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ABSTRACT

Weather forecasts for long periods of time has emerged as increasingly important.
The global concern with the consequences of climate changeshas stimulated researches
to determine the climate in coming decades. At the same time the steps needed to better
defining the modeling and the simulation of climate/weatheris far of the desired accuracy.
Upscaling the land surface and consequently to increase thenumber of points used in cli-
mate modeling and the precision of the computed solutions isa goal that conflicts with
the performance of numerical applications. Applications that include the interaction of
long periods of time and involve a large number of operationsbecome the expectation for
results infeasible in traditional computers. To overcome this situation, a climatic model
can take different levels of refinement of the Earth’s surface, using more discretized ele-
ments only in regions where more precision are required. This is the case of Ocean-Land-
Atmosphere Model, which allows the static refinement of a particular region of the Earth
in the early execution of the code. However, a dynamic mesh refinement could allow to
better understand specific climatic conditions that appearat execution time of any region
of the Earth’s surface, without restarting execution. Withthe introduction of multi-core
processors and GPU boards, computers architectures have many parallel layers. Today,
there are parallelism inside the processor, among processors and among computers. In
order to use the best performance of the computers it is necessary to consider all paral-
lel levels to distribute a concurrent application. However, nothing parallel programming
interface abstracts all these different parallel levels. Based in this context, this thesis in-
vestigates how to explore different levels of parallelism in climatological models using
mixed interfaces of parallel programming and how these models can provide mesh re-
finement at execution time. The performance results show that is possible to reduce the
execution time of atmospheric simulations using differentlevels of parallelism, through
the combined use of parallel programming interfaces. Higher performance for the exe-
cution of atmospheric applications that use online mesh refinement was also provided.
Therefore, more mesh resolution to describe the Earth’s atmosphere can be adopted, and
consequently the numerical forecasts are more accurate.

Keywords: Multi-Level Parallelism, Online Refinement of Unstructured Meshes, Ocean-
Land-Atmosphere Model, Parallel Tasks, High Performance Computing.



RESUMO

Previsões meteorológicas para longos períodos de tempo estão se tornando cada vez
mais importantes. A preocupação mundial com as consequências da mudança do clima
tem estimulado pesquisas para determinar o seu comportamento nas próximas décadas.
Ao mesmo tempo, os passos necessários para definir uma melhormodelagem e simula-
ção do clima e/ou tempo estão longe da precisão desejada. Aumentar o refinamento da
superfície terrestre e, consequentemente, aumentar o número de pontos discretos (utiliza-
dos para a representação da atmosfera) na modelagem climática e precisão das soluções
computadas é uma meta que está em conflito com o desempenho dasaplicações numé-
ricas. Aplicações que envolvem a interação de longos períodos de tempo e incluem um
grande número de operações possuem um tempo de execução inviável para as arquitetu-
ras de computadores tradicionais. Para superar esta situação, um modelo climatológico
pode adotar diferentes níveis de refinamento da superfície terrestre, utilizando mais pon-
tos discretos somente em regiões onde uma maior precisão é requerida. Este é o caso de
Ocean-Land-Atmosphere Model, que permite o refinamento estático de uma determinada
região no início da execução do código. No entanto, um refinamento dinâmico possibili-
taria uma melhor compreensão das condições climáticas específicas de qualquer região da
superfície terrestre que se tivesse interesse, sem a necessidade de reiniciar a execução da
aplicação. Com o surgimento das arquiteturas multi-core e aadoção de GPUs para a com-
putação de propósito geral, existem diferentes níveis de paralelismo. Hoje há paralelismo
interno ao processador, entre processadores e entre computadores. Com o objetivo de
extrair ao máximo a performance dos computadores atuais, é necessário utilizar todos os
níveis de paralelismo disponíveis durante o desenvolvimento de aplicações concorrentes.
No entanto, nenhuma interface de programação paralela explora simultaneamente bem os
diferentes níveis de paralelismo existentes. Baseado neste contexto, esta tese investiga
como explorar diferentes níveis de paralelismo em modelos climatológicos usando inter-
faces clássicas de programação paralela de forma combinadae como é possível prover
refinamento de malhas em tempo de execução para estes modelos. Os resultados obtidos
a partir de implementações realizadas mostraram que é possível reduzir o tempo de exe-
cução de uma simulação atmosférica utilizando diferentes níveis de paralelismo, através
do uso combinado de interfaces de programação paralela. Além disso, foi possível prover
maior desempenho na execução de aplicações climatológicasque utilizam refinamento
de malhas em tempo de execução. Com isso, uma malha de maior resolução para a re-
presentação da atmosfera terrestre pode ser adotada e, consequentemente, as previsões
numéricas serão mais precisas.

Palavras-chave:Paralelismo Multi-Nível, Refinamento Online de Malhas Não-Estruturadas,
Ocean-Land-Atmosphere Model, Tarefas Paralelas, Computação de Alto Desempenho.
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1 INTRODUCTION

Numerical models have been extensively used in the last decades to understand and
predict weather phenomena and climate, in daily weather forecasts as well as in researches
on Global Warming (VASQUEZ, 2006), (WASHINGTON; PARKINSON, 2005). These
models calculate the values of the physical conditions of the atmosphere using quantitative
methods. To this end, the atmosphere is represented by a discrete space, a mesh of points
obtained through the use of a domain decomposition technique, on which interactions are
made during discrete time steps.

As the domain refinement increases, more points are used in the mesh representation,
and consequently the forecasts become more accurate. Therefore, the impact of various
physical factors, that vary in a continuous space, are more visible and taken into account
during the simulation.

1.1 Mesh Resolutions of Decomposed Atmospheric Domains

Numerical climatological models represent the Earth surface through a mesh. A mesh
is a piecewise approximation from a given geometry defined bya set of simpler elements,
such as triangles and quadrilaterals for the two-dimensional case, and tetrahedron, prisms,
pyramid and hexahedron for the three-dimensional case. Thegreater the number of dis-
crete elements used to decompose a domain, the higher theresolution of the mesh. Thus,
the resolution can be defined as the spacing between two consecutive discrete points of the
mesh. The more discrete points are used, the smaller the distance between these points.

The resolution adopted for a domain strongly influences the accuracy of the results.
This occurs because physical factors that vary in a continuous space are more visible and
taken into account, during the simulation, only from a givenresolution level. A mesh
representation of regions where the topography is very irregular, for example, will not
consider small differences in the Earth surface if low mesh resolution is adopted.

Figure 1.1 presents two different resolution examples of a triangular domain decom-
position, where the second domain has4 times more resolution. The choice of the mesh
resolution defines the performance of the simulation and theprecision of the results.

The performance of a simulation depends on the number of elements that will be
processed. The greater the surface area covered by each discrete mesh element, the lesser
the number of elements needed to cover all domain. Therefore, the simulation performs
faster with larger elements.

The simulation precision is related to the shape and the domain size covered by each
mesh element. Generally, equilateral elements are the preferred shape. On the other hand,
the smaller the area covered by a discrete element of the mesh, the more accurate are the
results of the forecast.
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Low Resolution High Resolution

Figure 1.1: Two different mesh resolution for a triangular domain decomposition.
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Figure 1.2: Structured and unstructured mesh examples.

Thereby the performance and the precision of the simulations are opposite require-
ments and it is important to ponder between them.

A further aspect related to the mesh representation is the kind of relation among the
mesh points. The discretization process of a domain resultsin a finite representation
through interconnected mesh points. This process can to result in a structured or an un-
structured mesh.

In astructured mesh, each point has the same number of neighbor points (GALANTE,
2006). Thus, it is possible to access a neighbor point through a index of a coordinate sys-
tem as, for example, a matrix structure.

An unstructured mesh is an irregular grid where data locations are selected, usually
by underlying characteristics of the application. Data point location and connectivity of
neighboring points must be explicit. The points on the grid are conceptually updated
together. Updates typically involve multiple levels of memory reference indirection, as
an update to any point requires first determining a list of neighboring points, and then
loading values from those neighboring points. There is no communication pattern for this
kind of application.

The Figure 1.2 shows examples of a structured and unstructured mesh, respectively.
In the left illustration of the figure it is possible to observe the use of a cartesian system
to access the neighbor points of a structured mesh. The rightpart of the figure illustrates
the unstructured mesh case. There is a table that identify the vertices (1, ..., 10) for each
element of the mesh (A, ..., J triangles).

In this work, the interest is for unstructured meshes of triangles.
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1.2 Numerical Models for Climate and Weather Forecast

In general, there are two kinds of models, differing on theirdomain: global (entire
Earth) and regional (country, state, etc).

Global models, like GISS ModelE (SCHMIDT et al., 2006), consider the entire sur-
face of the Earth for modeling and decomposing the domains and are normally used to
predict long climatological periods (months, years). The main limitation of this approach
is the computing power to execute with higher mesh resolution. Global models have nor-
mal spatial resolution of about 0.2 to 1.5 degrees of latitude and therefore cannot represent
very well the scale of regional weather phenomena.

Regional models, like BRAMS (FAZENDA et al., 2011), simulate only a specific
interesting piece of the Earth atmosphere. They use higher mesh resolution but they are
restricted to limited area domains. Therefore, it is necessary to establish the initial entry
conditions to the boundary of the domain. These conditions can be determined from
previous executions of global models.

Forecasting the atmosphere conditions on limited domains demands the knowledge of
future atmospheric conditions at domain borders. Because of this, the integration of initial
boundary conditions with the limited area domains are necessary and this coupling is not
easily done. On the other hand, local models take into account regional characteristics
that are unnoticed by a global model.

A way to use the best characteristics of both approaches is tooffer different levels
of mesh refinement in global models. An advantage is that it isnot necessary to handle
boundary conditions, since the transition among differentlevels of refinement is done by
a transparent design.

This is the case of the Ocean-Land-Atmosphere Model (OLAM) (WALKO; AVIS-
SAR, 2008a), (SILVA et al., 2009), which provides a global grid that can be locally re-
fined, forming a single grid. This feature allows simultaneous representation (and fore-
casting) of both global and local scale phenomena, as well asbi-directional interactions
between scales.

Global models with local mesh refinements, like OLAM, define the mesh at the be-
ginning of the execution, before any calculation of the physical properties at the iterative
step, in a static approach. For long numerical simulations it is important that mesh re-
finement can be made while the code is running. Thus, spontaneous atmospheric changes
that appear in restricted areas, for a given time during the execution, like storms and hur-
ricanes, can be better investigated by applying more mesh resolution. At the same time,
their impact in the whole mesh domain can be better understood.

1.3 Atmosphere Model Problem

The use of environments for High Performance Computing (HPC) has been recurrent
for running applications that require a significant capacity for data processing (SCHEPKE;
NAVAUX; MAILLARD, 2009), (PANETTA et al., 2007), (SIMS et al., 2000), (DON-
GARRA et al., 2002). Usually, these solutions are based on the development of parallel ar-
chitectures (FOSTER; KESSELMAN, 2003), (WILKINSON; ALLEN, 1998), (BUYYA,
1999). The use of vector machines, multiprocessors, and currently multi-core systems
have been some of the alternatives (ANDREWS, 2001). Atmospheric simulations have a
significant processing load due the high number of operations usually involved. Because
of this, climatological software often use programming features that allow the concurrent
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execution of operations in both shared and distributed memory systems. Thus, it is possi-
ble to obtain satisfactory results in accordance with the available hardware in a reasonable
period of time.

High speed execution of atmospheric models is fundamental to operational activities
on weather forecast and climate prediction due to executiontime constraints – there is a
predefined short time window to run a model. The model execution cannot begin before
input data arrives, and cannot end after the due time established by user contracts. Expe-
riences in international weather forecast centers point toa two-hour window to predict the
behavior of the atmosphere in coming days, simulating in parallel architectures (clusters).

The computational complexity of atmospheric and environmental models isO(n4),
wheren is the number of discrete elements resulted from a domain decomposition in
relation to the latitude (or longitude) of the geographicaldomain of the model, if the
number of vertical points and number of discrete time iterations also increases withn.1

Operational models worldwide use the highest possible resolution that allows the model to
run during the established time window on the available computer system. New computer
systems are frequently selected according to the ability torun the model at even higher
resolution during the available time window.

A climatological application needs also to maximize the useof existing computational
resources, considering the cost and availability of hardware. In this sense, it is necessary
that the application ensures good performance and scalability on parallel architectures,
as well as correct results according to the physical properties design of the model and
values measured in practice. Therefore, aspects such as execution environment and load
distribution must be taken into account during the programming step of the application.

1.4 Objectives of the Thesis

With the introduction of multi-core processors (SHAMEEM; ROBERTS, 2005), (DON-
GARRA et al., 2007), computers architectures have many parallel layers. Today, there
is parallelism inside a processor, among processors and among computers. This new
paradigm was not foreseen by parallel applications developed in the past, like OLAM.
In order to use the best performance of computers it is necessary to consider all parallel
levels to distribute a concurrent application.

Parallel programming interfaces are generally specific to one level of parallelism. Cur-
rently, there is not a single programming interface able to explore all levels of parallelism.
To perform this, it is necessary to use two or more combined programming interfaces,
like Message-Passing methods for Distributed Memory Systems and resources for creat-
ing and manipulating threads in Shared Memory Systems. An application developed with
a specific programming interface for a determined parallel architecture model is not easily
migrated to another architecture or programming interface.

Based on the context described before, this thesis proposesthe use of mixed program-
ming interfaces as solution to provide multilevel parallelism for implementations of atmo-
spheric models. For parallel applications, the load distribution in each processing unit is
done in order to maximize the parallel performance for a determined architecture. The use
of mixed programming interfaces reduces the total execution time of simulations through
the maximization of the use of the available processing units. This is achieved when all
processors or cores are continuously executing. However, data dependencies arising from

1In some models the complexity can be simplified toO(n3), depending on the method of resolution of
the equations that model the atmosphere.
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the parallelization of atmospheric models can limited the performance. To overcome this
situation, the scheduling of the parallel tasks and the definition of the granularity of each
task can contribute for the best load distribution.

Each programming interface abstracts the concurrent execution using different ways to
express the parallel task (processes, threads, ...). A parallel task in an atmospheric model
is defined by data structures that represent one or more points of the mesh and numerical
operations. Each task is composed by data sets of physical properties associated to the
points of the mesh, and functions that manipulates the data structures according to the
code of the model. These functions are formed by climatological interactions and are
iteratively called.

The unstructured meshes employed in the atmospheric model used in this work can
be also refined at runtime, in order to increase the precisionof the forecasts. We pro-
vide and evaluate an Online Mesh Refinement (OMR)2 implementation to increase the
resolution of part of the parallel distributed domain that represents the Earth atmosphere,
when special atmosphere conditions are registered during the execution of an atmosphere
model. Therefore, more computation is only required for therefined mesh ensuring low
performance impact and more precision for the simulations.

The contribution of this thesis includes both, the efficientuse of multilevel parallelism
and dynamically modification of the domain representation through OMR calls. Multi-
level parallelism is explored by the execution of concurrent tasks according to available
resources. We provide also arguments that online mesh refinement is better for the ap-
plication of parallel climatological models. Thus, the development of high-performance
applications like climatological applications could be simplified and improved by better
exploiting the available hardware resources.

1.5 Text Organization

This thesis is divided in 8 chapters. The reminder of this text is organized as follows:

• Chapter 2 - Ocean-Land-Atmosphere Model: Relates all necessary aspects to
understand the atmospheric model used as case study, including the description
of the domain representation, algorithm, data structures and parallelization of the
code.

• Chapter 3 - High Performance Computing Challenges:Describes a bibliographic
revision about High Performance Computing, pointing challenges to explore mul-
tilevel parallelism in computer architectures, and to define a parallel task with cur-
rently parallel programming tools.

• Chapter 4 - Scalability Study of Static OLAM : Shows experimental results ob-
tained with OLAM original implementation tested in a parallel execution environ-
ment. The evaluation of the measured results with static refinement demonstrates
the limits of performance of the application.

• Chapter 5 - Online Local Mesh Refinement: Presents an implementation of a run
time mesh refinement and the performance evaluation resultsof this implementa-
tion in a OLAM prototype. The chapter shows also how it is possible to improve

2In this work we consider the word online as a synonymous for dynamic or runtime mesh refinement.
Online is the term frequently used in the context of job scheduling in opposition to the static or the offline
scheduling approach.
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performance when new data elements are added in the computation, after an online
mesh refinement call.

• Chapter 6 - Multi-Level Parallelism : Describes the implementation of task par-
allelism, by different parallel programing interfaces, inorder to extract parallelism
of multi-core, many-core and multiprocessors architectures. Experimental tests us-
ing mixed parallel programming interfaces are made, analyzing it impact in atmo-
spheric simulations.

• Chapter 7 - Scalability Evaluation of OLAM Multi-Level Para llelism: Provides
a performance evaluation (execution time and scalability measurement results) of
the multi-level implementation of OLAM, on a high performance environment.

• Chapter 8 - Conclusions: Discusses the conclusion of this thesis, relating objec-
tives, implemented solutions and obtained results. Through this relation is possible
to point some future works.
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2 OCEAN-LAND-ATMOSPHERE MODEL

Ocean-Land-Atmosphere Model (OLAM) was chosen as background to the develop-
ment of this thesis. This model is used to forecast weather and climate in research and
forecast centers. OLAM is also a good example of a large real application of domain
decomposition because it uses a significative number of discrete elements to represent the
structure of the atmosphere of the Earth and, consequently,requires a large amount of
memory and processing.

This chapter describes OLAM: its main features, equations,domain decomposition
approach and discrete representation of the domain, and theresource for mesh refinement.
The algorithm, data structures to represent the code, and parallel decomposition of the
data structures is also presented in order to show all aspects of the model.

The concepts discussed in this chapter are necessary to understand the implementa-
tions, tests and results presented and proposed in the remainder of this thesis.

2.1 Main Features

OLAM was developed by Roni Avissar and Robert Walko at Duke University. This
model extends features of the Regional Atmospheric Modeling System (RAMS) to cover
a global domain (PIELKE; AL., 1992). OLAM uses many functions from RAMS, includ-
ing physical parametrization, data assimilation, initialization methods, logic and coding
structure, and I/O formats (WALKO; AVISSAR, 2008b) (AVISSAR; PIELKE, 1989). A
global domain expands widely the range of atmospheric systems and scale interactions
that can be represented in the model. This was the primary motivation for developing
OLAM.

OLAM introduces a dynamic approach of domain decompositionbased horizontally
on a global geodesic grid discretization with triangular mesh cells, and vertically through
the height levels of the atmosphere, forming vertically-stacked prisms of triangular bases.
It also uses a finite volume discretization of the full compressible nonhydrostatic Navier
Stokes equations (MARSHALL et al., 1997). These equations formalize conservation
laws for mass, momentum, and potential temperature, and numerical operators that in-
clude time splitting for acoustic terms.

Local mesh refinement can be applied to cover specific geographic areas with higher
resolution. The mesh points that represent these areas are subdivided cyclically while the
expected mesh resolution is not achieved. Each cyclical division doubles the resolution.
The global grid and its refinements define a single grid, as opposed to the usual nested
grids schemes of regional models. The grid points, which represent a more refined area,
do not overlap the grid points that represent the global domain - they substitute them.
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2.2 Equations

OLAM dynamic equations are:

• Momentum conservation (componenti)

∂Vi

∂t
= −∇.

(

vi~V
)

− (∇p)i −
(

2ρ~Ω× ~v
)

i
+ ρgi + Fi (2.1)

• Total mass conservation

∂ρ

∂t
= −∇.~V +M = −

∂U

∂x
−

∂V

∂y
−

∂W

∂z
+M (2.2)

• Energy conservation
∂ρΘ

∂t
= −∇.

(

Θ~V
)

+H (2.3)

• Scalar mass conservation

∂(ρs)

∂t
= −∇.

(

s~V
)

+Q (2.4)

• State equation

p = [(ρdRd + ρvRv) θ]
Cp

Cv

(

1

p0

)

Rd
Cv

(2.5)

• Total density
ρ = ρd + ρv + ρc (2.6)

• Momentum definition
~V ≡ ρ~v (2.7)

• Potential temperature

θ = Θ

[

1 +
qlat

Cp max(T, 253)

]

(2.8)

In these equations,~v and~V = ρ~v are velocity and momentum vectors, and~g and~Ω are
the Earth’s gravity and angular velocity vectors. Subscript i represents a vector component
in thexi direction,t is the time,p is the pressure, andθ is the potential temperature.Cp

andCv are the specific heat of a dry air at a constant pressure and constant volume,Rd

andRv are gas constants for dry air and water vapor, andp0 is a pressure reference equal
to 105Pa. Total densityρ is given by the sum of the densities of dry air, water vapor, and
liquid plus condensate ice.

The scalar variables represents the specific density or concentration (relativeto ρ)
of any prognostic scalar quantity, such as various classes of ice and liquid hydrometeors
and aerosols.Fi, H, M , andQ are forcing terms for momentum, internal energy, mass,
and scalar fields, respectively. These terms represent processes such as radiative transfer,
microphysical phase changes, surface fluxes, and/or optional nudging to observational
data, as applicable to each equation.
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The ice-liquid potential temperature is used in OLAM as the prognostic internal en-
ergy variable. It has the desirable property of being nearlyconstant in a parcel for pro-
cesses of transport and internal phase change. It is empirically related to potential temper-
ature whereqlat is the latent heat required to vaporize any presented liquidand ice water,
andT is the air temperature.

Applying Gauss Divergence Theorem and integrate over Finite Volumes:
∫

∇.~ΦdΨ =
∮

σ

~Φ. ~dσ (2.9)

We have the discretized equations:

∂

∂t

∫

VidΨ = −
∮

(vi~V ).d~σ−
∫

∂p

∂xi

dΨ−
∫

(

2ρ~Ω× ~v
)

i
dΨ+

∫

ρgidΨ+
∫

FidΨ (2.10)

∂

∂t

∫
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FΘdΨ (2.12)

∂
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)
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FsdΨ (2.13)

We can also represent the closed integral as sum over faces:
∮

(

Φ~V
)

.d~σ =
∑

j

[
∫

{

Φj
~Vj

}

.d~σj

]

≡
∑

j

[(

ΦjV j + SGS {Φj , Vj}
)

σj

]

(2.14)

So, the conservation equations in the discretized finite-volume form are:

∂V i

∂t
Ψ = −

∑

j

[(

vijV j + SGS {vij , Vj}
)

σj

]

−
∂p

∂xi
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(
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)

i
Ψ+ρgiΨ+F iΨ

(2.15)

∂ρ

∂t
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∑

j

[

V jσj

]

(2.16)

∂ρΘ

∂t
Ψ = −

∑

j

[(

ΘjV j + SGS {Θj, Vj}
)

σj

]

+HΨ (2.17)

∂ρs

∂t
Ψ = −

∑

j

[(

sjV j + SGS {sj , Vj}
)

σj

]

+QΨ (2.18)

2.3 Global Grid Structure

OLAM’s global computational mesh consists of spherical triangles, a type of geodesic
grid that is a network of arcs that follow great circles (likethe equator line) on a sphere.
The geodesic grid offers important advantages over the commonly used latitude-longitude
grid. It allows approximately uniform mesh size over the globe, and avoids singularities
and grid cells with very high aspect ratio near the poles.

OLAM’s grid construction begins from an icosahedron inscribed in the spherical
Earth, as is the case for most others atmospheric models thatuse geodesic grids. (SILVA
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Figure 2.1: Example of icosahedron.

Figure 2.2: OLAM subdivided icosahedral
mesh.
(WALKO; AVISSAR, 2008a).

et al., 2009). An icosahedron is a regular polyhedron that consists of 20 equilateral trian-
gle faces, 30 triangle edges and 12 triangle vertices, with 5edges meeting at each vertex.
Figure 2.2 shows an example of icosahedron.

The icosahedron representation used in OLAM is oriented such that one vertex is
located at each geographic pole, which places the remaining10 vertices at latitudes of
±tan−1(1/2). Uniform subdivision of each icosahedral triangle intoN × N smaller
triangles, whereN is the number of vertices divisions of each triangle, is performed
in order to construct a mesh of higher resolution for any desired degree. The uniform
subdivision adds30(N2−1) new edges to the original30 and10(N2−1) new vertices to
the original12, with 6 edges meeting at each new vertex. All newly constructed vertices
and edges are then projected radially outward the sphere to form geodesics.

Figure 2.2 shows an example of the OLAM subdivided icosahedral. In the figure
the mesh is generated withN = 10. The dark lines indicate the edges of the initial
icosahedron.

The projection causes the deviation of the majority of the triangles from the equilateral
shape, which is impossible to avoid (WALKO; AVISSAR, 2008a). However, the numeri-
cal accuracy of the computational mesh can be guaranteed, adjusting the projection of the
triangles. This is achieved by relocating the vertices on the sphere. For this, forces are
applied to each edge located between endpoints vertices. This force is a linear function
and depends on the length of each edge. The length of equilibrium is defined by

deq =
2πRǫ

5N
(2.19)

WhereR is the radius of the Earth andǫ is a coefficient of adjustment. Whenǫ is
1, the length of balance is approximately equal to the averageoverall length of the edge.
Vertices can be moved while the sum of the forces is zero for each vertex. OLAM uses
this solution to solve numerically the equations of equilibrium of forces through iterative
methods.
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Figure 2.3: Local mesh refinement applied
to a selected part of the globe.

Figure 2.4: Local mesh refinement tran-
sition from coarse to fine resolution.

2.4 Mesh Refinement

Building a global mesh, as described above, enables a 2D structured indexing for
each element of the grid. However, a logical structure restricts the possibility of mesh
topologies. Local mesh refinement is only possible if the mesh type is unstructured1

Because of this, OLAM uses an unstructured approach and represents each grid cell with
a single horizontal index (WALKO; AVISSAR, 2008a). So, required information on local
grid cell topology is stored and accessed by linked lists.

If local horizontal mesh refinement is required, it is performed after the step of con-
struction of the global mesh. The refinement follows a three-neighbors rule: each triangle
must share the length of each edge with exactly three others triangles. The range of pos-
sible topologies that obey this rule is enormous.

An example of local mesh refinement is illustrated in Figure 2.3, where the resolution
is exactly twice that of the original resolution. This is achieved by subdividing each
previously triangle into2 smaller triangles. For this purpose, auxiliary edges were inserted
at the boundary between the original and refined regions in order to preserve the rule of
the three neighboring triangles for each triangle.

A transition from coarse to fine resolution is achieved by useof vertices with more
than 6 edges on the coarser side and vertices with fewer than 6edges on the finer side of
the transition, like can be seen in Figure 2.4. In this example each auxiliary line connects
a vertex that joins 7 edges with a vertex that joins 5 edges. However, it is not necessary
that these vertices are concentrated along a band. A more gradual refinement of the mesh
can be obtained by distributing these vertices in a sparse way over a larger area.

A more intensive refinement can be obtained using vertices with more than 7 and less
than 5 edges. However, this would force the existence of triangles with acute degrees
that may reduce the accuracy of numerical simulations. Moreover, in OLAM a spring
adjustment is applied after the step of mesh refinement.

1Unstructured grids require a list of the connectivity whichspecifies the way a given set of vertices make
up individual elements.
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Figure 2.5: Projection of a surface triangle cell
to larger concentric spheres in order to generate
multiple vertical model levels.

Figure 2.6: Example of a prism-
shaped grid cell.

2.5 Vertical Level Definition

The final step of the mesh construction is the definition of thevertical levels. To do
this, the lattice of the triangular cells surface is projected radially outward from the center
of the Earth to a series of concentric spheres of increasing radius (ADCROFT; HILL;
MARSHALL, 1997). The vertices on consecutive spheres are connected with radial line
segments as can be see in the left image of Figure 2.5. This creates prism-shaped grid
cells having two horizontal faces (perpendicular to gravity) and three vertical faces, like
can be see in the Figure 2.6.

The horizontal cross section of each grid cell and column expands gradually according
to the height growth. The vertical grid spacing between spherical shells may vary itself
and usually is made to expand with the increasing of the height (WALKO; AVISSAR,
2008b). In OLAM, it is possible to define a static input vectorwith the vertical grid
spacing or define an initial value and a rate value to increaseat each vertical level of the
grid. The first vertical grid created is generally defined30 km above the Earth surface,
where atmospheric pressure is less than1 mb.

OLAM discretization scheme uses a staggered grid for unstructured mesh (WEN-
NEKER; SEGAL; WESSELING, 2002). The scalar properties are defined and consid-
ered in the center of the triangles and the normal component of velocity for each edge of
the triangle is set in the middle of each edge. The numerical formulation allows the non
perpendicularity between the lines that connect the barycenter of two adjacent triangles
and the common edge between two triangles. The volume control of movement in hori-
zontal surfaces are similar to those for scalars. This is accomplished by setting the volume
control of movement of any triangle edge to the sum of the volume control of the mass of
two adjacent triangles. This means that it is not necessary to obtain a spatial average for
the mass flow across the dynamic volume control surfaces.
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Figure 2.7: Cartesian coordinate system with origin at the center of the Earth.

2.6 Coordinate System

OLAM uses a rotating Cartesian system with origin at the Earth’s center, z-axis aligned
with the north geographic pole, and x- and y-axes intersecting the equator at0 deg and
90 deg E. longitude, respectively, as shown in the image of the Figure 2.7.

The three-dimensional geometry of the mesh, particularly relating to terms in the mo-
mentum equation and involving relative angles between proximate grid cell surfaces, is
worked out in this Cartesian system. The procedure involvescomputation and storage of
the unit vector normal to each surface, and solution of linear systems that contain the unit
vector coefficients.

2.7 Algorithm

The implementation of OLAM involves several steps and can bydivided in three
major parts: the parameter initialization, the atmospheretime state calculation and the
output writing results.

The first part of the code involves the pre-processing, wheresettings are read and ap-
plied for memory allocations and the processing of the information of terrain, vegetation,
soil and sea.

The remainder of the algorithm consists of an iterative step, involving the physi-
cal parametrization. The physical parametrization is similar to the parametrization ap-
plied in the RAMS model and includes the radiation transfer,micro-physics, bio-physical
schemes, turbulence and convective clouds like cumulus clouds. In this iterative part,
further information calculated in the pre-processing stepare inserted. At the end of each
iteration, the update of the time elapsed is made.

After the iterative step, and before the end of the program, some results are written in
specific files, storing values of the physical conditions of the atmosphere to a determined
time.
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Algorithm 2.1 OLAM algorithm.
Initialization;
Input Files (ATM/LAND/SEA) Read;
Grid Configuration/Domain Decomposition;
Variables Memory Allocation;
Pre-processing initial state calculation;
Plot and History Files Initialization;
Initialization Time measure;
Do loop for each time step;

Atmosphere time state calculation;
Send frontier variables to neighbors;
Times step Time measure;

Write atmosphere state on disk;
Barrier; Output Time measure;

2.8 Data Structures Used for the Discrete Representation ofthe Do-
main

This section describes and illustrates the main data structures used in OLAM code.
OLAM discretization of the horizontal domain of the atmosphere is made by decom-

pose the Earth surface in triangles. AW triangle is formed by3M vertices and3 U edges.
Thus,3 data structures are used to represent the relation of vertices (m), edges (u) and
triangles of the domain (W ). These3 data structures areitab_m_vars, itab_u_vars and
itab_w_vars, and are represented in Algorithm 2.2, Algorithm 2.3 and Algorithm 2.4.

Algorithm 2.2 Data structure itab_m_vars.
typedef struct {

int ntpn; //number of U edges and W triangles neighbors of this M vertice M point
int iw[maxtpn]; //array of W triangles neighbors of this M vertice point
int iu[maxtpn]; //array of U edges neighbors of this M vertice point
int imglobe; //global index of this M vertice point (in parallel case)
double arm; //polygon area bounded by W triangles around this M vertice point

} itab_m_vars;

Algorithm 2.3 Data structure itab_u_vars.
typedef struct {

int im1, im2; //neighbor M vertices of this U edge point
int iu1, iu2, iu3, iu4, iu5, iu6; //neighbor U edge points
int iu7, iu8, iu9, iu10, iu11, iu12; //neighbor U edge points
int iw1, iw2, iw3, iw4, iw5, iw6; //neighbor W triangle points
int irank; //rank of the parallel process at this U edge point
int iuglobe; //global index of this U edge point (in parallelcase)
int mrlu; //mesh refinement level of this U edge point

} itab_u_vars;

All three data structures have information about neighborsvertices (m), edges (u),
and triangles (w). Furthermore these data structures keep the parallel process ranking and
global index of the respective point (m, u orw)
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Algorithm 2.4 Data structure itab_w_vars.
typedef struct {

int im1, im2, im3; //neighbor vertices M of this W triangle point
int iu1,iu2,iu3,iu4,iu5,iu6,iu7,iu8,iu9; //neighbor U edge points
int iw1, iw2, iw3; //neighbor W triangle points
int irank; //rank of the parallel process at this W triangle point
int iwglobe; //global index of this W triangle point (in parallel case)
int mrlw, mrlw_orig; //mesh refinement level of this W triangle point

} itab_w_vars;

These data structures are important for many segments of thecode. They are used to
define the global grid of OLAM, in the domain decomposition and local mesh refinement,
to relate with other data structures involving physical properties, and to control the data
exchanges among the processes in the iterative step.

Figure 2.8, Figure 2.9 and Figure 2.10 illustrate the relation of vertices, edges, and
triangles from the data structuresitab_m_vars, itab_u_vars anditab_w_vars presented
in Algorithm 2.2, Algorithm 2.3 and Algorithm 2.4), respectively.

Figure 2.8 presents all verticesiu and trianglesiw neighbors of a edgeim.
In the Figure 2.9, the arrow indicates the positive direction of a verticeUi. The area

formed by the trianglesiw1 andiw2 is the control volume. Another numbered vertices
iu indicate the localization of the12 neighbors of the verticeUi, where the values ofui

and/orUi are necessary to estimateUi in a iu point. Theiw numbered triangles indicate
the localization of the 6w neighbors, where the value ofρ andp are necessary.

In Figure 2.10,iw is the control volume. Numeratediu indicate the localization of
flux transportUi of the control volume.

Another way to view these structures is given in Figure 2.11.In this figure:

• A is the control volume for scalar quantities, a prism-shapedsingle grid cell. The
normal momentum component is defined and prognosticate at each of the five faces.

• B is the control volume for horizontal momentum, comprised oftwo prism cells.
The prognosticate momentum in the control volume is also theflux across the dark-
ened face between the two prisms.

• C is the control volume (light gray) for the vertical momentumcomponent. The
vertical momentum in the control volume is also the flux across the darkened face
between the upper and between the lower prism.

2.9 Parallelization of the Model

OLAM was developed in FORTRAN 90 and parallelized with Message-Passing In-
terface (MPI) (GROPP et al., 1996) to Single Program Multiple Data (SPMD) model.

All MPI processes have initially the original representation of the grid domain and its
data structures created, as described in Section 2.3. Next,if the execution is set to parallel
run, each process defines its sub-domain. Data are reallocated after the definition of the
sub-domain in each process, so that only the sub-domain is kept in memory.

The steps described previously are realized by the functions para_decomp() and
para_init().
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Figure 2.8: Polygon formed byw boundary points around am vertex.

Figure 2.9: Computational horizontal stencil for a value ofUi at aiu localization.

Figure 2.10: Horizontal computational stencil to aρ value iniw localization.
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Figure 2.11: Control volume.

The first function defines a data structure in each process, indicating the sub-domain
that will be set to each process.

The second function is responsible in each process to:

• Deallocate the global domain and allocate the new sub-domain;

• Fill all data structures of the sub-domain that belong to theindicated process rank;

• Prepare the data structures used by the communication functions in the iterative
step of the execution of the code. These structures indicatethe necessary elements
from other data structures that need to be updated. Each process maintains a list of
processes to send and to receive the updated elements.

Figure 2.12 presents a graphic visualization of the global domain decomposed in18
and180 processes, respectively. Each distinct tone represents the domain of a process.
We can see that the covered global domain is smaller for processes computing on a re-
fined region (Amazon region), although the data structure points are balanced distributed
among the processes.

The iterative step will process after the parallel grid domain decomposition and data
structures redefinition. In this step, there are data exchange among neighbor processes
through asynchronous messages to update physical properties of the submeshes’ border.

The communication among processes in the iterative step of the atmosphere simu-
lation occurs basically using 3 encapsulated send and its 3 respectively receive func-
tions. The first and the second group of communication functions, mpi_send_u() -
mpi_recv_u() andmpi_send_uf() - mpi_recv_uf(), are responsible to the exchange
of data of physical variables associated to edge elements ofthe mesh. The third group,
mpi_send_w() - mpi_recv_w(), are related to the communication of the physical proper-
ties associated to triangle elements of the mesh. In all communication group of functions,
and specially in the last, input parameters specify the kindof data that need to be send or
receive.

Data exchange in the iterative step of OLAM occurs accordingto tables previously
defined. Before the iterative step of the model, buffers are allocated to store data to
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Figure 2.12: Global domain divided in 18 and 180 processes.

the send and receive messages. At this part of the algorithm is also defined which data
structures need to be updated and how this process will be made. These information
are stored in special data structures and searched when the encapsulated communications
functions are called.

2.10 Final Considerations

This chapter described details of the OLAM, including aspects of domain decompo-
sition, algorithm and parallelization.

OLAM represents the atmospheric domain through a unstructured mesh. Conse-
quently, each operation on a discrete element of the mesh needs to use auxiliary data
structures to identify it neighbor elements. Because of this, the codification of the model
and its parallelization demand more programming efforts.

OLAM seems a good example of high performance application toevaluate multi-level
parallel architectures and to be parallelized through different approaches. It demands
many computational resources for processing a simulation.Moreover, the use of different
mesh refinement can be well explored in architectures with different levels of parallelism.

The model is currently parallel implemented with MPI. In order to explore new par-
allel architectures other parallel programming interfaces could be used in parallel imple-
mentations. Multiple programming interfaces could be alsocombined to provide the con-
currently execution of the algorithm. Thus, the elements ofthe data structures associated
to the mesh could be parallelized in two levels.

Next chapter presents aspects related to parallel architectures and programming in-
terfaces that can be used to compute and parallelize high performance applications. We
discuss the notion of parallel task and how is possible to explore multiple levels of paral-
lelism.
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3 HIGH PERFORMANCE COMPUTING CHALLENGES

For many years multicomputers have been the prevalent architecture adopted to de-
velop high performance applications through parallel programs. This was the obvious
solution to match processing capacity, using single and/ormultiple processors. At the
same time many tools were produced to abstract the programming process of multicom-
puter systems.

New computer architectures were produced in recent years improving intra-chip par-
allelism. This form of concurrency proposes a new kind of parallelism, which is already
adopted in the development of applications. However many pre-existing applications are
not prepared to use these architectures. Because of this, new challenges appear in the
High Performance Computing context (DONGARRA, 2004). Someof these challenges
will be investigated in this chapter.

3.1 Parallel Applications

Computer Science has introduced a revolution in scientific research. It is considered
as the "third pillar", along with theory and experimentation, that supports scientific re-
search (PITAC Report to the President, 2005). Computer simulation has been one of the
alternatives to find the numerical solution of scientific or industrial applications, modeling
complex systems (LUCQUIN; PIRONNEAU, 1998).

Simulation is a viable alternative, once to build a prototype or to create a real situation
is not always possible due the costs involved, the risks thatthe experiment could result
or physical inviability to reproduce the tests. Examples ofsimulations can be found in
several areas, such as hydrodynamics, with the flow in aqueous media and the modeling
of climate and weather, health, through the representationof human organs and tissues,
aerodynamics of vehicles, to model cars, trucks and aircraft, and virtual reality environ-
ments, like games or situations of human risk (SCHEPKE; MAILLARD, 2007; SOUTO
et al., 2007; XAVIER et al., 2007; FANG et al., 2002; EXA CORPORATION, 2008;
LOCKARD; LUO; SINGER, 2000).

The previously cited applications demand very high processing power. For example,
a operational forecast of a typical hurricane requires bothultra-high-resolution of gradi-
ents across the eye-wall boundaries (at1 km or less), and correctly representation of the
turbulent mixing process (at10 m or less) (BERGMAN et al., 2008).

For this problem, considering an atmospheric domain of:

• 100 square kilometer of horizontal area,

• 10 meter of horizontal grid spacing resolution,
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• 150 vertical levels,

• 60 milliseconds of time step model.

This results a mesh with15 billion of finer decomposed elements.
At a sustained petaflop/second on100, 000 processors, such a computation consumes

about18 machine hours per simulated day and takes up about100 MB per task of data
not counting buffers, executable size, operating system calls, etc (10 TB of main memory
for the whole application in aggregate). The computation generates a data set of241.8
Terabytes (TB), or43.2 TB per simulation day, if hourly30 three-dimensional fields are
calculated. At an integration rate of18 machine hours per simulated day at a sustained
petaflop, the average sustained output bandwidth required is700 MB/second.

Thus, it is important to choose programming techniques and parallel software re-
sources that extract the maximum performance of the computer infra-structure.

3.1.1 Initiatives for Improving the Development of Applications

Some initiatives were proposed in order to provide the infra-structure for the develop-
ment of applications in the next years (BERNHOLDT, 2007).

Brazilian Computer Society promotes theGrand Challenges in Computer Science
since 2006 (MEDEIROS, 2008), (CARVALHO, 2010). The objective of this proposal is to
generate 5 grand research challenges in Computer Science for Brazil to be reached in the
next 10 years. One of these challenges is to model complex systems like artificial, natural,
socio-cultural, and human-nature interactions. To achieve this goal, specific applications
need to be developed.

In the United States documentComputational Science: Ensuring America’s Com-
petitiveness, proposed by President’s Innovation and Technology Advisory Committee
(PITAC), some research and development challenges are presented for algorithms and
applications in scientific and social sciences (PITAC Report to the President, 2005).

The Landscape of Parallel Computingrelates challenges in some classes of appli-
cation (ASANOVIC et al., 2006), (ASANOVIC et al., 2009). Particularly the challenges
of the 6th class of applications, unstructured grids class of application, is important to us
because it is related to the global representation of Earth for climatological applications.

A key output of The Landscape of Parallel Computing report was the identification of
13 benchmark dwarves that together can delineate application requirements in a way that
allows insight into hardware requirements. In addition, more attention must be given to
both dependability and performance. The document also discusses power monitoring and
the use of autotuners, which are software systems that automatically adapt to performance
characteristics of hardware, often by searching over a large space of optimized versions.

In terms of computer architectures, the text concludes thatmulti-core systems are
unlikely to be the ideal answer to achieving enhanced performance. Consequently, a
new solution for parallel hardware and software is necessary (ASANOVIC et al., 2006).
Increasing explicit parallelism will be the primary methodto improve processor perfor-
mance. New models of programming will also be needed for suchsystems.

3.1.2 Changes to Improve Exascale Computing

Multi-core appears to outline the limits of performance of traditional processors (lim-
its of the increase of the clock frequency of the processors). Multi-core is a way to
provide Exascale Performance Computing, that is, upscaling the performance of today
applications in1000× faster (DONGARRA et al., 2011). For a Exascale Performance



36

Multi−processors

Multi−computers

Grids

Multi−coreG
ra

nu
la

rit
y

Figure 3.1: Multi-level parallelism.

Computing system, thousands of multi-core processors operating simultaneously are nec-
essary.

There are two major reasons to invest in a new computing system: for solving prob-
lems not previously solvable, either because of the execution time to solve it or because
the size of the data set of the problem, or to compute the same kind of problems previously
solved on a prior system, but faster or more frequently (BERGMAN et al., 2008).

New applications: where the desired properties of computation are different of what
is supportable today. This includes the kind of operations that dominates the computa-
tional rate requirements, the amount and type of memory, andbandwidth. These new
applications might as well use algorithms that are unknown today, along with new soft-
ware and architecture models.

Upscaling of current peta applications:where the overall application is similar to a
currently peta scale system, but the data set size representing the problems needs to grow
considerably. If the computation is linear time in the data size, then this corresponds to a
1000× increase in memory capacity along with computation and bandwidth.

In this scenario, if the basic speed of the computational units does not increase sig-
nificantly (as is likely), thennew hardware levels of parallelism must be discovered in
the underlying algorithms, and if that parallelism takes a different form than the current
coarse-grained parallelism used on current high end systems, then software models need
to be developed to support this form of parallelism.

3.2 Multi-Level Parallelism

Today, the composition of a parallel computing environmentis increasingly heteroge-
neous. On one side there are clusters and grids architectures. On the other side, multi-core
architectures began to appear with different numbers of processing cores. Consequently,
these environments end up also providing a multilevel parallelism.

In a multilevel parallelism there are several levels of abstraction of parallelism. The
different levels of abstraction of parallelism may be in theprocessor itself (multi-core),
internal to a computer (multiprocessor) or between multiple computers (cluster and grids),
creating a hierarchy as shown in Figure 3.1. The granularityof processes or tasks that can
be run on each level is also highlighted in this figure, increasing as the level of parallelism
increase.

The management of each of the parallel levels of abstractionis done through specific
mechanisms:

• At processor level- The instruction stream is defined by the core or the implemen-
tation of registers required in hardware. Thus, the controlis done by instructions in
assembly.
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• At level of the operating system kernel- The instruction stream is defined by
processes or threads. The control of the flow of instructionsis done through calls to
the operating system.

• At level of middleware management- The set of instructions is grouped, forming
a communicating process. The control is done through inter-process communica-
tion libraries.

Therefore, it is usually the responsibility of the programmer to use different tools for
implementing a program that explores the various levels of parallelism.

We can suppose, for example, a program implemented in parallel using the divide and
conquer approach. This implementation creates processes in the first recursive divisions,
and decomposes each process in threads after. Consequently, it is possible to efficiently
use multi-core processors in a cluster environment.

The programming development and execution environment must be considered to in-
crease the performance of a concurrent application. Ensuring architecture portability of
applications and efficient use of hardware resources is a great difficulty existing in paral-
lel execution environments, since the programming tools currently available are designed
specifically to only one level of parallelism. This limits the potential performance of a
parallel application if it is executed on a different level of hardware parallelism of that it
was originally projected. Furthermore, it is difficult to control how a parallel implemen-
tation will be executed once that different ways of mapping the flow of instructions can
occur regardless of the level of abstraction. Who decides this can be a parallel program-
ming library, a code compiler, the operating system, the user-level thread scheduler or the
CPU.

3.3 Parallel Architectures

New computer architectures have been produced recently in order to improve per-
formance for individual processors. This occurred becausephysical properties and tech-
nological resources used in hardware conception do not allow the increase of clock fre-
quency of an individual processor (clock speed).

In the early 2000s, the limitations to provide head dissipation to chips and the re-
duction in the ability to include more transistors for higher Instruction-Level Parallelism
(ILP) led to a stagnation of single-core single-thread performance. The solution was to
switch from microprocessors of general purpose to Chip-level Multi-Processing (CMP).
Thus, many processing units were implemented in a same chip,yielding, the multi-core
architecture (GEPNER; KOWALIK, 2006).

From the viewpoint of computer architecture, multi-core processors are prevalent
nowadays in systems ranging from embedded devices to large-scale high performance
computing systems (RAUBER; RÜNGER, 2010). This can be clearly seen if we com-
pare the composition of the 500 machines with the largest processing power of the world.
These machines are used to process different kind of applications and their infrastructure
are composed of several processing units (processors) interconnected in most of the cases
through special network technology (TOP 500, 2011).

There are several options of multi-core processors available on the market. For ex-
ample, Intel produces Quad-, Six- and Eight-Core processors (INTEL, 2011a). AMD
presents Eight- and Twelve-Core processors (AMD, 2011).
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Table 3.1: Examples of different multi-core architectures.
Vendor Processor Model Cores Clock Rate L3 Cache Manufacture

Intel Xeon Nehalen W5590 4 3.33 GHz 8 MB 45 nm
Intel Xeon Nehalen X7560 8 2.26 GHz 24 MB 45 nm
Intel Xeon Westmere X5677 4 3.46 GHz 12 MB 32 nm
Intel Xeon Westmere X5690 6 3.46 GHz 12 MB 32 nm
AMD Opteron 6136 8 2.3 GHz 12 MB 45 nm
AMD Opteron 6176SE 12 2.4 GHz 12 MB 45 nm

Table 3.1 presents some examples of multi-core architectures. Information about the
number of cores, clock rate, level 3 cache, and manufacturing technology are compared
for different processors models.

In terms of computer architecture research, Intel presented a 80-core processors as
part of the Teraflops Research Chip project (INTEL, 2011b). Features of the processor in-
clude dual floating point engines, sleeping-core technology, self correction, fixed-function
cores, and three dimensional memory stacking. The degree ofon-chip parallelism will in-
crease significantly over the next decade and processors commercially used will contain
tens and even hundreds of cores, increasing the impact of multiple levels of parallelism
on clusters.

At the same time, the performance of a contemporary GraphicsProcessing Unit (GPU)
has increased much faster than conventional processors, inpart because these processors
can easily exploit parallelism. (NICKOLLS; DALLY, 2010). Figure 3.2 shows an exam-
ple of GPU Tesla architecture. In this figure it is possible tosee the organization of GPU
devices, composed by many processing units and different kind of memory spaces.

Modern GPUs incorporate an array of programmable processors to support the pro-
grammable shaders (a set of software instructions) found ingraphics APIs (NVIDIA,
2012). For example, the Nvidia GForce 9800 includes a doublearray of 128 processors.
Each processor can execute only one single-precision floating-point operation in each cy-
cle. This is a significative power processing because until 128 concurrently executing
instructions can be run at each clock cycle. Another hardware, the Nvidia Tesla GPU
M2090, developed for High Performance Computing, has 512 cores and can process 665
Gflops.

The programmability, high performance, and efficiency of modern GPUs have made
them an attractive target for scientific and other non-graphics applications (KIRK; W. HWU,
2010). Programming libraries such as Nvidia’s CUDA have evolved to support general
purpose applications on these platforms (NICKOLLS et al., 2008). Emerging hardware
such as AMD’s Fusion processor is expected to integrate GPUswith conventional proces-
sors. These initiatives simplify the programming of a code.

Computers can also be composed by heterogeneous processingunits. A machine
can be formed by many multi-core processors for general purpose, graphic cards (GPU)
and reconfigurable hardware (Field Programmable Gate Array- FPGA) (BROWN et al.,
1997). Computers can also be combined forming a cluster of network interconnected
machines or cluster of clusters, as can be seen in Figure 3.3.Possible components of each
individual node of a cluster are shown in the circle positioned at the first part of this figure.
In fact, clusters are the solution to give high power processing to large applications.
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3.4 State of the Art in Parallel Programming Tools

The process of implementation of applications is simplifiedby the existence of tools
for parallel programming. These tools abstract both sharedand/or distributed memory
architectures and provide standard development approaches for several parallel program-
ming paradigms.

Message-passing libraries were developed to abstract the network layer (sockets) and
to offer a clean interface for communication functions. These libraries were used to
develop several high performance applications in the last two decades. The Message-
Passing Interface (MPI) communication library is one of themechanisms widely used
to simplify parallel programming. MPI has a large number of functions to be used both
in parallel and in distributed implementations. This resources are necessary to obtain
parallel performance and are recurrently used in many kindsof applications.

However, MPI is not the only choice to write a concurrent code. Classical tools like
Pthreads and OpenMP are adopted also in applications running in multiprocessor ma-
chines. Moreover, in recent years other tools were developed like Intel Threading Build-
ing Blocks(TBB) and Compute Unified Device Architecture(CUDA). These tools are
employed in the development of multi-core and GPUs codes, respectively. Programming
interfaces were also created to abstract different types ofparallel hardware, simplifying
the development process of concurrent code. They are discussed in the following subsec-
tions.

3.4.1 Message Passing

In the message passing model each processor has its own memory. The exchange of
information occurs through communication between processors using normally a high-
speed network. This model introduces a new problem: how to distribute the computa-
tional task into multiple tasks to multiple processors accessing different units of memory
and to organize the results into a single solution. To solve this problem, some approaches
of scheduling were proposed.

The main advantage of this model is scalability, since thereis no limit on the number
of processes that can be created, nor the number of processors that can be used. There
is also a possibility (although demote the overall performance) of using heterogeneous
machines. In the model of message passing the tasks usually are performed in a distributed
way into distinct processors and the end result is grouped inone process or shared among
all processes.

Message-Passing Interface(MPI) is the main representative message passing pro-
gramming interface. MPI is a standard for exchange data (message-passing) in parallel
computation (GROPP et al., 1996). MPI supports the portability of code and provides
efficient parallel performance for many types of parallel machines.

MPI can be considered an evolution ofParallel Virtual Machine(PVM) (GEIST et al.,
1994) and allows to write parallel programs in FORTRAN, C or C++ languages. MPI is a
norm, supported by several implementations (LAM/MPI, OpenMPI, MPI-CH) with spe-
cific optimizations (LAM/MPI PARALLEL COMPUTING, 2012), (OPEN MPI: Open
Source High Performance Computing, 2012), (MPICH HOME PAGE, 2012). The norm
standardizes the name, parameters and return codes of each routine.

A MPI application is composed by one or more processes that can be executed on pro-
cessors of distinct machines. The processes may communicate with other processes by
sending and receiving messages. This resources are appliedin theSingle Program Multi-
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ple Data(SPMD) andMultiple Program Multiple Data(MPMD) programming models.

MPI provides different communications primitives. The most simple communication
mechanism that can be used is the point to point communication, where operations of
message exchange occur between two processes. More structured communication func-
tions are obtained calling collective communication operations (collective) for a group of
processes. This operations may involve all processes in execution.

Moreover, MPI supports asynchronous communication and modular programming by
mechanisms of communicators (communicator). The communicators allow the MPI user
to define functions that encapsulate internal communication structures (group communi-
cations).

Advanced programming resources likecartesian communicationmechanisms offer
services that allow addressing messages to the processes according to identifiers assigned
to them, using a Cartesian communication structure, through functions for mapping and
accessing the processes.

The basic operation of an MPI program consists of all processes to execute the same
code normally as a sequential program. Each process has an identification number as-
signed. The identification number can be used to restrict theexecution of part of the code
for a specific process or a group of processes. This identifieris also necessary to address
a message for a process in function calls to exchange data.

An example of pseudocode using MPI is shown in Algorithm 3.1.In this example,
the process with rank0 send a set of data to process with rank1. The process with rank
1, receive the data set, computes the data and send it to process with rank0. Process with
rank0 receives the data processed by rank1, and shows the results.

Algorithm 3.1 MPI example of parallelization of the code.
if (rank == 0)

send(data, 1)
receive(data, 1)
show_results( )

else // rank == 1
receive(data, 0)
calculation_execution( )
send(data, 0)

The functions found in MPI are very important. It provides parallel implementations
with efficient communication mechanisms and a greater independence among the execu-
tion of the processes. Evaluating this resources we conclude that MPI offers conditions
for parallel programming applications to run on multicomputers machines, abstracting the
granularity of a parallel task by (a MPI) process.

3.4.2 Parallel Programming Interfaces for Shared Memory

There are also libraries developed for programming shared memory architectures. For
shared-memory programming, the standard tools provide constructs to allocate and access
data in the global address space, common to all the running threads. Examples of shared
memory programming tools are described below.
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3.4.2.1 Cilk

Cilk is a general purpose programming language for any operating system platform
proposed by the Technology of Supercomputation Group of MIT(FRIGO, 2007), (BLU-
MOFE et al., 1995), (FRIGO; LEISERSON; RANDALL, 1998). Cilkis based on ANSI
C standard and offers a multi-thread parallel programming environment. It extends C
language through keywords that enable to express the parallelism of the application. A
Cilk program without keywords is called as C elision and results in a syntacticly and
semantically valid C program.

The execution of Cilk is responsible to make load balancing and to schedule the cre-
ated threads to execute concurrently over the processors.

Cilk tasks can be scheduled by shared tasks or by work stealing. In the first case, a
thread is scheduled to execute concurrently in each parallel function call. Such a concur-
rently execution maximizes the computer processing but it is penalized by the high cost
to create a new thread. In the second case, a processor can search more tasks to process
when it end its current works (adaptive scheduling). The advantage of this method is to
provide better parallelism conditions, minimizing the amount of thread and maximizing
efficiency. Scheduling decisions in Cilk are defined by information obtained in compile
and execution time.

The parallelism and synchronization primitives of Cilk are: cilk, spawn, sync and
return. The cilk primitive identifies a parallel function tothe environment, defining it as
a Cilk procedure. The parallelism begins in the spawn primitive that launch a new task
for the specified function. The semantic of spawn differs of aC method because spawn
does not wait for the end of the called function in oposition to a C method call. The sync
primitive offers a local barrier as a way to wait for the end ofthe tasks created by a father
task. The Cilk environment inserts a sync before the implicit return of a task in order to
guarantee that all child tasks end before the return of the currently running task.

3.4.2.2 OpenMP

OpenMP (Open Multi-Processing) provides directives that allow the expression of
data parallelism in parts of the code and loops, and parallelism of tasks, introduced in its
version 3.0 (CHANDRA, 2001), (CURTIS-MAURY et al., 2008). An example of loop
parallelization is shown in Algorithm 3.2, where all operations of a step of the loop can be
concurrently executed, according to the number set in theomp_set_num_threads()
function (4 threads, in this case).

Algorithm 3.2 OpenMP loop parallelization.
omp_set_num_threads(4);
#pragma omp parallel for
for (i = 0; i < MAX; i++)

A[i]= c*A[i] + B[i];

The API of OpenMP consists of compilation directives, library of methods/functions
and environment variables that describe how the workload can be shared among differ-
ent threads running on different processors or cores. The programmer can choose the
number of threads to execute by calling library methods or bysetting environment vari-
ables. Moreover, the granularity of tasks, using the approach of data parallelism, can be
determined by the programmer or by the compiler.
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The OpenMP standard does not specify a scheduling algorithm. This is attributed
to the implementation of the API, in order to define the best choice in terms of load
balancing.

3.4.2.3 Threading Building Blocks

Threading Building Blocks (TBB) is a C++ library developed by Intel to program soft-
ware that run on multi-core processors (PHEATT, 2008), (VOSS, 2009), (WILLHALM;
POPOVICI, 2008). The first version of the library was announced in 2006 for the first
x86 dual-core, Pentium D processors.

In order to reach the best way to use processor resources, TBBprovides the division
of the workload into threads and gives a scheduling solutionfor the threads. TBB parallel
tasks are called work units. The granularity of the loop parallelism is defined by the library
and the granularity of the threads using tasks parallelism is defined by the programmer.
A set of threads executes the available tasks in user mode according to the work stealing
scheduling inspired by the Cilk environment. This makes easier the programming because
it is not necessary to understand how the threads were implemented.

In general, the focus of this library is the high level parallelization through, for exam-
ple, the distribution of data among threads. This means thatthe programmer can concen-
trate his efforts on solving problems, and not in small details, by using threads.

TBB library has performance, scalability, and is similar tothe OpenMP library, sup-
porting loops and tasks parallelism. However the library provides it with different ap-
proaches. Another significant difference of TBB is that its offers the utilization of generic
programming in parallel loops, in order to avoid limiting the parallel data structures to
basic types of the language. This resource is similar as Standard Template Library (STL)
containers programming tool (MUSSER; SAINI, 2004).

3.4.2.4 Charm++

Charm++ is an object-oriented paradigm for parallel programming and asynchronous
message exchange that adds several features and structuresto the C++ language (KALE;
KRISHNAN, 1993). It is based on the manipulation of special objects calledchares.
Chareshave their own data (local). They communicate with othercharesand have spe-
cial methods called input methods, responsible for receiving and processing messages
destined to its objects. Input methods are different from traditional methods because they
return immediately after their invocation, but not necessarily after the asynchronous exe-
cution of the called method, ensuring that this method will be executed eventually.

A Charm++ program is a set ofcharesreferred as a global space of objects, and
has their execution initiated through a specific chare called main chare. The messages
exchanged betweencharesare also known as Remote Method Invocation, because the
senderof a message does nothing more than invoking entry methods ofthe receiver.
Migration of charesbetween processing nodes can be made using the framework Pack
and UnPack (PUP) in order to facilitate the packaging of data(classes).

A Charm Run-Time System (RTS) is provided to remove the responsibility of the pro-
grammer to identify and manage quantity and type of processors, type of communication
(network) between them, and the amount of resources available. RTS is responsible for:

• Mapping chare objects in physical processors.

• Load balancing of objects through dynamic migration.
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• Routing of messages: it is important due the migration of objects between pro-
cesses.

• Checkpoint: by enabling objects’ "state" migration.

• Fault tolerance: recreation of objects in distinct processors when processors crash.

• Dynamic reallocation of physical resources: the possibility to allocate more or less
space according to the extra load present in the cluster.

RTS provides support for other languages or programming models like Adaptive MPI
(AMPI) (HUANG et al., 2006), where MPI programs can take advantage of virtualization,
load balancing, fault tolerance, among other characteristics already listed.

3.4.2.5 CUDA

Compute Unified Device Architecture (CUDA) is a parallel programming computing
architecture developed by nVidia (NICKOLLS et al., 2008). It enables the use of Graphics
Processing Units (GPU), integrated in the video boards. This technology was available
initially for the GeForce (series 8 and after) and Quadro editions, and more specifically
for the Tesla edition (developed for HPC) and Ion (for mobilecomputers).

The use of video boards to execute an application normally performed by a CPU is
called General-Purpose computing on Graphics Processing Units (GPGPU) (GARLAND
et al., 2008). The first advantage of using CUDA is the use of shared memory for quick
access to arbitrary addresses in memory. Since the version 3.1, CUDA has support for
recursion, double-precision floating point data type, implemented according to the IEEE
754 standard, and rendering of textures.

The programming model of CUDA consists of extensions to C andC++ in a sequential
program that can boot a kernel (NICKOLLS et al., 2008). The kernel is similar to a C
function and runs concurrently through several CUDA threads. The threads are mapped to
the execution core of the GPU by the GPU. The programmer is responsible for transferring
data from CPU to the GPU and GPU to CPU.

The programming model of CUDA is ideal for applications withhigh data parallelism
level and for applications that have not dependencies amongtasks. However, CUDA
limitations include no control of coherence of the data usedand the lack of support for
the execution of multiple kernels. Thus, significant performance gains in CUDA depend
on good knowledge about the architecture and the programming model.

3.4.3 Distributed Shared Memory

Programming interfaces for distributed systems use explicit two-sided communica-
tions. On the other hand, the interfaces used for programming shared memory systems
provide simple statements of concurrency, but not applied for intercomputer architectures.
To overcome this situation, some tools were proposed to jointhe best features of these two
paradigms (BERNHOLDT, 2007). These solutions are based onPartitioned Global Ad-
dress Space(PGAS).

In the PGAS model the languages are developed over a memory model in that a global
address space is logically partitioned in order to give eachpart to a local processing unit.
This kind of language is typically implemented on distribute memory machines and use
communication libraries to address the virtual space.

PGAS languages provide abstract resources to develop distributed data structures and
communication of the cooperative instances of the code. Although the objective of these
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languages is to improve the capability to write codes, it is still limited in terms to provide
a global vision of parallel computing.

Some programming languages, that allow the programmer consider a large scale com-
putational environment as a unified system like a shared memory environment, are pre-
sented below.

• Unified Parallel C (UPC) - It is a extension of the programming language C, devel-
oped in Berkeley, for HPC on large scale parallel machines (YELLICK; BONACHEA;
WALLACE, 2004). The language provides an uniform programming model for
both shared and distributed memory systems. UPC abstracts the SPMD program-
ming model. The parallelism is defined before the execution of the code. Each
execution stream is destined to a processor. Thus, the execution environment can
be viewed as a single shared memory system in that the processor can read and
write variables, although these variables are physically associated to one distinct
processor.

• Co-Array FORTRAN (CAF) - This language is an extension of FORTRAN to
support the SPMD programming model, developed in Berkeley (NUMRICH; REID,
1998). It has similar properties as the UPC implementation and includes resources
expected for the next version of FORTRAN. The name of the language arises from
the implementation of a new kind ofarray calledco-array. This resource is used
to reference multiple cooperative instances (images) of a SPMD program. Eachim-
agecan access remote instances from a variable through the index of a dimension
of co-array. A variable declared in aco-array dimension allocates a copy of the
variable in each image. The way that aco-arrayis created is similar to the creation
of a normalarray in FORTRAN. The language offers also synchronization routines
to coordinate the cooperative images.

• Titanium - It is a language developed in Berkeley to implement the SPMDparadigm
for Java (YELICK et al., 1998). Titanium increases several features of Java, includ-
ing support to multi-dimensional vectors and sub-vectors iterations, copy opera-
tions, class with unchanged values andregions, an alternative garbage collector
that supports memory management oriented to performance. The language offers
support among instances of the program developed in SPMD through synchroniza-
tion and communication primitives, methods and variables that allow an alternative
synchronization way, and a notion of private and shared references.

• Chapel - It is a programming language developed by Cray (CHAMBERLAIN;
CALLAHAN; ZIMA, 2007). Chapel is part of a larger project knew by Cascade. It
provides a higher abstract level to express parallel programs. It offers a separation
between the development of the algorithm and the details of data structure imple-
mentation. Chapel supports multithreaded programming model, offering data and
tasks abstract parallelism.

• Fortress - It is a high performance programming tool projected by SUN (WEI-
LAND, 2007). The language is based on FORTRAN and provides efficiency and
security. Fortress has an innovative syntax: it was developed to provide a mathemat-
ical notation style. With that, the development of a code canbe more easily done
for scientists. The fundamental components of Fortress code are theobjectsthat
define the variables and methods, and thetraits, where the conjunct of abstract and
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Table 3.2: Different levels of parallelism covered by programming interfaces.
Parallel Level Cilk OpenMP TBB PGAS MPI CUDA/OpenCL
Distributed Memory x x
Interprocessors x x x x x
Intraprocessor x x x x
GPGPU x

concrete methods are declared. Fortress is an interpreted language. The interpreter
runs over a Java Virtual Machine (JVM) and interprets the class of the specification
of the language.

• X10 - It is an experimental programming language developed by IBM in association
with academic institutions (CHARLES et al., 2005). The objective of the language
is to offer new programming techniques for scalable parallelism. It is optimized for
a environment management at execution time. X10 offers all classical resources of
the Java programming language for Symmetric Multi-Processors (SMP) and clus-
ters environments.

All these tools provide an abstract layer, making the implementation mechanism ho-
mogeneous. At the same time is not possible to extract parallelism from all hardware
layers because they are not abstract so well, for example, multi-core architectures. Thus,
these interfaces can be considered solutions for abstract two-level and do not for multi-
levels of parallelism.

3.4.4 Evaluation of the Presented Tools

To explore the performance of the parallel architectures today, a programming tool
needs to provide mechanisms to access all the parallel levels of a machine. However, no
programming interface provides this. Some languages presented have the intention to pro-
vide more code abstraction but they do not include some parallel levels in its conception.
Moreover, this resources are still in development.

Table 3.2 presents a summary of the different parallel architectures levels covered by
the different programming interfaces previously described.

The notion of parallel task is presented in different ways inthe parallel programming
interfaces discussed in this chapter. CILK and TBB support natively this notion. This
notion is not so well defined in MPI. In this programming tool,each MPI process is the
task itself.

The solution to explore multi-parallelism level is to combine more programming tools.
Therefore a parallel program that utilizes the MPI library could be combined with the
OpenMP or the TBB programming interfaces. An MPI program canalso incorporates
CUDA functions, in order to explore GPU hardware. In the Chapter 6 we will to discuss
how the combination of these interfaces can be made for applications of atmospheric
models.

3.5 Final Considerations

There are many challenges to create and execute high performance applications today.
The scale of the simulations for solving real problems are very large. New applications
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demand ever more memory and processing since the volume of data and operations to
compute in these applications is increasing.

Applications need to use the entire architectures available for the executions in order
to maximize it performance. Currently, the architectures provide many level of hardware
concurrency. But there is not a programming interface able to abstract all these levels.
Because of this, each of these levels can be only explored using a specific parallel pro-
gramming interface. Thus, it is important to understand theapplication functionality and
how parallel tasks can be defined.

Next chapter presents a performance evaluation of OLAM. Theevaluation of the ap-
plication, simulating some case studies on a multicore cluster environment, is necessary
to understand the limits of performance of the model using only a parallel programming
interface.
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4 SCALABILITY STUDY OF STATIC OLAM

The previous knowledge of the execution behavior of OLAM is important to better
understand how is possible to improve the model. Because of this, we present in this
chapter the simulation environment and the performance measurements of the original
code of OLAM in order to evaluate the impact (execution time and speed up) of multi-core
architectures in simulations of atmospheric models using low mesh resolution. This study
highlights many performance aspects of the original version of the model, implemented
in FORTRAN 90.

4.1 Simulation Environment

We evaluate the3.0 version of OLAM. In our case study, each side of the initial
icosahedral triangle was divided in25 parts (N = 25). So, the distance between the
discretized points on the horizontal globe surface was near200 Km. The atmosphere was
divided vertically (z dimension) in28 levels.

The objective of the simulation was to evaluate the execution costs of the model.
Therefore we measure the impact of fluid dynamics methods during 24 hours of simula-
tion of an atmosphere, without any computation of physical methods, in the iterative step
of the model. Each timestep of integration simulates60 seconds of the real time.

All measurements have been made on the two clusters ICE and SUNHPC.
The ICE platform at the Institute of Informatics of the Federal University of Rio

Grande do Sul is composed by14 dual nodes with Intel Xeon E5310 Quad-Core of1.6
GHz and4 MB of cache, with16 GB of RAM memory in each node. The cluster is
interconnected by aGigabit Ethernetnetwork.

The SUNHPC platform at the National Laboratory of ScientificComputing (LNCC)
is composed by23 dual node Intel Xeon E5440 Quad-Cores with4 MB of cache and
16 GB of RAM memory in each node. The cluster is interconnected by an InfiniBand
network.

MPICH 2-1.0.7 and 2-1.2.p1 versions were respectively usedin the implementations
evaluated at ICE and SUNHPC platforms.

4.2 Scalability Intra-Node

The first test realized evaluates the scalability of the codein a multi-core machine
using all8 cores of two processors in one node of the cluster ICE. ThisIntra-Node test
simulates the execution of the model using1 to 8 number of processes. The processes are
balanced distributed between the processors.
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Figure 4.1: Speed up using 1 cluster node with 8 cores.

The results presented in the Figure 4.1 show an increase of performance when more
processes are used. In fact, the speed up using all8 cores of one node is only around5
instead an ideal of8.

4.3 Scalability Inter-Nodes

The scalability of OLAM code was evaluated in a second test, using multiple nodes
of the cluster. Figure 4.2 presents the speed up obtained using only one core of each node
of the ICE cluster. The number of processes used to simulate the model was1 to 14. The
speed up using 8 processes was around 6.4 and using 14 processes was up to 11 in this
Inter-Node test.

The performance results of the parallel execution of OLAM using only 1 core of each
node of the cluster provide more scalability than the test using all 8 cores of one node,
as present at the Section 4.2. In fact, the maximum efficiencyin theIntra-Node test was
62%, using8 cores, and in theInter-Node case the efficiency was77%, using14 cores.
This occurs because the impact of cache misses in theIntra-Node test is very high, as
will be shown later.

4.4 Execution Time - Multi-Core Impact

A third test was made using a different number of cores in eachnode of the cluster.
P processes are distributed toC cores processors to better understand how multi-core
architectures influence the execution of OLAM. ThusP/C nodes will be used to execute
the model.
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Figure 4.2: Speed up using 1 core from each of the 14 nodes of the cluster.

Figure 4.3 shows a comparison of the parallel execution timeof OLAM, distributing
14 processes among the ICE cluster nodes in five different configurations. These configu-
rations consist of processes distributed respectively forone, two, four, six, and eight cores
per node (C = 1, 2, 4, 6, 8).

The results show that using only a core per node is better thanusing more cores per
node. The results also demonstrate reduction of performance when the number of cores
used in each node increases. This is more visible when more than 4 cores per node are
used. In fact, quad-core processors share the access to the bus. Because of this, the
performance on simultaneous accesses of memory is not so good, due to the large volume
of data manipulated in OLAM.

Data access latency has been a problem even on single-core systems, as processors are
much faster than memory. With the emergence of multi-core processors, a more severe
problem arises with data access due to the limited bandwidthto access shared resources
in the memory hierarchy. When multiple cores are processingdifferent sets of data, the
shared resource becomes a performance bottleneck, if the bandwidth is not high enough
to support the multiple cores. This has been already experienced in currently available
processors (BYNA; SUN; HOLMGREN, 2009), (SHALF, 2007).

4.5 Execution Time - OLAM Routines

Seven timestamps barriers (TS1, ..., TS7) are inserted on selected points of the origi-
nal source (a few module boundaries) in order to correctly assign partial execution times
to OLAM main modules. OLAM pseudo code is presented in Algorithm 4.1 indicating
where selected timestamps barriers were placed.
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Figure 4.3: Execution time using 1, 2, 4, 6 and 8 processes/cores per node.

Algorithm 4.1 OLAM pseudo code and the localization of the timestamps.
Initialization;
Input Files (ATM/LAND/SEA) Read;(TS1)
Grid Configuration/Domain Decomposition;(TS2)
Variables Memory Allocation;(TS3)
Pre-processing initial state calculation;(TS4)
Plot and History Files Initialization;(TS5)
Initialization Time measure;
Do loop for each time step;

Atmosphere time state calculation;
Send frontier variables to neighbors;
Times step Time measure;
If time equal END then;(TS6)

End Do Loop;
Write atmosphere state on disk;(TS7)
Barrier; Output Time measure;

In Table 4.1 the best (T. Min) and worst (T. Max) execution times are shown in mil-
liseconds (ms) of each of the7 parts of the instrumented code. The results compare the
use of8 processes in only one node and 8 processes executed in distinct nodes of the ICE
cluster, respectively.

Each timestamp (TS) stageTS1, ..., TS7 is followed by a synchronization stage. The
synchronization stage measures the time elapsed between the end of each execution time
stage and a barrier, where all processes must arrive and waitbefore to continue the exe-
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Table 4.1: Execution time using 8 processes in 1 node and in 8 nodes.

Time- T. Min T. Max T. Min T. Max
Stamp 1 node 1 node 8 nodes 8 nodes
TS1 598 618 180 182
Syn 0 31 0 6

TS2 186 225 58 59
Syn 0 39 0 1

TS3 20 23 15 17
Syn 0 39 0 3

TS4 565 601 554 555
Syn 0 1 0 0

TS5 109 280 103 266
Syn 0 170 0 163

TS6 111268 111924 81641 82194
Syn 83 837 129 704

TS7 173 487 132 138
Syn 109 585 130 302

Total 114497 114510 83830 83837

cution.

In this table we observe thatTS6 is the most impacting step of the execution. This
timestamp monitors the iterative step of OLAM and, in this case, represents around97%
of the total execution time in both cases evaluated. However, the difference between the
casesC1 andC8 is very significant. The Inter-Node approach demands only73% of the
total time in relation to the Intra-Node approach.

A similar evaluation was made using14 processes.

In Table 4.2 respectively the best and worst execution time of the instrumented code
are reported in milliseconds (ms), using1 core (C = 1) and8 cores (C = 8) per node of
the cluster.

TS6 dominates the overhead for bothC = 1 andC = 8 synchronization time. The
synchronization time increases in all timestamps forC = 8, indicating that the use of all
cores of a node impacts in reduction of performance.

Synchronization time fromTS6 is related to a small load imbalance from the atmo-
sphere time state calculation part. The increase of synchronization time onTS1 to TS7
onC = 8 test are related to the multi-core memory contention (OSTHOFF et al., 2010).

Applications running on multi-core systems using many cores and a large amount of
RAM memory in each process have low reuse of cached data. The most external cache
levels are generally shared among the cores of a multi-core system. In applications of do-
main decomposition, this implies low cache reuse, since each core handles different data
from the others. In addition, large volumes of data manipulation involve often rewriting
of data in the most internal cache levels.
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Table 4.2: Execution time using 14 processes withC = 1 andC = 8.

Time- T. Min T. Max T. Min T. Max
Stamp C = 1 C = 1 C = 8 C = 8
TS1 178 183 177 1095
Syn 0 149 0 959

TS2 57 60 55 201
Syn 1 4 0 147

TS3 9 13 15 18
Syn 1 5 0 38

TS4 323 367 339 374
Syn 0 1 0 8

TS5 88 195 93 191
Syn 0 107 0 90

TS6 47323 49249 70063 72481
Syn 244 2224 463 2862

TS7 43 134 121 175
Syn 254 510 513 964

Total 49884 50786 75496 75552

4.6 Performance Analysis with Vtune Analyzer

Timestamp 6 (TS6) was the part of the code that demanded more execution time.
Because of this, the iterative step was executed using IntelVtune Performance Analyzer
9.1 (INTEL, 2010) in order to investigate the execution behavior of the processes.

OLAM was parallel executed with 8 processes, each one on distinct nodes of the
cluster SUNHPC, obtaining a cache miss (L2) of19.48%. The execution of 8 processes
in a same node results in a measured cache miss of99.94%and the rate of data transfer
from the memory bus increases to99.83%of the bus capacity/time.

Hardware prefetching was another aspect investigated (ZHURAVLEV; BLAGODUROV;
FEDOROVA, 2010). The tests allow to conclude that OLAM execution not increase hard-
ware prefetching when more cores are used.

These results show that there is an increased cache miss rateand data transfer rate
in the memory bus when more cores are used in a multi-core machine, that is, there is
memory contention. The tests realized with Vtune prove thatmemory and cache access
affect directly in the execution time of the model.

4.7 Summary of the Results

This chapter evaluates the performance of the parallelizedversion of the Ocean-Land-
Atmosphere Model (OLAM) on a multi-core cluster environment. In order to evaluate
the scalability of the model we present the speed up obtainedusing all 8 cores of two
processors of a cluster node and the speed up resulted using only one core of each node
of the cluster.

We insert timestamp barriers on parts of the OLAM code to find the routines of the
algorithm that increase the execution time as more processes are used. The execution time
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are more impacted by the routines called in the iterative step and by the output operations
of OLAM. The results indicate also that the barrier synchronization time increases in the
same order as the increment of cores number used per node.

In order to evaluate OLAM multi-core contention of resources we instrumented OLAM
with Intel Vtune Performance Analyzer. The results indicate that the L2 cache miss and
the memory bus traffic increases as the number of cores per node increases.

4.8 Final Considerations

This chapter contributes with an evaluation of performanceon a multi-processor/multi-
core cluster of a real scientific application characterizedby high processing load. We sim-
ulate a parallelized version of the OLAM atmospheric application using MPI processes.
The tests show that the scalability of OLAM application get worst as we increase the
number of cores used in each node of the cluster.

We observe in the previous results that using only MPI processes in a today parallel
architecture does not explore well all levels of parallelism. Some of the features observed
in this chapter could be outlined by the use of techniques that better exploit the different
levels of parallelism (multiprocessors/multicore) and bythe expression of parallelism of
the application. The Chapter 6 will discuss some ideas to improve programming tech-
niques in order to improve multilevel parallelism in the code.

Another challenge for climatological models is to increasethe resolution of the meshes,
without impacting in the application performance. This canbe done through the use of
multiple layers of mesh refinement. These multiple levels can eventually also explore the
parallelism levels of the architectures. Next chapter discusses how mesh refinement at run
time can be provided in an atmospheric model.
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5 ONLINE LOCAL MESH REFINEMENT

The mesh resolution impacts directly in the performance of aclimatological model.
In Chapter 2 and Chapter 4 we discussed concepts about an atmospheric model, and
evaluated its parallel performance on a specific cluster architecture, respectively. We saw
that the atmospheric model implementation defines a mesh resolution, to cover the global
domain, statically at the beginning of the simulation, and provides also resources to set
parts of the domain with more (local) mesh resolution.

In this chapter we propose an Online Mesh Refinement (OMR) approach for unstruc-
tured meshes distributed in distinct processes. The OMR implementation allows local
mesh refinement at execution time, increasing the resolution of a discrete representation
of part of a domain. This solution provides higher mesh resolution for atmospheric mod-
els with low impact in the execution time, providing also better numerical results.

5.1 Motivation to Improve Online Mesh Refinement

The forecast accuracy of climatological models are limitedby computing power and
time available for the executions. As the number and speed ofprocessors increases, the
resolution of the mesh adopted to represent the Earth’s atmosphere may also be increased
(without changing a maximum execution time limit reserved for the simulation in a high
performance system), and, consequently, the numerical forecast will be more accurate.
However, a finer global mesh resolution, able to include local phenomena in an atmo-
sphere simulation, is still not possible because of the large number of mesh elements to
be included in the model, and consequently a large increase of execution time.

To overcome this issue, different mesh refinement levels canbe set statically to cover
distinct parts of the global domain simultaneously. This isa good approach if we previ-
ously know what parts of the global domain need to have a high mesh resolution, due the
impact of these parts in the precision of the final solution ofa simulation. However, if the
regions that impact in the precision are know only at execution time, the best solution is
to improve, at run time, mesh refinement for parts of the domain.

A mesh refinement mechanism, like presented in the OLAM, can be only applied in a
static way, that is, before the iterative step of the model and before of each physical prop-
erties calculation. In this context, this chapter evaluates how mesh refinement at run time
can improve performance for climatological models. In order to contribute with this anal-
ysis, an Online Mesh Refinement (OMR) mechanism was provided. The implementation
of the OMR increases mesh resolution in parts of a parallel distributed model, when spe-
cial atmosphere conditions are registered during the execution of an atmospheric model.
Thus, it is not necessary to reboot the application to increase local mesh resolution.
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5.2 Related Work

The Adaptive Mesh Refinement (AMR) technique is frequently cited in the literature
as a way to represent complex geometry and to increase locally the resolution for a thin
part of a domain (PLEWA; LINDE; WEIRS, 2003). This techniqueis used in computa-
tional fluid dynamics to add fine grid patches to regions of theflow where more resolution
is needed, such as near shocks and detonations. The AMR can significantly speed up a
computation and/or enable simulations with a much higher effective resolution as com-
pared to the uniformly refining of the grid approach. Efficient numerical schemes can be
written for overlapping grids since they are composed of structured grids and Cartesian
grids (ZUMBUSCH, 2003).

There are many applications and interfaces developed usingthis technique (ZUM-
BUSCH, 2003). In (HORNUNG; TRANGENSTEIN, 1997) is presented a solution using
AMR in a porous media fluid flow application. (DEBREU; VOULAND; BLAYO, 2008)
provide a set of function to apply AMR in FORTRAN codes. The Parallel Hierarchical
Adaptive MultiLevel (PHAML) library develops new methods and software for the effi-
cient solution of 2D elliptic partial differential equations (PDEs) on distributed memory
parallel computers and multicore computers using adaptivemesh refinement and multi-
grid solution techniques (MITCHELL, 2006).

An another example of programming interface for AMR applications is provided by
the PARAMESH toolkit, a software designed to offer parallelsupport with adaptive mesh
capability for a large and important class of computationalmodels, those using structured
logically Cartesian meshes (MACNEICE et al., 2000). The PARAMESH package of
subroutines is designed to provide an application developer an easy way to extend an
existing serial code into a parallel code with adaptive meshrefinement.

However, mesh refinement solutions, like PARAMESH, are restricted to structured
grids and differ from the unstructured mesh adopted in many climatological models.

In relation to climatological applications, an execution time mesh refinement was sug-
gested for one of the first sequential versions of Brazilian Regional Atmospheric Model-
ing System (BRAMS), during the design phase of the model (FAZENDA et al., 2011)
(PIELKE; AL., 1992). However, this option has not been included in the parallel imple-
mentation of the model and is consequently not used in real climate simulations.

5.3 Static Mesh Refinement in the Ocean-Land-Atmosphere Model

Local horizontal mesh refinement can be specified to cover delimited geographic areas
with higher resolution after the setup of the global mesh, atthe initialization step of the
model. The definition of the region to be refined begins with the choice of a specific
geographic coordinate point of the Earth surface. After this, all points included in the
area formed by a radius surrounding that point will be markedto be refined.

Summarized, we can say that the refinement procedure dependson a Cartesian coor-
dinate point (Earth latitude and longitude), a radius of latitude, a radius of longitude and
an angle of inclination of the ellipse formed by using the combination of these two radii.
Figure 5.1 illustrates the distribution impact of each of these variables to define a region
of refinement. The figure shows also how the choice of the angleallows the rotating of
the ellipse in order to better cover a region of the physical atmosphere.

After the choice of the region market to be refined, each discretized element contained
in this area is subdivided horizontally into four new elements. Figure 5.2 illustrates the
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Figure 5.1: Mesh refinement area definition of a specific region of the Earth. In this
example, parameters were determined for an ellipse area to cover Argentine.

T0
T2T3

T1

T4

Figure 5.2: Example of one level mesh refinement applied to a point.

decomposition of a mesh element marked to be refine (T0), view horizontally as a triangle,
in 4 new triangular elements (T1, T2, T3, andT4).

The level of resolution of the new refined region, in relationto the previous horizon-
tally representation of the region, is always doubled. In order to achieve specific local
mesh resolution values, the mesh points that represent these areas are subdivided cycli-
cally while the expected mesh resolution is not overcome.

OLAM allows various levels of horizontal mesh refinement that can be applied in dif-
ferent parts of the domain, that is, a given domain can be refined several times. Since the
resolution of the final level of refinement applied is always double in relation to the previ-
ous one, whenx multilevel refinements are adopted to an Initial Level (IL) of resolution,
the Final Level (FL) of resolution will always be:

FL = IL/2x

The global grid and its refinements define a single grid, as opposed to the usual nested
grids of regional models. Grid refined cells do not overlap with the global grid cells - they
substitute them. The parallel data distribution takes intoaccount the number of triangles
(the horizontal mesh points of the domain) after the static mesh refinement to ensure a
good load balancing. Once defined the distribution of subdomains among the processes,
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Table 5.1: Number of vertices, edges and triangles mesh elements for different mesh
resolutions.

Resolution Vertices Edges Triangles
100 Km 25,002 75,000 50,000
50 Km 102,012 306,030 204,020
10 Km 2,550,252 7,650,750 5,100,500
5 Km 10,201,002 30,603,000 20,402,000

each process discards the global mesh, and keeps in memory only its respective sub-
meshes.

Each OLAM MPI process is responsible for operating the functions of the iterative
step on a given subdomain. There is no master process responsible for determining the
division of the load and then assigning it to slave processes, as occurs, for example, in
BRAMS. The distribution of data among the processes is set ineach one. Each process
determines its operating subdomain from the global grid according to its MPIrank.

5.4 Finer Mesh Resolution Execution

The OLAM horizontal mesh representation is made by decomposing the Earth surface
in triangle points, according to the requested Resolution (R) given in Kilometers. The
Number of Triangles (NT) for a specific resolution depends onthe Earth’s circumference
and is given by:

NT = 20× (5050/R)

Table 5.1 presents the number of edges, vertices and triangles for 4 specific horizontal
mesh resolutions. In this table, we can see that the number ofpoints increases by a factor
100 if the adopted resolution doubles.

There is also a specific number of vertical layers (atmosphere column) associate to
each horizontal decomposed triangle point. This number is chosen according to the physi-
cal characteristics of the atmospheric layers. There is also relationship between horizontal
resolution and the size of atmospheric level to ensure realistic physical proprieties during
the simulation. For example, for a200 Km of horizontal mesh resolution, around20 ver-
tical levels can be adopted. For higher horizontal mesh resolution, this number needs to
be increased.

Data values of the physical properties of the model are associated to edge and triangle
elements of the horizontal mesh, and its specific vertical levels. Ignoring auxiliary data
structures, and considering only physical proprieties, atleast30 different data structures
are required for a simple simulation.

Many atmosphere simulation steps, called in the iterative part of the model, each one
representing a small real elapsed time, increase substantially the execution time. This
computational time could be not acceptable, even using highperformance architectures.

For a parallel execution using40 core or processors, and execution parameters of
20 Km of mesh resolution,28 vertical levels, simulating only one day of atmospheric
integrations, where each step represents60 s of the real elapsed time, around24 hours of
execution time are required for the simulation. That is, forvery simple simulation setups,
the simulation execution time would be almost equal to the real time of the atmospheric
transition.
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Initialization Iterative Mesh Refinement Iterative

Figure 5.3: Execution steps of an atmospheric model improved by an OMR.

The total execution time elapsed in the simulation is correlated to the number of el-
ements that represent the domain. However, finer mesh refinement needs to be adopted
only to cover local weather phenomena. In this context, to reduce the execution time,
without loss of precision simulation, different mesh refinement levels can be used. The
best solution to cover local phenomena is to adopt higher mesh resolution in a global
Earth model when it is really necessary, using a runtime meshrefinement.

5.5 Online Mesh Refinement Implementation

The refinement of meshes at runtime needs to take into consideration that the dis-
cretized points of the domain to be refined can be distributedinto different processes.
Thus, the implementation of this feature considers that each process must be able to iden-
tify whether its respective subdomain has a region to be refined if the refinement is called
at runtime.

Just as each process is responsible for setting its sub-meshat the beginning of the code
execution, according to its MPI rank, now each process realizes locally the identification
of the domain area to be refined, since each point of the sub-mesh maintains a reference to
a global geographical coordinate system. Thus, it is only necessary to check if the global
localization of a mesh point is circumscribed in the region of the domain that will to be
online refined. If the point is circumscribed, it will be subdivided into four new triangles,
as illustrated and discussed previously in Figure 5.2.

All distributed processes know if the mesh refinement must bemade in its specific
sub-mesh. Thus, each process knows which points must be refined. After the refinement,
data structures of the new created points will be completed.

The mesh refinement at execution time stops the execution andrefines the distributed
sub-meshes points on specific Earth regions, according to a climatological condition.
Next, data exchange are made among neighbor processes, in order to update the data
structures of the boundary points of each sub-mesh. These data structures are used by
communication functions called in the iterative step of thecode.

After the conclusion of an online mesh refinement call, the iterative execution pro-
ceeds normally. Figure 5.3 illustrates all steps considered for an atmospheric simulation
using an OMR implementation. In the figure only one OMR call isshown, but in the
simulations the iterative step can be stopped more than one time by the OMR.

We compare the numerical results of all physical data structures used in the simulation
of the ONR version with the results of a static mesh refinementversion of the code.
The computed results of both versions are similar considering the use of identical initial
parameters.

5.6 Performance Evaluation

In order to measure the performance impact of the OMR we made several experi-
ments. This section presents the simulation environment, execution parameters, and exe-
cution time measurements.
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Figure 5.4: Execution time using 1 to 32 processes for a 100 Kmmesh resolution with
Online Mesh Refinement call.

5.6.1 Execution Environment

All experimental measurements were obtained using a cluster composed by 28 Sun
Fire X2200+ workstations, each one with 2 Quad-Core AMD Opteron 2.2 GHz processors
and 16 GB of RAM, interconnected by an InfiniBand network technology. We could use
a maximum of 16 nodes of this cluster.

In all executions we simulated the atmosphere for 24 hours ahead. Each timestep
simulated 60 seconds of the real elapsed time of the weather condition. The vertical
atmosphere layer was divided in 28 layers. We use two horizontal resolution cases, 100
Km and 50 Km. The number and the size of each one of this layers is chose according
to the parameters adopted in large climatological simulation centers for its daily weather
forecasts.

An OMR occurs for specific tests in the half time of the execution of the simulation.
The refinement of the mesh is realized8700 Km around a specific point of the Earth after
12 hours of atmosphere integration.

The standard deviation for all obtained results was less than 2% in relation to the
median time measured.

5.6.2 Online Mesh Refinement Execution Time Impact

A first test was made in order to analyze the impact of the OMR call on the total execu-
tion time. Figure 5.4 and Figure 5.5 present the execution time results of an atmospheric
integration, using a mesh with100 Km and50 Km of horizontal mesh resolution, where
an OMR occurs during the execution of the code. The graphics of these figures show the
total execution time and the total time spent to call the OMR,using1 to 32 processes.

Each column of the graphic represents the total execution time for a determined num-
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Figure 5.5: Execution time using 1 to 32 processes for a 50 Km mesh resolution with
Online Mesh Refinement call.

ber of processes. We can see that this time decreases when more processes are used.
Consequently, there are performance gains.

The second measurement (scratched area) of each group of processes presents the
time spent for the OMR call. The duration time of this step is approximately130 s and
570 s, respectively, for the100 Km and50 Km of mesh resolution cases. This time is a
little more than the time spent with the initialization of the model, that is115 s and415
s, respectively, for the two analyzed cases. The time spend with the OMR includes all
necessary procedures to interrupt the iterative step, to refine the mesh in each process and
to reallocate variables.

The OMR has low impact on the total execution time. The time spent for this re-
finement is constant independently of the number of processes used in the atmospheric
simulations. The relation between the execution time of theOMR call and the total exe-
cution time decreases if more high mesh resolutions are used.

5.6.3 Comparison between Static and Dynamic Local Mesh Refinement

The second test evaluates the execution time impact of a simulation using a runtime
mesh refinement in relation to finer and larger global mesh refinements simulation cases.
Figure 5.6 shows a comparison of the parallel execution time(in seconds) of3 different
configurations using1 to 32 processes. The first and third columns show the total exe-
cution time using a global mesh resolution of100 Km and50 Km, respectively, without
any OMR call. The second column represents the total execution time for a100 Km grid
resolution, where an OMR occurs during the execution of the code.

The results of Figure 5.6 show that all configurations have a decrease of the execution
time, as a larger number of processes are used. The results demonstrate also that if we use
a double resolution (50 Km) instead of a large resolution (100 Km), without a run time
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Figure 5.6: Execution time using 1 to 32 processes for 100 Km,100 Km with Online
Mesh Refinement and 50 km of mesh resolution.

mesh refinement call, we spend5 to 8 times more execution time.
The execution time using OMR was always between the results using100 Km and the

50 Km resolution cases configuration. Thus, the evaluation of the implementation shows
that it is efficient, since not all the surface of the Earth needs to be refined all the time. In
fact, the total execution time increases a little in relation to the100 Km resolution case,
because the costs of the OMR call.

The OMR improve numerical quality for the simulation results if it is necessary to
the model. That is, a region of the Earth need to be higher refined only when special
atmosphere conditions occur.

5.6.4 Speed up Evaluation of the Iterative Step of the Model

OLAM execution time measurements are also made, evaluatingthe partial execution
of the iterative step. Through these measurements it was possible to establish the speed
up of the iterative step of the model in parallel simulations.

In Figure 5.7 and Figure 5.8 are presented the speed up of the iterative step before and
after an OMR call for a mesh with global resolution of100 Km and50 Km, respectively.
The number of MPI processes used was 1 to 32.

In both cases, the continuous lines present the speed up before an OMR call and the
non continuous lines are the speed up after an OMR call. The base to calculate the speed
up was the execution time using a single process for each meshresolution.

The use of more processes provides more performance in the iterative step of the
model for both mesh resolution cases. However, the iterative step executed after the
OMR call increases less speed up than the iterative step executed before the OMR call.
This occurs because the unbalance load among the processes.The reason why this occurs,
and solutions to resolve this issue are discussed in the nextsection.
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Figure 5.7: Speed up comparison of the iterative step of the modelbefore andafter the
OMR call for a global mesh resolution of 100 Km.

 0

 5

 10

 15

 20

1 2 4 8 16 32

S
pe

ed
 u

p

Processes

Before OMR
After OMR

Figure 5.8: Speed up comparison of the iterative step of the model before and after the
OMR call for a global mesh resolution of 50 Km.
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Table 5.2: Unbalancing Load after an Online Mesh Refinement using8 processes.
Before Online Refinement After Online Refinement

Proc. Vertices Edges Triangles Vertices Edges Triangles
0 3408 9873 6468 3408 9873 9873
1 3394 9925 6534 3394 9925 6534
2 3412 9952 6543 5667 16549 10857
3 3439 10041 6605 5933 17362 11404
4 3421 9959 6541 3421 9959 6541
5 3432 10042 6613 3432 10042 6613
6 3451 10070 6622 6427 18491 12067
7 3452 10131 6682 5952 17556 11607

5.7 Improvement of Load Balance Distribution

The runtime mesh refinement approach, described before, brings unbalanced distri-
bution of load after it is called, since some processes may tohave new data elements
to compute and others not. These new data elements are not redistributed among all
processes. Because of this, the number of data elements to compute is higher in some
processes, where the sub-mesh is refined, than others.

5.7.1 Unbalanced Load Problem

Table 5.2 presents the number of decomposed elements for a domain with 100 Km of
mesh resolution divided in 8 processes before and after the OMR call.

In this table it is possible to see that the number of Vertices, Edges, and Triangles
for the processes2, 3, 6 and7 increase after the OMR execution. The localization of the
increased points depends on the place of the Earth atmosphere where the mesh refinement
occurs.

Load balancing can be provided by redistributing the load into all processes. But
this involves many data exchanges. On the other hand, the creation of new processes or
threads is a simple solution and can be applied for all MPI processes.

5.7.2 OpenMP Solution

In order to better distribute the load among the processes, we have added an OpenMP
layer to the MPI program.

OpenMP is a parallel programming interface used to abstractmulti-processors archi-
tectures. The interface is also a good solution to explore parallelism in multi-core systems
(CURTIS-MAURY et al., 2008). This approach enables the execution of parallel loops
in order to increase the performance of the code. OpenMP is also a good solution for
climatological applications (OSTHOFF et al., 2011a,b).

In this work, OpenMP enables to benefit from thread-based concurrency, added to the
MPI parallelism. We choose OpenMP programming interface because it abstract very
well loop parallelization. Thus, each MPI process divides the load among a specific num-
ber of OpenMP threads.
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Figure 5.9: Speed up of the iterative step executedbefore the OMR call using different
number of OpenMP threads in a simulation with MPI processes.

5.7.3 Performance Impact of OpenMP Threads

The use of OpenMP threads was evaluated in some atmospheric simulations consid-
ering meshes with initial horizontal resolution of100 Km. Figure 5.9 and Figure 5.10
present the speed up of the iterative step of the model beforeand after an OMR call, re-
spectively. In the tests we compare1 to 8 MPI processes, each process running in one
node, for an atmospheric simulation using an initial horizontal mesh resolution of100
Km. We run1 to 8 OpenMP threads in each MPI process.

The results show that the use of threads OpenMP increases performance in the partial
iterative steps before and after the OMR execution for all numbers of MPI processes eval-
uated. The combined use of more than32 threads/processes does not add a significantly
performance because the most part of the execution time is spend with the initialization
step.

Table 5.3 presents comparatively the speed up shown in Figure 5.9 and Figure 5.10.
The first column indicates the partial kind of the iterative execution: before indicates
the simulation before the OMR, andafter points the simulation after the OMR call.
The second column shows the number of MPI processes used in each partial kind of the
iterative execution. The third to the seventh column presents the speed up obtained using
1, 2, 4, and8 OpenMP threads. The initial speed up is based on the sequential execution
of each part of the iterative step.

For the simulation results presented in the table, the first lines considers only OpenMP
threads in the simulation, the third column uses only MPI processes, and the other mea-
surements combine MPI processes with OpenMP threads. The results presented in the
table show that the second part of the iterative step has a speed up close to the first part
in most of the cases. The use of more threads improves load balancing for the last part of
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Figure 5.10: Speed up of the iterative step executedafter the OMR call using different
number of OpenMP threads in a simulation with MPI processes.

Table 5.3: Speed up for the iterative execution steps beforeand after an OMR.
Step Processors 1 2 4 8
before 1 1.00 1.85 3.00 4.53
after 1 1.00 1.80 3.15 4.36

before 2 2.04 3.57 5.81 8.26
after 2 2.05 3.48 5.88 8.62

before 4 4.05 6.76 11.24 9.70
after 4 3.15 4.81 8.35 8.86

before 8 7.97 8.16 10.69 13.24
after 8 6.18 8.68 10.55 11.11

the iterative step and, consequently, less total executiontime.

5.8 Conclusions of this Chapter

In this chapter we have presented online mesh refinement as a way to improve the
mesh resolution for climatological models without a significant increase in the execution
time. This refinement scheme enables to refine the global meshof a model during the
execution of the code without rebooting the application. Mesh refinement at execution
time is critical for climatological models that will cover the impact of local phenomena,
inputing more resolution only when it is necessary.

We presented partial and comparative execution time in order to evaluate the dynamic
mesh refinement. The partial measurement results show that there is a time spent with the
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refinement step. However, it pays because we do not need to runthe code considering all
Earth surface, with more resolution, all the time. Thus, high resolution is only adopted
when special climatological conditions occur.

We also evaluated a mixed MPI/OpenMP parallel implementation. The mixed imple-
mentation improves the parallel performance for simulations of the model, where mesh
refinements occurs at execution time. In this sense, next chapter discusses more about the
use of different parallel programming interfaces in order to perform atmospheric applica-
tions on hardware of multi-levels of parallelism.
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6 MULTI-LEVEL PARALLELISM

In Chapter 4, OLAM was executed over a multilevel parallel architecture, obtaining
restricted speed up in the performance results. In the end ofChapter 5, the combined
use of MPI and OpenMP was utilized to provide better performance to executions using
Online Mesh Refinement. In this chapter we continue to discuss how applications for
simulating atmospheric models can well exploring different levels of parallelism.

6.1 Motivation to Explore Multilevel Parallelism

Theoretically it is possible to determine an optimal distribution of load if we know the
processing capacity of each level of parallelism and the stream execution of the applica-
tion. However, some factors like irregular execution of thecode, large waiting time for
synchronization and load redistribution at execution time, do not ensure a good perfor-
mance for the application.

Different execution times can be obtained in a multilevel parallelism environment,
depending how the parallelism of the application is expressand distributed in each parallel
level. Because of this, it is important to define the number oftasks and what kind they are
(threads, processes, ...) for each type of application or class of applications to efficiently
explore a parallel architecture. This depends basically ofthe granularity of the tasks to be
performed in each parallel level.

6.2 Related Work: Multi-Level Parallelism in Atmospheric M odels

There are several works describing the use of multi-core processors and GPUs to com-
pute applications of domain decomposition, fluid dynamics and, also, weather forecast
(COHEN; GARLAND, 2009).

Hybrid programs that combine multiple parallelization paradigms, such as message
passing and/or multi-threading with an accelerator library, are still relatively rare (HACK-
ENBERG; JUCKELAND; BRUNST, 2012). Their importance, however, has increased
as hybrid HPC systems such IBM Cell and NVidia GPU clusters.

In (LINFORD; SANDU, 2011), methods for improving the performance of two-
dimensional and three-dimensional atmospheric simulations of constituent transport are
examined. A offloading function approach is used in a 2D transport module, and a vector
stream processing approach is used in a 3D transport module.Two methods for trans-
ferring noncontiguous data between main memory and accelerator local storage are com-
pared (LINFORD, 2010). The results of the study demonstrates the potential use of het-
erogeneous multicore chipsets to speed up geophysical simulations, through the use of an
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IBM BlueGene/P with eight Intel Xeon cores on a single PowerXCell 8i chip.
In (MICHALAKES; VACHHARAJANI, 2008) is shown the speed up for a computa-

tionally intensive portion of the Weather Research and Forecast (WRF) model, increasing
8× the performance on a variety of NVIDIA GPU. This change alonein the model speeds
up the whole weather model by1.23×.

In (SHIMOKAWABE et al., 2010) is presented a full CUDA porting of the high res-
olution weather prediction model ASUCA. ASUCA is a next-generation of a production
weather code, developed by the Japan Meteorological Agency. ASUCA is similar to
WRF. Benchmark on the528 (NVIDIA GT200 Tesla) GPU TSUBAME Supercomputer
at the Tokyo Institute of Technology demonstrated over 80-fold speedup and good weak
scaling, achieving15.0 TFlops in single precision for a mesh with6956 × 6052 × 48
elements.

WRF and ASUCA are examples of local atmospheric models. In our work we provide
parallel implementations for a global atmospheric model inorder to run the experimental
executions over multi-core and GPUs cluster.

6.3 OLAM Parallel Task

A Parallel Task is an abstraction that defines the granularity of a concurrent execution,
that is, a set of instructions that necessarily operate on a sequential execution flow. The
observation of where the parallelism can be found in an application, considering the input
data that are processed and the dependencies that exist among these data, helps in the
determination of the parallel task.

A parallel task is defined in OLAM code by data structures thatstore the physical
atmospheric state, and functions (methods) that manipulate these data structures, simulat-
ing the atmospheric conditions during the elapse of time. A task can be, for example, a
process, a thread or other execution kind abstracted by a programming interface.

6.3.1 Data Structures for Atmospheric States

Each element of the discretized atmospheric domain (mesh point) has values of data
structures associated with itself. Thus, the number of elements contained in a determined
data structure is equal to the number of discretized points of the atmosphere.

The data structures store the values of different physical proprieties that are simulated,
like pressure, temperature or wind velocity. Some data structures are associated with
the discretized points of the Earth surface (triangles), while others are associated with
the discrete edges. In both cases, each element of the data structures has also values
associated for each level of the vertical atmosphere column, according to the number of
levels of this dimension.

Examples of data structures that represent the atmosphericproprieties are shown in
Algorithm 6.1.

The number of elements allocated for the first pointer of these data structures includes
all horizontal discretized points of the Earth. Vertical level points are associated to each
horizontal point (second pointer) in order to storage the numerical value of each physical
propriety from the discrete atmosphere.

6.3.2 Procedures or Methods to be Executed

The simulation of the model involves the invocation of several functions iteratively.
These functions are controlled by the discrete time of the simulation. Each step of the
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Algorithm 6.1 Data structures for atmospheric proprieties variables.
double **ump; //past horizontal momentum [kg/(m2s)]
double **umc; //current horizontal momentum [kg/(m2s)]
double **wmc; //current vertical momentum [kg/(m2s)]
double **uc; //current horizontal velocity [m/s]
double **wc; //current horizontal velocity [m/s]
double **sh_w; //total water specific density [kgwat/kgair]
double **sh_v; //specific humidity [kgvap/kgair]
double **thil; //ice-liquid potential temperature [K]
double **theta;//potential temperature [K]
double **press;//air pressure [Pa]
double **rho; //total air density [kg/m3]

iteration is equivalent to a determined transition of the real time.
The functions that manipulate the data structures simulatethe transition of the at-

mospheric state. Each function operates on some data structures. Many computational
operations involve the interaction of elements of a data structure or among data structures
of neighbor discretized points of the mesh. These operations are made by looping through
each element of the mesh. Usually, nested loops are used in order to follow the loop of
horizontal and vertical elements of the mesh.

6.3.3 Data Dependencies and Communication Between Tasks

For parallel executions, the data structures are divided among the parallel tasks. That
is, each task invokes the same functions over part of the elements of the data structures.
Therefore, each task keeps only the necessary part of the data structures in relation to a
sequential process.

The computational operations for a specific element of a datastructure depend on the
element itself and some neighbor elements. These neighbor elements could be in other
processes. Because of this, there is a data dependency amongthe partitioned elements of
the data structures that are parallel distributed.

Consequently, data exchange is necessary in each iterativestep of the model if MPI
processes are used. Consequently, each process has boundary elements associated for all
data structures (subdomain). These boundary elements are updated in each iteration in
order to provide the correct values for the computation.

Data exchanges are made in each step of the main loop execution of the code according
to Section 2.9. Each process have auxiliary data structures. In these data structures,
all discretized elements of the global mesh of OLAM have a local index value and the
respective process ranking for this element. The auxiliarydate structures for vertices,
edges and triangles elements are presented in Algorithm 6.2.

An example of utilization of these data structures for indexing triangles is shown in
Figure 6.1. The use of these data structures in association with the data structures of the
domain representation, as presented in Section 2.8, enables to map the elements of the
physical data structures. The physical data structures need to be interchange in each step
of the iterative execution part of the model, after they are updated.

For MPI processes, data elements are grouped and encapsulated according to the des-
tination of the message. One or more elements of distinct data structures can be encap-
sulated in the same message. The number of distinct elementsof data structures encap-
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Algorithm 6.2 Auxiliary date structures for indexing processes and localvertices, edges
and triangles.
typedef struct { //data structure for vertices pts (global)

int im_myrank; //local subdomain index of this vertex pt
int irank; //parallel process rank at this vertex pt

} itabg_m_vars;

typedef struct { //data structure for edges pts (global)
int iu_myrank; //local subdomain index of this edge pt
int irank; //rank of parallel process at this edge pt

} itabg_u_vars;

typedef struct { //data structure for triangles pts (global)
int iw_myrank; //local subdomain index of this triangle pt
int irank; //parallel process rank at this triangle pt

} itabg_w_vars;
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Figure 6.1: Example of indexing triangle elements of the mesh.

sulated can change, depending on the settings of the simulation. A encapsulated message
includes also the global index value of the edge or triangle point, in which the elements of
physical data structure belong. The receiving process decapsulates the message and finds
the local index value, using the global index value receivedin the message, to save the
received physical data.

6.3.4 Computation and Communication Costs

The number of triangles and edges for a specific resolution depends on the Earth
circumference as presented in Section 5.4. ConsideringN = 5050/R, whereR is the
resolution of the mesh, the global number of triangles and edges for a specificR resolution
is given by20(N2) and30(N2), respectively.

If we divide the total number of points byP processes, each process computes iterative
loops over20(N2)/P and30(N2)/P triangle and edge mesh elements, respectively. The
number of physical data structures associated with mesh elements of triangles or edges
differs depending on the parameters of the simulation. At least20 data structures are used
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Figure 6.2: Boundary elements to update between Process 0 and Process 1.

in both cases. The number of loop operations using these datastructures can to change
too.

In a mesh without local refinement, each parallel process hasat last3 neighbor pro-
cesses. The communication costs to update each one of the3 neighbor processes is given
by 20N/P , for both triangle and edge elements. Usually, the number ofphysical data
structures encapsulated in each message is between3 and5.

Three calls of data exchange are made in each iterative step of the model. In the first
message, encapsulated boundary elements of physical data structures associated to the
triangle kind of the mesh are send/receive. The two last messages encapsulate boundary
elements of physical data structures associated to the edgekind of the mesh.

Figure 6.2 illustrates2 sub-meshes and the boundary triangles and edges between
P0 andP1 processes, that need to be send/receive to/from the neighbor process. In this
example, each process operates data structures associatedto 36 hypothetical triangles.
Data structures associated to the6 boundary triangles (filled and shaded triangles) need
to be exchanged. In this figure, data exchange was illustrated only for one boundary side
of the mesh.

In both, processing and communication of data elements, thenumber of vertical levels
were disregarded in the previous calculations. This dimension of the data structures is not
parallelized because it has low granularity. The operations over all vertical levels of a
element of a data structure can be concurrently executed by vectorial operations or by
PARALLEL FOR executions.

6.4 OLAM Parallel Implementation

Programming a climatological application demands contextual knowledge since there
is a strong dependency between code and model. The source code of this kind of applica-
tion is also very large and difficult to understand and to be parallelized.

In this context, it is important to provide an abstraction ofthe parallelism, allowing the
expression of different levels of granularity. Thus, it is possible to adapt the granularity
according to the multiple levels of parallelism provided byan architecture.

6.4.1 OLAM Prototype

In order to reach the objectives of this thesis, a simplified version of OLAM was
implemented in the C language. This prototype includes the main characteristics of the
model, including domain decomposition, mesh refinement, parallel data distribution, en-
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capsulated MPI send and receive resources, and all necessary data structures and functions
to execute it. We opt to rewrite the code because C was the firstlanguage that allowed to
couple with a CUDA code.

The objective of this prototype implementation of OLAM is toprovide different lev-
els of abstraction of parallel code for climatological applications. Thus, is possible to
adapt different parallel programming interfaces for the simulations, like message-passing
resources for distributed memory systems and shared memoryinterfaces for multiproces-
sors and multi-core systems.

We use some parallel programming interfaces such as MPI, OpenMP, and CUDA on
the developed prototype. Next, we discuss how these interfaces were coupled to the im-
plementation of the OLAM. In the sequence, we will to evaluate the performance impact
of these interfaces for the simulations on a hardware platform.

6.4.2 Programming Interfaces Used

Although the OLAM parallel implementation was developed using MPI already, an-
other natural possibility for the parallelization is to useOpenMP pragmas (CHANDRA,
2001). OpenMP is a programming interface that exploits parallelism of shared memory
systems. In general, the parallelization of a implementation with OpenMP is very simple,
using concurrency on the loops.

OpenMP parallelism was combined with the MPI implementation. Thus, it is possi-
ble to exploit parallelism of multiple levels of hardware, at both shared memory (multi-
processors and multi-cores), and distributed memory systems (multicomputer).

Other parallel programming interface to provide multilevel parallelism adopted was
CUDA (KIRK; W. HWU, 2010). CUDA was used to access the parallelism provided by
GPUs. We choose CUDA because it was the first interface developed to program graphic
cards.

OLAM implementation of the prototype using CUDA involves torewriting some
functions of the C code, converting it to a CUDA kernel code. The implementation of
the functions that encapsulate the allocation, deallocation, and memory copies between
CPUs and GPUs is also necessary. Thus, all temporary array variables used in CUDA
kernel functions need to be allocated before the call of the iterative step of the model
and released only after the execution of all steps of iterative part. This is make to reduce
the number of memory allocations in the CUDA kernel and, consequently, the execution
time.

Moreover, in each iterative step of the model, before each call of a CUDA kernel
function, it is necessary to move data from CPU to GPU and, after the execution of a
iteration, data exchange from GPU to CPU.

CUDA kernel functions were also embedded in a MPI implementation. In this way,
three levels of parallelism (GPUs, Cores/Processors, Inter-processors) can be employed
for an atmospheric simulation.

6.5 Exploration of Multi-Level Parallelism

Multi-level parallelism for climatological models was explored by the combination of
MPI with OpenMP or CUDA. MPI processes are created at the beginning of the simula-
tion. New threads OpenMP or CUDA are launched for the iterative part of the simulation.
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6.5.1 Implementation

The iterative step of the OLAM prototype is composed by threefunctions interca-
lated by MPI encapsulated functions. A pseudo-code of the iterative step is presented in
Algorithm 6.3.

Algorithm 6.3 Iterative step of the OLAM prototype.
prog_wrtu() {

hflux();
send_recv_uf();
prog_wrt();
send_recv_w();
prog_u();
send_recv_u();

}

OpenMP threads are created through the addition of the instruction:
#pragma omp parallel for

These pragmas are added to the loops ofhflux(), prog_wrt() andprog_u()
functions.

For the implementation of the CUDA version, each of the threefunctions of the it-
erative step are converted to kernel CUDA functions. These functions are called by C
functions of the iterative step of the code.

Each GPU core run concurrently data structure elements associated to a discrete mesh
point. Data structures are exchanged before and after each function call, between kernel
CUDA and CPU memory. To due this we use the functioncudaMemcpy().

Both OpenMP and CUDA versions can be combined with a MPI implementation. In
this case, if an execution uses more than 1 process, it is necessary to made data exchanges
among the MPI processes. In order to evaluate the performance using different configu-
rations of these interfaces, some experiments were made, aspresented later.

We compare the numerical results computed for the differentparallel implementations
of the prototype. The results are similar among all cases, considering the use of identical
initial parameters for the simulations.

6.5.2 Execution Environment

The experimental measurements for the tests of the multi-level parallelism were made
using two machines. Each machine is composed by a Intel Core i7 930 model, a quad-core
processor with 2.80 GHz, Hyper-Threading technology and 8 MB of cache size. These
machines have also, each one, 12 GB of RAM memory and a Nvidia GTX 480 graphic
card, used for the tests with the CUDA version of the implementation.

GTX 480 is a Nvidia Fermi architecture. It contains 15 multiprocessors (Scalar Mul-
tiprocessors - SM) with a processor clock equal to 1401 MHz. Each multiprocessor is
composed by 32 CUDA cores (warps). Thus, the total number of CUDA cores is 480 in
each GPU. Each core has one floating point and one integer processing unit.

In each simulation, we integrate an atmosphere for12 hours, considering60 s for the
real time transition of the atmosphere at each iteration. The number of vertical atmo-
spheric levels was28. The horizontal mesh resolution was set in60 Km.

The standard deviation for all obtained results was less than 2% in relation to the
median time measured.
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Figure 6.3: Execution time using OpenMP threads running in one node.

For the tests, we evaluate first the use of OpenMP in shared systems. Next, we com-
bine OpenMP pragmas with MPI processes. In the sequence, theuse of CUDA was tested
using one GPU. At last, CUDA functions were used into MPI processes.

6.5.3 OpenMP Parallelism in Shared Memory Systems

A first test was made evaluating the performance of the model using OpenMP threads.
In Figure 6.3 is presented the initialization step and totalexecution time of the proto-

type paralleled only with OpenMP, running on a quad-core machine. As only one process
is used, the initialization time is constant, independently of the number of threads used in
the iterative step execution.

The results show also that the use of more threads improve scalability for the imple-
mentation. The speed up obtained, using8 threads, was3.27. Therefore, OpenMP can
be an alternative to the use of MPI processes in shared memorysystems like multi-core
processors.

6.5.4 OpenMP and MPI Multi-Level Parallelism

A second experiment was made, combining OpenMP threads and MPI processes, in
order to explore multiple levels of parallelism of the prototype.

In Figure 6.4, the initialization and the total execution time of the model are presented,
using different number of OpenMP threads, in simulations ontwo quad-core machines.
X-axis presents the name of the configurations evaluated, where the number before the
letter P indicates the quantities of processes used and the number betweenP and T
represents the sum of threads used in the simulations.

The first 4 left columns of the graphic present the results, for all possible number



76

 0

 100

 200

 300

 400

 500

 600

 700

 800

1P8T 2P4T 4P2T 8P1T 2P8T 4P4T 8P2T 16P1T

E
xe

cu
tio

n 
T

im
e 

(s
)

Processes MPI - Threads OpenMP

Total
Initialization

Figure 6.4: Execution time using threads OpenMP and processes MPI in two nodes.

combinations between processes and threads, to run the model with 8 processes/threads
(tasks). The last4 columns show the results for the combination of processes and threads
to run the model with16 parallel tasks.

The use of more processes and less threads presents better execution time for a same
number of parallel tasks. Although the increase of the number of OpenMP threads called
in a simulation (considering a fixed number of MPI processes)reduces the total execution
time, this not occur if the same total number of tasks are compared.

OpenMP threads run concurrently only some functions of the iterative step of the
model, as presented in Subsection 6.5.1, whereas MPI processes run all functions in par-
allel. Moreover, data exchanges are made only between MPI processes running in distinct
nodes. Processes running on a shared memory system not need to use the network inter-
face if a function for data exchange is called. Instead, onlycopies of memory are made.

In these initial results, the use of restricted MPI processes provides a somewhat better
performance than the use of OpenMP threads, if the same number of threads and processes
are compared. On the other hand, the association of4 or 8 OpenMP threads to2 MPI
processes running in two nodes decreases the total execution time in relation to the best
performance result obtained running the prototype in only one node.

6.5.5 Performance Impact of CUDA for Different Mesh Resolutions

Another alternative to improve performance for the prototype is adopt GPU paral-
lelism. Different execution time were measured for the parallel implementation using
CUDA, running on a GPU.

A first test was made to evaluate the performance impact of CUDA, for different mesh
resolution sizes. Figure 6.5 shows the execution time measurements, for a sequential
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Figure 6.5: Execution time measurement for sequential and CUDA implementation using
different mesh resolutions. CUDA threads =512.

implementation and a CUDA parallel version of the code. The mesh resolution adopted in
the tests was from150 to60 Km, varying in10Km between each case. For the simulations
using a CUDA kernel,512 threads were utilized.

The results show that, the more the mesh resolution set, the more the execution time
for both sequential and CUDA implementation. For all mesh resolution cases, CUDA
implementation has a smaller execution time than the sequential version. The perfor-
mance gain of the simulations using CUDA in relation to the version running on only one
core/processor is almost similar for all mesh resolutions.The average of performance
gains for the10 cases evaluated was3.43.

6.5.6 Execution Time Impact for Different CUDA Threads Number

In a second test, a simulation using high mesh resolution wasevaluated, comparing
the execution time obtained for the use of different numbersof CUDA threads.

Figure 6.6 presents the initialization and the iterative step of the execution time using
a number of128 to2048 CUDA threads. Only one CPU process was utilized. In the figure
is possible to observe that the initialization time is similar for all cases. The tests using
512 threads or less demand more execution time for the iterativestep of the model.

The use of1024 CUDA threads presents the lowest execution time of the iterative
step. This configuration provides the best granularity for aresolution of60 Km of the
decomposed domain of the Earth. The number of1024 CUDA threads will be adopted for
the next measurements of execution time.

The total number of concurrent instructions and the number of threads used for a
CUDA simulation impacts in the size of the block. The block size is the number of con-
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Figure 6.6: CUDA execution time ranging the number of threads used for a simulation of
40 Km of mesh resolution.

current tasks that each thread needs to compute. In the prototype of OLAM, these tasks
are composed by instructions computing data structures associated to edges or triangles
elements of the mesh.

CUDA threads and its composition in blocks were indexed (only in one dimension)
for the simulations. Table 6.1 presents the relation of the number of threads and the block
size (number of partial points of the Earth surface) for the execution of each function
called in the iterative step. Functionshflux() andprog_u() operate over edges and
prog_wrt() over triangles mesh elements.

Although the number of blocks decreases as more threads are used, there are other is-
sues that impact in the efficiency of the execution. These issues are related to the number
of registers used in each core and the memory size demanded tostore data and instruc-
tions.

6.5.7 Using CUDA with MPI processors

The parallelization of the prototype using CUDA was also combined with MPI pro-
cesses. This mixed implementation allows to compute the model over GPU and cores of
a CPU.

In Figure 6.7, the initialization and total execution time of the simulations using only
one machine are shown. The number of CUDA threads used in the tests was1024. We
evaluate the use of1 to 4 MPI processes number.

The results of the figure show that the execution time decreases as more MPI processes
are used. Although there is only a graphic card in the computer node, the use of more
processes improves better utilization of the CPU and GPU, because the total size of the
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Table 6.1: Number of CUDA threads and the respective block size of elements used in
each function called in the iterative step.

Threads Block hflux Block prog_w Block prog_u
128 1694 1129 1694
256 847 565 847
384 565 377 565
512 424 283 424
640 339 226 339
768 283 189 283
896 242 162 242
1024 212 142 212
1280 170 113 170
1536 142 95 142
1792 121 81 121
2048 106 71 106

data structures is sub-divided among the processes.
A reduction of the execution time also occurs if more processes are created. Figure 6.8

presents the measured results of initialization and total execution time using2 machines
for the simulations of 1, 2, 4, 8 and 16 MPI processes.

In this case, there are 2 CPUs and 2 GPUs to compute the code of the atmospheric
model prototype. Each CPU runs the half of the total number ofMPI processes created.
MPI processes need to exchange data through the network, if the processes are running in
distinct machines.

In the results of the Figure 6.8 is possible to observe that the use of 2 processes not
improve performance gain, because the costs of communication is higher than the gain in
the parallel computation.

The test using16 processes has higher initialization time than the other cases evaluated
because there are more processes running than cores available. This test was made only
for analyze the performance of this condition.

The use of4 processes in the simulations decreases the execution time in relation to the
result obtained, using only one node. The use of8 processes has the best performance.
These results demonstrate that the mixed implementation ofCUDA and MPI is a good
alternative to explore multiple CPU and GPUs architectures.

6.5.8 Execution Time Comparison Between MPI and CUDA/MPI Implementation

In order to understand the real impact of the use of GPUs in theperformance of
the atmospheric application, comparisons between the execution time using CPU and
CPU/GPU are made.

Figure 6.9 presents the execution time of a version of the prototype running only
with MPI processes (white columns) and a version implemented with MPI processes and
CUDA threads (scratched columns). Two machines, as the description in Subsection 6.5.2
are used for the tests.

In the figure it is possible to see a reduction of the executiontime for both cases, as
more processes are used. This is more impacting for the simulation using only MPI pro-
cesses. However, CUDA threads combined with MPI processes has better performance
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Figure 6.7: Execution time of a combined implementation of CUDA and MPI running on
1 node.
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Figure 6.9: Comparison of the execution time between MPI andCUDA/MPI implemen-
tation.

than the implementation using only MPI processes.
Considering the use of only one process, the simulation using CUDA combined with

MPI has a performance up to6× over the sequential version. This relation decreases if
more processes are used, but the performance of the mixed version is more than2× faster
than the restricted MPI version if8 processes are used.

The maximization of the use of the hardware resources provides the better perfor-
mance for the prototype.

6.5.9 CUDA Atmospheric Simulation of the Online Mesh Refinement

The Online Mesh Refinement (OMR) presented in Chapter 5 was parallel imple-
mented and evaluated with MPI and OpenMP combined with MPI. Now, performance
evaluations of the prototype implemented using CUDA are made, considering a simula-
tion that realizes an OMR.

In Figure 6.10 is presented a comparison of the execution time of the OLAM proto-
type, for parallel implementations using MPI, OpenMP and CUDA combined with MPI.
The number of MPI processes or OpenMP threads used is1 to 4. The simulations were
made in only one machine.

An OMR occurs after12 hours of atmospheric integrations. After the OMR call, the
execution continues until24 hours of the atmospheric simulation.

The results show that all configuration decrease the total execution time as more
processes/threads are used. Comparatively MPI has a small better performance than
OpenMP. However, CUDA combined with MPI has the best execution time for the three
cases evaluated. For all cases, the initialization and OMR step has low impact in the total
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Figure 6.10: Execution time comparison among MPI, OpenMP and CUDA with MPI
implementations.

execution time.
Table 6.2 presents the partial execution time of each step evaluated in the tests. In this

table is possible to observe that the OMR step of the execution demands more execution
time than the initialization, because a large size of memoryneeds to be reallocated.

Table 6.2: Partial execution time for MPI, OpenMP, and CUDA with MPI implementa-
tions.

Interface Processes/ Initialization Partial 0-12 OMR Partial 12-24
Threads hours hours

MPI 1 78.48 2253.32 116.91 3158.60
MPI 2 79.92 1137.36 118.69 1612.50
MPI 3 81.56 766.52 121.69 1491.79
MPI 4 83.06 579.93 124.37 1057.58

OpenMP 1 78.48 2253.32 116.91 3158.60
OpenMP 2 78.56 1228.98 116.18 1759.07
OpenMP 3 78.61 882.44 116.46 1285.49
OpenMP 4 78.61 720.43 119.67 1022.87

CUDA/MPI 1 91.98 276.40 136.36 290.88
CUDA/MPI 2 95.70 209.27 139.87 170.22
CUDA/MPI 3 97.76 183.53 143.67 160.04
CUDA/MPI 4 98.86 172.97 145.19 149.96

The execution time of the iterative step executed after the OMR call is larger than the
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execution time of the iterative step executed before the OMRcall because more elements
need to be computed, for the MPI and OpenMP implementations.However, this not occur
for some cases of the mixed CUDA/MPI implementation.

The use of CUDA threads combined with more than 1 MPI processes improves reduc-
tion of the execution time for the iterative step executed after the OMR call. The increase
of the number of atmospheric points to be simulate not impactin the performance in this
case, because the GPU explores more parallelism after the increment of data to compute.

The mixed implementation of CUDA and MPI provides also good performance for
simulations using OMR.

6.6 Conclusions

The use and adoption of different parallel programming interfaces is a way to extract
parallelism from many levels of currently architectures. Each interface evaluated in this
work provide resources to represent parallel tasks.

We evaluated, in this chapter, mixed OpenMP/MPI and CUDA/MPI parallel imple-
mentations of a OLAM prototype using meshes with60 Km of horizontal resolution.
These mixed implementations were made by the inclusion of OpenMP threads or CUDA
kernel functions in a code paralleled with MPI.

The experimental results using 2 nodes, each one composed bya quad-core processor
and a GPU board, shown that the use of OpenMP or CUDA threads associated to MPI
processes reduces the total execution time of the model. Theexecution of4 OpenMP
threads in each node increases the performance of the application to3× (using one node)
and2.5× (using two nodes) in relation to the performance results of simulations running
only a MPI process in each node. Tests of the combined implementation of CUDA with
MPI speed ups in6× in relation to a sequential execution and speed ups in more than2×
in relation to a restricted MPI parallel implementation.

We also evaluated the mixed CUDA/MPI implementation in atmospheric simulations
with OMR. In some cases, the mixed implementation can also provide load balance for
the CUDA tasks after an OMR call. This occurs if the occupancyrate of the GPU multi-
processors is not high for the iterative step simulation executed before the OMR. Thus, the
new elements of data structures, arising from the OMR call, can be concurrently executed
with the original elements, without increase the total execution time.

CUDA and combined solutions like CUDA/MPI or OpenMP/MPI increase perfor-
mance for the OLAM prototype in parallel executions. The results prove that it is possible
to accelerate the execution time if all available concurrency of the machines is utilized.

In the next chapter, more performance measurements will be made in order to evaluate
the use of mixed parallel programming interfaces in atmospheric simulations on large
systems.
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7 SCALABILITY EVALUATION OF OLAM MULTI-LEVEL
PARALLELISM

In Chapter 6 we present ways to explore multiple levels of parallelism. The adoption
of different parallel programming interfaces was the solution for increasing the perfor-
mance of atmospheric models. We evaluate the implementations using limited hardware
resources, presenting some partial results.

In this chapter we run the parallel implementations of the prototype version of OLAM
using a cluster environment. Thus, is possible to evaluate the scalability of the implemen-
tations for some simulations.

7.1 Simulation Environment

All experimental measurements were obtained using theNewtoncluster of theCentro
Nacional de Supercomputação. This cluster is interconnected by an InfiniBand network
technology, and has currently 28 Sun Fire X2200+ workstations (each one with 2 Quad-
Core AMD Opteron 2.2 GHz processors and 16 GB RAM) and a coupled performance
of 1.97 TFlops; and 8 GPUs nVidia Tesla distributed in two S1070 units, with coupled
performance of 8.28 TFlops. We could use a maximal of 16 nodesof this cluster.

For parallel executions, the processes are distributed among the CPUs and/or GPUs
of the nodes of the cluster. In the simulations using GPUs, the number of CUDA threads
was fixed in 128. This number was chosen according to previousexperiments.

All execution time presented below are measured in seconds.Each execution sim-
ulates12 hours of an atmosphere integration. The vertical level of the atmosphere was
divided in28.

We simulate the OLAM prototype in the cluster using MPI processes, mixed OpenMP
threads and MPI processes, and mixed CUDA threads and MPI processes.

7.2 MPI Implementation

A first test was made in order to analyze the impact of the use ofMPI processes in
the total execution time. Figure 7.1 and Figure 7.2 present the execution time results of
an atmospheric integration, using a mesh with100 Km and50 Km of horizontal mesh
resolution, respectively. The graphics of these figures show the total execution time and
the time spent to call the initialization step, using1 to 32 MPI processes.

Each column of the graphic represents the total execution time for a determined num-
ber of processes. We can see that this time decreases as more processes are used. Conse-
quently, there are performance gains.
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Figure 7.1: Execution time using1 to 32 MPI processes for a simulation of100 Km of
mesh resolution.
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Figure 7.2: Execution time using1 to 32 MPI processes for a simulation of50 Km of
mesh resolution.
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Table 7.1: Speed up for the iterative execution step using MPI processes.
Processes 100 Km 50 Km

1 1.00 1.00
2 1.81 2.04
4 3.64 4.05
8 6.69 7.97
16 12.67 12.81
32 21.12 21.49

The second measurement (scratched area) of each group of processes presents the
initialization execution time. The duration time of this step is approximately115 s for the
100 Km of mesh resolution case and415 s for the 50 Km of mesh resolution case. The
time spent for the initialization step is constant independently of the number of processes
used in the atmospheric simulations. The relation between the initialization time and the
total execution time decreases if more high mesh resolutions are used.

Table 7.1 presents comparatively the speed up of the iterative step of the simulation
results shown in Figure 7.1 and Figure 7.2. The first column shows the number of MPI
processes used to each mesh resolution adopted. The second and third columns present the
speed up for simulation using100 and50 Km of horizontal mesh resolution, respectively.
The initial speed up are based on the sequential execution ofeach part of the iterative step.

The results show that the speed up increases for both mesh resolution cases evaluated.
The speed up achieved using32 processes was around21. A similar speed up can be
obtained for other mesh resolutions.

7.3 MPI and OpenMP Implementation

The use of OpenMP threads was evaluated in some atmospheric simulations consid-
ering meshes with horizontal resolution of100 Km.

Figure 7.3 presents the total execution time of an atmospheric simulation, using1 to 8
MPI processes. In the tests we compare the performance running1 to 8 OpenMP threads
for different number of MPI processes. Each white filled column of the graphic represents
the simulations using only MPI processes. The other columnsshow the execution time of
the MPI processes with the inclusion of OpenMP threads.

The parallelism using OpenMP threads provides the reduction of the total execution
time of the model independently of the number of threads used. However, there is a
limitation in the performance gain when more than32 threads/processes are used because
the execution time of the initialization step predominatesin the total execution time and
the iterative step is not more scalable.

Moreover, the OpenMP parallelism is restricted to determined functions of the itera-
tive step of the model, whether the MPI parallelism includesall iterative step. Because of
this, the comparison among the execution time of the simulations that use only OpenMP
threads (1 MPI process) and the simulations that use only MPI processes(1 OpenMP
thread) shows better results for the first case.

Figure 7.4 presents the speed up of the iterative step of the model. In the tests we
compare the1 to 8 MPI processes for an atmospheric simulation. We run1 to 8 threads
in each MPI process.
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Figure 7.3: Total execution time using different number of OpenMP threads in a simula-
tion with MPI processes. Horizontal mesh resolution of100 Km.
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Figure 7.5: Execution time evaluation using different number of GPUs for simulations of
100 Km, 67 Km, and50 Km of mesh resolution.

The results show that the use of OpenMP threads increases performance in the iterative
step for all numbers of MPI processes evaluated. The coupling of 2 and4 threads in each
MPI process increase the speed up in more than50% and100%, respectively, in relation
to the restricted MPI version for all number of MPI processesused.

In the graphic is also possible to see that the use of4 threads and8 processes pro-
vides a limited performance gain. This result is obtained because each processor/thread
computes a task with low granularity. Thus, the parallel performance not overcome the
communication and thread creation costs.

7.4 MPI and CUDA Implementation

Some simulation were also made, exploring GPU parallelism.
Figure 7.5 presents the total execution time for the three resolutions considered in

this work (see Section 6.5.2). In this figure, the first three columns show the sequential
execution time for each mesh resolution. The sequential execution time not include the
use of GPUs. The other columns of the graphic present the execution time using1, 2, 4,
and8 GPUs.

The results of the Figure 7.5 show that the use of one GPU reduces the total execution
time more than5× in relation to the execution using only CPU processing. Thisreduction
is more expressive as more GPUs are used in the simulations.

Figure 7.6, and Figure 7.7 present the execution time of the initialization and iterative
step of the model for a mesh resolution of 100 Km, and 50 Km, respectively. These results
demonstrate that the execution time for the initializationstep is constant independently of
the number of GPUs used. On the other hand, the execution timeof the iterative step
decreases as more GPUs are included in the computation in allcases evaluated.

Figure 7.8 shows the speed up of the iterative step of the model using 1 to 8 GPUs in
simulations with mesh resolution of 100 Km, and 50 Km. For allmesh resolution cases,
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Figure 7.6: Initialization and iterative step execution time for simulations using100 Km
of mesh resolution in a CUDA/MPI mixed implementation.
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mesh resolution in a CUDA/MPI mixed implementation.
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Figure 7.8: Speed up evaluation using different number of GPUs for simulations of100
Km and50 Km of mesh resolution.

the speed up increases as more GPUs are used. The graphic shows also that a mesh with
high resolution (50 Km) has more speed up than a mesh with low resolution (100 Km)
because the difference granularity among the processes. High mesh resolutions have more
data structures to compute.

7.5 Conclusion

This chapter presented performance results of parallel implementations of an atmo-
spheric model using MPI, OpenMP and CUDA programming interfaces. We measured
the execution time and speed up of a prototype version of OLAMin a cluster system
composed by multi-core, multiprocessor and GPU architecture, that is, a multi-level par-
allelism environment. In order to evaluate the different parallel implementations of the
model, we present partial and comparative execution time and speed up using1 to 32
quad-core processors and 1 to 8 GPUs units of a cluster.

The partial measurement results shown that MPI and MPI combined with OpenMP
implementations can increase the parallel performance of the atmospheric model as more
processes and/or threads are used. The use of32 MPI processes achieved an speed up of
21. This speed up could to be larger if more functions of the iterative step of the model
were wrote for the prototype. Thus, more data structures will to be computed, increasing
the granularity of the processes, and reducing the impact ofthe initialization step in the
total execution time of the model. This possibility could also increase the performance
of implementations using mixed OpenMP threads and MPI processes. However, as a
prototype, we not implement all functionalities of currently atmospheric models in this
thesis.

The restrict use of MPI parallelism in the implementation ofthe model improves a
better execution time in relation to the combined use of MPI and OpenMP parallelism,
if we compare the same number of MPI processes again the sum ofMPI processes and
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OpenMP threads. A similar result was also obtained in Chapter 6. This occurs because the
MPI parallel implementation includes all iterative step ofthe model whether the OpenMP
parallelism is restricted to some functions of the iterative step of the model. Although
OpenMP threads provides less performance than restricted MPI processes, its use in sim-
ulations with OMR can supply better execution time results for the iterative step after an
OMR call, as presented in Chapter 5.

CUDA combined with MPI version of the prototype was also evaluated. In the tests,
the execution of the model using only one GPU increases5× the performance in relation
to a sequential execution restricted to one CPU. We also evaluate the performance of the
prototype computing in more than one GPU. In Chapter 6, this experiment was restricted
to 2 GPUs. In this chapter we use 8 GPUs. The results shown thatthere are an increase
of speed up, as more GPUs are used, for all mesh resolutions selected in the tests.

All implementations using mixed programming interfaces presented scalable solu-
tions for the prototype of OLAM. In this context, other atmospheric models could also to
be improved by the addition of other kind of parallel tasks inorder to explore multiple
levels of parallelism. The same could be expected for other applications kind.
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8 CONCLUSION AND FUTURE WORKS

Recent performance improvements in both general-purpose and special-purpose pro-
cessors have come primarily from increased on-chip parallelism. On-chip parallelism
with multi-core processors and GPU accelerators can now commonly to be used for run-
ning concurrently applications developed using appropriated programming libraries. This
new manner to support parallelism has received significant attention in the past of a few
years because the large number of cores that can be used for concurrently executions.
There are also a tendency to increase the number of cores in GPU and multi-core proces-
sors in the next years, contributing to provide exa-escale systems. Thus, the shift to an
increasing on-chip parallelism will place new burdens on software application.

On-chip parallelism is of considerable interest to a broader group of parallel applica-
tions for high-end supercomputers. These applications have a large processing load and
each new developed architecture brings the possibility forincreasing the performance of
the executions. A significative set of these applications are related to data simulations of
domain decomposition problems, like weather and climatological forecasts.

Multi-core and GPU provide a limited parallelism approach for the applications. Fur-
thermore, in currently architectures, there are also parallelism levels among processors
and among computers. Each parallelism level was designed for a specific processing
granularity. In order to use the best performance of the computers it is necessary to con-
sider all parallel levels to distribute a concurrent application. However, nothing parallel
programming interface abstracts all these different parallel levels.

In this context, this thesis investigated how different levels of parallelism can be ex-
plored in atmospheric models, including models that provide mesh refinement at execu-
tion time, using classical parallel programming interfaces. We used the notion of parallel
tasks as a way to abstract the parallel granularity (processes, threads) for a concurrent
application. A parallel task for an atmospheric model implementation was defined by
data structures that store the physical atmospheric state,and functions (methods) that ma-
nipulate these data structures, simulating the atmospheric conditions during the elapse of
time.

Multi-level parallelism for a prototype version of OLAM wasprovided by the combi-
nation of MPI with OpenMP or CUDA programming interfaces.

MPI processes were created at the beginning of the simulation. New threads OpenMP
or CUDA were launched for the iterative part of the simulation of a prototype version of
OLAM code. Thus, it was possible to exploit parallelism at multiple levels of hardware, at
both shared memory systems (multiprocessors and multi-cores), and distributed memory
systems (multicomputer).

We also propose an Online Mesh Refinement (OMR) approach for parallel distributed
unstructured meshes. Nothing atmospheric model provides mesh refinement at execution



93

time. The objective of the OMR implementation in the contextof this work was to show
how dynamic high performance applications can benefit if itsrun on parallel multi-level
architectures. The OMR implementation allows local mesh refinement at execution time,
increasing the resolution for a discrete representation ofa part of the domain. This solu-
tion offers higher mesh resolution for atmospheric models with low performance impact,
providing also better numerical results.

Experimental measurements for simulations of the multi-level parallelism implemen-
tation were made. We obtained execution time and speed up results for the simulation of
the prototype, using different mesh resolution sizes. The tests evaluate the implementa-
tions using MPI, and mixed versions of MPI and OpenMP, and MPIand CUDA.

The adoption of MPI processes improved a significative speedup. In the tests, the use
of 32 processes achieved a speed up of21. The speed up could to be larger if all functions
of the iterative step of a typical atmospheric model were included in the simulations. Thus,
more data structures could to be computed, increasing the granularity of the processes.

The mixed OpenMP/MPI implementation provided thread and process parallelism.
The experimental results shown that the use of OpenMP combined with MPI reduced the
execution time of the simulations. The use of4 threads in each MPI process number
increased the performance in more than2× in relation to the simulation using only one
MPI process in each quad-core processor. Although OpenMP threads provides less per-
formance than restricted MPI processes, OpenMP parallelism is useful for load balance
in simulations with OMR.

The results of the mixed CUDA/MPI parallelization version shown that the use of one
GPU reduces the total execution time more than5× in relation to the execution using
only CPU processing. This reduction is more expressive as more GPUs are used in the
simulations.

All these performance results indicate that is possible to reduce the execution time
of atmospheric simulations using different levels of parallelism, through the combined
use of parallel programming interfaces. Therefore, more mesh resolution to describe the
Earth’s atmosphere can be adopted, and consequently the numerical forecasts are more
accurate.

The contribution of this thesis is both online mesh refinement and exploration of mul-
tiple level of parallelism in atmospheric models.

This work improves the refinement of unstructured meshes at execution time. Un-
structured meshes are less considered in domain decomposition works due the difficulty
to describe the relation among the discrete elements. The solution provided in this work
could to be considered in other kind of unstructured meshes.

The use of multiple representation forms of a parallel task is a solution to compute on
different levels of hardware parallelism. This approach isnecessary, specially for large
applications, to maximize the performance of the executions. The combined use of CPU
and GPU is now a tendency for atmospheric models. Research and forecast centers are
expending efforts to rewrite piece of meteorological code to better perform in multi-core
and many-core architectures.

Future Work
In this work we use MPI, OpenMP and CUDA to improve multiple levels of paral-

lelism for climatological models. However, a combined test, using the three interfaces
was not made. Although the simulations using MPI and CUDA interfaces present good
execution time results, experiments considering the threeinterfaces can to emerge also
excellent performance.
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The OpenMP implementation could to be rewrote to change the place of the loop
parallelism. The currently implementation considers the concurrency of each function
inner the iterative step. However, all iterative step couldto be computed by OpenMP
threads, as occurs in the parallelization using MPI processes. In this case, some variables
need to be set as private, in order to maintain the accuracy ofthe results.

Another parallel programming interface, like Intel Threading Building Blocks (TBB)
and/or Message-Passing Interface 2, that offer run time creation of processes, could be
also evaluated in order to maximize the use of the hardware resources by atmospheric
simulations.

We are planning to evaluate the behavior of the atmospheric model prototype in GPU
architectures changing the number of CUDA threads. Although the number of threads
was also evaluated in some simulations, it was restricted toonly one mesh resolution size.
The addition of more threads can increase the performance ofthe model in some specific
mesh resolutions or number of GPUs used in the simulations.

Cooperation
This thesis was developed under cooperation projects.
The work conducted in this thesis is part of theAtmosfera Massivaproject, a co-

operation among GPPD (Instituto de Informática - UFRGS) with another brazilian re-
search groups, like LNCC, INPE and CPTEC. The project was supported by CNPq (edital
Grandes Desafios).

The general purpose of this research project was to study theimpact of new multi-core
architectures and the multiple levels of parallelism in meteorological and environmental
models. These cooperation produced some works, that were published as articles in con-
ference proceedings.

This thesis was also developed as part of an international cooperation betweenInsti-
tuto de Informática - UFRGSandTechnische Universität Berlin, Germany. A sandwich
doctoral was made in theFachgebiet Kommunikations- und Betriebssysteme (KBS) - Insti-
tut für Telekommunikationssystemein the period of October, 2010 and June, 2011, under
supervision of prof. Hans-Ulrich Heiss. The interchange was supported by CNPq/DAAD.

In this period it was made the implementation of the online mesh refinement to the
atmospheric prototype. Some tests was also conducted in a cluster of the KBS group. The
results of this part of the work were published in the CLCAR and SBAC-PAD confer-
ences. See: (SCHEPKE et al., 2011a) and (SCHEPKE et al., 2011b).

Publications
During the doctoral studies some papers are submitted and approved in workshops

and conferences, as listed below:

• Performance Evaluation of an Atmospheric Simulation Modelon Multi-Core Envi-
ronments - Proceedings of Conferencia Latino Americana de Computación de Alto
Rendimiento (CLCAR 2010) (SCHEPKE et al., 2010).

• Improving Core Selection on a Multicore Cluster to Increasethe Scalability of an
Atmospheric Model Simulation - Proceedings of XXIX Iberian-Latin-American
Congress on Computational Methods in Engineering, 2010, Buenos Aires. Mecanica
Computacional Vol. XXIX. Buenos Aires : Asociación Argentina de Mecanica
Computacional (CILAMCE 2010) (OSTHOFF et al., 2010).

• I/O Performance Evaluation on Multicore Clusters with Atmospheric Model Envi-
ronment - 1st Workshop on Applications for Multi and Many Core Architectures
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(WAMMCA 2010) - 22nd International Symposium on Computer Architecture and
High Performance computing (SBAC-PAD 2010) (OSTHOFF et al., 2010).

• Online Mesh Refinement in Parallel Meteorological Applications - Proceedings of
Conferencia Latino Americana de Computación de Alto Rendimiento (SCHEPKE
et al., 2011a).

• I/O Performance of a Large Atmospheric Model using PVFS - Actes des 20éme
Rencontres francophones du parallélisme (RENPAR’11) (BOITO et al., 2011).

• GPU for Accelerators Performance Evaluation on AtmosphereModel’s Application
System - Proceedings of XXX Iberian-Latin-American Congress on Computational
Methods in Engineering, 2011, Ouro Preto. Mecanica Computacional Vol. XXX
(CILAMCE 2011) (OSTHOFF et al., 2011b).

• Improving Performance on Atmospheric Models through a Hybrid OpenMP/MPI
Implementation - The 9th IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications (ISPA 2011) (OSTHOFF et al., 2011a).

• Why Online Dynamic Mesh Refinement is Better for Parallel Climatological Mod-
els - 23th International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD 2011) (SCHEPKE et al., 2011b).

• Trace-based Visualization as a Tool to Understand Applications I/O Performance -
2st Workshop on Applications for Multi and Many Core Architectures (WAMMCA
2011) - 23nd International Symposium on Computer Architecture and High Perfor-
mance computing (SBAC-PAD 2011) (KASSICK et al., 2011).

• Evaluation of Programming Models for Atmospheric Application - IADIS Interna-
tional Conference Applied Computing 2011 (OSTHOFF et al., 2011).

• Exploring Multi-Level Parallelism in Atmospheric Applications - XIII Workshop
em Sistemas Computacionais de Alto Desempenho (WSCAD-SSC 2012) (SCHEPKE;
MAILLARD, 2012).

Some of the previous papers where the basis to write and to publish two journal arti-
cles, as presented below:

• Atmospheric Models Hybrid OpenMP/MPI Implementation Multicore Cluster Eval-
uation - International Journal of Information Technology,Communications and
Convergence (IJITCC) (OSTHOFF et al., 2012).

• Online Mesh Refinement for Parallel Atmospheric Models - International Journal
of Parallel Programming (IJPP) - approved and waiting for publication (SCHEPKE
et al., 2012).

A book chapter was also produced together with other researches:

• Improving Atmospheric Model Performance on a Multi-Core Cluster System - At-
mospheric Model Applications (OSTHOFF et al., 2011).

This chapter presents in the Atmospheric Model Applications book some aspects evalu-
ated during the doctor degree work.

All these publications are important in the design of the thesis and to evidence the
proposed solutions adopted in the work.
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APPENDIX A RESUMO EM PORTUGUÊS

A qualidade das soluções obtidas em aplicações climatológicas é limitada pela capaci-
dade computacional e o tempo disponível para a execução das simulações. Quanto maior
for a capacidade dos computadores utilizados no processamento, maior será a resolução
da malha que pode ser adotada para representar a atmosfera terrestre e, consequentemente,
mais acurada será a precisão numérica das soluções.

Com o surgimento das arquiteturas multi-core e a adoção de GPUs para a computação
de propósito geral, existem atualmente diferentes níveis de paralelismo. Hoje há par-
alelismo interno ao processador, entre processadores e entre computadores.

Com o objetivo de extrair ao máximo a performance dos computadores atuais, é
necessário utilizar todos os níveis de paralelismo disponíveis durante a execução de apli-
cações concorrentes. No entanto, nenhuma interface de programação paralela explora
simultaneamente bem os diferentes níveis de paralelismo existentes.

Neste contexto, esta tese propõe o uso combinado de diferentes interfaces de progra-
mação paralela com o objetivo de prover performance para aplicações climatológicas. A
execução das simulações mostra que o uso de CPUs multi-core eGPUs, em sistemas
paralelos, pode reduzir consideravelmente o tempo de execução das aplicações.

A.1 Introdução

Atualmente há diversas classes de aplicações, com o objetivo de prover soluções para
problema científicos e de engenharia, que demandam uma considerável capacidade de
computação. Ao mesmo tempo, há um constante incremento na capacidade de processa-
mento dos sistemas de alta performance disponíveis para simulações. Este incremento é
alcançado através da replicação dos recursos de hardware, tornando possível a execução
concorrente de software sobre hardware paralelo.

Hoje há diferentes níveis de paralelismo oferecidos pelas arquiteturas computacionais.
O paralelismo pode ser expresso internamente em um processador, através das arquite-
turas multicores; interno a um computador, usando multiprocessadores,Graphics Pro-
cessing Units(GPUs) (GARLAND et al., 2008) eField-Programmable Gate Arrays(FP-
GAs) (BROWN et al., 1997); e entre computadores, formando sistemas paralelos e dis-
tribuídos comoclustersougrids.

Uma vez que existem diferentes níveis de paralelismo, há também diferentes inter-
faces de programação paralela adotadas para gerar códigos concorrentes. Entretanto, cada
interface de programação geralmente atua sobre um nível específico de paralelismo. Não
há uma interface de programação unificada que abstrai todos os níveis de hardware par-
alelo disponíveis.

A Tabela A.1 apresenta uma comparação entre diferentes interfaces de programação
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Table A.1: Diferentes níveis de paralelismo cobertos por interfaces de programação.
Nível Paralelo Cilk OpenMP TBB PGAS MPI CUDA/OpenCL
Memória Distribuída x x
Interprocessadores x x x x x
Intraprocessadores x x x x
GPGPU x

paralela, que podem ser adotadas no desenvolvimento de programas, para a utilização dos
diferentes níveis paralelos disponibilizados pelas arquiteturas.

A noção de tarefa paralela é representada de diferentes formas pelas interfaces de
programação relacionadas nesta tabela. CILK e TBB suportamnativamente esta noção.
A definição de tarefa não é tão bem definida em MPI. Nesta interface de programação
paralela, cada processo é a própria tarefa paralela.

Para explorar todos os recursos de hardware disponíveis de um determinado ambi-
ente de execução é necessário combinar diferentes interfaces de programação paralela no
código concorrente.

Neste contexto, esta tese discute como é possível explorar diferentes níveis de par-
alelismo em simulações de modelos atmosféricos. Modelos atmosféricos demandam uma
quantidade significativa de processamento. Além disso, há uma relação entre a precisão
das soluções numéricas e a capacidade computacional. Quanto maior a capacidade de
processamento dos recursos usados, melhor é a precisão que pode ser considerada nas
simulações.

Esta tese propõe o uso combinado de diferentes interfaces deprogramação paralela
para aumentar a performance de aplicações climatológicas.Para avaliar a viabilidade
das soluções propostas, foram desenvolvidas versões paralelas de aplicações que usam as
interfaces de programaçãoMessage-Passing Interface(MPI) (SNIR et al., 1998),Open
Multi-Processing(OpenMP) (CHANDRA, 2001) eCompute Unified Device Architecture
(CUDA) (KIRK; W. HWU, 2010). Deste modo é possível a execuçãodas implemen-
tações em sistemas de memória compartilhada (Multi-core, multi-processadores e GPU)
e distribuída (multi-computadores).

A.2 Trabalhos Relacionados

Programas híbridos que combinam múltiplos paradigmas de paralelização, tais como
troca de mensagens e/oumulti-threading, com bibliotecas de aceleração de hardware, são
relativamente raros até o momento (HACKENBERG; JUCKELAND;BRUNST, 2012).
Porém, este tipo de programação tem se tornado cada vez mais comum e importante,
devido à existência de diferentes sistemas híbridos de altodesempenho, como é o caso de
clustersformados por processadoresmulti-coreda INTEL ou AMD, Cell da IBM e GPUs
da NVidia.

Diversos trabalhos descrevem o uso demulti-coree GPUs para o processamento de
aplicações das áreas de decomposição de domínios, dinâmicados fluidos e, especifica-
mente também, previsões atmosféricas (COHEN; GARLAND, 2009).

(LINFORD; SANDU, 2011) examina métodos para prover performance em simu-
lações de transporte de componentes da atmosfera em duas e três dimensões. Uma função
com abordagemoffloadé usada em um módulo de transporte bidimensional e uma abor-
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dagem de processamento destreamvetorial é usada no módulo de transporte tridimen-
sional. Dois métodos para o transporte não contínuo de dadosentre a memória principal e
o local de armazenamento no acelerador de hardware são comparados (LINFORD, 2010).
Os resultados do estudo demonstram que processadoresmulti-coreheterogêneos tem po-
tencial para proverspeed uppara simulações geofísicas.

(MICHALAKES; VACHHARAJANI, 2008) discute os resultados despeed uppara
um trecho de código executado intensivamente pelo modelo atmosféricoWeather Re-
search and Forecast(WRF). Testes mostram que a performance pode ser incrementada
8× em execuções usando uma variedade de GPUs NVIDIA. Esta pequena alteração de
código no modelo aumenta ospeed upglobal do modelo atmosférico em1.23×.

Em outro trabalho, (SHIMOKAWABE et al., 2010), é apresentado uma implemen-
tação completa em CUDA de um modelo atmosférico japonês de alta resolução, similar
ao WRF. A execução experimental desse modelo em umclustercom528 GPUs NVIDIA
alcançou um incremento despeed upde 80× e possibilitou um escalonamento de15
TFlops, usando precisão simples, para um domínio dividido em 6956× 6052× 48 ele-
mentos de malha.

WRF e ASUCA são exemplos de modelos de simulação atmosféricalocal, ou seja,
modelos que atuam somente sobre uma determinada parte da atmosfera terrestre, necessi-
tando obter informações a respeito das condições de contorno de modelos globais. Neste
trabalho, implementações paralelas para um modelo atmosférico global são propostas
com o objetivo de executar simulações experimentais emclustercompostos de proces-
sadoresmulti-coree GPUs.

A.3 Paralelismo Multi-Nível

Atualmente a composição dos ambientes computacionais paralelos é bastante het-
erogênea. De um lado, existem arquiteturas formadas porclustersegrids. Por outro lado,
as arquiteturasmulti-core oferecem diferentes unidades de processamento no próprio
chip. Consequentemente, o uso combinado de diferentes arquiteturas acaba provendo
ambientes com múltiplos níveis de paralelismo.

Em um paralelismo multi-nível há diferentes níveis de abstração paralela. Estes
níveis podem ser internos ao processador (multi-core) interno ao computador (multi-
processadores) ou entre múltiplos computadores (clusterse grids), criando, por fim, uma
hierarquia de abstração paralela, conforme mostrado na Figura A.1. A granularidade das
tarefas que podem rodar em cada nível aumenta a medida que aumenta o nível de par-
alelismo, ou seja,threadspodem ser utilizados para explorar o paralelismo interno ao
processador enquanto processos comunicantes podem ser adotados emclusters.

O gerenciamento de cada nível de abstração paralela é feito através de mecanismos
específicos:

• A nível de processador- O fluxo de instruções é definido pelo núcleo do sistema
operacional ou pela implementação dos registradores requerido em hardware. As-
sim, o contro é feito por instruções emassembler.

• A nível de núclo do sistema operacional- O fluxo de instruções é definido por
processos outhreads. O controle do fluxo de instruções é feito através de chamadas
ao sistema operacional.

• A nível de gerenciamento demiddleware - O conjunto de instruções é agrupado,
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Figure A.1: Diferentes níveis de concorrência em arquiteturas paralelas.

formando um processo comunicante. O controle é feito através de bibliotecas de
comunicação inter-processos.

Por isso, geralmente é de responsabilidade do programador usar diferentes ferramentas
para implementar um programa que explore os vários níveis deparalelismo.

A.4 Interfaces de Programação Paralela

O processo de implementação de aplicações de alto desempenho é simplificado pela
existência de diversas ferramentas de programação paralela. Estas ferramentas abstraem
tanto sistemas compartilhados como distribuídos e provêm uma abordagem de desen-
volvimento padrão para diversos paradigmas de programaçãoparalela.

A.4.1 Message-Passing Interface

Bibliotecas de troca de mensagens foram desenvolvidas paraabstrair a camada de
rede (sockets) e para oferecer uma interface clara de funções de comunicação de dados.
Estas bibliotecas foram utilizas para o desenvolvimento dediversas aplicações de alta
performance na década de 90 e início da última década.

A biblioteca de comunicação Message-Passing Interface (MPI) é um dos mecanismos
amplamente utilizado para simplificar a programação paralela (GROPP et al., 1996). MPI
possui um amplo conjunto de funções que podem ser utilizadasem implementações par-
alelas e distribuídas. Estes recursos são necessários parase obter performance paralela e
são usadas frequentemente em muitos tipos de aplicação.

A.4.2 OpenMP

OpenMP (Open Multi-Processing) é uma API de programação para arquiteturas de
memória compartilhada (CHANDRA, 2001), (CURTIS-MAURY et al., 2008). A API
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provê diretivas que permitem a expressão de paralelismo de dados em partes de código e
laços, e o paralelismo de tarefas.

A API de OpenMP consiste de diretivas de compilação, métodosda biblioteca e var-
iáveis de ambiente que descrevem como a carga de trabalho pode ser compartilhada entre
diferentesthreadsexecutando em diferentes processos ou, atualmente,cores. O progra-
mador pode definir o número dethreads, que serão executados, através da chamada de
métodos da biblioteca ou através da configuração de variáveis de ambiente.

Além disso, o grafo de tarefas no paralelismo de dados pode ser determinado pelo
programador ou pelo compilador. O padrão OpenMP não especifica um algoritmo de
escalonamento. Isto é atribuído à implementação da API, a fimde que o balanceamento
de carga seja feito da melhor forma possível.

A.4.3 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) é uma arquteturade computação e
programação paralela desenvolvido pela nVidia (NICKOLLS et al., 2008). CUDA posi-
bilita o uso de Graphics Processing Units (GPU), como arquiteturas programáveis de alto
desempenho. Isto simplifica a programação de software, tornando possível a execução do
mesmo em placas de vídeo.

O uso de placas de vídeo para executar uma aplicação normalmente feita para a exe-
cução em CPU é chamado de General-Purpose computing on Graphics Processing Units
(GPGPU) (GARLAND et al., 2008). A primeira vantagem do uso deCUDA é o uso
de memória compartilhada para um rápido acesso de endereçosarbitrários de memória.
Desde a versão 3.1, CUDA tem suporte a recursão, tipo ponto-flutuante de dados de pre-
cisão duplae rendenização de texturas.

O modelo de programação consiste de extensões da linguagem Ce C++, para pro-
gramas sequenciais, que pode ser executado em umkernel CUDA (NICKOLLS et al.,
2008). Okernelé uma função similar a um código C e roda paralelamente em diversas
threads, sendo este mapeado pela própria GPU (KIRK; W. HWU, 2010). Noentanto, o
programador é responsável pela transferência de dados entre CPU e GPU.

O modelo de programação CUDA é ideal para aplicações com altonível de par-
alelismo e para aplicações que não possuem dependências entre as tarefas. Entretanto,
há limitações em CUDA que incluem o controle de coerência dosdados usados e uma
ausência de suporte para a execução de múltiploskernels. Assim, um ganho significativo
de performance depende do conhecimento sobre a arquiteturada GPU e sobre o modelo
de programação CUDA.

A.5 Ocean-Land-Atmosphere Model

Ocean-Land-Atmosphere Model (OLAM) foi o modelo atmosférico escolhido com a
finalidade de avaliar as interfaces de programação paralelapreviamente descritas (WALKO;
AVISSAR, 2008a).

OLAM é um exemplo típico de problema de decomposição de domínio, uma classe
de aplicações que frequentemente ocorre em muitas áreas da ciência. Além disso, esta
aplicação real tem uma quantidade significativa de carga computacional, sendo um bom
candidato para a avaliação de performance.
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Figure A.2: Projeção dos elementos triangulares da superfície do modelo em esferas con-
cêntricas para gerar múltiplos níveis verticais.

A.5.1 Implementação do Modelo

Ocean-Land-Atmosphere Model (OLAM) é um modelo atmosférico para a represen-
tação e simulação de toda a superfície terrestre. O modelo consiste essencialmente em
discretizar através da técnica de volumes finitos as equações de Navier-Stokes, aplicadas
sobre uma atmosfera planetária, com a formulação de equações que respeitem as leis
de conservação de massa, momento e temperatura potencial, ede operações numéri-
cas que incluem a divisão do tempo (MARSHALL et al., 1997). Osvolumes finitos
são definidos horizontalmente por um conjunto de elementos triangulares formando uma
malha global e sub-divididos verticalmente pelas camadas atmosféricas, formando uma
espécie de prisma orientado verticalmente com uma base triangular.

A Figura A.2 mostra um exemplo de malhas decompostas. OLAM usa uma abor-
dagem não estruturada de malha e representa cada ponto horizontal discreto através de um
único índice linear (WALKO; AVISSAR, 2008a). Informações requeridas de um ponto
local da topologia da malha podem ser armazenadas e acessadas através de estruturas de
dados que definem a relação entre os pontos.

OLAM foi inicialmente desenvolvido e paralelizado com MPI.Cada processo MPI é
responsável por operar funções sobre um determinado sub-domínio durante a etapaitera-
tiva. Cada processo determina seu sub-domínio da malha global deacordo com seurank
MPI. Uma vez definido a distribuição dos sub-domínios entre os processos (inicializa-
ção), cada processo descarta a malha global e mantém em memória apenas sua respectiva
parte da malha, a fim de que a mesma seja processada. Troca de mensagens são feitas
entre os processos cujos domínios sejam vizinhos, em cada iteração, a fim de atualizar as
estruturas de dados localizadas nas bordas da malha.

A.5.2 Protótipo do Modelo

Uma versão simplificada de OLAM foi implementada em C, com o objetivo de al-
cançar as metas propostas neste artigo. Esta versão prototipada inclui as principais car-
acterísticas do modelo, incluindo decomposição de domínios, refinamento de malhas,
distribuição paralela de dados, encapsulamento de chamadas MPI para o envio e rece-
bimento de dados e todas as estruturas de dados e funções necessárias, a fim de que o
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modelo possa ser executado. Este protótipo provê um modelo abstrato de paralelismo de
tarefas para aplicações climatológicas.

Embora OLAM tenha sido inicialmente implementado com MPI, outra escolha natu-
ral para a paralelização do código e o uso depragmasOpenMP nos principais laços do
código. Para tanto, foram feitas modificações no código prototipado original, adicionando
instruções que permitam a decomposição de laços em diferentes execuções concorrentes,
através da criação dethreadsOpenMP. O paralelismo OpenMP foi combinado com a
implementação feita com MPI. Assim, é possível ter uma outraforma de execução con-
corrente em sistemas de memória compartilhada.

Outra interface de programação paralela para prover paralelismo multi-nível que foi
adotado é CUDA. Para tanto, algumas funções da implementação do protótipo OLAM
foram reescritas, convertendo o código C destas em código dekernelCUDA. Também
foram necessárias a implementação de funções que encapsulem a alocação e desalocação
de memória, além da cópia de dados entre CPUs e GPUs.

Para reduzir o número de alocações de memória nokernelCUDA, todas os vetores de
variáveis temporárias a serem utilizados pelas funções foram alocados antes da chamada
da parte iterativa do modelo e desalocadas depois do términodessa etapa. Além disso,
em cada passo da etapa iterativa, antes da chamada de qualquer função dokernelCUDA,
foi necessário a cópia de dados da CPU para a GPU e, após a execução do passo iterativo
a cópia de dados da GPU para a CPU.

As funções dokernelCUDA também foram embutidas na implementação MPI. Com
isso, três diferentes níveis de paralelismo (GPUs,corese processadores podem ser uti-
lizados em simulações atmosféricas.

A.6 Avaliação de Performance

Esta seção apresenta o ambiente de simulação, parâmetros deexecução e as medições
de tempo de execução e despeed upefetuadas.

A.6.1 Ambiente de Simulação

Todas as medições experimentais foram obtidas utilizando ocluster NewtondoCentro
Nacional de Supercomputação. Estecluster é interconectado através da tecnologia de
redeInfiniBande tem atualmente 28 Sun Fire X2200+ nós (cada um com 2 processadores
Quad-Core AMD Opteron de 2,2 GHz e 16 GB RAM) e 8 GPUs nVidia Tesla S1070.

Em todas as execuções foram simuladas12 horas de interação da atmosfera. Cada
etapa da interação simula60 segundos do tempo real da condição atmosférica. O eixo
vertical da atmosfera foi dividido em28 camadas, conforme padrões utilizados em centros
de climatologia.

A distância média entre cada ponto discreto da superfície global foi em torno de100
Km, 67 Km d 50 Km. Em simulações utilizando GPUs, o número dethreadsCUDA foi
fixado em128.

A.6.2 Implementação com MPI

Um primeiro teste foi feito com o objetivo de analisar o impacto do use de processos
MPI no tempo total de execução.

A Figura A.3 e a Figura A.4 apresentam o tempo de execução (em segundos) resul-
tante de uma simulação atmosférica, usando uma malha de100 Km e50 Km de resolução
horizontal. Os gráficos dessas figuras mostram o tempo total de execução e o tempo gasto
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Figure A.3: Tempo de execução usando de1 a32 processos para uma simulação de uma
malha de100 Km de resolução.

na execução da inicialização, usando de1 a32 processos MPI.
Cada coluna do gráfico representa o tempo total de execução para um determinado

número de processos. Pode-se observar que este tempo decresce a medida que mais pro-
cessos são utilizados. Consequentemente há ganho de performance.

A segunda medição (área quadriculada) de cada grupo de processos representa o
tempo de execução da etapa de inicialização do modelo. O tempo de duração dessa etapa
é de aproximadamente115 s para uma resolução de malha de100 Km e 415 s para uma
malha com50Km de resolução. O tempo gasto com a etapa de inicialização é constante,
independente do número de processos utilizado nas simulações. A relação entre o tempo
de inicialização e o tempo total de execução decresce a medida que malhas com maior
nível de resolução são utilizadas.

A.6.3 Implementação com MPI e OpenMP

O uso dethreadsOpenMP foi avaliado em algumas simulações atmosféricas, con-
siderando malhas com resolução horizontal de100 Km.

A Figura A.5 apresenta o tempo total de execução (em segundos) de uma simulação
atmosférica utilizando de1 a 8 processos MPI. Nos testes, a performance de execução
utilizando de1 a8 threadsOpenMP foi comparada para cada número de processos MPI.
Cada coluna branca preenchida no gráfico representa o tempo de simulação usando so-
mente processos MPI. As demais colunas mostram o tempo de execução dos processos
MPI com a inclusão dethreadsOpenMP.

O uso dethreadsOpenMP provê redução no tempo total de execução do modelo,
independente do número dethreadsutilizado. Entretanto, há uma limitação no ganho de
performance quando mais do que32 threads/processos são usados, uma vez que o tempo
de execução da etapa iterativa predomina em relação a otempototal de execução. Com
isso há uma limitação de escalabilidade.
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Figure A.4: Tempo de execução usando de1 a32 processos para uma simulação de uma
malha de50 Km de resolução.

Além disso, o paralelismo OpenMP é restrito a determinadas partes do código, en-
quanto que o paralelismo MPI inclui toda a parte iterativa docódigo. Por causa disso, a
comparação entre o tempo de execução de simulações que usam somentethreadsOpenMP
(1 processo MPI) em relação ao uso de somente processos MPI (1 thread OpenMP)
mostra um melhor resultado para o primeiro caso.

A Figura A.6 apresenta ospeed upda parte iterativa do modelo. Nos testes são com-
parados de1 a 8 processos MPI. De1 a 8 threadssão criadas e executadas em cada
processo MPI.

Os resultados mostram que o uso dethreadsOpenMP aumenta a performance da etapa
iterativa para qualquer número de processos MPI adotado. O uso combinado de2 ou 4
threads em cada processo MPI aumenta o speed up em mais de50% e 100%, respectiva-
mente, em relação a versão paralelizada restritamente com MPI, para todos os números
de processo MPI utilizados nas simulações. No gráfico é possível ver que o uso de4
threads e8 processos prove um ganho de performance limitado. Isto occore porque cada
processo/threadcomputa uma tarefa com baixa granularidade. Assim, a performance par-
alela não se sobrepõem em relação aos custos de comunicação ede criação dasthreads.

A.6.4 Implementação com MPI e CUDA

Algumas simulações também foram feitas explorando o paralelismo em GPUs.
A Figura 7.5 apresenta o tempo total de execução (em segundos) para as três res-

oluções de malha consideradas neste trabalho (veja Subseção A.6.1). Nesta figura, as
primeiras três colunas mostram o tempo de execução sequencial de cada resolução. A
execução sequencial não inclui o uso de GPUs. As outras colunas do gráfico mostram o
tempo de execução usando,1, 2, 4 e8 GPUs.

Os resultados da Figura A.7 mostram que o uso de1 GPU reduz o tempo total the
execução em mais do que5× em relação à execução usando somente de processamento
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Figure A.5: Tempo total de execução usando diferentes números dethreadsOpenMP em
uma simulação com processos MPI.
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Figure A.7: Avaliação do tempo de execução utilizando diferentes números de GPUs para
simulações de resolução de malhas de100 Km, 67 Km e50 Km.

CPU. Esta redução é mais expressiva a medida que mais GPUs sãousadas na simulação.
A Figura A.8 e Figura A.9 apresenta o tempo de execução (em segundos) das etapas

de inicialização e iterativa do modelo para uma resolução demalhas de100 Km e 50
Km, respectivamente. Nestes resultados é possível ver que otempo de execução da etapa
de inicialização é constante, independente do número de GPUs usado. Por outro lado, o
tempo de execução da etapa iterativa decresce para todos os casos avaliados quando mais
GPUs são incluidas na computação.

A Figura A.7 exibe ospeed upda etapa iterativa do modelo, quando são usados de1
a8 GPUs nas simulações com resolução de malha de100 Km e50 Km. Em todas as res-
oluções de malha utilizadas ospeed upaumenta a medida que mais GPUs são usados. O
gráfico mostra também que uma malha com alta resolução (50 Km) tem maisspeed updo
que uma malha com baixa resolução (100 Km), devido a diferença de granularidade entre
os processos. Malhas com alta resolução tem mais estruturasde dados para computar.
Consequentemente, a granularidade dos processos é maior nesse caso.

A.7 Conclusão e Trabalhos Futuros

Esta tese apresentou uma implementação paralela de um modelo atmosférico uti-
lizando as interfaces de programação MPI, OpenMP e CUDA. Foifeita uma avaliação
da performance de uma versão prototipada de OLAM em uma arquiteturaclustercom-
posta pormulti-core, multi-processadores e GPUs, isto é um ambiente com paralelismo
multi-nível.

Com o objetivo de avaliar as diferentes implementações paralelas do modelo, foram
apresentados resultados parciais e comparativos de tempo de execução e despeed up
utilizando de1 a 32 processadores quad-core e de1 a 8 GPUs de umcluster. Os resul-
tados parciais mensurados mostram que as implementações com MPI e MPI combinado
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Figure A.8: Tempo de execução das etapas de inicialização e iterativa para simulações
usando100 Km de resolução de malha.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8

T
em

po
 d

e 
E

xe
cu

çã
o 

(s
)

Processos

Total
Inicialização

Figure A.9: Tempo de execução das etapas de inicialização e iterativa para simulações
usando50 Km de resolução de malha.
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Figure A.10: Avaliação dospeed upusando diferentes números de GPUs para simulações
de resolução de malhas de100 Km e50 Km.

com OpenMP aumentam a performance paralela do modelo atmosférico a medida que
mais processos e/outhreadssão utilizados. O uso de OpenMP maximiza ospeed up
se o número dethreadsem execução for o mesmo que o número de cores existente no
processador (4 threadspara um processador quad-core).

O uso restrito de paralelismo MPI na implementação do modeloprovê um melhor
tempo de execução em relação ao uso combinado de paralelismoMPI e OpenMP, se forem
comparados o mesmo número de processos MPI contra a soma do número de processos
MPI e threadsOpenMP. A implementação paralela com MPI envolve toda a etapa iterativa
do modelo enquanto que o paralelismo com OpenMP é restrito a algumas funções da etapa
iterativa.

Por outro lado, a versão implementada com CUDA incrementou aperformance em5
vezes em relação à versão executada sequencialmente em uma CPU. A performance do
protótipo também foi avaliada em execuções em mais uma GPU. Os resultados mostram
que há um aumento despeed up, para todas as resoluções de malhas adotadas nas simu-
lações, a medida que mais GPUs são usadas.

Como trabalhos futuros pretende-se avaliar o comportamento do protótipo do modelo
atmosférico em arquiteturas GPU, variando o número dethreadsCUDA usado. Atual-
mente este número está fixo em 128threads. A adição de maisthreadspode incrementar
a performance do modelo em algumas resoluções de malha específicas.

Outras interfaces de programação paralela, comoThreading Building BlocksdaIntel e
Message-Passing Interface 2, que oferecem a criação de processos em tempo de execução,
podem ser avaliadas com o objetivo de maximizar o uso dos recursos de hardware em
simulações atmosféricas.


