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In the present paper we study the effects of occurrence of radial transport of particles in a tokamak, and the
effects of the presence of an Internal Transport Barrier (ITB), on the current drive efficiency and power deposi-
tion profiles in the case of lower hybrid waves generating an extended tail in the electron distribution function.
The results are obtained by numerical solution of the Fokker-Planck equation which rules the evolution of the
electron distribution function. We assume that the radial transport of particles is due to magnetic or electrostatic
fluctuations, and introduce a model to describe the ITB, with adjustable parameters. The presence of an Edge
Transport Barrier (ETB) is simulated by Neumann boundary conditions at the plasma edge. The results obtai-
ned show very different behavior for current drive whether we have electrostatic or magnetic transport origin.
The change in the plasma current due to magnetic transport has been observed to be more significant than the
change due to electrostatic transport, basically because the magnetic transport is more effective in diffusing
high-velocity particles of the electron tail.

1 Introduction

The injection of rf waves in tokamaks with the objective of
current generation has been proposed and studied as an ef-
fective way to extend the duration of the tokamak discharge.
Lower hybrid (LH) waves play prominent role in the stu-
dies related to current generation, either together with other
current drive (CD) schemes, or individually. LH waves re-
sonate with electrons via Landau damping, transferring pa-
rallel momentum to the electrons, parallel referring to the
toroidal magnetic field.

On the other hand, the discovery of an enhanced con-
finement regime in tokamaks has revealed the existence of
Transport Barriers (TB) at the plasma edge (ETB), characte-
rized by steep gradients in electron temperature and density
profiles in this region. More recently it has been shown for
several tokamaks the presence of Internal Transport Barri-
ers (ITB’s) in reversed shear configurations. These ITB’s
are characterized by a localized and significant reduction of
the transport coefficients for heat, particle and momentum.
These ITB’s appear in plasmas heated by several kinds of
heating schemes: ohmic, lower hybrid, ion cyclotron, elec-
tron cyclotron, and neutral beam injection. For example, the
L-H transition using LH current drive with two different fre-
quencies has been observed by the authors of Ref. [1]. The
general mechanism of the formation of ITB’s is not well un-
derstood but there are evidences that the main mechanism
acting to form these barriers in such configurations is the
existence of a radial electric field caused by the different res-
ponses of electrons and ions to the instability, proportional
to the mass ratio between electrons and ions (me/mi). In

the presence of this electric field the E×B mechanism acts
in order to diminish the turbulence in the magnetic surface,
therefore lowering the transport between neighborhood sur-
faces. As a consequence of the formation of the barrier there
is accumulation of particles and energy in the region internal
to the barrier, with the corresponding increase in the energy
confinement time.

In this paper we intend to discuss the effect of different
mechanisms causing radial transport, along with the pre-
sence of both ITB and ETB, on the LH power absorption
and current drive as well on the Electron Cyclotron Emis-
sion (ECE). These calculations are made in the frame of the
quasilinear theory by solving the Fokker-Planck equation in
slab geometry, taking into account corrections both to the
density and temperature profiles.

The paper is organized as follows. Section 2 discusses
the equations which are employed and the approximations
made. Section 3 shows the results found by numerical solu-
tion of the Fokker-Planck equation, as a function of several
parameters. Due to the complexity of the problem, the nu-
merical investigation is concentrated on the effect of three
major variables among the several parameters which have to
be assumed, namely the depth of the barrier and the level of
magnetic or electrostatic turbulence.

2 The Fokker-Planck equation and
the numerical scheme

We start with a maxwellian distribution function and solve
the Fokker-Planck equation obtained from quasilinear the-
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ory. If we take into account collisions, LH waves and parti-
cle transport the Fokker-Planck equation is written symboli-
cally as follows

∂τf = (∂τf)lh + (∂τf)col + (∂τf)t (1)

where the subscripts in the right-hand side denote, from the
left to the right, the effect of LH waves, collisions and par-
ticle transport. f = f(u, μ, s, τ) is the electron distribution
function, τ is the time normalized to the collision time at the
center of the slab, u is the electron momentum normalized
to the central thermal momentum at τ = 0, μ = cos θ is the
cosine of the pitch angle θ and s = x/a is the normalized
radial coordinate in the direction perpendicular to the ambi-
ent magnetic field B0, supposed along the z coordinate. The
term related to LH waves may be given as follows,

(∂τf)lh = ∂u||

(
Dlh ∂u||f

)
(2)

where Dlh is the diffusion coefficient in momentum space.
We consider LH waves continuously injected in the plasma,
with fixed power PLH(a) at the edge of the slab. As the wa-
ves progress inside the slab, the power dissipation is taken
into account. The propagation of the waves is constrained
as described in the paper by Dumont et al ([2]), and can be
described as follows.

i) The radial component of the wave vector (kr) must be
positive. Using an electrostatic approximation, this means
the following, N‖− < N‖ < N‖+, where

N||± = N||0

[
1 ∓ r

R0q
×

(
ε||
ε⊥

)1/2
]−1

,

with ε‖ ∼= 1 − (ωpe/ω)2 − (ωpi/ω)2 and ε⊥ ∼= 1 +
(ωpe/ωce)2 − (ωpi/ω)2; ωpe,pi is the plasma angular fre-
quency for electrons (ions), ωce,ci is the cyclotron angular
frequency for electrons (ions), and ω is the wave angular
frequency;

ii) The accessibility condition, defined by the coupling
point between the fast and slow modes,

N‖ > N‖ac =
ωpe

ωce
+

[
1 +

(
ωpe

ωce

)2

−
(ωpi

ω

)2
]1/2

; (3)

iii) An upper limit in N‖ due to Landau damping, approxi-
mately given by

N‖ < N‖L = nL/
√

Te. (4)

where nL is around 6 − 7 [2]. Several back and forth trips
may occur before complete absorption of the waves due to
Landau damping, except for very high values of electron
temperature and/or of the parallel refraction index at the
plasma edge N‖0 (T 2

e N‖0 > 50, Te in keV).
These conditions define the range in N‖ which is availa-

ble to LH waves, at each position s. The limits of this range
will be denoted by N2 and N1. Due to the Landau reso-
nance condition, there is a corresponding range of parallel

velocities where the particles are in resonance with the wa-
ves. We assume a Gaussian wave spectrum in the propaga-

tion domain, given by S(s, τ, N‖)= S0 exp
(
−

(
N||−N

ΔN||

)2
)

where S0 is the intensity of LH waves at position s at time
τ . This quantity can be obtained considering that, due to the
fast movement of the electrons on the magnetic surface, the
energy acquired by the electrons when passing through the
region affected by the wave is rapidly spread to all the mag-
netic surface, and the average LH intensity at each magnetic
surface can be given by PLH(s, τ)/(4π2rR).

The LH diffusion coefficient is proportional to
S(s, τ, N‖). It can be found in previous works and will not
be repeated here [3]. It depends on the perpendicular com-
ponent of the refraction index N⊥, which is obtained from
the dispersion relation, for each value of ω and N‖.

The effect of collisions is introduced by the second term
in the right-hand side of equation (1). We have used a line-
arized form which describes the interaction of fast electrons
with body electrons and ions, for each slab position.

The last term in the right-hand side of equation (1) des-
cribes the transport of particles and has the following gene-
ral form

(∂τf)t = ∂s (D ∂sf) , (5)

D being the particle diffusion coefficient, which can be gi-
ven as follows [4, 5, 6],

D = Dm + De =
2πqR0c

γμ
1/2
e0 νe0

(
|u‖ |̃b2 +

γ2μe0

c2|u‖| ẽ
2

)
(6)

where Dm is the contribution to transport due to magnetic
fluctuations, and De is the contribution to transport when
electrostatic fluctuations are present. In this expression
b̃ ≡ (B/B0) and ẽ ≡ (E/B0) give, respectively, the magne-
tic and electrostatic level of turbulence. b̃0 is dimensionless,
while the units of ẽ0 are m/s. νe0 is the collision frequency at
the plasma center, and γ is the relativistic factor. The quan-
tity q is the safety factor, assumed to be constant along the
time evolution. This hypothesis is justified since the evolu-
tion occurs in the kinetic time scale, while experimental data
show that the changes in the q profile occurs in a longer time
scale, of order of seconds [7, 8].

The ETB is simulated by imposing Neumann boundary
conditions on the electron distribution function at plasma
edge, i. e. zero particle flux outward [9], while the ITB is si-
mulated by assuming that the level of magnetic (or electros-
tatic) turbulence is uniformly equal to b̃0 (or ẽ0) everywhere
except in the barrier region, where it is reduced down to
a minimum value αb̃0 (or αẽ0). In all calculations which
follow, we assume barriers centered at xp = a/2, with
half-width β = 3 cm. Specifically, we assume a parabo-
lic reduction of the magnetic turbulence level at the bar-
rier position (for xp − β < x < xp + β), such that
b̃ = b̃0

(
a1 + a2x + a3x

2
)

and ẽ = ẽ0

(
a1 + a2x + a3x

2
)
,

where the ai are constants [10].
As boundary conditions of the barrier region we assume

b̃, ẽ = b̃0, ẽ0 at x = xp ±β, b̃, ẽ = αb̃0, αẽ0, at x = xp. The
barrier position is chosen in order to be in accordance with
experimental results that show barrier location in the interval
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0.3 < |x/a| < 0.5. It is important to remark that the inte-
raction region for LH waves is inside the region having as
boundary the plasma center and the barrier position. Fig. 1a
of Ref. [10] shows the profile of magnetic and electrostatic
turbulence, for several values of α, and β = 3 cm. The bar-
rier width and position are in accordance with experimental
results [11].

The q profile appearing in Eq. (6) for the transport diffu-
sion coefficient is simulated by a parabolic profile which has
its minimum value at the position x = a/2 where the barrier
is located (see Fig. 1b of Ref. [10]). This profile intends to
simulate the reversed q profiles typically found in situations
where there is ITB formation. For all simulations appearing
in the present paper the q profile is the same.

The EC radiation emitted perpendicularly to the magne-
tic field, at the plasma edge, may be given by the following
expressions

Io = ω2
c (

2π

c
)2

∫ x1

x0

dx
G33(ω, k′

0)
|No||1 − χ33|2

× exp(−2ω

c

∫ x1

x

N ′′
o dx′),

Ix =
ω2

c
(
2π

c
)2

∫ x1

x0

dx
|ε11 − iε12|2
|ε11|2|Nx| G11(ω, k

′
x)

× exp(−2ω

c

∫ x1

x

N ′′
x dx′) . (7)

G11 and G33 are the components of the locally homogene-
ous current correlation tensor [12].

3 Numerical results

We solve numerically the quasilinear equation, Eq. (1),
using the ADI method (implicit in alternated directions,
[13]), and obtain the time evolution of the electron distri-
bution function. Eq. (1) depends on u (0 ≤ u ≤ 12), μ
(−1 ≤ μ ≤ 1) and s (−1 ≤ s ≤ 1), and we represent the
(u, μ, s) space by a grid with 151 × 51 × 101 points.

For the magnetic field, initial density and temperature
profiles we make use of the following expressions

B0(s) = B0(0)
(
1 + s

a

R

)−1

;

ne(s, τ = 0) = (ne0 − nea)(1 − s2) + nea;

Te(s, τ = 0) = (Te0 − Tea)
(
1 − s2

)2
+ Tea.

In these expressions the indexes 0 and a indicate, respec-
tively, values taken at the plasma center and plasma edge. At
each collision time the density and temperature are updated,
directly from the electron distribution function.

As stated before, we assume Neumann boundary condi-
tions at plasma edge, which imply that the total number of
particles at the beginning, N0, is kept constant along the cal-
culations. This can be easily seen by integrating the transport
term of the kinetic equation:

dN

dt
=

∫ 1

−1

ds

[
∂f

∂t

]
=

∫ 1

−1

ds

[
∂

∂s
D(s)

∂f

∂s

]
= 0

Imposing Neumann boundary conditions, ∂f
∂x = 0 at

the plasma edge, we guarantee that the number of particles
(N(τ)) is constant along time evolution.

For the numerical analysis, we assume the following
parameters: ne0 = 6.0 × 1019 m−3, Te0 = 3.0 keV,
B0(0) = 2.65 T, a = 0.2 m, R = 1.0 m. For the LH waves,
we consider PLH(a, t) = 0.5 MW, and choose N̄‖0 = 2.3
and fLH = 3.37×109 Hz, parameters which guarantee total
power absorption and which are in the range of parameters
used in experiments.

For these parameters, the values of N1 and N2, which
define the range of parallel refraction indexes covered by
the LH spectrum, appear in Fig. (1), as a function of posi-
tion inside the slab.

Figure 1. N|| accessibility conditions. N||L (full line), N||+
(dashed line), N||− (dotted line), N||ac (dashed dotted line),
N||min (dashed dotted dotted line) and N||max (short dashed line).
Obs.: the curves for N||min and N||ac are in part superposed.

Figure 2 shows the profile of the density of absorbed
LH power, as a function of electrostatic perturbation le-
vel (panel a) and magnetic perturbation level (panel b),
up to τ = 50. The density of absorbed power is ob-
tained as follows (in W cm−3) from ρlh(r, τ) = 1.5 ×
10−16Te0νe0

∫
d3u u2

2 (∂τfe)lh , where the symbol (...)lh

indicates that the integration takes into account the modi-
fication in the distribution function caused by the LH term
appearing in Eq. (1). It can be seen that the absorption of
the LH waves occurs mainly in the vicinity of the magnetic
surface with s = 0.5. The effect of the perturbation level
is more important for the magnetic case than for the elec-
trostatic case. This behavior can be explained remarking
the different mechanisms for transport in the electrostatic
and magnetic cases. While electrostatic transport diffuses
mainly particles with small content of parallel momentum
the magnetic transport diffuses particles with high momen-
tum content. The LH waves interact with these high energy
electrons and thereby as the magnetic transport acts pushing
these electrons from the plasma center to the plasma edge
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the absorption of LH waves at more external regions is fa-
voured. However, if we compare the barrier case with the no
barrier case (panel b of Fig. 2) the effect of the presence of
the barrier appears as a reduction in the LH power absorbed
levels outside the barrier region while the values inside the
barrier region are greater for the barrier case than for the no
barrier case.

Figure 2. ρlh: a) b̃ = 0 and ẽ: 0 (solid line), 1 × 102 (dashed
line), 5×102 (dotted line), 7.5×102 (dashed dotted line), 1×103

(dashed dotted dotted line) and without barrier (short dashed line);
b) ẽ = 0 and b̃: 0 (solid line), 5 × 10−5 (dashed line), 1 × 10−4

(dotted line), 2.5 × 10−4 (dashed dotted line), 5 × 10−4 (dashed
dotted dotted line) and without barrier (short dashed line). Other
parameters are: α = 0.125, sb = 0.5, Plh(a) = 0.5 MW.

Figure 3. Current density profile: a) b̃ = 0 and ẽ =: 0 (solid line),
1 × 102 (dashed line), 5 × 102 (dotted line), 7.5 × 102 (dashed
dotted line), 1 × 103 (dashed dotted dotted line) and without bar-
rier (short dashed line); b) ẽ = 0 and b̃ =: 0 (solid line), 5 × 10−5

(dashed line ), 1 × 10−4 (dotted line), 2.5 × 10−4 (dashed dotted
line), 5 × 10−4 (dashed dotted dotted line). Other parameters are:
α = 0.125, sb = 0.5, Plh(a) = 0.5 MW. Also shown the case
α = 1 (short dashed line). Other parameters and conventions as in
Fig. 2.

The corresponding profile of the current density is
shown in Fig. 3. The effects on the current density profile
follow the ones in LH power deposition profile. Again the
magnetic case is shown to be more sensible to the pertur-
bation level. Comparison between the two panels of Fig. 3
shows the spreading of the current profile due to the trans-
port. However this spread is different for different types of
transport. For the electrostatic case the spread due to trans-
port is noticeable only between the plasma edge and the bar-
rier position while for the magnetic transport it occurs both
toward the edge and toward the center of the slab, with gre-
ater diffusion toward the plasma edge.

The effect of the turbulence level on the current genera-
tion is shown in Fig. 4, which displays the time evolution of
I as a function of the perturbation level. In both electrosta-
tic and magnetic transport cases we observe an increase on
the values of current driven. However, this enhancement of
current is much more pronounced in the magnetic case than
in the electrostatic case. Again, the explanation is found in
the diffusion of high speed particles toward the plasma edge,
more pronounced in the case of magnetic transport. This im-
plies that we have more energetic particles in positions be-
fore the barrier region and, as LH waves interacts with parti-
cles with high parallel momentum content, more LH power
is deposited in more external positions. Combined with this
we have a lower density region before the barrier region. In
this way collisions are less efficient to destroy the created
current density. As result of the synergy between these pro-
cesses the current density in regions near the plasma edge
increases and so the current. It’s interesting to observe from
the panel (b) of Fig. 4 the effect of the barrier as compared
with the no barrier case for b̃ = 5 × 10−4. As remarked be-
fore, due to the LH power deposition profile behavior, the
barrier case shows greater values for the current driven as
compared with the case without barrier.

Figure 4. Evolution of the current in time: a) b̃ = 0 and ẽ =: 0 (so-
lid line), 1 × 102 (dashed line), 5 × 102(dotted line), 7.5 × 102

(dashed dotted line), 1 × 103 (dashed dotted dotted line) and
without barrier (short dashed line); b) ẽ = 0 and b̃ =: 0 (solid
line), 5 × 10−5 (dashed line ), 1 × 10−4 (dotted line), 2.5 × 10−4

(dashed dotted dotted line), 5 × 10−4 (dashed dotted line) . Other
parameters are: α = 0.125, sb = 0.5, Plh(a) = 0.5 MW. Also
shown the case α = 1 (short dashed line). Other parameters and
conventions as in Fig. 2.
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Similar analysis can be made for the EC emission.
Fig. 5 displays the intensity of second harmonic EC emis-
sion at x = a as a function of the perturbation level, for
the X mode and perpendicular propagation, at the end of
the time evolution, for the same values of α, β and sb used
in Fig. 2. The figure also shows the emission due to the
Maxwellian distribution, prior to the LH injection. The first
thing to observe is the enhancement of the spectral intensity
for low frequency values which happens both for the elec-
trostatic and magnetic cases. This enhancement is a direct
consequence of the relativistic mass variation of the elec-
trons which permits the electrons to emit at a lower fre-
quency than local EC frequency. As the LH waves push
electrons from low momentum to high momentum in mo-
mentum space, the emission due to these electrons moves
toward smaller frequencies, therefore producing increase of
the spectral intensity in the low frequency part of the spec-
trum.

Figure 5. Espectral intensity: a) b̃ = 0 and ẽ =: 0 (dashed line),
1×102 (dotted line), 5×102 (dashed-dotted line), 1×103 (dashed-
dotted-dotted line); b) ẽ = 0 and b̃ =: 0 (dashed line ), 5 × 10−5

(dotted line), 1 × 10−4 (dashed-dotted line), 5 × 10−4 (dashed-
dotted-dotted line) . Other parameters are: α = 0.125, sb = 0.5,
Plh(a) = 0.5 MW. Also shown the Maxwellian distribution func-
tion case (solid line in both panels).

An example of such enhancement may be appreciated in
Fig. 6, where the EC emission coefficient (βx) for one of
the frequencies in the low part of the spectrum (f = 125.3
GHz) is shown as a function of radial position, at steady
state. This frequency corresponds to the second harmonic
of the cyclotron frequency near the plasma edge. The emis-
sion coefficient appearing in the figure is totally due to the
electron tail, since the contribution due to the Maxwellian
distribution function at this frequency nearly coincides with
the horizontal axis and can not be seen in the scale of the
figure. For this frequency the peak in the emission does not
occur in the position where this frequency corresponds to
the second harmonic, but in the region where the LH waves
depose their energy. It is seen from the figure that there are
significant differences in the emission profile depending on
the type of transport, with the peak in the electrostatic case

higher than the peak for magnetic case, almost with the same
value of the peak without transport. We attribute this diffe-
rence to the higher efficiency demonstrated by the magnetic
transport to radially diffuse the particles away from the re-
gion of creation of the electron tail by the LH waves, which
coincides with the region of the transport barrier. In both
cases the emitting region is wider than in the case without
transport. This points to lower precision in temperature me-
asures obtained from ECE in such plasmas.

Figure 6. Electron cyclotron emission coefficient for the frequency
125.3 GHz. Maxwellian distribution function (solid line, coincides
with the horizontal axis and is not visible in the scale of the figure)
and at steady state: Without transport (dashed line), with magne-
tic transport only (dotted line) and with electrostatic transport only
(dahed-dotted line).

Figure 7. Plasma temperature profile at steady state: a) b̃ = 0 and
ẽ =: 0 (solid line), 1 × 102 (dashed line), 5 × 102 (dotted line),
7.5×102 (dashed dotted line), 1×103 (dashed dotted dotted line);
b) ẽ = 0 and b̃ =: 0 (solid line), 5×10−5 (dashed line ), 1×10−4

(dotted line), 2.5 × 10−4 (dashed dotted line), 5 × 10−4 (dashed
dotted dotted line) . Other parameters are: α = 0.125, sb = 0.5,
Plh(a) = 0.5 MW.
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Figure 7 displays the temperature profile as a function
of the perturbation level. It’s noticeable the modification in
the plasma temperature profile in the region around s = 0.5,
due to the presence of the high energy tail created by LH
waves.

The influence of the barrier depth on the current drive is
shown in Fig. 8. The current drive in the electrostatic case
is not sensible to the barrier depth as can be seen from the
panel a of the figure. However, the current driven in the
magnetic case has been shown to be very sensitive to the
barrier depth.

Figure 8. Dependence of the current driven on the barrier depth.
a) ẽ = 1 × 103 and b̃ = 0; b) b̃ = 5 × 10−4 and ẽ = 0. No
transport (solid line), α : 0.125 (dashed line), 0.5 (dotted line),
and 1. (dashed dotted line). Other parameters and conventions as
in Fig. 2.

Figure 9. Asymptotic profile of the LH power deposition (ρlh) for
several values of the barrier depth, in the case of transport due to
magnetic fluctuations (̃b = 5 x 10−4): α = 0.125 (dashed line), α
= 0.5 (dotted line), and α = 1.0 (dashed-dotted line). The case
without transport is also shown, as a solid line. Other parameters
and conventions as in Fig. 2.

The reason is the effectiveness of the barrier to constrain
the particles inside the barrier region, in this way enhancing
the LH power deposition profile as can be seen in the Fig. 9.
This is in apparent contradiction with the explanation above
about the reason of the increment in the plasma current due
to the diffusion of energetic electrons. To understand this
behavior we invoke the following argument: the particles
inside the barrier region receives energy from the waves un-
til the magnetic diffusion becomes effective and then diffuse
toward the plasma edge. As the barrier is stronger (lower α
value) the electrons remain more time in interaction with the
waves before diffusing. The diffused electrons are therefore
more energetic and the value of the current increases.

4 Conclusions

In this work we have investigated how the occurrence of
radial transport and the presence of an Internal Transport
Barrier affect the current drive efficiency of LH waves. We
have considered two possible mechanisms for radial trans-
port, either due to magnetic fluctuations or due to electrosta-
tic fluctuations, and studied the influence of the depth of the
transport barrier and of the level of magnetic or electrostatic
perturbation. For a given type of transport and a given set
of parameters describing the barrier, our results have shown
increase of the current drive efficiency when the turbulence
level is increased, which is explained by considering that the
transport diffuses high-velocity particles toward more exter-
nal regions of the slab, where they are less collisional and
contribute more effectively to the current. The increase in
the current drive efficiency in the case of transport due to
magnetic turbulence has been observed to be more signifi-
cant than the increase in the case of transport due to elec-
trostatic turbulence. The reason is that magnetic transport
is more effective on electrons at the tail of the distribution
function, which give the most significant contribution to the
current.

Regarding the effect of the depth of the transport bar-
rier, in the electrostatic case, in accordance with the small
effect of transport, we have observed very little influence of
the barrier depth on the efficiency of the current drive. In
the case of magnetic transport, however, we have observed
significant increase of the efficiency of current generation,
as the depth of the barrier is increased. This increase in the
current drive efficiency with the depth of the barrier has been
explained by considering that the occurrence of a transport
barrier at least partially coincident with the region of depo-
sition of LH power affects the dynamics of tail electrons,
by keeping these electrons absorbing wave energy for lon-
ger time before diffusing spatially. As a consequence, these
electrons become more energetic that in the case without
transport barrier, and contribute more effectively to the cur-
rent when finally diffuse to more external regions of the slab.
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