrixdij ∈ QV×V , covered matrix
cij ∈ BV×V androuteSetSize

Result: route setRS with high directly covered demand
for i, j ∈ V do cij ←− 0
// cij is 1 iff demand between i and j
// is satisfied without transfers
repeat

Router ←− ∅
(i∗, j∗) = argmax(i,j)∈X2|cij=1dij
if di∗j∗ = 0 then break
fill r with a path betweeni∗ andj∗ using DFS
repeat

for i, j ∈ r do cij ←− 1
maxDemand←− 0
for i ∈ V do

if i can be added tor then
gainedDemand←− 0
for j ∈ r do gainedDemand←− gainedDemand+ dij(1− cij)
if maxDemand < gainedDemand then

maxDemand←− gainedDemand
toAdd = i

endif
endif

endfor
if maxDemand > 0 then addtoAdd to r

until maxDemand ≤ 0
addr toRS

until |RS| ≥ routeSetSize

33

3 MIXED INTEGER PROGRAMING FORMULATION

In this section we present a formulation that fully solves the UTRP using mixed integer
programming.

3.1 Variables

Our formulation uses the following decision variables: LetR be a set of routes. For
every router ∈ R, srv indicates if vertexv is the initial vertex of router. Similarly, frv
indicates ifv is the final vertex of router. The variablexre is 1 if and only if the edge
e ∈ E belongs to router.

For every pair of verticesv andw, s∗vwr indicates if the best path betweenv andw
starts on router. Likewise,f ∗

vwr indicates ifr is the final route of the best path between
v andw. Finally,x∗

vwe′rnsm
indicates if edgee′rnsm ∈ E ′ is on the best path betweenv and

w, whereE ′ is the set of edges of thetransit graph, as explained in Section 2.2.

Additionally, the real variablesprv indicate the position, starting from0, of the vertex
v on router.

3.2 Constraints

For every router ∈ R, we have the following constraints:

34

∑

v∈V

srv = 1 (3.1)

∑

v∈V

frv = 1 (3.2)

∑

e=(v,w)∈E

xre + frv =
∑

ē=(w,v)∈E

xrē + srv ∀v ∈ V (3.3)

∑

e=(v,w)∈E

xre + frv ≤ 1 ∀v ∈ V (3.4)

|V | − |V |srv ≤ prv ∀v ∈ V (3.5)

prw − |V |+ |V |xre ≤ prv + 1 ∀(v, w) ∈ E (3.6)

prw + |V | − |V |xre ≥ prv + 1 ∀(v, w) ∈ E (3.7)

Additionally, for every pair of verticesv, w ∈ V , we have the constraints:

x∗
vwe′rnrm

≤ xre + xrē ∀r ∈ R, e = (n,m) ∈ E (3.8)

x∗
vwe′rnsm

= 0 ∀n 6= m ∈ V, r 6= s ∈ R (3.9)
∑

r∈R

s∗vwr = 1 (3.10)

∑

r∈R

f ∗
vwr = 1 (3.11)

∑

s∈R,
m∈V

x∗
vwe′rnsm

+ [w = n]f ∗
vwr =

∑

s∈R,
m∈V

x∗
vwe′smrn

+ [v = n]s∗vwr ∀n ∈ V, r ∈ R

(3.12)

There are also constraints for improving performance, suchas not allowing multiple
transfers on the same node and path, not allowing cycles in the best paths, and ordering
the routes such that shorter ones have smaller indices. These constraints only decrease
search space by removing non-optimal solutions or duplicates of solutions, i.e. solutions
that are equal to others except for the route ordering.

3.3 Objective Functions

Given thatc(e) is the cost for operating edgee, te is the time for traversing edgee, dij
is the demand between nodesi andj, andtpen is the time penalty for making a transfer
between routes, the following two objective functions are defined (as explained in Section
2.2.1):

35

minimize
∑

r∈R,
e∈E

c(e)xre (operator cost)

minimize
∑

r∈R,
v,w∈V,

e=(n,m)∈E

tedvwx
∗
vwe′rnrm

+
∑

r,s∈R,
v,w,n∈V

tpendvwx
∗
vwe′rnsn

(user travel time)

3.4 Discussion

The formulation begins by fixing the number of routes|R| (whereR = {1, 2, . . . , |R|})
in the solution route set. This implies in multiple optimizations when a range of number
of routes is acceptable, one for each size.

Each route must then be defined. For each router ∈ R there are2|V | + |E| binary
variables that define it completely. Constraint (3.1) and (3.2) guarantees that there will be
unique start and end nodes for each route. Constraint (3.3) assures that every node within
a route will have an equal number of outgoing and incoming edges active in the route, and
Constraint (3.4) assures that this number shall be smaller orequal to one, except for the
start and end nodes, which shall have zero incoming or outgoing edges, respectively.

To remove closed loops which may be left in the previous steps, the prv variables
and the constraints (3.5), (3.6) and (3.7) are used. Constraint (3.5) sets the position of
the first node in a route to 0. Constraint (3.6) and (3.7) set theposition of a node that
comes after another node in a route to one plus the position ofthe previous node, assuring
sequential positioning. Therefore, the first node will havethe smallest position. Since a
closed loop has no start, no potential position can successfully be assigned to a node in
it. It should be kept in mind that, if extra closed loop routesare acceptable in a solution
(i.e. if the number of routes can be bigger than the given|R|), these constraints can be
removed. These restrictions are similar to the Miller, Tucker, Zemlin subtour elimination
constraints in formulations of the traveling salesperson problem and similar problems
(MILLER; TUCKER; ZEMLIN, 1960).

The rest of the formulation finds|V |2 shortest paths, for each pair origin-destiny, based
on the available routes, following a standard approach for shortest paths LP formulations.
Constraint (3.8) assures that best paths will consist only ofedges available in the chosen
routes. Constraint (3.9) disallows moving between routes, except when this movement is
from a node to itself, in which case it would characterize a transfer (and thus is allowed).

Constraint (3.10) and (3.11) guarantee that there will be unique start and end routes
for each best path. Constraint (3.12) assures that every bestpath will actually be a path,
by balancing the number of ingoing and outgoing edges of every node (which is, in this
case, a pair inR× V , as explained in Section 2.2.1).

The variabless∗vwr, f
∗
vwr andx∗

vwe′ are actually implemented asreal variables between
0 and1. If their values end up being non-integer on an optimal solution, the solution is
still valid and can be interpreted as follows: the best path can be taken in several different
manners, and each manner is used in proportion to the value ofthe corresponding variable.
e.g. if s∗vwr is 0.5, then 50% of the demand fromv to w starts on router. Furthermore,

36

every single path has the same length, since otherwise the rest of the demand would
also use the shortest path, and this would provide a solutionwhich is better than the
optimal, a contradiction. This also means that there is at least one integer solution which
is equivalent to any optimal non-integer solution found.

Finally, using mixed integer programming, one can only optimize a single objective
function. To handle this, we use two approaches: either summing both functions, each
weighted by an importance factor, or setting one of the goalsas a constraint, and not
allowing it to be higher than a certain maximum value. This gives the traffic planner
the possibility to find the best solution for one of the goals,respecting boundaries on the
other, or to find the best solution given a certainlinear trade-offbetween the two objective
functions.

3.5 Modeling the Redesign of an Existing Network

A common problem when designing new routes for an existing public transport net-
work is to decide whether to change existing routes or not. This may incur various costs
such as those of building new routes, changing terminal locations and even getting the
population aware of the new possibilites.

It is easy to use our MIP formulation to help solve this problem. First, one can define
a cost for adding an edgee to router, Are. Similarly, the cost to delete edgee from route
r is Dre. One must also know the previous configuration of the routes on the network:
P ⊆ R × E contains every pair(r, e) containing an edgee that is used in router on the
previous configuration. With this, an objective function for the modification costs can be
defined as

minimize
∑

(r,e)∈P

Dre(1− xre) +
∑

(r,e)/∈P

Arexre. (modification cost)

As with the two previous objective functions, either alinear trade-offmust be found
between user, operator and modification costs, or they can beset as constraints, limiting
costs to a certain threshold while minimizing other objectives.

3.6 Divide-and-Conquer Approach

Since solving the MIP formulation for a large number of nodesis prohibitively slow,
we propose adivide-and-conqueralgorithm that optimizes the network in multiple steps.
It is heuristic, and is has some open details regarding whichroutes should be maintained
in each step, and which nodes should be used to connect routesin these same steps. We
describe it here to present the idea, not to give a detailed definition.

In each step, groups of nodes are selected in the network, with up toK nodes, where
K is a parameter that influences how much time each mixed integer program will run.

37

These groups must be connected, i.e. there must be a path between every member of the
group without going through nodes that are outside of the group. For each group, the best
route set usingR routes is calculated.

Then, in the end of a step, the distance between the groups of nodes is calculated as
an average of the distances between the nodes in each group. If there is no connection
between nodes in two groups, then these groups are not connected.

After doing this, the groups of nodes are collapsed into nodes, i.e. one group becomes
one node, and the distances and connectedness between thesenew nodes are the distances
and connectedness between the groups of nodes, as describedin the last paragraph. With
this, a new step begins. This is done until the total number ofnodes is less than or equal
toK.

To extract the solution from the resulting graph, nodes are expanded back into groups
of nodes. The routes between the nodes are now transformed inorder to travel through
the uncollapsed graph, going into and out of the corresponding groups. Inside each group,
the route being transformed is connected to an existing route, chosen randomly. The path
used to connect two routes can be the best path between the nodes in the extremities of
each route, or another arbitrary path. This is guaranteed tobe possible because an edge in
the collapsed graph corresponds to connectedness in the uncollapsed graph, and because
each group is connected within itself. Some routes might notget selected to form a route
from a previous step. Some or all of these unselected routes might be excluded in order
to reduce the total number of routes.

This is performed until the original graph is obtained, now with a set of routes, which
is the solution of the algorithm. Restrictions regarding cycles in routes, minimum and
maximum lengths are not considered.

38

39

4 METAHEURISTIC APPROACH

The metaheuristic used here is a genetic algorithm (HOLLAND, 1975). Its main
structure is presented in Algorithm 2. Each solution in thisimplementation corresponds
to a set of routes, where each route is represented as a sequence of nodes. To keep track
of solutions, we use three vectors. The vectorP stores the population, and has a size of
populationSize (or less if the population is getting built or rebuilt). The vectorU stores
every solution that isundominated (following the concept explained in Section 2.2), and
is not bounded in size. The vectorB is created when generating initial solutions and stores
some fundamental route sets related to thetransport network, as discussed in Section 4.1.
It is not modified after the end of the initialization routine.

Analyzing the structure of the algorithm, we see that the first step is the generation
of initial routes, or loading the state from a previous run with the same input data. The
initialization procedure is explained in Section 4.1. After creating the three route set
vectors (B,P, U), the algorithm enters its main loop. In most of the iterations, every
element in the population, one at a time, is cloned and suffers a mutation, calledsmall
change. Themake small changeprocedure is from the work of Lang Fanet al. (2009),
and is explained in Section 4.2. This new route set is compared to every existing route set
in the population and, if it dominates any of the existing solutions, it substitutes the first
dominated route set found, taking its place in the population.

Once everyapplyOperatorsInterval, the population is emptied. Before that, every
undominated solution is saved onU , so that high quality solutions do not get lost. Then,
the populationP is rebuilt with random route sets fromB andU . This happens until the
population is half full. After this, existing route sets in the population are matched up and
a random operator is applied to them. The operators that are available for choice in this
step are discussed in Section 4.4. This generates a new solution, that is then added to the
population. The process goes on like this until the population is full, and the algorithm is
ready to run further.

4.1 Generation of Initial Solutions

For the generation of initial solutions, the first step is thecreation of a base list of
solutions, calledB here. This base list of route sets contains fundamental solutions that
are characteristic to the network, as explained in Section 2.2.3.

40

Algorithm 2 : Genetic algorithm for the UTRP.

Data: networkG = (V,E), demand matrixdij ∈ QV×V , totalGenerations,
applyOperatorsInterval, populationSize

Result: a vector of undominated route setsU
vector<route set> B,P, U
if previous state availablethen

B,P, U ←− load previous state(G,d)
else

B,P, U ←− generate initial solutions(G,d)
endif
iteration←− 0
repeat

iteration←− iteration+ 1
if iteration mod applyOperatorsInterval = 0 then

U ←− update undominated solutions(P)
P ←− ∅
i←− 0
while i < populationSize/2 do

i←− i+ 1
rs←− select random route set(B,U)
addrs to P

endw
while i < populationSize do

i←− i+ 1
a, b←− choose two random route sets(P)
oper ←− choose a random operator
rs←− oper(a, b)
addrs to P

endw
endif
for rs ∈ P do

rs′ ←− make small change(rs)
for p ∈ P do

if rs′ dominatesp then
substitutep with rs′ in P
break

endif
endfor

endfor
until iteration ≥ totalGenerations
U ←− update undominated solutions(P)
save state(B,U)

41

One of these is the minimum spanning tree of thetransport network. The second
source of routes is the subgraph of thetransport networkcontaining only shortest paths
given by the Dijkstra or Floyd-Warshall algorithm. All routes contained in one of those
two subgraphs are joined into a route set, and the route sets get simplified (as described
in Section 4.3).

Another source of viable routes forB is the solution obtained by Algorithm 1, as ex-
plained in Section 2.2.3. These route sets tend to cover a high amount of demand directly,
avoiding transfer penalties. Nevertheless, they are usually quite longer than shortest paths,
so they are not very useful if transfer penalties are low.

Considering that, we developed a second greedy algorithm that tries to maximize de-
mand cover, but now using shortest paths. Algorithm 3 is the result of that idea, and its
solution is also added toB. The route set provided by this algorithm is often of high
quality for the passenger.

Finally, the last source of viable solutions forB is the relaxed solution of the MIP
formulation. This is discussed in Section 4.1.1.

Then, the extraction of valid route sets begins. The extraction respects minimum and
maximum number of nodes in route, existence of cycles and number of routes per route
set. It is a random procedure, possibly extracting a different part of the route or route set
at each time it is executed. An example of an invalid route in ascenario that does not
allow cycles is shown in Figure 4.1, as well as the extracted route, with cycles removed.

n0

n1

n2

n3

n4

n5

n0

n1

n2

n3

n4

n5

Figure 4.1: Route containing cycles before and after extraction.

The extractions are then performed several times for each route set (since each ex-
traction may have a different outcome), and all of the resulting valid solutions initialize
the base list. Then, a variable number of exchanges, explained in Section 4.4.1, is exe-
cuted between random valid solutions. At the end, every route set gets simplified, and the
base list is ready. Meanwhile, the undominated listU is also fed with every undominated
solution in the base listB.

The next step is actually creating the initial population. This is done by taking one
third of |P | solutions from the base list, one third of|P | solutions from the undominated
list, and making exchanges among members ofP until the remaining third is filled.

42

Algorithm 3 : Greedy demand coverage using best paths.

Data: networkG = (V,E), demand matrixdij ∈ QV×V , covered matrix
cij ∈ BV×V androuteSetSize

Result: route setRS with high directly covered demand using best paths
for i, j ∈ V do cij ←− 0
// cij is 1 iff demand between i and j
// is satisfied without transfers
repeat

Router ←− ∅
maxDemand←− 0
for i, j ∈ V do

gainedDemand←− 0
for a, b ∈ BestPath(i, j) do

gainedDemand←− gainedDemand+ dab(1− cab)
endfor
if maxDemand < gainedDemand then

maxDemand←− gainedDemand
bestPair ←− (i, j)

endif
endfor
if maxDemand = 0 then

break
endif
r ←− BestPath(bestPair)
addr toRS
Simplify(RS)
update coverage matrixc

until |RS| ≥ routeSetSize
repeat

changed←− false
for rs ∈ RS do

update coverage matrixc
for i, j ∈ V do

if cij = 0 and (r does not containi) and (r contains j)then
if one of the extremities ofr is neighbor ofi then

addi to r in the corresponding extremity
changed←− true

endif
endif

endfor
endfor

until !changed

43

4.1.1 Route Suggestions from MIP Relaxed Solution

The linear relaxation of our MIP formulation can be found in reasonable time. It
works by relaxing the constraints of every binary variable (xre, srv, frv), allowing them to
assume real values between0 and1. Instead of obtaining routes in the solution, we obtain
sets of edges with a real value, interpreted as the likelihood of the edge being used within
the route. From this point on, there are two approaches that we follow: considering each
route separately, as described in Section 4.1.1.1, or joining them, as explained in Section
4.1.1.2.

4.1.1.1 Separate routes

Here, we choose a route from the MIP formulation, and begin onone of its start nodes,
randomly, with chance proportional tosrv. Then, we traverse edges in a similar way, but
with chance proportional toxre. Along the way, we keep theminimum probability, pmin,
which is the minimum value betweensrv and the usedxre variables. When we reach an
end node, the route is complete, unlesspmin is higher thanfrv for this node, in which
case we keep traversing edges with probability equal topmin − frv/pmin, and adjust
pmin←− pmin− frv.

Route suggestions from this approach are actually routes that can be used by the pas-
sengers in the (interpretation of the) MIP formulation, even if not by every passenger,
since the demand from one node to another corresponds to a flowof 1 that travels be-
tween them, and only up to theminimum probabilityflows through the extracted route.

An example of an extracted route is shown in Figure 4.2. For the chosen route, there
were only one start and one end node with non-zero probabilities. The start node is blue,
whereas the end node is red. Other nodes are black. The valuesfor the variablesxre for
the chosen route are in the edges labels: the first value corresponds to the probability of
traversing the edge in the direction given by the edge, and the second value corresponds
to traversing it in the opposite direction. In this scenario, loops were not allowed, and
routes could be traversed in both directions (the given one and the opposite direction).
This means that swapping the red and blue colors and inverting all edges would lead to
the same quality factors.

4.1.1.2 Global importance

Here, we sum, for each edge, all the likelihoods that it receives in every route, and
this value is interpreted as the importance of the edge, i.e.importancee =

∑
r∈R xre.

For the start (srv) and end (frv) nodes, similarly,startImportancev =
∑

r∈R srv and
endImportancev =

∑
r∈R frv.

To create routes based on the importance value of each edge, we simply perform a
random walk, choosing start node or end node with probability proportional to the impor-
tances of each node, and then traversing edges in a similar manner (proportionally to their
importances). We also need to define a desired length for the route, or another stopping
criterion. We choose here to end within a certain length range, and each value of the range
has the same probability of being picked as the desired routelength.

44

n 0

n 10.25 / 0.25

n 2

0.5 / 0

n 3

0.25 / 0.25

n 4

0 / 0.5

n 5

0.5 / 0

0 / 0.5

0.5 / 0

n 1 1

0.25 / 0.25

n 7

0.5 / 0

n 1 4

0.5 / 0
0.25 / 0.25

n 9

0.5 / 0

n 60 / 0.5

0.5 / 0
n 1 0

0.5 / 0

n 1 2

0 / 0

n 1 3

0.5 / 0

n 8

0.25 / 0.25

0.25 / 0.25

0.5 / 0

0 / 0.5

Figure 4.2: Route suggestion network for one route.

An example of an extracted route using this approach is shownin Figure 4.3. We
can see that there are three different importance levels:0, 0.5 and1, values which can
be interpreted as low, medium and high importances. In this example, the number of
routes was 2, the operator cost limit was not applied, and thenumber of edges used, as is
explained in Section 4.1.1.3, was set to15, with a resultingATT of 10.62 minutes.

n 0

n 11

n 2

1

n 3

0 .5

n 4

0

n 5

1

1

1

n 1 1

0

n 71

n 1 4

1
n 1 0

0

n 9

1

n 6

n 8

1

1

1

n 1 2

0

n 1 3

0 .5

1

1

0 .5

0 .5

Figure 4.3: Route suggestion network with global importances.

4.1.1.3 Parameter tuning

The first important parameter that should be configured in order to obtain useful sug-
gestions from the MIP relaxation is the sum of total edges chosen, i.e.

∑
r∈R,e∈E xre,

which is related to the operator cost, but is not the same since in this case the edge lengths

45

are not considered.

If this value is too high, the best achievableATT could be obtained with less edges.
This would mean that the extra edges in the solution are irrelevant, and can be chosen
randomly, not affecting theATT , although changing the importance values. In other
words, the effect would be of random noise on the importance values. On the other hand,
if this value is too low, then theATT will be too high, and we will thus obtain a route
suggestion from a scenario with travel times that are higherthan desired, rendering the
suggestions less useful.

Besides, the number of routes and operator cost should also beset appropriately. Each
route in the relaxed solution may contain several traversable routes within it, but they
still need to be balanced according to the constraints of Section 3.2. To allow a higher
number of routes to be generated, the number of routes shouldbe increased. Similarly, the
operator cost limits the number of edges used, but considering edge lengths. Configuring
it is similar to configuring the sum of total edges chosen, as described in the previous
paragraph.

4.2 Mutation

The mutation operator is based on theMake-Small-Changeprocedure, from the work
of Lang Fanet al. (2009). It applies very small changes to routes, and thus navigates
through the neighborhood of solutions. This is important inorder to find local minima,
maximizing the potential of some route set, but must be complemented so that other areas
of the solution space may also be explored.

The only mutations that are executed are the addition and removal of nodes at the
start or end of a route. Only one node is added or removed at a time. As a last step, the
simplification operator, explained in Section 4.3, is applied. This guarantees that route
sets do not have unnecessary routes and thus obtain better passenger and operator costs.

4.3 Route Set Simplification

When finding a shortest path between two nodes, one will travelexactly through the
shortest paths between the intermediate nodes. This is a known characteristic of problems
to which dynamic programming can be applied, and here it is taken advantage of in a
different way.

As explained in Section 4.1, some route sets are determined and saved on a list of base
route sets. This list will be used to build new initial route sets and candidate solutions.
One of the source of routes for the base route sets is the shortest path between nodes.
These are all added into the routes sets of the base list. But, as discussed above, there are
many overlaps between these shortest routes.

Besides, when using a random decision based algorithm, changes to routes can nat-
urally lead to the same situation: some routes can becontainedin others. Even when
not so, two routes may still bejoinable without any disadvantage to users or to opera-
tors. This is formally defined as follows: the router can bejoinedwith s if: ∃0≤i≤|s|−1 :

46

∀1≤j≤min(|r|,|s|−i) : rj = sj+i. Two routesr ands are joinable if either one of them can be
joined with the other.

These ideas lead to the development of an operation that attempts to combine every
pair of routes belonging to a route set. This operation leadsto big savings of operator costs
for the initial route list, and improves the route set duringthe execution of the genetic
algorithm. An example of a simplification being applied is shown on Figure 4.4.

n0

n1

n2

n3

n4

n5

n11

n7

n14

n10

n9

n6

n8

n12

n13

n0

n1

n2

n3

n4

n5

n11

n7

n14

n10

n9

n6

n8

n12

n13

Figure 4.4: Route set before and after simplification.

47

4.4 Operators

4.4.1 Exchange

The route sets consist of many routes. This operator simply exchanges some of the
routes, chosen randomly, between route sets, and simplifiesthe route sets afterwards. This
is useful to explore new solutions, but does not actuallymodifyroutes. An example of this
operation can be seen in Figure 4.5.

n0

n1

n2

n3

n4

n5

n11

n7

n14

n10

n9

n6

n8

n12

n13

n0

n1

n2

n3

n4

n5

n11

n7

n14

n10

n9

n6

n8

n12

n13

n0

n1

n2

n3

n4

n5

n11

n7

n14

n10

n9

n6

n8

n12

n13

n0

n1

n2

n3

n4

n5

n11

n7

n14

n10

n9

n6

n8

n12

n13

Figure 4.5: A pair of route sets before an exchange (above) and after it (below).

4.4.2 Crossover

In order to try to join two routes and perhaps keep qualities of both of them, a
crossover operation was also defined. The operation works asfollows: a cut point is
randomly defined in both routes, based on a shared node between the routes. From the
beginning of the first route until its cut point, all nodes arecopied into the result. From
there on, the nodes are copied from the cut point of the secondroute until its end. After
that, all the currently applying restrictions are considered, such as prohibition of cycles
and limits on the number of nodes on a route. Nodes are excluded from or included into
the resulting route until it satisfies all restrictions.

In Figure 4.6, two routes are shown together with the resulting route, after a crossover.

4.5 General Considerations

As discussed in Section 1.1, genetic algorithms have shown to be successful in solving
the UTRP. In this section we discuss what are the main characteristics and differences of
our approach in comparison to previous ones.

The first different aspect of our approach is the representation of routes and route sets,

48

n0

n1

n2

n3

n5

n7

n14

n10

n9

n6

n13

n0

n1

n2

n3

n5

n7

n14

n10

n9

n6

n13

Figure 4.6: Routes before and after a crossover (n9 is the cut point).

that is more complex as commonly seen (AGRAWAL; MATHEW, 2004; CHAKROBORTY,
2004; FAN; MUMFORD; EVANS, 2009). It consists of dynamic datastructures such as
sets and vectors instead of simple strings. This is justifiedbecause representing, moving,
copying and modifying routes is not the bottleneck in this problem, but theevaluationof
route sets. This means the structure is made more generic, easier to program and to adapt
to new restrictions, without significant performance loss.

The next difference are the mutation and the operators. The mutation, which applies
very small changes to routes, navigating through the neighborhood of solutions, functions
like a local search, and is executed much more frequently than operators. This is important
in order to find local minima, maximizing the potential of some route set. Nevertheless,
local search must be complemented so that other areas of the solution space may also be
explored, and that is where the operators of exchange and crossover come in. This tends
to better explore the solution space, or at least avoid convergence in local minima.

The key aspect of our approach is the set of different sourcesused for generating good
initial solutions. Besides using the shortest paths, as has been done very often before,
we use the MIP relaxation, two greedy algorithms and the Minimum Spanning Tree (as
discussed in Sections 2.2.3 and 4.1).

The last important characteristic is the maintenance of a base and an undominated
solution list, apart from the population. The first one is used for the initialization proce-
dure, and the second one maintains every undominated solution found. Every time a new
solution is created by an operator, it may not dominate any solutions, but still be undomi-
nated. Since the population size is constant, this new undominated solution would be lost.
Instead, it is kept in the undominated list, whose size is dynamic.

Since this is a multi-objective optimization problem, we only considerdominationfor
the classification of solutions. Thus, there is no fitness level that rates and orders solutions,
and all are considered equal as long as one does not dominate another. Therefore, when
applying operators, every solution candidate has the same probability of being chosen.
Besides that, every element in the population suffers exactly one mutation per evolution
step.

49

4.6 Performance Analysis

To assess the performance of the developed genetic algorithm, we analyzed the com-
plexity of it, and performed profiling.

Regarding complexity analysis, the evaluation of a route set, the most expensive step
of the algorithm, is done using Dijkstra’s algorithm. In this way, a solution can be
evaluated in timeO(|R|2|V |2 log(|R||V |)), since there areO(|V |) evaluations, one per
node, and each one corresponds to an execution of Dijkstra’salgorithm over a graph with
O(|R||V |) nodes andO(|R|2|V |) edges.

The overall running time of the algorithm would be, then, fora population of sizeP
andT evolution steps,O(PT |R|2|V |2 log(|R||V |)).

Then, to experimentally assess the performance of our implementation, we used the
open source GNU Profiler. The graphical output can be seen in Figure 4.7. As shown,
more than 90% of the execution time is spent running Dijkstra. This confirms that eval-
uation is the bottleneck for this algorithm. When analyzing the profiling results, one
should keep in mind that functions with less than0.5% activity are removed, and, besides
that, since the program is compiled with the most agressive optimizations possible, many
functions are joined with others by the compiler and disappear from the results. An actual
calling tree for the program would be, thus, much more complex.

Since the evaluation of different route sets may be done simultaneously, the explo-
ration of the search space may be accelerated arbitrarily, as long as increasingP , through
parallelization. This would require, though, an extensionto the current implementation
to coordinate many concurrent executions of the algorithm by receiving the current un-
dominated solutions, and generating new populations to be run on different processors or
machines. This has not been implemented yet, and will be discussed further in Chapter 6.

Another possibility that is considered in pursue of increasing performance is to only
allow addition of nodes to routes during mutation. This would change the algorithm a
bit, since removal of nodes would have to be done separately,after a bigger number of
iterations, but could prove effective. When adding a node to aroute, thetransit graphgets
only slightly changed.

After such an addition, a singleO(|R|2|V |2) step (assuming|V | ≥ log(|R||V |) that
updates every distance is enough. This step consists of updating the distance from the new
node to every other one (by using Dijkstra’s algorithm), andthen trying to use the node
that was just added between every pair of nodes (similar to one step of Floyd-Warshall’s
algorithm), updating the distances if appropriate. This step could also make use of a
graphical processing unit (GPU), at least when updating thedistance between every pair,
since a step of Floyd-Warshall’s algorithm is parallelizable and can make full use of GPU
processing capabilities (KATZ; KIDER JR, 2008). This has also not been implemented
yet, and is discussed in Chapter 6.

50

RouteSet::simplify

99.86%

(0.00%)

2641×

RouteSet::update_min_dist

99.77%

(6.69%)

9528×

69.33%

6621×

RouteSet::total_user_cost

30.46%

(0.02%)

2907×

30.46%

2907×

RouteSet::Dijkstra

93.06%

(52.79%)

301227×

93.06%

301227×

30.44%

2907×

RouteSet::mix_up

35.24%

(33.98%)

3486554969×

35.24%

3486554879×

Heap::heapify_down

2.67%

(2.67%)

225134768×

2.67%

225134768×

std::_Rb_tree::_M_insert_unique_

1.27%

(0.70%)

223927220×

1.27%

223927220×

std::_Rb_tree::_M_erase

0.72%

(0.72%)

3722418×

0.71%

301227×

TransitGeneticAlgorithm::evolve

94.62%

(0.00%)

94.53%

2500×

std::_Rb_tree::_M_insert_unique_

1.21%

(0.71%)

225971185×

1.21%

225971185×

std::_Rb_tree::_M_insert_

0.52%

(0.52%)

223927220×

0.52%

223626098×

3414155×

TransitGeneticAlgorithm::new_population

3.43%

(0.00%)

3.40%

90×

TransitGeneticAlgorithm::read_u

1.94%

(0.00%)

1.93%

51×

Figure 4.7: Profiling results for the implementation of the genetic algorithm.

51

5 EXPERIMENTAL RESULTS

As discussed in Section 1.1, there is one commonly availablebenchmark for the
UTRP, namely Mandl’s Swiss road network (MANDL, 1980), whichhas15 nodes and
21 links. We use it for our experiments in order to compare our results with previous
works (BAAJ; MAHMASSANI, 1991; SHIH; MAHMASSANI, 1994; KIDWAI, 1998;
CHAKROBORTY, 2004; ZHAO, 2006; FAN; MUMFORD; EVANS, 2009).

We have used both our MIP formulation, as described in Section 5.1, and the meta-
heuristic, as discussed in Section 5.2.1, with Mandl’s network, also obtaining exact an-
swers for small numbers of routes.

Besides using the well known benchmark, we choose to test our algorithm with a
medium sized network as well. This network has also been tested before by the authors
whose results are the best known for Mandl’s network. This larger test case was produced
by Lang Fanet al. (2009), and by using it we expect test our solution’s qualityand
scalability for bigger networks.

All results are evaluated using the following quantities, as in previous works:

• di is the percentage of the demand satisfied withi transfers.

• ATT is the average travel time (in minutes per passenger), including transfer penal-
ties.

• CO is the cost for the operator, i.e., the total route length (inminutes, considering
constant transport speed).

Among these, the only quantity that should be as high as possible isd0, which indi-
cates how much of the demand can be satisfied directly, i.e. without transfers.All other
measures should be as small as possible.

When evaluating scenarios on which no tests have been previously made, we use the
lower bound on theATT , as explained in Section 2.2.3, to obtain reference qualityvalues.

Finally, results were obtained on a PC with an IntelR© CoreTM2 i5-460M 2.53GHz
(3MB L3 cache) processor and 4GB of RAM using Linux Ubuntu 12.04 OS.

52

5.1 Mixed Integer Programming Approach

The MIP formulation was implemented in GNU MathProg Modeling Language, and
solved using theIBM ILOG CPLEX Optimizer 12.4(CPLEX, 2009). The execution times
have been measured in seconds of real time.

We obtained the best possible route sets on Mandl’s network regarding user travel
time for two and three routes, which were, to the best of our knowledge, never published
before. The quality, processing times and the actual routesof the solutions are given in
Table 5.1. Figures 5.1 and 5.2 show the best route sets, for better visualization, for two
and three routes, respectively.

Table 5.1: Best possible route sets found using the Mixed Integer formulation
Number of routes 2 3

d0 84.90 % 93.67 %
d1 14.00 % 5.43 %
d2 1.10 % 0.90 %

ATT 11.33 min. 10.50 min.
CO 98 min. 150 min.

Processing time (s) 1065 78992
Two Routes 6-14-7-5-2-1-4-3-11-10-9-13-12

0-1-3-5-7-9-6-14-8
Three Routes 4-3-11-10-12-13-9-7-5-2-1-0

4-3-1-2-5-14-6-9-10-11
0-1-4-3-5-7-9-6-14-8

n 0

n 1

n 2

n 3

n 4

n 5

n 1 1

n 7

n 1 4

n 1 0

n 9

n 6

n 8

n 1 2

n 1 3

Figure 5.1: Global best route set for two routes.

It is clear that completely solving the UTRP, aNP-hard problem, using exact meth-
ods is not scalable nor feasible even for relatively small instances of the problem. These
experiments show the problem size to which it can still be applied and validate the cor-
rectness of the formulation. Besides, other applications for the MIP formulation can take

53

n 0

n 1

n 2

n 3

n 4

n 5

n 1 1

n 7

n 1 4

n 1 0

n 9

n 6

n 8

n 1 2

n 1 3

Figure 5.2: Global best route set for three routes.

full advantage of it without bumping into processing time restrictions, such as optimizing
a small part of a network, performing many small optimizations on a network in adivide-
and-conquerfashion, that end up optimizing the whole network (even though not in an
exact manner, but heuristic), and finally for suggesting routes by obtaining a relaxed (i.e.
real) solution.

Since the2 routes case has144 binary variables and the3 routes scenario has216,
and given the processing times given in Table 5.1, one can estimate the processing time
required for solving the instance with4 routes to be about77 days. These results were
achieved using all available cores (the processing times can be lowered by further paral-
lelization).

5.2 Metaheuristic approach

5.2.1 Mandl’s Network

The stopping criterion of the genetic algorithm when applied to Mandl’s network was
200, 400 and600 evolution steps when testing with limits of respectively4, 6 and8 routes.
The population consisted of1000 route sets. We chose these values proportional to the
ones used in (FAN; MUMFORD; EVANS, 2009), in order to allow a fair comparison,
since the actual processing times were not available. Nevertheless, we decreased the
number of iterations and total reruns in order to compensatefor hardware advances and
possible longer execution times per iteration in our approach.

We first compare our results with the multi-objective approach proposed by Fanet
al. (2009), which is better suited for the UTRP since there are twomajor concerns when
developing routes for urban transit: the quality for the passengers and the costs for the op-
erators. The results are present in Table 5.2. We can see that, in comparison to previously
published results, our solutions were always better, i.e.,we achieve superior solutions

54

with equal or smaller prices and better travel times. Moreover, they dominate the pre-
vious results, being better in all considered measures, or in only of them, but without
affecting the others. The four route sets whose results are shown in Table 5.2 are listed in
detail in Table 5.3. Besides, Figure 5.3 shows the graphs, forimproved visualization, in
the same order as in Table 5.3.

Table 5.2: Comparison between best UTRP multi-objective solutions on Mandl’s Network
Scenario Qp Melhor valor conhecido Nossos resultados

(Lang Fan)
Melhor para passageiro d0 94.54 % 98.84 %

d1 5.46 % 1.16 %
d2 0.00 % 0.00 %

ATT 10.36 min. 10.10min.
CO 283 min. 259min.

Soluç̃ao balanceada d0 93.19 % 93.61 %
(CO ≤ 148) d1 6.23 % 6.20 %

d2 0.58 % 0.19 %
ATT 10.46 min. 10.43min.
CO 148 min. 147min.

Soluç̃ao balanceada d0 90.88 % 91.23 %
(CO ≤ 126) d1 8.35 % 7.84 %

d2 0.77 % 0.93 %
ATT 10.65 min. 10.59min.
CO 126 min. 126 min.

Melhor para operador d0 66.09 % 77.78 %
d1 30.38 % 21.32 %
d2 3.53 % 0.90 %

ATT 13.34 min. 12.97min.
CO 63 min. 63 min.

Table 5.3: Route sets found by our metaheuristic for the UTRP onMandl’s Network
Best route set for passengers Compromise route set withCO ≤ 148

0-1-3-11-10-12-13-9-6-14-7-5 0-1-2-5-7-9-10-11-3-4
0-1-2-5-14-6-9-10-12-13 4-3-5-7-9-10-12-13
0-1-4-3-5-7-9-10-12-13 6-14-7-5-2-1-3-4
2-5-3-11-10-9-6-14-8 0-1-3-5-14-6
0-1-2-5-7-9-10-12-13 13-9-6-14-8

4-1-2-5-14-8
4-3-5-14-6

Compromise route set withCO ≤ 126 Best route set for the operator
0-1-2-5-7-9-10-11-3 13-12-10-9-6-14-7-5-2-1-0
4-3-5-7-9-10-12-13 4-3-1
6-14-7-5-2-1-3-4 10-11

13-9-6-14-8 14-8
5-14-6

55

n 0

n 1

n 2

n 3

n 4

n 5

n 1 1

n 7

n 1 4

n 1 0

n 9

n 6

n 8

n 1 2

n 1 3

n 0

n 1

n 2

n 3

n 4

n 5

n 1 1

n 7

n 1 4

n 1 0

n 9

n 6

n 8

n 1 2

n 1 3

n 0

n 1

n 2

n 3

n 4

n 5

n 1 1

n 7

n 1 4

n 1 0

n 9

n 6

n 8

n 1 2

n 1 3

n 0

n 1

n 2

n 3

n 4

n 5

n 1 1

n 7

n 1 4

n 1 0

n 9

n 6

n 8

n 1 2

n 1 3

Figure 5.3: Route sets corresponding to Table 5.3.

Finally, to perform a broader comparison, the results on many previous works on
Mandl’s network (MANDL, 1980); (BAAJ; MAHMASSANI, 1991); (KIDWAI, 1998;
CHAKROBORTY, 2004) were analyzed, and the best results are shown in Table 5.4, in
comparison to our results. These best values were adapted according to what is described
in Section 5.3.

Here, the objective is only one: decrease passenger travel time, without taking transfer
penalties into consideration. This was necessary to allow acomparison between hetero-
geneous penalty values. Not considering penalties favors results that were achieved using
lower penalty values, given that these are closer to not having a penalty at all. Since we
used five minutes penalty per transfer, and this is the highest amount applied in the cited
publications, our results should not be favored.

The average travel time without penalty corresponds to how much time passengers
would travel if the penalty was reduced from its current value, tpen, to zero. To calcu-
late this term, the following formula is used (whereTMAX is the maximum number of
transfers):ATTwop = ATT −

∑
i≤TMAX

tpendii.

Table 5.4: Comparison between best single-objective UTRP solutions on Mandl’s Net-
work

|R| Best knownATTwop ATTwop obtained
(CHAKROBORTY, 2004) by our approach

4 10.33 min. 10.30min.
6 10.43 min. 10.11min.
7 10.53 min. 10.04min.
8 11.22 min. 10.05min.

It is important to keep in mind that the comparison made in this single-objective case
is not as fair as in the multi-objective scenario. This is so because, when comparing
results from various sources, slight differences in the definition of the problems occur,

56

e.g. regarding the minimum and maximum number of nodes per route, allowance of
cycles and others. Besides this, the differences in publishing dates, and therefore also in
hardware used for running experiments, make it harder to compare the running time of the
approaches. Nevertheless, our approach showed to be successful in the single-objective
case as well.

As a final remark for this test case, a possible utility of our metaheuristic, besides
obtaining route sets, is estimating the curve where theundominatedsolutions lay. This
information can be very useful for a planner, since he can better decide on making a
trade-off between the costs involved. To demonstrate that, we show a graphic in Figure
5.4 with an approximation for the Pareto-optimal curve, i.e. the curve ofundominated
solutions. There, a roughly adjusted function dictates what is the bestCO given a certain
ATT , and vice-versa. One can also compare the quality achieved with different algorithm
configurations using such a set of Pareto-optimal solutions.

60

80

100

120

140

160

180

200

220

240

10 10.5 11 11.5 12 12.5 13 13.5

T
o

ta
l
ro

u
te

 s
e

t
le

n
g

th
 i
n
 m

in
u
te

s

Average travel time in minutes

Approximation for Pareto-optimal curves

GA Solutions with up to 8 routes

GA Solutions with up to 6 routes

GA Solutions with up to 4 routes

Fitting curve (58.22/(x-9.86) + 44.36)

Figure 5.4: Pareto-optimal curves for Mandl’s network.

5.2.2 British City Based Network

To assess the behavior of our metaheuristic approach when dealing with larger net-
works, we applied it to the network defined and used in the workof Lang Fanet al.
(2009; 2010), which has110 nodes and275 links, with 3603360 journeys per day. The
Figure 5.5 is a visualization of the network which respects link sizes, but not planarity.
The network’s size and connectivity are based on a major British city. Two scenarios were
defined on top of this network, each one with its own minimum and maximum number of
nodes per route, and total number of routes.

57

n 0

n 2 1

n 7 0

n 1 0 2

n 5 7

n 1 0 4

n 2 6

n 3 5

n 1

n 2
n 8

n 1 1

n 6 2

n 8 4

n 2 3

n 4 5

n 4 8

n 9 2

n 1 0 8

n 1 0 6

n 9 1

n 5 2

n 8 3

n 2 8

n 9 0

n 4 0

n 3

n 2 0

n 3 9

n 4 1

n 5 1

n 7 2

n 7 5

n 8 6

n 8 8

n 3 6

n 6 3

n 5 5

n 2 2

n 1 0 7

n 4

n 2 9

n 4 4

n 6 5

n 8 9

n 9 5

n 1 0 9

n 3 3
n 5 0

n 5 6

n 1 3

n 7 6

n 1 9

n 3 4

n 1 0 5

n 9 6

n 5

n 1 4

n 1 5

n 2 7

n 3 1

n 8 2

n 9 7
n 3 7

n 2 4

n 8 1

n 6

n 3 0

n 4 2

n 7 4

n 8 5

n 9 3

n 9 4

n 7 7

n 9 8

n 6 4

n 6 8

n 7

n 9

n 1 2

n 1 7

n 4 9

n 6 7

n 1 0 0

n 1 6

n 4 3

n 1 0n 2 5

n 5 9

n 1 0 3

n 7 8

n 4 7

n 3 8

n 6 9

n 4 6

n 5 3

n 5 4

n 1 8

n 3 2

n 7 3

n 7 9

n 1 0 1

n 8 7

n 6 0

n 6 1

n 6 6

n 8 0

n 9 9

n 7 1

n 5 8

Figure 5.5: British city based network.

58

Since our approach can handle multiple route set sizes at thesame time, the biggest
difference in each scenario is the number of nodes per route.The minimum number is2
and the maximum number is29 in scenario I, being these limits derived from thetransport
network, its connectivity and number of nodes, as is stated in the work of Lang Fanet al.
(2009). In scenario II, the minimum number is10 and the maximum number is22. The
limits in scenario II are derived from the actual routes usedin the major British city upon
which the artificial network was based.

The running time informed in previous works averages between 13000 and 19000
seconds of processing, depending on the scenario. We used nomore than2500 seconds
in each test case.

The full comparison between previous results and our outcome for this network is
given in Table 5.5. Two of our route sets on Table 5.5 are shownin Figures 5.6 and 5.7.
An intermediate route set found by our metaheuristic, whichis undominated and more
balanced between passenger and operator cost, is shown in Figure 5.8.

It can be noticed that we optimize the major objective of all scenarios better.

The fact that our route sets were superior when not considering penalties shows that
most passengers travel through the fastest or almost fastest paths in thetransport network.
A reason for this is the frequent use of these fastest paths ascandidate routes in our
algorithm.

Since we also utilize routes created using Algorithm 1 and 3,we are also able to
obtain routes with high directly covered demand (i.e. highd0). If configured not to make
transfers, we obtained anATT of about57 minutes and only45 routes. This shows that
only 45 routes are needed to cover the whole demand directly, but that this also makes the
average trip20 minutes slower, an increase of more than50%.

Another important remark is that our outcome had much cheaper (to operate) route
sets in the operator-oriented scenarios. This shows that our metaheuristic approach was
also successful when optimizing prices instead of travel times. This helps producing a
much wider range of available compromise solutions to be chosen by a public transit
network planner, thus improving overall network quality.

An interesting fact about the network is obtained by analyzing the output of Algorithm
1 with this network as input. Among the solutions provided bythe mentioned algorithm
is one that has45 routes and is able to cover all demand without transfers. Nevertheless,
it achieves an ATT of61 minutes (this is obtained by setting the penalty value very high,
such as 5000 minutes, for example). By allowing transfers, the ATT falls to40 minutes.
This shows that45 routes are enough to cover demand without transfers, and that direct
routes can often be inferior to paths with transfers.

5.3 Reproducibility and Difficulties with Previous Results

In this section, we discuss problems faced when comparing our results to previous
ones.

By chronological order, the first work used for comparison is that of Chakroborty

59

Table 5.5: Comparison between best UTRP multi-objective solutions on artificial British
city

Scenario Qp Best known value Our metaheuristic
(FAN; MUMFORD; EVANS, 2009) approach results

I-Passenger d0 72.91 % 61.95 %
d1 20.56 % 37.75 %
d2 6.54 % 0.30 %

ATT 36.28 min. 36.01min.
ATTwop 34.60 min. 34.09min.
CO 2986 min. 8405 min.

II-Passenger d0 71.21 % 53.22 %
d1 20.71 % 44.92 %
d2 8.08 % 1.85 %
d3 0.00 % 0.01 %

ATT 37.52 min. 36.66min.
ATTwop 35.68 min. 34.23min.
CO 2378 min. 6173 min.

I-Operator d0 48.62 % 9.31 %
d1 32.45 % 24.77 %
d2 18.93 % 31.22 %
d3 0.00 % 24.39 %
d4 0.00 % 8.66 %
d5 0.00 % 1.58 %
d6 0.00 % 0.07 %

ATT 40.88 min. 55.54 min.
ATTwop 37.36 min. 45.37 min.
CO 1077 min. 319min.

II-Operator d0 46.97 % 8.47 %
d1 31.84 % 24.03 %
d2 21.19 % 32.84 %
d3 0.00 % 20.66 %
d4 0.00 % 10.43 %
d5 0.00 % 3.03 %
d6 0.00 % 0.54 %

ATT 41.26 min. 55.96 min.
ATTwop 37.655 min. 45.37 min.
CO 1265 min. 319min.

60

n0

n21

n70

n102

n57

n104

n26

n35

n1

n2
n8

n11

n62

n84

n23

n45

n48

n92

n108

n106

n91

n52

n83

n28

n90

n40

n3

n20

n39

n41

n51

n72

n75

n86

n88

n36

n63

n55

n22

n107

n4

n29

n44

n65

n89

n95

n109

n33
n50

n56

n13

n76

n19

n34

n105

n96

n5

n14

n15

n27

n31

n82

n97
n37

n24

n81

n6

n30

n42

n74

n85

n93

n94

n77

n98

n64

n68

n7

n9

n12

n17

n49

n67

n100

n16

n43

n10
n25

n59

n103

n78

n47

n38

n69

n46

n53

n54

n18

n32

n73

n79

n101

n87

n60

n61

n66

n80

n99

n71

n58

Figure 5.6: Operator-oriented route set for British city based network.

61

n 0

n 2 1

n 7 0

n 1 0 2

n 5 7

n 1 0 4

n 2 6

n 3 5

n 1

n 2
n 8

n 1 1

n 6 2

n 8 4

n 2 3

n 4 5

n 4 8

n 9 2

n 1 0 8

n 1 0 6

n 9 1

n 5 2

n 8 3

n 2 8

n 9 0

n 4 0

n 3

n 2 0

n 3 9

n 4 1

n 5 1

n 7 2

n 7 5

n 8 6

n 8 8

n 3 6

n 6 3

n 5 5

n 2 2

n 1 0 7

n 4

n 2 9

n 4 4

n 6 5

n 8 9

n 9 5

n 1 0 9

n 3 3
n 5 0

n 5 6

n 1 3

n 7 6

n 1 9

n 3 4

n 1 0 5

n 9 6

n 5

n 1 4

n 1 5

n 2 7

n 3 1

n 8 2

n 9 7
n 3 7

n 2 4

n 8 1

n 6

n 3 0

n 4 2

n 7 4

n 8 5

n 9 3

n 9 4

n 7 7

n 9 8

n 6 4

n 6 8

n 7

n 9

n 1 2

n 1 7

n 4 9

n 6 7

n 1 0 0

n 1 6

n 4 3

n 1 0n 2 5

n 5 9

n 1 0 3

n 7 8

n 4 7

n 3 8

n 6 9

n 4 6

n 5 3

n 5 4

n 1 8

n 3 2

n 7 3

n 7 9

n 1 0 1

n 8 7

n 6 0

n 6 1

n 6 6

n 8 0

n 9 9

n 7 1

n 5 8

Figure 5.7: Passenger-oriented route set for British city based network.

62

n0

n21

n70

n102

n57

n104

n26

n35

n1

n2
n8

n11

n62

n84

n23

n45

n48

n92

n108

n106

n91

n52

n83

n28

n90

n40

n3

n20

n39

n41

n51

n72

n75

n86

n88

n36

n63

n55

n22

n107

n4

n29

n44

n65

n89

n95

n109

n33
n50

n56

n13

n76

n19

n34

n105

n96

n5

n14

n15

n27

n31

n82

n97
n37

n24

n81

n6

n30

n42

n74

n85

n93

n94

n77

n98

n64

n68

n7

n9

n12

n17

n49

n67

n100

n16

n43

n10
n25

n59

n103

n78

n47

n38

n69

n46

n53

n54

n18

n32

n73

n79

n101

n87

n60

n61

n66

n80

n99

n71

n58

Figure 5.8: Balanced route set for British city based network.

63

et al. (2004). In their work, a list of previous results is published, together with new
routes, that are evaluated as better than any other result atthe time, and finally the authors
provide quality factors for the given routes. But, when trying to assess the quality factors
of their published routes with our implementations, both the MIP formulation and the
genetic algorithm gave the same result, as expected, and it was different from what was
published.

To try to explain this, differences in problem definitions were investigated. Never-
theless, we could not find any difference in the definition of how to evaluate a solution.
We also experimented with making routes be unidirectional (instead of bidirectional), and
this only generated results that were even farther from the published ones. Given that, we
decided to utilize the quality factors given by both our MIP formulation and genetic al-
gorithm in our comparisons. Since the implementations are completely independent, and
they were able to reproduce every result from other works without problems, we consider
them to be reliable.

We also perform comparisons with the work of Lang Fanet al. (2009) using two test
cases, Mandl’s network and a British city based network, as explained in this chapter. The
results for Mandl’s network were checked, since the route sets were published in detail,
and every result was correctly reproduced. But, when analyzing the British city based
network results, we perceived an inconsistency. Route sets were not published for this
network, possibly because of space limitations, and this difficults validation.

To explain the inconsistency, we first recall the definition of the Average Travel Time
without penalty (ATTwop), which is how much time passengers would travel if the penalty
was reduced from its current value,tpen, to zero. To calculate this term, the following
formula is used (whereTMAX is the maximum number of transfers):ATTwop = ATT −∑

i≤TMAX
tpendii.

Recalling Section 2.2.3, the minimum travel time, if every route were available, is
given by taking best paths in thetransport network(where every edge is available). It
is impossible to achieve a better result than the minimum travel time, since it already
considers no penalties and uses the best paths, so no possible penalty configuration may
result in smaller results than the minimum travel time.

The minimum travel time is known for the British city based network, and equals to
33.8395, as published by Lang Fanet al. and confirmed with our implementations. Nev-
ertheless, theATTwop for the results of Lang Fan.et al. in passenger-oriented scenarios
are32.92, 33.36, 33.8365 and33.85 minutes. Three out of four of the givenATTswop

are better than would be possible given the edge distances inthe network, indicating that
the published results do not correspond to legal results forthe given instance and problem
statement.

In order to be able to use their results for comparison, we assume that the authors were
not considering penalties when calculating theirATTs, or in other words, they forgot
to apply the penalty. Nevertheless, the other quality indicators also do not have great
resemblance to normally found results with our algorithms,presenting combinations of
very cheap route sets with very high covered demand. We present these results in detail
in Section 5.2.2.

64

65

6 CONCLUDING REMARKS AND FUTURE WORK

The chosen problem definition was successful in allowing comparison with many pre-
vious works, as it proved generic and flexible enough to be compatible with them. We
expect solutions to other, more specific problem statements, e.g. more realistic repre-
sentations of the UTRP, to be able to take advantage of the techniques and algorithms
developed in this work, with some adaptation.

We developed and implemented an exact MIP formulation for the UTRP. To the best
of our knowledge, a full exact solution to this problem was never published before. With
it, we obtained the best possible solutions for small sized scenarios, which were also
never published before. A time estimate for exactly solvinga certain instance of the
problem was derived, and with it, limits on the problem size to which exact solutions are
feasible can be derived. We also proposed adivide-and-conquerheuristic using the MIP
formulation for each step. In addition, from the MIP formulation, we were able to obtain
route suggestions for our metaheuristic approach. Finally, a formulation for redesigning
an existing network was also given, which may be useful in practice to consider the cost
and utility of changing existing routes.

We also proposed and implemented a genetic algorithm to solve the UTRP. With this
approach, we achieved better results than every other knownto us. Most of our solutions
alsodominatedprevious solutions, and thus did not only improve the main goal, but all
goals.

This was done with a more flexible implementation in comparison to previous ap-
proaches, which is not bound to certain restrictions such asfixed number of routes, min-
imum and maximum number of nodes per route, allowance of cycles, directedness of
routes and more. This characteristic is also due to the problem definition, which is more
generic than previous ones.

The proposed approach uses the following ideas to reach better results: it carefully
selects initial solutions from many different sources, including MIP relaxation, minimum
spanning tree, shortest paths and from greedy algorithms; it appliessimplificationto pre-
vent unnecessary routes; and it uses operators such asexchangeandcrossover, that ex-
change characteristics between routes and route sets.

Regarding reliability and correctness, results of previousworks were reproduced and
tested using both the MIP formulation and the genetic algorithm implementation, which
have no relation between them (except of being written by thesame author), and the
results were coherent. We also extended our implementationto allow state saving at

66

some point of the computation, so as to enable division of thework in different time
periods and machines. Another extension provides capability of transferring solutions
from the genetic algorithm to the MIP formulation and vice-versa, what is useful for
testing or optimizing parts of the problem. The programs canalso export the networks in
the Graphviz format (ELLSON et al., 2002) for easier visualization and debugging.

To test the proposed algorithm and implementation with further test cases, also con-
sidering real scenarios, we are currently using networks representing big capitals such
as Porto Alegre, Brazil and Berlin, Germany in our tests. One difficulty in doing this is
obtaining the demand data, i.e. the OD matrix. We can roughlyestimate demands accord-
ing to common sense, thus obtaining approximate results, but this does not allow direct
comparison with the existing route set of the public transport system, since differences in
quality factors may be due to differences in the OD matrix.

We are also integrating our implementation with simulationsoftware in order to fur-
ther validate and assess the used techniques and algorithms. The simulation package in
use is MATSim (BALMER et al., 2009). An idea here is to substitute our quality factors
by the evaluation function of the simulation package. In case of success, this would prove
the generality of the methods in use here, and how they can adapt to different problem
definitions and conditions.

Regarding performance, our genetic algorithm implementation has room for improve-
ment. By simultaneously evolving different members of the population, the algorithm
may be sped up by a factor equal to the size of the population, which can be set arbitrarily
high, as long as respecting memory boundaries. This would beconvenient in order to
faster explore the search space, and would be essential whendealing with very big in-
stances. Implementing this involves coordinating the use of many cores or machines, but
does not require any significant change to the algorithm structure.

With the work developed here, we expect to improve the overall quality of methods
and algorithms available to solve the UTRP, which becomes vital as public urban transit
networks grow larger and more complicated.

67

REFERENCES

AGRAWAL, J.; MATHEW, T. V. Transit Route Network Design Using Parallel Genetic
Algorithm. Journal of Computing in Civil Engineering , [S.l.], v.18, n.3, p.248–256,
2004.

ÁLVAREZ, A. et al. A computational tool for optimizing the urban public transport: a
real application.Journal of Computer and Systems Sciences International, [S.l.], v.49,
p.244–252, 2010.

BAAJ, M.; MAHMASSANI, H. An AI-based approach for transit route system planning
and design.Journal of Advanced Transportation, [S.l.], v.25, n.2, p.187–209, 1991.

BALMER, M. et al. MATSim-T: architecture and simulation times.Multi-agent systems
for traffic and transportation engineering , [S.l.], p.57–78, 2009.

BORNDöRFER, R.; GR̈oTSCHEL, M.; PFETSCH, M. E. A Column-Generation Ap-
proach to Line Planning in Public Transport.Transportation Science, Institute for Oper-
ations Research and the Management Sciences (INFORMS), Linthicum, Maryland, USA,
v.41, n.1, p.123–132, Feb. 2007.

CHAKROBORTY, P. Optimal Routing and Scheduling in Transportation: using genetic
algorithm to solve difficult optimization problems.Directions-Indian Institute of tech-
nology kanpur, [S.l.], 2004.

CHAKROBORTY, P.; WIVEDI, T. Optimal route network design for transit systems us-
ing genetic algorithms.Engineering Optimization, [S.l.], v.34, n.1, p.83–100, 2002.

CPLEX, I. High-performance software for mathematical programming and optimization.
U RL http://www. ilog. com/products/cplex, [S.l.], 2009.

CURTIN, K. M.; BIBA, S. The Transit Route Arc-Node Service Maximization problem.
European Journal of Operational Research, [S.l.], v.208, n.1, p.46 – 56, 2011.

DIJKSTRA, E. A note on two problems in connexion with graphs.Numerische mathe-
matik , [S.l.], v.1, n.1, p.269–271, 1959.

ELLSON, J. et al. Graphviz—open source graph drawing tools.In: GRAPH DRAWING.
Anais. . . [S.l.: s.n.], 2002. p.594–597.

FAN, L. Metaheuristic Methods for the Urban Transit Routing Problem. 2009. Tese
(Doutorado em Cîencia da Computação) — PhD. dissertation, Cardiff University, Cardiff,
United Kingdom.

68

FAN, L.; MUMFORD, C. L. A metaheuristic approach to the urban transit routing prob-
lem.Journal of Heuristics, Hingham, MA, USA, v.16, n.3, p.353–372, June 2010.

FAN, L.; MUMFORD, C. L.; EVANS, D. A simple multi-objective optimization al-
gorithm for the urban transit routing problem. In: ELEVENTHCONFERENCE ON
CONGRESS ON EVOLUTIONARY COMPUTATION, Piscataway, NJ, USA.Proceed-
ings. . . IEEE Press, 2009. p.1–7. (CEC’09).

FAN, W.; MACHEMEHL, R. B. Optimal Transit Route Network Design Problem with
Variable Transit Demand: genetic algorithm approach.Journal of Transportation Engi-
neering, [S.l.], v.132, n.1, p.40–51, 2006.

FAN, W.; MACHEMEHL, R. B. A Tabu Search Based Heuristic Method forthe Tran-
sit Route Network Design Problem. In: HICKMAN, M.; MIRCHANDANI,P.; VOSS,
S. (Ed.).Computer-aided Systems in Public Transport. [S.l.]: Springer Berlin Heidel-
berg, 2008. p.387–408. (Lecture Notes in Economics and Mathematical Systems, v.600).

FLOYD, R. W. Algorithm 97: shortest path.Commun. ACM, New York, NY, USA, v.5,
n.6, p.345–, June 1962.

HOLLAND, J. H. Adaptation in Natural and Artificial Systems . [S.l.]: University of
Michigan Press, 1975. 1–200?p. v.Ann Arbor.

HWANG, F.; RICHARDS, D. Steiner tree problems.Networks, [S.l.], v.22, n.1, p.55–89,
1992.

ISRAELI, Y.; CEDER, A. Designing transit routes at the network level. In: VEHICLE
NAVIGATION AND INFORMATION SYSTEMS CONFERENCE, 1989. CONFER-
ENCE RECORD.Anais. . . [S.l.: s.n.], 1989. p.310 –316.

KATZ, G.; KIDER JR, J. All-pairs shortest-paths for large graphs on the GPU. In: ACM
SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON GRAPHICS HARDWARE, 23.Pro-
ceedings. . .[S.l.: s.n.], 2008. p.47–55.

KIDWAI, F. Optimal design of bus transit network: a genetic algorithm based ap-
proach. 1998. Tese (Doutorado em Ciência da Computação) — PhD. dissertation, Indian
Institute of Technology, Kanpur, India.

KRUSKAL, J. On the shortest spanning subtree of a graph and the traveling salesman
problem.Proceedings of the American Mathematical society, [S.l.], v.7, n.1, p.48–50,
1956.

MANDL, C. Evaluation and optimization of urban public transportation networks.Euro-
pean Journal of Operational Research, [S.l.], v.5, n.6, p.396–404, 1980.

MAZLOUMI, E. et al. Efficient Transit Schedule Design of timing points: a comparison
of ant colony and genetic algorithms.Transportation Research Part B: Methodologi-
cal, [S.l.], v.46, n.1, p.217 – 234, 2012.

MILLER, C.; TUCKER, A.; ZEMLIN, R. Integer programming formulation of traveling
salesman problems.Journal of the ACM (JACM) , [S.l.], v.7, n.4, p.326–329, 1960.

69

SHIH, M.; MAHMASSANI, H. Vehicle sizing model for bus transit networks.Trans-
portation Research Record, [S.l.], n.1452, 1994.

TOM, V. M.; MOHAN, S. Transit Route Network Design Using Frequency Coded Ge-
netic Algorithm.Journal of Transportation Engineering, [S.l.], v.129, n.2, p.186–195,
2003.

VAZIRANI, V. Approximation algorithms . [S.l.]: Springer Verlag, 2001.

WAN, Q.; LO, H. A Mixed Integer Formulation for Multiple-Route Transit Network De-
sign.Journal of Mathematical Modelling and Algorithms , [S.l.], v.2, p.299–308, 2003.
10.1023/B:JMMA.0000020425.99217.cd.

ZHAO, F. Large-scale transit network optimization by minimizing user cost and transfers.
Journal of Public Transportation , [S.l.], v.9, n.2, p.107, 2006.

