MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Escola de Engenharia

Programa de Pós Graduação em Engenharia de Minas, Metalúrgica e de Materiais

PPGEM

NITRETAÇÃO A PLASMA EM FUROS NÃO PASSANTES

JOÃO UBIRATÃ ANDRETTA

Dissertação para obtenção do Título de Mestre em Engenharia

Porto Alegre 2001

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Escola de Engenharia

Programa de Pós Graduação em Engenharia de Minas, Metalúrgica e de Materiais

PPGEM

NITRETAÇÃO A PLASMA EM FUROS NÃO PASSANTES

JOÃO UBIRATÃ ANDRETTA

Engenheiro Metalúrgico

Trabalho realizado no Departamento de Metalurgia da Escola de Engenharia da UFRGS, dentro do programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais - PPGEM, como parte dos requisitos para obtenção do título de Mestre em Engenharia.

Área de Concentração: Ciência dos Materiais

Porto Alegre 2001

Esta dissertação foi julgada adequada para obtenção do título de Mestre em Engenharia, área de concentração em Ciência dos Materiais, e aprovada em sua forma final, pelo orientador e pela Banca Examinadora do Programa de Pós-Graduação.

Orientador: Prof. Dr. Afonso Reguly Co-orientador: Prof. Dr. Augusto Kunrath

Banca Examinadora:

Prof. Dr. Vilson João Batista, PROMEC/UFRGS Prof. Dr. Telmo Roberto Strohaecker, PPGEM/UFRGS Prof. Dr. Marco Durlo Tier, URISAN

> Prof. Dr. Telmo Roberto Strohaecker Coordenador do PPGEM

Dedico esta dissertação a meu pai, João Pires Andretta

AGRADECIMENTOS

Ao Professor Telmo e a Professora Lurdes pela oportunidade para a realização do mestrado.

A Mestre Michele Pessin e ao Dr. Augusto Kunrath pelo incentivo e pela ajuda no planejamento dos experimentos.

Ao Dr. Afonso Reguly pela orientação e valiosas sugestões.

Ao Mestre Lopo pelas excelentes "dicas" práticas.

A mestre Liane Roldo pela "força" na preparação do material de apresentação.

A Mestre Giovana Passa pelo suporte estatístico.

Aos Engenheiros Piana e Pimenta, e ao estagiário Giovani pelas análises no MEV.

Aos Estagiários Fabrício, Elisabete, Roberto e Henrique pela regulagem de equipamentos, fotografias e preparação de amostras.

Ao Estagiário Ricardo, pela "grande força" na edição desta dissertação.

Ao CNPQ, pelo apoio financeiro.

SUMÁRIO

1 – INTRODUÇÃO	1
2- REVISÃO BIBLIOGRÁFICA	
2.1 – Os Processo de nitretação	3
2.2 – Modelos para a Nitretação a Plasma	4
2.3 – Regiões do Plasma	5
2.3.1 – Incandescência Negativa	6
2.3.2 – Espaço Escuro	7
2.3.3 – Região do Cátodo	8
2.3.3.1 – Emissão de Elétrons Secundários	8
2.3.3.2 – Dissipação de Calor	9
2.3.3.3 – Emissão de Radiação Eletromagnética	9
2.3.3.4 – Pulverização	9
2.3.3.5 – Adsorção	11
2.3.3.6 – Difusão	11
2.4 – Tipos de Descarga	11
2.4.1 – Descarga Luminescente Normal	12
2.4.2 – Descarga Anormal	12
2.4.3 – Descarga de Cátodo Oco	14
2.4.4 – Descarga de Arco	17
2.4.5 – Descarga Pulsada	18
2.4.6 - Descarga de Rádio Freqüência (RF)	

2.4.7 – Descarga High Frequency (HF)	19
2.5 – Nitretação em Superfícies Internas (Orifícios)	20
2.6 – Fonte de Potência DC Contínuo e DC Pulsado	20
2.7 – Influência dos Parâmetros de Nitretação em Plasma DC Pulsado	22
2.7.1 – Freqüência e Fator de Trabalho	22
2.7.2 – Tempo de Pulso	22
2.7.3 – Tempo de Pausa	23
2.7.4 – Fatores que Influem na Temperatura	23
3 – PROCEDIMENTOS EXPERIMENTAIS	25
3.1 – Equipamento de Nitretação a Plasma	25
3.2 – Material e Amostras	26
3.3 – Nitretação e Análise das Amostras	27
3.3.1 – Preparação das Amostras	27
3.3.2 – Nitretação	29
3.3.3 – Experimentos Variando a Freqüência	32
3.3.4 – Monitoramento de Temperaturas	32
3.3.5 – Monitoramento dos Parâmetros do Processo	33
3.3.6 – Experimentos Variando Fator de Trabalho e Pressão	34
3.3.7 – Análise das Amostras	35
4 – RESULTADOS	37
4.1 – Experimentos Variando a Freqüência	37
4.2 – Monitoramento de Temperaturas	
4.3 – Monitoramento dos Parâmetros do Processo	48

4.4 – Experimentos Variando Fator de Trabalho e Pressão	58
5 – DISCUSSÃO DOS RESULTADOS	74
5.1 – Experimentos Variando a Freqüência	74
5.2 – Monitoramento de Temperaturas	74
5.3 – Monitoramento dos Parâmetros do Processo	76
5.4 – Experimentos Variando Fator de Trabalho e Pressão	77
6 – CONCLUSÕES	79
6.1 – Experimentos Variando a Freqüência	79
6.2 – Monitoramento de Temperaturas	79
6.3 – Monitoramento dos Parâmetros do Processo	80
6.4 – Experimentos Variando Fator de Trabalho e Pressão	80
7 – SUGESTÕES PARA TRABALHOS FUTUROS	
8 - REFERÊNCIAS BIBLIOGRÁFICAS	83

LISTA DE SÍMBOLOS

- A1 Amostra 1
- A2 Amostra 2
- A3 Amostra 3
- A4 Amostra 4 A5 – Amostra 5
- A6 Amostra 6
- A7 Amostra 7
- A8 Amostra 8
- A9 Amostra 9
- A10 Amostra 10
- A11 Amostra 11
- Ar Átomo neutro de Argônio
- Ar^{*}- Átomo excitado de Argônio
- Ar⁺ Átomo ionizado de Argônio
- Cb Camada branca ou de compostos
- Cd Camada ou zona de difusão
- d Distância entre cátodos
- dc contínuo Plasma obtido com fonte contínua de potência
- dc pulsado Plasma obtido com fonte de potência pulsada
- ddp Diferença de Potencial
- e Elétron
- E Energia transferida pelas partículas
- eec Espessura do espaço catódico
- ev-eletron-volt
- f freqüência

- HF High Frequency (Alta Frequência)
- hv Medida de energia Luminosa
- i-Corrente
- ia Corrente eletrônica entre anodo e a fonte de potência
- ic Corrente eletrônica entre o cátodo e a fonte de potência
- Ie Corrente eletrônica
- Ii Corrente iônica
- ma Massa do alvo
- mi Massa do íon

LISTA DE FIGURAS

Figura 1	Regiões e curvas características do plasma6	
Figura 2	Variação de potencial na descarga anormal13	
Figura 3	(a) descarga e (b) potencial, ambos em cátodo oco15	
Figura 4	Equipamento de nitretação a plasma25	
Figura 5	Medidas e tolerâncias das amostras26	
Figura 6	Amostra utilizada nos experimentos	
Figura 7	Processo de Desengraxe27	
Figura 8	Disposição dos termopares nas amostras28	
Figura 9	Disposição dos termopares nas amostras28	
Figura 10	Posição dos termopares nas amostras	
Figura 11	Amostra sendo nitretada	
Figura 12	Posição dos termopares para verificação de variações de temperatura a partir	
	do interior do furo de 5mm de diâmetro	
Figura 13	Corte longitudinal da amostra35	
Figura 14	Microdureza e profundidade dos furos	
Figura 15	Microdureza e profundidade dos furos	
Figura 16	Microdureza e profundidade dos furos	
Figura 17	Diferenças de temperaturas	
Figura 18	Diferenças de temperaturas	
Figura 19	Diferenças de temperaturas	
Figura 20	Variações de temperatura42	
Figura 21	Variações de temperatura43	
Figura 22	Variações de temperatura44	
Figura 23	Variações de temperatura45	
Figura 24	Variações de temperatura46	
Figura 25	Temperatura a partir do interior do furo de 5 mm47	
Figura 26	Parâmetros do processo para amostra A4 ($\tau = 1 \text{ e P} = 2 \text{ Torr}$)	
Figura 27	Parâmetros do Processo para amostra A5 ($\tau = 1 \text{ e P} = 3 \text{ Torr}$)	
Figura 28	Parâmetros do processo para amostra A6 ($\tau = 1 \text{ e P} = 4 \text{ Torr}$)	

Figura 29	Parâmetros do processo para amostra A7 ($\tau = 0,5 \text{ e P} = 4 \text{ Torr}$)	52
Figura 30	Parâmetros do Processo para amostra A8 ($\tau = 0,5 \text{ e P} = 2 \text{ Torr}$)	53
Figura 31	Parâmetros do processo para amostra A9 ($\tau = 0,75$. e P = 2 Torr)	54
Figura 32	Parâmetros do processo para amostra A10 ($\tau = 0,75$ e P = 3 Torr)	56
Figura 33	Parâmetros do processo para amostra A11 ($\tau = 0,75$ e P = 4 Torr)	57
Figura 34	Exemplo de variação de todos os parâmetros em função do tempo	57
Figura 35	Microdureza X Profundidade nos furos	59
Figura 36	Microdureza x profundidade nos furos30.	59
Figura 37	Microdureza x profundidade nos furos	59
Figura 38	Microdureza em função da profundidade nos furos	60
Figura 39	Microdureza em função da profundidade nos furos	60
Figura 40	Microdureza em função da profundidade nos furos	60
Figura 41	Microdureza em função da profundidade nos furos	61
Figura 42	Microdureza em função da profundidade nos furos	61
Figura 43	Amostra 1, diâmetro 3 mm	62
Figura 44	Amostra 1, diâmetro 4 mm	62
Figura 45	Amostra 1diâmetroe 5 mm	62
Figura 46	Amostra 2, diâmetro 3 mm	62
Figura 47	Amostra 2, diâmetro 4 mm	63
Figura 48	Amostra 2, diâmetro 5 mm	63
Figura 49	Amostra 3, diâmetro 3	63
Figura 50	Amostra 3, diâmetro 4 mm	63
Figura 51	Amostra 3, diâmetro 5 mm	63
Figura 52	Amostra 4, diâmetro 3 mm	63
Figura 53	Amostra 4, diâmetro 4 mm	63
Figura 54	Amostra 4, diâmetro 5 mm	63
Figura 55	Amostra 5, diâmetro 3 mm	64
Figura 56	Amostra 5, diâmetro 4 mm	64
Figura 57	Amostra 5, diâmetro 5 mm	64
Figura 58	Amostra 6, diâmetro 3 mm	64
Figura 59	Amostra 6, diâmetro 4 mm	64

Figura 60	Amostra 6, diâmetro 5 mm	64
Figura 61	Amostra 7, diâmetro 3 mm	64
Figura 62	Amostra 7, diâmetro 4 mm	64
Figura 63	Amostra 7, diâmetro 5 mm	65
Figura 64	Amostra 8, diâmetro 3 mm	65
Figura 65	Amostra 8, diâmetro 4 mm	65
Figura 66	Amostra 8, diâmetro 5 mm	65
Figura 67	Amostra 9, diâmetro 3 mm	65
Figura 68	Amostra 9, diâmetro 4 mm	65
Figura 69	Amostra 9, diâmetro 5 mm	65
Figura 70	Amostra 10, diâmetro 3 mm	65
Figura 71	Amostra 10, diâmetro 4 mm	66
Figura 72	Amostra 10, diâmetro 5 mm	66
Figura 73	Amostra 11, diâmetro 5 mm	66
Figura 74	Amostra 11, diâmetro 3 mm	66
Figura 75	Amostra 11, diâmetro 4mm	66
Figura 76	Amostra 4, diâmetro 3 mm	67
Figura 77	Amostra 4, diâmetro 4mm	68
Figura 78	Amostra 4, diâmetro 5 mm	68
Figura 79	Amostra 7, diâmetro 3 mm	69
Figura 80	Amostra 7, diâmetro 4 mm	69
Figura 81	Amostra 7, diâmetro 5 mm	70
Figura 82	Amostra 7, diâmetro 5 mm	70

RESUMO

Este trabalho tem por objetivo avaliar a influência dos parâmetros pressão, freqüência e fator de trabalho, bem como a interação destes fatores, na capacidade de gerar plasma estável e com propriedades nitretantes no interior de furos não passantes de pequeno diâmetro.

Para atingir estes objetivos foram realizados experimentos utilizando um reator equipado com fonte de potência pulsada de 2 KW, mistura gasosa composta de 76% de Nitrogênio e 24% de Hidrogênio, amostras de aço ABNT 1045 normalizadas.

As nitretações foram realizadas pelo período de uma hora a temperatura de 500 $^{\rm 0}{\rm C}.$

Foram empregadas freqüências de 100, 1000 e 5000 Hz, fatores de trabalho de 0,5 (50%), 0,75 (75%), 1 (100%), as pressões utilizadas foram de 2, 3 e 4 Torr e furos não passantes de ϕ 3 x 40 mm, ϕ 4 x 60 mm, ϕ 5 x 75 mm.

Para determinar a significância de cada parâmetro e de suas interações foi utilizado o modelo estatístico Multi-Factor Anova, com projeto fatorial cruzado a 3 fatores e 3 níveis para cada fator.

Com o uso do programa Statgraphics foram geradas as equações que mais se ajustaram ao modelo. Estas equações determinam a máxima profundidade de geração de plasma nitretante no interior dos furos de pequeno diâmetro para as condições de tratamento expostas acima.

ABSTRACT

The ability to form a nitride layer inside a long tube or a blind hole using plasma nitriding is of great interest for the industry since these are common features in mechanical parts. In this work the effect of parameters such as: gas pressure, frequency and duty factor applied by the power supply on the ability to generate a stable plasma with efficient nitriding results was investigated.

Samples of ABNT 1045 steel with blind holes of different diameters and length (ϕ 3 x 40 mm, ϕ 4 x 60 mm, ϕ 5 x 75 mm) were nitrided with a mixture of 76%N₂ – 24%H₂ at 500⁰C for 1 hour. Three different gas pressure were used: 2, 3 and 4 Torr and plasma power supply (P=2KW) was adjusted to work in dc or pulsed mode. In the latter, a pulse frequency of 1000 Hz was chosen and duty factors (τ) of 0.5 and 0.75 were used.

In order to determine the significance of each parameter and their possible interactions, the statistic model Multi-Factor Anova was used.

The growing behavior of the nitrided layer was then evaluated and expressed in terms of mathematical equations obtained with help of the Statgraphics software.

1- INTRODUÇÃO

A nitretação é um processo de tratamento termofísicoquimico largamente empregado em materiais metálicos e tem por objetivos principais o aumento da dureza e da resistência ao desgaste. Estes objetivos são alcançados mediante a formação de uma camada superficial constituída por nitretos, conhecida como camada branca ou camada de compostos e uma camada subsuperficial, geralmente de maior espessura que a camada branca, chamada de camada ou zona de difusão, gerada a partir da difusão i ntersticial do nitrogênio no substrato.

A nitretação é benéfica também no sentido de aumentar a vida em fadiga, mediante a introdução de tensões residuais compressivas na superfície dos componentes, e contribui, também, para o aumento da resistência a corrosão em determinadas condições.

O processo de nitretação consiste em se estabelecer um fluxo de nitrogênio do meio nitretante para o componente que está sendo nitretado (substrato), em temperaturas relativamente baixas (a partir de 350°C) conforme o processo de nitretação empregado e o tipo de material que estiver sendo tratado. Para que se estabeleça o fluxo é necessário que o potencial químico do nitrogênio, no meio nitretante, seja maior do que o potencial químico deste elemento no substrato. Uma vez junto a superfície o nitrogênio reage com átomos do substrato podendo formar nitretos (camada branca) e também difunde intersticialmente da superfície para o núcleo formando a camada de difusão.

A nitretação no interior de furos de pequeno diâmetro, em especial furos não passantes, fendas e reentrâncias apresenta algumas dificuldades. Em primeiro lugar é preciso que o plasma seja estabelecido nestas regiões, ou seja, que a bainha catódica envolva toda a superfície a ser nitretada não importando quão complexa seja a geometria. Em segundo lugar é preciso um ajuste nos parâmetros do processo que efetivamente tornem o plasma nitretante. Em outras palavras, que a

relação entre a formação e destruição da camada seja favorável a primeira durante o bombardeio iônico.

Na nitretação a plasma o processo é regido, sobretudo, por parâmetros elétricos. O presente trabalho objetiva levantar dados referentes a estes parâmetros (tensão, corrente, potência, etc.) além de pressão e temperatura, correlacioná-los e, principalmente, mediante o uso de ferramenta estatística adequada, verificar a influência de parâmetros como fator de trabalho, pressão e freqüência sobre a capacidade de gerar plasma e formar camadas nitretadas no interior de furos de pequeno diâmetro. Neste trabalho foram empregadas amostras de aço ABNT 1045 normalizadas que foram nitretadas pelos processos dc contínuo e dc pulsado pelo período de uma hora a temperatura de 500⁰C.

2 - REVISÃO BIBLIOGRAFICA

2.1- OS PROCESSOS DE NITRETAÇÃO

A nitretação é um dos processos de tratamento que visa, principalmente, a obtenção de superfícies de elevada dureza e alta resistência ao desgaste. Após a nitretação não há necessidade de qualquer outro tratamento térmico, o que contribui na redução de deformações dos componentes tratados.

A temperatura e tempo de tratamento, diferem em função do tipo de material que está sendo tratado, conforme o processo de nitretação empregado e também de acordo com o tipo de camada que se deseja obter. No entanto é o meio nitretante que melhor caracteriza os diferentes processos de nitretação. Assim temos:

Nitretação em Banho de Sais; meio nitretante formado por sais fundidos, sobretudo cianetos de sódio e potássio. Este processo apresenta algumas variantes, como por exemplo a adição de sais de lítio e compostos de enxôfre ao banho de cianetos ou a injeção de oxigênio . Temperatura típica de trabalho em torno de 560^oC.

Nitretação Gasosa: Atmosfera nitretante obtida a partir do craqueamento da amônia. A temperatura típica de tratamento fica em torno de 520°C. Tempo de tratamento variando usualmente de 20 a 90 horas. É dos processos de nitretação o que apresenta o ciclo mais longo de tratamento.

Nitretação a Plasma: O meio nitretante é chamado de plasma e é obtido a partir da ionização de uma mistura gasosa de nitrogênio e hidrogênio. Temperatura de tratamento a partir de 350 ⁰C, é um processo rápido e eficiente, além de não apresentar resíduos tóxicos. Devido as temperaturas empregadas, reduz o empenamento e distorções nos componentes tratados.

Em todos os processo de nitretação a velocidade de difusão é função principalmente da temperatura de tratamento, tipo e quantidade de

elementos de liga presentes no substrato. A espessura da camada formada é função da velocidade de difusão e do tempo de tratamento. O tipo de camada formada depende do tipo de elementos de liga presentes e do percentual de nitrogênio.

NITRETAÇÃO A PLASMA

É um processo que tem como meio nitretante, geralmente, uma mistura gasosa de nitrogênio e hidrogênio a baixas pressões, entre 100 e 1300 Pa (0.75 a 10 Torr). O reator é conectado ao ânodo e o componente a ser nitretado é conectado ao cátodo de uma fonte de potência. A mistura gasosa ($N_2 + H_2$) é ionizada pelos elétrons emitidos a partir do cátodo. A emissão de elétrons é obtida pelo estabelecimento de uma diferença de potencial elétrico de até 1000 V entre cátodo e ânodo ou seja, entre o componente a ser nitretado e o reator.

Moléculas e átomos da mistura gasosa, uma vez ionizadas, passam a bombardear o cátodo. Desta forma a transferência de energia cinética dos íons promove, entre outros fenômenos, o aquecimento do componente a ser nitretado.

Os modelos mais aceitos, que procuram explicar a nitretação a plasma descrevem ainda fenômenos de pulverização, retropulverização e adsorção entre outros, como veremos a seguir, quando comentarmos sobre as regiões do plasma

2.2- MODELOS PARA A NITRETAÇÃO A PLASMA

O modelo proposto por Köbel, Metim e Inal em 1965; e ratificado por Edenhofer em 1974 propõe que mediante a aplicação de uma diferença de potencial (ddp) ocorre a ionização de átomos e moléculas de nitrogênio, estes íons bombardeiam o cátodo pulverizando átomos de ferro. Os átomos de ferro arrancados combinam com átomos de nitrogênio, formando nitretos de ferro no estado vapor. Estes nitretos (FeN) são depositados na superfície do cátodo formando a camada de compostos. Por serem instáveis parte deste nitretos se decompõe em nitretos mais estáveis [Fe₂₋₃N (fase ε) e Fe₄N (fase γ)] liberando nitrogênio, que ao difundir intersticialmente promove a formação da camada de difusâo

Hudis afirma em 1973 que pode haver nitretação sem pulverização. A mistura nitrogênio/argônio causa maior pulverização que a mistura nitrogênio/hidrogênio, no entanto tem-se uma menor formação de nitretos A formação de nitretos ocorre no cátodo pelo bombardeio iônico. Quem mais contribui é a molécula ionizada NH⁺ que se dissocia no cátodo liberando nitrogênio.

Em 1974 Tibbets realizou um experimento em que é colocada uma grade carregada positivamente em frente ao cátodo para evitar que este seja atingido por íons positivos. Desta forma consegue nitretar bombardeando o cátodo apenas com espécimes neutras. procurou demonstrar a capacidade nitretante dos átomos e moléculas neutras (não ionizadas). Propôs, também, que a função principal do hidrogênio na descarga é o de reduzir os óxidos superficiais. Aponta como principais espécies ativas os átomos neutros de nitrogênio originados da dissociação das moléculas de nitrogênio.

2.3- REGIÕES DO PLASMA

O plasma é constituído por quatro regiões características: Região do cátodo, incandescência negativa, coluna positiva e região do ânodo.

As regiões onde ocorrem os principais fenômenos relacionados a formação da camada nitretada são a região do cátodo, a incandescência negativa e uma zona intermediária chamada de espaço escuro.

Figura 1: Regiões e curvas características do plasma

2.3.1- INCANDESCÊNCIA NEGATIVA

Primeira região que pode ser caracterizada como plasma, sendo o plasma definido como um gás quase neutro, formado por íons positivos e elétrons e uma grande quantidade de átomos neutros [1].

É a região de maior intensidade luminosa. O campo elétrico decresce linearmente do cátodo até esta região [2].

As taxas de ionização e excitação chegam ao valor máximo e decrescem gradualmente, devido a perda de energia dos elétrons colidentes até a margem do espaço escuro de Faraday [3].

A principal fonte de ionização é obtida pelo impacto de elétrons com átomos e moléculas neutras do gás e reações molécula ionizada/molécula neutra na incandecência negativa, com possíveis contribuições adicionais de ionizações por impacto de elétrons e íons no espaço escuro entre a região do cátodo e a incandescência negativa [4].

2.3.2- ESPAÇO ESCURO

Região que apresenta um forte campo elétrico responsável pela aceleração de íons e elétrons.

O comprimento do espaço escuro (distância entre o cátodo e a maior concentração de íons) é função da pressão e do tipo de mistura gasosa utilizada, e é inversamente proporcional a pressão [1].

Os principais fenômenos que ocorrem no espaço escuro são a ionização, excitação e retropulverização.

O bombardeio de íons ao cátodo promove o arrancamento de átomos do substrato (sputtering) e também a emissão de elétrons secundários. Os elétrons acelerados pela ddp do espaço escuro, em sua trajetória em direção ao ânodo, colidem com átomos e moléculas neutras da mistura gasosa provocando ionizações e excitações. Conforme a intensidade de energia transferida aos átomos neutros na colisão com elétrons incidentes, os átomos poderão ser ionizados positivamente liberando elétrons ou serem excitados, ou seja, passam a um novo estado de energia sem serem ionizados [3].

A cada nova ionização, novos elétrons são liberados dos átomos e moléculas ionizados. Estes novos elétrons serão responsáveis por novas ionizações, assim como os novos íons, ao atingirem o substrato proporcionarão o arrancamento de novos elétrons. Desta forma ocorre a auto sustentação do plasma [5].

Segundo os modelos mais empregados na explicação da nitretação a plasma os átomos arrancados do substrato reagem quimicamente com o nitrogênio formando nitretos. Em pressões superiores a 0,5 Torr ocorre uma forte retrodifusão dos átomos pulverizados, possibilitando a formação de camadas de nitretos mais espessas.

Em levantamentos quantitativos, Elbern, A.W., "Measnrement of the axial density propiles of sprittered cathode atmons on a dc glow dischargil" Journal Vac. SCI. Tecnial. 16(5), 1564-1568 (1979), mostrou-se que os átomos pulverizados e os nitretos concentram-se na região do cátodo. Observa-se um decaimento exponencial desta concentração a medida que ocorre um afastamento do cátodo. Nestas condições gera-se um gradiente de potencial químico na região do cátodo que, juntamente com o fluxo de íons para o mesmo, faz com que a maior parte dos nitretos retorne ao substrato pelo fenômeno conhecido como retropulverização.

2.3.3- REGIÃO DO CÁTODO

É a mais importante região do sistema de nitretação a plasma pois aí ocorrem os principais fenômenos do processo. Estes fenômenos são responsáveis pela manutenção da descarga e pela formação da camada de compostos e da camada de difusão. Entre eles destacam-se a emissão de elétrons secundários, a dissipação de calor, a emissão de radiação eletromagnética, a pulverização, a adsorção e difusão do nitrogênio [6].

2.3.3.1- EMISSÃO DE ELÉTRONS SECUNDÁRIOS

Quando uma partícula energizada colide com a superfície de um metal geralmente esta partícula é neutralizada e ocorre a emissão de um ou mais elétrons da superfície metálica. A quantidade de partículas emitidas por partícula incidente é chamada de coeficiente do elétron secundário ou produção [7,8].

A maior produção é obtida devido ao bombardeio de íons positivos. Também contribuem para emissão de elétrons secundários, porém de forma menos significativa, o bombardeio de fótons gerado pela radiação eletromagnética na freqüência da luz visível e ultravioleta e o bombardeio de átomos neutros em estado excitado e fundamental que absorvem a energia de poucos elétronsvolt ao serem atingidos por íons nas proximidades do cátodo [7].

Quando há impurezas no cátodo, o coeficiente de emissão aumenta significativamente. Nestas condições, no início da descarga, surgem microarcos que podem levar a descarga ao regime de arco [8].

2.3.3.2- DISSIPAÇÃO DE CALOR

Noventa por cento da energia dos íons que incidem no substrato é dissipada sob a forma de calor. Parte da energia é absorvida, elevando a temperatura do cátodo, parte é transferida por radiação para as paredes e o meio e o restante é levado pelos íons refletidos e átomos pulverizados [1].

2.3.3.3- EMISSÃO DE RADIAÇÃO ELETROMAGNÉTICA

É gerada pela rápida desaceleração dos íons ao colidirem com o substrato. O espectro abrange a luz visível e o ultravioleta.

2.3.3.4- PULVERIZAÇÃO

É o arrancamento de átomos da superfície do substrato provocado pelos íons e átomos neutros energizados incidentes. Neste processo ocorre a transferência de momento entre a partícula incidente e os átomos da superfície, seguida de colisões binárias sucessivas no interior do sólido.

Se a energia fornecida pela partícula incidente for maior que a energia de ligação do sólido haverá a pulverização de átomos em estado

excitado, neutralizado e raramente, menos de 5%, na forma de íons. Se a energia fornecida for menor do que a de ligação então esta será dissipada gradualmente por colisões nucleares e eletrônicas na rede cristalina [9].

Na emissão de elétrons secundários no cátodo a produção, ou seja, a quantidade de elétrons secundários emitidos pela quantidade de partículas incidentes é dada por:

Yi = le / li [1]

Onde:

Yi = Produção de elétrons secundários

le = corrente eletrônica

li = corrente iônica

Na pulverização a produção expressa o número de átomos ejetados por partícula incidente [10].

Para o bombardeio com partículas de baixa energia, menor que 1 kev, temos:

 $S = 0,076 \times \alpha \times [(4mi \times ma) / (mi + ma)^2] \times [E/U_0]$ [2]

Onde:

S = Produção de átomos pulverizados

 α = grandeza adimencional que varia entre 0 e 1,5 dependendo da relação (ma / mi)

mi = massa do íon

ma = massa do alvo

E = energia transferida pelas partículas

U_o = Energia de ligação dos átomos na rede

De acordo com esta expressão vemos que a produção é diretamente proporcional a energia transferida pelas partículas e inversamente proporcional a energia de ligação dos átomos na rede. Observa-se na prática que a produção cresce linearmente para energia de até 1 kev. Acima de 1 kev a produção torna-se praticamente constante [4,7].

2.3.3.5- ADSORÇÃO

São dois os mecanismos de adsorção do nitrogênio.

Adsorção Direta: O nitrogênio atômico é gerado na dissociação das moléculas de nitrogênio ionizado e por íons moleculares de nitrogênio e hidrogênio gerados na fase gasosa quando colidem com a superfície (6). A probabilidade dos átomos de nitrogênio permanecerem aprisionados na superfície é de aproximadamente 20%. Estes átomos promovem a formação de uma fina camada de nitretos. Os 80% restantes são refletidos para a fase gasosa [11].

Na adsorção indireta os átomos pulverizados reagem com o nitrogênio nas proximidades do cátodo formando nitretos. Uma parte destes nitretos retorna ao substrato e por serem instáveis (FeN) se decompõe em nitretos mais estáveis (Fe₂₋₃N (fase ε) e Fe₄N (fase λ ')). Nesta transformação ocorre a liberação de nitrogênio atômico que é adsorvido pelo substrato.

2.3.3.6- DIFUSÃO

O bombardeio de íons altera constantemente a composição da primeira camada de átomos da superfície. Esta alteração desencadeia o processo difusivo que irá influenciar na composição das camadas atômicas abaixo da superfície, até uma profundidade que dependerá da temperatura, tempo de tratamento, estrutura e composição do substrato [12]. A redução de nitretos instáveis em nitretos estáveis também é fonte de nitrogênio atômico que penetra por difusão preferencialmente junto aos contornos de grãos [13]. A difusão do nitrogênio também pode ocorrer de forma transgranular. O nitrogênio atômico que difunde para o interior do material é o responsável pela formação da chamada zona de difusão.

2.4 - TIPOS DE DESCARGA

O termo descarga elétrica está relacionado ao deslocamento de íons e elétrons em um meio gasoso em baixas pressões. As características da descarga elétrica dependem da tensão, corrente, pressão, mistura gasosa, forma e material do cátodo [14].

Dentre os diferentes tipos de descarga destacam-se: Descarga Luminescente Normal, Descarga Anormal, Descarga de Cátodo Oco, Descarga de arco, Descarga Pulsada, Descarga RF, Descarga HF [8].

2.4.1 DESCARGA LUMINESCENTE NORMAL

Na montagem experimental típica costuma-se aterrar o cátodo. A descarga luminescente normal tem como características principais:

- Utiliza uma resistência de carga para manter a descarga estável.
- A região da luz negativa é a de maior intensidade luminosa, onde ocorre boa parte das ionizações.
- A descarga não recobre totalmente os eletrodos.
- A região da coluna positiva ocupa o maior volume da descarga, e é a mais favorável ao estudo de diagnóstico de plasma.

 A distância entre cátodo e ânodo deve ser suficientemente grande para permitir a existência da coluna positiva, caso contrário a descarga entra em regime anormal.

2.4.2 - DESCARGA ANORMAL

É possível obter uma descarga anormal usando a mesma montagem experimental da descarga normal, desde que a distância entre eletrodos seja suficientemente pequena para impedir a formação da coluna positiva. As principais características são:

- A região da luz negativa (plasma) tem o potencial constante e mais positivo da descarga.
- Os campos elétricos no sistema são restritos as bainhas catódica e anódica.
- A montagem experimental mais usada em processos de descarga anormal é mostrada na figura [2].

Figura 2: Variação de potencial na descarga anormal

Como principais características temos:

- Ânodo aterrado
- O potencial do plasma é Vp
- A queda de potencial na bainha catódica é V + Vp.
- A descarga envolve totalmente o cátodo
- Se a tensão não for muito alta, mesmo com uma distância relativamente grande entre cátodo e ânodo não há formação da região de coluna positiva. Portanto é a melhor forma de se obter uma descarga anormal. Como exemplo podemos citar a utilização de argônio ou de uma mistura de nitrogênio e hidrogênio com tensão de 600 V e pressão de 3 Torr.
- Quanto a perda de elétrons e íons do plasma na descarga anormal, Chapman [7] afirma que a quantidade de elétrons perdidos no ânodo é igual a quantidade de íons perdidos no cátodo. Sendo o plasma a região de maior potencial positivo os íons se deslocam normalmente do plasma tanto para o cátodo (maior potencial negativo) quanto para o ânodo, chegando com maior energia ao cátodo devido a maior intensidade do campo elétrico (queda de potencial) na região catódica. Os elétrons se deslocam do cátodo para o plasma e somente os elétrons com energia cinética superior ao potencial do plasma atingem o ânodo. A fonte de potência repõe o elétrons consumidos pelo cátodo e que foram utilizados na neutralização dos íons e também os elétrons secundários arrancados pelo bombardeio iônico.

Desta forma, pode-se esperar que a corrente elétrica medida entre a fonte e o cátodo (lc) seja dada pelos elétrons usados na neutralização de íons e reposição de elétrons secundários arrancados do cátodo, e a corrente medida entre o ânodo e a fonte seja dada somente pelos elétrons com energia cinética maior que o potencial do plasma e portanto que lc seja maior la (lc > la). Contudo seriam os elétrons liberados na ionização os responsáveis pelo resultado oposto, obtido experimentalmente ?

2.4.3- DESCARGA DE CÁTODO OCO

São exemplos de cátodo oco, a região entre dois cátodos planos paralelos, o espaço interno de um tubo ligado ao cátodo de uma fonte de potência, o volume interno de furos de uma peça que está sendo nitretada.

O espaço catódico segue os contornos do cátodo. No caso dos cátodos planos e paralelos os elétrons emitidos pelas placas são dirigidos uns em direção aos outros. Se a distância entre os cátodos for pequena as duas regiões luminescentes se fundem em uma só. Desta forma, a descarga é geometricamente confinada e pode-se esperar propriedades especiais dependendo essencialmente da razão (d/eec), onde (d) é a distância entre os cátodos e (eec) a espessura do espaço catódico. A distância entre os cátodos (d) não pode ser menor do que o dobro da espessura do espaço catódico (d>=2eec). Nestas condições não há possibilidade geométrica de existência da região luminescente e, portanto, da descarga. Já a espessura do espaço catódico, por sua vez, depende da pressão utilizada. Um cátodo de forma cilíndrica, como por exemplo um furo com diâmetro d produz efeitos semelhantes [10].

As principais características da descarga em cátodo oco são:

- Para mesma tensão aplicada apresenta correntes superiores quando comparada a corrente de descargas clássicas.
- Maior intensidade luminosa .
- Dimensão do espaço catódico menor do que em um cátodo plano.

 Temperatura do gás no interior do cátodo maior do que a temperatura do lado externo.

A figura 3a apresenta a geometria de uma descarga em cátodo oco e a figura 3b a distribuição de potencial em uma descarga de cátodo oco.

Figura 3: (a) descarga e (b) potencial, ambos em cátodo oco

A distribuição de potencial favorece uma elevada densidade de elétrons secundários no interior do cátodo, consequentemente tem-se uma maior ionização do que as encontradas em descargas em cátodo plano. Soma-se a isto a menor perda para as paredes do reator, tanto de partículas ionizadas como da radiação emitida na relaxação das partículas excitadas, portanto é natural esperar que a corrente elétrica seja maior. Logo para uma mesma área catódica teremos uma maior densidade de corrente em descarga de cátodo oco [10].

A tabela 1 apresenta valores para a densidade de corrente em descargas em cátodo plano e oco, usando cátodos de ferro com área de 1,6 cm², gás nitrogênio a pressão de 0,3 Torr e tensões de 318 e 376 V.

	TENSÃO (V)	
	318	376
CÁTODO	DENSIDADE DE CORRENTE (A/Cm ²)	
PLANO	2,5 X 10 ⁻³	4,2 X 10 ⁻³
000	2,2 X10 ⁻²	7,0 X 10 ⁻²

Tabela 1: Densidade de corrente em cátodo oco e em cátodo plano [15]

Observa-se que a densidade de corrente em cátodo oco é de aproximadamente nove vezes a densidade de corrente em cátodo plano com tensão de 318 V e de aproximadamente 17 vezes com tensão de 376 Volts.

As reações de ionização e excitação envolvem valores de energia semelhantes, por exemplo no caso do argônio;

e (14 ev) + Ar ____ e + Ar^{*}____e + Ar + hv

e (16.5 ev) + Ar - 2e + Ar⁺

Como na descarga em cátodo oco temos uma corrente maior, consequentemente teremos mais reações de ionização, excitação e relaxação, logo uma maior intensidade de luz emitida. Este efeito, é utilizado na fabricação de lâmpadas espectrais de alta intensidade utilizadas em análises espectroscópicas [10].

A temperatura no interior de uma descarga de cátodo oco é significativamente maior do que a temperatura dos gases em uma descarga de cátodo plano. Os valores de temperatura abaixo foram obtidos usando o método da espectroscopia de emissão do íon molecular do nitrogênio, através da medida de intensidade relativa dos raios do espectro em descargas elétricas de misturas gasosas de nitrogênio e hidrogênio [16,17].

 N_2^+ (B) — N_2^+ (X) + hv (3914 A⁰)

Pressão = 3 Torr

Mistura gasosa = $90\% N_2 + 10\% H_2$

Tensão = 400 V

Temperatura no cátodo = 540 °C

Temperatura no exterior do cátodo = 530 °C

Temperatura no interior do cátodo = 730 °C

A temperatura mais elevada dos gases no interior do cátodo é devido ao maior número de ionizações causadas pelo confinamento de partículas que não difundem diretamente ao ânodo e pela própria geometria do cátodo atuando como barreira térmica que reduz a perda de energia térmica. O aquecimento no interior do cátodo é proporcional à superfície interna (que está sendo bombardeada por íons) enquanto que a perda de energia térmica é proporcional a área de abertura de entrada do cátodo, por exemplo a área referente a seção transversal de um furo [18].

2.4.4 - DESCARGA DE ARCO

É caracterizada por apresentar baixa tensão e elevada corrente entre cátodo e ânodo. Desenvolve altas temperaturas (>6000⁰K) dependendo da pressão e mistura gasosa utilizadas. A temperatura pode ser medida por espectroscopia de emissão.

A elevada corrente, apesar da baixa tensão, é devido à emissão de elétrons secundários por processo térmico, que apresenta eficiência muito superior ao processo por bombardeamento iônico. Em função da elevada temperatura ocorre a rápida destruição do cátodo, assim as descargas de arco são usadas em corte e soldagem de metais [19].

2.4.5- DESCARGA PULSADA

Ao contrário da descarga dc convencional onde se aplica constantemente uma ddp, que gera uma corrente durante todo o tempo de tratamento, na descarga pulsada, usando pulsos de onda quadrada é possível variar a tensão, corrente e consequentemente a potência de zero a um determinado valor de pico em poucos mili-segundos. Da mesma forma é possível retornar ao zero, assim como estabelecer diferentes tempos de aplicação da tensão de pico e tensão mínima.

Para o processo de nitretação é interessante que a descarga pulsada apresente as seguintes características:

- O tempo de pulso deve ser tal que impeça que a descarga passe para o regime de arco. Tipicamente da ordem de 100 microsegundos.
- O tempo de pausa deve ser suficientemente curto (300 microsegundos no máximo) para que a descarga seja reestabelecida facilmente. O tempo de pausa deve ser adequado ao relaxamento de níveis excitados e deve estar de acordo com o tempo de vida útil das espécies ativas nitretantes [20].

2.4.6- DESCARGA DE RÁDIO FREQUÊNCIA (RF)

O plasma é gerado por uma fonte de alta freqüência, tipicamente na faixa de 14 megahertz. Neste caso não há realmente cátodo nem ânodo, uma vez que o fluxo total de cargas é nulo em cada eletrodo. Desta forma podem ser usados tanto eletrodos condutores quanto isolantes.

Normalmente a onda fornecida pela fonte é senoidal, um dos eletrodos é aterrado e o outro ligado à fonte através de capacitores em série para que seja possível transferir maior potência ao plasma, ocorre a auto-polarização dos eletrodos até que as densidades de correntes eletrônica e iônica sejam iguais.

As descargas RF a baixa pressão (50 mTorr) apresentam um grau de ionização superior ao de uma descarga dc, para a mesma potência transferida ao plasma. Em RF existe um mecanismo de ganho de energia que não existe em descargas dc.

Quando um elétron do plasma entra na bainha catódica, sob o efeito de uma colisão elástica, por exemplo, se encontrar um campo elétrico contrário retornará ao plasma sem ganhar ou perder energia. Se encontrar um campo elétrico favorável, o elétron absorve energia antes de retornar ao plasma. A maior energia destes elétrons é responsável pela maior ionização [19].

2.4.7- DESCARGA HIGH FREQUENCY (HF)

As freqüências utilizadas variam de 200 MHz a 4 GHz. A transferência de energia do campo elétrico para o plasma é feita usando uma cavidade ressonante.

O diâmetro e comprimento da cavidade dependem da freqüência da onda. Quanto maior for a freqüência da onda, menor será o tamanho da cavidade. A potência HF é transmitida por uma antena colocada próxima a superfície interna da cavidade. As ondas se propagam pela superfície, saem pelo orifício da cavidade e interagem com os elétrons da mistura gasosa transmitindo a energia ao plasma. Este processo apresenta densidades eletrônicas dez vezes maiores que em processos de descarga anormal.

As temperaturas alcançadas são da ordem de 4000 K, comparáveis, portanto, com as temperaturas de descargas de arco.

Uma característica importante é a ausência de eletrodos. Assim é possível gerar um gás ionizado muito mais limpo que em qualquer outro

sistema. Nos demais sistemas o sputtering, principalmente do cátodo contamina o plasma.

2.5- NITRETAÇÃO EM SUPERFÍCIES INTERNAS (FUROS)

Existe uma tendência em se apontar a utilização de fontes pulsadas como vantajosas, em relação as fontes de contínuas, para a geração de plasma com capacidade nitretante no interior de furos de pequeno diâmetro.

No trabalho desenvolvido por S.C. Kwon, G.H. Lee e M.C. Yoo [24] em amostras de aço tipo nitralloy contendo furos cilíndricos de 3 x 60, 4 x 80, 5 x 100 mm, nitretados em plasma contínuo e plasma pulsado foi obtido um crescimento médio da camada nitretada (μ /h) maior em plasma pulsado do que em plasma contínuo e, adicionalmente, tanto em plasma pulsado como em plasma contínuo quanto maior o diâmetro do furo maior a taxa de crescimento da camada. Da mesma forma, a profundidade de penetração do plasma em furos foi maior utilizando plasma pulsado [21]. O melhor desempenho do plasma pulsado foi atribuído à sua capacidade de minimizar o efeito de cátodo oco.

Dentro dos furos é estabelecido um gradiente de pressão e por conseqüência diferentes graus de ionização [22]. Desta forma quanto mais para dentro dos furos menor a pressão e maior o grau de ionização levando a um menor o número de átomos neutros de nitrogênio, fundamentais no processo de formação da camada nitretada. O tempo de pausa utilizado em plasma pulsado proporciona a recombinação de íons/elétrons melhorando o nível de nitrogênio em estado atômico neutro. O tempo de pausa também proporciona a redução do efeito de sputtering. Também é fortemente reduzido o número de cargas positivas, sobretudo em furos cegos profundos, o que diminui o efeito de cátodo oco, levando a uma maior estabilidade da descarga incandescente e portanto a uma maior penetração do plasma no interior dos furos mediante o uso de uma fonte dc pulsada [22].
2.6- FONTE DE POTÊNCIA DC CONTÍNUO E DC PULSADO

As fontes de potência utilizadas em nitretação a plasma podem operar em regime dc contínuo ou dc pulsado.

A diferença fundamental entre as duas fontes é o fato de que utilizando o regime dc contínuo a potência é fornecida ininterruptamente ao sistema, enquanto que em dc pulsado a potência é fornecida de forma intermitente.

A possibilidade de trabalhar com diferentes fatores de trabalho ou seja com distintos tempos de pausa e pulso permitem um melhor controle do processo de nitretação com o uso da fonte de potência pulsada. Além disso a pausa permite diminuir o sputtering e interromper o mecanismo de formação de arcos elétricos.

O uso do fator de trabalho adequado otimiza a reatividade do plasma promovendo o aumento de espécies ativas nitretantes em estado excitado ou ionizado. Com uma fonte pulsada é possível melhorar a formação do plasma no interior de furos de pequeno diâmetro.

O controle do tempo de pulso permite o uso da potência de plasma adequada, evitando-se desta forma o superaquecimento de seções finas [18,23,24,26].

Os problemas de superaquecimento e cátodo oco podem ser solucionados se a densidade do plasma ou a pressão forem diminuídos, entretanto aumentará o tempo necessário para o aquecimento da peça o que pode vir a inviabilizar o processo. Para um processo viável, dois recursos podem ser utilizados: o aquecimento auxiliar e a fonte de tensão pulsada [24].

É interessante que com a fonte de potência pulsada sejam utilizadas os seguintes parâmetros:

- Forma de onda quadrada para possibilitar que a tensão varie rapidamente de zero até a tensão de trabalho.
- Tempo de pulso menor que o tempo de desenvolvimento de arcos elétricos (menor ou igual a 100 micro-segundos), de maneira que seja possível a redistribuição de cargas no plasma ou a interrupção da corrente antes da formação do arco.
- Freqüência pequena o suficiente para permitir uma fácil reignição do plasma.

2.7- INFLUÊNCIA DOS PARÂMETROS EM PLASMA PULSADO

Os principais parâmetros em dc pulsado são: tempo de pulso, tempo de pausa, fator de trabalho, período e freqüência, relacionados pelas seguintes equações:

 τ = t pulso / T'; T' = t pulso + t pausa; f = 1 / T';

onde:

- τ = Fator de trabalho
- t pulso = tempo de pulso (ms)
- t pausa = tempo de pausa (ms)
- T' = período (ms)
- f = Freqüência (Hz)

Além da pressão, que combinada com os fatores acima modifica as propriedades do plasma.

2.7.1- FREQÜÊNCIA E FATOR DE TRABALHO

O uso da freqüência e fator de trabalho adequados favorece a geração de espécies ativas nitretantes de longo tempo de vida útil. freqüência de 100 Hz favorece a formação de nitretos γ' (Fe₄N) [25]. Freqüências entre 1 e 13 KHz minimizam o superaquecimento em furos de pequeno diâmetro onde há tendência de concentração do plasma [26].

2.7.2- TEMPO DE PULSO

O aumento do tempo de pulso em relação ao tempo de pausa leva a uma elevação na taxa de aquecimento, mas também a um aumento na taxa de sputtering [27].

2.7.3- TEMPO DE PAUSA

O aumento do tempo de pausa apresenta como funções principais a redução do sputtering, a interrupção da formação de arcos elétricos e permite recombinações que geram espécies ativas importantes para a nitretação [26].

2.7.4- FATORES QUE INFLUEM NA TEMPERATURA

Peças com geometria complexa, com seções de diferentes espessuras, entalhes, fendas e furos tendem a apresentar gradientes de temperatura que vão influenciar na composição e espessura da camada nitretada. Da mesma forma, na montagem de cargas (peças a serem nitretadas), em um reator industrial a distância entre dois componentes funciona como um entalhe.

A uniformidade de temperatura é afetada pela densidade de corrente, que por sua vez é influenciada pela pressão. A distância peça/ânodo é significativa na uniformidade da temperatura, sobretudo para pressões acima de 4 Torr [28].

A temperatura não uniforme pode levar a diferentes valores de dureza e espessura da camada e também a falhas devido ao superaquecimento. Em unidades industriais de nitretação a plasma, mesmo sem o efeito do cátodo oco, o aquecimento não uniforme dos componentes pode levar a diferenças de temperatura de 70 ^oC ou mais [29].

Podem ocorrer situações onde, mesmo a distância cátodo/ânodo sendo menor e a densidade de corrente sendo maior, a temperatura é menor devido a perda de energia por condução térmica no gás, porém em pressões maiores (5 a 10 Torr) ocorre um aumento conjunto da temperatura e da densidade de corrente.

Sem o efeito do cátodo oco os fatores que mais influenciam na temperatura são a densidade de corrente local, condução térmica e troca térmica entre o componente e o reator [30].

Se a temperatura da carga e do reator é baixa ou se a pressão é alta ou ambos a densidade do plasma é alta e as reações do processo podem ser as seguintes:

- (a) A faixa de densidade de corrente para a descarga luminescente anormal é pequena. Isto pode levar a um plasma instável e alto risco de formação de arcos.
- (b) A densidade de corrente sobre a peça pode ser alta e, portanto, o aquecimento da peça é rápido e o sputtering por íons é elevado.
- (c) A descarga luminescente é estreita levando a uma boa cobertura do contorno da superfície catódica, boa penetração do plasma em furos e entalhes.

Normalmente o efeito (c) é desejado, mas os problemas do efeito (a) são de difícil manejo, em muitos casos.

Os efeitos opostos a estes ocorrem com plasma de baixa densidade nos casos em que a temperatura da carga e do reator é elevada e/ou a pressão é baixa.

- (d) A faixa de densidade de corrente para a descarga luminescente anormal é ampla. A estabilidade do plasma é boa, baixo risco de formação de arcos e altas voltagens podem ser aplicadas.
- (e) A densidade de corrente sobre a peça é baixa, o aquecimento da peça por bombardeio ionico é lento e o sputtering por íons é pequeno.
- (f) Se a descarga incandescente é extensa a cobertura nos contornos da superfície é ruim e a penetração no interior de furos e entalhes fica prejudicada.

Para um fácil manuseio do processo os efeitos (d) e (e) são desejáveis especialmente durante o período de aquecimento.

3 – PROCEDIMENTOS EXPERIMENTAIS

3.1 – EQUIPAMENTO DE NITRETAÇÃO A PLASMA

Para realizar os experimentos de nitretação a plasma foi utilizado um reator com câmara de 8.200 cm³ de volume construída em aço inox austenítico ABNT 304, com três válvulas reguladoras de vazão individuais para a entrada de gases, bomba de vácuo Edwards de duplo estágio, um manômetro mecânico Edwards para controle de pressão até 19 Torr e um Pirâni 78/2 Edwards para controle de pressão até 3 a 10⁻³ Torr. O reator dispõe, ainda, de três termopares cromel-alumel tipo k para aquisição de dados de temperatura. Este reator, construído no Laboratório de Metalurgia Física da Universidade Federal do Rio Grande do Sul, não dispõe de aquecimento auxiliar.

A fonte de potência empregada é de 2 KW e pode ser programada para trabalhar em regime dc contínuo ou dc pulsado, sendo que na etapa de limpeza (sputtering) o sistema busca automaticamente a tensão programada e na etapa de nitretação busca a temperatura programada. Existe, ainda, a opção de buscar estes parâmetros manualmente. A figura 4 mostra o sistema de nitretação a plasma utilizado nos experimentos.

Figura 4: Equipamento de Nitretação a plasma

3.2- MATERIAL E AMOSTRAS

Utilizou-se o aço ABNT 1045 normalizado com microestrutura constituída por ferrita e perlita com dureza média de 234 HV e desvio padrão de 20,5 HV para carga de 100gf . O aço ABNT 1045 é amplamente utilizado em construção mecânica e o fato de estar normalizado não influencia na profundidade de formação do plasma no interior dos furos, sendo que quanto a este aspecto, os resultados obtidos poderão ser estendidos a outros tipos de aços.

As amostras foram usinadas de acordo com as medidas e tolerânncias especificadas na figura 5. O acabamento superficial externo é o de fresamento e no interior dos furos é o da operação de alargamento.

Figura 5 : Medidas e tolerâncias das amostras

Figura 6: Amostra utilizada nos experimentos

3.3- NITRETAÇÃO E ANÁLISE DAS AMOSTRAS

3.3.1- PREPARAÇÃO DAS AMOSTRAS

Inicialmente as amostras foram desengraxadas em uma mistura de água e detergente aquecidos continuamente pelo período de uma hora conforme ilustrado na figura 7.

Figura 7: Processo de Desengraxe

Após o desengraxe as amostras foram imersas em acetona e submetidas a limpeza por ultra-som, pelo período de uma hora.

Uma vez no reator, foram acoplados três termopares, em cada uma das amostras. Este procedimento teve por objetivo verificar possíveis gradientes de temperatura, que poderiam influenciar os resultados, principalmente quanto a espessura da camada de difusão. Gradientes de temperatura tem como origem, entre outros fatores, o plasma gerado no interior dos furos, que passa a funcionar como uma fonte de energia térmica. As figuras 8 e 9 mostram a disposição dos termopares utilizados nos experimentos. A figura 10 indica a posição exata dos termopares.

Figura 8: Disposição dos termopares nas amostras

Figura 9: Disposição dos termopares nas amostras

Figura 10: Posição dos termopares nas amostras

Os termopares foram posicionados entre os furos de diâmetro 4 e diâmetro 5 mm segundo a direção do eixo y. A partir da referência "0" a distância de 15 mm segundo a direção do eixo z e a distâncias de 10, 30 e 60 mm a partir da referência "0" segundo a direção do eixo x.

Os termopares empregados são de cromel-alumel tipo K, encapsulados e com bainha de inconel 600, diâmetro de 1,5 mm e comprimento de 350 mm

3.3.2- NITRETAÇÃO

Após a preparação as amostras foram levadas ao reator e nitretadas individualmente a temperatura de 500 ⁰C por uma hora em uma mistura gasosa de 76% de nitrogênio e 24% de hidrogênio (em volume).

Os experimentos de nitretação foram divididos em dois grupos. O primeiro teve por objetivo verificar a influência da freqüência na profundidade de formação de camadas nitretadas ao longo do interior dos furos. A partir dos resultados destes ensaios, selecionamos a freqüência a ser utilizada nos demais experimentos. As freqüências utilizadas neste primeiro grupo são apresentadas na tabela 2.

Tabela 2: I	Experimentos	com variacã	o de frec	jüência
		oonn vanaça		100100

FREQUENCIA (Hz)						
100	1000	5000				
AMOSTRA 3 (A3)	AMOSTRA 2 (A2)	AMOSTRA 1 (A1)				

 τ = 0,5

Pressão = 3 Torr

O segundo grupo de experimentos teve por objetivo avaliar a influência dos parâmetros fator de trabalho e pressão na capacidade de nitretação no interior dos furos. A tabela 3 apresenta os valores de fator de trabalho e pressão empregados. Esta tabela foi desenvolvida segundo o modelo estatístico (Multi-Factor Anova), que neste caso apresenta um projeto fatorial totalmente cruzado a três fatores (diâmetro do furo, pressão e fator de trabalho) a três níveis cada (3,4 e 5 mm para o diâmetro do furo; 2, 3 e 4 Torr para a pressão e 0,5; 0,75 e 1 para o fator de trabalho).

Destaca-se que os fatores de trabalho 0,5 e 0,75 são obtidos mediante o uso de plasma de pulsado e o fator de trabalho 1 se refere a plasma de contínuo.

	FATOR DE TRABALHO																									
$\tau = 0.5$ $\tau = 0.75$						τ	= 1,	,00	(dc	CO	ntin	uo)														
	Ρ	RE	SS	ÃΟ	(TC	DRI	R)			Ρ	RE	SS	ÃΟ	(T(DRI	R)			Ρ	RE	SS	ÃΟ	(TC	DRF	२)	
	2			3			4			2			3			4		2				3			4	
C	Diân	neti	o c	los	furo	os (mn	ר)	D	iân	netr	o d	los	fur	os	(mr	n)	C	Diâr	net	ro c	los	furo	os (mm	1)
3	4	5	3	4	5	3	4	5	3	3 4 5 3 4 5 3 4 5 3 4 5 3 4					4	5	3	4	5							
	A8	-		A2	-		A7			A9			A1	0		A1′	1		A4	-		A5			A6	-

Tabela 3 : Experimentos variando pressão e fator de trabalho. (Freqüência:1000 Hz)

Com as amostras no interior do reator, posicionadas sobre o cátodo e com os termopares acoplados é dado início ao processo. Primeiramente é acionada a bomba de vácuo. Quando a pressão atinge aproximadamente 0,05 Torr, abre-se a

válvula reguladora de vazão permitindo a entrada da mistura gasosa no reator e espera-se a estabilização da pressão desejada. Em geral, inicialmente, é utilizado hidrogênio ou argônio para realizar a limpeza (sputtering) e aquecimento da amostra. O hidrogênio possibilita uma eficaz redução de óxidos enquanto o argônio, por ser um átomo maior que o hidrogênio, acentua a remoção mecânica de impurezas e o aquecimento da amostra. Nestes experimentos foi utilizado somente hidrogênio.

Estabilizada a pressão, a fonte de potência é acionada, a tensão é aumentada até que seja estabelecida a corrente entre cátodo e ânodo caracterizando desta forma a presença do plasma.

A limpeza é realizada por trinta minutos, em seguida é feita a troca de gases; o fluxo de hidrogênio é interrompido e injeta-se a mistura nitretante (76%N₂ e 24% H₂). São feitas as regulagens necessárias até a estabilização da pressão de trabalho. A mistura de 76% N₂ e 24% H₂ foi utilizada por apresentar grande poder de nitretação o que evidentemente facilita a identificação de regiões nitretadas.

A partir daí aguarda-se que a amostra atinja a temperatura de trabalho (500 ⁰C) quando então, é cronometrado uma hora de tratamento. Após este tempo o plasma é extinto e espera-se o resfriamento da amostra, deixando-a no fluxo gasoso, até a temperatura de 60 ⁰C, quando então é possível retirá-la do reator sem riscos de oxidação que comprometeriam a análise.

O fator de trabalho de cada experimento é programado digitalmente no sistema de controle da fonte de potência.

A figura 11 apresenta uma das amostras sendo nitretada

Figura 11: Amostra sendo nitretada

3.3.3 EXPERIMENTOS VARIANDO A FREQUÊNCIA

O primeiro experimento teve por objetivo definir qual a freqüência a ser utilizada nos demais ensaios onde foram variados os outros parâmetros do processo (fator de trabalho e pressão).

Foi adotado este ensaio prévio, pois realizar um projeto fatorial cruzado com quatro fatores a três níveis cada implicaria em um número elevado de amostras e nitretações.

O experimento variando a freqüência foi realizado em plasma dc pulsado com fator de trabalho de 50% (0,5), pressão de 3 Torr, temperatura de 500⁰C pelo período de uma hora em uma mistura gasosa de 76% N₂ e 24% H₂. Foram testadas as freqüências de 100, 1000 e 5000 Hz. Alguns autores indicam a freqüência de 100 Hz como favorável a formação de nitretos γ^{+} (Fe₄N)[28] e muitos autores afirmam que freqüências de 1000 a 10.000 Hz facilitam a nitretação em furos e em geometrias complexas [1,3].

3.3.4 – MONITORAMENTO DE TEMPERATURAS

Como durante as nitretações observou-se a tendência de formação de um gradiente de temperaturas ao longo das amostras, principalmente a medida que os valores se aproximam de 500⁰C, foi realizado um experimento objetivando medir a temperatura nos seguintes pontos: No interior do furo de 5mm de diâmetro. Acima deste furo, no interior da amostra, e Junto a superfície externa da amostra. Assim os termopares foram posicionados conforme indicado na figura 12.

Figura 12: posição dos termopares para verificação de variações de temperatura a partir do interior do furo de 5mm de diâmetro.

Os termopares (T1, T2 e T3) foram posicionados ao longo do eixo do furo de diâmetro 5mm a partir da referência "0", a distâncias de 10, 30 e 60 mm segundo a direção x, 15 mm segundo a direção y e, respectivamente, a distâncias de 15; 22,5 e 30 mm segundo a direção do eixo z.

O teste foi realizado em plasma de contínuo em uma mistura gasosa de 76% de N_2 e 24% de H_2 e tendo como alvo a temperatura de 500⁰C, por ser a utilizada nos experimentos anteriores e a pressão de 4 Torr, que proporciona a formação de um plasma intenso e de boa estabilidade ao longo do furo de 5 mm de diâmetro.

3.3.5 – MONITORAMENTO DOS PARÂMETROS DO PROCESSO

No processo de nitretação a plasma os parâmetros elétricos tensão, tensão de pico (no caso de plasma dc pulsado), corrente e potência, além dos parâmetros pressão, temperatura e tempo de tratamento são responsáveis pela geração do plasma e por suas características, como a capacidade de aquecimento dos componentes nitretados, a capacidade de penetração em furos, entre outros.

Em todos os experimentos realizados foram monitorados estes parâmetros objetivando verificar as relações existentes entre eles e, também a relação entre eles e a capacidade de geração de plasma no interior de furos de pequeno diâmetro.

3.3.6 – EXPERIMENTOS VARIANDO FATOR DE TRABALHO E PRESSÃO

Para a realização deste ensaio foi adotado o modelo Multi-Factor Anova utilizando o projeto fatorial totalmente cruzado com três fatores a três níveis cada, sendo adotada como variável de resposta a profundidade dos furos até onde houve nitretação. Na tabela 4 estão relacionados os fatores e seus respectivos níveis.

FATORES	NÍVEIS
Fator de Trabalho (τ)	0,5 ; 0,75; 1,0
Pressão (P)	2, 3, 4 Torr
Diâmetro dos Furos (3, 4, 5 mm

Tabela 4: Fatores Controláveis e seus Níveis

Foram utilizados três níveis para cada fator controlável para permitir a análise quadrática de cada fator. Foram adotados, também, níveis e fatores distribuídos ortogonalmente o que possibilita a análise gráfica mais precisa dos resultados. Sendo a nitretação a plasma um processo de boa repetibilidade foi realizado apenas um experimento para cada condição de análise (combinação dos fatores entre si).

A análise do modelo proposto e os resultados estatísticos foram obtidos mediante o uso do programa estatístico Statgraphics.

Baseado em medidas de dureza do substrato antes da nitretação e devido ao acabamento irregular da superfície interna dos furos, foi adotado como critério para caracterizar a presença de camada de difusão a dureza mínima de 300 Vickers com carga de 100 gramas-força medida a uma distância de 20^{+/- 5} μ m a partir da borda do furo analisado. O critério adotado para caracterizar a presença de camada branca é a observação desta em microscópio ótico.

3.3.7 – ANÁLISE DAS AMOSTRAS

Após a nitretação as amostras foram secionadas longitudinalmente segundo o plano que passa no centro dos três furos como pode ser visto na figura 13

Figura 13: Corte longitudinal da amostra

O corte foi realizado em eletroerosão com fio de 0,25 mm de diâmetro. A preparação metalográfica foi realizada de acordo com procedimentos padrões de lixamento, polimento e ataque.

Para evitar qualquer influência do corte por eletroerosão na dureza das amostras, durante a preparação metalográfica foi removido mais de 0,3 mm de material a partir da região de corte.

Foram realizados testes de preparação metalográfica objetivando minimizar o abaulamento junto à borda dos furos. Foram preparadas amostras niqueladas química e eletroliticamente, algumas amostras tiveram os furos preenchidos somente com massa plástica. Outras amostras tiveram os furos preenchidos com massa plástica reforçada com granalhas de aço.

Os melhores resultados foram obtidos com o uso de massa plástica sem reforço. No entanto a melhora foi pouco significativa não justificando o uso desta técnica.

As amostras foram analisadas em um microscópio óptico Union, visando principalmente a observação da camada de compostos. Os testes de microdureza Vickers foram realizados em microdurômetro Buehler com carga de 100 gramas-força objetivando a detecção da camada de difusão. As indentações de microdureza foram feitas ao longo dos furos nas posições indicadas na tabela 5.

Distância longitudinal a	Diâme	tro dos furos ((mm)
furos (mm)	3	4	5
5	Х	Х	Х
10	Х	Х	Х
20	Х	Х	Х
30	Х	Х	Х
40	Х	Х	Х
50		Х	Х
60		Х	Х
75			Х

Tabela 5: posições de microdureza

Devido ao acabamento superficial irregular, apesar da operação de alargamento, as indentações de microdureza ao longo dos furos foram realizadas a distância de 20^{+/- 5} μ m da borda dos mesmos.

4 – RESULTADOS

4.1 – EXPERIMENTOS VARIANDO A FREQÜÊNCIA

A análise metalográfica não revelou diferenças significativas quanto a formação de camada branca nas amostras tratadas nas diferentes fregüências.

O levantamento de microdureza referente a camada de difusão pode ser visto nas tabelas de número 6 a 8 e nas figuras 14 a 16, referentes respectivamente a amostra 1 (5000 Hz), amostra 2 (1000 Hz) e amostra 3 (100 Hz).

AMOSTRA	AMOSTRA 1, P=3Torr, τ=0,5, f=5000Hz						
	Diâmetro d	los furos en	n mm				
dist.mm	3,0	4,0	5,0				
5	327,4	341,6	335,8				
10	338,7	335,8	356,7				
20	344,5	335,8	316,6				
30	308,9	379,7	359,9				
40	306,4	347,5	350,5				
50		321,9	335,8				
60		324,6	306,4				
75	75 296						
MÉDIA	325,2	341,0	332,3				
DESVIO	17,2	19,3	23,6				

Tabela 6: Medidas de microdureza HV 100 gf

Tabela 7 : Medidas de microdureza HV 100 gf

AMOSTRA	AMOSTRA 2, P=3Torr, τ=0,5, f=1000Hz						
	Diâmetro dos furos em mm						
dist.mm	3	4	5				
5	306,4	372,9	369,6				
10	332,9	386	386,6				
20	327	363,1	366,3				
30	327,4	353,6	350,5				
40	321,9	311,5	390,2				
50		350,5	341,6				
60		356,7	344,5				
75 33							
MÉDIA	323,1	356,3	360,3				
DESVIO	10,13	23,28	21,21				

Figura 15 : Microdureza e profundidade dos furos

AMOSTRA 3, P=3Torr, τ=0,5, f=100Hz							
	Diâmetro dos furos em mm						
dist.mm	3,0	4,0	5,0				
5	299,1	327,4	330,1				
10	316,6	350,5	332,9				
20	306,4	299,1	338,7				
30	330,1	324,6	316,6				
40	314,0	335,8	335,8				
50		353,6	347,5				
60		321,9	314,0				
75			316,6				
MÉDIA	313,2	330,4	329,0				
DESVIO	11,6	18,6	12,1				

Tabela 8: Medidas de microdureza HV 100 gf

Microdureza A3

Figura 16 : Microdureza e profundidade dos furos

Como não foram observadas diferenças significativas quanto à profundidade em que foi gerado o plasma no interior dos furos, uma vez que foi detectada a camada branca ao longo de todos os furos nas três amostras foi adotada, para os demais experimentos, em plasma dc pulsado a freqüência de 1000 Hz. Esta freqüência apresentou os maiores valores de dureza média, e baixos desviospadrão, além do fato de ser uma das freqüências recomendadas na nitretação de geometrias complexas [1,3].

4.2 – MONITORAMENTO DE TEMPERATURAS

Os dados referentes ao levantamento do perfil de temperatura, ao longo das amostras, durante as nitretações, são apresentados nas tabelas de número 9 a número 17. Estas tabelas apresentam os valores medidos pelos termopares T1, T2 e T3 em graus Celsius, e mostram também a temperatura média, a diferença entre o maior e menor valor registrado. Todos estes dados são apresentados em função do tempo registrado em minutos. As figuras de número 17 a 24 apresentam os resultados sob a forma de gráficos de temperatura em função do tempo.

Na figura 21, referente a amostra A8 ($\tau = 0,5 \text{ e P} = 2 \text{ Torr}$) pode-se observar, inclusive, o tempo de resfriamento até a temperatura de 92 ⁰C. O resfriamento é feito mediante a extinção do plasma, mantendo-se o fluxo da mistura gasosa usada na nitretação.

AMOS	TRA 4				
T1 (C)	T2 (C)	T3 (C)	t (min)	DIF.	MÉDIA
115	115	117	0	2	115,7
162	162	164	2	2	162,7
202	199	202	12	3	201,0
207	207	209	30	2	207,7
244	241	246	42	5	243,7
280	275	283	50	8	279,3
338	333	343	60	10	338,0
353	348	357	80	9	352,7
367	360	367	90	7	364,7
381	376	386	100	10	381,0
386	379	386	160	7	383,7
407	400	410	176	10	405,7
431	421	431	182	10	427,7
438	428	433	208	10	433,0
492	483	492	258	9	489,0
487	480	490	274	10	485,7
504	494	499	282	10	499,0
501	494	501	300	7	498,7
499	492	499	311	7	496,7
499	490	499	329	9	496,0

Tabela 9 : diferenças de temperaturas

Figura 17: Diferenças de temperaturas

Tabela 10 : diferenças de temperaturas

AMOS	IRA 5				
T1	T2	Т3	t (min)	DIF.	MÉDIA
(C)	(C)	(C)			
		ſ <u></u>			
139	142	142	0	3	141,0
164	164	162	6	2	163,3
197	199	194	23	5	196,7
295	297	283	50	14	291,7
283	283	278	65	5	281,3
309	307	300	76	9	305,3
357	353	345	83	12	351,7
381	376	369	93	12	375,3
398	393	383	104	15	391,3
405	400	391	118	14	398,7
452	447	438	145	14	445,7
485	478	466	155	19	476,3
513	506	494	180	19	504,3
497	492	483	190	14	490,7
497	492	483	212	14	490,7
504	497	487	229	17	496,0
536	532	518	256	18	528,7

A N 4 C

Tabela 11: diferenças de temperaturas

AMOS	TRA 6				
T1 (C)	T2 (C)	T3 (C)	t (min)	DIF.	MÉDIA
461	452	445	249	16	452,7
428	419	414	260	14	420,3
454	447	440	275	14	447,0
445	435	431	281	14	437,0
468	452	445	313	23	455,0
511	499	487	419	24	499,0

Figura 19: diferenças de temperaturas

AMOSTRA	N 7				
T1 (C)	T2 (C)	T3 (C)	t (min)	DIF.	MÉDIA
23	23	23	0	0	23,0
37	37	35	20	2	36,3
50	50	47	31	3	49,0
57	59	54	44	5	56,7
105	110	105	67	5	106,7
134	134	124	76	10	130,7
149	149	144	97	5	147,3
246	249	241	107	8	245,3
305	309	300	120	9	304,7
336	341	331	130	10	336,0
367	372	360	140	12	366,3
391	395	383	145	12	389,7
407	414	400	150	14	407,0
428	435	421	160	14	428,0
445	452	438	173	14	445,0
454	464	447	184	17	455,0
457	466	452	194	14	458,3
471	480	464	204	16	471,7
483	492	475	222	17	483,3
492	508	492	237	16	497,3

Tabela 12: Variações de temperatura

Figura 20: Variações de temperatura

AMOSTRA	AMOSTRA 8				
T1 (C)	T2 (C)	T3 (C)	t (min)	DIF.	MÉDIA
5	5	5	0	0	5,0
28	28	28	10	0	28,0
47	47	45	20	2	46,3
107	105	110	30	5	107,3
110	107	107	40	3	108,0
105	105	102	50	3	104,0
182	177	184	60	7	181,0
219	217	217	70	2	217,7
251	249	249	80	2	249,7
261	258	258	90	3	259,0
292	288	292	100	4	290,7
314	307	312	110	7	311,0
348	338	345	127	10	343,7
402	391	398	147	11	397,0
412	402	410	160	10	408,0
367	360	364	171	7	363,7
393	379	391	176	14	387,7
433	419	431	191	14	427,7
459	445	457	232	14	453,7
457	443	450	247	14	450,0
468	450	466	257	18	461,3
478	459	475	267	19	470,7
501	480	501	282	21	494,0
483	464	480	290	19	475,7
499	478	497	306	21	491,3
504	478	504	319	26	495,3
508	485	504	337	23	499,0
204	202	199	382	5	201,7
93	93	90	446	3	92.0

Figura 21: Variações de temperatura

AMOSTRA	9				
T1 (C)	T2 (C)	T3 (C)	t (min)	DIF.	MÉDIA
23	20	20	0	3	21,0
45	42	42	10	3	43,0
66	64	64	20	2	64,7
81	76	76	30	5	77,7
86	83	81	38	5	83,3
93	90	88	56	5	90,3
119	112	112	70	7	114,3
149	137	137	80	12	141,0
162	149	149	86	13	153,3
197	182	182	100	15	187,0
214	197	197	110	17	202,7
244	227	224	120	20	231,7
275	254	256	130	21	261,7
302	280	283	140	22	288,3
338	314	317	160	24	323,0
372	350	357	170	22	359,7
447	417	421	190	30	428,3
452	424	424	211	28	433,3
499	473	480	225	26	484,0
499	464	464	235	35	475,7
511	485	492	262	26	496,0
499	471	475	274	28	481,7
485	454	459	284	31	466,0

Tabela 14: Variações de temperatura

Figura 22: Variações de temperatura

T1 (C)	T2 (C)	T3 (C)	t (min)	DIF.	MÉDIA
8	8	8	0	0	8,0
25	23	20	7	5	22,7
74	74	71	38	3	73,0
98	98	98	54	0	98,0
107	105	105	58	2	105,7
107	105	105	60	2	105,7
124	124	124	71	0	124,0
147	147	149	81	2	147,7
137	137	139	103	2	137,7
137	137	139	105	2	137,7
149	147	149	110	2	148,3
187	187	187	122	0	187,0
212	212	212	136	0	212,0
214	214	217	139	3	215,0
234	234	236	155	2	234,7
244	244	246	159	2	244,7
256	256	258	171	2	256,7
260	260	260	183	0	260,0
263	263	263	187	0	263,0
268	271	271	200	3	270,0
278	278	278	216	0	278,0
292	290	290	223	2	290,7
292	290	290	223	2	290,7
273	275	275	228	2	274,3
275	275	278	230	3	276,0
278	278	278	252	0	278,0
324	324	324	275	0	324,0
338	338	338	295	0	338,0
338	338	338	297	0	338,0
333	331	331	315	2	331,7
362	360	357	352	5	359,7
369	367	362	365	7	366,0
381	379	374	377	7	378,0
405	405	398	398	7	402,7
412	410	402	408	10	408,0
438	435	426	437	12	433,0
461	459	447	449	14	455,7
468	468	457	469	11	464,3
506	504	487	490	19	499,0
494	492	480	511	14	488,7
501	499	485	542	16	495,0
501	499	483	554	18	494,3

Tabela 15: Variações de temperatura AMOSTRA 10

Figura 23: Variações de temperatura

AMOSTRA	\11 [°]				
T1 (C)	T2 (C)	T3 (C)	t (min)	DIF.	MÉDIA
20	20	20	0	0	20,0
47	47	47	17	0	47,0
76	76	74	29	2	75,3
95	95	93	43	2	94,3
122	122	122	55	0	122,0
159	159	159	67	0	159,0
214	217	219	88	5	216,7
263	263	266	100	3	264,0
278	280	283	110	5	280,3
268	263	263	112	5	264,7
266	263	268	117	5	265,7
273	271	275	122	4	273,0
288	285	288	127	3	287,0
307	305	307	140	2	306,3
336	333	336	153	3	335,0
348	345	348	170	3	347,0
345	343	345	200	2	344,3
379	374	374	210	5	375,7
412	405	405	244	7	407,3
440	431	426	256	14	432,3
450	440	435	266	15	441,7
473	464	457	276	16	464,7
487	478	468	291	19	477,7
504	492	483	311	21	493,0
511	500	485	323	26	498,7
511	500	487	337	24	499,3
501	492	480	353	21	491,0
501	492	480	363	21	491,0
500	487	480	375	20	489,0

Tabela 16: Variações de temperatura

Figura 24: Variações de temperatura

Em relação ao ensaio onde foram colocados termopares até a superfície da amostra, a partir do interior do furo de 5 mm de diâmetro, a aquisição de dados de temperatura são apresentados na tabela 17.

A evolução as temperaturas em função do tempo são mostradas na figura 25

dos furos			
T1 (C)	T2 (C)	T3 (C)	t (min)
124	110	112	0
172	162	157	5
179	184	154	10
204	212	204	15
249	254	234	20
278	285	256	25
336	336	290	35
369	350	297	45
395	374	314	55
412	393	326	60
435	407	341	65
452	424	350	70
478	443	364	75
487	450	369	80
499	461	376	85
515	473	386	90
520	478	402	100
527	485	395	115
532	485	398	125

497

536

405

135

Tabela 17: temperatura a partir do interior dos furos

Figura 25: temperatura a partir do interior do furo de 5 mm

Obs.: Relacionado ao monitoramento de temperaturas um terceiro teste descartou a possibilidade de haver influência significativa nas leituras de temperatura em decorrência de diferenças de calibração dos termopares. Três termopares foram posicionados próximos uns dos outros, simetricamente às faces de um cubo de aço ABNT 1045 com 12 mm de aresta. Este cubo foi submetido ao plasma e as diferenças de temperatura, entre os termopares, foi em média de 2°C em temperaturas em torno de 500°C.

4.3 – MONITORAMENTO DOS PARÂMETROS DO PROCESSO

Dentre os parâmetros do processo a tensão e a pressão são os que podemos alterar mediante intervenção direta no equipamento. Os demais parâmetros serão ajustados automaticamente em conseqüência das alterações realizadas na tensão e/ou pressão.

As tabelas de número 18 a 25 apresentam as variações em função do tempo dos parâmetros tensão (V), tensão de pico (Vp, somente quando o experimento foi realizado em plasma dc pulsado) e tensão efetiva (Vef, também, somente no caso de dc pulsado) todos medidos em Volts. Apresentam, também, os parâmetros, corrente (i) e corrente efetiva (ief, somente no caso de plasma dc pulsado) em Amperes, a potência (Pot) e a Potência efetiva (Potef, no caso de plasma dc pulsado) em Julsado) em Watts. Apresentam, ainda, as variações da pressão em milibar, as temperaturas medidas pelos termopares (T1, T2 e T3) e a temperatura média (Tmedia) em graus Celcius, todos em função do tempo que é apresentado em valores de tempo real [t(h:min)], de acordo com a hora e minuto em que foram lidas as medidas, e em valores de tempo de referência [t(min)] dado em minutos e que foram utilizados na construção dos gráficos.

Estas tabelas também mostram colunas com os valores de pressão multiplicados por cem (100P), valores de corrente multiplicados por mil (1000i) e valores de potência e potência efetiva multiplicadas por cinco (5Pot e 5Potef). Na construção dos gráficos, para ajuste de escalas, são utilizados estes valores. Desta forma é importante ressaltar que a leitura dos valores, de todos os parâmetros, no eixo y, dos gráficos estão condicionados as suas respectivas unidades e escalas.

As figuras de número 26 a 33 apresentam as variações da tensão, pressão e corrente em função do tempo e a figura 34, apresentada como exemplo, a variação de todos os parâmetros monitorados em função do tempo.

Estes dados são de grande valia no estudo da correlação entre os parâmetros da nitretação a plasma.

7 1110									
V (v)	VP (v)	i (A)	T (C)	t (h:min)	t (min)	P (mb)	1000i (A)	100P (mb)	5Potef
250		0,1	16	9:26	0	2	100	200	125
288	300	0,15	52	9:30	4	2	150	200	216
296	304	0,13	84	9:35	9	2	130	200	192
300	307	0,18	110	9:40	14	2	180	200	270
300	308	0,09	128	9:45	14	2	90	200	135
308	313	0,09	140	9:50	24	2	90	200	139
308	313	0	140		25	2	0	200	0
308	320	0,17	148	9:57	31	2	170	200	262
314	324	0,15	172	10:02	36	2	150	200	236
288	300	0,17	188	10:05	39	3	170	300	245
295	304	0,14	212	10:11	45	3	140	300	207
339	348	0,14	216	10:28	62	3	140	300	237
346	356	0,12	236	10:34	68	3	120	300	208
372	380	0,14	252	10:40	74	3	140	300	260
368	376	0,14	284	10:48	82	3	140	300	258
388	396	0,15	320	10:56	90	3	150	300	291
388	400	0,15	348	11:07	101	3	150	300	291
392	404	0,15	364	11:20	114	3	150	300	294
373	384	0,17	380	11:38	132	3	170	300	317
376	388	0,16	388	12:20	174	3	160	300	301
397	412	0,2	396	12:34	188	3	200	300	397
397	412	0	396		189	3	0	300	0
384	396	0,18	376	12:42	196	3	180	300	346
384	396	0	376		197	3	0	300	0
396	408	0,2	396	12:57	205	3	200	300	396
404	420	0,2	412	13:05	303	3	200	300	404
409	424	0,2	440	13:19	317	3	200	300	409
411	424	0,19	448	13:41	339	3	190	300	390
411	424	0	448		340	3	0	300	0
429	448	0,23	440	13:44	342	3	230	300	493

Tabela 18 : Parâmetros do processo para amostra A4 (τ = 1 e P = 2 Torr) AMOSTRA 4

Figura 26: Parâmetros do processo para amostra A4 (τ = 1 e P = 2 Torr)

AMO	STRA 5								
V (v)	VP (v)	i (A)	T (C)	t (h:min)	t (min)	P (mb)	1000i (A)	100P (mb)	5Pot
156	303	0,13	80	14:19	0	1,5	130	150	101
157	307	0,12	148	14:33	14	1,5	120	150	94
168	327	0,11	180	14:45	21	1,5	110	150	92
169	329	0,1	188	14:49	25	1,5	100	150	85
175	379	0,09	208	15:00	36	1,5	90	150	79
193	383	0,11	232	15:09	45	1,5	110	150	106
215	438	0,16	292	15:22	58	1,5	160	150	172
336	344	0,1	296	15:27	63	1,5	100	150	168
336	344	0	296		64	1,5	0	150	0
276	284	0,12	288	15:41	77	4	120	400	166
319	336	0,29	284	15:51	87	4	290	400	463

Tabela 19: Parâmetros do processo para amostra A5 (τ = 1 e P = 3 Torr)

Figura 27: Parâmetros do Processo para amostra A5 ($\tau = 1 \text{ e P} = 3 \text{ Torr}$)

AMO	STRA 6								
V (v)	VP (v)	i (A)	T (C)	t (h:min)	t (min)	P (mb)	100P(mb)	1000i (A)	5Pot
									(mb)
176	320	0,09	50	14:30	0	1	100	90	79
167	316	0,11	110	14:46	16	2	200	110	92
172	320	0,09	150	15:00	30	2	200	90	77
180	344	0,13	220	15:30	60	2	200	130	117
183	364	0,15	280	16:00	90	4,5	450	150	137
182	368	0,15	300	16:05	95	4,5	450	150	137
336	357	0,32	300	16:07	97	4,5	450	320	538
336	356	0,31	320	16:10	100	4,5	450	310	521
336	358	0,3	360	16:15	105	4,5	450	300	504
340	360	0,27	400	16:26	204	4,5	450	270	459
340	360	0	420	16:32	211	4,5	450	0	0
328	344	0,22	390	16:33	212	4,5	450	220	361
315	332	0,27	390	16:35	214	5,33	533	270	425

Tabela 20: Parâmetros do processo para amostra A6 (τ = 1 e P = 4 Torr)

AMOS	TRA 6 COI	NTINUAÇÂ	0						
V (v)	VP (v)	i (A)	T (C)	t (h:min)	t (min)	P (mb)	100P(mb)	1000i (A)	5Pot (mb)
324	344	0,29	410	16:45	224	5,33	533	290	470
328	352	0,31	418	16:50	229	5,33	533	310	508
336	356	0,3	440	17:00	239	5,33	533	300	504
348	376	0,36	450	17:10	249	5,33	533	360	626
348	376	0	450	17:20	259	5,33	533	0	0
338	360	0,32	420	17:21	260	5,33	533	320	541
340	364	0,31	450	17:36	275	5,33	533	310	527
344	364	0,32	440	14:42	281	5,33	533	320	550
344	364	0,31	450	18,14	309	5,33	533	0	0
344	364	0	460		315	5,33	533	0	0
364	392	0,4	500	19:00	356	5,33	533	400	728
364	392	0,4	500	20:00	410	5,33	533	400	728

Figura 28: Parâmetros do processo para amostra A6 (τ = 1 e P = 4 Torr)

AMO	STRA 7								
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5POTef(W)
205	310	0,03	23	12:36	0	1,5	150	30	47
202	315	0,03	36	12:56	20	1,5	150	30	47
213	346	0,04	49	13:07	31	1,5	150	40	69
213	346	0	49		37	1,5	150	0	0
158	320	0,09	57	13:20	44	1	100	90	144
172	345	0,04	107	13:43	67	1	100	40	69

Tabela 21: Parâmetros do processo para amostra A7 (τ = 0,5 e P = 4 Torr)

AMOS	TRA 7 COI	NTINUAÇÂ	i0						
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5POTef(W)
144	308	0,09	131	13:52	76	5,3	530	90	139
144	308	0	131		80	5,3	530	0	0
165	374	0,31	147	14:13	97	5,3	530	310	580
178	389	0,23	245	14:23	107	5,3	530	230	448
182	395	0,2	305	14:35	120	5,3	530	200	395
184	395	0,2	336	14:45	130	5,3	530	200	395
190	417	0,27	366	14:50	140	5,3	530	270	564
191	419	0,27	390	14:55	145	5,3	530	270	566
191	418	0,26	407	15:00	150	5,3	530	260	544
193	424	0,27	428	15:10	160	5,3	530	270	573
194	425	0,27	445	15:23	173	5,3	530	270	574
195	430	0,27	455	15:33	184	5,3	530	270	581
194	424	0,25	458	15:43	194	5,3	530	250	531
200	441	0,29	472	15:53	204	5,3	530	290	640
200	441	0,29	483	16:11	222	5,3	530	290	640

Figura 29: Parâmetros do processo para amostra A7 (τ = 0,5 e P = 4 Torr)

AMO	STRA 8								
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5Potef(W)
264	406	0,04	5	11:13	0	1	100	40	81
312	466	0,04	28	11:23	10	1	100	40	93
337	503	0,03	46	11:33	20	1	100	30	76
246	432	0,1	107	11:43	30	2	200	100	216
337	514	0,04	108	11:53	40	2	200	40	103
346	515	0,04	104	12:03	50	2	200	40	103
185	406	0,26	181	12:13	60	2	200	260	528
176	368	0,13	218	12:23	70	2,66	266	130	239
180	376	0,12	250	12:33	80	2,66	266	120	226
180	376	0,12	259	12:43	90	2,66	266	120	226

Tabela 22: Parâmetros do processo para amostra A8 (τ = 0,5 e P = 2 Torr)

AMOSTRA 8 CONTINUAÇÃO									
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5Potef(W)
194	409	0,15	291	12:53	100	2,66	266	150	307
196	414	0,15	311	13:03	110	2,66	266	150	311
198	416	0,16	344	13:20	127	2,66	266	160	333
214	452	0,18	397	13:40	147	2,66	266	180	407
216	455	0,18	408	13:53	160	2,66	266	180	410
216	455	0	408		167	2,66	266	0	0
210	448	0,2	364	14:04	171	2,66	266	200	448
210	448	0	364		173	2,66	266	0	0
222	478	0,25	388	14:09	176	2,66	266	250	598
224	475	0,2	428	14:24	191	2,66	266	200	476
226	479	0,2	454	15:05	232	2,66	266	200	480
230	487	0,2	450	15:20	247	2,66	266	200	488
236	502	0,22	461	15:30	257	2,66	266	220	553
236	502	0,22	471	15:40	267	2,66	266	220	553
236	502	0	471		270	2,66	266	0	0
238	508	0,22	494	15:55	282	2,66	266	220	559
238	508	0	494		283	2,66	266	0	0
238	508	0,23	476	16:03	290	2,66	266	230	585
238	507	0,23	488	16:19	306	2,66	266	230	584
238	506	0,23	495	16:32	319	2,66	266	230	583
239	509	0,24	499	16:50	337	2,66	266	240	611

Figura 30: Parâmetros do Processo para amostra A8 (τ = 0,5 e P = 2 Torr)

AMOSTRA 9									
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5Potef(W)
198	343	0,07	21	09:50	0	2	200	70	120
204	351	0,07	43	10:00	10	2	200	70	123
216	378	0,07	65	10:10	20	2	200	70	132
226	400	0,08	78	10:20	30	2	200	80	160
219	368	0,05	81	10:26	36	2	200	50	92

Tabela 23: Parâmetros do processo para amostra A9 (τ = 0,75 e P = 2 Torr)

AMOSTRA 9 CONTINUAÇÃO									
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5Potef(W)
219	368	0	81	10:27	37	2	200	0	0
219	368	0,05	83	10:28	38	2	200	50	92
227	382	0,06	90	10:46	56	2	200	60	115
215	292	0,13	114	11:00	70	2,66	266	130	190
222	296	0,11	141	11:10	80	2,66	266	110	163
222	296	0	141		83	2,66	266	0	0
178	358	0,15	153		86	2,66	266	150	269
200	387	0,09	187	11:30	100	2,66	266	90	174
216	414	0,1	203	11:40	110	2,66	266	100	207
219	434	0,11	232	11:50	120	2,66	266	110	239
224	464	0,12	262	12:00	130	2,66	266	120	279
221	461	0,12	288	12:10	140	2,66	266	120	277
216	454	0,14	323	12:30	160	2,66	266	140	318
231	497	0,22	360	12:40	170	2,66	266	220	547
229	492	0,21	428	13:00	190	2,66	266	210	517
313	440	0,23	433	13:21	211	2,66	266	230	506
336	476	0,31	484	13:35	225	2,66	266	310	738
333	472	0,32	476	13:45	235	2,66	266	320	756
329	468	0,31	496	14:12	262	2,66	266	310	726
329	468	0	496	14:23	273	2,66	266	0	0
339	481	0,33	482	14:24	274	2,66	266	330	794
339	481	0	482	14:31	281	2,66	266	0	0
328	464	0,28	466	14:34	284	2,66	266	280	650

Figura 31: Parâmetros do processo para amostra A9 (τ = 0,75. e P = 2 Torr)

AMOSTRA 10									
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5Potef(W)
224	342	0,04	8	09:10	0	1	100	40	68
179	308	0,08	23	09:17	7	2	200	80	123
190	324	0,06	73	09:48	38	2,5	250	60	97
236	312	0,05	98	10:04	54	1	100	50	78
206	279	0,1	106	10:08	58	2	200	100	140
206	279	0	106		60	2,5	250	0	0
216	292	0,12	124	10:21	71	2,5	250	120	175
224	300	0,09	148	10:31	81	2,5	250	90	135
424	448	0,15	138	10:53	103	2,5	250	150	336
424	448	0	138		105	2,5	250	0	0
240	324	0,13	148	11:00	110	2,5	250	130	211
240	328	0,1	187	11:12	122	2,5	250	100	164
249	336	0,09	212	11:26	136	2,5	250	90	151
244	332	0,11	215	11:29	139	3	300	110	183
248	336	0,1	235	11:45	155	3	300	100	168
324	324	0	257	12:01	171	4	400	0	0
256	348	0,1	260	12:13	183	2,5	250	100	174
248	340	0,12	263	12:17	187	4	400	120	204
252	343	0,1	270	12:30	200	4	400	100	172
240	333	0,14	278	12:46	216	4	400	140	233
257	361	0,2	291	12:51	223	4	400	200	361
257	361	0	291		223	4	400	0	0
263	352	0,07	274	12:56	228	2,5	250	70	123
239	328	0,11	276	12:58	230	4	400	110	180
240	329	0,11	278	13:20	252	4	400	110	181
246	341	0,17	324	13:43	275	4	400	170	290
245	340	0,16	338	14:03	295	4	400	160	272
245	340	0	338		297	4	400	0	0
252	351	0,17	332	14:23	315	4	400	170	298
263	364	0,18	360	15:00	352	4	400	180	328
264	364	0,18	366	15:13	365	4	400	180	328
272	381	0,21	378	15:25	377	4	400	210	400
275	384	0,2	403	15:46	398	4	400	200	384
275	384	0,2	408	15:56	408	4	400	200	384
280	396	0,25	433	16:25	437	4	400	250	495
285	404	0,26	456	16:37	449	4	400	260	525
288	405	0,25	464	16:57	469	4	400	250	507
296	420	0,29	499	17:18	490	4	400	290	609
293	416	0,26	489	17:39	511	4	400	260	541
293	416	0,27	495	18:10	542	4	400	270	562
296	420	0,27	494	18:22	554	4	400	270	567

Tabela 24: Parâmetros do processo para amostra A10 (τ = 0,75 e P = 3 Torr)

Figura 32: Parâmetros do processo para amostra A10 (τ = 0,75 e P = 3 Torr)

AMC	STRA 11								
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5Pot (W)
255	351	0,02	20	11:20	0	1	100	20	35
164	290	0,07	47	11:37	17	2,5	250	70	102
163	301	0,09	75	11:49	29	2,5	250	90	136
160	303	0,09	94	12:03	43	2,5	250	90	136
172	330	0,11	122	12:15	55	2,5	250	110	182
172	357	0,2	159	12:27	67	2,5	250	200	357
175	361	0,17	217	12:48	88	4	400	170	307
198	412	0,22	264	13:00	100	4	400	220	453
200	420	0,21	280	13:10	110	4	400	210	441
240	320	0,05	265	13:12	112	1,5	150	50	80
220	304	0,15	266	13:17	117	3	300	150	228
219	305	0,14	273	13:22	122	3	300	140	214
236	328	0,17	287	13:27	127	3	300	170	279
240	331	0,15	306	13:40	140	3	300	150	248
228	323	0,21	335	13:53	153	5,36	536	210	339
230	324	0,19	347	14:10	170	5,36	536	190	308
232	324	0,18	344	14:40	200	5,36	536	180	292
248	353	0,25	376	14:50	210	5,36	536	250	441
250	355	0,23	407	15:24	244	5,36	536	230	408
264	377	0,28	432	15:36	256	5,36	536	280	528
264	377	0,27	442	15:46	266	5,36	536	270	509
272	392	0,3	465	15:56	276	5,36	536	300	588
273	392	0,32	478	16:08	291	5,36	536	320	628
273	392	0,3	482	16:18	301	5,36	536	300	588
276	400	0,32	493	16:28	311	5,36	536	320	640
278	401	0,33	499	16:40	323	5,36	536	330	662
277	400	0,32	499	16:54	337	5,36	536	320	640

Tabela 25: Parâmetros do processo para amostra A11 (τ = 0,75 e P = 4 Torr)

AMOSTRA 11 CONTINUAÇÃO									
V (v)	Vp (v)	i (A)	T média	t(h:min)	t(min)	P (mb)	100P	1000i	5Pot (W)
275	395	0,3	491	17:10	353	5,36	536	300	593
276	396	0,3	491	17:20	363	5,36	536	300	594

Figura 33: Parâmetros do processo para amostra A11 (τ = 0,75 e P = 4 Torr)

Figura 34: Exemplo de variação de todos os parâmetros em função do tempo

4.4 EXPERIMENTOS VARIANDO FATOR DE TRABALHO E PRESSÃO

Os resultados da profundidade de formação de camada ,em mm, no interior dos furos são apresentadas nas tabelas 26 e 27 para a camada branca e camada de difusão respectivamente.

	Fator de trabalho (τ)								
	0,5		0,75			1,00			
	Pressão (Torr)		Pressão (Torr)			Pressão (Torr)			
Diâmetro (mm)	2	3	4	2	3	4	2	3	4
3	10	40	40	0	40	40	0	40	40
4	60	60	60	60	60	60	60	60	60
5	75	75	75	75	75	75	75	75	75
Amostra	A 8	A 2	Α7	A 9	A 10	A 11	A 4	A 5	A 6

Tabela 26: Profundidade de formação de camada branca no interior dos furos

Tabela 27: Profundidade de formação de camada de difusão no interior dos furos

		Fator de trabalho (τ)							
	0,5		0,75			1,00			
	Pr	essão (T	essão (Torr) Pressão (Torr) Pre		Pressão (Torr)		essão (To	orr)	
Diâmetro (mm)	2	3	4	2	3	4	2	3	4
3	10	40	40	2	35	40	0	40	40
4	51	60	60	0	60	60	0	60	60
5	51	75	75	75	75	75	75	75	75
Amostra	A 8	A 2	A 7	A 9	A 10	A 11	A 4	A 5	A 6

As tabelas de número 28 a 35 acompanhadas das respectivas figuras de número 35 a 42 apresentam os valores de microdureza referentes as camadas de difusão em função da profundidade de penetração nos furos para todos os experimentos.

Tabela 28: Medidas de microdureza HV 100 gf

AMOSTRA 4, P=2Torr, τ=1						
	Diâmetro d	o furo (mm)			
dist.(mm)	3	4	5			
5	190,5	202	347,5			
10	208,8	223,6	314			
20	228,3	238,2	324,6			
30	223,6	262,1	321,9			
40	247	258,2	311,5			
50		260	330,1			
60		252,5	347,5			
75			335,8			
MÉDIA	219,6	242,4	329,1			
DESVIO	21,25	22,56	13,80			

Figura 35: Microdureza X Profundidade nos furos

Tabela 29: Medidas de microdureza HV 100 gf

AMOSTRA								
	Diâmetro do furo (mm)							
dist. (mm)	3	4	5					
5	319,3	306,4	311,5					
10	301,5	332,9	341,6					
20	332,9	316,6	335,8					
30	327,4	324,6	341,6					
40	344,5	311,5	316,6					
50		330,1	319					
60		308,9	344,5					
75			350,5					
MÉDIA	325,1	318,7	332,6					
DESVIO	16,07	10,57	14,74					

Figura 36: Microdureza x profundidade nos furos30

Figura 37: Microdureza x profundidade nos furos

<u>Tabela 30: Medidas de microdureza HV 100 g</u>	gf
AMOSTRA 6 $P=4Torr \tau=1$	

AINOUTR-								
	Diâmetro do furo (mm)							
dist.mm	3	4	5					
5	356,7	400	330,1					
10	321,9	330,1	341,6					
20	379,7	327,4	344,5					
30	301,5	327,4	344,5					
40	319,3	319,3	321,9					
50		319,3	306,4					
60		314	303,9					
75			311,5					
MÉDIA	335,8	333,9	325,6					
DESVIO	31,65	29,69	17,08					

Tabela 31: Medidas de microdureza HV 100 gf

AMOSTRA 7, P=4Torr, τ=0,5						
	Diâmetro d	o furo (mm)			
dist.(mm)	3	4	5			
5	335,8	360,2	353,6			
10	344,5	321,9	341,6			
20	301,5	324,6	330,5			
30	316,6	347,5	338,7			
40	303,9	311,5	316,6			
50		306,4	353,6			
60		308,9	330,1			
75			360,3			
MÉDIA	320,5	325,9	340,6			
DESVIO	19,12	20,56	14,73			

Microdureza A8

Tabela 32: Medidas de microdureza HV 100 gf

AMOSTRA							
Diâmetro do furo (mm)							
dist.(mm)	3	4	5				
5	327,4	383,1	338,7				
10	301,5	327,4	338,7				
11	258,2						
12	260,1						
15	256,3						
20	264,1	316,6	306,4				
30	264,1	306,4	306,4				
40	276,4	314	301,5				
50		311,5	316,6				
51		303,9	300				
52		294,3	296,7				
60		299	294,3				
75			289,7				
MÉDIA	276,0	317,4	308,9				
DESVIO	25,45	26,55	17,36				

Tabela 33: Medidas de microdureza HV 100 gf

	Diametro o	<u>io iulo (illili</u>)
dist.(mm)	3	4	5
5	239	330,1	383,1
10	226,7	344,5	372,9
20	222	324,6	327,4
30	208,8	332,9	356,7
40	225,1	332,9	319,3
50		316,6	338,7
60		321,9	321,9
75			301,5
MÉDIA	237,9	329,1	340,2
DESVIO	10,31	9,09	28,33

Figura 40: Microdureza em função da profundidade nos furos

Tabela 34: Medidas de microdureza HV 100 gf

AMOSTRA			
	Diâmetro d	o furo (mm	
dist.(mm)	3	4	5
5	356,7	360	383,1
10	338,7	316,6	363,1
20	303,9	311,5	372,9
30	303,9	330,1	353,6
35	311,5		
37	289,7		
40	289,7	330,1	316,6
50		311,5	332,9
60		303,9	327,4
75			372,9
MÉDIA	313,4	323,4	352,8
DESVIO	25,24	18,88	24,45

Tabela 35 : Medidas de microdureza HV 100 gf

AMOSTRA 11, P=4Torr, τ=0,75				
	Diâmetro do furo (mm)			
dist.(mm)	3	4	5	
5	308,9	344	308,9	
10	301,5	314	303,9	
20	306,4	309	319,3	
30	301,9	363	316,6	
40	308,9	301,5	303,9	
50		311,5	332,9	
60		332	330,1	
75			350,5	
MÉDIA	305,5	325,0	320,8	
DESVIO	3,64	22,23	16,25	

Figura 42 : Microdureza em função da profundidade nos furos

As figuras de número 43 a 75, obtidas por microscopia óptica, são referentes as metalografias junto a borda dos furos. Todas as figuras foram obtidas a distâncias que variam de 5 a 10 mm da extremidade fechada dos furos, ou seja, próximo ao final dos mesmos. O ataque foi realizado com Nital 3% e o aumento utilizado foi de 500 X.

As amostras A1 (figuras 43 a 45) e A3 (figuras 49 a 51) foram niqueladas após a nitretação. A camada superficial é a de níquel, abaixo aparece a camada nitretada.

A amostra A11 (figuras 73 a 75) teve os furos preenchidos com massa plástica como tentativa de reduzir o abaulamento durante a preparação metalográfica.

Figura 43: Amostra 1, diâmetro 3 mm

Figura 44: Amostra 1, diâmetro 4 mm

Figura 45: Amostra 1diâmetroe 5 mm

Figura 46: Amostra 2, diâmetro 3 mm

Figura 47: Amostra 2, diâmetro 4 mm

Figura 48: Amostra 2, diâmetro 5 mm

Figura 49: Amostra 3, diâmetro 3

Figura 50: Amostra 3, diâmetro 4 mm

Figura 51: Amostra 3, diâmetro 5 mm

Figura 52: Amostra 4, diâmetro 3 mm

Figura 53: amostra 4, diâmetro 4 mm

Figura 54: amostra 4, diâmetro 5 mm

Figura 55: amostra 5, diâmetro 3 mm

Figura 56: amostra 5, diâmetro 4 mm

Figura 57 : amostra 5, diâmetro 5 mm

Figura 58: amostra 6, diâmetro 3 mm

Figura 59: amostra 6, diâmetro 4 mm

Figura 60: amostra 6, diâmetro 5 mm

Figura 61: amostra 7, diâmetro 3 mm

Figura 62: amostra 7, diâmetro 4 mm

Figura 63: amostra 7, diâmetro 5 mm

Figura 64: amostra 8, diâmetro 3 mm

Figura 65: amostra 8, diâmetro 4 mm

Figura 66: amostra 8, diâmetro 5 mm

Figura 67: amostra 9, diâmetro 3 mm

Figura 68: amostra 9, diâmetro 4 mm

Figura 69: amostra 9, diâmetro 5 mm

Figura 70:amostra 10, diâmetro 3 mm

Figura 71:amostra 10, diâmetro 4 mm

Figura 72:amostra 10, diâmetro 5 mm

Figura 73 Amostra 11, diâmetro 3 mm

Figura 74: Amostra 11, diâmetro 4mm

Figura 75:amostra 11, diâmetro 5 mm

Analisando as metalografias, foi observado que a amostra 7 é a que apresenta a maior espessura de camada branca em todos os diâmetros de furos, enquanto a amostara 4 é a que apresenta as menores espessuras de camadas brancas dentre todas as amostras. As condições de tratamento destas duas amostras foram totalmente opostas. A amostra 7 foi nitretada a maior pressão (4 Torr) e menor fator de trabalho (0,5). Já a amostra 4 foi nitretada com a menor pressão (2 Torr) e o maior fator de trabalho (1,0).

Destaca-se também o fato da acentuada redução na espessura da camada branca na amostra 7 figuras 61, 62 e 63 a medida que observamos os furos de maior diâmetro.

As figuras 75 a 81 foram obtidas por microscopia eletrônica de varredura.

Figura 75: Amostra 4, diâmetro 3 mm

Figura 76: Amostra 4, diâmetro 4mm

Figura 77: Amostra 4, diâmetro 5 mm

Figura 78: Amostra 7, diâmetro 3 mm

Figura 79: Amostra 7, diâmetro 4 mm

Figura 80: Amostra 7, diâmetro 5 mm

Figura 81: Amostra 7, diâmetro 5 mm

Os dados das tabelas 26 e 27 foram alocados ao programa Statgraphics que gerou os resultados apresentados na tabela 36 relativos a formação de camada branca no interior dos furos. Os dados referentes a formação de camada de difusão no interior dos furos são apresentados na tabela 37 . O programa gerou ainda, as equações [3] e [4] que mais se ajustam ao modelo. Estas equações determinam a profundidade de formação das camadas (branca e de difusão) no interior de furos não passantes (cegos) com diâmetros variando entre 3 e 5 mm, submetidos a pressões entre 2 e 4 Torr na nitretação a plasma gerado a partir da mistura gasosa de 76% de N₂ e 24% de H₂ a temperatura de 500 $^{\circ}$ C, pelo período de uma hora.

Análise de Regressão Múltipla				
Variável dependente: cb (Prof. Máxima em que se observa camada branca)				
Parâmetro	Estimado	Desvio Padrão	Estatística T	Valor P
Constante	64,0741	2,7393	23,3907	0,0000
<pre></pre>	23,6111	1,50038	15,7368	0,0000
P (pressão)	6,11111	1,50038	4,077305	0,0005
φ+P	-9,16667	1,83758	-4,98845	0,0001
P^2	-6,11111	2,59873	-2,35158	0,0285
φ ^ 2	-8,61111	2,59873	-3,31359	0,0033
R-quadrado = 93,5707%				
R-quadrado ajustado = 92,04%				
Cb = 64,0741 + 23,6111*\$\$\phi\$ + 6,11111*\$\$P - 9,16667*\$\$\$\$\$\$\$\$\$\$\$P - 6,11111*\$\$P^2 - \$\$\$				
8,61111*\phi^2 [3]				

Tabela 36: Resultados da an	nálise estatística
-----------------------------	--------------------

Análise de Regressão Múltipla				
Variável dependente: cd (Prof. max em que se observa a camada de difusão)				
Parâmetro	Estimado	Desvio Padrão	Estatística T	Valor P
Constante	57,7778	3,73573	15,4663	0,0000
φ (diâmetro)	22,5556	2,64156	8,53873	0,0000
P (pressão)	11,2778	2,64156	4,26936	0,0003
φ+P	-7,16667	3,23524	-2,21519	0,0374
P^2	-10,7222	4,57531	-2,34349	0,285
R-quadrado = 82,1915%				
R-quadrado ajustado = 78,9536%				
$Cd = 577778 + 22,5556^{*}\phi + 11,2778^{*}P - 7,16667^{*}\phi^{*}P - 10,7222^{*}P^{2}$ [4]				

Tabela 37: Resultados da análise estatística

É importante observar que, assim como para a entrada de dados no Statgraphics, as equações [3] e [4] devem receber os valores de diâmetro do furo (φ) e valores de pressão (P) codificados a partir dos valores apresentados na tabela 38. No caso de valores intermediários aos apresentados na tabela 38 utilizar interpolação linear simples.

Tabela 38: Códigos para o	uso das equaç	;ões [3] e [4].
---------------------------	---------------	-----------------

Diâmetro (mm)	Código	Pressão (Torr)	Código
3	-1	2	-1
4	0	3	0
5	1	4	1

Por exemplo, no caso de um furo de diâmetro 4 mm, nitretado a pressão de 2 Torr; nas equações [3] e [4] substituiremos : $\phi = 0$ e P = -1

O modelo de regressão linear múltipla empregado aponta como variáveis estatisticamente significativas, em relação a formação de **camada branca** no interior dos furos, o diâmetro, com nível de confiança (nc) de 100%, a pressão

com (nc) de 99,95%, o produto do diâmetro pela pressão com (nc) de 99,9%, o quadrado da pressão com (nc) de 97,15% e o quadrado do diâmetro com (nc) de 99,67%. Também em relação a profundidade de formação da camada branca nos furos o modelo explica 93,57% da variabilidade desta variável de resposta.

Em relação a formação da camada de difusão no interior dos furos temos como variáveis estatisticamente significativas o diâmetro do furo com (nc) de 100%, a pressão com (nc) de 99,97%, o produto da pressão pelo diâmetro com (nc) de 96.26% e o quadrado da pressão com (nc) de 97,75%, sendo que o modelo explica 82.2% da variabilidade na profundidade de formação da camada de difusão.

O fator de trabalho não aparece como estatisticamente significativo na formação de camadas no interior dos furos cegos nas condições testadas.

5. DISCUSSÃO DOS RESULTADOS

5.1- EXPERIMENTOS VARIANDO A FREQÜÊNCIA

As recomendações do emprego de freqüências elevadas (acima de 1000 Hz) quando da nitretação de furos e geometrias complexas [1,3] deve estar relacionado a um aumento mais uniforme de temperatura no interior dos furos, por exemplo. As variações de temperatura, elevação durante o tempo de pulso e redução durante o tempo de pausa, devem ser menores quanto mais rápido o ciclo "liga/desliga" for repetido na unidade de tempo. Esta maior uniformidade de temperatura deve ocasionar uma maior estabilidade do plasma, reduzindo as interrupções. No entanto, deve haver outros fatores condicionantes que, interagindo com a freqüência, produzem resultados diversos, pois observamos que a freqüência na qual o plasma apresentou a maior estabilidade foi a de 1000 Hz e a de menor estabilidade foi a freqüência de 1000 Hz. Já quanto às extinções do plasma, foram observadas apenas uma a 1000 Hz e três extinções tanto na freqüência de 100 Hz quanto na de 5000 Hz, durante primeiro grupo de experimentos.

5.2- MONITORAMENTO DE TEMPERATURAS

Sabe-se que a temperatura é um parâmetro de extrema importância nos processos metalúrgicos. Em tratamentos térmicos está diretamente relacionada a alterações microestruturais, a formação de novas fases, ao fenômeno de difusão, a alterações de volume e macroscopicamente a deformações que os componentes tratados podem sofrer. Desta forma, conhecer o histórico de variações de temperatura a que um componente foi ou será submetido permite que possamos prever o seu comportamento em trabalho, estimar sua vida útil e entender certos fenômenos.

Na nitretação a formação de nitretos, e da camada de difusão dependem, entre outros fatores, da temperatura. Isto posto imaginamos que poderia haver gradientes de temperatura nas amostras durante o tratamento em função da maior ou menor profundidade de penetração do plasma no

interior dos furos de diferentes diâmetros. A presença do plasma no interior de um furo atua como uma fonte de energia térmica ou seja as amostras são aquecidas não só de fora para dentro, mas também da forma inversa pelo bombardeio de íons na superfície interna dos furos. Os furos devido a sua geometria e em especial os furos cegos, por apresentarem, abertura em apenas uma das extremidades, funcionam como barreiras a condução de calor. A dificuldade de remover energia térmica do interior de orifícios pode levar a situações em que ocorre o indesejável fenômeno de cátodo oco.

Quanto às variações de temperatura, na nitretação a plasma sem fonte de aquecimento auxiliar, todo o calor fornecido às amostras tem origem na transformação de 90% da energia cinética dos íons colidentes em energia térmica [1]. Portanto, quanto mais próximo um ponto de medida de temperatura estiver de uma região intensamente bombardeada por íons, mais elevada será a temperatura medida neste ponto.

Para a mesma tensão e corrente quanto menores as dimensões da área bombardeada por íons, maior será a densidade de corrente local e maior o aquecimento. Esta é a provável justificativa para as temperaturas mais elevadas, na maioria dos experimentos, registradas no termopar 1. Como segundo maior registro aparecem as temperaturas medidas no termopar 2.

Observando a disposição dos termopares nas amostras, vemos que os termopares T1 e T2 são os mais próximos da menor área superficial das amostras, a face frontal, onde estão as aberturas dos furos. Além de estarem entre os furos de diâmetros 4 e 5 mm, que certamente atuam como fonte de energia térmica, uma vez estabelecido o plasma em seus interiores. O termopar T3 está mais próximo da face posterior das amostras (que também possui área reduzida) do que o termopar T2 está da face frontal. Este ponto (T3) está localizado próximo da extremidade fechada do furo de 4 mm de diâmetro e talvez ali o bombardeio de íons não seja tão intenso, além do mais este ponto é o mais distante do furo de 3 mm de diâmetro, provavelmente tendo sua temperatura pouco influenciada pelo plasma gerado neste furo.

A diferença média de temperatura entre os pontos mais aquecidos em relação aos menos aquecidos foi de 24,5 ⁰C, considerando-se todas as nitretações.

77

No experimento onde o termopar T1 foi envolvido pelo plasma, no interior do furo de 5 mm de diâmetro, T2 foi colocado no interior da amostra, acima do furo de 5mm de diâmetro, e T3 junto a superfície externa, tivemos 134 ⁰C de diferença máxima entre T1 e T3 e de 92 ⁰C entre T2 e T3. Evidentemente T1 apresentou as temperaturas mais elevadas devido a reduzida área da extremidade do termopar sendo diretamente atingida pelos íons do plasma e T3 apresentou a menor temperatura, porque estando junto a superfície externa da amostra ficou diretamente sujeito ao fluxo de gases, o que pode contribuir na redução de temperatura.

5.3 – MONITORAMENTO DOS PARÂMETROS DO PROCESSO

Os modelos teóricos para nitretação a plasma associam o parâmetro tensão a energia dos íons que incidem sobre o cátodo, e a corrente iônica com a quantidade de íons que bombardeiam o cátodo na unidade de tempo. A corrente eletrônica se refere a quantidade de elétrons fornecidos pela fonte de potência, também na unidade de tempo. A potência que é consumida no sistema é dada pelo produto da tensão pela corrente. A pressão esta relacionada ao número de partículas presentes no reator.

O monitoramento destes parâmetros nos permitiu observar as seguintes relações entre eles: O aumento da pressão do sistema, ou seja o aumento do número de átomos e moléculas no reator, faz com que o livre percurso médio dessas partículas seja reduzido, aumentando desta forma o número de colisões entre elas. Estas colisões acarretam diminuição de energia que é macroscopicamente observada pelo registro de queda de tensão. Simultaneamente com o aumento do número de partículas no reator temos mais ionizações e um possível aumento da corrente eletrônica.

Quando foi medida a corrente entre o cátodo e a fonte de potência (ic) e a corrente entre o ânodo e a fonte (ia), foi observado que esta última tendeu a ser entre 0,002 e 0,005 Amperes maior do que a primeira, em tensões na faixa de 236 a 297 Volts, durante a realização do sputtering, com hidrogênio. Uma possível causa para esta diferença pode estar relacionada aos elétrons liberados na ionização da mistura gasosa. A corrente medida entre o cátodo e a fonte (ic) deve ser formada por elétrons fornecidos pela fonte de potência,

usados na neutralização de íons e na reposição de elétrons emitidos pelo cátodo, em função da diferença de potencial e também para reposição de elétrons arrancados do cátodo (elétrons secundários), pelo bombardeio iônico. A corrente medida entre o anodo e a fonte de potência (ia) deve ser formada por elétrons emitidos pelo cátodo, elétrons secundários e elétrons liberados nas ionizações. Todos estes elétrons devem ter energia cinética suficiente para atravessar o plasma e chegar ao ânodo.

Foi observado comportamento similar das curvas de potência e corrente. Da mesma forma existe similaridade entre as curvas de tensão e tensão de pico.

Quanto ao aquecimento das amostras existe um espécie de "inércia térmica" conseqüência do balanço favorável de aquisição em relação a extração de energia térmica, pois mesmo em períodos onde não temos corrente e portanto potência, ou seja não existe plasma, a temperatura permanece estabilizada e em alguns casos até aumenta, obviamente desde que o período de interrupção do plasma não seja demasiado grande.

5.4 – EXPERIMENTOS VARIANDO FATOR DE TRABALHO E PRESSÃO

Segundo a análise estatística onde foram apontados como fatores significativos em relação à formação das camadas branca e de difusão no interior dos furos o diâmetro dos mesmos, a pressão e a interação destes dois fatores, independentemente do fator de trabalho, supomos que a influência do diâmetro do furo é fisicamente explicada pela maior facilidade de penetração dos gases em orifícios onde esta variável é maior, enquanto que o aumento da pressão, a temperatura e volumes constantes, depende principalmente do número de átomos e moléculas de gás no interior do reator. Quanto maior a quantidade de átomos e moléculas do gás, maior a probabilidade de que ocupem o máximo de volume possível, penetrando desta forma no interior dos orifícios.

Quanto ao fator de trabalho, pelos resultados obtidos, parece que ele influi mais na capacidade de nitretar regiões onde já exista o plasma, do que propriamente na formação do plasma nestas regiões, principalmente no que diz respeito a furos cegos de pequeno diâmetro. Podemos imaginar, portanto, que a camada branca formada no furo de diâmetro de 3 mm da amostra 8 ($\tau = 0,5 \text{ e P} = 2 \text{ Torr}$), e que se constitui em uma exceção entre as amostras nitretadas à pressão de 2 Torr, é conseqüência do plasma formado até esta profundidade, e da supremacia do mecanismo gerador da camada em detrimento do mecanismo de arrancamento de átomos desta mesma camada. Estes mecanismos concorrentes ocorrem simultaneamente e o favorecimento do primeiro em relação ao segundo foi proporcionado, no diâmetro 3 mm da amostra A8, pelo fator de trabalho (0,5) empregado, onde em 50% do tempo de nitretação não ocorreu bombardeio iônico sobre o cátodo, diminuindo assim a decomposição da camada que está se formando.

De maneira geral parece que o mecanismo de formação da camada branca é beneficiado pela presença de um maior número de partículas no interior dos furos e pela redução do tempo de bombardeio iônico. O número de partículas nos furos aumenta à medida que aumentamos o diâmetro e/ou a pressão do sistema, enquanto que o tempo de bombardeio pode ser alterado modificando-se o fator de trabalho.

O aumento da densidade de partículas nos furos causa a diminuição do livre caminho médio, ocasionando um aumento do número de colisões entre as partículas e conseqüente redução de energia. Ao atingirem o cátodo, já com menor energia, a capacidade de "destruição" da camada é diminuída. A redução do tempo de bombardeio iônico também reduz o arrancamento de átomos, contribuindo para a menor destruição da camada.

Nos diâmetros onde, a partir de determinadas profundidades, ocorreu apenas a formação de camada branca, a hipótese é que, por questões cinéticas, que não foram objeto de estudo neste trabalho, a velocidade de formação de nitretos seria maior que a velocidade de difusão intersticial do nitrogênio. Assim, naquelas regiões poderiam ser formadas camadas de difusão com espessuras inferiores a $20^{+/-5}\mu m$.

80

6. CONCLUSÕES

6.1 – EXPERIMENTOS VARIANDO A FREQÜÊNCIA

Após o primeiro grupo de experimentos foi adotada a freqüência de 1000 Hz para os demais experimentos em plasma dc pulsado em virtude dos maiores valores de dureza da camada de difusão e também devido à maior estabilidade do plasma quando comparados aos experimentos realizados com as fregüências de 100 e 5000 Hz. No entanto, esta decisão foi tomada levando em conta um critério de valores absolutos. As medidas e escalas de dureza são relativas ao tipo de aplicação a que se destinam, assim diferenças numéricas aparentemente grandes podem não se constituir em desempenhos operacionais extremamente distintos. Da mesma forma, a estabilidade do plasma não depende apenas da freqüência empregada. Depende, entre outros fatores, do acabamento superficial e das condições de limpeza dos componentes. Considerando uniformes as condições de limpeza e acabamento superficial das amostras utilizadas no experimento prévio e não havendo diferenças quanto à capacidade de gerar plasma ao longo dos furos de diferentes diâmetros, apontamos a maior estabilidade e o menor número de extinções do plasma como sendo os fatores decisivos na escolha da fregüência de 1000 Hz para os demais experimentos em plasma dc pulsado. Resultados similares foram obtidos por Pessin [32].

6.2 – MONITORAMENTO DE TEMPERATURAS

As diferenças de temperatura observadas nas amostras são causadas pela formação do plasma no interior dos furos. Nestas condições os furos funcionam como fontes de energia térmica e as amostras passam a ser aquecidas de dentro para fora. Desta forma é possível esperar que após um longo tempo de tratamento, quando as temperaturas já estejam estabilizadas, que ainda exista um gradiente de temperatura nas amostras, estabelecido pelo fluxo natural de energia térmica dos pontos mais próximos para os mais distantes das fontes desta energia.

6.3 – MONITORAMENTO DOS PARÂMETROS DO PROCESSO

As relações entre os parâmetros tensão, tensão de pico, corrente, potência, pressão e temperatura estão de acordo com o proposto nos modelos teóricos relativos ao plasma.

Aumentos de pressão ocasionam a redução da tensão e aumento da corrente.

A potência depende da tensão e corrente e apresenta curvas que tendem a acompanhar de forma semelhante as variações de corrente em função do tempo

Tensão e tensão de pico, em plasma dc pulsado, tendem a apresentar curvas semelhantes em função do tempo.

A diferença observada entre as correntes eletrônicas medidas no cátodo (ic) e medidas no anodo (ia) parece ter origem no próprio princípio de formação do plasma, ou seja, na ionização da mistura gasosa, no entanto são necessários experimentos específicos para a comprovação desta hipótese.

A temperatura é função da potência entregue as amostras, no entanto, o que foi chamado de "inércia térmica" permite, em algumas situações, a estabilidade e inclusive um pequeno aumento de temperatura sem a presença do plasma.

6.4- EXPERIMENTOS VARIANDO FATOR DE TRABALHO E PRESSÃO

No que diz respeito aos experimentos onde foram variados o fator de trabalho e a pressão para diferentes diâmetros de furos foram identificados como fatores estatisticamente significativos, quanto à capacidade de geração de plasma, no interior de furos cegos, a pressão e o diâmetro dos furos. O possível mecanismo físico associado é a probabilidade de um maior número de átomos e moléculas da mistura gasosa, presentes em furos de maior diâmetro, em ambientes com pressão mais elevada, facilitar a ionização e a conseqüentemente a formação do plasma.

O fator de trabalho não apresentou influência significativa na geração de plasma no interior dos furos, no entanto foi capaz de alterar a capacidade de nitretação em profundidades onde houve a formação do plasma.

A redução do fator de trabalho, assim como o aumento da pressão ou do diâmetro dos furos, favorece o mecanismo de formação da camada branca em detrimento ao efeito de destruição causado pelo bombardeio iônico.

O aumento da pressão, e do fator de trabalho estimulam mecanismos antagônicos quanto à formação da camada branca no interior de furos de pequeno diâmetro. O aumento da pressão estimula, de forma mais efetiva, o mecanismo responsável pela formação e aumento de espessura da camada branca, enquanto que o aumento do fator de trabalho estimula, principalmente, o mecanismo de destruição da camada branca.

Nas faixas de fator de trabalho e pressões estudadas, observamos que o aumento da pressão se sobrepõe ao aumento do fator de trabalho, e como resultado temos um aumento na espessura da camada branca.

Em relação à formação da camada de difusão no interior dos furos, há uma tendência de que acompanhe a formação da camada branca. Quanto às exceções observadas, foi levantada a hipótese de que, por questões cinéticas, a velocidade de formação de nitretos seria superior a velocidade de difusão do nitrogênio. Como esta hipótese não foi objeto de estudo nada podemos concluir em relação a essas ocorrências.

7 – SUGESTÕES PARA FUTUROS TRABALHOS

Realizar experimentos semelhantes utilizando uma faixa mais ampla de pressões e fatores de trabalho.

Realizar experimentos em amostras com furos de diâmetro inferior a 3 mm.

Investigar a origem da diferença entre as correntes eletrônicas medidas no cátodo e correntes eletrônicas medidas no anodo.

Comparar as cinéticas de formação das camadas branca e de difusão.

8 - REFERÊNCIAS BIBLIOGRÁFICAS

[1] - Orangeburg, New York 10962, USA. – The Book of Basics - Class, W. H – Materials Research Corporation

[2] - Ion Energies at the Cathode of Glow Discharge – Davis, W. D. and Vanderslice, T. A – Physical Review, vol. 31, 219 – 228.

[3] - Determination of Mass and Energy Distribuition of Ions in Glow Discharges. S. Peter, R. Pintaske, G. Hecht and F. Richter – Surface and Coating Technology, 59 (1993) 97–100.

[4] - Fundamentals of Gaseous Ionization and Plasma Eletronics – Nasser, E. – John Wiley & Sons (1971).

[5] - Energy Transfer Process in Glow Discharges – Abril, I., Gras Marti A. and Valles Abarca, J.A., J. Vac. Sci. Technol. A 4(3), 1773–1778, (1986).

[6] - Techniques and Applications of Plasma Chemistry – Hollahan, J. R. and Bell, A. T. – J. Wiley e Sons (1974).

[7] - Glow Discharge Processes. Sputtering and Etching – Brian Chapman – John Wiley & Sons (1980).

[8] -Gascous Eletronics and Gas Lasers, Pergamon Press (1979).

[9] - Topics in Current Chemistry – Winters, H. F.- 94, 69 – 125, Springer-Ver Lag Berlin Heidelberg (1980).

[10] - Introduction to inductively Coupled Plasma. Atomic Emission Spectroscopy – Moore, G.L – vol. 3 Elsevier (1989).

[11] - Ion Planting Technology – Ahmed, N.A.G – J. Wiley & Sons 1^a ed., NY, 1987.

[12] - Sputtering in the Surface Analisys of Solids a Discussion of some Problens – Coburn, J.W – J. Vac. Sci. Technol. Vol. 13,5, 1037 – 1044 (1976).

[13] - The Treating Source Book, Collignon P., American Society for Metals, USA . pp 115 – 118, 1986.

[14] - Tratamentos térmicos em Plasma: Nitretação, Cementação e Carbonitretação – A.O. Kunrath – UFRGS (1995).

[15] -Highly Ionized Hollow Cathode Discharge – L.M. Lidsky, S.D. Rothleder, D.J. Rose, S. Yoshikawa, C. Michelson and R. J. Mackin, Jr. Journal of Applied Physics, vol. 33, n⁰ 8, August 1962.

[16] - Proceedings of an Inter. Conf. on Ion Nitriding Cleveland USA (1986) – Marchand, J. L.; Michel, H.; Gantais, M and Ricard, A.

[17] - Ion Nitriding – De souza, A.R.; Touzeau, M. and Muzard, J.L.R.-Fis. Apli. Instr. 3,1 (1988).

[18] - Nitretação por Plasma Pulsado – Um tratamento de superfície sem Poluição – I Seminário Internacional de Engenharia de Superfície – 95 SP, S. Strämke, S. Dressler.

[19] - Ionized Gases – A, Von Engel – Oxford University Press (1965).

[20] - Diagnostics of a DC Pulsed Plasma – Assisted Nitriding Process – R. Hugon, G. Henrion, M. Fabry – Surface and Coating Technology, 59 pg 82-85 (1993).

[21] -A comparative Study Between Pulsed and DC Ion Nitriding Behavior in Specimens With Blind Holes – S.C. Kwon, G.H. Lee, M.c. Yoo, Korea Institute of Machinery and Metals, Changwan, Kyungnam korea.

[22] - L.M. Lidsky, S.D. Rothleder, D.J. Rose, and S. Yashikawa, J. Appl. Phys., 33, 2490 – 2497 (1962).

[23] - Pulsed Plasma Nitriding for the Automotive Industry Production Experience – ASM International Heat Treating Conference – Chicago Illinois (18/04/94) by Dressler, Sidney and Huchel.

[24] - Desenvolvimento de um Sistema para Nitretação Iônica com
Fonte de Tensão Pulsada. A. Clodomiro, M. D. Coleta, J. A. Rodrigues
– Embrats 94 – Anais 1 – 1994, pg 283 – 294.

[25] - Low Frequency DC Pulsed Plasma for Ion Nitriding – J. Bougdira, G. Henrion, M. Fabry, M. Remy, J.R. Cussenot – Material Science and Engineering, A139 (1991).

[26] - Pulse Plasma Treatment – The Inovation for Ion Nitriding – R. Grün – Ion Nitriding Conference Proceedings, ASM International (1986).

[27] - Influence of Pulsed Dc – Glow Discharge on the Phase Constituition of nitride Layers During Plasma Nitrocarburizing of Sintered Materials – K.T. Rye, F. Schnatbaun – Materials Science and Engineering, A140.

[28] - The Influence of Pressure on Temperature Uniformity in the Plasma Nitriding Process – C. Ruset – Institute for Physics and Technology of Radiation Devices, Romania.

[29] - Plasma Nitriding in Industry – Problens, New Solutions and Limits.
– Reinar Grün and Hans – Joachim Günther – Plasma Technik Grün
Gmbh, Industriestr, 12, D-5900 Siegen (F.R.G).

[30] - Geometric Effect of Ion Nitriding on The Nitride Growth Behavior in Hollow Tube.- S.C. Know, M.J. Park, W.S Baek and G.H. Lee.

[31] - Formation and Properties of Nitrided Layers Produced in Pulsed Plasma at Frequency between 10 and 60 KHZ. Wierzchan T., Rudnicki J., Hering M., Niedbala R., Vacuum vol. 48, n.6, pg 499 – 502, (1997).

[32] – Caracterização de Camadas Nitretadas a Plasma em Aço ABNT 1045 com a Aplicação de uma Fonte de Potência Pulsada. Michele de Almeida Pessin. Dissertação de Mestrado – UFRGS.