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ABSTRACT

In nanometer scale complementary metal-oxide-semiconductor (CMOS) parameter
variations pose a challenge for the design of high yield integrated circuits. This work
presents models that were developed to represent physical variations affecting Deep-
Submicron (DSM) transistors and computationally efficientmethodologies for simulating
these devices using Electronic Design Automation (EDA) tools.

An investigation on the state-of-the-art of computer models and methodologies for
simulating transistor variability is performed. Modelingof process variability and aging
are investigated and a new statistical model for simulationof Random Telegraph Signal
(RTS) in digital circuits is proposed.

The work then focuses on methodologies for simulating thesemodels at circuit level.
The simulations focus on the impact of variability to three relevant aspects of digital
integrated circuits design: library characterization, analysis of hold time violations and
Static Random Access Memory (SRAM) cells.

Monte Carlo is regarded as the "golden reference" techniqueto simulate the impact
of process variability at the circuit level. This work employs Monte Carlo for the anal-
ysis of hold time and SRAM characterization. However Monte Carlo can be extremely
time consuming. In order to speed-up variability analysis this work presents linear sen-
sitivity analysis and Response Surface Methodology (RSM) for substituting Monte Carlo
simulations for library characterization.

The techniques are validated using production level circuits, such as the clock network
of a commercial chip using 90nm technology node and a cell library using a state-of-the-
art 32nm technology node.

Keywords: Microelectronics, electronic design automation, yield, circuit simulation,
Monte Carlo method.





RESUMO

O efeito das variações intrínsecas afetando parâmetros elétricos de circuitos fabrica-
dos com tecnologia CMOS de escala nanométrica apresenta novos desafios para o yield
de circuitos integrados. Este trabalho apresenta modelos para representar variações físicas
que afetam transistores projetados em escala sub-micrônica e metodologias computacio-
nalmente eficientes para simular estes dispositivos utilizando ferramentas de Electronic
Design Automation (EDA).

O trabalho apresenta uma investigação sobre o estado-da-arte de modelos para vari-
abilidade em nível de simulação de transistor. Modelos de variações no processo de fa-
bricação (RDF, LER, etc) e confiabilidade (NBTI, RTS, etc) são investigados e um novo
modelo estatístico para a simulação de Random Telegraph Signal (RTS) e Bias Tempera-
ture Instability (BTI) para circuitos digitais é proposta.

A partir desses modelos de dispositivo, o trabalho propõe modelos eficientes para
analisar a propagação desses fenômenos para o nível de circuito através de simulação. As
simulações focam no impacto de variabilidade em três diferentes aspectos do projeto de
circuitos integrados digitais: caracterização de biblioteca de células, análise de violações
de tempo de hold e células SRAM.

Monte Carlo é a técnica mais conhecida e mais simples para simular o impacto da
variabilidade para o nível elétrico do circuito. Este trabalho emprega Monte Carlo para
a análise do skew em redes de distribuição do sinal de relógioe em caracterização de
células SRAM considerando RTS. Contudo, simulações Monte Carlo exigem tempo de
execução elevado. A fim de acelerar a análise do impacto de variabilidade em biblioteca
de células este trabalho apresenta duas alternativas a Monte Carlo: 1) propagação de erros
usando aproximação linear de primeira ordem e 2) Metodologia de Superfície de Resposta
(RSM).

As técnicas são validados usando circuitos de nível comercial, como a rede de clock
de um chip comercial utilizando a tecnologia de 90nm e uma biblioteca de células usando
um nó tecnológico de 32nm.

Palavras-chave:Microeletrônica, projeto auxiliado por computador, ruídode baixa freqüên-
cia, confiabilidade de circuitos integrados, método Monte Carlo.
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1 INTRODUCTION

Previously, advances in very-large scale integration (VLSI) circuit design primarily
relied on circuit improvements derived from technology scaling. In those days abstraction
relied on enough performance that could be traded for designsimplicity.

Synthesis and optimizations in the design flow of digital circuits employed by those
technologies were based on corner-based analysis. In this approach delay, power and
other design constraints are computed from electrical parameters found to be extreme
cases during characterization.

For Deep Sub-Micron (DSM) technologies, variations in the manufacturing process
of electronic devices poses major challenges for the industry. Process variability are the
fluctuations of the physical and electrical characteristics of the transistors caused by devi-
ations during the manufacturing process. These deviationscause the current-voltage char-
acteristics of the transistors to be different from the nominal specification: they become
statistical rather than deterministic. Such process related issues have been posing new
challenges to the design of integrated circuits because both Electronic Design Automa-
tion (EDA) software and circuit designers need to make use oftechniques that correspond
to this new paradigm.

Electrical parameters variability may be decomposed into aspatial and a temporal
component, as expressed in figure 1.1. The spatial componentcan be further divided into
die-to-die variations (D2D) and within-die variations (WD) (ZUCHOWSKI et al., 2004;
ORSHANSKY et al., 2002).

The die-to-die variations affect equally all the elements within the same chip. D2D
variations may be originated from equipment asymmetries like asymmetries in chamber
gas flows and thermal gradients, as well as imperfections in equipment operation and
process flow. These asymmetries and imperfections cause a shift on the average value of
a parameter of the wafer or lot of wafers. One example of D2D variation is the thickness
of the resist along the wafer, which is constant inside a wafer but might vary from wafer to
wafer (BOWMAN; DUVALL; MEINDL, 2002). In technologies older than 180 nm the
D2D variations used to be orders of magnitude higher than theWD component, which
was safely neglected until recently. EDA industry is familiar with methodologies to deal
with D2D components: corner-based analysis. In this technique, the circuit is simulated
at different PVT (process, voltage, temperature) extreme conditions in which the circuit
is expected to operate. Thus on corner analysis all the transistors are correlated, which is
the correct assumption for D2D variability.

Within-die variations cause the electrical characteristics of the transistors to fluctuate
non-uniformly across a single chip. It can be further decomposed into a systematic and
a random component (BOWMAN; DUVALL; MEINDL, 2002). The systematic com-
ponent may be originated by optical aberrations causing parameter shifts within a chip.



28

Transistor variability
(electric parameters)

Spatial Temporal

Within-die Die-to-die Aging Transient

RDF, LER,
...

Process Gradients,
...

NBTI, HCI,
...

SET/SEU, RTS,
...

Figure 1.1: Classification of types of variations affectingMOSFET devices (WIRTH,
2010)

These shifts present a pattern across the die and is usually dependent on the device posi-
tion: for instance the gate length of nearby transistors have a systematic component which
cause them to shift accordingly. Random within-die variations are originated from the dis-
creteness of matter and energy, as the number and position ofdopant atoms, photo resist
molecules, and photons. Random within-die variability is also called intrinsic variability
because it cannot be eliminated, being rather a limitation of the materials and the pro-
cess the transistors are built with. A well known example of WD parameter is threshold
voltage (Vt) variability due to the Random Dopant Fluctuations (RDF) (MAHMOODI;
MUKHOPADHYAY; ROY, 2005). Due to its intrinsic characteristic which is agravat-
ted with the technology scaling, random WD variations started dominating over the D2D
component and have been increasing at each technology node.

Temporal variability can be further divided into aging and transient variations. The
main causes of temporal variability are: 1) the capture and emission of electrons by traps
in the Si-SiO2 interface and silicon oxide of the devices and2) spurious radiation particles
hitting the device. Aging is the systematic degradation of the transistor characteristics, as
for instance the current strength of a transistor decreasing over time due to Bias Tempera-
ture Instability (BTI). Transient variability are either instantaneous or intermittent changes
in the device current× voltage curve, which can be caused by radiation (nowadays even
at the Earth’s surface) or Random Telegraph Signal (RTS).

Random Telegraph Signal (RTS), also known as Low Frequency (LF) noise, is a per-
formance limiting factor for deep sub-micron CMOS devices.This noise is due to suc-
ceeding electron capture and emission at the interface and in the bulk of the gate di-
electrics. This phenomena causes oscillations in the transistor voltage threshold Vt and
drain-to-source currentIds. The propagation delay of a gate depends on the capability
of its transistors to drive current. A smaller current driven by the transistor means larger
propagation delay, which may lead to timing violations (failures) in a circuit. Hence,
the variation in transistor drive current due to RTS may leadto circuit failures in future
technology generations, and statistical modeling of random telegraph signal is required.

In order to maximize performance, the reduction of transistor dimensions is not com-
pensated by the corresponding reduction in operating voltage (ASSOCIATION, 2009).
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The increased stress causes a significant degradation of electrical parameters of the tran-
sistors over time. This phenomenon is called aging. Currently, the dominant factor to
limit the lifetime of a PMOS transistor is the so-called Negative Bias Temperature Insta-
bility (NBTI) (KACZER et al., 2005). For NMOS transistors Hot Carrier Injection (HCI)
is usually the major concern. Over time, this mechanism degrades the transistor threshold
voltageVt, resulting in speed degradation of the logic cells and causing timing violations,
which implies circuit malfunction.

Due to its assumptions leading to excessive pessimism, guard-bands or corner-based
design styles tend be less realistic at each new technology node. New strategies to model
statistical process variations become critical for ensuring high yield in future products
using sub-45nm technologies (NASSIF, 2000). Corner analysis can be excessively pes-
simistic and inaccurate (VISWESWARIAH, 2003) due to the fact that by definition the
corners must capture the fastest and slowest possible conditions of the circuit. Because
in Application Specific Integrated Circuit (ASIC) timing isthe main target to be met,
the pessimism regarding the delay constraints increases the need for stronger gates and
buffers, thus increasing of area and power consumption of the circuit.

In order to get the most from the technology scaling,Computer Aided Design(CAD)
tools and the fabrication process must be tied together. Variations and aging, which can
be modeled statistically, must be taken into account in the early design phases, and there
must be CAD tools capable of predicting the percentage of functional circuits in a wafer.
Therefore, along with timing, area and power, yield and the impact of aging must be
additional constraints to be taken into account when designing circuits using recent tech-
nologies.

Statistical analysis of electrical characteristics of analog and digital circuits is often
performed by using Monte Carlo Method (AMAR, 2006), what implies in a large amount
of simulations at electric level. Monte Carlo simulations are the standard employed by in-
dustry for the analysis of variations at electrical level, and is supported by current versions
of electrical simulation tools (SYNOPSYS, 2005).

Statistical Static Timing Analysis (SSTA) gives at logic level a quantitative risk man-
agement for the design as a function of the circuit topology,the electrical parameters
and the variations (VISWESWARIAH, 2003). In order to apply SSTA methodology,
cell libraries are characterized at the electrical level, for which Monte Carlo simulation
is nowadays commonly employed. Larger designs may be decomposed into functional
blocks and treated at different levels of abstraction. A block may be a simple or complex
gate, a sequential block (e.g. flip-flop) or a memory cell. Commercial EDA tools are start-
ing to support statistical characterization at cell level.For instance Cadence’s Encounter
Library Characterizer and Synopsys NCX can automatically compute linear sensitivity
analysis, which can be further employed for statistical characterization.

This thesis studies design automation methodologies and develops models to deal with
technology-related issues, such as process variability, noise and aging.

1.1 Motivation

Traditionally, designers of digital ICs relied on levels ofabstractions that could hide
the effects of process variations on their product. The designer could expect the chip
to work within the corners defined by the foundry. Actually the designer expected a
high percentageof chips to satisfy the design constraints. The concept ofyield had been
implicit for the designer and left to the foundry to take careof. Foundries used to compute
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the corners through characterization processes that couldbe hidden from the designer for
simplicity.

Analog designers have already been experiencing the problems of process variations
for decades. Analog and mixed-signal circuits often employchannel critical dimensions
much larger than minimum CD, attenuating the affects of process variability. As well,
matching techniques are usually employed for transistors that must perform ideally iden-
tically. These techniques require both the designer and theEDA tool to be aware of
technological and physical details of the device process.

It became well known that corner analysis can guarantee sufficient yield after fabri-
cation at the expense of performance and power. Each technology node requires more
complex assessment analysis tools, partly due to the increase in circuit complexity and
partly due to the increase of physical phenomena that must betaken into account. To
complete the chain, computational power itself has been increasing steady-paced, allow-
ing more complex methodologies to be computationally feasible.

The demand for more accurate transistor representations and techniques for accurate
circuit analysis has been pushing forward two areas of research and development: 1) mod-
eling of transistor reliability phenomena and 2) methodologies for analysis of integrated
circuits considering these phenomena. Table 1.1 presents apiece of ITRS 2009 section on
”Modeling and Simulation”. ITRS points to the need of modeling trap-induced reliability
issues such as RTS and NBTI, as well as to the need of circuit models for CMOS devices
including reliability. The present work will focus on presenting advances on these two
inter-related areas of research.

Thus, back-end designers have to learn how to design digitalcircuits considering is-
sues that previously affected only analog circuits. This poses great challenges for physical
synthesis of ICs as more technology-related issues must be brought to the design flow. In
order to obtain more accurate timing and power estimates, abstraction must be sacrificed
in such a way that the designer must be more aware of the silicon implementation.

1.2 Contributions of this work

Accurately modeling variability and reliability of transistors is becoming a major chal-
lenge for the advance of the semiconductor industry. Moreover, circuit models for prop-
agating nano-scale devices issues to circuit-level simulation must be developed. This
thesis focuses on two main topics: 1) modeling of device variability and reliability and 2)
methodologies for circuit level simulation of these issues. The context and the contribu-
tions of this work in these fields are discussed in the next subsections.

1.2.1 Modeling of transistor reliability

Device modeling is focused on the main sources of variationsin today technologies:
Random Dopant Fluctuations (RDF), Line Edge Roughness (LER), Negative Bias Tem-
perature Instability (NBTI) and Random Telegraph Signal (RTS). RDF and LER are clas-
sified as process-related (spatial) variability while RTS and NBTI are time-dependent
(temporal) reliability . This work will discuss in detail a recent model proposed for sim-
ulating the trap-detrap phenomena that causes RTS and NBTI.This work presents the
following contributions on modeling of reliability issuesthat affect transistors:

Random Telegraph Signal: In this work variations in drain current over time due to
the Random Telegraph Signal (RTS) are modeled as transient changes in transistor
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Table 1.1: Section ”Modeling and Simulation” in ITRS 2009 (extracted from (ASSOCI-
ATION, 2009)).

Year of Pro-
duction

2009 2010 2011 2012 2013 2014 2015 2016 2017

DRAM 1/2
Pitch (nm)

52 45 40 36 32 28 25 22.5 20.0

MPU Phys-
ical Gate
Length (nm)

27 24 22 20 18 17 15 14.0 12.8

...
Reliability
and noise
modeling *

HF, 1/f and
RTS noise
modeling

Trap generation during
operation (HCI, NBTI,
PBTI, ...) for con-
ventional and new gate
stacks

Degradation mechanisms for
novel logic and memory de-
vices

...
Active de-
vices

Circuit models for bulk
and SOI CMOS devices
including reliability, ag-
ing and influences of
layout, process variabil-
ity and random fluctua-
tions; ...

Extension to multigate
CMOS; standardize
SOI and multigate
circuit models [7]

Circuits models for
nanoscale devices

threshold voltageVt. Modeling RTS as a source ofVt variation, on top of other
reliability phenomena, is very convenient for simulation of digital blocks and can
be easily propagated to circuit level following the circuit-level methodologies de-
scribed in this work. Two RTS models are proposed: a static model and a dynamic
time-dependent model. The static model is further experimented in a SRAM mem-
ory as case study to evaluate the impact of RTS in memories. The dynamic model
works for both RTS and NBTI.

Negative Bias Temperature Instability: NBTI is related to generation and/or activa-
tion of interface traps. Experimentally this is shown to occur when a device is
biased in inversion mode of operation, regardless of current flow, and is aggravated
by temperature. In this work NBTI is modeled as an effect thatshiftsVt of the tran-
sistors over time, impacting in speed degradation of the logic cells. A trap-detrap
model valid for both RTS and NBTI is presented.

1.2.2 Methodologies for statistical simulation

On top of advanced device variability modeling this work intends to propose com-
putational efficient models for propagating these issues tocircuit level simulation. These
techniques allow the designer to estimate the circuit performance and yield at early design
stages, before silicon. Computer simulations for circuitsconsidering process variations
must be accurate but also there must be a compromise on run-time.

In order to address the run-time/accuracy trade-off this thesis proposes to employ
linear sensitivity analysis and Response Surface Methodology as alternatives to time-
consuming Monte Carlo simulations. The following simulation methodologies have been
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implemented to cope with circuit reliability issues on the realm of sub-nanometer transis-
tor era:

Monte Carlo: Monte Carlo method is the most widespread statistical simulation tool
and has been applied in many domains since 1950s. Monte Carlosimulations have
been implemented for every circuit analyzed in this work, since it is the most accu-
rate method. For statistical cell characterization MC is implemented as a reference
method in order to benchmark faster alternatives. The implementations of SRAM
characterization under RTS and hold time violation analysis were fully based on
Monte Carlo.

Linear Sensitivity Analysis: Linear sensitivity analysis is a simple and efficient alterna-
tive for Monte Carlo simulation. Our research group at UFRGShas been studying
linear sensitivity analysis since 2005 to cope with characterization of small circuit
blocks. In this work linear sensitivity analysis is appliedto the statistical character-
ization of standard cell library and to the analysis of the impact of NBTI in standard
cells. Statistical standard cell characterization was validated using Cadence’s En-
counter Library Characterizer (ELC) support for linear sensitivity analysis.

Response Surface Methodology:A Response Surface Methodology encompasses two
steps: Design of Experiments (DoE) and a model fitting. In collaboration with
IMEC (Interuniversity Microelectronics Center - Belgium)a novel RSM flow based
on a new DoE, a polynomial model selection algorithm, and thesubsequent substi-
tution of electrical simulation by the regression functionwas invented in order to
characterize standard cell libraries. RSM was integrated as part of IMEC’s statis-
tical cell characterization tool suite (see appendix B). RSM was implemented as
a set of scripts interfacing with the existing IMEC framework for statistical cell
characterization supporting commercial tools such as Cadence Encounter Library
Characterizer (ELC).

1.2.3 Circuit simulation of reliability issues

This work presents strategies for design on the realm of variability on many areas of
the design flow: from I-V curves of a transistor to the influence of process variability on
hold time violations of logic paths. In order to validate themodels and methodologies
developed, as well as to show their applicability to relevant design issues, this work has
studied some specific problems designers are starting to face today with technology scal-
ing tend to be aggravated in the future. These problems rise from the fact that CAD tools
not yet fully support, i.e. automatically support, reliability modeling and statistical design,
implying that more research is needed in this field in order topropose suitable methods
of risk evaluation of the circuits. The circuit simulation and analysis work focuses on the
following problems related to the design of digital integrated circuits:

Analysis of Clock Network of Digital Circuits: The clock signal is the most important
global signal in a synchronous circuit. On recent technologies process variations,
noise and aging impose challenges for the design of reliableclock networks. They
cause changes in the time delay for the clock signal to arriveat the different flip-
flops, causing undesirable clock skew. This work analysis the impact of process
variations on the delay of the clock signal and the clock skew. Normality tests in
measurements of clock skew are performed in order to check the data distribution,
and a statistical model for the clock skew is proposed.
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Modeling Hold Time Violations of Digital Circuits: hold time violations can be mod-
eled as a random variable which is function of the race immunity of the FF and
the clock skew. This work presents Monte Carlo experiments of clock skew and a
normal distribution is shown to fit them very well. After coming up with a statis-
tical model for hold time violations due to race conditions,we research methods
for fixing those timing violations. We propose a statisticalmethodology for com-
puting the total amount of delay to be inserted in the data-path to satisfy the yield
constraint.

The standard cell design flow needs a set of pre-characterized elements, which are
specific to each technology and can be re-used for every design in that technology. This
work proposes solutions for the following characterization steps:

Standard cell library characterization: in a typical design flow of ICs the connection
between electrical-related parameters and timing characteristics of the circuits is
made at cell characterization level. A representative subset of standard cells using
a 32nm production level library and statistical device compact model is character-
ized. Two simulation speedup techniques (RSM and linear sensitivity analysis) are
validated and compared to Monte Carlo. The methodologies show good compro-
mise between accuracy and run-time as compared to Monte Carlo. Such statistical
library parameters can then be propagated to higher level ofthe design flow as Static
Timing Analysis.

Characterization of SRAM: SRAM cells are designed using small feature sizes and
employ state-of-the-art process technology in order to achieve maximum density.
Memories are the first circuits to be implemented on new process technologies and
are the first to benefit from the scaling, however they always experience the chal-
lenges imposed by the devices unreliability and process variations. We investigate
sources of failures in memories and use these as models to propagate the effects of
RTS and variability to memory cells.
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2 IMPACT OF PROCESS VARIATIONS TO THE DESIGN
FLOW OF INTEGRATED CIRCUITS

The design flow of ASICs follows a top-down approach (WESTE; HARRIS, 2005),
as represented by figure 2.1. The circuit is initially specified by either a high-level behav-
ioral description or a structural description. Each step ofthe flow generates a lower-level
abstraction equivalent to the previous step and closer to the actual implementation.

Behavioural (RTL) Synthesis

Logic Synthesis

Physical Synthesis

Fix Violations

Post-layout timing & power

Timing Clean?

Geometric Description
(GDSII)

Behavioral Description
(HDL)

NO

YES

Std. Cell 
Library

Logic minimization
Technology mappging

Floorplanning
Clock synthesis

Placement
Routing

Extraction
STA or SPICE

Check
Function.
Pre-layout
timing &
power

Design Rule Check/ LVS

incremental design (ECO)

Structural 
Description

OR

Figure 2.1: Top-down ASIC design flow

The initial behavioral description consists of a system specification at a high level
of abstraction, describing how the circuit behaves as a function of its inputs and states.
A behavioral description can be an algorithmic descriptionor a data-flow description,
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also referred as Register Transfer Level (RTL). The system can be specified through con-
ventional programming languages, such as C, although hardware description languages
(HDL) such as VHDL, Verilog and SystemC are preferred since they are specific to circuit
description. One of the main steps of behavioral synthesis is the hardware assignment,
which allocates the specific combinational and sequential hardware components (adders,
multipliers, memories) as well as its quantities. This early step must implement estimates
of timing, area and power and support functional verification through test-bench simula-
tion.

Alternatively, some small blocks or special-purpose designs can be directly specified
as a structural description, which consists of the circuit being specified in terms of com-
ponents and interconnections. This is a lower level representation than the behavioral
description. It allows more control to the designer over thesystem implementation and
avoids the automated behavioral synthesis.

The input to logic synthesis is a gate-level netlist of the circuit. The gate level is a
structural description, being the circuit fully describedin terms of components and inter-
connections. The main goals of logic synthesis are logic minimization and technology
mapping. Logic minimization targets at the simplest equivalent circuit optimized for the
design constraints. Technology mapping consists of generating an equivalent circuit em-
ploying only components existing in the pre-characterizedstandard cell library.

Physical synthesis takes as input the structural representation of the circuit, a netlist
without the physical data like geometries or position, and generates the geometric descrip-
tion of the circuit: the layout. The layout is the lowest level of abstraction in an electronic
design automation flow. The circuit ready for tape-out is a description of the masks of
the circuit and can be sent to the foundry in Graphic DatabaseSystem II (GDSII) stream
format. The steps of physical synthesis are floor-planning,partitioning, clock synthesis,
placement and routing. The main goal of physical synthesis is to minimize interconnects
in order to minimize delay, power and area. However variability has been posing new
challenges for physical synthesis: maximization of yield and manufacturability nowadays
are also constraints to be met. For instance, the router is required not only to find an
optimal path between two components, but it is also requiredto follow manufacturability
guidelines when drawing the interconnections in order to ensure proper yield.

Delay, area and power of the digital circuit are estimated atevery synthesis level, as
well as equivalence checks to verify whether the description is equivalent to the previous
one or not. However the closer the design gets to implementation the more information
is available making the assessment more accurate. The most accurate timing estimate
is computed after the last step of physical synthesis, routing, which draws the intercon-
nections. Thereby, after detailed routing, there is a step of parasitic extraction, which
accurately models wires as resistances and capacitances. The data-path delays can be
computed by electric-level simulation (spice) or by StaticTiming Analysis (STA). By us-
ing these wire models for the interconnections, their delays can be computed accurately.
In STA, standard cell libraries are pre-characterized and their delays and power are readily
computed as a function of the input slew and the load they drive. STA reports the critical
paths (paths not meeting the timing constraints) that causehold and setup time violations.
These violations must be fixed, usually by an incremental step of physical synthesis.

Thus, process variation and reliability issues add even more strain over the steps of
physical synthesis, specially timing analysis and circuitoptimization. This thesis focuses
on modeling process variability and device reliability at electric level description of dig-
ital ICs and specific circuits, as for instance memories. This chapter presents the typical
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design flow and demonstrates how process variability effects, which impact the I-V curve
of the transistors can be propagated to higher level metricsof the design. The next sec-
tions are presented in a bottom-up fashion: starting from the impact of variability to the
transistors I-V curves and then presenting a methodology topropagate these effects to
high level metrics such as delay.

2.1 DC Transfer I-V Curve

On-chip-variations induce the devices to present electrical characteristics different
from the nominal (average) specification. The I-V transfer characteristic is the identity
of a transistor. Variations in the I-V curve directly impacthigh-level metrics of the digital
circuit. A transistor with higherIon (Ids whenVdsandVgsare maximum) is faster and
consumes more energy than a device with lowerIon.

Accurate device modeling has been a necessity of semiconductor industry since its
beginning. Transistor models are sets of equations describing the operation of the transis-
tor. These equations are employed by electrical simulatorsto compute the behavior of the
circuit. Since the introduction of Berkeley’s SPICE in 1972and with the always grow-
ing dependency on EDA tools, MOSFET models have evolved in complexity to be able
to accurately describe the device behavior under the current, voltage and environmental
conditions. The first MOSFET model to be implemented by SPICEin 1972 was the level
1 model, or Quadratic I-V Model, which is the simplest MOSFETmodel to computeIds
as a function ofVgsandVds. The quadratic model is inaccurate and is not appropriate
for modern transistors. The curve is divided into three regions of operation (this disconti-
nuity causes convergence issues) andIdscan be approximated as proposed by Massobrio
(1999):
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where

β = µCox
W
L

; and Cox =
εox

tox

With the advance of transistor technology on the upcoming decades, transistor mod-
els had to be constantly enhanced in order to incorporate newphysical-related technology
characteristics. Some of the most accurate and widely employed by industry Physics-
based transistor models are: MOS9 and MOS11 by Philips Semiconductor Research,
PSP by Arizona State University (ASU) and NXP (former Philips) (GILDENBLAT et al.,
2005), and the Berkeley Short-channel IGFET Model (BSIM) family. Regarding the
BSIM family, the most common versions are the BSIM version 3v3, BSIM3, and the
BSIM version 4 (HU, 2009), of which the latest version is BSIM4v6.4. PSP is a surface-
potential based MOS Model, which leads to a more accurate single-equation formulation
valid for the whole operation regime of the transistor than the voltage threshold based
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model BSIM (SCHOLTEN et al., 2009). Not only recent physics-based models like
BSIM4 and PSP take into account the relevant physical effects of the device, but they
also provide enhanced convergence during simulation due totheir continuity, i.e. the
source-to-drain current is a continuous function over the operation range. As an exercise
to illustrate the variability on the DC IV curve, let’s consider the single source-to-drain
current equation implemented by BSIM4 (HU, 2009):

Ids =
Ids0NF

1+ RdsIds0
Vdse f f

[
1+

1
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ln

(
VA

VASAT

)]

×
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(
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VASCBE

)
(2.2)

whereIds0 is the source-to-drain current valid from sub-threshold regime to strong inver-
sion regime, NF is the number of finger of the device,Rds is the drain-to-source resistance,
Vds is the effective drain-to-source voltage andVdse f f is the effective drain-to-source volt-
age,Cclm is parameter modeling channel length modulation. The variablesVADIBL, VADITS

andVASCBE model the Early Voltages due to Drain-Induced Barrier Lowering (DIBL),
Drain-Induced Threshold Shift (DITS) by Pocket Implant andSubstrate Current Induced
Body Effect (SCBE). For a detailed description on how to compute all these parameters
refer to Hu (2009). The intermediate variableVA is computed asVA = VASAT+ AACLM,
with (HU, 2009):

VASAT=

ESATLe f f +Vdsat+2RdsvsatCoxeWe f fVgse f f

[
1− AbulkVdsat

2(Vgse f f+2vt)

]

RdsvsatCoxeWe f fAbulk−1+ 2
λ

(2.3)

whereVdsat is the saturation voltage,Abulk models the bulk charge effect (Vth is not con-
stant along the channel whenVds 6= 0 due to non-uniform depletion width),Esat is the
critical electrical field at which the carrier velocity becomes saturated,Coxe is the effective
oxide capacitance,vsat is the saturation velocity ,We f f is the effective transistor width,vt

is the thermal voltage,λ models the non-saturation effects in P-type MOSFETS. Again,
refer to Hu (2009) for a detailed description of these equations.

Figure 2.2 presents a typical output of DC measurements of a sample of transis-
tors. In this case they come from a Monte Carlo simulation of I-V curves of a 32nm
Predictive Technology Model (PTM) device. Variability is modeled by assuming five
BSIM4 parameters as random variables:Lint(3σ = 3nm),Wint(3σ = 3nm),Toxe(3σ =
10%),µo(3σ = 5%),Vtho(3σ = 10%), which are in accordance with the International
Technology Roadmap of Semiconductors 2009 (ASSOCIATION, 2009). The linear and
saturation regions affect the circuit performance and the sub-threshold region implies in
variation of the leakage current. This exercise shows that for this set of parameter varia-
tions,Ion can vary by up to 40%.

2.2 Compact transistor variability model

Nominally identical devices end up having different I-V curves due to process vari-
ability. A compact transistor model aims at modeling the effects of one or many physical
sources of variation to the transistor I-V curve.
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Figure 2.2: Monte Carlo simulation of 32nm transistors I-V characteristic.

Although the quadratic model of equation 2.1 is innacurate to model current technolo-
gies, it shows that in a first order the most relevant parameters to expressIdsas a function
of Vds andVgsare the threshold voltageVt and current gainβ . This gives the designer
an opportunity: for instance by appropriately modifying the transistorVt in the netlist,
the designer can simulate the effect of a source of variability as RDF, RTS, NBTI and
even dimension-related issues such as LER (sources of variation are discussed in the next
chapters).

Figure 2.3 presents 3 possible methodologies for simulating variability in the I-V
curve of transistors. The simplest way is represented by figure 2.3(a): some electrical
simulators as HSPICE, SPECTRE and NGSPICE allow the user to specify a Vt shift dur-
ing instantiation of the transistor, but only for BSIM transistor models. This approach is
widely employed because of its simplicity and concordance with measured data (NASSIF
et al., 2007).

Another methodology consists of replacing the transistor by an equivalent circuit
which includes one voltage source in series with the gate (asfigure 2.3(b)) or one voltage
source in series with the gate and one current source in parallel with source and drain (as
figure 2.3(c)). The voltage and current source model variations in Vt and∆β/β , respec-
tively. The advantages of (b) and (c) are 1) independence on the transistor model and 2)
independence on the electrical simulator.

Figure 2.4 reports the simulation results ofVth and β of a 32nm statistical device
model. Comparison of this two-parameter compact variability model shows excellent
agreement with the reference Monte Carlo simulations on thefoundry variability model
(ZUBER et al., 2010).
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Figure 2.3: Compact variability modeling: (a) using simulator capability on instantiation;
(b) voltage source modeling variations in Vt; (c) voltage source modeling variations in Vt
and current source modeling variations in the current gain∆β/β .
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Figure 2.5: WD and D2D variations of fall delay and transition of a XOR2 gate.

2.3 Gate level

The propagation delay of a gate depends on the capability of its transistors to drive
current. These changes in the transistor I-V curve cause thecircuit metrics such as de-
lay, static and leakage power and noise margin to shift. A smaller current driven by the
transistor means larger propagation delay and lower dynamic power.

A variability transistor model is employed to simulate physical phenomena, e.g. vari-
ation in the number of dopant atoms, to the circuit-level metrics, e.g. delay and power,
through electrical simulation. Electrical simulation is very time consuming and it is a
common practice to break the design into small blocks, as forinstance cell characteriza-
tion in a standard cell flow. Special-purpose circuits, as for instance SRAMs and high-
frequency clock networks, are also validated by running electric simulations.

Figure 2.5 reports Monte Carlo simulation results of the spread of fall delay and tran-
sition time of a commercial 32nm XOR2 gate due to within-die (WD) variations for each
process corner (SS, FF, FS, SF). These corners (representedas large square dots) corre-
spond to D2D variations. On top of D2D variations, fall and rise delays are significantly
affected by WD variations.

2.4 Circuit (logic path) level

The last step of verification (before possible subsequent re-iterations) of the circuit
is the timing analysis. At this level, the circuit is represented as data moving from one
sequential element, e.g. FF or latch, to another. In a standard cell design flow the most
employed technique is Static Timing Analysis (STA) (BHASKER; CHADHA, 2009).

STA takes as input 1) the extracted netlist containing cellsand parasitics and 2) a
pre-characterized cell library containing information ondelay and power of each cell as
a function of its slew and load. STA performs a simulation at logic-level employing
graph traversal algorithms such as Critical Path Method (CPM), thus it is much faster
than electric-level simulation. It then computes the critical paths and their slacks. Slack
is the difference between the longest allowed time of a signal to propagate from the clock
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Figure 2.6: PDF of timing slack of two hypothetical paths reported by SSTA. Path #1 has
negative slack and must be fixed for violation.

sink to the target FF (required time) and the actual computeddelay (arrival time). Ideally
all paths would have slack=0. Positive slacks mean that the overall delay of the path can
be increased. This is done by re-sizing some gates in that path to smaller/slower ones in
order to reduce area and mainly power due to their smaller capacitance. Negative slack
results in a timing violation and the path must be made faster, what can be accomplished
by using stronger gates and buffers. Ultimately, STA detects two kinds of failures:

hold time violation when the data signal arrives too quickly at the target FF. It happens
when the clock signal arrives earlier in the source FF and thelogic path is too fast.
In this case the target FF can improperly store and propagatethe quick data of the
source FF in the same clock period, when it should propagate it only in the next
one.

setup time violation when the data signal arrives too late at the target FF. It happens
when the logic path is too slow and/or when the clock skew is such that the clock
signal arrives much earlier in the target FF. In this case thetarget FF fails to receive
the data in time, thus erroneously propagating the previousstored data.

Delay variations due to spatial and temporal variability may induce timing violations
(failures), which are not reported by the nominal simulation. Typically STA used to em-
ploy the concept of corners to guarantee the circuit to operate even in the presence of pro-
cess and environmental variations. In this scheme, the circuit is simulated in the fastest,
slowest and typical set of paramenters with which it is expected to operate, considering
all the transistor variability as being correlated. In sub-65nm technologies, where the
WD variability has surpassed D2D variability, corner-based analysis is inaccurate. Thus
in the last years much research has been promoted for Statistical Static Timing Analysis
(SSTA), which models gate delays as random variables and cancompute the statistical
distribution of slacks.

Figure 2.6 represents the slack probability density function (PDF) of two hypothetical
paths of a circuit. The slack of Path #1 has a high violation probability (≈ 4.8%), imply-
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ing as many as 4.8% of the fabricated circuits will present a violation in that path. An
optimization step must be run in order to fix the critical paths. This optimization step is
run until the circuit becomes timing clean and can be sent to tape-out. In this hyphotetical
scenery the tools inserts buffer elements to make the path faster, thus reducing the failure
probability of the path.
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3 SPATIAL VARIABILITY (PROCESS-INDUCED)

Variability in the manufacturing process, mainly due to doping and lithography, causes
variations on transistor threshold voltage, channel length and width. Although process
variation incurs shifts in critical dimensionsW andL, Tox, mobility and other physical or
electrical characteristics of the transistor, these components can be reduced to a compact
model where onlyVt represents the variations in I-V curves. Thus, the totalVt fluctuation
due to process variability is often modeled as a sum of independent sources of variations
(CATHIGNOL et al., 2008; YE et al., 2008; LI; YU; CHEN, 2007):

σ2
Vt,total = σ2

Vt,RDF +σ2
Vt,LER+ ... (3.1)

Nowadays the main sources of variation impacting the electric characteristic of tran-
sistors are Random Dopant Fluctuations (RDF) and Line Edge Roughness (LER) (CATHIG-
NOL et al., 2008).

3.1 Random Dopant Fluctuations

Advanced state-of-the-art process fabrication technologies nowadays employ effective
channel lengths smaller than 30nm. In these technologies, the number of dopant atoms in
the region where the inversion layer is formed is in the orderof just tens of atoms (REID
et al., 2008). Random Dopant Fluctuations (RDF) are the variations in the crystalline Si
structure due to the variations in the number of dopant atomsin the channel, as well as
due to their irregular distribution in the channel. RDF is represented in figure 3.1, which
was extracted from Hane (2003a).

RDF nowadays represents one of the greatest challenges for the microelectronics in-
dustry. Recent works compare different sources of process variability in a 45nm technol-
ogy node, including RDF, Line Edge Roughness (LER) and poly-gate granularity (PGG),
and concluded that RDF is the dominant intrinsic source of statistical variability in MOS-
FET transistors (CATHIGNOL et al., 2008; YE et al., 2008).

Calibrating the implantation process in such a way to complywith the requirements to
keep RDF under control is becoming more difficult with scaling. The challenges imposed
by RDF can make it infeasible to keep the – necessary – trend ofdownscaling MOSFET
transistors. The number of dopants are subject to a Poison distribution, and the uncertainty
of the number of dopants is in the range of 5-10 % of the total number of dopants for a
50nm MOSFET (BERNSTEIN et al., 2006).

At the circuit level, RDF is modeled as a source of threshold voltage variation which
affects each transistor independently of each other. RDF isan uncorrelated source of vari-
ability because assuming no systematic source of variationduring implantation (which is
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Figure 3.1: Random Dopant Fluctuations (Source: (HANE; IKEZAWA; EZAKI, 2003a))

the case) each transistor has a different number of dopant atoms, leading to a different
mobility µ0 and thus altering the I-V curve independently. The distribution of Vt due to
RDF is widely accepted to follow a Normal distribution, and such Normality is demon-
strated by Reid (2008). The 5-10% uncertainty in the number of dopants translate to a
variation in Vt ofσVt = 25−30mV, as reported by Bernstein (2006) and Reid (2008).

Vt fluctuations due to RDF have been modeled by Monte Carlo simulations of 3D
drift-diffusion (DD) models (STOLK; WIDDERSHOVEN; KLAASSEN, 1998). DD
models have presented enough accuracy and agreement with measured data for device
dimensions> 100nm. However, 3D simulations are computationally expensive and a
simple formula to computeσVt as a function of technology parameters is essential to the
circuit designer. In this sense, 3D simulations are required only at the phase of device
characterization, providing a simpler formulation to the designer. Since then, analytical
expressions forσVt could be derived by fitting the simulations data with formulas with
physical support. An expression forσVt is proposed by Stolk (1998) as:

σVt,RDF ≈
(

4
√

4q3εSiϕB√
3

)[
KBT

q
1√

4qεSiϕBNA
+

Tox

εox

](
N0.25

A√
WL

)
(3.2)

whereq≈ 1.602×10−19Coulombsis the elementary charge,εSi andεox are the permit-
tivity of the silicon and the oxide respectively,NA is the average channel doping density,
ϕB is the built-in potential,Tox is the oxide thickness,KB is the Boltzmann constant,T is
the absolute temperature, and finallyW andL are the device dimensions.

Nowadays the most accurate method for modeling theVt variations due to RDF is by
time-consuming 3D atomistic models considering the quantum interaction at sub-atomic
level. Asen Asenov’s research group at Glasgow University is well-known for their ca-
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pability of simulating RDF through atomistic simulation tools running in a cluster of
workstations. Their framework is capable of running Monte Carlo simulations with sam-
ple sizes of 100,000 (REID et al., 2008). Asenov 2003 proposes a corrected model forVt
uncertainty, which is:

σvt,RDF = 3.19×10−8
( toxN0.4

A√
Le f fWe f f

)
(3.3)

whereLe f f andWe f f are the transistor effective channel length and width respectively,NA

is the average channel doping density andtox is the oxide thickness. This newer model
is similar to the one proposed by equation 3.2, however the most important discovery
is the relationshipσRDF

Vt ≈ N0.4
A , which implies a much stronger dependence ofσVt on

NA then the previous model, which had an exponent 0.25 instead. The model has also
the advantage of being a very simple expression due to the constant 3.19×10−8, which
still holds for recent technology nodes, for instance the 65nm IBM technology node as
reported by Bernstein (2006).

3.2 Line Edge Roughness

Line Edge Roughness (LER) is the result of imperfections during the lithographic and
etching processes, affecting the shape of the edges of the transistor critical dimensions
(CD). LER causes channel width and length (specially and most critically for digital cir-
cuits is the channel length, which is usually the minimum dimension allowed by the tech-
nology) in such a way that the line edges are no more rectilinear as drawn in the layout.
Instead, these lines become rough edged. LER is illustratedin figure 3.2, which presents a
3D transistor. In figure 3.2 the depletion channel is drawn inyellow, source and drain are
red and substrate is blue. Notice the non-uniformity of the channel, which ideally should
be a straight line.

LER is also referred to as Line Width Roughness (LWR). LWR refers to the width
variation from one side of the rectangular shape to the other, while LER refers to the
distance between the edges of one side with respect to the nominal line. Currently, ITRS
estimates that for 32nm and 22nm half pitch technologies to be feasible, 3σLWR≈ 3−4nm
must be reached (VAGLIO-PRET; GRONHEID; FOUBERT, 2010). This is still an open
problem for the manufacturing industry and must be solved inthe next years in order to
keep pace with downscaling.

In the last decade many efforts have been made in order to model LER (HANE;
IKEZAWA; EZAKI, 2003b; ASENOV; KAYA; BROWN, 2003; HYUN-WOOet al.,
2004). LER can be divided into two components: 1) low-frequency LER, also called non-
rectangular gate (NGR) and 2) high-frequency LER. Due to itsstatistical nature, LER
causes variability in the I-V characteristic of the transistors. For digital circuits, LER can
be modeled as a source of variation that impacts the transistor Vt, which can then model
the variations caused inIon and Io f f (YE et al., 2008). Cao (2008) from Arizona State
University employed 3D atomistic simulations to evaluate the impact of LER toσVt and
proposed an expression of Vt as:

σ2
Vt,LER=

C1

e
2L
l ′
×Wc

W
×σ2

L (3.4)

whereC1 andl ′ are technology related coefficients,Wc is the correlation length of NGR,
W andL are the transistor width and length. The study shows thatIon (and thus Vt) has an
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Figure 3.2: 3D Device simulation shows Line Edge Roughness in one transistor (Source:
(ASENOV; KAYA; BROWN, 2003))

exponential dependence on gate length, and this is due to Drain-Induced Barrier Lowering
(DIBL). This exponential relationship is an important finding because it predicts that LER
is going to get much more exacerbated as L shrinks unless the technology constantsC1
andl ′ improve due to considerable process improvements.

ConsideringσL = 2−3nm, which is in accordance to ITRS for a 32nm technology
node, the simulations performed by Ye (2008) of a 30nm deviceshowσVt,LER≈ 10−
20mV.

3.3 Discussion

This chapter aims at presenting to the reader basic knowledge on sources of random
process variations. The main sources of random variation affecting integrated circuits are:
Random Dopant Fluctuations and Line Edge Roughness. They have in common the fact
that they are not transitory nor time dependent. This characteristic differentiates them
from time dependent issues, which is presented in the next chapter.
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4 TIME-DEPENDENT VARIABILITY

The lifetime and reliability of digital circuits are being affected by the degradation
of the electric characteristics of the transistors over time. The physical characteristics of
the transistors suffer from significant degradations, causing changes in the electrical char-
acteristics, specially the voltage threshold (Vt). The random switching between discrete
levels ofVt over time is referred as Random Telegraph Signal (RTS). The systematic
degradation of an electrical parameter over time is calledaging. The main factors re-
lated to aging areNegative Bias Temperature Instability(NBTI) andHot Carrier Injection
(HCI).

4.1 Random Telegraph Signal (LF Noise)

Low Frequency (LF) noise is a performance limiting factor for deep sub-micron CMOS
devices. In these devices, LF noise is dominated by multipleRandom Telegraph Signals
(RTS). This noise is due to succeeding electron capture and emission by a number of
Ntr traps distributed according to a Poisson distribution at the Si-SiO2 interface, as rep-
resented in figure 4.2. This phenomena causes oscillations in the transistor currentIds,
as represented by figure 4.1. Noise performance may stronglyvary between different de-
vices in the same chip, and moreover even between different operation points of a single
transistor. Variability inVt due to RTS has already been reported to be a problem for
SRAMs and flash-memory (AGOSTINELLI et al., 2005; TEGA et al., 2006). Memory
cells are usually the first ones to be affected by new sources of performance variability,
because of their small dimensions, what is needed to achievehigh integration density.
With scaling, these sources of variability may also affect other circuits.

Until recent years, statistical models for RTS focused on the frequency domain. This
is suitable for analog circuits, whose design and analysis are performed in the frequency
domain. However, for digital circuits an appropriate time domain statistical analysis is
needed, since these circuits are analyzed and designed using time domain metrics. Aim-
ing at addressing this issue the work entitledAn appropriate model for the noise power
spectrum produced by traps at the Si-SiO2 interface: a study of the influence of a time-
dependent Fermi-level, by Roberto da Silva and Gilson I. Wirth, presents for the first time
a comprehensive model for the RTS in time domain, deriving the relevant statistical pa-
rameters. This methodology for modeling RTS as a source ofVt variation is described
and extended to consider the density of charges in the channel, as proposed by Gilson
Wirth.

The variations in drain current can be modeled as transient changes in threshold volt-
ageVt. It is already well established that the variation in drain current due to RTS can
be modeled as transient changes in gate bias (WIRTH et al., 2004; Wirth; da Silva; Bred-
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Figure 4.1: Time domain measurements of a stationary randomtelegraph signal (RTS).
Discrete fluctuations are observed in the drain current. Thelow−Vt state corresponds to
the state where the trap is electrically neutral (empty). The high−Vt state corresponds
to the state where the trap is electrically charged. (Source: (SILVA; WIRTH; BREDER-
LOW, 2006))

Figure 4.2: Trap-detrap of electrons at the Si-SiO2 interface.

erlow, 2007), induced by electron trapping and emission. The drain current fluctuation
caused by the RTS from thei− th trap may be expressed as∆Idsi =−gm∆Vti wheregm
is the trans-conductance (SONODA et al., 2007). This approach is adequate to model
RTS as a dynamic source ofVt variation. In circuit analysis, this source of variation may
be included as one more parameter that can cause circuit performance variability, in addi-
tion to the other sources, as for instance the static, time independentVt variations caused
by random dopant fluctuations (HANE; IKEZAWA; EZAKI, 2003b). The proper model-
ing of this effect becomes of increasing relevance, since itmay lead to different results
between subsequent measurements (or test) of the same circuit. This poses a challenge
not only for the circuit designer, but also for the test engineer.

This section presents a comprehensive statistical study ofRTS in time domain, and
provides appropriate equations for circuit analysis and electrical simulation. These equa-
tions allow quantifying the impact of RTS on the reliabilityof MOS circuits at higher
levels of the design.
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The model presented in this section takes into account the position of the trap along
the source-drain line of the transistor, as well as the distance of the trap from the inver-
sion layer (position with respect to the Si-SiO2 interface). Three different charge density
models are proposed: constant, linear and exponential charge densities. This work reveals
that in the case of the charge density being linear or exponential along the channel, the
statistics of RTS noise is very different from the simple constant model. The reason to
consider charge densities different from constant is that for large source-drain bias the
channel charge density decreases from source to drain (TSIVIDIS, 2004), although for
small source-drain bias the charge density is approximately constant along the channel.

Section 4.1.1 shows the methodology for computing the total∆Vt caused by all the
traps in the transistor as a function of the impact of one trap: δvti . Section 4.1.2 presents
the foundations to model theVt shift due to one single trap, while section 4.1.3 shows a
detailed formulation which takes into account charge density varying along channel.

4.1.1 Model derivation

The capture and emission of electrons at the interface trap may be modeled as a two-
state fluctuation of the threshold voltageVt. If the trap is empty we consider theVt
fluctuation to be zero. If an electron is trapped we consider theVt fluctuation due to the
ith trap to be equal toδvti . In this manuscript we express the threshold voltage fluctuation
caused by one single trapi asδvti , while the total transistor threshold voltage fluctuation
(caused by the combined effect of all traps) is∆Vt.

Trapping and releasing of an electron by a single trap is a Poisson process. The ef-
fect of δvti due to separate traps is additive (MACHLUP, 1954). In the worst case, at
a given time all the traps found in a device may be occupied or empty, leading to large
∆Vt. Hence, a statistical treatment of the problem is demanded.The relevant statistical
parameters are hereby derived.

In the random telegraph signals,si = 0,1 denotes the state of thei− th trap (0=empty
or 1=occupied), the Fermi-Dirac statistics governs the probability of transition:

Pr(si = 0→ si = 1)dt =
dt

10pi [1+exp(−qi)]
=

dt

τ(i)
c

Pr(si = 1→ si = 0)dt =
dt

10pi [1+exp(qi)]
=

dt

τ(i)
e

whereτc andτe are the time constants of the Poisson process: the average times of emis-
sion and capture of the trap, respectively given by:

τ(i)
c = 10pi [1+exp(−qi)] (4.1)

τ(i)
e = 10pi [1+exp(qi)] (4.2)

The time constants are dependent on the transistor bias, which are expressed as a
function of the Fermi-Level of the transistor as in:

qi =
(E(i)

T −Ef )

KBT
(4.3)

whereE(i)
T is the energy within the band-gap of thei − th trap, Ef is the Fermi-level

energy,KB = 1.3806568×10−23J/K the Boltzmann constant andT is temperature.
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At this point lies the essential difference between the static model presented in this
section and the dynamic model developed later on section 4.3. Dynamic trap-detrap sim-
ulation is more complex and takes into account the bias of thetransistor at each timestep
of the simulation. That causes the time constants, as well asthe probabilities of capture
and emission, to vary over time. The simpler static model presented in this section, on the
other hand, does not computeτc andτe using the proper equation 4.2. This static model
assumes the voltage threshold fluctuation of a transistor asstatic and voltage-independent
through the whole simulation:∆Vt is computed at the beginning of the simulation and
is modeled as a staticVt fluctuation by the electrical simulation. The model assumes

that−Q < qi < Q can be considered a uniform random variable and thenτ(i)
c , τ(i)

e are

identically distributed, i.e.,
〈

τ(i)
c

〉
= 〈τc〉 and

〈
τ(i)

e

〉
= 〈τe〉 for i = 1,2, ...,Ntr. The input

parameterQ corresponds to half of the band-gap width, which is around 2 eV in the case
of Si (SILVA; BRUSAMARELLO; WIRTH, 2010).

Here, pi is also a random uniform variable within an intervalpmin < pi < pmax and
in this case in the frequency domain, we can establish an important connection. The
power spectrum density corresponding to the noise from thei-th trap is a Lorentzian func-

tion Si( fi) = (A2
i / fi)

[
1+( f/ fi)2

]−1
where fi = 1/τ(i)

c + 1/τ(i)
e is the corner frequency

corresponding to the trap andAi is its amplitude (MACHLUP, 1954; SILVA; WIRTH;
BREDERLOW, 2006; WIRTH et al., 2005; WIRTH; SILVA; BREDERLOW, 2007). It is
possible to conclude thatfi = 10−pi and due to thisfi is uniformly distributed in a log10

scale. That results in a probability distributionh( fi) = [ln10 (pmax− pmin) fi ]
−1 for the

corner frequencies (this assumption will be used from now onin this work) (KIRTON;
UREN, 1989). From this approach, we can calculate

Pr(si(t) = 0) =
τe

τe+ τc

Pr(si(t) = 1) = 1−Pr(si(t) = 0) =
τc

τc + τe

wherePr(si(t) = 1) is the probability of theith trap being occupied (i.e., the RTS being
in the “1” state), andPr(si(t) = 0) is the probability of theith trap being empty (i.e., the
RTS being in the “0” state).

Thus the threshold voltage fluctuation∆Vt which models the current fluctuation of the
transistor at timet due to all the traps is computed by

∆Vt(t) =
Ntr

∑
i=0

δvti ∗si(t) (4.4)

whereNtr is the number of traps andδvti for i = {1, . . . ,Ntr} is the instantaneous voltage
threshold fluctuation when trapi is occupied. The amplitudesδvti are random variables
and our results will be dependent on its first and second moments, respectively〈δ 〉 and〈
δ 2
〉
. Thoseδvti can be obtained by experimental measurements ofδ I

Ids
. Although there is

a lack in the Literature for accurate modeling of the currentfluctuation due to one single
trap in deep sub-micron technologies (DSM) technologies, the next section presents a
well established model for computingδ I

Ids
, which can be used as an approximation.

4.1.2 Computingδvti

When one electron is captured by the trap located in the SiO2 the number of charge
carriers in the channel is affected and the totalIds current will decrease because of the loss
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of the trapped electron. On the other hand, the subsequent emission of the electron will
cause an increase in theIds current. The fluctuation on the total current flowing through
the transistor channel due to one single trap is (SIMOEN et al., 1992):

δ Ii
Ids

=
gm

Ids
· q
We f f ·Le f f ·Cox

where δ Ii
Ids

is unit-less,gm is the trans-conductance inAV−1 , Ids is the source-to-drain
current inA, We f f and Le f f are the effective transistor dimensions inm, Cox is oxide
capacitance inF/m2, q is the elementary charge given by 1.602×10−19C. Sinceδ Ii =
−gmδVi , we arrive at the suitable formulation for theVt instantaneous fluctuation due to
one single trap:

δvti =
q

We f f ·Le f f ·Cox
(4.5)

whereδvti is inV.
Based on this expression, it is possible obtain the analytical expression of the volt-

age fluctuation as a function also of the location of the trap in the oxide (GHIBAUDO;
BOUTCHACHA, 2002):

δvti =
q

We f f ·Le f f ·Cox
·
(

1− xti
tox

)
(4.6)

where 0≤ xti ≤ tox, xti is the location of trapi (how deep it is in the oxide thickness) and
tox the oxide thickness. From this expression, we see that trapslocated closer to the Si-
SiO2 interface affect the threshold voltage more than traps far from the interface. In this
work we assumexti to be uniformly distributed in the interval[0, tox], what is in accor-
dance to Chadwin (2009). However this assumption does not imply any loss of generality
to the RTS model proposed in this manuscript if another distribution is experimentally
observed.

4.1.3 Non-Uniform charge density

Section 4.1.2 presented a first principle model that may be a good approximation
for the statistics of the current fluctuation caused by a trapif the transistor is operated
with small source-drain bias. In this case the inversion carrier density is approximately
uniform along the channel. If the transistor is operated with large source-drain bias the
charge density will not be uniform along the channel. For large source- drain bias the
charge density may be a strongly non-linear function of the position along the channel
(TSIVIDIS, 2004). In this section we present a more detailedmodel for dI/Ids and
subsequentlyδvti that takes into account the charge density and models it as a function of
the location of the trap position along the channel (along the source to drain direction). It
is known that if the charge density is not uniform along the channel the amplitude of the
current fluctuation caused by the trap depends on position inthe channel (ALEXANDER
et al., 2005; LEYRIS et al., 2007; VASILESKA; KHAN; AHMED, 2005).

Figure 4.3 shows three assumptions that can be made regarding the charge density
varying along the transistor channel of deep sub-micron length: (a) charge density is
constantly distributed along the channel length axis, (b) charge density is larger at the
source and it decreases linearly along the channel and (c) charge density is larger at the
source and decreases exponentially along the channel (as anexample of a strongly non-
linear dependence of carrier density on channel position).
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(a)

(b) (c)

Figure 4.3: (a) Charge density constant along the channel; (b) charge density decreases
linearly from source to drain; (c) charge density decreasesexponentially from source to
drain.

These three scenarios can be modeled by multiplying equation 4.6 byα(xli) which is
a function of the locationxli of the trap along the length axis as in:

α(xli) =






kc constant

kl · xli
Le f f

+cl linear

exp
(

ke · xli
Le f f

)
+ce exponential

(4.7)

where 0≤ xli < Le f f is the location of the trapi = 1, . . . ,Ntr in relation to the channel
length,kc, kl , ke, cl andce are fitting constants. The trap locationxli can be modeled as a
random variable following a given distribution which can bedetermined experimentally.
In this work it is modeled as uniformly distributed along thechannel length, which is in
agreement to the experimental findings of Saks (1990).The threshold voltage fluctuation
caused by the occupation of one trap considering the location of the trap in the channel
then becomes:

δvti = α(xli) ·
q

We f f ·Le f f ·Cox
·
(

1− xti
tox

)
(4.8)

In 2010, as a result of a scientific cooperation with Arizona State University, we have
been able to obtain atomic-level simulation data of the fluctuation ofVt caused by trapped
charges as a function of their position along the transistorchannel . These 3D atomistic
simulations, described in depth by Camargo (2010), were performed by Nabil Ashraf and
Dragica Vasileska. Figure 4.4 shows the average threshold voltage variation in relation to
the trap position for 20 devices with different random dopant distributions. The source of
the channel is at x = 0. The figure shows a clear trend of the impact of a trap toVt being
inversely proportional to its distance along the channel. No conclusion can be drawn
whether the best fit is a linear fit or an exponential fit. Since their ad justed−R2 are
respectively 0.61 and 0.56, for this sample the linear fit canbe considered slightly better
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Figure 4.4: Threshold voltage variation due to traps located at the semiconductor/oxide
interface and different positions along the middle sectionof the channel.

than the exponential fit. However the sample size is too smallto draw a final conclusion.
It is visually shown by Camargo (2010) that a 3rd-order degree polynomial presents a
good fit.

The most important fact is that quantitatively these experimental data confirm the the-
oretical assumption we have proposed in (BRUSAMARELLO; WIRTH; SILVA, 2009):
the impact of a trapped charge onVt depends on the position of the trap along the channel.
The model proposed in Brusamarello (2009) was the first RTS model to take this effect
into account.

4.1.4 Simulations

We have computed the distributions of∆Vt of the transistors of a SRAM cell using the
three proposed dependencies of the trap position along the gate length on current: con-
stant, linear and exponential. Simulations were performedon the PTM 65nm technology
node (CAO; MCANDREW, 2007). We assume the number of trapsNtr in the interface
to follow a Poisson with rateλ = 3. This value is extracted from table I of Wirth (2005),
properly scaling the experimental data of that work to the PTM 65nm technology node.

Figure 4.5 shows (y-axis is in logarithmic scale) the probability density function
(PDF) plots (Kernel Density using a Gaussian and bandwidth=0.5) of 10,000 Monte
Carlo (MC) simulations of the∆Vt of one NMOSFET transistor of a SRAM cell by
using the proposed model. The parameters values of the transistor are Leff=24.5nm and
Weff=80nm, extracted from PTM 65nm technology node and in accordance to Cao (2007).
The curve corresponding to no dependence either onxl or xt is using equation 4.5, while
the others use equation 4.8 (where the dependence onxl andxt are taken into account).
We used constants to fit our results with the MC simulations ofthe current fluctuation
due to one single trap performed by Alexander (2005). In the constant casekc = 3, in the
linearkl = 6 andcl = 0, and in the exponential formulationke = 2.198 andce = 0.

In all cases there is a peak near 0: nearly 20% of the transistors have∆Vt = 0. This case
means that either all the traps of the transistor are empty orthe transistor has no traps at
all (the number of traps follow a Poisson distribution).In this case the current fluctuation
must be 0. However, the probability of RTS causing aVt shift greater than 20mV can
be more than 20%. The maximum number of traps found in our simulation was 6, while
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Figure 4.5: Distribution of∆Vt of one transistor caused by RTS, considering the three
dependencies on the trap position (y-axis in logarithmic scale).

the minimum was 0 and the average is 3. The worst case occurs when all the traps are
occupied and the fluctuation can be up to 50mV (which can happen at a rate of 10−4).

The PDF of shifts inVt does not follow a Normal distribution. The case where no
length and tox dependence are considered,∆Vt = 20.4mV and σ∆Vt = 15.8mV; con-
stant length dependence has∆Vt = 10.2mV and σ∆Vt = 9.2mV; linear length depen-
dence presents∆Vt = 10.2mV andσ∆Vt = 10.6mV; exponential length dependence has
∆Vt = 12.1mV and σ∆Vt = 12.9mV. Refer to da Silva (2011) for a detailed study on
distributions of particle retention time phenomena.

Notice that the case which considers no dependence on the trap position is the worst
case scenario becauseδvti is always maximum and then∆Vt is dependent only on the
number of traps being occupied. The distribution in this case is discrete and follows a
Binomial Distribution, which in this limit is a Poisson Distribution.

4.2 Negative Bias Temperature Instability

Bias Temperature Instability (BTI) is a physical phenomenon related to the genera-
tion and/or activation of states in the the interface between silicon and silicon oxide, and
trapped charges in the oxide. The mechanism is accelerated by temperature and voltage
bias, regardless of current flow (GRASSER et al., 2009).

Because of BTI the electrical characteristics of the transistor shift over time. It causes
the absolute decrease of theOn currentIon and transconductancegm, while causing the
increase of absolute values of theO f f currentIo f f and threshold voltageVt. The effect
of increasedVT is equivalent as applying a voltage offset toVg.

The most interesting characteristic of BTI is its dual-stage mechanism: stress and
recovery, as represented in the scheme of figure 4.6. The device is under stress when
voltageVgsis applied to the gate of the transistor over a period of time and itsVt increases
(degrades). However when the stress voltage is removed the devices goes to the recovery
phase: itsVt partially recovers to the level prior to stress.

In reality, a device is constantly switching between stressand recovery. Because BTI
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Vt(t)

Time

stress recovery
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Figure 4.6: The two stages of NBTI: stress when device is biased and recovery. The
transistor does not fully recover.

exhibits this complex stress and recovery behavior during dynamic circuit operation, the
amount of degradation depends on the stress history of the transistor. This history is rep-
resented within the concept of duty cycle, which is the ratiobetween the device operating
in stress and relaxation. Devices in arithmetic and memory circuits tend to present un-
balanced duty cycle, while devices on clock circuitry is an example of a duty cycle of
50%.

The BTI effect is observed in both NMOS and PMOS field effect transistor devices,
and both are susceptible to Positive Bias Temperature Instability (PBTI) and Negative
Bias Temperature Instability (NBTI). Huard (2006) have studied the impact of BTI in
four scenarios: 1) NMOSFET biased with Vg>0, 2) NMOSFET biased with Vg < 0, 3)
PMOSFET biased with Vg > 0 and 4) PMOSFET biased with Vg < 0. Thework clearly
demonstrates that PMOSFETs are more susceptible to BTI, regardless of positive or neg-
ative bias. The PMOSFET withVg< 0, or NBTI in P-type MOSFETs, is the case that
presents the largestVt shift. This is unfortunate, since in digital circuits PMOSFETs are
negatively biased. This is the reason why BTI is often referred to as NBTI and attributed
to causeVt shifts in P-type MOS devices only.

Thus, from the circuit designer perspective, BTI causes theIds-Vds curve of the tran-
sistor to systematically shift over time. As described in chapter 2, these variations in the
I-V curve over time can be accurately modeled by a compact model assumingVt as the
only parameter dynamically increasing over time. These degradations can result in speed
degradation of the logic cells over time.

In the last decade, accurately modeling NBTI has become a major concern for in-
dustry. The systematic degradation of the transistor over time potentially means circuit
failures in the field that could not be detected by current test methodologies. There are
many theoretical and experimental analysis of NBTI in the Literature, and until very re-
cently the most accepted theory was the reaction-diffusionNBTI model. These models
assume the generation of traps in the Si-SiO2 interface whenbias is applied at the gate
and subsequent annealing of these traps when the stress is removed. These reaction-
diffusion models have been successful and widely employed by industry to predict safe
guard-bands given by the maximum voltage threshold degradation the transistor could
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Figure 4.7: Distribution of NBTIVT shift (colors stand for 3 different levels of NBTI
stress) varies over approximately 100 mV in SRAM-sized pFETs (Plot is a courtesy of
Ben Kaczer, source (HUARD et al., 2008)).

present after a number of years. When this thesis project started back in 2008, our first
works on NBTI consisted of using a reaction-diffusion basedformulation to compute the
Vt degradation of the transistor, and then simulate the impact of NBTI on small circuits.
Thus, the reaction diffusion model is firstly discussed in section 4.2.1.

However, reaction-diffusion models have failed to agree with experimental measure-
ments. When the bias is removed from the device, there are twostages of recovery: a fast
recovery component and a slow recovery component. The reaction-diffusion model can
only predict the slow recovery but cannot explain or model why there is a fast recover,
which occurs right after the stress is removed. The fast recovery component is very im-
portant because during normal circuit operation the transistor is often switching between
stress and recovery. Recent experimental data from IMEC suggest there might be a rela-
tionship between NBTI and RTS (KACZER et al., 2011). Following a cooperation with
IMEC, our group at UFRGS has been making significant progresson modeling NBTI as
a trap-detrap phenomena, similarly to RTS. Section 4.2.2 presents a recent study on the
component of NBTI caused by emission and capture of electrons by traps.

The figure 4.7, extracted from (HUARD et al., 2008), presentsthe results of measure-
ments of nano-scale devices under different stress conditions (HUARD et al., 2008). This
plot shows sample distributions ofVt shifts caused by NBTI as probit plots. The x-axis
represents the amount ofVt shift in V, while the y-axis is in probit scale and shows the
probability of that value within the sample, i.e. the average of the sample is the point
in the x-axis projecting to 50% in the y-axis. In a probit-plot a Normal distribution is a
straight line. For all the measured conditions (different stresses),VT shift of the transis-
tor is not Normal .VT shift caused by NBTI varies from almost zero in some pFETs to
approximately 150 mV in other devices, depending on the stress condition.
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Figure 4.8: The reaction-diffusion NBTI model proposes that during stress holes are
trapped in the SiO2-Si interface due to the break of the hydrogen-silicon bonds at the
interface.

4.2.1 Reaction-Diffusion Model

The reaction-diffusion NBTI model proposes that during stress holes are trapped at the
SiO2-Si interface due to the break of the bonds between hydrogen and silicon atoms at the
interface, as represented by figure 4.8 . When the stress voltage is removed from the gate,
the Hydrogen slowly returns to the Si-SiO2 interface by diffusion, the bonds are restored
and the driving strength of the transistor is recovered (WIRTH; SILVA; KACZER, 2011).
The electric field, temperature and concentration of holes influence the process.

Different devices degrade at different speeds. As a result,not only the mean value
of the threshold voltage varies over time, but the standard deviation (variability) ofVt

between devices also increases. Statistically, this effect can be expressed in terms of an
average and standard deviation of threshold voltage depending on time and duty cycle
(the stress/recovery ratio). The equation according to thereaction-diffusion model for the
Vt degradation as a function of timet is given by Vattikonda (2006):

µ∆Vt(t) =
q×NIT

Cox
(4.9)

whereCox = εox
/
tox is the oxide capacitance,εox andtox are the oxide permittivity and

thickness respectively. One of the most important parameters to define the fluctuation of
Vt due to NBTI in the reaction-diffusion model is the number of interface traps, defined as
NIT . The number of interface traps can be defined as a static modelor a dynamic model.
The static model is simpler and gives an upper bound for NBTI,and can be computed as

NIT,static(t) = (K2× t
1
2 +c

1
2n )2n (4.10)

wheret is time in seconds, c is the initial number of interface traps, the constantn is
the coefficient of diffusion, which is related to the fabrication process and must be fitted
experimentally . According to Mahapatra (15-19 April 2007), if the diffusion species is
H2 thenn≈ 0.16 However if the diffusion species isH, thenn≈ 0.25. Also,K is the
generation rate ofNit and can be computed as:

K ≈
√

Cox(Vgs−Vth)×e
Eox
E0 ×e−

Ea
kT (4.11)
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whereCox is the oxide capacitance,Eox=
(Vgs−Vth)

tox
is the electric field at the oxide,k is the

Boltzmann constant,Ea andEo can be obtained by fitting. According to Rakesh (2006),
E0≈1.9MV/cmandEa≈0.12eV. Thus, a simplified form ofK is proposed by Rakesh (2006)
as:

K ≈ 1− Vds

α(Vgs−Vth)
(4.12)

whereα ≈ 1.3 for a 0.25µm technology node. The static model is suitable for circuit
characterization because it does not consider the two states of trap generation: stress and
recovery. Thus, it gives an upper bound to the effect of NBTI because it does not fully
consider its dynamic mechanism. A more accurate model is dependent on the state ofVgs.
WhenVgs=VDD the number of interface traps reduces in such a way that if thetransistor
stays in that state for some time most of its current strengthcan be recovered. A more
accurate formulation for the number of interface traps is then proposed by Rakesh (2006)
as:

NIT,dynamic(t) =






√
K2(t− t0)1/2 +N2

IT0+δ ; Vgs 6= Vt ; stress

(NIT0−δ )(1−
√

η (t−t0)
t ); Vgs≈Vt ; recovery

(4.13)

whereη andδ are constants of proportionality that must be obtained by fitting experi-
mental measurements. For a technology node with minimal critical dimention of 0.13µm
Rakesh (2006) proposesη = 0.35. This dynamic formulation is more accurate than the
static one, and shows better agreement with the experimental results of Rakesh (2006).
However the static approach is simpler to implement and can be more valuable to many
simulation applications where the designer does not have fine-grain control on the volt-
ages being applied, as for instance cell characterization.Moreover, the dynamic approach
is more accurate than the static one only if the circuit is simulated over a long period of
time.

Correct modeling of NBTI is very difficult mainly due to the fact that both the theoret-
ical mechanism of generation and activation of traps and theframeworks for measuring
NBTI are not a consensus in the scientific community. In the next few years the cor-
rect modeling of NBTI must evolve to a consensus so that its effect to next technology
nodes can be modeled. Thus, the Vt fluctuation due to NBTI can be modeled as a random
variable to correct for modeling and measurements discrepancies, as well as capture the
statistical nature of the phenomena. Kang (2007) proposes to assume Vt shift as a random
Normal variable, where its variance as a function of the timet is given by:

σ2
VtNBTI

(t) = σ2
NIT

(
q

Cox

)2

=
q×Tox×µ∆Vt (t)

εox×AG
(4.14)

whereAG is the area of the device.
Then, the Vt of the transistor at a given time can be computed by assuming Vt as a

random variable following a Normal distribution with mean given by expression 4.9 and
standard deviation given by equation 4.14, as in:

Vt(t) = Vt0+N(µ∆Vt,NBTI(t),σ∆Vt,NBTI(t)) (4.15)
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Figure 4.9: Measurements of a 70× 90nm2 NMOS device from (KACZER et al., 2011).

Such simple compact model can then be employed for simulating the impact of NBTI,
as well as of another source of variation, in digital circuits. The difference between this
variation and spatial sources is its dependence on time and duty cycle.

4.2.2 Charge Trapping Component of BTI

Recently Wirth (2011) presented a theoretical analysis, Monte Carlo simulations and
experimental investigation of the charge trapping component of BTI. The model presents
a novel analytical model for both stress and recovery phasesof BTI. The new charge trap-
detrapping BTI model explains BTI as a series of emission andcaptures of electrons. The
theory does not make physical assumptions regarding the generation of new traps, as done
by the reaction-diffusion model. There may or may not exist amechanism of generation
of new traps in the interface or oxide. Still, one portion of the traps contributing to BTI
are traps that could be as well described as contributing to RTS, but the following aspects
should be regarded:

• the traps causing BTI show a difference of many orders of magnitude with respect
to their probabilities of capture and emission;

• the traps contributing to RTS noise have probabilities of capture and emission in
the same order of magnitude.

Interestingly, recent experimental works based on device measurements suggest this
relationship between the fast recovery component of NBTI and RTS (KACZER et al.,
2009, 2011). Fig. 4.9 illustrates the fast recovery of NBTI after stress removal. During
NBTI stress, traps are occupied. After the removal of the stress, the system relaxes to-
wards a steady-state RTS through a series of individual displacements. For this device,
four discrete displacements are clearly visible, meaning four traps have been occupied
during stress.

Similarly to RTS, the totalVt fluctuation of a transistor due to the combined effect of
all the traps at a time instantt is given by:

∆Vt(t) =
Ntr

∑
i=0

δvti ∗si(t)
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Figure 4.10: Scheme of the Markov Chain process of emission of capture of traps in a
transistor

whereNtr is the number of traps given by a Poisson distribution with mean λNtr as in
Ntr = Poisson(λNtr). The mean of the Poisson(λNtr) is a function of (1) the interface
technology, for instance transistors manufactured with high-k materials have more traps
than those employingSiO2, and (2) the gate area, since larger transistors have proportion-
ally more traps.

The figure 4.10 is a representation of the trap-detrap mechanism (SILVA; LAMB;
WIRTH, 2011). Each transistor contains a number of traps, which at a given instant of
time can be occupied or empty. Each trap is a stochastic process over time known as a
Markov Chain, where the probability of a state transition isgoverned by a given statistics.
Depending on its current state, each trap has a probability of capturing or emitting a
electron (peandpc). These probabilities are computed as (da Silva; Wirth, 2010):

pc= Pr(σi(t) = 0→ 1) =
∆t
τc

pe= Pr(σi(t) = 1→ 0) =
∆t
τe

(4.16)

where∆t is the time interval,τe andτc are the average emission and capture times. As an
example, if a trap hasτe = 1nsandτc = 2ns, that trap will capture one electron every 2ns
and emit it in approximately 1ns on average. The average emission and capture timesτe

andτc are given by:

τe = 10−pi(1+exp(
Ef −Ei

KbT
)

τc = 10pi(1+exp(
Ei−Ef

KbT
) (4.17)

where for a given trapi, Kb is Boltzmann constant,T is the device temperature in Kelvin,
Ef is the Fermi-level of the transistor,Ei is the energy level of the trapi, andpi is the time
constant of that trap. The traps have energy levels within the forbidden band-gap and the
distribution of their energy follows an U-shape distribution (WIRTH et al., 2009; WIRTH;
SILVA; KACZER, 2011), as discussed in section 4.3.2. The Fermi-level depends on the
voltage at the transistor terminals and is accurately computed in our model as explained
in section 4.3.1.

4.3 Time-dependent trap-detrap simulation

In the time domain, capture and emission of charge carriers by traps in the transistor
silicon oxide and in theSi−Si02 interface cause fluctuations of the current of the transistor
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Figure 4.11: Trap-detrap of charges at the Si-SiO2 interface due to RTS and NBTI. Traps
contributing to RTS show similar probabilities of capture and emission, while traps con-
tributing to NBTI may have emission and capture times differing by many orders or mag-
nitude.

over time, even whenVgs andVds are constant over time. The amplitudes of these
fluctuations are discrete: when trapi captures a charge carrier, the currentIds decreases
by ∆Idsi. The state of all the many traps in the interface add up to the total current
fluctuation at a given instant of time.

This section explains the implementation, made possible bymodifying the BSIM4
source code, and the results of the time-dependent trap-detrap simulation methodology
proposed by Wirth (2011). This new model unifies BTI and RTS assimilar sources ofVt
fluctuation varying over time. These fluctuations are function of the occupation level of
the interface states and oxide traps causing the phenomena.

The scheme of figure 4.11 represents the similarity and difference between RTS and
BTI in the model. Both RTS and BTI are caused by traps on the interface and dielectric
of the transistor. Traps contributing to RTS emit and capture charges at similar rates. On
average the trap is at an occupied state the same amount of time it is at an empty state, and
this behavior impacts the standard deviation ofVt, while the averageVt is constant over
time. The experimentally relevant average capture and emission times of traps causing
RTS is typically in the order of seconds to pico-seconds.

On the other hand, NBTI is caused by traps with very unbalanced average time of
capture and emission. When the transistor is not biased (recovery phase), the capture
probability of the trap is very small, and thus it is at an empty state. Theoretically, when
a bias voltage is applied (stress phase), the Fermi level of the transistor changes and
the probability of the trap capturing a charge increases. Eventually when the transistor
is biased one charge is captured,Ion current decreases andVt increases, as the typical
NBTI behavior in the stress phase. This highly unbalanced capture/emission rate impacts
the average value ofVt over time.

4.3.1 Fermi level approximation

As expressed by equation 4.17, the average times of emissionand captureτe andτc

depend on the Fermi Level of the transistor. The Fermi level is indirectly computed in-
side physics-based transistor models like BSIM. However the Fermi-level is not available
at the netlist-level of the simulation. This implies that a netlist-level implementation of
a trap-detrap simulation cannot obtain the Fermi-level of the transistor computed inside
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Figure 4.12: Fermi level as a function ofVgsand forward body bias.

the transistor model. The implementation proposed in this work solves this issue by di-
rectly modifying the BSIM4 source code, which is openly available and has extensive
documentation (HU, 2009).

The Fermi level is a function of the oxide voltageVox of the transistor. Vox then
depends onVgsandVbsof the transistor. According to the BSIM4 User Manual (HU,
2009), the oxide voltage Vox is written asVox= Voxacc+Voxdepinv, with:

Voxdepinv= k1∗
√

Φsdepinv+Vgste f f (4.18)

where, according to Hu (2009), the equation 4.18 is valid andcontinuous from depletion
to inversion modes, which take place when the voltage at the gate is greater than the flat-
band voltage (Vgs>V f b). The equation 4.18 is implemented inside BSIM4 as the source
code:

Voxdepinv = pParam−>BSIM4v5k1ox∗ ( T1 − T0 )

Therefore the Fermi level can be expressed as

Φsdepinv= (T1−T0)2 (4.19)

which is an equation valid for depletion and inversion regions of operation. In accu-
mulation, whenVgs< V f b, this equation is not valid and can lead to wrong values if
extrapolation is used.

The figure 4.12 showsΦsdepinvas an approximation for the Fermi Level for gate volt-
age between 0V and 0.9V. The transistor dimensions are L=45nm and W=50nm and the
technology model-card is the Predictive Technology Model (PTM) 45nm (CAO; MCAN-
DREW, 2007). Forward body bias (FBB) consists of applying a positive bulk-to-source
voltage (Vbs) to the transistor. FBB is a technique commonlyemployed in analog and
mixed-signal circuits in order to, among other effects, reduce the impact of 1/f noise.
Notice that the bulk-to-source voltage Vbs is inversely proportional to the Fermi Level.
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4.3.2 U-shape distribution of energies of the traps

The traps that contribute to NBTI are discrete energy statesthat may capture holes.
They can be interface states or oxide traps. The energy states of these holes lie within the
forbidden band-gap of silicon, which is approximately 1.12eV (SZE; NG, 2006).

Experimental works conclude that the probability of the trap having energy close to
the conduction and valence bands are higher than having energy close to the center of the
band-gap. In other words, the energies of the traps are distributed according to an U-shape
distribution over the forbidden band-gap.

In order to obtain the U-shape distribution for the simulations, we use a random gen-
erator for exponential distribution. The proposed U-shaped distribution based on an ex-
ponential distribution with rateλ has density:

f (x) =

{
Eg∗λe−λx if 0 < x < 0.5

Eg∗ (1−λe−λx) if 0.5≤ x≤ 1
(4.20)

where Eg is the forbidden band-gap in eV (approximately 1.12eV for silicon). The benefit
of the U-shape being expressed as exponential distributions is the possibility to use an
random number generator for exponential distribution. Such generator is readily available
in Computer Algebra Systems (CAS) and easy to implement. However this approximation
for generating an u-shape distribution can be used only withλ ≤15, otherwise it generates
values smaller than 0 and larger than Eg for large sample sizes . Higherλ leads to less
points in the center of the distribution and more points on the edges. Figure 4.13 presents
the histogram of an U-shape distribution generated according to equation 4.20 and using
a random number generator for exponential distributions, with λ = 15 andEg= 1.12.

4.3.3 Implementation

The implementation is an attempt to model the trap-detrap phenomena causing RTS
and NBTI by modifying the BSIM4 source code (HU, 2009). We made the modifications
into BSIM4 in such a way that it became a true statistical transistor model, withVt varying
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over time as a function of occupation and release of charges by the interface and oxide
traps.

The traps are implemented as a new structure added to the transistor data structure
of BSIM. The electrical simulator calls an initialization routine for each transistor. This
routine typically sets the transistor parameters according to its sizing and temperature.
The trap-detrap code related to the initialization of the model was added to this routine.
This procedure is described in listing 4.1. First, a Poissonnumber generator gives the
number of traps of the transistor. Then, each trap is associated with its δvt, its time
constantpi and its energy in the band-gapEi .

f o r each t r a n s i s t o r o f t h e c i r c u i t {
N t r = P o i s s o n (λNtr )
f o r each t r a p i < Ntr{

δvti = randomly s e l e c t from a l i s t
pi = Uniform d i s t r i b u t i o n
Ei = U−Shape d i s t r i b u t i o n

}
}

Listing 4.1: Initialization of the transistors

The Markov Chain trap-detrap probabilistic mechanism described by figure 4.11 is
implemented inside the evaluation routine of BSIM4. This routine is executed at every
timestep of the transient analysis and computes, among other quantities, the source-to-
drain current. Listing 4.2 describes the procedure. Depending on the trap status, its emis-
sion or capture probability is computed, based on its average emission or capture time.
The random process consists of randomly deciding whether the trap keeps or changes its
status in that timestep.

f o r each t r a n s i s t o r {
FermiLeve l = Compute based on n u m er i ca l f i t t i n g o fΦsdepinv

f o r each t r a p i {
r = un i fo rm random ( 0 , 1 )
i f si(t−1) == 0{ / / empty t r a p

τc = 10pi(1+exp(
Ei−E f
KbT )

Pr(si(t) = 0→ 1) = ∆t
τc

si(t) = r > Pr(si(t) = 0→ 1) ? 1 : 0
} e l s e{ / / occup ied t r a p

τe = 10−pi(1+exp(
E f−Ei
KbT )

Pr(si(t) = 1→ 0) = ∆t
τe

si(t) = r > Pr(si(t) = 1→ 0) ? 0 : 1
}
i f si(t) == 1 { ∆Vt(t) += δvti }

}
}

Listing 4.2: Time-dependent trap-detrap simulation
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Figure 4.14: Transient simulations of 7 transistors (chosen arbitrarily from a sample of
100) showing the time evolution of the Threshold Voltage.

4.3.4 Simulation results

This section presents the results of the trap-detrap simulation scheme. Computer sim-
ulations were run in order to compute the fluctuations of the transistorVt over time.
The methodology was implemented in the open-source electrical simulator NGSPICE.
NGSPICE is based on the open-source Spice3 from Berkeley, and it supports the latest
transistor model BSIM4 from Berkeley. The modifications were mostly punctual changes
on two source files: one related to the transistor initialization and another related to the
calculation of the transistor current. The trap-detrap simulation corresponds to a transient
analysis of the circuit under test.

The δvti , which is the Vt fluctuation due to one single trapped electron are given
by 3D atomistic simulations described by Ashraf (2011) and Camargo (2010). These
atomistic simulations data are only available for a transistor with dimensionsL = 45nm
andW = 50nm. Thus all the trap-detrap simulation results presented here are restricted to
this transistor sizing.

Another simulation parameter, the average number of interface traps (theλNtr of the
Poisson distribution) can be obtained by device measurements. Table I from Wirth (2005)
presents the data from measurements of a 130nm technology node NMOSFET. For small-
area transistors we linearly extrapolate the outcome of those measurements and useλNtr =
80 W×L

45n×50n, where W and L are the channel width and length of the transistor. Thus, for
our device with dimensions 45n×50n, there are 80 traps on average. These traps have
their time constantpi uniformly distributed in the interval[−5,−8]. Note that the number
of traps that effectively generate RTS is much smaller, since only traps within a fewkBT
relative to the Fermi level, i.e. have similar emission and capture times, change their
occupation state. These two parameters, the average numberof interface traps and the
time constant interval have not been properly calibrated inthis work. Thus the results
presented here are not appropriate for quantitative conclusions about the impact of RTS
or NBTI on Vt. We present these simulation results with the only intention of introducing
the capability of the tool we implemented. Due to the lack of calibration and thus the fact
that the data is only shown to illustrate the capability of the simulator, the plots employ
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arbitrary units (a.u.) for both time and Vt.
The procedure could correspond to the simulation of traps causing both RTS and

NBTI, but in this experiment we intended to isolate the contribution of RTS solely. The
reason for considering RTS only is that these experiments are intended to analyze jitter
of oscillators. Because in a small simulation time window (such as simulation times in
the order of micro-seconds) RTS impacts the standard deviate ofVt while NBTI impacts
its average, we assume that RTS is the main cause of jitter. Inorder to analyze the im-
pact of RTS only, we must detect and discard those traps that do not contribute to this
effect. This is accomplished by two pre-characterization stages prior to the start of the
trap-detrap simulation: stabilization phase for 1a.u. andactivity testing phase for 2a.u.
During these phases, which refer to the first 3a.u. of the transient simulation, only the
activity is monitored andVt is kept constant at nominal value.

The first phase, stabilization phase, corresponds to the first 1a.u. of the transient
simulation. During the trap initialization, it is randomlyassigned with an energy state
within the forbidden bandgap and with an initial state (empty or occupied). However,
many traps evolve to a more stable state. For instance, trapsat low energy level (lower
than the Fermi level tend to be), quickly become occupied independently on the initial
state and very unlikely will emit a charge. These traps whichswitch in the initial 1a.u.
and very likely will not present activity later are traps contributing to NBTI. During the
initial 1a.u. there are more transitions then during the rest of the simulation.

The second phase, activity test, lasts for the next 2a.u. In this phase the activity of
each trap is monitored, but noVt shift is computed yet. The traps presenting less than
two transitions during this 2a.u. are traps contributing toNBTI, and are not relevant to the
jitter of oscillators due to RTS. These traps without enoughactivity are then discarded.

The stable trap-detrap simulation runs for the next 2a.u. This is the actual trap-detrap
simulation we are interested, in which takes into account only the traps contributing to
RTS. The total transient simulation time is 5a.u., but the first 3a.u. accounts for discarding
traps which are not related to RTS. Thus, the trap-detrap simulation of RTS runs for 2a.u.

The procedure described by the algorithms 4.1 and 4.2 leads to a stochastic process
evolving over time. This stochastic process is a Markov Chain, since the next state of
the traps depends only on their current state. This process corresponds to the statistical
behavior of one transistor over time. Each transistor has a random number of traps, as
well as each trap has a randomly selectedδvti and time constantpi.

Thus, one single run of the procedure is a representation of the behavior of one single
device over time. In order to study the actual statistical impact of RTS or NBTI on the
transistor, we must perform a Monte Carlo simulation of Markov Chains. Thus we run
a Monte Carlo simulation using an ensemble of 100 devices, and examine each device
behavior over 2a.u.

Figure 4.14 presents theVt of 7 of these devices (chosen arbitrarily) during the 2a.u.
simulation time. Each device presents a different behaviorand some devices clearly have
lowerVt than others during most of the time. Some devices can show more activity and
some traps cause higher fluctuation than others. For instance, transistor T.1 hasVth=
500a.u. and σVt = 33a.u. during the 2a.u. simulation, while transistor T.6 hasVth =
400a.u. andσVt = 10a.u..

Extending this concept of analyzing the moments of the transistors, figure 4.15 reports
all the averages and the standard deviations of the 100 MonteCarlo simulations. The
averageVt of the 45nm by 50nm device can go from 405a.u. up to 673a.u., while the
standard deviation is in the range of 9a.u. to 42a.u. The transistor which presents a
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Figure 4.15: Cloud of averages and standard deviates ofVt for the 100 Monte Carlo
simulations.

standard deviation of 42a.u. due to RTS causes more jitter (on a ring oscillator) then the
one which presents standard deviation of 9a.u. The average of the standard deviations is
23a.u.

The figure 4.16 summarizes the experiment of 100 device simulations during 2a.u.
for each run. It presents a Box and Whisker plot of all the simulations (CHAMBERS
et al., 1983; VENABLES; RIPLEY, 2002). Each column corresponds to one Monte Carlo
run, from 1 to 100, while its projection on the y-axis represents theVt during the 2a.u.
simulation on that run. The Box-Whisker plot is the best way to visualize all the data of
the 100 simulations at once. The black line inside the boxes indicates the median of the
distribution. The lower and upper corners of the box are the first and third quartiles of
the distribution. This plot emphasizes the difference between each one of the 100 device
simulations performed for Monte Carlo.

4.4 Discussion

This chapter discusses Random Telegraph Signal and Bias Temperature Instabiltiy.
These phenomena affect transistors in a transitory manner,so that the device characteris-
tics vary over time. EDA tools are still lacking accurate andefficient simulation method-
ologies to enable analysis of these phenomena at early design stages.

This chapter highlights latest research in the field, including recent studies for model-
ing RTS and BTI in the time domain. These methodologies target at proposing accurate
time-domain transient analysis. In this context we developed two simulation methodolo-
gies: static and dynamic.

The static methodology is a pre-characterization step to berun prior to the electri-
cal simulation. This step computes deratingVt factors for each device. Then electrical
simulation is run considering the impact of noise. The dynamic methodology is a set of
modifications in the BSIM4 transistor model. Thus variability is on-the-fly taken into ac-
count during simulation. The disadvantage of the dynamic approach is the computational
overhead: simulation time increases as a function of the number of traps. The dynamic
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methodology must be fine-tuned with technology data provided by silicon measurements.
Neither the static or the dynamic methods have been validated with silicon measurements.
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5 LINEAR SENSITIVITY ANALYSIS

This chapter describes a framework to compute circuit variance and its sensitivity
to the electrical parameters. The methodology is based on error propagation, which is
commonly employed in measurement engineering and instrumentation (PARRAT, 1961).
From Error Theory, basically error propagation expresses the error of an output variable as
the sum of the squares of the (known) error of the inputs timesthe sensitivity of the output
to that input. This approach is extended to compute the variance of a function which its
inputs are known to be random variables. Error propagation requires the sensitivities of
each variable with respect to the function being analyzed. These derivatives are computed
numerically by electrical simulations.

Most EDA vendors have started to offer commercial tools to support statistical library
characterization, e.g., Cadence Encounter Library Characterizer, Magma Silicon Smart,
Synopsys NCX, Extreme DA GoldTime. These tools are based on (linear) sensitivity
analysis. Assuming that one parameterdrifts at a time while others are kept at nominal
value, the response of the circuit is obtained as a (linear)drift of the circuit’s output
response around its nominal value as function of the amount of parameter change. This
approach is based on the assumption that variations of the circuit parameters propagate
linearly to circuit responses. For instance, consider a circuit with n transistors and F which
is a function of theVt of these n transistors. Assuming F as a linear function of Vt means
that the following approximation is used:

F(Vt1+∆Vt1, ...,Vtn+∆Vt1) = F(Vt1, ...,Vtn)+
n

∑
i=1

[
∂F

∂Vti
∆Vti

]
(5.1)

Figure 5.1 shows the linear sensitivity analysis flow as compared to a Monte Carlo
flow. The probability distribution of the random variables must be characterized by mea-
surements performed by the process engineering team of the partner foundry. The random
variables are assumed to follow Normal distribution, thus each variable has a mean and
a standard deviation. One circuit response is computed for each run and these responses
are aggregated in order to compute the sensitivities for each electrical parameter.

Linear sensitivity analysis is becoming the main approach for propagating variability
from gate level to circuit level because it is a good compromise between simplicity and
accuracy.

5.1 Error propagation

Given the statistical nature of fabrication process, device characteristics such asVt,
W, L and∆β/β of the transistors can be modeled as random variables. The circuit met-
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Figure 5.1: (a) Traditional Monte Carlo based flow and (b) sensitivity-analysis based flow.

rics (the output of a simulation) such as performance are also random variables and can
be modeled using the classic propagation of uncertainties approach from Error Theory
(PARRAT, 1961). In order to use that approach, two assumptions must hold:

1. the inputs follow a Normal distribution;

2. the propagation function can be approximated by a linear function in the region of
interest.

Under these assumptions, the outputp of the simulation (for instance rise or fall de-
lay, transition time, dynamic or leakage power) can be approximated as a Normal random
variable, and its moments can be computed analytically. Without loss of generality, con-
sider two random variables in our compact variability model: Vt andβ , and the number
of transistors in the circuit under test isn. The inputs of a tool performing sensitivity
analysis are the standard deviations of the inputs (σVti andσβ i of each transistori). These
data come from process technology characterization. The standard deviation of the circuit
response p can be approximated by:

σ2
p ≈

n

∑
i=1

[(
∂ p

∂Vti
σVti

)2

+

(
∂ p
∂βi

σβi

)2
]

+2
n

∑
i=1

n

∑
j=i

(
∂ p

∂Vti

∂ p
∂βi

ρVti ,β j

)

+ 2
n

∑
i=1

n

∑
j=i

(
∂ p

∂Vti

∂ p
∂Vti

ρVti ,Vt j

)
+2

n

∑
i=1

n

∑
j=i

(
∂ p
∂βi

∂ p
∂βi

ρβi ,β j

)
(5.2)

whereσVti andσβi
are the standard deviations of voltage threshold and current variation

of transistori, respectively, ∂ p
∂Vti

and ∂ p
∂βi

are the sensitivities of Vt andβ w.r.t parameter
p, and finallyρx,y are the correlation coefficients between random variablesx andy. In
absence of correlation between the random variables, errorpropagation simplifies to:
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σ2
p ≈

n

∑
i=1

[(
∂ p

∂Vti
σVti

)2

+

(
∂ p
∂βi

σβi

)2
]

(5.3)

The reader should notice that formulations 5.2 and 5.3 require the same number of
electrical simulations, because both require the computation of exactly the same amount
of partial derivatives. This means that correlations between electrical parameters can be
taken into account without overhead in the number of simulations.

Considering that the response is approximately linear to the inputs in the region of
interest and that there is no correlation between the input random variables, the circuit
responsep can be assumed to follow a Normal distribution with mean and variance given
by (BRUSAMARELLO, 2006; BRUSAMARELLO et al., 2008):






µp≈ p

σ2
p ≈ ∑n

i=1

[(
∂ p

∂Vti
σVti

)2
+
(

∂ p
∂βi

σβi

)2
]

(5.4)

The non biased sampling estimator to standard deviation computed from a sample
of nsample experimental measures ofS, denoted asS1, S2, ..., Snsample, calculated by
expression

δS =

√√√√ 1
(nsample−1)

nsample

∑
i=0

(Si−〈Si〉) 2

must be numerically equal toσS for a nsample sufficiently large, i.e.,

δS≈ σS

Monte Carlo simulation (AMAR, 2006) is often employed in order to obtain the prob-
ability density function (PDF) of some circuit output (delay, power consumption, leakage
current, ...). Usually, a sample sizensample is generated, aiming the convergence of the
standard deviation. However, the error in a Monte Carlo simulation is hardly reduced,
once it isO(1/

√
nsample). Figure 5.2 presents the convergence ofσ as a function of

the number of Monte Carlo simulations compared to the standard deviate computed an-
alytically using error propagation (using 1st order and 2ndorder approximation for the
sensitivity, which will be discussed in the next section).

So, partial derivatives of the circuit response for the random parameters, standard
deviation of random parameters and correlation between random parameters are inputs
for the error propagation formula. Standard deviations andcorrelation coefficients of the
input random variables are technology dependent and can be extracted. According to
what will be shown in section 5.2, asF(k1, . . . ,kN) is an arbitrary function that can be
computed by electrical simulation, the numerical estimates for derivatives∂F

∂ki
can also be

computed by electrical simulation. From these derivatives, the variability of the output
can be computed.

5.2 Numerical estimate of sensitivities

Numerical approximations of sensitivities are applied in order to present a generic
methodology independent of circuit topology. First order and second order linear ap-
proximations, using respectively 1 and 2 points around the nominal values, are exploited
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Figure 5.2: Convergence ofσ as a function of the number of Monte Carlo simulations.

aiming to obtain sensitivity of circuit response for the variables of interest. The differ-
ence between these formulas is the accuracy in the numericalestimates and the number of
electric simulations: higher order approximations require more simulations and are more
accurate.

Problem Formulation: Consider a general function of n variables f= f (x1,x2, . . . ,xn),
such that numerical values for the variables are x1 = x1, . . . ,xn = xn. By error propagation
we haveσ2

f = (∂ f/∂x1)
2
x1=x1

σ2
x1

+ ...+ (∂ f/∂xn)
2
xn=xn

σ2
xn

. Find numerical approximation
for ∂ f/∂xi (i = 1, . . . ,n).

5.2.1 1st Order Approximation

Expanding the n-dimensional Taylor series of order 2 aroundthe pointf (x1, . . . ,xi, . . . ,xn)
yields:

f (x1, . . . ,xi +∆, . . . ,xn) = f (x1, . . . ,xi , . . . ,xn)+
∂ f (x1, . . . ,xi, . . . ,xn)

∂xi
(xi +∆−xi)+O(∆2)

= f (x1, . . . ,xi , . . . ,xn)+∆
∂ f (x1, . . . ,xi, . . . ,xn)

∂xi
+O(∆2)

(5.5)

Numerical value forf (x1, . . . ,xn) is given by electrical simulator. Thus, one can cal-
culate the sensitivity of pointf (x1, . . . ,xi +∆, . . . ,xn), rewriting 5.5 for∆≪ 1 as follows

∂ f
∂xi

(x1, . . . ,xi, . . . ,xn) =
f (x1, . . . ,xi +∆, . . . ,xn)− f (x1, . . . ,xi , . . . ,xn)

∆
+O(∆) (5.6)

Thus, to compute the sensitivities of a parameterp of the circuit w.r.t. the variables
Vti andβi of the circuit three simulations are required: the nominal simulation f and the
two simulations computingp drifting one of the variables at a time. Figure 5.3 illustrates
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Figure 5.3: Numerical 1st order linear approximation of sensitivity.

the linear approximation as opposed to the response function, as well as the approximated
sensitivity. The sensitivities are computed as:

∂ p
∂Vti

=
f (Vt1, . . . ,Vti +∆Vt, . . . ,Vtn,β1, . . . ,βn)− f

∆Vt

∂ p
∂βi

=
f (Vt1, . . . ,Vtn,β1, . . . ,βi +∆β , . . . ,βn)− f

∆β
(5.7)

where f (Vt1, . . . ,Vtn,β1, . . . ,βn) corresponds to a circuit response and can be computed
by simulation (such as rise and fall delays, transition times, power, hold and setup times,
etc ). The response is a function of the variations inVt andβ of the n transistors. The
simulation f corresponds to the nominal circuit response. The functionsf (Vt1, . . . ,Vti +
∆Vt, . . . ,Vtn,β1, . . . ,βn) and f (Vt1, . . . ,Vtn,β1, . . . ,βi +∆β , . . . ,βn) correspond to two elec-
trical simulations, where respectivelyVti andβi drift by a given∆.

Complexity for 1st order approximation: For this case it is required 2 electrical
simulations to compute each partial derivative, one is required to computef (x1, ..,xi +
∆, ...,xn) and another run forf (x1, ..,xi, ...xn). But, as f (x1, ..,xi, ...xn) is constant for
all partial derivatives, it can be computed only once. Thus,computation of all partial
derivatives using first order approximation requiresn+1 runs.

5.2.2 2nd Order Approximation

In order to obtain a more precise approximation, algebraic manipulations over Taylor
expansion results in a formula with accuracyO(∆2). Consider for now a Taylor expansion
about pointf (x1, . . . ,xi−∆, . . . ,xn) as follows:

f (x1, . . . ,xi−∆, . . . ,xn) = f (x1, . . . ,xi , . . . ,xn)+
∂ f (x1, . . . ,xi, . . . ,xn)

∂xi
(xi−∆−xi)+O(∆2)

= f (x1, . . . ,xi , . . . ,xn)−∆
∂ f (x1, . . . ,xi, . . . ,xn)

∂xi
+O(∆2) (5.8)

Then, using results 5.5 and 5.8, a better approximation for∂
∂xi

f (x1, . . . ,xi , . . . ,xn) can
be computed according to:



78

∂
∂xi

f (x1, . . . ,xi , . . . ,xn) =
f (x1, . . . ,xi +∆, . . . ,xn)− f (x1, . . . ,xi−∆, . . . ,xn)

2∆
+O(∆2)

(5.9)

Complexity for 2nd order approximation: this formulation requires two electrical
simulations for each variable of interest: one run forf (x1, . . . ,xi +∆, . . . ,xn) and another
one for f (x1, . . . ,xi−∆, . . . ,xn). Thus, to calculaten partial derivatives to all the variables,
2nd order approximation requires 2n runs. As one nominal simulation is required for the
approximation of the mean, 2n+1 runs are required.

5.2.3 Complexity discussion

In order to apply error propagation technique to the analysis of variability in integrated
circuits, means to compute the partial derivatives of the circuit – the sensitivity of the
circuit response w.r.t the random variables are needed. Theformula using two points
around the mean gives a more accurate error order, at the costof an increase in the running
time.

The number of electrical simulations is a function of the approximation formula, num-
ber of transistors and number of random variables. Forn transistors andj electrical
parameters considered as random variables, the number of variables in the function is
m= n× j. Thus, 1st order approximation formula requiresm+1 simulations, while 2nd
order approximations require 2m+1 runs.

The main goal is to accomplish variability simulation of small electrical blocks such
as static and dynamic logic gates and memories. These kind ofcircuits often present
small number of transistors, and often only a few number of electrical parameters are
assumed to present variations due to process variability. Thus, the numerical estimates of
derivatives can avoid thousand of simulations in comparison to traditional Monte Carlo –
widely employed in electrical simulation tools –, for whicha reasonable number of runs
must be performed to obtain a suitable estimate of variance in the measures of interest.
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6 RESPONSE SURFACE METHODOLOGY1

The CPU time expensive Monte Carlo method can be employed forthe characteri-
zation of standard cell libraries (AMAR, 2006). Such approach allows variability-aware
analysis to be implemented with minor changes on top of existing characterization tools
but requires a large number of runsN. Indeed, thousands of simulations are needed for
accurately capturing the tails of the distribution of the affected metrics, typically at a
3σ distance from the average value. The uncertainty of an estimator in Monte Carlo is
≈ 1/

√
N: in order to obtain a result 2x more accurate, the number of simulations have to

be increased by a factor of 4.

To achieve near MC accuracy with a speedup improvement of orders of magnitude,
this chapter presents the use of Response Surface Methodology in conjunction with a new
Design of Experiments (Brussel DOE) which performs the selection of design points and
guarantees true statistical relevance of these points. It is combined with a model selection
algorithm capable of building the most suitable non-linearregression model to represent
the circuit response.

This chapter presents a novel time-efficient and accurate variability aware standard
cell characterization approach. The approach is accurate because of twofold: (1) the
use of a new DoE capable of capturing the true statistical nature of the underlying pro-
cess parameters and (2) the use of a model selection algorithm capable of building the
most suitable non-linear regression model to represent thecircuit responses. On the other
hand, the approach is time-efficient because the number of electrical simulations is re-
duced by several orders of magnitude comparing to conventional MC and the simulation
effort linear with the number of devices of the gate. Finallythe DoE and model selection
algorithm described in this manuscript are generic enough to be added on top of con-
ventional Non-Linear Delay and Power Model (CROIX; WONG, 1997) as well as recent
cell models described by Synopsys (TRIHY, 2008) and Intel (MENEZES; KASHYAP;
AMIN, 2008).

Section 6.1 summarizes the existing state-of-the-art. Section 6.2 presents the de-
scribed statistical RSM flow and how it compares to the traditional statistical cell char-
acterization flow. Section 6.3 explains the details of the Brussel design, a novel DoE
approach for selecting few points that represent the original random MC points. Section
6.4 presents the automatic model selection flow.

1This chapter describes an invention that has been filed as patent in the European Union and in the United
States of America: (MIRANDA; ROUSSEL; BRUSAMARELLO, 2010)and (MIRANDA; ROUSSEL;
BRUSAMARELLO, 2011).
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6.1 Background

6.1.1 Design of Experiments

Accurate gate level modeling for delay and power response estimation has become
a major challenge for nano-metric technologies (KELLER; TAM; KARIAT, 2008). The
use of RSM techniques in VLSI design for standard cell characterization is not new and
its use was originally proposed in the late 19880’s (ALVAREZet al., 1988; HOCEVAR;
COX; YANG, 1988). Recently, the use of these techniques raised interest again as an ef-
fective technique to cope with the explosion on the requiredprocess corners to capture the
combined impact of local and global process variations in the gate response. Basu (2007)
proposes an analytical function for gate delay is describedwhich is built using RSM after
transforming the correlated components of the output response into uncorrelated ones.
More recently, Kim (2007) proposes a fast methodology basedon sensitivity analysis for
characterizing transistor level circuit descriptions hasbeen also proposed. In the con-
text of interconnect modeling, the use of RSM techniques hasreported good speedup
and accuracy when accounting for the impact of process variations in interconnect tim-
ing (WANG; GHANTA; VRUDHULA, 2004). In the context of mixed signal design
Mcconaghy (2009) has proposed a regression model for quick evaluation of the impact
of circuit parameter changes in the desired circuit response by providing only relative
accuracy to guide the optimizer, hence not guaranteeing absolute accuracy.

Maricau (2010) improves on the earlier work using a regression model aiming esti-
mating absolute accuracy. Li (2009) employs Least Angle Regression (LAR) substituting
Least Squares (LS) with model selection. While that work proposes a method for very
high dimensionality (thousands of variables), we propose to use a compact model to re-
duce the dimensionality by orders of magnitude. Also, by using 2n+ 1 Brussel Design
points we guarantee a non-linear model with cross-terms which is better than the random
selection of points used for both LAR and LS in that paper.

Many of these works suggest the use of conventional DoE methods like Central-
Composite-Design, full factorial and/or Box-Behenken Design (MYERS; MONTGOMERY,
2002), which do not consider the statistical nature of the process variations parameters for
their design point selection criteria and yet require many more simulations than the Brus-
sel Design.

6.1.2 Deterministic Propagation Function

Propagation functions of standard cells have a sparse vector of coefficients (LI, 2009)
because usually only few parameters affect the output response, i.e. Vt of the PMOS
transistor barely affects fall delay of an inverter. Algorithms for automatic model selec-
tion have been studied by the statistical community in orderto find correct propagation
function describing such propagation functions with many variables but very sparse ma-
trix (AKAIKE, 1973). Regression output like residuals (sumof squares), t-statistics,r2,
F-statistic represent the goodness of fit and can be used to drive a search for the best
model describing the underlying function (VENABLES; RIPLEY, 2002). Using these
criteria tend to produce over-fitted models without physical support, thus Akaike (1973;
1974) and Schwarz (1978) proposed model selection algorithms driven by Akaike Infor-
mation Criteria (AIC) and Bayesian Information Criteria (BIC). Both are based on the
model Likelihood, but with an penalization term which is a function of the number of co-
efficients of the model. This penalization prevents over-fitbecause models with smaller
number of coefficients have priority over large number of coefficients.
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The regression models used in previous model selection algorithms for VLSI design
are usually based on previous knowledge about the function being modeled such as as-
suming a template knowledge of the target function (for instance assuming the response
to follow a particular polynomial) (ALVAREZ et al., 1988; HOCEVAR; COX; YANG,
1988; BASU; VEMURI, 2007; KIM; JONES; HOROWITZ, 2007; MARICAU; GIELEN,
2010). The recent work of Li (2009) presents the most advanced method, based on LAR,
but even that method cannot handle non-linearity without drastically increasing the sam-
ple size. This is not required by our method as our approach isbased on a generic and
efficient algorithm for model selection.

6.1.3 Advantages

A standard cell library that captures statistical information about the gates, i.e. proba-
bility distributions, is at the core of Statistical Static Timing Analysis (SSTA), from block-
based SSTA (VISWESWARIAH et al., 2004; HELOUE; ONAISSI; NAJM, 2008) to non-
parametric MC-based approaches(IMAI et al., 2008). Thus, accurate and time-efficient
modeling of delay and power of transistor level circuit descriptions of nano-metric tech-
nologies has become a major challenge (KELLER; TAM; KARIAT,2008). As compared
to previous works, the proposed novel approach differentiates in the following aspects:

• Variability Aware : Unlike conventional DoE approaches (e.g., full factorialde-
sign) the Brussel DoE selects only design points that are statistically relevant [NO-
TAR explicar melhor, exemplo] to the parameter domain distribution .

• It considersInput Correlations : The Brussel DoE properly captures the existing
correlation between input parameters, hence being able to expose cross-term de-
pendencies between the input process parameter domain and output gate response.

• The best propagation function is foundon-the-fly : the polynomial for fitting the
circuit response is selected on-the-fly and is not limited toa pre-defined template
function. The propagation function can have linear, quadratic and cross-terms.

• The approach works underNon-Normality assumption, e.g. not limited to as-
sumptions of any nature (e.g., Gaussian) underlying the statistical distribution of
the process parameters.

6.2 High-level description of the flow

Figure 6.1.a shows the traditional cell characterization flow based on Monte Carlo
simulations at electric level. The accuracy of the estimators obtained using this flow is
limited by the number of electrical simulationsN. The alternative flow we propose is
presented in figure 6.1.b. The Brussel design of experimentsis used as a pre-processing
step to determine a small set ofNdoeartificially generated points that represent the original
sample ofNdoe random∆Vt and∆β . The tremendous speedup of the flow relies on the
fact thatNdoe≪ N, so the number of electrical simulations is much smaller. After the
Ndoe selected electrical simulations, a model selection algorithm searches for an optimal
non-linear regression model relating inputs to outputs hence representing the outcome of
electrical simulations.

After this, a large sample of MC experiments can be run quickly using the surrogate
model instead of spice, because computing each instance of the regression function is
very fast.
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Figure 6.1: (a) Traditional Monte Carlo flow for cell characterization and (b) proposed
flow based on DoE and RSM.

6.3 Design of Experiments: Brussel Design

The first step in order to achieve a good response surface fit isto perform Design of
Experiments (MYERS; MONTGOMERY, 2002). The goal of this stage is to findNdoe

points which are representative for the n-dimensional input space of random variables.
At this stage there is no previous knowledge regarding the propagation function to be
modeled. The points need to be selected in such a way that theycover as much as possible
the domain of the output distribution.

Problem definition: Let a Monte Carlo ensembleΓM of sizeN of the n-dimensional
function be given by

ΓM = {{Vt1,β1, . . . ,Vtn,βn}1, . . . ,{Vt1,β1, . . . ,Vtn,βn}N}.

Find an alternative ensembleΓB of sizeNdoegiven by

ΓB = {{Vt1,β1, . . . ,Vtn,βn}1, . . . ,{Vt1,β1, . . . ,Vtn,βn}Ndoe}

which covers the same sub-domain as the original sample.
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The DoE proposed in this work, the Brussel Design, is a DoE technique which exploits
the existing knowledge about the statistical input variable domain to be sampled. This
DoE allows fitting a linear response surface as well as higherorder approximations (2nd

and 3rd order) and offers a proper balance between accuracy and input variable validity
range. Philippe Roussel, from Reliability Group at IMEC, proposed the Brussel DOE
presented in this section.

To select appropriate points according to the Brussel design there are two steps: 1)
build an n-dimensional Probability Density Function (PDF)representing the multivariate
statistic and 2) proper selection of 2n+1 DoE points based on the cloud spread. These
steps are detailed respectively in subsections 6.3.0.1 and6.3.1.

6.3.0.1 Weighted Multicomponent Multivariate Normal PDF representation

This section describes a generic formulation for describing Probability Density Func-
tions (PDF): the Weighted Multicomponent Multivariate Normal. It approximates multi-
dimensional input statistical domains and can reliably handle any shape of PDF, such as
Normal, Bimodal, Exponential and so on. It consists of dividing the dataset into clusters,
fitting a multivariate Normal distribution to each separatecluster and finally aggregating
(and weighting) the Normal distributions. However, the reader should notice that this
methodology is exceptionally needed in practice, i.e. whenthe distribution deviates sig-
nificantly from normality. As the input variability data (Vt andβ ) shown in this paper
follow normality, they are modelled using a single component multivariate normal PDF.
In this case assume the number of clustersk is 1.

The first step to build the multinormal n-dimensional PDF is to partition the dataset
into k cluster components. Clustering algorithms separate theN elements of the dataset
into k groups, so that the elements of each cluster are similar to each other according to
a robust distance criterion. The most common clustering algorithms can be divided into
(GAN; MA; WU, 2007):

• hierarchical clustering: agglomerative (bottom-up) and divisive (top-down) cluster-
ing methods;

• center-based clustering: k-means algorithm;

• search-based clustering: clustering using genetic algorithms and tabu search;

• model-based clustering: EM algorithm;

• fuzzy clustering: fuzzy k-means.

These and more clustering algorithms are described in detail by Gan (2007). Some
algorithms, as for instance k-means, require the user to specify the number of clusters.
In our experiencek is usually in the range 1..3. The clustering algorithm also depends
on the distance metric, as for instance Euclidean distance,Manhattan distance or Maha-
lanobis distance. However when dimensions mix different units it is important to consider
a normalized distance. Our partitioning is based upon a unitfree, rescaled Euclidean dis-
tance criterion, which is a robust version of a Mahalanobis distance and guarantees good
partitioning in cases where dimensions have different units. Methods for automatically
deciding the number of clusters and distance metrics for clustering have been much dis-
cussed in the Literature, and Gan (2007) presents a detaileddiscussion on these topics.
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Once the dataset has been divided into optimal clusters, a multivariate Normal dis-
tribution is fitted to each cluster component{Vt1,β1, ...}i. The PDF of a multivariate
Normal distribution for a single component clusteri is described as:

fi
(
~t,~µi ,Si

)
=

e−
1
2(t−µi).S

−1
i .(t−µi)

(2π)
n
2
√
|Si|

(6.1)

wheret is the multivariate stochastic,~µi is the vector of central value of the variables and
Si is the covariance matrix between the variables given by:

SSS=





σ2
1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ12σ1σ2 σ2
2 · · · ρ2nσ2σn

...
...

. . .
...

ρ1nσ1σn ρ2nσ2σn · · · σ2
n



 (6.2)

hereρlm is the correlation between variablesl andm. Then the multiple PDF’s are accu-
mulated into a proportional sum weighted by cluster component size:

f
(
~t
)

=
∑k

i=1wi fi
(
~t,~µi ,Si

)

∑k
i=1wi

(6.3)

where~µi andSi are~µ andSof the variables of the cluster componenti, wi is its size. Each
data cluster generates a different covariance matrixS.

6.3.1 Selection of DoE points

Each covariance matrixS, given by eq. (6.2), is decomposed using the diagonal matrix
of σ values for each variable:

S= σ ·ρ ·σ ,with (6.4)

σ =





σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

...
0 0 · · · σn



 (6.5)

whereσ is extracted as the square root of the matrix diagonal, so that ρ becomes the
corresponding correlation matrix:

ρ =





1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n
...

...
.. .

...
ρn1 ρn2 · · · 1




(6.6)

In effect, this standardizes the variables into unit free ones:

f
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(2π)
n
2
√
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(6.7)

Next, a principal value decomposition of the correlation matrix is performed:

ρ = RT ·E ·R (6.8)
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Figure 6.2: Upper-right diagonal: pairwise 2-D distributions and histograms ofVt andβ
of an inverter. Brussel DoE points are the large squares. Diagonal: histograms ofVt and
β . Lower diagonal: correlation coefficients.

whereR is the rotation matrix andE is the diagonal matrix of Eigenvalues as in:

E =





e1 0 · · · 0
0 e2 · · · 0
...

...
...

...
0 0 · · · en



 (6.9)

and the vector of eigenvalues is given by~e= [e1,e2, . . . ,en]n. Thus, by substituting eq.
(6.8) in eq. (6.4) the covariance matrixSof each cluster component can be decomposed
as:

S= σ ·RT ·E ·R·σ (6.10)

This decomposition describes a rotation of the variables into an equivalent set ofin-
dependentStudentized variablestp:

~tp =
R·~t−~µ

~σ√
~E

(6.11)

In the PDF contour plot, the orientation of the rotated standardized axis system corre-
sponds with the principal axes of the ellipsoid contours of the multivariate PDF descrip-
tion.
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In a uni-variate context, the 3·σ limits of a standard Normal distribution encompass
99.73% of the total Cumulative Density Function(CDF). An extension of this concept is to
find the contour of the underlying PDF encompassing a given percentage, as for instance
99.73% or higher as specified by the designer, of the total CDF. Theχ2 distribution with
ν degrees of freedom gives the distribution of sums of squaresof ν values sampled from
a normal distribution, so its CDF can be used to find the total probability covered by a
hyper-sphere with a given radius. Thus, the ellipsoid describing the contour encompassing
a specified percentage of the total distribution is defined byback-transforming the hyper-
sphere with the radius defined by the inverse CDF of theχ2 distribution:

qχ2 =

√
2 f−1

Γ

(n
2
,0, pσ

)
(6.13)

where fΓ is the Regularized Gamma Distribution,pσ =
∫ l2

0 χ2(t,ν)dt with ν = 1 (one
dimension) andl refers to how manyσ from the center the designer wants to be confident
on the outcome, i.e.l ·σ . If l = 3 thenpσ ≈ 0.9973. Therefore, in terms of total PDF
content, this value is the generalization of the 3σ limits in the uni-variate case.

Next, the corresponding ellipsoid contour in the rotated parameter space is defined by
:

Ellipsoid






~c = [0]n
~r = qχ2(q,n)

√
~e

D = R
(6.14)

which represents an-dimensional ellipsoid centered at the origin with semi-axis radii
qχ2(q,n)

√
~e aligned with the directionR, whereqχ2(q,n) is a the Quantile Chi-Square

function for a distanceq from the center of the distribution andn degrees of freedom.
The Brussel DOE points are then positioned at the intersectsof the ellipsoid principal

axes and that PDF contour plus an extra point at the componentcenter. A response surface
can be fitted to those points. This approach offers a proper balance between sufficient
accuracy and validity over the input variable range required for MC sampling, while still
requiring a limited amount of terms in the generic propagation function to be fitted. Figure
6.2 presents the position of the Brussel Design of Experiments methodology for selecting
the relevant DOE points according to the statistical inputsof an inverter. In this case,
the dataset was approximated using a single-component multivariate Normal distribution
because the sources of variation do not deviate from Normality.

6.4 Fitting the Response Surface

The goal of the previous section was to select an ensemble ofNdoepoints to run
electrical simulations on. Using those runs, we compute an appropriate regression model
to relate the statistical inputs to the simulated circuit responses: delay, power, transition
times, etc.

Problem definition Let Yi = H(ΓB
i ), for 1≤ i ≤ Ndoebe the set of circuit responses

corresponding to theNdoeBrussel Design points. Find the optimal regression model such
as

F(x1, . . . ,xp)≈H(x1, . . . ,xp)

wherep = 2n so thatx1 = Vt1,x2 = β1, . . . ,xp−1 = Vtn,xp = βn, and the function F is a



87

nonlinear function such as

F(x1, . . . ,xp) = α11x1 +α12x
2
1 + . . .+α1zx

z
1 + . . .+αpzx

z
p

+ζ1121x
1
1x1

2 +ζ1131x
1
1x1

3 +ζ11p1x
1
1x1

p+ . . .+ζp1p−11x
1
px1

p−1

+ζ123x1x2x3+ . . .+ζpp−1p−2xpxp−1xp−2 (6.15)

wherez is the polynomial degree of the approximation function,αi j is the coefficient
multiplying variablex j

i , andζi jkl is the coefficient multiplying the interactionx j
i × xl

k.
These coefficients are determined by a fitting procedure suchas Least Squares Fit.

Both thetrue function H and the best approximation function F are unknown. The
approximation function F will be later employed topredict the outputs for all MC com-
binations ofVt’s andβ ’s. For this purpose, using the full form of equation (6.15) as an
approximation function would lead to poor fitting and predictions. In cell characterization
problems, the vector of coefficients of equation 6.15 is verysparse, which means that few
parameters are relevant to the fit.

This section presents an algorithm for searching the space of possible approximations
and, without manual intervention or any previous knowledgeabout the circuit response
(delay, power, etc) , provide the best possible non-linear function to approximate that
response. The algorithm is divided into the following steps:

1. Initial Fit: fit a full linear model to the data;

2. Variable Screening: remove negligible terms;

3. Model Improvement: interactively add non-linear terms and cross-terms.

The next sections are devoted to going into the details of these steps.

6.4.1 Assessing Model Quality

The model selection algorithm is driven by the optimizationof a metric representing
the model quality. The residuals (sum of squares), t-statistic, F-statistic and Likelihood
of the regression can be used, however these metrics tend to suggest a better model is
achieved as the number of parameters increase, what increases the risk of over-fit. To
overcome this issue, Schwarz (1978) proposed the Bayesian Information Criterion (BIC).
BIC uses the model Likelihood but adds a penalty factor to compensate for the number of
coefficients as in:

BIC = log(Ndoe)k−2ln(L(θ)) (6.16)

wherek is the number of unknowns,L(θ) is the Maximum Likelihood of the model
θ andNdoe is the number of simulations. The Maximum Likelihood Estimation (MLE)
method, implemented in most computer algebra systems, can be computed as presented in
Venables (2002). Thus, by adding a penalty to the number of coefficients, BIC prioritizes
a model with the minimum number of variables so that the regression is meaningful,
reducing the risk of over-fitting.

6.4.2 Initial Fit

The first step to search for the best surrogate model is to fit the simplest regression
model, which is a linear function with all the terms and no cross-terms, as in:

Hi = α11x1i +α21x2i + . . .+αp1xpi + εi (6.17)
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whereHi is the output of theith, 1≤ i ≤Ndoe , spice run which has the vectorx of inputs.
The LS method aims at minimizing the sum of errors given by∑Ndoe

i=0 ε2
i .

6.4.3 Variable screening

Not every variable has an influence on the circuit response. For instance, the rise delay
of an inverter is weakly related toVt andβ fluctuations of the NMOS transistor, and thus
excluding those terms from the approximation function leads to a better regression model.
Models without physical support should be avoided, and thuswe propose a method to
remove unimportant variables.

The variable screening step is very important for the non-linear model selection algo-
rithm. Non-relevant variables of the model must be removed before non-linearities and
cross-terms are inserted into the model mainly because goodness of fit need minimum
degrees of freedom in order to be relevant. Degrees of freedom is defined as:

d f = Ndoe−Ncoe f f−1

whereNcoe f f is the number of coefficients of the regression. This means that the number
of coefficients of the regression model must be smaller than the number of simulations.
We estimate that the maximum number of coefficients allowed for the regression must be
around 0.5×Ndoeand 0.6×Ndoe.

The variable screening is accomplished by detecting and removing linear terms that
have negligible contribution to the circuit response. The listing of algorithm 1 presents
the procedure to remove negligible linear terms. The methodconsists of iteratively check-
ing the model BIC supposing one variable is removed, and thenremove the variable for
which removal leads to the best BIC. This iteration is performed until the model cannot
be improved by removing a variable.

Algorithm 1 Variable screening
repeat

for all variablesxi of function f do
fo← remove termxi of function f
if BIC( fo) < BIC( f ) then

store fo in list L sorted byBIC( fo)
end if

end for
f ← pick model from list L with lowest BIC

until model does not improve

After executing this procedure, we obtain a linear model with better BIC than the
full linear model. This reduced model F is at the same time less complex and a better
approximation for H, and thus more suitable for prediction.

6.4.4 Model Improvement

A first order representation of the circuit response is not sufficient for predicting the
circuit characteristics with accuracy. Delay, transitiontime and power of a standard cell
have non-linearities and cross-term.

Algorithm 2 lists the procedure for finding the best non-linear model for the circuit re-
sponse. It takes as inputs the electrical simulations and the reduced linear model. At each
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step, three operations are tried: (1) insert a z-order term (linear,quadratic, cubic,...,zth),
(2) insert cross-term between two existing terms and (3) remove an existing term. In our
experience,z≤ 4 gives good results. For each operation, the resulting model is stored in
a list ranked by the model BIC. At each step, the operation that leads to the best local BIC
is chosen.

As mentioned earlier, the regression model must be the as simple as possible and
contain the minimum number of coefficients. Thus, the algorithm must check the number
of coefficients of the model, and stop adding variables when the number of coefficients is
around 0.6×Ndoe. Thus the iterative process stops both when no operation leads to model
improvement or when the number of coefficients gets to the maximum threshold.

Algorithm 2 Model improvement
repeat

for all variablesxi of function f do
for k = 1..z do

fadd← add termxk
i

store fadd in list L sorted byBIC( fadd)
end for
fremove← remove termxi

store fremovein list L sorted byBIC( fremove)
for all variablesx j of function f do

fcross−term← add termxi×x j

store fcross−term in list L sorted byBIC( fcross−term)
end for

end for
if best BIC stored in L< BIC(f) then

f ← pick model from list L with lowest BIC
Ncoe f f← number of coefficients off

end if
until model does not improve ORNcoe f f > 0.6Ndoe

Such a greedy algorithm is feasible for a search of a model with a very small number
of variables, but it is the simplest possible optimization approach and can be improved
further. The bottleneck is that for each iteration, one new regression model must be fitted
to the data and the BIC must be calculated. Being N the number of variables, this al-
gorithm requiresO(N2) iterations when allowing quadratic order terms and cross-terms,
impplyingO(N2) runs of the Least Squares algorithm.

Figure 6.3 presents the comparison between the initial fulllinear model and the best
model found using the optimization loop, in the case of the delay of a logic gate. The
residuals of the linear model present a U-shape curve, whichmeans a mismatch in the
tails and is an indication of using the wrong regression model.

The non-linear model presents a satisfactory fitting: it is constant near 0 over the
output domain with few outliers in the middle of the domain. Also, the maximum residual
of the non-linear model is smaller than the linear model (1.5×10−5 instead of 6×10−4)
and especially the tails have a better fit.

Figure 6.4 shows the distributions of the residuals of the full linear model and the
non-linear model. The residuals of the non-linear model follow a Normal distribution and
those of the linear one does not. The non-linear model found presents two advantages
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Figure 6.3: Fitted values and residuals of (a) full linear model and (b) nonlinear model
proposed by the optimization algorithm .

over the first one: (1) the maximum residual is 1 order of magnitude smaller and (2) the
residuals occur in both directions.

The final step of the methodology consists of running the fullMonte Carlo simulation
interpolating over the function approximating the electrical simulations, i.e. compute the
statistics ofF(x),∀x∈ ΓM. The complexity of applying one input vector to function F is
O(1) and is many orders of magnitudes faster than running oneelectrical simulation.

6.5 Discussion

This chapter introduces a Response Surface Methodology which is suitable for substi-
tuting statistical simulation through Monte Carlo at electric level. The flow is composed
by these phases:

Design of Experiments selects artificial points which are representative of the Monte
Carlo simulation;

Run electrical simulations on the pre-selected points

Model improvement iterates over possible non-linear regression; models to represent
the cell characteristic as a function of its random variables;

Use the surrogate modelinstead of electrical simulation in order to perform Monte Carlo
simulation.

The most computer intensive tasks of our RSM are the electrical simulations and the
model improvement algorithm. As compared to Monte Carlo, the number of electrical
simulations required by RSM can be reduced by orders of magnitude.

The model improvement algorithm, however, can potentionally jeopardize the speedup.
In order to prevent long runtime of the model improvement algorithm, an accuracy switch
has been added to the RSM script, as discussed in Appendix B. Lower numbers for this
option stops the algorithm to use cross-terms and high orderterms, further speeding up
the model search. A good tradeoff between accuracy and speedis to set accuracy_fit as
2 or 3. Option 2 searches for a reduced linear model, in other words it runs the variable
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Figure 6.4: Distribution of residuals of the full linear fit and the non-linear fit with
quadratic and cross-terms of the FF. The residuals of the non-linear model are smaller
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screening algorithm (algorithm 6.4.3) only. Option 3 runs algorithm 6.4.3 and the model
improvement algorithm (listing 6.4.4), allowing quadratic terms and linear cross-terms.
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7 STATISTICAL CELL LIBRARY

This section exhibits results of the statistical characterization of a subset of cells from
a 32nm standard cell library, using a statistical compact model library. The selected subset
of cells is shown in table 7.1. The library generated is compatible with Synopsys Liberty
Format (.LIB), also supported by Cadence tools. For performing the most comprehensive
benchmark we performed statistical library characterization by the 3 means:

1. Monte Carlo:reference method with a sample size of 1000;

2. Error propagation using linear sensitivity analysis:enabled by the commercial
statistical library characterization tool which requiresn+1 runs and performs sen-
sitivity analysis;

3. Non-Linear RSM:the proposed regression-based methodology using the Brussel
DoE and model improvement algorithms, which requires 2n+1 runs.

Both the sensitivity analysis and RSM have a number of runs dependent on the num-
ber of transistors of the circuit. The number of Monte Carlo runs, on the other hand, is
not dependent on the number of random variables but on the target accuracy. Roughly
the error of a Monte Carlo simulation scales withO(

√
1/N), meaning an accuracy im-

provement of≈ 3 is achieved when the number of simulations is increased by afactor of
10.

Thus, the number of simulations required by Monte Carlo willbe kept constant, as a
reference, through the benchmark. On the other hand, the number of electrical simulations
of linear sensitivity analysis and RSM are a function of the number of variables (referred
asn) of the cells. Table 7.1 shows the number of transistors and the respective number of
variables of the cells in the cell library. The number of variables is twice the number of
transistors because for each transistor we consider two random variables:Vt and∆β/β .

We set up an experimental framework to allow fair comparisonbetween Brussel DoE
and linear sensitivity analysis. Both responses given by RSM and the error propagation

Cell Number of transistors Number of variables

INVERTER 2 4
NAND 4 8
NOR 4 8
XOR 10 20

Flip-Flop type D 24 48

Table 7.1: Number of transistors of the benchmark cell library.



94

−3 −2 −1 0 1 2 3

−0.05

0.00

0.05

Theoretical Quantiles

S
et

up
 ti

m
e 

(n
s)

MC (points)
RSM (points)
RSM (line)
EP (line)

Histogram

Figure 7.1: Quantile-quantile plot (Normal distribution is a straight line) of the distribu-
tion of FF setup time comparing true response computed usingMC with linear sensitivity
analysis (EP) and RSM. Inset shows histogram and PDFs.

are compared against MC simulation using a sample size of 1000. Thus, we categorize
the benchmark into two groups. In a first moment we benchmark the response distribu-
tions, arriving at the conclusion that our method is on average 5− 10× more accurate
for estimating the 4 moments of the distributions than linear sensitivity performed by a
state-of-the-art commercial tool.

7.1 Analysis of circuit response PDF and CDF

In this section we compare the response distributions obtained using the proposed
methodology with the one given by the commercial tool and theone obtained by MC.
Figures 7.1, 7.2 and 7.3 present, respectively, the distributions of setup time, hold time
and clock-to-q delay of the flip-flop cell (FF). In the insets,these figures show the his-
togram of MC (reference), as well as curves representing thePDFs obtained using MC
analysis and the non-linear RSM. Linear sensitivity analysis and the RSM present good
agreement with MC. Nevertheless, combined PDF or histogramgraphs on a linear scale
lacks visual information about the accuracy on the tails. For analysis of the distribution
with sufficient accuracy this work uses Quantile-Quantile (q-q) Plot, very widespread
amongst the Statistic community. These figures show q-q plots of the hold time, setup
time and clk-to-q delay distributions. Using this technique allows us to verify that the
non-linear method has a perfect agreement with MC simulations on the whole domain of
the distribution: both in the center and the tails. On the other hand, the error propagation
using linear sensitivity analysis is less than 1% off on the center, but it becomes more
inaccurate on the tails of the distribution.
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Table 7.2: Benchmark of std cell library generated using ourmethodology as compared
to Monte Carlo.

Gate Param
Response surface methodology Error Propagation

µerr σerr Serr Kerr 3σerr runs µerr σerr Serr Kerr 3σerr runs
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

INV
delay 0 0.5 -13.3 0.7 0

9
-0.1 -2.5 -100 2.2 -0.9

5transition 0 1.7 -27.4 6.2 -0.2 -0.2 -10.8 -100 -17.9 -2
power -1.6 -0.7 -7.5 0 -1.4 NA NA NA NA NA

NAND2
delay 0 0.9 -11.9 -4.5 0

17
-0.7 -17.9 -100 2.2 -3

9transition 0 1.5 10.8 4.1 0.5 -0.1 8.8 -100 12.2 0.3
power 0.4 -7.5 -1.1 -5 5.4 NA NA NA NA NA

NOR2
delay -0.1 -2.4 -25.8 3.9 1

17
0 -4.6 -100 -6.8 3.7

9transition 0.1 3.1 -26.5 -3.1 0 0 -4.3 -100 -3.4 -1.2
power -0.6 3.8 22.8 -0.9 0 NA NA NA NA NA

XOR2
delay 0.1 0 16.8 0.7 0.1

41
0.2 -6.4 -100 5.4 -0.5

21transition 0 3.4 -28.3 1.5 0.1 -0.2 -8.6 -100 8.4 1.5
power 0 -5.5 -43.5 4.1 1.7 NA NA NA NA NA

DDFQ

hold -0.8 1.1 -10.7 2.2 3.9
97

5.5 -3.1 -100 4.1 11.3
49setup 0.4 0 -33.1 0.2 1.1 -3.9 -1.6 -100 -1.9 2.3

CLK-Q 0 1.4 -8.6 -1 0.1 -0.5 -7.5 -100 -1.5 2.7
power 0 2.5 -22.4 -5 0 NA NA NA NA NA

||Average|| (timing) 0.14 1.45 19.38 2.55 0.64 1.04 6.92 100 6 2.67

The best way to compare the responses of the cells of the case study library character-
ized using RSM and linear sensitivity analysis methodologies as compared to those of the
reference library characterized using Monte Carlo is by comparing the moments of the
distributions generated using the approximation approaches with those of the reference
MC, as given in Table 7.2. For each parameter, the table showsthe relative error between
the four first central moments of the distributions: mean (µerr), standard deviation (σerr),
skewness (Serr) and kurtosis (Kerr), which indicate the degree of asymmetry and the tail
weight of the resulting PDF’s respectively. In addition, the table presents 3σerr, which is
the error of the approximations at 99.97% of the distribution. It shows the quality of the
approximation at the tail of the distributions.

The last line of Table 7.2 presents the average of the errors for delay and transition
times. Notice that the table presents the absolute errors. Also notice that power is not
taken into account for computing the averages because thereis no power information
for the error propagation. The errors ofstandard deviation andmeanare less than 2%
for the Response Surface Methodology, as compared to errorsof 7% when using linear
sensitivity analysis. Notice that the linear sensitivity analysis is also limited to Gaussian
distributions, and so by definition its output is always limited toS= 3 andK = 0. Also
notice that the commercial tool does not compute statistical estimates of power. Thus,
although the error of kurtosis and skewness can be high even for RSM, it performs better
than linear sensitivity analysis.

The column “runs” is the number of electrical simulations required by RSM and linear
sensitivity analysis. It is important to notice that for these methods the number of sim-
ulations is linearly dependent on the number of gates of the device. The electrical sim-
ulations are the most time consuming step of Monte Carlo, linear sensitivity and RSM.
Also, one simulation takes exactly the same amount of time for each of these method-
ologies. Hence, the number of electrical simulations is themost representative metric of
performance. Roughly, 10 times less runs implies 10 times less run-time.
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The number of simulations required by linear sensitivity and RSM scale linearly with
the number of variables:n+1 and 2n+1, respectively, beingn the number of variables.
However, the number of Monte Carlo simulations is independent on the number of inputs.
Our Monte Carlo of reference uses sample size of 1000, but this number can be increased
for higher accuracy.

The run-time of linear sensitivity and RSM increase with thenumber of transistors,
in such a way that the speedup is inversely proportional to the gate complexity. This
limits the applicability of RSM for circuits having less than N/4 transistors, where N is
the number of Monte Carlo simulations. Linear sensitivity analysis, on the other hand,
can be used to circuits with up to N/2 transistors.

7.2 Analysis of errors of the predicted values

While section 7.1 focuses on the differences between the statistics of the output dis-
tributions, it does not show information about the individual errors of the values pre-
dicted by the models as compared to the reference electricalsimulation. On the other
hand this section presents a study about the accuracy of the models when predicting in-
dividual values. Figure 7.4 presents the distribution of the relative errors (computed as
model/re f erence−1) produced by linear sensitivity and Brussel Design as compared to
MC. The linear regression model has discrepancies up to 3% compared to MC, and the
mean error is≈ −0.5, what causes the distribution of errors to be off to the leftside of
the reference, as shown in the inset of the plot, indicating systematic error (caused by
the simplistic linear model). The distribution computed using the non-linear RSM model
has a maximum error of 2% and the average error is 0. Moreover,the errors of the RSM
follow a Normal distribution centered at 0, which means there are no systematic causes of
discrepancies. The conclusion from this figure is that RSM can achieve better accuracy to
predict both the central moment of the distribution as well as its tails.

7.3 Runtime analysis

The most time consuming step of the flows is the electrical simulation needed to char-
acterize the standard cells. The runtime of Monte Carlo depends on the target error margin
and does not depend on the number of devices. Designers usually employ 102 – 104 runs.

Unlike Monte Carlo, both the error propagation and the RSM have linear dependency
on the number of random variables. RSM requires 2n+1 runs, while first order sensitiv-
ity analysis requiresn+ 1 simulations. Thus, when comparing runtime of the electrical
simulation only, RSM has a penalty of 2× as compared to linear sensitivity analysis.

Each characterization of the cell library takes approximately 3 minutes running on a
server using 10 processors in parallel. The most timing consuming cell is the flip-flop,
which takes about 90% of the characterization time of this subset. Thus, characterizing the
subset of the standard cell library using the MC approach with 1000 runs (reference) takes
three minutes multiplied by 1000, totaling 49 hours. Using the same parallel environment,
the characterization takes only a fraction of that time: 2 hours for the linear sensitivity
analysis and 4 hours for the non-linear RSM. Notice that for RSM the total runtime is
not taken into account: since only the number of electrical simulations is reported, the
overhead of RSM, e.g. selection of points and the model selection, is not accounted for.

For characterization of standard cell libraries, which timing and power characteris-
tics has nearly linear relationship with Vt, linear sensitivity analysis offers better tradeoff
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Figure 7.4: Error of linear sensitivity and RSM approaches as compared to Monte Carlo
using 1000 runs.

between accuracy and runtime than Monte Carlo and Response Surface Methodology.
Linear sensitivity analysis tends to be the best approach when linearity can be assumed.
RSM can be a good approach to model non-linear behavior with asmall number of vari-
ables, e.g. analog circuits. Monte Carlo is a good approach to model non-linear behaviour
with large number of variables.

7.4 Impact of aging on the delay of standard cells

This section presents the analysis of the impact of aging dueto NBTI on the delay
of an inverter. The inverter is simulated using the 32nm Predictive Technology Model
(CAO; MCANDREW, 2007).

The time delay of the inverter can be written as a function of the electrical charac-
teristics of the transistors asTd(Vtp,Vtn, ...) whereVtp andVtn are the voltage thresh-
old PMOS and NMOS transistors and follow Normal distributions. While the NMOS
transistor is affected only by process variation and not affected by NBTI, thusVtn =
Vtnprocess, the PMOS transistor is affected both by process variationsand NBTI, thus
Vtp = Vt pprocess+Vt pNBTI. The standard deviation of the inverter delay can be com-
puted through error propagation (PARRAT, 1961):

σ2
Td(t) =

( ∂Td
∂Vt p

)2
σ2

Vt pprocess
+
( ∂Td

∂Vtn

)2
σ2

Vtnprocess
+
( ∂Td

∂Vt p

)2
σ2

VtNBTI
(t) (7.1)

This means that both the transistors are affected by processvariation, while only the
PMOS is affected by the NBTI component. These 2 components are considered to be
independent: it is assumed to exist no correlation between process variation (RDF, LER,
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results.

...) and NBTI.
Figure 7.5 presents the Probability Density Functions (PDF) generated using the mean

and standard deviate evaluated by EP, compared to the ones obtained by MC simulations.
The solid lines refer to Monte Carlo runs while the symbols refer to the error propagation.
The figure shows the Normal PDFs for year 0, 5, 10 and 20. At eachyear both the
mean and the standard deviate of the delay increase due to NBTI. The dimensions of the
transistors are Ln=Lp=32nm and Wn=Wp=48nm.

Figure 7.6 shows the histogram obtained from MC simulation compared to the PDF
plotted usingσTd and µT d computed using the proposed approach at the 5th year of
operation of the circuit. The EP curve fits very well to the MC histogram.

The table 7.3 presents the results for year 0, i.e. right after circuit fabrication, where
the Vt variations are only due to process variability, untilyear 20, showing the evolution of
the delay degradation due to NBTI. TheσTd computed using the methodology proposed
in this paper (EP) is compared toσTd computed by Monte Carlo. The columns Err refer
to the difference between EP and MC results (in percent). Foreach year, we run MC
with 1000 simulations. For computingσT d error propagation requires only 4 electrical
simulations: 2 for computing∂Td/∂VtPMOS and 2 for computing∂Td/∂VtNMOS. The
maximum absolute error of the linear sensitivity analysis approach as compared to Monte
Carlo reported in these simulations is 1%. The mean of MC is compared to the simulation
using the nominal values of Vt for each year (for which only 1 electrical simulation). The
maximum error using this approach for approximating the mean value is 0.7%. Then, EP
methodology requires only 5 simulations for computing the mean and standard deviate.
Hence a speedup of 200 times is achieved as compared to MC.
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Table 7.3: TheσTd andµT d computed using MC compared to the methodology proposed
Year σ (EP) σ (MC) Err µ (EP) µ(MC) Err

(ps) (ps) (%) (ps) (ps) (%)

0 1.32 1.31 0.1 27.86 27.96 -0.4
1 1.95 1.96 -0.7 31.01 31.18 -0.6
2 2.03 2.05 -0.6 31.43 31.61 -0.6
3 2.09 2.10 -0.8 31.70 31.89 -0.6
4 2.13 2.15 -0.9 31.91 32.11 -0.6
5 2.16 2.18 -1 32.08 32.28 -0.6
10 2.30 2.31 -0.4 32.66 32.88 -0.7
15 2.37 2.39 -0.6 33.04 33.27 -0.7
20 2.43 2.45 -0.8 33.33 33.57 -0.7
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8 STATISTICAL ANALYSIS OF HOLD TIME VIOLATIONS

One of the major goals of a design flow is to satisfy timing constraints without sac-
rificing area and power. One of the most important tasks of design optimization is to
identify and remove setup and hold time violations.

Two logically adjacent FFs (namely FF1 and FF2) controlled by CLK1 and CLK2
with no logic or with a fast data path between them may be affected by clock skew. If the
clock skew is large enough–i.e. CLK2 arrives after CLK1 and exceeds the internal race
immunity of the FF–a hold time violation is produced and detected if the output of both
FFs are of the same value at the same time (Q1(t)=Q2(t)) (SHI et al., 2008). The internal
race immunity of a FF is given by

R= tCLK→Q− thold

wheretCLK→Q is the clock toQ delay andthold is the hold time of the FF.
Let the clock skew S be given byS= tCLK2− tCLK1, which is the delay difference

between the two clock signals, andtd is the delay of the data signal from outputQ of FF1
to inputD of FF2.The following definition describes the timing conditionsfor a hold time
violation:

A hold time violation occurs⇐⇒ R−S+ td < 0 (8.1)

Thus hold time violations are dependent of FF race immunity (that is inherent to the
FF type and its transistor sizing) and the clock skew of the circuit. Both race immu-
nity and clock skew are susceptible to process variations (MEHROTRA; BONING, 2001;
ZARKESH-HA; MULE; MEINDL, 1999; CHEN et al., 2005). Historically they have
been modeled as worst-case scenarios, thus leading to excessive pessimism (VISWESWARIAH,
2003). Since short paths are increasingly becoming dominant issues of ASIC design, this
work addresses a methodology for the analysis and repair of hold time violations. This
work extends the work developed by Neuberger (2007). The contributions of this work
are:

• analysis of Monte Carlo simulations presenting the distribution of clock skew of a
commercial ASIC design of a 90nm technology node, concluding that under pro-
cess variability clock skew follows a Normal distribution;

• improvement over the methodology for computing the delay tobe inserted in or-
der to fix hold time violations. These analytical equation have been proposed by
Roberto da Silva.
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Figure 8.1: Measured distribution of the critical clock skews (race immunity) for rising
transitions. The nominal case (mean critical skew) is set to0ps. Courtesy of Gustavo
Neuberger, as appears in Neuberger (2007).

Section 8.1 presents statistical characterization of raceimmunity made by Neuberger
et. al and shows that it can also be modeled as a Gaussian random variable. Section
8.2.2 presents statistical analysis of the clock skew data measured from a commercial
standard cell design, showing that clock skew can be modeledas Normal distribution.
Section 8.3 presents comparison of three statistical models for hold time violations: i)
considering both race immunity and clock skew as worst-case; ii) considering clock skew
as worst case and modeling race immunity as a random variable; and iii) modeling both
race immunity and clock skew as random variables. Section 8.4 presents an extension
of the work developed by Neuberger (2007), statistical method for computing the exact
delay that is required to be inserted in the data-path to fix hold time violations.

8.1 Race Immunity: probabilistic approach

Neuberger et al. performed on-chip measurement of race immunity of flip-flops sub-
ject to process variations and presented the results in Neuberger (2007). A programmable
delay line was developed with resolution of approximately 1ps. Many experiments were
performed on the fabricated circuits to measure race immunity on many dies. The ex-
perimental results show that the race immunity can be assumed to follow a Gaussian
distribution, with 3σ values of up to 15%, as shown in figure 8.1.

Based on these measurements, the next step would be to estimate the probability of
hold time violations taking both race immunity and clock skew into account.
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Figure 8.2: Histogram of the (a) Kurtosis and (b) Skewness ofthe FFs delays

8.2 Statistical analysis of clock skew

Synchronous digital circuits rely on the distribution of the clock signal from the clock
source to the sequential elements of the circuit. Automatedclock synthesis tools play
a major role in the design of high-performance designs and ASICs. Historically clock
synthesis target low area and low dynamic power consumption, power reduction through
clock gates, small latency and small deviation from the desired skew (which is usually
zero, but when using useful skew the delays at certain ffs is required to be smaller (CHIN-
NERY; KEUTZER, 2002)). But since process variability is playing a major role in skew,
synthesizing clock networks insensitive to process variation have become as relevant as
other issues(LAM; KOH, 2005).

Zero-skew clock network synthesis tools target at buildinga clock network which the
delays at every sink is the same. Many reasons cause the desired ideal zero-skew to be
impossible. The routing of the clock wires impose a challenge: as ffs are distributed over
the chip, rare is the case where two wires at least from the bottom-most buffer to the sink
can have the same delay. Clock schemes such as H-trees and meshes try to compensate
the routing issues, but perfect match is never reached.

The synthesis of the clock network and the analysis of the clock signal delays and
skew could be evaluated using corner-based analysis. In this approach the delays are
computed using extreme cases of the electrical parameters (transistors voltage threshold,
wires capacitances and resistances). Also, corner-based Static Timing Analysis assumes
all the devices are completely correlated. Because of thesereasons, corner-based analysis
is excessively pessimistic (VISWESWARIAH, 2003). This pessimism translates into the
latency and skew of the clock network being overestimated, thus the frequency end up
being unnecessarily smaller than it could be if the estimates were more accurate.

On DSM technologies WD and D2D variations impose the biggestchallenge for the
design of reliable clock networks because the variations ofthe delays of the logic gates
and the wires of the clock network have been increasing. These manufacturing variations,
together with noise and NBTI, cause the delaysdi to be a random variable, for instance
like a Normal distribution,di = N(µdi,σdi). Since the clock skew and the clock latency
dictate the maximum frequency of the circuit, the correct estimate of these parameters is
essential to verify if the design satisfies its timing constraints and to estimate the yield of
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the circuit.
Monte Carlo simulation (AMAR, 2006) is appropriate to modelthe statistical behavior

of the circuit imposed by process variations. By performingMonte Carlo analysis instead
of corner-based, the WD variations of the devices, which areuncorrelated in nature, lead
to paths with uncorrelated delays. This chapter presents in-depth analysis of valuable
information given by Monte Carlo simulations of a clock network. Section 8.2.1 presents
the analysis of the delays from the clock source up to the FFs,as well as the skew between
pair of FFs. Section 8.2.2 reports the clock skew modeled as arandom variable.

8.2.1 Delay distribution

Consider the flip-flopsf fi for i = {1, . . . ,n}, thendi is the delay from the clock source
to f fi . The clock latency islatency= max(d1, ...,dn) and the clock skew betweenf fk and
f f j is skewk j = dk−d j .

Monte Carlo simulations of the clock network of a commercialFujitsu circuit on the
90nm technology node were run. The clock network was designed using a proprietary
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Figure 8.5: Histogram of the delay distribution in one MonteCarlo iteration

Fujitsu clock synthesis tool. The sample size is 2000, and the voltage threshold (Vt) of the
transistors is modeled as a Gaussian random variable withµ andσ characterized for the
process. The environmental parameters VDD and temperature, and the wire capacitance
and resistance are modeled using de-rating factors to represent a slow corner.

First we explore the distribution of the delays from the clock source up to the sinks in
respect to normality. Figures 8.2.a and 8.2.b show respectively the kurtosis (PRESS et al.,
1992) (normalized to 0 in relation to Normal distribution) and the skewness (PRESS et al.,
1992) histograms of the delays at the FFs, considering 2000 MC runs. Nearly 37% of the
FFs delays kurtosis are between -0.1 and 0.1, which means those have a tail weight close
to a Gaussian distribution. The others have a heavier tail than Gaussian distribution should
have, up to 1.5, what is too large for Gaussian. The skewness of the delays vary from 0.3
up to 0.8, which means that the delays of every FF presents an asymmetric distribution
which is always positive: skewed to the right tail. Most of them is in the range 0.55-0.75.

Let’s then explore in detail the delay of two representativeFFs. FF1 has kurtosis=0.08
and skewness=0.69, while FF2 has kurtosis 0.08 and skewness=0.38. The kernel densities
of the distribution of (normalized) delays at two FFs is shown in figure 8.3. The plot shows
that the delays of these FFs follow a Normal distribution in the left tail and center, but
fails to follow it in the right tail. The small portion of the figure highlights the difference
between FF1 and FF2, which fits well a Gaussian distribution,even in the tails.

Figure 8.4 shows the Quantile-Quantile plot (q-q plot) of the distribution of delays at
the FFs in the main plot and shows the q-q plot of the skew between them in the smaller
portion. These plots corroborate to the visual informationgiven by the histogram: the
delay at the FFs have a non-symmetry issue in the right tail. But still the difference
between them is symmetrical and fits perfectly with a Gaussian Distribution.

Figure 8.5 reports how the delays of the FFs are distributed.It corresponds to one
single Monte Carlo iteration, and shows that the delays at most of FFs are very similar, and
thus the skew at most of the FFs is very small. The issue is the difference of delays from
the maximum delay to the minimum delay, corresponding to thetails of the distribution.
This difference imposes the maximum clock skew between two FFs in this iteration, i.e.
for a given set of random variables of the Monte Carlo iteration. In this case, the maximum
skew of the iteration is 1−0.88= 0.12.
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Figure 8.7: Histogram of the clock skew

8.2.2 Maximum clock skew

The clock skew of the design is given byskewmax= max((ds−df )1, ...,(ds−df )m), for
each of the m pairs( f fs, f f f ) of cascaded flip-flops. The maximum difference between
two FFs cascaded (when one is the start-point of the data-path and another as an endpoint)
is the most important constraint for the clock synthesis because it is closely related to the
maximum frequency of the circuit. Also, smaller clock skew leads to smaller setup and
hold time violations, cutting down design time and reducingtime-to-market.

Due to process variations, the pair with higher skew and the skew itself is different
from one circuit to another, i.e. histogram of figure 8.5 is different for each die. By run-
ning Monte Carlo simulation one can simulate the distribution of the minimum delays
and the distribution of maximum delays from the source to theFFs. Figure 8.6 presents
the distribution of the minimum and maximum delays for MC simulation with a sample
size of 2000. Although the delay distribution does not follow a Gaussian distribution, the
maximum and minimum of the delays fit very well with a Normal distribution. Figure 8.6
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also presents the quantile-quantile plots for both the distribution of the minimum and the
maximum delay. Both the histogram and the quantile-quantile plot visually indicate Gaus-
sianity. We performed a Shapiro-Wilk test for testing the hipothesis of non-Gaussianity
of the data. For the maximum, Shapiro Wilk test indicatesW = 0.9978 andp = 0.0793,
but for the minimumW = 0.9953 andp = 6.37×10−6. The tests then indicate that the
data of the minimum delays does not seem to come from a Gaussian distribution, while
there is no evidences to state that the maximum does not follow a Gaussian distribution.

More important then the distribution of the maximum and minimum delays is the
distribution of the skew, which is the difference between them. The distribution of the
clock skew of the circuit under analysis is shown in figure 8.7. The figure presents the
kernel density, as well with a fit with a Gaussian distribution. In the small portion of the
graphic, it is shown an histogram with greater bin sizes, to confirm the good symmetry of
the data in relation to a Gaussian distribution. Figure 8.8 shows the quantile-quantile plot
of the clock skew. It shows that the data follows a Gaussian distribution in the center of
the distribution, but fails to fit in the tails, demonstrating a skewed behavior.

8.3 Models for Hold Time Violations

8.3.1 Hold Time Violation: worst-case approach

A hold time violation occurs when the clock skew is higher than the race immunity.
Assuming both race immunity and clock skew are worst-case values, denoted respectively
by Rworst andSworst –which is the scenario usually found in the literature and supported
by EDA tools– with the definition 8.1 for hold time violation,and assumingtd = 0, the
probability of a hold time violation is as follows:

Phold(Sworst,Rworst) =

{
1 if Sworst < Rworst

0 if Sworst > Rworst
(8.2)

In this caseSworst andRworst are the worst case clock skew between the two FFs and
the worst case race immunity of the FF respectively.
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Figure 8.9: (a) Calculation of hold time violation probability (cumulative distribution
function). (b) Hold time violation probability considering clock skew as a random variable
following a Normal distribution.

8.3.2 Hold Time Violation: race immunity as random variable and clock skew as
worst-case value

If the clock skew is assumed to be a deterministic (fixed) value and the race immunity
is assumed to follow a Normal distribution according to Neuberger (2007), the probability
of a hold time violation of a short path is the probability of the race immunity, which is less
than the clock skew. It is illustrated as the red area in Figure 8.9.a. From the definition 8.1
of hold time violation and assumingtd = 0 the probability of the race immunity (which is
characterized by averageµR and standard deviationσR) to be smaller than the clock skew
(here denoted bySworst) is given by:

Phold(Sworst,µR,σR) =
1
2

(
1+er f

(Sworst−µR

σR
√

2

))
(8.3)

whereer f(x) = 2√
(π)

∫ x
0 e−t2

dt, Sworst is the worst case of the clock skew,µR andσR are

the average and standard deviation of race immunity.
Figure 8.10 shows the probability of failure (z-axis) as a function of the race immunity,

where race immunity was modeled as a random variable with a Normal distribution and
the clock skew is modeled deterministically (worst case). Since clock skew is considered
as the worst case, even if the clock skew is very small–let’s say nearly 70ps–a path with an
FF with race immunity of 100ps has nearly 100% chance of causing a hold time violation.
As we will see in the next section, this approach is pessimistic and if clock skew is also
modeled as random the failure probability computed is smaller.

8.3.3 Hold Time Violation: probabilistic approach

Let the race immunity and clock skew be random variables which can be approximated
by Gaussian distributions, which is a good approach as shownin the previous sections.
The probability of hold time violation is the probability that the clock skew is higher
than the race immunity. In this case, we must evaluate the probabilities for the race
immunity value (normally distributed) being smaller than the clock skew (also a normally
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Figure 8.10: Probability of hold time violations (z-axis) as a function of clock skew (x-
axis represents the worst case) and race immunity (y-axis represents the average of the
Normal distribution)

distributed random variable). This is the convolution of the two Gaussians, also discussed
in Neuberger (2007) and is graphically represented in figure8.9(b).

To evaluate the probability, we will assume that the race immunity and clock skew fol-
low independent normal random variables. This is a valid assumption since the variations
we are dealing with come from RDF, which makes the transistors have different electrical
characteristics (likeVt) with no correlation. Using this assumption, with the definition of
hold time violation given in 8.1 and assuming thetd = 0, the following equation can be
used to calculate the probability of hold time violation:

Phold(µR,σR,µS,σS) =
1
2
·
(

1+er f
( µS−µR√

σ2
S +σ2

R

√
2

))

(8.4)

whereµR andσR are the average and standard deviation of race immunity,µS andσS are
the average and standard deviation of clock skew, ander f is the error function.

Figure 8.11 reports the probability of failure (z-axis) as afunction of race immunity
and clock skew modeled as random variables following Normaldistribution. The proba-
bilistic model leads to less paths being reported as presenting violations, although circuit
reliability and performance constraints are satisfied.

8.4 Fixing hold time violations with probabilistic delay insertion

Increasing the data-path delaytd by kps for removing hold time violations has the
same effect as reducing the average clock skew ofkps or increasing the race immunity by
kps. The probability of hold time violation as a function of clock skew with race immunity
being a random variable with Normal Distribution and with data-path delaytd as a fixed
value is given by:
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Figure 8.12: Probability of violation as a function of the data-path delay.

Phold(µR,σR,µS,σS, td) =
1
2
·
(

1+er f
( µS−µR− td√

σ2
S +σ2

R

√
2

))

(8.5)

Figure 8.12 shows the dependence of the probability of hold time violation on the
time delay of the data-path. This figure represents a path where the clock skew average
is 100ps and the FF race immunity average is 150ps. The hold time probability decreases
exponentially with the data-path delay. Also, figure 8.12 shows that the probability of hold
time violations strongly decrease as delay in the data-pathfrom FF1 to FF2 increases. In
a back-end design flow, the timing analysis tool evaluates this delay (referred as negative
slack), and if it is not enough–leading to a hold time violation–then an optimization algo-
rithm can insert the appropriate amount of extra delay to avoid that timing violation. This
method is known as padding.

Padding is the placement of extra delay in the fast logic paths to increase the race im-
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munity and to prevent hold time violations. This extra delaycan be achieved by inserting
inverters, buffers, or wire jogs. Padding is the most effective way to prevent digital circuits
against hold time violations. Padding was presented as a technique to prevent against hold
time violations in short paths by Shenoy (1993) and is employed by commercial tools to
fix hold time violations. The problem with hold time fixing tools as it is today is that the
amount of delay to be inserted in the path is computed with a corner-based approach. In
that fixed-values scenario, the amount of delaytd that padding must insert in a given path
can be calculated as:

tdworst = Sworst−Rworst (8.6)

whereSworst is the worst-case clock skew andRworst is the FF race immunity.
We now aim at finding an expression to compute the total delaytd to be inserted

into the data-path so that the probabilityp = Phold(µR,σR,µS,σS, td) is less than a given
threshold. Also, assume that we wish the probability of holdtime violation to be very
small and thusp≪ 0.1. In order to accomplish that, we have to isolate the variable td in
equation 8.5. Roberto da Silva proposed an analytical manipulation to isolatetd, aiming at
a closed-form solution (BRUSAMARELLO et al., 2010). For this purpose, consider the
handy numerical approximation for the error function (er f) presented by Winitzki (2003):

er f (y) =

[
1−exp

(
−y2

4
π +ay2

1+ay2

)]1/2

where in our casey = µS−µR−td√
2(σ2

S+σ2
R)

. The best approximation related to the above equation

is obtained when we seta = 0.147.
Then from equation 8.5 we have:

1−2p =

[
1−exp

(
−y2

4
π +ay2

1+ay2

)]1/2

From this we obtain the fourth degree equation:

0.147y4+

(
4
π

+0.147ln[4p(1− p)]

)
y2+ ln [4p(1− p)] = 0

where making the substitutiony = x2 becomes a quadratic equation:

0.147x2+

(
4
π

+0.147ln[4p(1− p)]

)
x+ ln [4p(1− p)] = 0

Solving this equation inx and returning toy = x2 we find four candidates for the
solution. Eliminating the solutions that are not valid in the range of y and p, we verify
that the solution for y is:

y =− 1
4π
√

∆1+∆2

where

∆0 = ln
(
4p−4p2)

∆1 = −217.69π−8.0π2∆0

∆2 = 54.42π
√

1.18π∆0−0.59π2∆0 +0.02π2∆2
0+16
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Figure 8.13: Data-path delay required to satisfy the yield constraint due to hold time
violations using the probabilistic approach.

And making the substitutiony = µS−µR−td√
2(σ2

S+σ2
R)

. we find the suitable formulation fortd:

td = µS−µR+

√
2
(
σ2

S +σ2
R

)

4π
√

∆1 +∆2

In a design containingn short paths, the probability of one path to present hold time
violation p is related to the design yield loss due to hold time violations as inyield =
(1− p)n. Thus, the probability of hold time violation can be computed from the yield
goal as in

P = 1−yield
1
n

whereyield is the circuit yield andn is the number of short paths.
Figure 8.13 shows the computation oftd required to be inserted in the data-path using

the corner-based analysis, the proposed probabilistic methodology, and the method where
skew is considered worst case while race immunity is probabilistic. On both probabilistic
scenarios the yield is set to 95% with n=100 paths, which results in P = 5.13× 10−4.
Using worst-case scenario, as opposed to the proposed probabilistic methodology, would
not allow for prediction of the circuit yield.
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9 STATIC RANDOM ACCESS MEMORY (SRAM)

Nowadays most of ASICs and dedicated high-speed circuits such as microprocessors
present a considerable area devoted to Static Random AccessMemories (SRAM).

Part of SRAM success is because it can be fully integrated to the logic part of the
ASIC: it consists of two inverters and two pass transistors which are processed together
with the rest of the chip. For instance this is not the case forDRAM memories, which need
a special manufacturing process, mainly due to the load storing the bit. Thus DRAMs
must be built in a separate die, not so close to the logic, implying in communication
overhead because the data must pass through a bus.

Dynamic RAM also has the side effect of its load discharging to ground after a given
amount of time. This would result in bit-flips, and thus a special circuitry, a refresh circuit,
must be build in order to refresh the bits of a DRAM. Due to the feedback loop of its two
inverters, another advantage of SRAM over DRAM is the lack ofneed a circuit to refresh
the bits. This implies even more speed advantage.

Mainly due to its implementation being so close to logic, SRAM is the fastest high-
density storage element existing in today’s technology. Although latches and FFs can
be actually faster, their area is orders of magnitudes more than SRAM, thus they are not
suitable for high-density.

The first level of cache of microprocessors, which requires maximum speed, is always
an SRAM memory. The area of a state-of-the-art microprocessor. Nowadays can be up
to 80% SRAM memory. Depending on the application, ASICs alsocan present very high
density of SRAM memories. Recent FPGAs also ship with embedded SRAM arrays in
order to offer a high-speed memory.

Figure 9.1 illustrates a typical SRAM memory architecture as discussed in Haraszti (2000).
This scheme of memory is composed of

• memory cell array composed ofNCOL columns andNROW rows of SRAM cells, and
NR redundant columns;

• internal timing circuit to generate the control clocks;

• data-in/data-out buffer circuitry;

• register and decoder blocks for thebit address, commonly referred asrow address;

• register and decoder blocks for theword address, commonly referred ascolumn
address.

SRAM memories present a regular architecture in which most of the chip area is dedi-
cated to regularly disposed SRAM cells. Consider the memoryarray designed withNCOL
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Figure 9.1: Scheme of a SRAM memory

columns andNROW rows of SRAM cells, andNR redundant columns. If process fabrica-
tion variability causes at least one memory cell to fail in a column, that column is replaced,
during circuit test phase, by one of the redundant columns. Some applications employ-
ing memories sometimes apply binning techniques, as for instance when more thanNR

columns fail, the circuit is re-wired to utilize a reduced amount of memory. Although
ASIC designs usually do not have that flexibility and need thefull memory to work, re-
lying solely on redundancy. In any case, faulty SRAM cells lead to reduced yield and
reduce profit margins.

Denotingp as the probability of the SRAM cell to work properly in the presence of
process variability,PCOL = (p)NROW gives the probability of no cell failure per column. In
addition, the probability of column to be faulty is given byQi

COL = 1−(p)NROW. Next, we
are interested in the probability of successfully manufactureNCOL working columns, in a
total ofNCOL+NR designed columns. Then, the yield (percentage of working chips) of a
SRAM memory design is given by a binomial distribution (MAHMOODI; MUKHOPAD-
HYAY; ROY, 2005):

PMEM =
NCOL+NR

∑
i=NCOL

(
NCOL+NR

i

)
(PCOL)

i(1−PCOL)
NCOL+NR−i (9.1)

In order to offer maximum density, SRAM memory cells are usually designed using
the smallest feature sizes allowed by the technology. Nowadays SRAM is the component
of a digital design that benefits most from technology scaling. For SRAM, technology
scaling still guarantees higher density at each new technology node. However, in the sub-
100nm regime SRAM design must consider variability and reliability aspects in order to
guarantee the reliability of the circuit. The schematic of the most typical design of SRAM,
a 6-T SRAM cell, is shown in figure 9.2.

Computer simulation methodologies for analysis of SRAM yield due to process vari-
ations have been the topic of much research in the last years.Analysis of yield of SRAM
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Figure 9.2: 6-transistors SRAM cell

memories using Monte Carlo has been studied by Agarwal (2005). Linear sensitivity
analysis at electrical level for yield analysis of SRAM memory has been explored in
Mukhopadhyay (2004) and Mukhopadhyay (2004). These works propose statistical mod-
els for failures in SRAM cells (access time failure, read failure, write failure and hold
failure). The yield of SRAM array can then be computed as a function of SRAM cell
yield.

9.1 Failures in a SRAM Cell

Failure probability in a SRAM memory array is given in function of the number of
columns, number of rows, number of redundant columns, and the probability of a SRAM
cell to work properly in the presence of variability. Failures in SRAM cells are due to:

access time violationwhen reading the value stored in a cell,bit andbit are set to VDD,
and whenwl is set to VDD, one of them discharges (through AL-NL or PR-NR).
The access time (TAC) is defined as the time required to discharge a secure margin
of the bit-line. As the maximum access time (TMAX) is a design input related to
chip frequency, violation occurs whenTAC of the cell is greater thanTMAX. The
access time is a non-linear function ofVt, but its inverse can be considered linear
(AGARWAL; NASSIF, 2006a).

read failure when reading the content of a cell,bit or bit discharges (through AL-NL or
PR-NR). This causes input of one of the inverters (PL-NL or PR-NR) to be charged
to voltageVREAD. If maximumVREAD is greater then trip pointVTRIP of the inverter,
read operation will cause the stored bit to erroneously flip.The read failures of a cell
can be evaluated by the Read Noise Margin (RNM). Read failurecan be modeled
as a linear function ofVt (AGARWAL; NASSIF, 2006a).

write failure to write a value to the cell,bit andbit are set to the proper values, and
thenwl is set to VDD for a time[TWL in order to the signals to be stored in the
cell. Consider that signal takesTWRITE to be written to the cell, then it must apply
TWRITE< TWL, otherwise the signal will not be successfully stored. Although write
stability is not linear withVt, its inverse is so (AGARWAL; NASSIF, 2006a).

hold failure although write and read operations are the most critical moments to the
SRAM cell, it can also happen that the cell cannot hold its contents in a stable
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Figure 9.3: Butterfly Curves

manner. The Static Noise Margin (SNM) of the cell can evaluate the cell capability
of holding a stable value . SNM can be considered as being a linear function ofVt
(AGARWAL; NASSIF, 2006a).

9.2 DC Static Noise Margin (SNM) and Read Noise Margin (RNM)

Noise margin (NM) is the minimum DC voltage that flips the content of the cell once
applied to the input of one of the inverters (PL-NL or PR-NR) of the cell. The noise
margin is a DC metric, which can be computed by applying a DC voltage to the input
of the inverter and analyzing the inverter response. The NM is dependent of the cell
operation mode, thus there are two important noise margins:

Static Noise Margin (SNM) : during normal static operation (simply storing the bit),
when neither a read or write operation is being performed;

Read Noise Margin (RNM) : read margin during read operation, which is the moment
the cell is more vulnerable to failures. Usually RNM is the limiting NM of the cell.

Static Noise Margin (SNM) is computed from the analysis of the butterfly curve of
the SRAM cell (BHAVNAGARWALA; TANG; MEINDL, 2001). Figure 9.3 presents the
butterfly curve for a SRAM cell designed using 65nm PTM model card with the following
sizing:WNL = WNL = 100nm, WPL = WPR = 100nm, WAL = WAR = 140nm. The SNM of
this cell is approximately the bottom line of the largest square that can be fit inside the
curves, as drawn in the picture. In this case, the SNM is approximately 0.3V.

The design of a SRAM cell is a compromise between read, write and hold stability’s
and read, write and hold speeds. The sizing of SRAM cell is expressed as the beta-ratio
(the ratio between width of transistors N over width of A).
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Table 9.1: Output of the electrical simulator, stored in a table as VL and VR.
VR or VL VR=f(VL) VL=g(VR)
0 899.5610m 899.5610m
50.00000m 899.2891m 899.2891m
100.00000m 898.2426m 898.2426m
150.00000m 894.7680m 894.7680m
200.00000m 884.5981m 884.5981m
250.00000m 858.6611m 858.6611m
300.00000m 801.0821m 801.0821m
350.00000m 673.6515m 673.6515m
400.00000m 319.3079m 319.3079m
450.00000m 76.7541m 76.7541m
500.00000m 40.7186m 40.7186m
550.00000m 24.2140m 24.2140m
600.00000m 14.0134m 14.0134m
650.00000m 7.3248m 7.3248m
700.00000m 3.2791m 3.2791m
750.00000m 1.2485m 1.2485m
800.00000m 435.0082u 435.0082u
850.00000m 165.4791u 165.4791u
900.00000m 90.9049u 90.9049u

Although the cell of figure 9.3 exhibits a reasonable SNM of approximately 0.3, its
low low beta-ratio (0.71) causes the cell to be prone to writefailures. If width of the pull-
up transistors of the inverter were smaller than the pull-down ones, and the pull-down
ones were similar to the size of the pass-transistor and a better write capability would be
achieved. Write failures can be analyzed by transient analysis instead of DC.

Process-induced variability such as RDF and LER, and temporal variability due to
RTS and NBTI causes the butterfly curve of SRAM cell to shift towards a smaller square,
meaning a degradation of SNM and RNM (BHAVNAGARWALA; TANG; MEINDL,
2001). But computing NM is not as straightforward as computing transient parameters of
a logic gate, as for instance rise/fall delays. In order to investigate the impact of variability
to the cell noise margin, the first problem is defining an automated methodology for the
computation of NM. This methodology must be fully automatedbecause, in order to allow
variability analysis, it must be inserted inside a MC, thus repeated many times.

Agarwal (2006a) proposes an accurate and efficient computermethodology for com-
puting SNM and RNM. This method is simple to implement and very automated, thus it
is the most appropriate solution for computing NM in a Monte Carlo loop. The method
is numerical, in the sense that it employs electrical simulations to evaluate the circuit and
then uses a post-processing to compute the NM. The first step is to simulate the Butterfly
curve of the SRAM cell in an electrical simulator and then store the curve in a database,
as Table 9.1. Notice that in this case f(VL) and g(VR) are the same because this is a
nominal simulation, in a Monte Carlo simulation they would differ. The first row can be
interpreted as VR (when computing VL) or VL (when computing VR). Functions f and g
employed from now on are approximated from these numerical simulations stored in the
table.

Then, the loop gain of each side of the cell can be computed. The loop gain of VL
(the equation is similar for VR) is given by (AGARWAL; NASSIF, 2006a):
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Figure 9.4: Loop gain of a 6T SRAM

LoopGain(VL) =
∂ f

∂VL
∂g

∂VR

∣∣∣∣∣
VR= f (VL)

(9.2)

where the partial derivatives are computed numerically from the values stored in the
database (output of the electrical simulation), simply as∂ fi

∂VL = VRi+1−VRi
VLi+1−VLi

. Then, the min-
imum DC value in the input of inverter PR-NR that flips the content of the cell is defined
as

VLf lip = (VL that causesLoopGain(VL) = 1) (9.3)

Figure 9.4 shows the analysis of the loop gain of a SRAM cell inhold (stand-by)
mode of operation. The sizing isWNL = WNL = 100nm, WPL = WPR = 100nm, WAL =
WAR = 140nm. In the example,VLf lip ≈ 0.3. The noise margin of side L is then defined
as (AGARWAL; NASSIF, 2006a):

NML = VLf lip−g( f (VLf lip)) (9.4)

The noise margin of side R,NMR, is computed similarly, just substituting R and L
in the previous expressions. Then, the noise margin of the cell is given by the minimum
noise margin between the two sides as in (AGARWAL; NASSIF, 2006a):

NM = Min(NML,NMR) (9.5)

The methodology for computing SNM and RNM was implemented asa PERL script
interfacing with electrical simulations performed by HSPICE. These scripts are parame-
terized and are easily adaptable to model the impact of different sources of variation to
the noise margin of SRAM cells. Due to its power, parameterization capabilities and easy
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Figure 9.5: Effect of RTS on the read noise margin of the 65nm 6T-SRAM cell.

of use, these scripts have been largely employed in the groupfor modeling the impact of
RTS and radiation to SRAM cells.

9.3 Statistical analysis of SRAM cell stability under RTS

The yield of a SRAM cache can be computed as a function of the number of cells,
number of redundant cells and the probability of a SRAM cell to fail. Failures in SRAM
cell can be due to: read failure, write failure or access timeviolation. This section presents
the impact of RTS on the probability of read and write failures of a SRAM cell.

The instantaneous current fluctuations (modeled as threshold voltage shifts) caused
by RTS are responsible for performance variability, which may cause read and write fail-
ures in SRAM cells. The three different models for the dependence of the amplitude of
threshold voltage shifts on trap position along the channelare investigated.

For these simulations the transistor sizing is aligned to the transistor sizings of a con-
ventional SRAM cell disclosed by Ohbayashi (2006):W p= 130nm,Wn= 90nm,Wa=
90nm. Moreover, the transistor lengthL = 65nm andLe f f = 24.5nm according to the
minimum transistor length allowed by the technology node weuse (CAO; MCANDREW,
2007). The number of traps of the transistors are computed following a Poisson law where
λNtr is in accordance to the transistor area.

9.3.1 Read failures

A read failure can happen when reading the value stored in thecell. At this timeBL
or BR (depending on the value stored) discharges through NL-AL orNR-AR , and this
causes Node L or Node R to be charged to voltageVREAD. If VREADbecomes greater than
the trip pointVTRIP of inverter NL-PR or NR-PR, read operation will cause the stored bit
to erroneously flip.

Figure 9.5 shows the probability density (kernel density using bandwidth=1) of 10,000
MC simulations of Read Failures Probability (PR) caused by RTS.PR is modeled accord-
ing to Agarwal (2006b), which is an appropriate approach formodelingPR under process
variations and RTS:PR is computed by considering the DC noise margin of the cell dur-
ing a read operation. From integrating the probability density functions, the probability
of failures can be computed for the 4 different approaches ofcomputingVt shifts. Con-
sidering no xL and no xT dependencePR = 0.029%, considering constant dependence
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Figure 9.6: Effect of RTS on the write time of the 65nm 6T-SRAMcell.

PR = 4×10−14%, linear dependencePR = 4×10−14% and using exponential dependence
PR = 0.01%.

Please notice that the cache failure probability may be quite high even tough probabil-
ity of a single bit to fail (represented here byPR) seems very small. This is because cache
memories nowadays usually contain millions of bits.

The differentPR values obtained for the different approaches of computingVt shifts
clearly shows the importance of detailed statistical analysis of RTS amplitude dependence
on trap position in the oxide and along the channel. The values here used are based on
Alexander (2005), where no statistical analysis was performed, i.e., it corresponds to the
case here called “no xL and no xT dependence”. The statistical analysis of dependence
on trap position in the oxide and along the channel was introduced through equations 4.8
and 4.7, respectively.

9.3.2 Write failures

To write a value to the cell,BL andBR are set to the proper values, and thenwl is
set to VDD for a timeTWRITE in order to the signals to be stored in the cell. The period
TWRITE is related to the memory clock, in such a way that the writing operation must be
performed in less time thanTWRITE to be successful. One cell requires the timeTW for
a value to be properly stored. ThisTW, due to process variations, is different from one
cell to another, and can be described as a random variable. Therefore for a given cell to
be able to correctly write values,TW < TWRITE must hold, otherwise the value will not be
successfully stored. The situation in whichTW > TWRITE is referred to as write failure.

The probability of the cell to fail because of a write failureis described asPW. PW is
modeled according to Agarwal (2006b), as a transient simulation, and the probability of
a write failure to occur is given byPW = P(TWRITE > TW), whereTWRITE is the time in
which the signalWLstays high.

Figure 9.6 shows the density plots (using bandwidth=1) of 10,000 MC simulations
of the time to write (TW) variations in 6-T SRAM cell caused by RTS. The mean and
standard deviates of the time to write are as follows. In the case where no length and tox
dependence are considered,TW = 72.2psandσTW = 5.3ps; constant length dependence
hasTW = 67psandσTW = 3ps; linear length dependence presentsTW = 67.2psandσTW =
3.6ps; exponential length dependence hasTW = 68.4ps andσTW = 4.5ps. Indeed, the
probability of a write failure is dependent of the distribution of TW and also dependent of
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the time constraintTWRITE.
Thus, the read and write failures probabilities (PR andPW) clearly depend on the shape

of the function modeling Vt shifts as a function of trap position. This is an important
finding because points to the fact that the charge density above channel must be taken into
account when analyzing the impact of interface traps to circuit variation.
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10 CONCLUSIONS

This manuscript presents a comprehensive study on statistical analysis of integrated
circuits. Compact models for circuit simulation of processvariability and aging are pro-
posed, and three methodologies are employed for analyzing the impact of these variations
to three different classes of circuits (standard cell, memory and clocking circuitry).

The manuscript describes some well-known models of processvariability issues such
as Random Dopant Fluctuations (RDF) and Line Edge Roughness(LER). These issues,
as well as other process-related variability issues, are properly taken into account in the
cell characterization and the clock analysis.

For the statistical cell characterization, partner foundry of IMEC provided variabil-
ity measurements data of a 32nm technology node. These measurements were post-
processed to the compact variability model as shifts inVt andβ .

For the clock network analysis, the statistical data was extracted from the process
corners defined in the documentation provided by Fujitsu’s 90nm technology node. By
using a statistical simulation instead of corner-based approach, the simulation gives less
pessimistic and more accurate results. Based on the assumptions that both the clock skew
and the race immunity of flip-flops can be modelled by a Normal distribution, we proposed
a simple and efficient method for computing the probability of hold time violation.

Initially, we proposed a static methodology for simulationof Random Telegraph Sig-
nal (RTS). The model is so called static because in this approach theVt is constant during
the transient simulation, in contrast to the dynamic trap-detrap simulation. The static RTS
model gives as output a distribution ofVt, which is suitable for representing RTS as yet
another source ofVt variation, on top of other issues such as RDF and LER. This ap-
proach allows the methodology to be supported by a running statistical flow with minor
modifications. Later, as discussed below, a dynamic model was proposed.

As a case study for the static RTS model, an automated framework for the statistical
analysis of SRAM, based on a state-of-the-art SRAM analysismethodology, was imple-
mented. Thus we could study the impact of RTS on the Static Noise Margin (SNM), Read
Noise Margin (RNM) and write time of the SRAM cell. Our experiments conclude that
RTS alone, causing maximumVt fluctuations around 60mV, can cause variation of nearly
100mV in the read noise margin of the SRAM cell. It is important to notice that RTS adds
up to other variability phenomena and, if not taken properlyinto account, read failures
may occur.

Random Telegraph Signal and its relationship to NBTI have emerged recently as a
topic of great interest. This is because the classical NBTI reaction-diffusion model cannot
explain certain behaviors found on experimental measurements. A cooperation between
our group at UFRGS and the Reliability Group at IMEC aims to investigate this rela-
tionship between RTS and NBTI. In this work we have developeda simulation scheme
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modeling both RTS and NBTI as a trap-detrap phenomena. The first results of the method-
ology are presented in this manuscript and the implementation will be important to our
group in order to study the impact of RTS and NBTI on electrical circuits in the future.

An ongoing project, in cooperation with Texas Instruments,intends to employ the
trap-detrap simulation to analyze jitter of oscillators. The methodology was implemented
in NGSPICE, an open-source electrical simulator. We have some preliminary results
of the impact of RTS on jitter of ring oscillators, although they are not present in this
manuscript. Our group at UFRGS will continue studying trap-detrap phenome in the
near future and the methodology present in this work is the key technology allowing the
simulation of this phenomena.

The trap-detrap simulation also benefits from a research in cooperation with Arizona
State University (ASU). The group of Prof. Dragica Vasileska at ASU performed atom-
istic simulations to study the impact of interface traps in a45nm by 50nm transistor,
taking into account the interaction between RDF and RTS. Their result is the most accu-
rate simulation data exists nowadays of the impact of one interface trap to theVt of the
transistor. These state-of-the-art data contributed to the accuracy of our simulations.

This work has employed three simulation methodologies for propagating variability
and reliability models to the circuit level. We vastly employ Monte Carlo method, which
is the most common statistical simulation method. However error propagation and re-
sponse surface methodology were developed in order to perform variability simulation
with speedup of many orders of magnitude, while accuracy comparable to Monte Carlo
is achieved.

We were among the pioneers to employ the classical error propagation formulation us-
ing linear sensitivity analysis for variability simulation of special purpose circuits, such as
SRAM, in 2005. By performing n+1 simulation, being n the number of random variables,
error propagation using sensitivity analysis gives an estimate of the standard deviation of
the circuit response. It is the simplest and most efficient method to perform statistical
analysis of circuit blocks. Error propagation is so successful that nowadays commercial
EDA suites provide support for variability analysis through linear sensitivity analysis out
of the box.

This work describes a novel methodology based on Response Surface Methodology
for statistical characterization of circuit blocks. A new design of experiments, the Brussel
design, is paired with a model selection algorithm, allowing accurate representation of the
non-linear relationship between the input variability, such asVt variation, to the circuit
response, such as delay and power. The methodology, of whichthe PhD proponent is co-
inventor, is protected under patents in the Europeans Unionand United States of America,
with title ”Response Characterization of an electronic system under variability effects”.

Error propagation using linear sensitivity analysis and RSM show average errors of
less than 2% compared to MC for statistical characterization of a production level 32nm
standard cell library. Unlike MC, the number of simulationsrequired by RSM and sensi-
tivity analysis is a function of the number of devices of the circuit. Being n the number
of random variables, RSM requires 2n+1 electrical simulations and error propagation
requires n+1. Thus the speedup of RSM and linear sensitivityover Monte Carlo is in-
versely proportional to the number of transistor of the circuit. Roughly, RSM and error
propagation are recommended for circuits with up to one hundred (100) devices. For
larger circuits Monte Carlo is the best all-around generic solution, although ad-hoc solu-
tions usually present better accuracy-runtime tradeoff when available, e.g Statistical Static
Timing Analysis.
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Support for statistical analysis of integrated circuits has improved tremendously in the
last decade, and our group has been in the right track proposing methodologies to speed
up the time consuming Monte Carlo. Moreover, new issues negatively impacting the reli-
ability of devices have been imposing new challenges for thedesign of integrated circuits.
In this work we propose new models to deal with some of these issues. Reliability mod-
eling and statistical analysis of digital circuits still requires manual intervention, ad-hoc
methods and expertise from the designer, since it is far froma push-of-a-button process.
We hope this work can contribute to the advance of the microelectronics industry and to
the scientific community with small but important steps.
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APÊNDICE A MODELAGEM DE CONFIABILIDADE E VA-
RIABILIDADE DE TRANSISTORES EM NÍVEL ELÉTRICO

Tradicionalmente, projetistas de circuitos integrados (ICs) digitais contavam com ní-
veis de abstração onde variabilidade no processo de fabricação era intrinsecamente levada
em consideração, contudo ficava escondida do projetista a fimde tornar o fluxo de projeto
mais simples. Uma vez que o projetista desenhasse o circuitoem conformidade com as
regras de projeto, os casos extremos de comportamento do circuito poderiam ser simula-
dos com os modelos fornecidos. O designer poderia esperar que o chip funcionasse dentro
das especificações definidas pelafoundry. Na verdade, o projetista esperava que umaalta
porcentagemde chips atendesse aos requisitos, enquanto o conceito derendimentoera
implícito ao projetista e era de responsabilidade da foundry.

Entretanto, considerando-se que as dimensões dos transistores atuais está na escala de
dezenas de nano-metros, pequenos desvios das características do dispositivo em relação
ao caso nominal podem levar a falhas no circuito. Em tecnologias nano-métricas, estes
desvios podem acontecer não somente devido a defeitos durante a produção, mas também
acontecem devido a impossibilidade do controle exato de características dos equipamen-
tos (por exemplo a profundidade exata na etapa de implantação iônica), e cada vez mais
a variabilidade intrínseca devido à discretude da matéria torna-se predominante. Esses
três fatores (defeitos, variabilidade dos equipamentos e variabilidade intrínseca) fazem
com que as características elétricas dos transistores devam ser tratadas como variáveis
aleatórias. Essa mudança de paradigma, onde o comportamento elétrico do circuito não
é determinístico mas sim estatístico, impõe novos desafios para o projeto de circuitos
analógicos e digitais.

Conforme ilustra a figura 1.1, a variabilidade dos parâmetros elétricos dos transistores
pode ser decomposta em duas componentes: espacial e temporal.

A variabilidade espacial pode ser ainda decomposta em parâmetros que apresentam
variações entre pastilhas (D2D, do inglêsdie-to-die) e parâmetros que apresentam va-
riabilidade dentro da pastilha (WD, do inglêswithin-die )(ZUCHOWSKI et al., 2004)
(ORSHANSKY et al., 2002). Variabilidade D2D pode acontecerdevido a assimetria nos
equipamentos (como assimetria na distribuição do gás dentro de uma câmara e gradientes
de temperatura em um forno) ou imperfeições na operação de equipamentos e no fluxo
de processo. Essas assimetrias afetam a média de um parâmetro entre pastilhas,waferou
lote.

Variabilidade nos parâmetros WD pode ainda ser decoompostaem duas componen-
tes: variabilidade sistemática e variabilidade aleatória(ou intrínseca). Variações WD
aleatórias são originárias de inúmeras fontes relacionadas às características quânticas dos
materiais, tais como a discretude da matéria e energia (átomos de dopante, fótons, etc).
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Variabilidade

Espacial Temporal

Dentro-da-patilha Entre pastilhas Envelhecimento Transiente

RDF, LER,
...

Process Gradients,
...

NBTI, HCI,
...

SET/SEU, RTS,
...

Figura A.1: Classificação de variabilidade em temporal e espacial segundo Wirth (2010).

Em tecnologias atuais a variabilidade intrínseca aleatória já domina as outras fontes de
variabilidade e devido a tendência de miniaturização esta deve se tornar cada vez mais
importante.

A componente temporal pode ser dividida em envelhecimento evariações transitórias.
As principais razões para a variabilidade temporal são: 1) captura e emissão de elétrons
por armadilhas no silício e na interface entre silício e óxido de silício dos dispositivos
e 2) partículas de radiação atingindo o dispositivo. O envelhecimento é a degradação
sistemática das características do transistor, como por exemplo a corrente máxima de um
transistor PMOS ficando mais fraca ao longo do tempo devido a instabilidade acelerada
por temperatura e tensão (NBTI). Variabilidade transitória são mudanças instantâneas ou
intermitentes na corrente do dispositivo, que pode ser causada por radiação ou sinais
aleatórios telegráficos (RTS).

A demanda da indústria para projetar circuitos em tecnologias nano-métricas exige
pesquisa em duas áreas relacionadas a integração da tecnologia às ferramentas de CAD:
1) modelagem de confiabilidade de transistores e 2) metodologias para análise de circui-
tos integrados considerando confiabilidade. A seção de ”Modelagem e Simulação” do
Roteiro Internacional dos Semicondutores 2009 (ASSOCIATION, 2009) aponta para a
necessidade de modelos para fenômenos de captura e emissão de elétrons por armadilhas
como RTS e NBTI. O ITRS também aposta a necessidade necessidade de metodologias
de simulação de confiabilidade de circuitos CMOS.

Neste trabalho de doutorado foram estudados e propostos avanços nestas duas áreas
inter-relacionadas de pesquisa: modelagem de confiabilidade e metodologias de simula-
ção de variabilidade. Esta tese apresenta novos modelos estatísticos de RTS e NBTI. Estes
modelos estatísticos são aplicados a circuitos para estudode caso. Além disso, essa tese
propõe metodologias eficientes de simulação estatística. Propagação de incertezas utili-
zando derivadas numéricas e metodologia de superfície de resposta são implementadas e
suas eficiências são avaliadas em relação a simulações MonteCarlo.
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A.1 Variabilidade temporal causada por emissão e captura por ar-
madilhas de interface

No domínio tempo, capturas e emissões de elétrons por armadilhas (cargas positivas)
no silício e na interface entre silício e o óxido de silício dotransistor causam flutuações na
sua corrente ao longo do tempo, mesmo mantendoVgseVdsconstantes. Estas flutuações
são discretas: quando a armadilhai captura um elétron, a corrente Ids diminui em∆Idsi.
O estado de todas as armadilhas na interface somam-se para formar a flutuação total da
corrente em um dado instante de tempo.

A figura A.2(a) mostra a currente do transistor variando devido aos sinais aleatórios
telegáficos (RTS, do inglês Random Telegraph Signals). RTS faz com que a corrente do
transistor, e portanto os parâmetros elétricos relacionados a corrente como por exemplo
tensão de limiar, oscilem em níveis discretos intermitentemente ao longo do tempo. Insta-
bilidade acelerada por temperatura e tensão (NBTI, do inglês Negative Bias Temperature
Instability ) contudo, trata-se do aumento sistemático do Vt, ou seja, diminuição da cor-
rente do transistor, ao longo do tempo. Essa degradação é acelerada pela temperatura
e, especialmente, pela tensão aplicada no gate do transistor. O mecanismo de NBTI é
dito ter duas fases: stress, quando tensão é aplicada no gate, e recuperação, com tensão
nula. Na fase de stress percebe-se que o Vt do transistor aumenta, enquanto na fase de
recuperação o Vt diminui parcialmente. A figura A.2(b) mostra que NBTI apresenta uma
componente semelhante a RTS, segundo Kaczer (2011). Até então, o modelo mais aceito
para NBTI tem sido o modelo de reação-difusão, o qual explicaNBTI como sendo cau-
sado pela quebra das ligações entre hidrogênio e silício na interface entre o silício e óxido
de silício. O modelo de reação-difusão, apesar de amplamente adotado, tem problemas
ao explicar a rápida recuperação que acontece assim que o stress é removido, como nas
medidas da figura A.2(b).

Wirth (2011) apresenta análises teóricas e simulações Monte Carlo do componente de
captura e emissão responsável por BTI. O trabalho apresentaum modelo analítico válido
para as fases de stress e de recuperação. A teoria assume que pode ou não existir um
mecanismo de geração de novas armadilhas na interface ao londo do tempo. Pode haver
geração de novas cargas positivas devido a quebra das ligações de hidrogênio, conforme
assumia a teoria clássica de NBTI, modelo de reação-difusão. Contudo, existe possibi-
lidade de que muitos traps que causam NBTI sejam traps com tempo médio de captura
e emissão muito longos. Assim, uma parte das armadilhas contribuindo para NBTI são
armadilhas com comportamento semelhante a armadilhas RTS,mas com uma diferença
importante:

• as armadilhas causando NBTI têm diferenças de várias ordensde magnitude com
relação a suas probabilidades de captura e emissão;

• enquanto as armadilhas que contribuem para o ruído RTS têm probabilidades de
captura e emissão de mesma ordem de magnitude.

Essa seção mostra a metodologia de simulação proposta em Wirth (2011), a qual é
válida para simular RTS e NBTI. Cada transistor contém uma série de armadilhas, que
em um dado instante de tempo podem estar ocupadas ou vazias. Dependendo do seu
estado atual, cada armadilha tem uma probabilidade de capturar ou emitir um elétron no
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(a) (b)

Figura A.2: (a) Representação do impacto de sinais aleatórios telegáficos na corrente do
transistor e como pode ser modelado com flutuações em Vt e (b) medidas de instabilidade
acelerada por tensão e temperatura em um dispositivo de 70× 90 nm2 realizadas por
Kaczer (2011).

estado seguinte (pee pc) dadas por:

pc= Pr(σi(t) = 0→ 1) =
∆t
τc

pe= Pr(σi(t) = 1→ 0) =
∆t
τe

(A.1)

onde∆t é o intervalo de tempo,τe e τc são os tempos médios de emissão e captura, que
por sua vez são calculados como:

τe = 10−pi(1+exp(
Ef −Ei

KbT
)

τc = 10pi(1+exp(
Ei−Ef

KbT
) (A.2)

onde para a carga positivai, Kb é a constante de Boltzman ,T é a temperatura do disposi-
tivo em Kelvin,Ef é o nível de Fermi do transistor,ei é o nível de energia da armadilha
i e pi é a constante de tempo da armadilha. As armadilhas têm níveisde energia dentro
do bandgap proibido e a distribuição de sua energia segue umadistribuição em foma de
U (WIRTH et al., 2009; WIRTH; SILVA; KACZER, 2011). O nível deFermi depende da
tensão nos terminais de transistor e é precisamente calculado em nosso modelo através de
ajuste de função.

A figura A.3 mostra 100 simulações Monte Carlo referentes a execuções do modelo
dinâmico (Cadeias de Markov) de RTS ao longo de 2us. Cada caixa corresponde a uma
rodada da Cadeia de Markov (durante 2us) inicializada com uma semente aleatória dife-
rente. É importante ressaltar a necessidade de se rodar uma simulação Monte Carlo de
Cadeias de Markov: uma rodada apenas não seria representativa do comportamento do
transistor, pois cada rodada trata-se de um transistor com número de armadilhas, constan-
tes de tempo eδvti distintos. Assim, a figura mostra que, para os parâmetros utilizados,
RTS pode causar variações de mais de 250mV.

A simulação se refere a um modelo de tecnologia de 45nm (PTM) com o dimensio-
namento L = 45nm e W= 50nm , e tensão entre bulk e source Vbs = 0. Amédia é de
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Figura A.3: Distribuições do Vth do transistor ao longo de 100 simulações Monte Carlo
das Cadeias de Markov.

overlineV= 515mV, e seu desvio padrão é deσVt = 59mV. Essa simulação refere-se
RTS e não a NBTI porque 1) não há mecanismo de geração de traps ao longo do tempo
e 2) as constantes de tempo das armadilhaspi estão no intervalo [-5, -8]. Para simular
NBTI, valores menores de pi deveriam ser permitidos.

Nessa simulação o número médio de armadilhas interface é 80 (lambdaNtr = 80), o
qual está de acordo com dados de Wirth (2005), linearmente re-escalados para as dimen-
sões do dispositivo aqui simulado. A distribuição das flutuações causadas por uma única
armadilhaδvti foram obtidas através de simulações atomísticas descritaspor Camargo
(2010).

A.2 Modelos de Simulação

Dada a natureza estatística do processo de fabricação, características elétricas como
Vt (tensão de limiar) e∆β/β (variação na corrente) dos transistores podem ser modeladas
como variáveis aleatórias. Este trabalho visa modelar o impacto das flutuações estatísticas
deVt e ∆β/β em circuitos elétricos. Para isso, foram utilizadas três metodologias para
propagar as incertezas das entradas e avaliar seu impacto nocircuito elétrico: Monte
Carlo, propagação de erros (EP) e metodologia de superfíciede resposta (RSM).

Monte Carlo é a metodologia mais comumente empregada para simulação de variabi-
lidade em circuitos elétricos. Simulação Monte Carlo (SYNOPSYS, 2005) é comumente
empregada para calcular a função de densidade de probabilidades (PDF) de alguma res-
posta do circuito (atraso, potência, corrente de fuga, ...). Mas para isso é necessário
um grande número de simulações elétricas, pois o erro em simulações Monte Carlo é
O(1/

√
nsample). É o método mais simples de implementar e mais preciso, contudo requer
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maior tempo de simulação. Métodos alternativos a Monte Carlo são de grande interesse
para a indústria, a fim de reduzir os tempos de simulação. Propagação de erros usando
derivadas lineares está começando a ser empregado na indústria por ferramentas de CAD
comerciais. A Metodologia de Superfície de Resposta (RSM) apresentada a seguir foi
proposta e desenvolvida no âmbito deste doutorado.

A.2.1 Propagação de erros

As respostas do circuito (as saídas da simulação), tais comodesempenho e potência,
são variáveis aleateatórias e podem ser modeladas utilizando o método da propagação de
incertezas (PARRAT, 1961). A fim de usar essa abordagem, duassuposições devem ser
feitas:

1. as variáveis aleatórias de entrada seguem uma distribuição Normal;

2. a função de propagação pode ser aproximada por uma função linear na região de
interesse.

A partir desses pressupostos então a saída da simulação (atraso por exemplo) pode ser
aproximada como uma variável aleatória Normal, e seus momentos podem ser calculados
analiticamente. A partir dos desvios padrõesσVti e σβi

de cada transistori, calcula-se
1) a simulação nominaloverlinese 2) as derivadas parciais de cada resposta para cada
parâmetro de entrada, ou sejasVti, sβ i , que são calculadas numericamente como em:

sVti =
f (Vt1, . . . ,Vti + ε, . . . ,Vtn,β1, . . . ,βn)−s

ε

sβ i =
f (Vt1, . . . ,Vtn,β1, . . . ,βi + ε, . . . ,βn)−s

ε
(A.3)

onde f (Vt1, . . . ,Vtn,β1, . . . ,βn) são as características da célula (tais como atrasos de su-
bida e descida, tempos de transição, potência, etc), que sãofunções das variações emVt
e β dosn transistores. A partir da simulação nominal e das derivadasparciais, a função
de propagação pode ser aproximada por uma função linear:

ŷi = s+
n

∑
i=1

[
sVti∆Vti +sβ i∆βi

]
(A.4)

Sendo assim a resposta do circuitop pode ser considerada uma distribuição normal
com média e variância dadas por (BRUSAMARELLO, 2006; BRUSAMARELLO et al.,
2008):

{
µp ≈ s
σ2

p ≈ ∑n
i=1

[
(sVtiσVti)

2+(sβ iσβ i)
2
] (A.5)

A.2.2 Metodologia de Superfície de Resposta1

1A invenção descrita neste capítulo está protegida por patentes na União Européia (MIRANDA; ROUS-
SEL; BRUSAMARELLO, 2010) e Estados Unidos da América (MIRANDA; ROUSSEL; BRUSAMA-
RELLO, 2011).
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A fim de obter precisão semelhante a Monte Carlo com ganho de desempenho de
ordens de magnitude, este capítulo apresenta o uso de Metodologia de Superfície de Res-
posta. A metodologia é dividida em duas etapas. O primeiro passo consiste em um novo
Projeto de Experimentos (Brussel) que realiza a seleção dospontos do espaço de entra-
das e garante a relevância estatística desses pontos. O projeto de experimentos Brussel é
combinado com um algoritmo de seleção de modelo. Esse algoritmo encontra a função
não-linear de regressão mais adequada para representar a resposta do circuito em função
das variáveis aleatórias.

O primeiro passo da metodologia de superfície de resposta é realizar projeto de ex-
perimentos (MYERS; MONTGOMERY, 2002). O objetivo desta etapa é encontrarNdoe

pontos que são representativos para o espaço n-dimensionalde variáveis aleatórias. Nesta
fase não há nenhum conhecimento prévio sobre a função de propagação a ser modelada.
Os pontos precisam ser selecionados de tal maneira que cubram tanto quanto possível o
domínio da distribuição da entrada. A seguir é apresentado oprocedimento proposto por
Philippe Roussel para a seleção dos pontos.

Seja um ensamble Monte CarloΓM com uma amostra de tamanhoN da função de
n-dimensões representado pela matrizN×n :

Γ =





Vt11 β 1
1 Vt12 β 1

2 . . . Vt1n/2 β 1
n/2

Vt21 β 2
1 Vt22 β 2

2 . . . Vt2n/2 β 2
n/2

...
...

...
...

. . .
...

...
VtN1 β N

1 VtN2 β N
2 . . . VtNn/2 β N

n/2




(A.6)

ondeγi j corresponde ai-ésima rodada Monte Carlo e j corresponde àj-ésima variável
aleatória. A seguir será explicado o procedimento de seleção dos pontos sem fazer a
”cobertura” do domínio de entrada por algum método de suavização da PDF, como por
exemplo o método das Múltiplas Gaussianas que é utilizado nométodo descrito por Bru-
samarello (2011), do domínio de entrada.

Inicialmente calcula-se um vetor das médias das colunas da matriz de entrada, o qual é
dado por~µ = {µ1,µ2, . . . ,µn}. Similarmente calcula-se uma matriz diagonal dos desvios
padrões das variáveis (cada coluna da matrizΓ ) de entrada:

σ =





σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

...
0 0 · · · σn



 (A.7)

Então pode-se facilmente calcular também a matriz de correlação como em:

ρ =





1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n
...

...
.. .

...
ρn1 ρn2 · · · 1




(A.8)

ondeρlm é a correlação entre as variáveisl e m, por exemploVt de um dado transistor
comVt do outro transistor. A seguir calcula-se a matriz de autovetores:
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E =





e1 0 · · · 0
0 e2 · · · 0
...

...
...

...
0 0 · · · en



 (A.9)

e o vetor de autovalores~e = [e1,e2, . . . ,en]n. Pode-se então contruir uma estrutura de
dados Ellipsoid:

Ellipsoid






~c = [0]n
~r = qχ2(q,n)

√
~e

A = E
(A.10)

o qual representa o elipsóide den dimensões, com centro na origem, raio do eixo dado
porqχ2(q,n)

√
~esendoqχ2(q,n) a função quantil Qui-Quadrado para uma distânciaq do

centro da distribuição en graus de liberdade, alinhado com os ângulosA. Por exemplo
q = 0.997 é o equivalente a uma distância de 3σ da média no caso den = 1. A seguir
constrói-se uma matriz de dimensões 2n+1×n que será usada posteriormente:

M =





0 0 · · · 0
r1 0 · · · 0
0 r2 · · · 0
...

...
...

...
0 0 · · · rn

−r1 0 · · · 0
0 −r2 · · · 0
...

...
...

...
0 0 · · · −rn





(A.11)

E finalmente calcula-se a matrizB de dimensões de n colunas (variáveis) e 2n+ 1
linhas, sendo que cada linha representa uma simulação:

B = (MA~σ +~µ)T (A.12)

Assim, a matrizB, com 2n+1 linhas é uma seleção de pontos artificialmente criados
para representar a matriz da simulação Monte CarloΓM. O ganho de performance obtido
pela metodologia está no fato de queΓM tem N linhas, e para um número pequeno de
variáveis (como é o caso em circuitos específicos como células de uma biblioteca, célula
de memória SRAM, etc ),N >> 2n+1. A figura A.4 mostra os pontos selecionados pela
metodologia para um inversor.

O próximo passo da metodologia consiste em rodar 2n+1 simulações elétricas. Após
a execução das simulações, faz-se um ajuste de função a fim de encontrar uma função que
relacione as variáveis aleatórias com o resultado das simulações (atraso, potência, etc). O
ajuste e seleção de modelo não-linear é dividido em três etapas:

1. Ajuste inicial: fazer ajuste linear aos dados;

2. Redução de variáveis:remover termos insignificantes;

3. Melhoria do modelo: interativamente adicionar termos não lineares e termos cru-
zados.
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Figura A.4: Diagonal superior: pares de distribuições deVt eβ de um inversor. Os pontos
maiores são os pontos propostos pelo Brussel DoE, enquanto os pontos pequenos corres-
pondem aos 1,000 pontos de Monte Carlo. Diagonal inferior: coeficientes de correlação.
Diagonal: histogramas.

Inicialmente é feito um ajuste linear de forma que:

Hi = α11x1i +α21x2i + . . .+αn1xni + εi (A.13)

ondeHi é a saída dai-ésima simulação elétrica sendo 1≤ i ≤ 2n+ 1 , sendox j a va-
riável onde 1≤ j ≤ n. O Método dos Mínimos Quadrados busca minimizar a soma dos
quadrados dos resíduos conforme∑2n+1

i=0 ε2
i .

Foi desenvolvido um algoritmo interativo que remove variáveis que não tornam o fit
melhor. Por exemplo, o atraso de subida de um inversor não temrelação (ou pode-se dizer
que tem uma relação tão baixa que é desprezível) com o Vt do transistor NMOS. O algo-
ritmo é baseado no Critério de Informação Bayesiano (BIC), proposto por Schwarz (1978).
A listagem A.1 apresenta o algoritmo de redução de variáveis.

r e p e t i r {
p a ra cada v a r i á v e lxi da função f {

fo← remove termo xi da função f
Se BIC( fo) < BIC( f ) {

armazena fo na l i s t a L o rdenada porBIC( fo)
}

}
f ← s e l e c i o n a modelo da l i s t a L com menor BIC

} a t é modelo não me lho ra r

Listing A.1: Redução de variáveis
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O resultado da execução do algoritmo A.1 é uma função de ajuste linear que contém
menos termos do que o modelo linear completo descrito pela eq. A.13. Além de mais
compacto, sendo o algoritmo guloso, a função apresenta um fitmelhor do que o fit inicial,
segundo o critério de informação bayesiano.

O passo seguinte da metodologia é uma continuação do passo anterior no sentido
que se busca uma função de ajuste com BIC ainda melhor. O BIC pode ser melhorado
ainda mais através da inserção de termos quadráticos e de mais alta ordem, assim como
termos cruzados (um termo linear multiplicando outro termolinear, assim como termos
quadráticos multiplicando termos lineares e assim por diante). A listagem A.2 mostra
o método utilizado para melhoria da função de ajuste. O método guloso pára de inserir
termos quando não é possível obter um fit com BIC melhor ou quando o número de termos
ultrapassa um limite pré-determinado: o número de termos dafunção de ajuste deve ser
menor do que o tamanho da amostra (2n+1).

r e p e t i r {
p a ra cada v a r i á v e lxi da função f {
p a ra k = 1..z {

fadd← a d i c i o n a termo xk
i

guarda fadd na l i s t a L ordenado porBIC( fadd)
}

fremove← remove termo xi

guarda fremove na l i s t a L ordenado porBIC( fremove)
p a ra cada v a r i á v e lx j da função f {

fcross−term← a d i c i o n a termo xi×x j

guarda fcross−term na l i s t a L ordenado porBIC( fcross−term)
}

}
se ( melhor BIC guardado em L< BIC ( f ) ) {

f ← e s c o l h e modelo de L com menor BIC
Ncoe f f← número de c o e f i c i e n t e s def

}
} a t é modelo não me lho ra r OUNcoe f f > 0.6Ndoe

Listing A.2: Melhoria do modelo

A.3 Caracterização de Biblioteca de Células

Esta seção apresenta resultados da caracterização de um subconjunto de células de
uma biblioteca para um nó tecnológico de 32nm. As células selecionadas são apresen-
tados na tabela A.1. As bibliotecas geradas pelas ferramentas são compatíveis com o
formato Liberty da Synopsys (.LIB), o qual as ferramentas Cadence também dão suporte.
A caracterização da biblioteca estatística foi realizada usando as 3 metodologias de aná-
lise:

1. Monte Carlo:método de referência, sendo 1000 o tamanho da amostra;

2. propagação de erro usando análise de derivada linear:exige n +1 simulações e
calcula o desvio padrão através de propagação de erro, derivadas são calculadas
numericamente;
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Tabela A.1: Comparação de Propagação de Erros e Metodologiade Superfície de Res-
posta com Monte Carlo.

Porta Param
Metodologia de Superficie de Resposta Propagação de Erros
µerr σerr Serr Kerr 3σerr r. µerr σerr Serr Kerr 3σerr r.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

INV
delay 0 0.5 -13.3 0.7 0

9
-0.1 -2.5 -100 2.2 -0.9

5transition 0 1.7 -27.4 6.2 -0.2 -0.2 -10.8 -100 -17.9 -2
power -1.6 -0.7 -7.5 0 -1.4 NA NA NA NA NA

NAND2
delay 0 0.9 -11.9 -4.5 0

17
-0.7 -17.9 -100 2.2 -3

9transition 0 1.5 10.8 4.1 0.5 -0.1 8.8 -100 12.2 0.3
power 0.4 -7.5 -1.1 -5 5.4 NA NA NA NA NA

NOR2
delay -0.1 -2.4 -25.8 3.9 1

17
0 -4.6 -100 -6.8 3.7

9transition 0.1 3.1 -26.5 -3.1 0 0 -4.3 -100 -3.4 -1.2
power -0.6 3.8 22.8 -0.9 0 NA NA NA NA NA

XOR2
delay 0.1 0 16.8 0.7 0.1

41
0.2 -6.4 -100 5.4 -0.5

21transition 0 3.4 -28.3 1.5 0.1 -0.2 -8.6 -100 8.4 1.5
power 0 -5.5 -43.5 4.1 1.7 NA NA NA NA NA

DDFQ

hold -0.8 1.1 -10.7 2.2 3.9
97

5.5 -3.1 -100 4.1 11.3
49setup 0.4 0 -33.1 0.2 1.1 -3.9 -1.6 -100 -1.9 2.3

CLK-Q 0 1.4 -8.6 -1 0.1 -0.5 -7.5 -100 -1.5 2.7
power 0 2.5 -22.4 -5 0 NA NA NA NA NA

||Média|| (tempo) 0.14 1.45 19.38 2.55 0.64 1.04 6.92 100 6 2.67

3. Non-Linear RSM:metodologia de superfície de resposta, usando Brussel DoE e
método para busca de fit não linear.

Cada uma das iterações de caracterização da biblioteca de células leva aproximada-
mente três minutos em um servidor com 10 processadores. A célula que consome mais
tempo é o flip-flop, o qual leva cerca de 90% do tempo da caracterização do grupo. Assim,
o tempo total de caracterização das 1000 iterações de Monte Carlo é de 49 horas. Usando
o mesmo ambiente paralelo, a caracterização leva apenas umafração desse tempo para
as alternativas: 2 horas para a propagação de erros usando derivadas numéricas e 4 horas
para o RSM não-linear.

A tabela A.1 mostra a comparação entre os momentos das distribuições geradas usando
os 3 diferentes métodos de caracterização citados acima. Para cada parâmetro, a tabela
mostra o erro relativo entre os quatro momentos das distribuições: média (µerr), desvio-
padrão (σerr ), assimetria (Serr ) e curtose (Kerr). O terceiro e quarto momentos indicam
respectivamente o grau de assimetria e o peso da cauda da PDF resultante. Além disso,
a tabela apresenta 3σerr , que é o erro de as aproximações a uma distância de 99,97%
da média da distribuição. Esse dado mostra o qualidade da aproximação na cauda das
distribuições.

A última linha da Tabela 7.2 apresenta a média dos erros absolutos de tempos de atraso
e de transição. A potência não é levada em conta para cálculo das médias, porque esta
informação não é disponível para a propagação de erros. Os erros dedesvio padrãoemé-
dia são abaixo de 2% para a Metodologia Superfície de Resposta (RSM), em comparação
com os erros de 7% quando se utiliza propagação de erro (EP). Observe que EP limita
a distribuição a ser tratada como Normal, e assim, por definição, a sua saída é sempre
limitada aS= 3 eK = 0.
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A coluna “r” é o número de simulações elétricas necessárias por RSM e EP. É impor-
tante notar que para ambos os métodos o número de simulações elétricas é linearmente
dependente do número de transistores do dispositivo, enquanto o número de simulação
Monte Carlo é arbitrário. As simulações elétricas são o passo mais demorado de Monte
Carlo, EP e RSM. Uma simulação leva exatamente a mesma quantidade de tempo para
cada uma dessas metodologias. Assim, o número de simulaçõeselétricas é a métrica mais
representativas de desempenho. O número de simulações necessárias por EP e RSM é
n+1 e 2n+1, respectivamente, sendo USn o número de variáveis. Embora, o número de
rodadas Monte Carlo é independente do número de entradas. Nossa referência usa tama-
nho da amostra de 1000, mas este número poderia ser aumentadopara maior precisão.

Sendo o tempo de execução de EP e RSM linear número de transistores, a aceleração
destes sobre Monte Carlo é inversamente proporcional à complexidade da porta. Con-
siderando 2 variáveis por transistor (Vt e β ), isso limita a aplicabilidade de RSM para
circuitos com menos deN/4transistores, onde N é o número de simulações de Monte
Carlo. Contudo propagação de erros apresenta ganho de desempenho sobre Monte Carlo
para circuitos com atéN/2 transistores.

A figura A.5 apresenta a distribuição de tempo de espera (holdtime) do flip-flop (FF).
No inset do gráfico é mostrado o histograma de Monte Carlo (referência), bem como as
curvas que representam os PDFs obtidas usando propagação deerros e RSM não-linear.
Como PDF e histograma em escala linear não têm informação suficiente a respeito da
cauda da distribuição, o gráfico principal mostra o Quantil-quantil plot (q-q plot), uma
ferramenta muito difundida entre a comunidade de Estatística. O eixo x mostra o quantil
da distribuição, i.e. distância em desvios padrões da média, e o eixo y mostra o tempo
de espera (hold time). Usando esta técnica permite-nos verificar que o RSM não-linear
tem concordância perfeita com as simulações de Monte Carlo de referência em todo o
domínio da distribuição: no centro e as caudas. Por outro lado, a propagação de erros
usando análise de derivadas linear nesse caso apresentou umerro de aproximadamente
-1 % na média da distribuição (quantil zero), mas torna-se mais imprecisa nas caudas da
distribuição.

A.4 Conclusões

Este trabalho de doutorado apresenta um estudo sobre análise estatística de circuitos
integrados. Metodologias para simulação de variabilidadedo processo, ruído e envelhe-
cimento são propostos e testados em circuitos estudo de caso.

Diferentes metodologias de simulação são empregadas para analisar o impacto das
variações a diferentes classes de circuitos (células de umabiblioteca, caminhos lógicos,
memória e árvore de clock). Contudo, este resumo em portugêsapresenta somente dois
dos tópicos abordados no doutorado:

• modelagem dinâmica em tempo de simulação de fenômenos de captura e emissão
de elétrons por armadilhas de interface e

• metodologias de caracterização estatística de bibliotecade células considerando
variabilidade no processo de fabricação.

A possibilidade de relação entre sinais aleatórios telegráficos (RTS) e instabilidade
acelerada por temperatura e tensão (NBTI) surgiram recentemente a partir da possibili-
dade de se explicar o comportamento de NBTI com modelos já estabelecidos de RTS. Isso
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Figura A.5: Gráfico quantil-quantil e histograma do tempo deespera (hold time) do flip-
flop.

se deve ao fato de que os modelos de NBTI existentes, baseadosno modelo de reação-
difusão, não são capazes de explicar medidas experimentais. Num trabalho de cooperação
entre o nosso grupo de pesquisa e o grupo de confiabilidade no IMEC começou-se a in-
vestigar essa relação e propôs-se um modelo capaz de corresponder melhor aos dados
experimentais.

A implementação de RSM foi integrada às ferramentas de análise estatística do IMEC.
O fluxo de RSM para a caracterização do circuito é protegido sob patente nos Estados
Unidos da América e na União Européia, das quais o proponentedesta tese de doutorado
é co-inventor. Propagação de erros utilizando derivadas numéricas e RSM apresentaram
erros médios abaixo de 2% em relação a Monte Carlo para a caracterização de uma bibli-
oteca de tecnologia de 32nm, com um ganho de performance na ordem de 10×.
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APPENDIX B INTEGRATION OF RESPONSE SURFACE
METHODOLOGY FLOW INTO CELL CHARACTERIZATION
USING VAM (DOCUMENTATION AND USER GUIDE)

B.1 RSM Flow for cell library characterization

B.2 RSM files

B.2.1 Top-level files

run_rsm.sh: wrapper script kept in the same directory of the vaccinate’sconfig.m; setups
variables and calls rsm.sh.



152

rsm.sh: top-level flow bash script. It takes input setup parameters and automatically calls
all the required steps.

gen_brussel_patch.sh:patch mode for regenerating Brussel Design points part 1.

fit_patch.sh: patch mode part, for fitting regression and sampling from propagation func-
tion.

B.2.2 Main algorithms

brussel_design.m:Mathematica code for generating Brussel DoE points.

model_fit.r: R code for reading brussel design inputs and outputs, Monte Carlo inputs,
reading configuration for model fit, and generates the MC output (based on the
propagation function computed). Iterates over all the circuit metrics. Full Linear
and simplified linear models are generated by this script.

modelimprovement.r: R code that takes a full linear model and a simplified linear model
and, by iterativelly adding quadratic, adding cross-terms, removing terms, finds the
best surrogate model to the circuit metrics.

B.2.3 Auxiliary files

convert_brussel_csv_lib.pl:Perl code for converting csv files into VAM’s parameters
.lib.

parse_lib.pl: Perl code to to convert vaccinated dVt and dBeta in .lib to .csv.

B.3 Running the RSM flow for cell characterization

B.3.1 Required files in the vaccinate directory

Create a new directory, as would create for running conventional VAM characteri-
zation flow. Copy the required files: clean, sourceme, elccfg, micron.setup (setup file),
part2.elc, preamble.elc, compactmodel.xml, run1.csh, run_rsm.sh (top-level for rsm flow).

B.3.2 Edit run_rsm.sh

Manually edit the configuration variables:

rsm_dir: directory containing the RSM files mentioned in section “RSMfiles”.

vam_dir: directory containing VAM code.

base_dir: vaccinate top-level folder (created in “Required files in the vaccinate direc-
tory”).

geos: geometries to apply RSM (matched, c2c). Enter list of geometries between paren-
thesis separated by space; e.g. (matched c2c) or (matched)

configm: VAM configuration file.

sigma_distance_brussel [float 0-inf:] Controls the distance of the DoE points from the
average. Lower number gives a better approximation in the center of the distribu-
tion, higher gives a better approximation in the tails. Recommended: 3.
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accuracy_brussel_doe[1-2]: an integer either 1 or 2 specifying the number of DOE
points generated in relation to the number of variable n:

1. n+1 points, allows sufficient accuracy only for full linear propagation model;

2. 2n+1 points, allows sufficient accuracy for quadratic model including cross-
terms.

accuracy_fit [1-5 :] an integer between 1 and 5 to control accuracy of the propagation
function, 1 is fastest and 5 is most accurate:

1. Full linear;

2. Reduced linear model;

3. Quadratic terms;

4. Quadratic terms and allows insertion of linear terms while searching quadratic
ones;

5. Quadratic and cross-terms.

ncpu: number of cpus to be used for the model selection algorithm. The algorithm is
massively parallel and speed scales linearly with number ofcpus. Recommended:
use all cpus available in the machine.

B.3.3 Patch options (re-run)

Patch[0-1]: 0 is normal mode and 1 means patch Brussel design points mode.To be
used if ELC failed to characterize some runs of a circuit. It happens because for a
given combination of Vt and Beta ELC cannot compute some metric, and a liberty
file is not generated for that Brussel run.

patch_ckt: circuit to be patched.

patch_runs: runs that failed, to be patched.

patch_g: geometry to be patched.

patch_sigma_distance_brussel_doe [float 0-sigma_distance_brussel_doe:] Controls
the distance of the DoE points from the average for the patch run. Lower number
gives a better approximation in the center of the distribution, higher gives a better
approximation in the tails. As a simulation has already failed using the previous
sigma_distance_brussel_doe use a smaller value, recommended: 2 or 1.
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