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ABSTRACT

In nanometer scale complementary metal-oxide-semicand¢€MOS) parameter
variations pose a challenge for the design of high yieldgrated circuits. This work
presents models that were developed to represent physdaltions affecting Deep-
Submicron (DSM) transistors and computationally efficieiethodologies for simulating
these devices using Electronic Design Automation (EDA)g00

An investigation on the state-of-the-art of computer medeid methodologies for
simulating transistor variability is performed. Modelin§process variability and aging
are investigated and a new statistical model for simulatibRandom Telegraph Signal
(RTS) in digital circuits is proposed.

The work then focuses on methodologies for simulating tinesédels at circuit level.
The simulations focus on the impact of variability to thregevant aspects of digital
integrated circuits design: library characterizationalgmsis of hold time violations and
Static Random Access Memory (SRAM) cells.

Monte Carlo is regarded as the "golden reference" technigwmulate the impact
of process variability at the circuit level. This work emypsoMonte Carlo for the anal-
ysis of hold time and SRAM characterization. However Mon#&l€ can be extremely
time consuming. In order to speed-up variability analykis tvork presents linear sen-
sitivity analysis and Response Surface Methodology (RSM3fibstituting Monte Carlo
simulations for library characterization.

The techniques are validated using production level disgguch as the clock network
of a commercial chip using 90nm technology node and a celifjbusing a state-of-the-
art 32nm technology node.

Keywords: Microelectronics, electronic design automation, yieldcwt simulation,
Monte Carlo method.






RESUMO

O efeito das variacdes intrinsecas afetando parametrogkesde circuitos fabrica-
dos com tecnologia CMOS de escala nanométrica apresenta desgafios para o yield
de circuitos integrados. Este trabalho apresenta modataggpresentar variagoes fisicas
gue afetam transistores projetados em escala sub-miarémuetodologias computacio-
nalmente eficientes para simular estes dispositivos anitio ferramentas de Electronic
Design Automation (EDA).

O trabalho apresenta uma investigacéo sobre o estaddeddeamodelos para vari-
abilidade em nivel de simulag&o de transistor. Modelos dag@es no processo de fa-
bricagdo (RDF, LER, etc) e confiabilidade (NBTI, RTS, etq) s&estigados e um novo
modelo estatistico para a simulacdo de Random TelegrapalSRTS) e Bias Tempera-
ture Instability (BTI) para circuitos digitais € proposta.

A partir desses modelos de dispositivo, o trabalho propddefos eficientes para
analisar a propagacéao desses fendmenos para o nivel déocatravés de simulacdo. As
simulac¢des focam no impacto de variabilidade em trés difeseaspectos do projeto de
circuitos integrados digitais: caracterizacao de bibliatde células, andlise de violacbes
de tempo de hold e células SRAM.

Monte Carlo € a técnica mais conhecida e mais simples pataasim impacto da
variabilidade para o nivel elétrico do circuito. Este tiabaemprega Monte Carlo para
a andlise do skew em redes de distribuicdo do sinal de re®gim caracterizacdo de
células SRAM considerando RTS. Contudo, simula¢cdes Moate@xigem tempo de
execucao elevado. A fim de acelerar a analise do impacto ailmlade em biblioteca
de células este trabalho apresenta duas alternativas @ @arib: 1) propagacéao de erros
usando aproximacao linear de primeira ordem e 2) MetodaldgiSuperficie de Resposta
(RSM).

As técnicas séo validados usando circuitos de nivel coaleotimo a rede de clock
de um chip comercial utilizando a tecnologia de 90nm e umiioibéza de células usando
um né tecnoldgico de 32nm.

Palavras-chave:Microeletrénica, projeto auxiliado por computador, ructobaixa freqtién-
cia, confiabilidade de circuitos integrados, método MoraddC
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1 INTRODUCTION

Previously, advances in very-large scale integration (NIc8cuit design primarily
relied on circuit improvements derived from technologylsea In those days abstraction
relied on enough performance that could be traded for desigplicity.

Synthesis and optimizations in the design flow of digitateits employed by those
technologies were based on corner-based analysis. In ppi®ach delay, power and
other design constraints are computed from electricalrpatars found to be extreme
cases during characterization.

For Deep Sub-Micron (DSM) technologies, variations in thenofacturing process
of electronic devices poses major challenges for the imguBtrocess variability are the
fluctuations of the physical and electrical charactersstitthe transistors caused by devi-
ations during the manufacturing process. These deviatianse the current-voltage char-
acteristics of the transistors to be different from the nmahspecification: they become
statistical rather than deterministic. Such process edl&sues have been posing new
challenges to the design of integrated circuits becaude Bletctronic Design Automa-
tion (EDA) software and circuit designers need to make useatfniques that correspond
to this new paradigm.

Electrical parameters variability may be decomposed ingpatial and a temporal
component, as expressed in figure 1.1. The spatial compoaariie further divided into
die-to-die variations (D2D) and within-die variations (W@ZUCHOWSKI et al., 2004;
ORSHANSKY et al., 2002).

The die-to-die variations affect equally all the elemenithin the same chip. D2D
variations may be originated from equipment asymmetrigs disymmetries in chamber
gas flows and thermal gradients, as well as imperfectiongjuipenent operation and
process flow. These asymmetries and imperfections causé arskhe average value of
a parameter of the wafer or lot of wafers. One example of D2iiatian is the thickness
of the resist along the wafer, which is constant inside a mafemight vary from wafer to
wafer (BOWMAN; DUVALL; MEINDL, 2002). In technologies oldghan 180 nm the
D2D variations used to be orders of magnitude higher thanABecomponent, which
was safely neglected until recently. EDA industry is faarvith methodologies to deal
with D2D components: corner-based analysis. In this teghithe circuit is simulated
at different PVT (process, voltage, temperature) extreoralitions in which the circuit
is expected to operate. Thus on corner analysis all theistamns are correlated, which is
the correct assumption for D2D variability.

Within-die variations cause the electrical charactersstf the transistors to fluctuate
non-uniformly across a single chip. It can be further decosagl into a systematic and
a random component (BOWMAN; DUVALL; MEINDL, 2002). The sgsbatic com-
ponent may be originated by optical aberrations causingrpater shifts within a chip.
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Transistor variability
(electric parameters)
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Spatial Temporal

I I
A 4

Die-to-die

RDF, LER, Process Gradients, NBTI, HCI, SET/SEU, RTS,

Figure 1.1: Classification of types of variations affecti@SFET devices (WIRTH,
2010)

These shifts present a pattern across the die and is useggndent on the device posi-
tion: for instance the gate length of nearby transistorel@esystematic component which
cause them to shift accordingly. Random within-die vaoiasiare originated from the dis-
creteness of matter and energy, as the number and positaopait atoms, photo resist
molecules, and photons. Random within-die variabilitylsoaalled intrinsic variability
because it cannot be eliminated, being rather a limitatiothe materials and the pro-
cess the transistors are built with. A well known example dd parameter is threshold
voltage {'t) variability due to the Random Dopant Fluctuations (RDFAIMMOODI;
MUKHOPADHYAY; ROY, 2005). Due to its intrinsic charactetis which is agravat-
ted with the technology scaling, random WD variations sthdominating over the D2D
component and have been increasing at each technology node.

Temporal variability can be further divided into aging amansient variations. The
main causes of temporal variability are: 1) the capture aniggion of electrons by traps
in the Si-SiO2 interface and silicon oxide of the devices 2ygpurious radiation particles
hitting the device. Aging is the systematic degradatiorheftransistor characteristics, as
for instance the current strength of a transistor decrgasier time due to Bias Tempera-
ture Instability (BTI). Transient variability are eitherstantaneous or intermittent changes
in the device currenk voltage curve, which can be caused by radiation (nowadags ev
at the Earth’s surface) or Random Telegraph Signal (RTS).

Random Telegraph Signal (RTS), also known as Low Frequdt€yr{oise, is a per-
formance limiting factor for deep sub-micron CMOS devic@&sis noise is due to suc-
ceeding electron capture and emission at the interface rarldei bulk of the gate di-
electrics. This phenomena causes oscillations in theistams/oltage threshold Vt and
drain-to-source currerlys. The propagation delay of a gate depends on the capability
of its transistors to drive current. A smaller current dnvey the transistor means larger
propagation delay, which may lead to timing violationsI(fees) in a circuit. Hence,
the variation in transistor drive current due to RTS may leadircuit failures in future
technology generations, and statistical modeling of ramtidegraph signal is required.

In order to maximize performance, the reduction of tramsidimensions is not com-
pensated by the corresponding reduction in operating gel{fASSOCIATION, 2009).
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The increased stress causes a significant degradationotrfiedé parameters of the tran-
sistors over time. This phenomenon is called aging. Cusetite dominant factor to
limit the lifetime of a PMOS transistor is the so-called NegaBias Temperature Insta-
bility (NBTI) (KACZER et al., 2005). For NMOS transistors HGarrier Injection (HCI)
is usually the major concern. Over time, this mechanismatbegg the transistor threshold
voltageVt, resulting in speed degradation of the logic cells and causning violations,
which implies circuit malfunction.

Due to its assumptions leading to excessive pessimismdgaards or corner-based
design styles tend be less realistic at each new technolodg. iNew strategies to model
statistical process variations become critical for emspigh yield in future products
using sub-45nm technologies (NASSIF, 2000). Corner aisaban be excessively pes-
simistic and inaccurate (VISWESWARIAH, 2003) due to thet fdxat by definition the
corners must capture the fastest and slowest possibletorsiof the circuit. Because
in Application Specific Integrated Circuit (ASIC) timing the main target to be met,
the pessimism regarding the delay constraints increasesdbld for stronger gates and
buffers, thus increasing of area and power consumptioneo€ittuit.

In order to get the most from the technology scali@gmputer Aided Desig(CAD)
tools and the fabrication process must be tied togetheiatans and aging, which can
be modeled statistically, must be taken into account in &y elesign phases, and there
must be CAD tools capable of predicting the percentage aftfanal circuits in a wafer.
Therefore, along with timing, area and power, yield and tin@act of aging must be
additional constraints to be taken into account when d@sigeircuits using recent tech-
nologies.

Statistical analysis of electrical characteristics oflagaand digital circuits is often
performed by using Monte Carlo Method (AMAR, 2006), what lrepin a large amount
of simulations at electric level. Monte Carlo simulatioms the standard employed by in-
dustry for the analysis of variations at electrical levekla supported by current versions
of electrical simulation tools (SYNOPSYS, 2005).

Statistical Static Timing Analysis (SSTA) gives at logigdéa quantitative risk man-
agement for the design as a function of the circuit topoldbg, electrical parameters
and the variations (VISWESWARIAH, 2003). In order to appl$T methodology,
cell libraries are characterized at the electrical levet,\hich Monte Carlo simulation
is nowadays commonly employed. Larger designs may be dessedpinto functional
blocks and treated at different levels of abstraction. Acklmay be a simple or complex
gate, a sequential block (e.qg. flip-flop) or a memory cell. @uarcial EDA tools are start-
ing to support statistical characterization at cell le\&r instance Cadence’s Encounter
Library Characterizer and Synopsys NCX can automaticadiygute linear sensitivity
analysis, which can be further employed for statisticarabierization.

This thesis studies design automation methodologies arelafies models to deal with
technology-related issues, such as process variabibtgerand aging.

1.1 Motivation

Traditionally, designers of digital ICs relied on levelsaifstractions that could hide
the effects of process variations on their product. Thegitesi could expect the chip
to work within the corners defined by the foundry. Actuallyettesigner expected a
high percentagef chips to satisfy the design constraints. The concepialfl had been
implicit for the designer and left to the foundry to take cafeFoundries used to compute
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the corners through characterization processes that d@uhiddden from the designer for
simplicity.

Analog designers have already been experiencing the prsbié¢ process variations
for decades. Analog and mixed-signal circuits often emglognnel critical dimensions
much larger than minimum CD, attenuating the affects of psscvariability. As well,
matching techniques are usually employed for transist@srust perform ideally iden-
tically. These techniques require both the designer ancEfba tool to be aware of
technological and physical details of the device process.

It became well known that corner analysis can guaranteecmrifiyield after fabri-
cation at the expense of performance and power. Each temiyolode requires more
complex assessment analysis tools, partly due to the iser@acircuit complexity and
partly due to the increase of physical phenomena that musikes into account. To
complete the chain, computational power itself has beemreasing steady-paced, allow-
ing more complex methodologies to be computationally fdasi

The demand for more accurate transistor representatiahseghniques for accurate
circuit analysis has been pushing forward two areas of reeeand development: 1) mod-
eling of transistor reliability phenomena and 2) methodads for analysis of integrated
circuits considering these phenomena. Table 1.1 presgmese of ITRS 2009 section on
"Modeling and Simulation”. ITRS points to the need of modgltrap-induced reliability
issues such as RTS and NBTI, as well as to the need of circulelador CMOS devices
including reliability. The present work will focus on pregag advances on these two
inter-related areas of research.

Thus, back-end designers have to learn how to design dagitalits considering is-
sues that previously affected only analog circuits. Thisgsagreat challenges for physical
synthesis of ICs as more technology-related issues musbloglht to the design flow. In
order to obtain more accurate timing and power estimatesyadiion must be sacrificed
in such a way that the designer must be more aware of thesilisplementation.

1.2 Contributions of this work

Accurately modeling variability and reliability of trarstors is becoming a major chal-
lenge for the advance of the semiconductor industry. Mageasircuit models for prop-
agating nano-scale devices issues to circuit-level sitamanust be developed. This
thesis focuses on two main topics: 1) modeling of devicealmlity and reliability and 2)
methodologies for circuit level simulation of these issuglse context and the contribu-
tions of this work in these fields are discussed in the nexsactions.

1.2.1 Modeling of transistor reliability

Device modeling is focused on the main sources of variationgday technologies:
Random Dopant Fluctuations (RDF), Line Edge Roughness JLHBgative Bias Tem-
perature Instability (NBTI) and Random Telegraph Signdi$iR RDF and LER are clas-
sified as process-related (spatial) variability while RT&l &NBTI are time-dependent
(temporal) reliability . This work will discuss in detail &cent model proposed for sim-
ulating the trap-detrap phenomena that causes RTS and NBid.work presents the
following contributions on modeling of reliability issuéisat affect transistors:

Random Telegraph Signal: In this work variations in drain current over time due to
the Random Telegraph Signal (RTS) are modeled as trangianges in transistor
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Table 1.1: Section "Modeling and Simulation” in ITRS 2008t(acted from (ASSOCI-
ATION, 2009)).

Year of Pro-| 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017
duction
DRAM 1/2 | 52 45 40 36 32 28 25 225 | 20.0
Pitch (nm)
MPU Phys-| 27 24 22 20 18 17 15 14.0 | 12.8
ical Gate
Length (nm)

Reliability HF, 1/f and| Trap generation during Degradation mechanisms for
and noise| RTS noise| operation (HCI, NBTI,| novel logic and memory de-
modeling * modeling PBTI, ..) for con-| vices

ventional and new gatg

stacks

Active de-| Circuit models for bulk| Extension to multigatg Circuits models for
vices and SOl CMOS devices CMOS; standardize nanoscale devices
including reliability, ag-| SOl and multigate
ing and influences of circuit models [7]
layout, process variabil
ity and random fluctua
tions; ...

threshold voltagé&/t. Modeling RTS as a source dft variation, on top of other
reliability phenomena, is very convenient for simulatidrdaital blocks and can
be easily propagated to circuit level following the cirel@vel methodologies de-
scribed in this work. Two RTS models are proposed: a statidehand a dynamic
time-dependent model. The static model is further expertectin a SRAM mem-
ory as case study to evaluate the impact of RTS in memories.dyhamic model
works for both RTS and NBTI.

Negative Bias Temperature Instability: NBTI is related to generation and/or activa-
tion of interface traps. Experimentally this is shown to wcwhen a device is
biased in inversion mode of operation, regardless of ctiftew, and is aggravated
by temperature. In this work NBTI is modeled as an effect #hafts\; of the tran-
sistors over time, impacting in speed degradation of thecloglls. A trap-detrap
model valid for both RTS and NBTI is presented.

1.2.2 Methodologies for statistical simulation

On top of advanced device variability modeling this workeimiis to propose com-
putational efficient models for propagating these issuesrtoit level simulation. These
techniques allow the designer to estimate the circuit perémce and yield at early design
stages, before silicon. Computer simulations for circadasidering process variations
must be accurate but also there must be a compromise onmen-ti

In order to address the run-time/accuracy trade-off thesith proposes to employ
linear sensitivity analysis and Response Surface Metlogyols alternatives to time-
consuming Monte Carlo simulations. The following simwatmethodologies have been
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implemented to cope with circuit reliability issues on tlealm of sub-nanometer transis-
tor era:

Monte Carlo: Monte Carlo method is the most widespread statistical satman tool
and has been applied in many domains since 1950s. Monte Siarldations have
been implemented for every circuit analyzed in this workgsiit is the most accu-
rate method. For statistical cell characterization MC iplemented as a reference
method in order to benchmark faster alternatives. The implgations of SRAM
characterization under RTS and hold time violation analysere fully based on
Monte Carlo.

Linear Sensitivity Analysis: Linear sensitivity analysis is a simple and efficient altéern
tive for Monte Carlo simulation. Our research group at UFR@S been studying
linear sensitivity analysis since 2005 to cope with chamazation of small circuit
blocks. In this work linear sensitivity analysis is appltedhe statistical character-
ization of standard cell library and to the analysis of theatt of NBTI in standard
cells. Statistical standard cell characterization waglaséd using Cadence’s En-
counter Library Characterizer (ELC) support for linear sigimity analysis.

Response Surface Methodology: A Response Surface Methodology encompasses two
steps: Design of Experiments (DoE) and a model fitting. Idat@ration with
IMEC (Interuniversity Microelectronics Center - Belgiuahovel RSM flow based
on a new DoE, a polynomial model selection algorithm, andstitesequent substi-
tution of electrical simulation by the regression functiwas invented in order to
characterize standard cell libraries. RSM was integragepaat of IMEC’s statis-
tical cell characterization tool suite (see appendix B).MR8as implemented as
a set of scripts interfacing with the existing IMEC frameWwdor statistical cell
characterization supporting commercial tools such as G@@El&ncounter Library
Characterizer (ELC).

1.2.3 Circuit simulation of reliability issues

This work presents strategies for design on the realm ogdity on many areas of
the design flow: from I-V curves of a transistor to the influera¢ process variability on
hold time violations of logic paths. In order to validate tm@dels and methodologies
developed, as well as to show their applicability to relé\design issues, this work has
studied some specific problems designers are starting ¢éada@ay with technology scal-
ing tend to be aggravated in the future. These problemsnase the fact that CAD tools
not yet fully support, i.e. automatically support, religigimodeling and statistical design,
implying that more research is needed in this field in ordgprtmpose suitable methods
of risk evaluation of the circuits. The circuit simulationdaanalysis work focuses on the
following problems related to the design of digital intetgiccircuits:

Analysis of Clock Network of Digital Circuits: The clock signal is the most important
global signal in a synchronous circuit. On recent techniel®grocess variations,
noise and aging impose challenges for the design of reliebtek networks. They
cause changes in the time delay for the clock signal to aaivae different flip-
flops, causing undesirable clock skew. This work analysssitipact of process
variations on the delay of the clock signal and the clock skisarmality tests in
measurements of clock skew are performed in order to chexkala distribution,
and a statistical model for the clock skew is proposed.
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Modeling Hold Time Violations of Digital Circuits: hold time violations can be mod-
eled as a random variable which is function of the race immyunii the FF and
the clock skew. This work presents Monte Carlo experimehtdazk skew and a
normal distribution is shown to fit them very well. After comgi up with a statis-
tical model for hold time violations due to race conditiom& research methods
for fixing those timing violations. We propose a statisticadthodology for com-
puting the total amount of delay to be inserted in the dath-pasatisfy the yield
constraint.

The standard cell design flow needs a set of pre-charaateelmments, which are
specific to each technology and can be re-used for everymeésitpat technology. This
work proposes solutions for the following characterizatspeps:

Standard cell library characterization: in a typical design flow of ICs the connection
between electrical-related parameters and timing cheriatits of the circuits is
made at cell characterization level. A representative subsstandard cells using
a 32nm production level library and statistical device castpmodel is character-
ized. Two simulation speedup techniques (RSM and lineasigety analysis) are
validated and compared to Monte Carlo. The methodologiew gfood compro-
mise between accuracy and run-time as compared to Monte.Caukch statistical
library parameters can then be propagated to higher letbeadesign flow as Static
Timing Analysis.

Characterization of SRAM: SRAM cells are designed using small feature sizes and
employ state-of-the-art process technology in order toexehmaximum density.
Memories are the first circuits to be implemented on new @etechnologies and
are the first to benefit from the scaling, however they alwaysegence the chal-
lenges imposed by the devices unreliability and processatians. We investigate
sources of failures in memories and use these as modelspaguate the effects of
RTS and variability to memory cells.
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2 IMPACT OF PROCESS VARIATIONS TO THE DESIGN
FLOW OF INTEGRATED CIRCUITS

The design flow of ASICs follows a top-down approach (WESTERRIS, 2005),
as represented by figure 2.1. The circuit is initially spedifby either a high-level behav-
ioral description or a structural description. Each stethefflow generates a lower-level
abstraction equivalent to the previous step and closertattual implementation.

Behavioral Description OR Structural
(HDL) Description

Behavioural (RTL) Synthesis < P

Check

Function.
Iﬁ Pre-layout
timing &

Logic minimization power
Technology mappging Logic Synthesis —>
Std. Cell incremental design (ECO)
Library |
l Fix Violations
Floorplanning
Clock synthesis Physical Synthesis

Placement
Routing

v

Design Rule Check/ LVS

Extraction

STA or SPICE Post-layout timing & power

Timing Clean?

Geometric Description
(GDsII)

Figure 2.1: Top-down ASIC design flow

The initial behavioral description consists of a systemcgmation at a high level
of abstraction, describing how the circuit behaves as atfomof its inputs and states.
A behavioral description can be an algorithmic descriptiora data-flow description,
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also referred as Register Transfer Level (RTL). The systambe specified through con-
ventional programming languages, such as C, although lesaeddescription languages
(HDL) such as VHDL, Verilog and SystemC are preferred sihey tare specific to circuit
description. One of the main steps of behavioral synthasibe hardware assignment,
which allocates the specific combinational and sequendgiaviiare components (adders,
multipliers, memories) as well as its quantities. Thisyatép must implement estimates
of timing, area and power and support functional verifigatiorough test-bench simula-
tion.

Alternatively, some small blocks or special-purpose desican be directly specified
as a structural description, which consists of the circaihg specified in terms of com-
ponents and interconnections. This is a lower level reprtasi®n than the behavioral
description. It allows more control to the designer over glgstem implementation and
avoids the automated behavioral synthesis.

The input to logic synthesis is a gate-level netlist of thewt. The gate level is a
structural description, being the circuit fully descrinaderms of components and inter-
connections. The main goals of logic synthesis are logidmigation and technology
mapping. Logic minimization targets at the simplest eglenacircuit optimized for the
design constraints. Technology mapping consists of géngran equivalent circuit em-
ploying only components existing in the pre-characterigishdard cell library.

Physical synthesis takes as input the structural repragentof the circuit, a netlist
without the physical data like geometries or position, aedegates the geometric descrip-
tion of the circuit: the layout. The layout is the lowest I[egEabstraction in an electronic
design automation flow. The circuit ready for tape-out is actgtion of the masks of
the circuit and can be sent to the foundry in Graphic DataBgs¢éem Il (GDSII) stream
format. The steps of physical synthesis are floor-plannaggtitioning, clock synthesis,
placement and routing. The main goal of physical synthesis minimize interconnects
in order to minimize delay, power and area. However varigbilas been posing new
challenges for physical synthesis: maximization of yieid enanufacturability nowadays
are also constraints to be met. For instance, the routergginedd not only to find an
optimal path between two components, but it is also requoéddllow manufacturability
guidelines when drawing the interconnections in order ®ues proper yield.

Delay, area and power of the digital circuit are estimateevaty synthesis level, as
well as equivalence checks to verify whether the descmggeequivalent to the previous
one or not. However the closer the design gets to implementttie more information
is available making the assessment more accurate. The m@atate timing estimate
is computed after the last step of physical synthesis, mgutivhich draws the intercon-
nections. Thereby, after detailed routing, there is a stepaoasitic extraction, which
accurately models wires as resistances and capacitandes dafa-path delays can be
computed by electric-level simulation (spice) or by Stdiiming Analysis (STA). By us-
ing these wire models for the interconnections, their delegn be computed accurately.
In STA, standard cell libraries are pre-characterized &ed tlelays and power are readily
computed as a function of the input slew and the load theyed®AA reports the critical
paths (paths not meeting the timing constraints) that caakkeand setup time violations.
These violations must be fixed, usually by an incremental stghysical synthesis.

Thus, process variation and reliability issues add everenstiain over the steps of
physical synthesis, specially timing analysis and ciropiimization. This thesis focuses
on modeling process variability and device reliability btatric level description of dig-
ital ICs and specific circuits, as for instance memories s Thiapter presents the typical
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design flow and demonstrates how process variability effedhich impact the I-V curve
of the transistors can be propagated to higher level medfitse design. The next sec-
tions are presented in a bottom-up fashion: starting froeirtpact of variability to the
transistors I-V curves and then presenting a methodologydpagate these effects to
high level metrics such as delay.

2.1 DC Transfer I-V Curve

On-chip-variations induce the devices to present eladtibaracteristics different
from the nominal (average) specification. The |-V transfearacteristic is the identity
of a transistor. Variations in the I-V curve directly impéugh-level metrics of the digital
circuit. A transistor with higheron (Ids whenV dsandV gsare maximum) is faster and
consumes more energy than a device with loloer.

Accurate device modeling has been a necessity of semictordndustry since its
beginning. Transistor models are sets of equations desgribe operation of the transis-
tor. These equations are employed by electrical simul&aorempute the behavior of the
circuit. Since the introduction of Berkeley’s SPICE in 19412d with the always grow-
ing dependency on EDA tools, MOSFET models have evolved inptexity to be able
to accurately describe the device behavior under the cyreitage and environmental
conditions. The first MOSFET model to be implemented by SRICE72 was the level
1 model, or Quadratic I-V Model, which is the simplest MOSHB®del to computéds
as a function oV gsandVds The quadratic model is inaccurate and is not appropriate
for modern transistors. The curve is divided into threeaagiof operation (this disconti-
nuity causes convergence issues) ldgican be approximated as proposed by Massobrio
(1999):

(0 Vs < W; cutoff

2
B (Vgs—\A)Vds—\%s} 0 < Vgs < Vgs—\; linear

las(Vds, Vgs) ~ - (2.1)
% (Vgs—\/t)z} 0 < Vgs— W < Vg saturation
\_
where W .
B= IJCoxt , and Cox = o

With the advance of transistor technology on the upcomir@ades, transistor mod-
els had to be constantly enhanced in order to incorporatgihgsgical-related technology
characteristics. Some of the most accurate and widely graglby industry Physics-
based transistor models are: MOS9 and MOS11 by Philips Sewictor Research,
PSP by Arizona State University (ASU) and NXP (former PHJifGILDENBLAT et al.,
2005), and the Berkeley Short-channel IGFET Model (BSIMyifg. Regarding the
BSIM family, the most common versions are the BSIM versio8,38SIM3, and the
BSIM version 4 (HU, 2009), of which the latest version is B3W.4. PSP is a surface-
potential based MOS Model, which leads to a more accuratgesgqguation formulation
valid for the whole operation regime of the transistor thae voltage threshold based
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model BSIM (SCHOLTEN et al., 2009). Not only recent phydiased models like
BSIM4 and PSP take into account the relevant physical affetthe device, but they
also provide enhanced convergence during simulation dubeio continuity, i.e. the
source-to-drain current is a continuous function over theration range. As an exercise
to illustrate the variability on the DC IV curve, let’'s codsi the single source-to-drain
current equation implemented by BSIM4 (HU, 2009):

lgoNF [ 1 < Va )}
[ = 1+ In
ds 1 -+ Rasao Cem  \Vasar

Viseff

Vys—V, Vys—V, Vys—V,
y <1+ ds dseff) y <1+ ds dseff) y <1+ ds dseff) (2.2)
VapiBL VapITs VascBE

wherelyg is the source-to-drain current valid from sub-thresholgimee to strong inver-
sion regime, NF is the number of finger of the deviggs is the drain-to-source resistance,
Vysis the effective drain-to-source voltage anidef ¢ is the effective drain-to-source volt-
age Cuom is parameter modeling channel length modulation. The B®#/ApisL, VaDITS
andVascege model the Early Voltages due to Drain-Induced Barrier Langr(DIBL),
Drain-Induced Threshold Shift (DITS) by Pocket Implant &ubstrate Current Induced
Body Effect (SCBE). For a detailed description on how to categll these parameters
refer to Hu (2009). The intermediate variablg is computed a¥a = Vasat+ AacLm,
with (HU, 2009):

ESATLEf f + Vdsat+ 2RdsvsatQ)(eWef ngsef f |:1 — %}
RasvsatGoxelVe f tApuik — 1+ %

whereVysat IS the saturation voltagéy,x models the bulk charge effect (Vth is not con-
stant along the channel wh&fs # 0 due to non-uniform depletion widthlgsz is the
critical electrical field at which the carrier velocity benes saturatedyxe is the effective
oxide capacitancessatis the saturation velocity\e ¢ 1 is the effective transistor widthy
is the thermal voltaged models the non-saturation effects in P-type MOSFETS. Again
refer to Hu (2009) for a detailed description of these eaqunsti

Figure 2.2 presents a typical output of DC measurements @ngpke of transis-
tors. In this case they come from a Monte Carlo simulation-wfdurves of a 32nm
Predictive Technology Model (PTM) device. Variability isogeled by assuming five
BSIM4 parameters as random variablés: (30 = 3nm), W (30 = 3nm), Tox(30 =
10%), Uo(30 = 5%),Vthy(30 = 10%), which are in accordance with the International
Technology Roadmap of Semiconductors 2009 (ASSOCIATION2. The linear and
saturation regions affect the circuit performance and thethreshold region implies in
variation of the leakage current. This exercise shows tathfis set of parameter varia-
tions,lon can vary by up to 40%.

VasaT= (2.3)

2.2 Compact transistor variability model

Nominally identical devices end up having different I-V ¢eis due to process vari-
ability. A compact transistor model aims at modeling theet$ of one or many physical
sources of variation to the transistor I-V curve.
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Figure 2.2: Monte Carlo simulation of 32nm transistors Ihatacteristic.

Although the quadratic model of equation 2.1 is innacuratadodel current technolo-
gies, it shows that in a first order the most relevant pararsébeexpressds as a function
of Vds andV gsare the threshold voltagét and current gair8. This gives the designer
an opportunity: for instance by appropriately modifying tiiansistoVt in the netlist,
the designer can simulate the effect of a source of vartglaé RDF, RTS, NBTI and
even dimension-related issues such as LER (sources ofigarae discussed in the next
chapters).

Figure 2.3 presents 3 possible methodologies for simyatariability in the I-V
curve of transistors. The simplest way is represented bydi@u3(a): some electrical
simulators as HSPICE, SPECTRE and NGSPICE allow the useetfg a Vt shift dur-
ing instantiation of the transistor, but only for BSIM traster models. This approach is
widely employed because of its simplicity and concordanitk measured data (NASSIF
et al., 2007).

Another methodology consists of replacing the transistprah equivalent circuit
which includes one voltage source in series with the gatédase 2.3(b)) or one voltage
source in series with the gate and one current source inlplanath source and drain (as
figure 2.3(c)). The voltage and current source model vaniatin Vt andASB /[, respec-
tively. The advantages of (b) and (c) are 1) independence@iransistor model and 2)
independence on the electrical simulator.

Figure 2.4 reports the simulation results\gf and 3 of a 32nm statistical device
model. Comparison of this two-parameter compact varigbitiodel shows excellent
agreement with the reference Monte Carlo simulations orfdbedry variability model
(ZUBER et al., 2010).
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Figure 2.3: Compact variability modeling: (a) using sintatacapability on instantiation;
(b) voltage source modeling variations in Vt; (c) voltagens@ modeling variations in Vt
and current source modeling variations in the current afng.
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Figure 2.5: WD and D2D variations of fall delay and transitaf a XOR2 gate.

2.3 Gate level

The propagation delay of a gate depends on the capabilitig dfansistors to drive
current. These changes in the transistor I-V curve causeitbeit metrics such as de-
lay, static and leakage power and noise margin to shift. Allemeurrent driven by the
transistor means larger propagation delay and lower dyoamwer.

A variability transistor model is employed to simulate picyg$é phenomena, e.g. vari-
ation in the number of dopant atoms, to the circuit-levelnuost e.g. delay and power,
through electrical simulation. Electrical simulation isry time consuming and it is a
common practice to break the design into small blocks, ag&iance cell characteriza-
tion in a standard cell flow. Special-purpose circuits, asristance SRAMs and high-
frequency clock networks, are also validated by runningtelesimulations.

Figure 2.5 reports Monte Carlo simulation results of theeagrof fall delay and tran-
sition time of a commercial 32nm XOR2 gate due to within-déX) variations for each
process corner (SS, FF, FS, SF). These corners (representache square dots) corre-
spond to D2D variations. On top of D2D variations, fall argerdelays are significantly
affected by WD variations.

2.4 Circuit (logic path) level

The last step of verification (before possible subsequeiterations) of the circuit
is the timing analysis. At this level, the circuit is repretad as data moving from one
sequential element, e.g. FF or latch, to another. In a stdral design flow the most
employed technique is Static Timing Analysis (STA) (BHASKECHADHA, 2009).

STA takes as input 1) the extracted netlist containing catld parasitics and 2) a
pre-characterized cell library containing information @elay and power of each cell as
a function of its slew and load. STA performs a simulationagic¢-level employing
graph traversal algorithms such as Critical Path MethodM¥;Rhus it is much faster
than electric-level simulation. It then computes the catipaths and their slacks. Slack
is the difference between the longest allowed time of a signaropagate from the clock
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Figure 2.6: PDF of timing slack of two hypothetical pathsadpd by SSTA. Path #1 has
negative slack and must be fixed for violation.

sink to the target FF (required time) and the actual compdétaly (arrival time). Ideally
all paths would have slack=0. Positive slacks mean that\ibeatl delay of the path can
be increased. This is done by re-sizing some gates in thattpaimaller/slower ones in
order to reduce area and mainly power due to their smalleacitgnce. Negative slack
results in a timing violation and the path must be made fagtieat can be accomplished
by using stronger gates and buffers. Ultimately, STA dstegb kinds of failures:

hold time violation when the data signal arrives too quickly at the target FFRajpigens
when the clock signal arrives earlier in the source FF anddbie path is too fast.
In this case the target FF can improperly store and propdbatquick data of the
source FF in the same clock period, when it should propagately in the next
one.

setup time violation when the data signal arrives too late at the target FF. It &app
when the logic path is too slow and/or when the clock skew ¢hghat the clock
signal arrives much earlier in the target FF. In this casedlget FF fails to receive
the data in time, thus erroneously propagating the pre\stared data.

Delay variations due to spatial and temporal variabilityynreduce timing violations
(failures), which are not reported by the nominal simulatidypically STA used to em-
ploy the concept of corners to guarantee the circuit to dpexeen in the presence of pro-
cess and environmental variations. In this scheme, theiticsimulated in the fastest,
slowest and typical set of paramenters with which it is exgpéto operate, considering
all the transistor variability as being correlated. In €ifiism technologies, where the
WD variability has surpassed D2D variability, corner-tihsmalysis is inaccurate. Thus
in the last years much research has been promoted for #faltiStatic Timing Analysis
(SSTA), which models gate delays as random variables and¢@apute the statistical
distribution of slacks.

Figure 2.6 represents the slack probability density fumc(PDF) of two hypothetical
paths of a circuit. The slack of Path #1 has a high violatiabpbility (= 4.8%), imply-



43

ing as many as 4.8% of the fabricated circuits will presentodation in that path. An
optimization step must be run in order to fix the critical gatihis optimization step is
run until the circuit becomes timing clean and can be serge-but. In this hyphotetical
scenery the tools inserts buffer elements to make the patérfahus reducing the failure
probability of the path.
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3 SPATIAL VARIABILITY (PROCESS-INDUCED)

Variability in the manufacturing process, mainly due to thgpand lithography, causes
variations on transistor threshold voltage, channel lleragtd width. Although process
variation incurs shifts in critical dimensioig andL, Tox mobility and other physical or
electrical characteristics of the transistor, these camepts can be reduced to a compact
model where only/ t represents the variations in |-V curves. Thus, the tétdluctuation
due to process variability is often modeled as a sum of indepet sources of variations
(CATHIGNOL et al., 2008; YE et al., 2008; LI; YU; CHEN, 2007):

G\%t,total = G\%t,RDF + G\%t,LER"‘ (3.1)

Nowadays the main sources of variation impacting the etectraracteristic of tran-
sistors are Random Dopant Fluctuations (RDF) and Line EdggRness (LER) (CATHIG-
NOL et al., 2008).

3.1 Random Dopant Fluctuations

Advanced state-of-the-art process fabrication techneigowadays employ effective
channel lengths smaller than 30nm. In these technolodiesiumber of dopant atoms in
the region where the inversion layer is formed is in the oafgust tens of atoms (REID
et al., 2008). Random Dopant Fluctuations (RDF) are theatians in the crystalline Si
structure due to the variations in the number of dopant ationtise channel, as well as
due to their irregular distribution in the channel. RDF ipnesented in figure 3.1, which
was extracted from Hane (2003a).

RDF nowadays represents one of the greatest challengdsefonitroelectronics in-
dustry. Recent works compare different sources of procagahility in a 45nm technol-
ogy node, including RDF, Line Edge Roughness (LER) and palg granularity (PGG),
and concluded that RDF is the dominant intrinsic sourceatfstcal variability in MOS-
FET transistors (CATHIGNOL et al., 2008; YE et al., 2008).

Calibrating the implantation process in such a way to cormtly the requirements to
keep RDF under control is becoming more difficult with scglifhe challenges imposed
by RDF can make it infeasible to keep the — necessary — treddwiiscaling MOSFET
transistors. The number of dopants are subject to a Poistiifadition, and the uncertainty
of the number of dopants is in the range of 5-10 % of the totahlmer of dopants for a
50nm MOSFET (BERNSTEIN et al., 2006).

At the circuit level, RDF is modeled as a source of threshaoldiage variation which
affects each transistor independently of each other. R@R iscorrelated source of vari-
ability because assuming no systematic source of variatimimg implantation (which is
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|Substrate

Figure 3.1: Random Dopant Fluctuations (Source: (HANE;ZK®B/A; EZAKI, 2003a))

the case) each transistor has a different number of dopantisatieading to a different
mobility to and thus altering the I-V curve independently. The distidouof Vt due to
RDF is widely accepted to follow a Normal distribution, anetk Normality is demon-
strated by Reid (2008). The 5-10% uncertainty in the numibelopants translate to a
variation in Vt of gy = 25— 30mV, as reported by Bernstein (2006) and Reid (2008).

Vt fluctuations due to RDF have been modeled by Monte Carlo sitionis of 3D
drift-diffusion (DD) models (STOLK; WIDDERSHOVEN; KLAASEN, 1998). DD
models have presented enough accuracy and agreement waurad data for device
dimensions> 100nm However, 3D simulations are computationally expensive an
simple formula to computey; as a function of technology parameters is essential to the
circuit designer. In this sense, 3D simulations are reguaely at the phase of device
characterization, providing a simpler formulation to thesidner. Since then, analytical
expressions fooy; could be derived by fitting the simulations data with fornsulaith
physical support. An expression foy is proposed by Stolk (1998) as:

[ V/Aesige | [KsT 1 Tox| ( NR2°
OVt RDF ~ +— (3.2)
V3 d vAgesipeNa  €ox| \ VWL

whereq ~ 1.602x 10 1°Coulombss the elementary chargeg; and &,y are the permit-
tivity of the silicon and the oxide respectiveN, is the average channel doping density,
¢g is the built-in potentialTox is the oxide thicknesg is the Boltzmann constari, is
the absolute temperature, and finaNyandL are the device dimensions.

Nowadays the most accurate method for modelingitheariations due to RDF is by
time-consuming 3D atomistic models considering the quantieraction at sub-atomic
level. Asen Asenov’s research group at Glasgow Universityell-known for their ca-
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pability of simulating RDF through atomistic simulationote running in a cluster of
workstations. Their framework is capable of running Mon&lG simulations with sam-
ple sizes of 100,000 (REID et al., 2008). Asenov 2003 propasmrrected model fort
uncertainty, which is:

t N0.4
A ) (3.3)

v/ LeffWets

wherelLet s andWe ¢ ¢ are the transistor effective channel length and width retbgasly, Na

is the average channel doping density &ids the oxide thickness. This newer model
is similar to the one proposed by equation 3.2, however thst imaportant discovery
is the relationshim\'}tDF ~ N?\"‘, which implies a much stronger dependencergf on
Na then the previous model, which had an expone@b0nstead. The model has also
the advantage of being a very simple expression due to thetamat319 x 10~8, which
still holds for recent technology nodes, for instance ther63BM technology node as
reported by Bernstein (2006).

Ovt,RDF = 3.19 % 10_8(

3.2 Line Edge Roughness

Line Edge Roughness (LER) is the result of imperfectionsduthe lithographic and
etching processes, affecting the shape of the edges ofahsidtor critical dimensions
(CD). LER causes channel width and length (specially and eragcally for digital cir-
cuits is the channel length, which is usually the minimumeiision allowed by the tech-
nology) in such a way that the line edges are no more recdtias drawn in the layout.
Instead, these lines become rough edged. LER is illustmatigglre 3.2, which presents a
3D transistor. In figure 3.2 the depletion channel is drawyeltow, source and drain are
red and substrate is blue. Notice the non-uniformity of thermel, which ideally should
be a straight line.

LER is also referred to as Line Width Roughness (LWR). LWRergfto the width
variation from one side of the rectangular shape to the pthbile LER refers to the
distance between the edges of one side with respect to thmabime. Currently, ITRS
estimates that for 32nm and 22nm half pitch technologieg teasible, 3wr~ 3—4nm
must be reached (VAGLIO-PRET; GRONHEID; FOUBERT, 2010)isTik still an open
problem for the manufacturing industry and must be solvetthénext years in order to
keep pace with downscaling.

In the last decade many efforts have been made in order to Inh&de (HANE;
IKEZAWA; EZAKI, 2003b; ASENOV; KAYA; BROWN, 2003; HYUN-WOCOet al.,
2004). LER can be divided into two components: 1) low-fraguyel ER, also called non-
rectangular gate (NGR) and 2) high-frequency LER. Due tetisgistical nature, LER
causes variability in the I-V characteristic of the tratsis. For digital circuits, LER can
be modeled as a source of variation that impacts the trandi$t which can then model
the variations caused iR, andlyss (YE et al., 2008). Cao (2008) from Arizona State
University employed 3D atomistic simulations to evaludte impact of LER tagy; and
proposed an expression of Vt as:

Ct W
O-\%LLER: Ti X = X Of (3.4)
e|/ W
whereC; andl’ are technology related coefficient; is the correlation length of NGR,
W andL are the transistor width and length. The study showslghdand thus Vt) has an
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Figure 3.2: 3D Device simulation shows Line Edge Roughnesse transistor (Source:
(ASENOQV; KAYA; BROWN, 2003))

exponential dependence on gate length, and this is due to-Dvduced Barrier Lowering
(DIBL). This exponential relationship is an important findibecause it predicts that LER
is going to get much more exacerbated as L shrinks unlesetmmology constants;
andl’ improve due to considerable process improvements.

Consideringo. = 2 — 3nm, which is in accordance to ITRS for a 32nm technology
node, the simulations performed by Ye (2008) of a 30nm desiumv oyt Er~ 10—
20mV.

3.3 Discussion

This chapter aims at presenting to the reader basic knowledgsources of random
process variations. The main sources of random variatiectiig integrated circuits are:
Random Dopant Fluctuations and Line Edge Roughness. Theyih@ommon the fact
that they are not transitory nor time dependent. This chiaratic differentiates them
from time dependent issues, which is presented in the nextteh
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4 TIME-DEPENDENT VARIABILITY

The lifetime and reliability of digital circuits are beindfected by the degradation
of the electric characteristics of the transistors oveetirihe physical characteristics of
the transistors suffer from significant degradations, cagshanges in the electrical char-
acteristics, specially the voltage thresholt)( The random switching between discrete
levels of Vt over time is referred as Random Telegraph Signal (RTS). fs&ematic
degradation of an electrical parameter over time is caflgthg The main factors re-
lated to aging ar&legative Bias Temperature Instabil{tyBTIl) andHot Carrier Injection
(HCI).

4.1 Random Telegraph Signal (LF Noise)

Low Frequency (LF) noise is a performance limiting factardeep sub-micron CMOS
devices. In these devices, LF noise is dominated by mulRgledom Telegraph Signals
(RTS). This noise is due to succeeding electron capture emss@n by a number of
Ny traps distributed according to a Poisson distribution at$aS O, interface, as rep-
resented in figure 4.2. This phenomena causes oscillatiotigei transistor currenys,
as represented by figure 4.1. Noise performance may straagyybetween different de-
vices in the same chip, and moreover even between diffeparation points of a single
transistor. Variability invVt due to RTS has already been reported to be a problem for
SRAMs and flash-memory (AGOSTINELLI et al., 2005; TEGA et aD06). Memory
cells are usually the first ones to be affected by new sourtpsrformance variability,
because of their small dimensions, what is needed to aclhigVeintegration density.
With scaling, these sources of variability may also affebto circuits.

Until recent years, statistical models for RTS focused @nftequency domain. This
is suitable for analog circuits, whose design and analysiparformed in the frequency
domain. However, for digital circuits an appropriate timenghin statistical analysis is
needed, since these circuits are analyzed and designegltimmdomain metrics. Aim-
ing at addressing this issue the work entitkead appropriate model for the noise power
spectrum produced by traps at theO, interface: a study of the influence of a time-
dependent Fermi-levaby Roberto da Silva and Gilson I. Wirth, presents for the fime
a comprehensive model for the RTS in time domain, derivirgrédevant statistical pa-
rameters. This methodology for modeling RTS as a sourcétofariation is described
and extended to consider the density of charges in the chaam@roposed by Gilson
Wirth.

The variations in drain current can be modeled as translarges in threshold volt-
ageVt. It is already well established that the variation in draimrent due to RTS can
be modeled as transient changes in gate bias (WIRTH et &4, 28irth; da Silva; Bred-
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Figure 4.1: Time domain measurements of a stationary raneétegraph signal (RTS).
Discrete fluctuations are observed in the drain current.ldtwe- V't state corresponds to
the state where the trap is electrically neutral (empty)e filgh— V't state corresponds
to the state where the trap is electrically charged. (Sou(&LVA; WIRTH; BREDER-
LOW, 2006))
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Figure 4.2: Trap-detrap of electrons at the Si-SiO2 intafa

erlow, 2007), induced by electron trapping and emissione dtain current fluctuation
caused by the RTS from the-th trap may be expressed Akds = —gmAVt; wheregm
is the trans-conductance (SONODA et al., 2007). This ambrost adequate to model
RTS as a dynamic source gt variation. In circuit analysis, this source of variationyna
be included as one more parameter that can cause circuitrpenhce variability, in addi-
tion to the other sources, as for instance the static, tiependenyt variations caused
by random dopant fluctuations (HANE; IKEZAWA; EZAKI, 2003bl)he proper model-
ing of this effect becomes of increasing relevance, sinoeay lead to different results
between subsequent measurements (or test) of the samg. cirhis poses a challenge
not only for the circuit designer, but also for the test eegin

This section presents a comprehensive statistical stud®T& in time domain, and
provides appropriate equations for circuit analysis aedteical simulation. These equa-
tions allow quantifying the impact of RTS on the reliabilitgy MOS circuits at higher
levels of the design.
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The model presented in this section takes into account theiqo of the trap along
the source-drain line of the transistor, as well as the distaof the trap from the inver-
sion layer (position with respect to the Si-Sidterface). Three different charge density
models are proposed: constant, linear and exponentiajeltnsities. This work reveals
that in the case of the charge density being linear or exg@iaiong the channel, the
statistics of RTS noise is very different from the simple st@mt model. The reason to
consider charge densities different from constant is tbatdrge source-drain bias the
channel charge density decreases from source to drain (D83y 2004), although for
small source-drain bias the charge density is approximataistant along the channel.

Section 4.1.1 shows the methodology for computing the &l caused by all the
traps in the transistor as a function of the impact of one:téafy. Section 4.1.2 presents
the foundations to model thét shift due to one single trap, while section 4.1.3 shows a
detailed formulation which takes into account charge dgmsirying along channel.

4.1.1 Model derivation

The capture and emission of electrons at the interface tepba modeled as a two-
state fluctuation of the threshold voltaye. If the trap is empty we consider thét
fluctuation to be zero. If an electron is trapped we conside¥i fluctuation due to the
ith trap to be equal tdvt;. In this manuscript we express the threshold voltage fldictoa
caused by one single tra@sdvt;, while the total transistor threshold voltage fluctuation
(caused by the combined effect of all trapshist.

Trapping and releasing of an electron by a single trap is ageoi process. The ef-
fect of dvt; due to separate traps is additive (MACHLUP, 1954). In theswvoase, at
a given time all the traps found in a device may be occupiedmatg leading to large
AVt. Hence, a statistical treatment of the problem is demandd.relevant statistical
parameters are hereby derived.

In the random telegraph signass= 0, 1 denotes the state of the th trap (O=empty
or 1=occupied), the Fermi-Dirac statistics governs the prdidglaf transition:

dt dt
Pis = 0—s=1)dt= 10P [1+exp(—ai)] - @
dt _dt

Prs = 1—s=0)dt= 15 [1+expa)] O

wheret; andTe are the time constants of the Poisson process: the average tif emis-
sion and capture of the trap, respectively given by:

) = 107 [1+exp(—q)] (4.1)
) = 10° [1+exp(q)] (4.2)

The time constants are dependent on the transistor biaghvane expressed as a
function of the Fermi-Level of the transistor as in:

(B —Er)

KeT (4.3)

g =

where Eg) is the energy within the band-gap of the th trap, E; is the Fermi-level

energyKg = 1.3806568x 10231 /K the Boltzmann constant arfdis temperature.
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At this point lies the essential difference between theicstabdel presented in this
section and the dynamic model developed later on sectiorD4Bamic trap-detrap sim-
ulation is more complex and takes into account the bias ofréresistor at each timestep
of the simulation. That causes the time constants, as wéfleaprobabilities of capture
and emission, to vary over time. The simpler static moded@néed in this section, on the
other hand, does not computgand1e using the proper equation 4.2. This static model
assumes the voltage threshold fluctuation of a transiststagis and voltage-independent
through the whole simulatiomAVt is computed at the beginning of the simulation and
is modeled as a statit fluctuation by the electrical simulation. The model assumes
that —Q < g < Q can be considered a uniform random variable and ﬂi@n Té') are
identically distributed, i.e.<rc(')> = (T¢) and<ré')> = (1) fori = 1,2, ...,Ny. The input
parametef corresponds to half of the band-gap width, which is aroun®f thehe case
of Si (SILVA; BRUSAMARELLO; WIRTH, 2010).

Here, p; is also a random uniform variable within an intenyghin < pi < Pmax and
in this case in the frequency domain, we can establish anr@poconnection. The
power spectrum density corresponding to the noise fronirthérap is a Lorentzian func-
tion S(fi) = (A?/f) [1+ (f/f)2] " wheref, = 1/t + 1/1{" is the comer frequency
corresponding to the trap amy is its amplitude (MACHLUP, 1954; SILVA; WIRTH;
BREDERLOW, 2006; WIRTH et al., 2005; WIRTH; SILVA; BREDERM) 2007). Itis
possible to conclude thdt = 10~ P and due to thid; is uniformly distributed in a log,
scale. That results in a probability distributidf;) = [IN 10 (Pmax— Pmin) fi]~* for the
corner frequencies (this assumption will be used from nownothis work) (KIRTON;
UREN, 1989). From this approach, we can calculate

Pr(s(t)=0) = Te:?Tc
Pris(t)=1) = 1-Pris(t)=0)=

wherePr(s(t) = 1) is the probability of thdth trap being occupied (i.e., the RTS being
in the “1” state), andPr(s(t) = 0) is the probability of theth trap being empty (i.e., the
RTS being in the “0” state).

Thus the threshold voltage fluctuatidk't which models the current fluctuation of the
transistor at time due to all the traps is computed by

AVt(t %M 5t (4.4)

whereNtr is the number of traps andivt; for i = {1,...,Ntr} is the instantaneous voltage
threshold fluctuation when traps occupied. The amplitude®/t; are random variables
and our results will be dependent on its first and second mtsnegspectivelyd) and
(32). Thosedvt; can be obtained by experimental measuremengs oAlthough there is
a lack in the Literature for accurate modeling of the curf@nttuation due to one single
trap in deep sub-micron technologies (DSM) technologies, rtext section presents a
well established model for computirﬁ, which can be used as an approximation.

4.1.2 Computingdvy;

When one electron is captured by the trap located in the 81© number of charge
carriers in the channel is affected and the ttjaturrent will decrease because of the loss
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of the trapped electron. On the other hand, the subsequassiem of the electron will
cause an increase in thg current. The fluctuation on the total current flowing through
the transistor channel due to one single trap is (SIMOEN.e1882):

6Ii_g_m q

lgs  lds Wets-Leff-CoOX

where%'; is unit-less,gm is the trans-conductance B/~ | l4s is the source-to-drain
current InA, Wesf and Let¢ are the effective transistor dimensionsrm Cox is oxide
capacitance iff /n?, q is the elementary charge given bys02x 10~°C. Sincedl; =
—gmdV;, we arrive at the suitable formulation for th& instantaneous fluctuation due to

one single trap:

g

ovt; =
Wet-Leff-CoX

(4.5)

wheredvt; isinV.

Based on this expression, it is possible obtain the analyéxpression of the volt-
age fluctuation as a function also of the location of the trathe oxide (GHIBAUDO,;
BOUTCHACHA, 2002):

q X
OVt = Weff'Leff'COX‘ <1 tOX) (4.6)

where 0< xt; < tox, xt; is the location of trap (how deep it is in the oxide thickness) and
toxthe oxide thickness. From this expression, we see that loapsed closer to the Si-
SiO, interface affect the threshold voltage more than trapsrtanfthe interface. In this
work we assumaet; to be uniformly distributed in the intervad, tox, what is in accor-
dance to Chadwin (2009). However this assumption does ryiamy loss of generality
to the RTS model proposed in this manuscript if another ithistion is experimentally
observed.

4.1.3 Non-Uniform charge density

Section 4.1.2 presented a first principle model that may bea g@pproximation
for the statistics of the current fluctuation caused by a ifdpe transistor is operated
with small source-drain bias. In this case the inversiomieadensity is approximately
uniform along the channel. If the transistor is operatedhwarge source-drain bias the
charge density will not be uniform along the channel. Fogéasource- drain bias the
charge density may be a strongly non-linear function of tbsitpn along the channel
(TSIVIDIS, 2004). In this section we present a more detaieadel fordl/Ids and
subsequentlyvt; that takes into account the charge density and models it@scéidn of
the location of the trap position along the channel (alomgsiburce to drain direction). It
is known that if the charge density is not uniform along tharatel the amplitude of the
current fluctuation caused by the trap depends on positidreichannel (ALEXANDER
et al., 2005; LEYRIS et al., 2007; VASILESKA; KHAN; AHMED, 2).

Figure 4.3 shows three assumptions that can be made regdtdircharge density
varying along the transistor channel of deep sub-micromgtlen(a) charge density is
constantly distributed along the channel length axis, (@rge density is larger at the
source and it decreases linearly along the channel and &yeldensity is larger at the
source and decreases exponentially along the channel @saample of a strongly non-
linear dependence of carrier density on channel position).
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Figure 4.3: (a) Charge density constant along the chanbgekHarge density decreases
linearly from source to drain; (c) charge density decreasgmnentially from source to
drain.

These three scenarios can be modeled by multiplying equat®bya (xl;) which is
a function of the locatioml; of the trap along the length axis as in:

ke constant
a(x) = k-2 +o linear (4.7)
exp(ke- %"ff) +Ce exponential

where 0< Xli < Lef¢ is the location of the trap= 1,...,Ntr in relation to the channel
length,ke, ki, ke, ¢ andce are fitting constants. The trap locatigl can be modeled as a
random variable following a given distribution which candetermined experimentally.
In this work it is modeled as uniformly distributed along tttgannel length, which is in
agreement to the experimental findings of Saks (1990).Tieshiold voltage fluctuation
caused by the occupation of one trap considering the latatiahe trap in the channel
then becomes:

q X
OVt = a(xh) 'Weff ‘Lefs .Cox <1 tOX) (4.8)

In 2010, as a result of a scientific cooperation with Arizota&University, we have
been able to obtain atomic-level simulation data of the flatton ofVt caused by trapped
charges as a function of their position along the transishannel . These 3D atomistic
simulations, described in depth by Camargo (2010), werpaed by Nabil Ashraf and
Dragica Vasileska. Figure 4.4 shows the average threslodidge variation in relation to
the trap position for 20 devices with different random dapdistributions. The source of
the channel is at x = 0. The figure shows a clear trend of the ¢trgfea trap tovt being
inversely proportional to its distance along the channeb d¥nclusion can be drawn
whether the best fit is a linear fit or an exponential fit. Sirtoeirtad justed— R? are
respectively 0.61 and 0.56, for this sample the linear fitlvamwonsidered slightly better
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Figure 4.4: Threshold voltage variation due to traps lotatethe semiconductor/oxide
interface and different positions along the middle sectibtihe channel.

than the exponential fit. However the sample size is too stmaiaw a final conclusion.
It is visually shown by Camargo (2010) that a 3rd-order degwelynomial presents a
good fit.

The most important fact is that quantitatively these experital data confirm the the-
oretical assumption we have proposed in (BRUSAMARELLO; VMR SILVA, 2009):
the impact of a trapped charge ¥hdepends on the position of the trap along the channel.
The model proposed in Brusamarello (2009) was the first RT8ainio take this effect
into account.

4.1.4 Simulations

We have computed the distributions®f t of the transistors of a SRAM cell using the
three proposed dependencies of the trap position alongateelgngth on current: con-
stant, linear and exponential. Simulations were perfororethe PTM 65nm technology
node (CAO; MCANDREW, 2007). We assume the number of tidfisin the interface
to follow a Poisson with rata = 3. This value is extracted from table | of Wirth (2005),
properly scaling the experimental data of that work to th&Febnm technology node.

Figure 4.5 shows (y-axis is in logarithmic scale) the prolitgbdensity function
(PDF) plots (Kernel Density using a Gaussian and bandwit)=of 10,000 Monte
Carlo (MC) simulations of théVt of one NMOSFET transistor of a SRAM cell by
using the proposed model. The parameters values of thadtanare Leff=24.5nm and
Weff=80nm, extracted from PTM 65nm technology node and @aoetance to Cao (2007).
The curve corresponding to no dependence eithed @n xt is using equation 4.5, while
the others use equation 4.8 (where the dependenst amdxt are taken into account).
We used constants to fit our results with the MC simulationthefcurrent fluctuation
due to one single trap performed by Alexander (2005). In thestant cask. = 3, in the
lineark, = 6 andc; = 0, and in the exponential formulatidg = 2.198 andce = 0.

In all cases there is a peak near 0: nearly 20% of the tramsis&wvel\y; = 0. This case
means that either all the traps of the transistor are emptiyeotransistor has no traps at
all (the number of traps follow a Poisson distribution) istcase the current fluctuation
must be 0. However, the probability of RTS causinyg tashift greater than 20mV can
be more than 20%. The maximum number of traps found in oursition was 6, while
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Figure 4.5: Distribution ofAVt of one transistor caused by RTS, considering the three
dependencies on the trap position (y-axis in logarithmatesc

the minimum was 0 and the average is 3. The worst case occues aththe traps are
occupied and the fluctuation can be up to 50mV (which can happe rate of 10%).

The PDF of shifts inVt does not follow a Normal distribution. The case where no
length and tox dependence are conside®dt = 20.4mV and opyt = 15.8mV; con-
stant length dependence hA¥t = 10.2mV and opy; = 9.2mV; linear length depen-
dence present&Vt = 10.2mV and opy; = 10.6mV; exponential length dependence has
AVt = 12.1mV and opyt = 12.9mV. Refer to da Silva (2011) for a detailed study on
distributions of particle retention time phenomena.

Notice that the case which considers no dependence on fhedsition is the worst
case scenario becaudgt; is always maximum and thefV't is dependent only on the
number of traps being occupied. The distribution in thisecasdiscrete and follows a
Binomial Distribution, which in this limit is a Poisson Digiution.

4.2 Negative Bias Temperature Instability

Bias Temperature Instability (BTI) is a physical phenomenelated to the genera-
tion and/or activation of states in the the interface betwakcon and silicon oxide, and
trapped charges in the oxide. The mechanism is accelergteghiperature and voltage
bias, regardless of current flow (GRASSER et al., 2009).

Because of BTl the electrical characteristics of the tistosishift over time. It causes
the absolute decrease of t@& currentlon and transconductaneg,, while causing the
increase of absolute values of tBd f currentlyss and threshold voltag€t. The effect
of increased/r is equivalent as applying a voltage offsetitg.

The most interesting characteristic of BTI is its dual-stagechanism: stress and
recovery, as represented in the scheme of figure 4.6. Thea&viunder stress when
voltageV gsis applied to the gate of the transistor over a period of timekitsVt increases
(degrades). However when the stress voltage is removecktheas goes to the recovery
phase: itd/t partially recovers to the level prior to stress.

In reality, a device is constantly switching between steesd recovery. Because BTI
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Figure 4.6: The two stages of NBTI: stress when device iseoiaand recovery. The
transistor does not fully recover.

exhibits this complex stress and recovery behavior durngadhic circuit operation, the
amount of degradation depends on the stress history ofdhsigtor. This history is rep-
resented within the concept of duty cycle, which is the reBbween the device operating
in stress and relaxation. Devices in arithmetic and memououits tend to present un-
balanced duty cycle, while devices on clock circuitry is aaraple of a duty cycle of
50%.

The BTI effect is observed in both NMOS and PMOS field effeahsistor devices,
and both are susceptible to Positive Bias Temperatureldiisga(PBTI) and Negative
Bias Temperature Instability (NBTI). Huard (2006) havedstd the impact of BTI in
four scenarios: 1) NMOSFET biased with Vg>0, 2) NMOSFET bdwith Vg < 0, 3)
PMOSFET biased with Vg > 0 and 4) PMOSFET biased with Vg < 0. Whek clearly
demonstrates that PMOSFETSs are more susceptible to BHtdkgs of positive or neg-
ative bias. The PMOSFET wittig < 0, or NBTI in P-type MOSFETS, is the case that
presents the largestt shift. This is unfortunate, since in digital circuits PMCESFs are
negatively biased. This is the reason why BTI is often reféto as NBTI and attributed
to causeV/t shifts in P-type MOS devices only.

Thus, from the circuit designer perspective, BTI causeddbe/ds curve of the tran-
sistor to systematically shift over time. As described iagter 2, these variations in the
I-V curve over time can be accurately modeled by a compacteinassuming/t as the
only parameter dynamically increasing over time. Theseatigions can result in speed
degradation of the logic cells over time.

In the last decade, accurately modeling NBTI has become arnsajpcern for in-
dustry. The systematic degradation of the transistor awee potentially means circuit
failures in the field that could not be detected by current testhodologies. There are
many theoretical and experimental analysis of NBTI in theetature, and until very re-
cently the most accepted theory was the reaction-diffubiBi’l model. These models
assume the generation of traps in the Si-SiO2 interface voieeis applied at the gate
and subsequent annealing of these traps when the stresmiasad. These reaction-
diffusion models have been successful and widely employeiddustry to predict safe
guard-bands given by the maximum voltage threshold detjad¢he transistor could
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Figure 4.7: Distribution of NBTMy shift (colors stand for 3 different levels of NBTI
stress) varies over approximately 100 mV in SRAM-sized p&EHlot is a courtesy of
Ben Kaczer, source (HUARD et al., 2008)).

present after a number of years. When this thesis projededtéack in 2008, our first
works on NBTI consisted of using a reaction-diffusion bagedulation to compute the
Vt degradation of the transistor, and then simulate the chp&NBTI on small circuits.
Thus, the reaction diffusion model is firstly discussed ictiom 4.2.1.

However, reaction-diffusion models have failed to agrethwkperimental measure-
ments. When the bias is removed from the device, there arstages of recovery: a fast
recovery component and a slow recovery component. Theiogadiffusion model can
only predict the slow recovery but cannot explain or modey ihrere is a fast recover,
which occurs right after the stress is removed. The fastw@gocomponent is very im-
portant because during normal circuit operation the tstosis often switching between
stress and recovery. Recent experimental data from IME@estighere might be a rela-
tionship between NBTI and RTS (KACZER et al., 2011). Follegva cooperation with
IMEC, our group at UFRGS has been making significant prograssodeling NBTI as
a trap-detrap phenomena, similarly to RTS. Section 4.228ents a recent study on the
component of NBTI caused by emission and capture of elestogriraps.

The figure 4.7, extracted from (HUARD et al., 2008), presémsresults of measure-
ments of nano-scale devices under different stress congditHUARD et al., 2008). This
plot shows sample distributions ¥ft shifts caused by NBTI as probit plots. The x-axis
represents the amount ¥t shift in V, while the y-axis is in probit scale and shows the
probability of that value within the sample, i.e. the averay the sample is the point
in the x-axis projecting to 50% in the y-axis. In a probit4ptoNormal distribution is a
straight line. For all the measured conditions (differanesses)Vr shift of the transis-
tor is not Normal .\t shift caused by NBTI varies from almost zero in some pFETs to
approximately 150 mV in other devices, depending on thesstcendition.
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Figure 4.8: The reaction-diffusion NBTI model proposestttaring stress holes are
trapped in the SiO2-Si interface due to the break of the hyelnesilicon bonds at the
interface.

4.2.1 Reaction-Diffusion Model

The reaction-diffusion NBTI model proposes that duringssrholes are trapped at the
SiO2-Siinterface due to the break of the bonds between lggirand silicon atoms at the
interface, as represented by figure 4.8 . When the stresmyeois removed from the gate,
the Hydrogen slowly returns to the Si-SiO2 interface byusifon, the bonds are restored
and the driving strength of the transistor is recovered (WHRSILVA; KACZER, 2011).
The electric field, temperature and concentration of haléaence the process.

Different devices degrade at different speeds. As a resattpnly the mean value
of the threshold voltage varies over time, but the standaxdation (variability) of\4
between devices also increases. Statistically, this teff@e be expressed in terms of an
average and standard deviation of threshold voltage depgrmoh time and duty cycle
(the stress/recovery ratio). The equation according teghetion-diffusion model for the
Vt degradation as a function of times given by Vattikonda (2006):

gx Nt
IJAVt(t) Cox (4.9)
whereCox = sox/tox is the oxide capacitancegy andtyx are the oxide permittivity and
thickness respectively. One of the most important pararsétedefine the fluctuation of
Vtdue to NBTI in the reaction-diffusion model is the numbémerface traps, defined as
Nit. The number of interface traps can be defined as a static nmodedlynamic model.
The static model is simpler and gives an upper bound for NBiid, can be computed as

NIT,static(t) = (K2 X t% + C2_1”)2n (4.10)

wheret is time in seconds, c is the initial number of interface trajpe constant is
the coefficient of diffusion, which is related to the fabtioa process and must be fitted
experimentally . According to Mahapatra (15-19 April 200iTthe diffusion species is
H, thenn ~ 0.16 However if the diffusion species 8, thenn ~ 0.25. Also,K is the
generation rate d;; and can be computed as:

Eox a
K ~ {/Cox(Vgs — Vin) x €50 x & & (4.11)
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whereCyy is the oxide capacitancE,ox= W is the electric field at the oxidé&,is the
Boltzmann constang, andE, can be obtained by fitting. According to Rakesh (2006),
Eo~ 1.9MV /cmandE; ~ 0.12eV. Thus, a simplified form oK is proposed by Rakesh (2006)
as:

1— _ Vos
a(Vgs—Vth)

wherea ~ 1.3 for a Q25um technology node. The static model is suitable for circuit
characterization because it does not consider the twosstateap generation: stress and
recovery. Thus, it gives an upper bound to the effect of NBddduse it does not fully
consider its dynamic mechanism. A more accurate model isrignt on the state ofs.
WhenVys =V DD the number of interface traps reduces in such a way that trémsistor
stays in that state for some time most of its current strengthbe recovered. A more
accurate formulation for the number of interface traps enthroposed by Rakesh (2006)
as:

K ~ (4.12)

K2(t —t0)Y/2+N&,+9; Vgs#MW; stress
NiT dynamidt) = \/ 'To (4.13)

(Niro—38)(1—/n"9); Vg~ recovery

wheren andd are constants of proportionality that must be obtained bynditexperi-
mental measurements. For a technology node with minimiatakdimention of 013um
Rakesh (2006) proposes= 0.35. This dynamic formulation is more accurate than the
static one, and shows better agreement with the experimestalts of Rakesh (2006).
However the static approach is simpler to implement and eambre valuable to many
simulation applications where the designer does not haeediiain control on the volt-
ages being applied, as for instance cell characterizakitumeover, the dynamic approach
IS more accurate than the static one only if the circuit isudated over a long period of
time.

Correct modeling of NBTI is very difficult mainly due to thecfethat both the theoret-
ical mechanism of generation and activation of traps andrimaeworks for measuring
NBTI are not a consensus in the scientific community. In the f@v years the cor-
rect modeling of NBTI must evolve to a consensus so that fescefo next technology
nodes can be modeled. Thus, the Vt fluctuation due to NBTI eanddeled as a random
variable to correct for modeling and measurements diso@ps, as well as capture the
statistical nature of the phenomena. Kang (2007) proposassume Vt shift as a random
Normal variable, where its variance as a function of the tinsagiven by:

q )ZZCIXToxXHA\/t(t) (4.14)

G\?tNBﬂ(t) = OﬁlT <® Eox ¥ AG

whereAg is the area of the device.

Then, the Vt of the transistor at a given time can be compuyedssuming Vt as a
random variable following a Normal distribution with meanen by expression 4.9 and
standard deviation given by equation 4.14, as in:

Vi(t) = Vig+N(UaveneTi(t), OavineTi(t)) (4.15)
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Figure 4.9: Measurements of a %090 nn? NMOS device from (KACZER et al., 2011).

Such simple compact model can then be employed for simgl#tmimpact of NBTI,
as well as of another source of variation, in digital cirsuiThe difference between this
variation and spatial sources is its dependence on time atyccgicle.

4.2.2 Charge Trapping Component of BTI

Recently Wirth (2011) presented a theoretical analysisnptd&arlo simulations and
experimental investigation of the charge trapping componéBTI. The model presents
a novel analytical model for both stress and recovery phafsB31. The new charge trap-
detrapping BTI model explains BTI as a series of emissioncapdures of electrons. The
theory does not make physical assumptions regarding thergggon of new traps, as done
by the reaction-diffusion model. There may or may not existexhanism of generation
of new traps in the interface or oxide. Still, one portion loé¢ traps contributing to BTI
are traps that could be as well described as contributing®, Rut the following aspects
should be regarded:

e the traps causing BTI show a difference of many orders of ntade with respect
to their probabilities of capture and emission;

e the traps contributing to RTS noise have probabilities qfteee and emission in
the same order of magnitude.

Interestingly, recent experimental works based on devieasurements suggest this
relationship between the fast recovery component of NB Bi'S (KACZER et al.,
2009, 2011). Fig. 4.9 illustrates the fast recovery of NBiféastress removal. During
NBTI stress, traps are occupied. After the removal of thesstrthe system relaxes to-
wards a steady-state RTS through a series of individualatisments. For this device,
four discrete displacements are clearly visible, meanmg fraps have been occupied
during stress.

Similarly to RTS, the total/t fluctuation of a transistor due to the combined effect of
all the traps at a time instanhts given by:

Nir
AVH(L) = %M +s(t)
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Figure 4.10: Scheme of the Markov Chain process of emissiaajture of traps in a
transistor

whereN;, is the number of traps given by a Poisson distribution witraema&y; as in
Ny, = PoissoriAntr). The mean of the Poissddngr) is a function of (1) the interface
technology, for instance transistors manufactured wigh+k materials have more traps
than those employin§iO;,, and (2) the gate area, since larger transistors have groper
ally more traps.

The figure 4.10 is a representation of the trap-detrap mestma(SILVA; LAMB,;
WIRTH, 2011). Each transistor contains a number of trapschvht a given instant of
time can be occupied or empty. Each trap is a stochastic gsameer time known as a
Markov Chain, where the probability of a state transitiogaserned by a given statistics.
Depending on its current state, each trap has a probabiligapturing or emitting a
electron peandpc). These probabilities are computed as (da Silva; Wirth (0201

pc=Pr(gi(t)=0—1) = g
pe=Pr(ci(t)=1—0) = ? (4.16)

whereAt is the time intervalre and1, are the average emission and capture times. As an
example, if a trap hag = Insand1; = 2ns, that trap will capture one electron every 2ns
and emit it in approximately 1ns on average. The averageseonignd capture timeg
andTt. are given by:

- Ef —E
Te=10"P'(1+exp :<T ')
b
- E—E
To = 10P (1 4+ expg ——") (4.17)
KpT

where for a given trap, Ky is Boltzmann constant, is the device temperature in Kelvin,
E¢ is the Fermi-level of the transistdg; is the energy level of the trapandp; is the time
constant of that trap. The traps have energy levels witherfarbidden band-gap and the
distribution of their energy follows an U-shape distrilauti\WIRTH et al., 2009; WIRTH;
SILVA; KACZER, 2011), as discussed in section 4.3.2. Thenktdevel depends on the
voltage at the transistor terminals and is accurately cdatpin our model as explained
in section 4.3.1.

4.3 Time-dependent trap-detrap simulation

In the time domain, capture and emission of charge carrigtsaps in the transistor
silicon oxide and in th&i— Si0, interface cause fluctuations of the current of the transisto
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Figure 4.11: Trap-detrap of charges at the Si-SiO2 interthe to RTS and NBTI. Traps
contributing to RTS show similar probabilities of capturedeemission, while traps con-
tributing to NBTI may have emission and capture times diffgiby many orders or mag-
nitude.

over time, even wheW gsandVdsare constant over time. The amplitudes of these
fluctuations are discrete: when trapaptures a charge carrier, the curréms$ decreases
by Alds. The state of all the many traps in the interface add up to oked turrent
fluctuation at a given instant of time.

This section explains the implementation, made possiblenbgifying the BSIM4
source code, and the results of the time-dependent trappdsimulation methodology
proposed by Wirth (2011). This new model unifies BTl and RTSiaslar sources oY/t
fluctuation varying over time. These fluctuations are funtiof the occupation level of
the interface states and oxide traps causing the phenomena.

The scheme of figure 4.11 represents the similarity andréiffee between RTS and
BTI in the model. Both RTS and BTI are caused by traps on trexfexte and dielectric
of the transistor. Traps contributing to RTS emit and captirarges at similar rates. On
average the trap is at an occupied state the same amountat igrat an empty state, and
this behavior impacts the standard deviatiovVofwhile the averag®t is constant over
time. The experimentally relevant average capture andsomgimes of traps causing
RTS is typically in the order of seconds to pico-seconds.

On the other hand, NBTI is caused by traps with very unbaldrserage time of
capture and emission. When the transistor is not biased\egeg phase), the capture
probability of the trap is very small, and thus it is at an eyrgtate. Theoretically, when
a bias voltage is applied (stress phase), the Fermi leveheftransistor changes and
the probability of the trap capturing a charge increasesnially when the transistor
is biased one charge is capturédn current decreases ant increases, as the typical
NBTI behavior in the stress phase. This highly unbalancetucae/emission rate impacts
the average value &ft over time.

4.3.1 Fermilevel approximation

As expressed by equation 4.17, the average times of emiasidmcapturee and 1¢
depend on the Fermi Level of the transistor. The Fermi levéhdirectly computed in-
side physics-based transistor models like BSIM. HoweveR#rmi-level is not available
at the netlist-level of the simulation. This implies thatetlist-level implementation of
a trap-detrap simulation cannot obtain the Fermi-leveheftransistor computed inside
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Figure 4.12: Fermi level as a function\éfysand forward body bias.

the transistor model. The implementation proposed in tlagkvgolves this issue by di-
rectly modifying the BSIM4 source code, which is openly &alslie and has extensive
documentation (HU, 2009).

The Fermi level is a function of the oxide voltay@x of the transistor. Vox then
depends oV gsandV bsof the transistor. According to the BSIM4 User Manual (HU,
2009), the oxide voltage Vox is written ¥®x= Voxacct Voxde pinywith:

Voxdepinv= K1x* \/®sgepinvtVastef f (4.18)

where, according to Hu (2009), the equation 4.18 is valid@minuous from depletion
to inversion modes, which take place when the voltage ataleig greater than the flat-

band voltage\{ gs>V fb). The equation 4.18 is implemented inside BSIM4 as the sourc
code:

Voxdepinv = pParam>BSIM4v5klox«(T1 — TO)

Therefore the Fermi level can be expressed as

Dsdepin= (T1— TO)Z (4.19)

which is an equation valid for depletion and inversion regi@f operation. In accu-
mulation, wherlV gs< V fb, this equation is not valid and can lead to wrong values if
extrapolation is used.

The figure 4.12 show®sgepinvas an approximation for the Fermi Level for gate volt-
age between 0V and 0.9V. The transistor dimensions are Lm4tmd W=50nm and the
technology model-card is the Predictive Technology Mo8dINl) 45nm (CAO; MCAN-
DREW, 2007). Forward body bias (FBB) consists of applyingpaifive bulk-to-source
voltage (Vbs) to the transistor. FBB is a techniqgue commamhployed in analog and
mixed-signal circuits in order to, among other effects,us®l the impact of 1/f noise.
Notice that the bulk-to-source voltage Vbs is inverselypgamional to the Fermi Level.
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4.3.2 U-shape distribution of energies of the traps

The traps that contribute to NBTI are discrete energy stiétasmay capture holes.
They can be interface states or oxide traps. The energyssiathese holes lie within the
forbidden band-gap of silicon, which is approximately BYASZE; NG, 2006).

Experimental works conclude that the probability of thethaving energy close to
the conduction and valence bands are higher than havingyeolese to the center of the
band-gap. In other words, the energies of the traps arellittd according to an U-shape
distribution over the forbidden band-gap.

In order to obtain the U-shape distribution for the simuas, we use a random gen-
erator for exponential distribution. The proposed U-slubgistribution based on an ex-
ponential distribution with ratd has density:

—AX ;
f(x):{Eg*)\e if 0<x<05 (4.20)

Eg+(1-Ae ) if 0.5<x<1

where Eg is the forbidden band-gap in eV (approximately @\lfdr silicon). The benefit
of the U-shape being expressed as exponential distritaii®othe possibility to use an
random number generator for exponential distribution.rSyenerator is readily available
in Computer Algebra Systems (CAS) and easy to implement.d¥ewnthis approximation
for generating an u-shape distribution can be used only Wwithl 5, otherwise it generates
values smaller than 0 and larger than Eg for large samples sizéigherA leads to less
points in the center of the distribution and more points andtiges. Figure 4.13 presents
the histogram of an U-shape distribution generated acegridi equation 4.20 and using
a random number generator for exponential distributionth w = 15 andEg= 1.12.

4.3.3 Implementation

The implementation is an attempt to model the trap-detrampmena causing RTS
and NBTI by modifying the BSIM4 source code (HU, 2009). We m#te modifications
into BSIM4 in such a way that it became a true statisticaldistor model, with/t varying
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over time as a function of occupation and release of charggldinterface and oxide
traps.

The traps are implemented as a new structure added to th&si@ndata structure
of BSIM. The electrical simulator calls an initializatioautine for each transistor. This
routine typically sets the transistor parameters accgrdiinits sizing and temperature.
The trap-detrap code related to the initialization of thedelavas added to this routine.
This procedure is described in listing 4.1. First, a Poissomber generator gives the
number of traps of the transistor. Then, each trap is aswsatwith its dvt, its time
constantp; and its energy in the band-g&p.

for each transistor of the circuit{
Ntr = Poisson Qntr)
for each trapi<Ntr{
ovti = randomly select from a list
pi = Uniform distribution
Ei = U-Shape distribution
}
}

Listing 4.1: Initialization of the transistors

The Markov Chain trap-detrap probabilistic mechanism deed by figure 4.11 is
implemented inside the evaluation routine of BSIM4. Thigthoe is executed at every
timestep of the transient analysis and computes, among qtlamtities, the source-to-
drain current. Listing 4.2 describes the procedure. Dejgnohn the trap status, its emis-
sion or capture probability is computed, based on its awerygission or capture time.
The random process consists of randomly deciding whetleetréip keeps or changes its
status in that timestep.

for each transistor {
FermiLevel = Compute based on numerical fitting ®fsgepiny
for each trapi{
r = uniform random (0,1)
if s(t—1)==0{ // empty trap
To = 10P (14 exp Sst)
Pr(s(t)=0—1) =%
s(t) =r>Pr(s(t)=0—1) 2 1 : 0O
}else{ // occupied trap
Te=10PI(1+exp ) |
Prsi(t)=1—0) =42 |
s(t) =r>Pr(s(t)=1—0) ? 0 : 1
}
if s(t)==1 { AVt(t) += ovt }

}

}

Listing 4.2: Time-dependent trap-detrap simulation
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Figure 4.14: Transient simulations of 7 transistors (chasitrarily from a sample of
100) showing the time evolution of the Threshold Voltage.

4.3.4 Simulation results

This section presents the results of the trap-detrap stibnlacheme. Computer sim-
ulations were run in order to compute the fluctuations of tlamgistorVt over time.
The methodology was implemented in the open-source atatsimulator NGSPICE.
NGSPICE is based on the open-source Spice3 from Berkeldyit mupports the latest
transistor model BSIM4 from Berkeley. The modifications &erostly punctual changes
on two source files: one related to the transistor initidlmaand another related to the
calculation of the transistor current. The trap-detrapudation corresponds to a transient
analysis of the circuit under test.

The dvt;, which is the Vt fluctuation due to one single trapped elettoe given
by 3D atomistic simulations described by Ashraf (2011) arain@rgo (2010). These
atomistic simulations data are only available for a traosiwith dimensiond. = 45nm
andW = 50nm Thus all the trap-detrap simulation results presented &g restricted to
this transistor sizing.

Another simulation parameter, the average number of iatertraps (th@yt, of the
Poisson distribution) can be obtained by device measuremeéable | from Wirth (2005)
presents the data from measurements of a 130nm technologyNMdOSFET. For small-
area transistors we linearly extrapolate the outcome cfegmeeasurements and usg, =
80,e0xL—, where W and L are the channel width and length of the tramsidthus, for
our device with dimensions 45< 50n, there are 80 traps on average. These traps have
their time constanpi uniformly distributed in the intervgl-5, —8]. Note that the number
of traps that effectively generate RTS is much smaller,esoray traps within a fevkBT
relative to the Fermi level, i.e. have similar emission aagtare times, change their
occupation state. These two parameters, the average nwhbgerface traps and the
time constant interval have not been properly calibratethis work. Thus the results
presented here are not appropriate for quantitative cerats about the impact of RTS
or NBTI on Vt. We present these simulation results with thy@amention of introducing
the capability of the tool we implemented. Due to the lackaditwation and thus the fact
that the data is only shown to illustrate the capability af gimulator, the plots employ
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arbitrary units (a.u.) for both time and Vt.

The procedure could correspond to the simulation of trapsiog both RTS and
NBTI, but in this experiment we intended to isolate the citwition of RTS solely. The
reason for considering RTS only is that these experimertsraended to analyze jitter
of oscillators. Because in a small simulation time windowcfs as simulation times in
the order of micro-seconds) RTS impacts the standard aegfatt while NBTI impacts
its average, we assume that RTS is the main cause of jittesrder to analyze the im-
pact of RTS only, we must detect and discard those traps thaibt contribute to this
effect. This is accomplished by two pre-characterizatitages prior to the start of the
trap-detrap simulation: stabilization phase for 1a.u. aaivity testing phase for 2a.u.
During these phases, which refer to the first 3a.u. of thestesmh simulation, only the
activity is monitored and/t is kept constant at nominal value.

The first phase, stabilization phase, corresponds to thelf&rsl. of the transient
simulation. During the trap initialization, it is randomassigned with an energy state
within the forbidden bandgap and with an initial state (eymmt occupied). However,
many traps evolve to a more stable state. For instance, atalpsv energy level (lower
than the Fermi level tend to be), quickly become occupie@patdently on the initial
state and very unlikely will emit a charge. These traps wisiglitch in the initial 1a.u.
and very likely will not present activity later are traps ¢daouting to NBTI. During the
initial 1a.u. there are more transitions then during thé oéthe simulation.

The second phase, activity test, lasts for the next 2a.uhignphase the activity of
each trap is monitored, but nét shift is computed yet. The traps presenting less than
two transitions during this 2a.u. are traps contributinl®rT |, and are not relevant to the
jitter of oscillators due to RTS. These traps without enoagtivity are then discarded.

The stable trap-detrap simulation runs for the next 2a.us iBithe actual trap-detrap
simulation we are interested, in which takes into accouiy tre traps contributing to
RTS. The total transient simulation time is 5a.u., but thet 8a.u. accounts for discarding
traps which are not related to RTS. Thus, the trap-detraplsition of RTS runs for 2a.u.

The procedure described by the algorithms 4.1 and 4.2 leadsstochastic process
evolving over time. This stochastic process is a Markov @hsince the next state of
the traps depends only on their current state. This procasesponds to the statistical
behavior of one transistor over time. Each transistor haandom number of traps, as
well as each trap has a randomly seleadeti and time constanpi.

Thus, one single run of the procedure is a representatidmedbéhavior of one single
device over time. In order to study the actual statisticgdact of RTS or NBTI on the
transistor, we must perform a Monte Carlo simulation of MariChains. Thus we run
a Monte Carlo simulation using an ensemble of 100 device$,examine each device
behavior over 2a.u.

Figure 4.14 presents thét of 7 of these devices (chosen arbitrarily) during the 2a.u.
simulation time. Each device presents a different behandrsome devices clearly have
lowerVt than others during most of the time. Some devices can show awiivity and
some traps cause higher fluctuation than others. For instaransistor T.1 ha¥th =
500a.u. and oy¢ = 33a.u. during the 2a.u. simulation, while transistor T.6 hath =
400a.u. andoy; = 10a.u..

Extending this concept of analyzing the moments of the tstmis, figure 4.15 reports
all the averages and the standard deviations of the 100 Moatl® simulations. The
averageVt of the 45nm by 50nm device can go from 405a.u. up to 673a.ule\ile
standard deviation is in the range of 9a.u. to 42a.u. Thesistor which presents a
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Figure 4.15: Cloud of averages and standard deviatestdbr the 100 Monte Carlo
simulations.

standard deviation of 42a.u. due to RTS causes more jittea ({ing oscillator) then the
one which presents standard deviation of 9a.u. The aveffate standard deviations is
23a.u.

The figure 4.16 summarizes the experiment of 100 device sitiomis during 2a.u.
for each run. It presents a Box and Whisker plot of all the $ations (CHAMBERS
etal., 1983; VENABLES; RIPLEY, 2002). Each column corrasg®to one Monte Carlo
run, from 1 to 100, while its projection on the y-axis repmsetheVt during the 2a.u.
simulation on that run. The Box-Whisker plot is the best wayisualize all the data of
the 100 simulations at once. The black line inside the baxeéates the median of the
distribution. The lower and upper corners of the box are trst &nd third quartiles of
the distribution. This plot emphasizes the difference leefmveach one of the 100 device
simulations performed for Monte Carlo.

4.4 Discussion

This chapter discusses Random Telegraph Signal and Biap€rFature Instabiltiy.
These phenomena affect transistors in a transitory masaéhat the device characteris-
tics vary over time. EDA tools are still lacking accurate afficient simulation method-
ologies to enable analysis of these phenomena at earlyrdstsiges.

This chapter highlights latest research in the field, initlgdecent studies for model-
ing RTS and BTI in the time domain. These methodologies tagproposing accurate
time-domain transient analysis. In this context we devetbipvo simulation methodolo-
gies: static and dynamic.

The static methodology is a pre-characterization step teubeprior to the electri-
cal simulation. This step computes deratwgfactors for each device. Then electrical
simulation is run considering the impact of noise. The dymamethodology is a set of
modifications in the BSIM4 transistor model. Thus varidpiis on-the-fly taken into ac-
count during simulation. The disadvantage of the dynampcagech is the computational
overhead: simulation time increases as a function of thebauraf traps. The dynamic



70

0.6 0.7
|
—r—
4
B el e s B
e e P
R —
et - - - - -+
T
[ — —
— —
T

Vt (a.u.)
::::::* T Yoo o
T 44;44‘}, 3 -

0.5
|
I e ma
F--- T3 ----
=
E S m—
' -

0.4

159 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98

Monte Carlo Simulation

Figure 4.16: Box and Whisker plots of the Monte Carlo simolatrepresentiny't dis-
tribution of an ensemble of 100 devices.
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methodology must be fine-tuned with technology data pray/twesilicon measurements.
Neither the static or the dynamic methods have been vatdaith silicon measurements.
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5 LINEAR SENSITIVITY ANALYSIS

This chapter describes a framework to compute circuit vagaand its sensitivity
to the electrical parameters. The methodology is based r@n propagation, which is
commonly employed in measurement engineering and institatien (PARRAT, 1961).
From Error Theory, basically error propagation expressegtror of an output variable as
the sum of the squares of the (known) error of the inputs tithesensitivity of the output
to that input. This approach is extended to compute the wegi@f a function which its
inputs are known to be random variables. Error propagagguires the sensitivities of
each variable with respect to the function being analyzéwbs€ derivatives are computed
numerically by electrical simulations.

Most EDA vendors have started to offer commercial tools fapsut statistical library
characterization, e.g., Cadence Encounter Library Chemaer, Magma Silicon Smatrt,
Synopsys NCX, Extreme DA GoldTime. These tools are basediogaf) sensitivity
analysis. Assuming that one paramedefts at a time while others are kept at nominal
value, the response of the circuit is obtained as a (lindaf) of the circuit's output
response around its nominal value as function of the amdup&ai@meter change. This
approach is based on the assumption that variations of tbeitcparameters propagate
linearly to circuit responses. Forinstance, consider@udirvith n transistors and F which
is a function of the/t of these n transistors. Assuming F as a linear function of ¥ans
that the following approximation is used:

n
F(Vti+AVY, ...Vt +AVY) = F(Viy, ..., Vi) + Zl [;TZAVG] (5.1)
1=
Figure 5.1 shows the linear sensitivity analysis flow as carag to a Monte Carlo
flow. The probability distribution of the random variablesish be characterized by mea-
surements performed by the process engineering team oattregp foundry. The random
variables are assumed to follow Normal distribution, thastevariable has a mean and
a standard deviation. One circuit response is computedac eun and these responses
are aggregated in order to compute the sensitivities fdn edxctrical parameter.
Linear sensitivity analysis is becoming the main approactpfopagating variability
from gate level to circuit level because it is a good compsmThetween simplicity and
accuracy.

5.1 Error propagation

Given the statistical nature of fabrication process, dewlaracteristics such a4,
W, L andAB/B of the transistors can be modeled as random variables. Ttgtanet-
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rics (the output of a simulation) such as performance ar r@sdom variables and can
be modeled using the classic propagation of uncertainpesoach from Error Theory
(PARRAT, 1961). In order to use that approach, two assumptioust hold:

1. the inputs follow a Normal distribution;

2. the propagation function can be approximated by a ling@actfon in the region of
interest.

Under these assumptions, the outpudf the simulation (for instance rise or fall de-
lay, transition time, dynamic or leakage power) can be axiprated as a Normal random
variable, and its moments can be computed analyticallyhdVit loss of generality, con-
sider two random variables in our compact variability modé&l and 3, and the number
of transistors in the circuit under testims The inputs of a tool performing sensitivity
analysis are the standard deviations of the inpaijg @ndop; of each transistal). These
data come from process technology characterization. Bmelard deviation of the circuit
response p can be approximated by:

n 1/ ap 2 /0dp dp dp
.Z <0Vugv“) (cwaﬁ') +ZZZ(0VWB )
ap ap

+ zizlz (avn thlp\/t.Vt,) le (gg gg Pg, ,3,) (5.2)

wheredyi andag are the standard deviations of voltage threshold and cuvesration

of transiston, respectively,(y‘i/'ﬂI and 3 dp are the sensitivities of Vt anfl w.r.t parameter
p, and finallypxy are the correlatlon coefficients between random variablasdy. In
absence of correlation between the random variables, propagation simplifies to:

TN
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Nzi (dvn )2+<3§%)1 (5.3)

The reader should notice that formulations 5.2 and 5.3 reghie same number of
electrical simulations, because both require the comjoutaif exactly the same amount
of partial derivatives. This means that correlations betwelectrical parameters can be
taken into account without overhead in the number of sinrtat

Considering that the response is approximately linear éoittiputs in the region of
interest and that there is no correlation between the inpodom variables, the circuit
responseg can be assumed to follow a Normal distribution with mean aaribwice given
by (BRUSAMARELLO, 2006; BRUSAMARELLO et al., 2008):

Hp~P , ,
- 9 9 (5.4)
~ Yt {(avﬂ; UVH) + (TEU&) }
The non biased sampling estimator to standard deviatiorpoted from a sample

of Nsample €xperimental measures & denoted as5;, S, ..., Sisample Calculated by
expression

1 Nsample

o=\ ———= % (S—(s)) 2

(Nsample— 1) £

must be numerically equal tas for ansampie sufficiently large, i.e.,
0s~ Os

Monte Carlo simulation (AMAR, 2006) is often employed in erdo obtain the prob-
ability density function (PDF) of some circuit output (dglpower consumption, leakage
current, ...). Usually, a sample singsmple is generated, aiming the convergence of the
standard deviation. However, the error in a Monte Carlo &tion is hardly reduced,
once it isO(1/,/Msampid. Figure 5.2 presents the convergencecobs a function of
the number of Monte Carlo simulations compared to the stahdeviate computed an-
alytically using error propagation (using 1st order and 2nder approximation for the
sensitivity, which will be discussed in the next section).

So, partial derivatives of the circuit response for the @ndparameters, standard
deviation of random parameters and correlation betweedomnparameters are inputs
for the error propagation formula. Standard deviations eordelation coefficients of the
input random variables are technology dependent and canxtbeceed. According to
what will be shown in section 5.2, d&5(ky,...,kn) is an arbitrary function that can be
computed by electrical simulation, the numerical estimé#be derivative§(;—F_ can also be
computed by electrical simulation. From these derivatities variability of the output
can be computed.

5.2 Numerical estimate of sensitivities

Numerical approximations of sensitivities are applied rdey to present a generic
methodology independent of circuit topology. First ordedaecond order linear ap-
proximations, using respectively 1 and 2 points around tirainal values, are exploited
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Figure 5.2: Convergence of as a function of the number of Monte Carlo simulations.

aiming to obtain sensitivity of circuit response for theighies of interest. The differ-
ence between these formulas is the accuracy in the numestalates and the number of
electric simulations: higher order approximations regumrore simulations and are more
accurate.

Problem Formulation: Consider a general function of n variables=ff (x1,X2,...,Xn),
such that numerical values for the variables afexxi, . . ., X, = X5. By error propagation
we haveo? = (9 /0x1)3, _x, 0% + ...+ (0 /0xn); _x O% . Find numerical approximation
fordf/ox (i=1,...,n).

5.2.1 1st Order Approximation

Expanding the n-dimensional Taylor series of order 2 ardbeghointf (xz,...,X;,...
yields:

of(xz,...,%,..
0%

%) +0(A?)
(5.5)

Numerical value forf (x4, ...,%n) is given by electrical simulator. Thus, one can cal-
culate the sensitivity of point(Xg, ..., X +4,...,%X), rewriting 5.5 forA < 1 as follows

of . (X X+ %) - (XX Xn)
a—xi(xl,...,x.,...,xn)_ A

Thus, to compute the sensitivities of a parametef the circuit w.r.t. the variables
Vt and; of the circuit three simulations are required: the nomimaldation f and the
two simulations computing drifting one of the variables at a time. Figure 5.3 illustsat

+O(b) (5.6)
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Figure 5.3: Numerical 1st order linear approximation ofsawity.

the linear approximation as opposed to the response fun@swell as the approximated
sensitivity. The sensitivities are computed as:

Q o f(\/—tl?a tI+AVt7 Vi, b1, 7Bn)_f

vy AVt

ap f(ViL,....Vtn,Br,. .., B+DB,...,Bn) — T

- _ 5.7
95 e &0

where f (V1y,..., Vi, B1, ..., By) corresponds to a circuit response and can be computed
by simulation (such as rise and fall delays, transition sppower, hold and setup times,
etc ). The response is a function of the variation¥ trand 3 of the n transistors. The
simulationf corresponds to the nominal circuit response. The functfghdy, ...,V +
AVt,... Vi, Br,...,Bn) andf (Viy,...,.Vin, B, ..., Bi+AB, ..., Bn) correspond to two elec-
trical simulations, where respectivel; and; drift by a givenA.

Complexity for 1st order approximation: For this case it is required 2 electrical
simulations to compute each partial derivative, one is ireguto computef (X, .., X +
A, ..., X;) and another run foff (xg,..,%,...X;). But, asf(Xg,..,X,...Xy) is constant for
all partial derivatives, it can be computed only once. Thumnputation of all partial
derivatives using first order approximation requires 1 runs.

5.2.2 2nd Order Approximation

In order to obtain a more precise approximation, algebraaipulations over Taylor
expansion results in a formula with accura@y\?). Consider for now a Taylor expansion
about pointf (Xz,...,. X — A, ..., X,) as follows:

of(xg,....%,.... %,

LX)+ ( 1, 3 Xis ,Xn)
O

of(Xg,....%,....%n)
0%

(% —A—X) +0(8?)

= f(Xq,....%,....%) — O +0(A?) (5.8)

Then, using results 5.5 and 5.8, a better approximatioﬁdr(x_l, sy Xy, Xn) €an
be computed according to:
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J ., _ o (X X +A, %) — (X, AL Xy
— (XL, %, ... %) = (X1 ' n) — 104, % n)+O(A2)

0%
(5.9)

Complexity for 2nd order approximation: this formulation requires two electrical
simulations for each variable of interest: one run foxz, ..., X +A,...,X;) and another
oneforf(Xy,..., X —A,...,X;). Thus, to calculate partial derivatives to all the variables,
2nd order approximation requires 2uns. As one nominal simulation is required for the
approximation of the meann2-1 runs are required.

5.2.3 Complexity discussion

In order to apply error propagation technique to the analgévariability in integrated
circuits, means to compute the partial derivatives of theuti — the sensitivity of the
circuit response w.r.t the random variables are needed. fdimeula using two points
around the mean gives a more accurate error order, at thefcasincrease in the running
time.

The number of electrical simulations is a function of theragpmation formula, num-
ber of transistors and number of random variables. fdransistors and electrical
parameters considered as random variables, the numberiabhes in the function is
m=nx j. Thus, Bt order approximation formula requir@s+ 1 simulations, while &d
order approximations requirev?+ 1 runs.

The main goal is to accomplish variability simulation of shedectrical blocks such
as static and dynamic logic gates and memories. These kindaifits often present
small number of transistors, and often only a few number etteical parameters are
assumed to present variations due to process variabilitys;lthe numerical estimates of
derivatives can avoid thousand of simulations in compartsdraditional Monte Carlo —
widely employed in electrical simulation tools —, for whiatreasonable number of runs
must be performed to obtain a suitable estimate of variamtiee measures of interest.
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6 RESPONSE SURFACE METHODOLOGY'!

The CPU time expensive Monte Carlo method can be employethé&characteri-
zation of standard cell libraries (AMAR, 2006). Such apmfoallows variability-aware
analysis to be implemented with minor changes on top of iegjstharacterization tools
but requires a large number of ruhNs Indeed, thousands of simulations are needed for
accurately capturing the tails of the distribution of théeaefed metrics, typically at a
3o distance from the average value. The uncertainty of an asinin Monte Carlo is
~ 1/+/N: in order to obtain a result 2x more accurate, the numbemoéikitions have to
be increased by a factor of 4.

To achieve near MC accuracy with a speedup improvement arsrof magnitude,
this chapter presents the use of Response Surface Metlgydoloonjunction with a new
Design of Experiments (Brussel DOE) which performs thetala of design points and
guarantees true statistical relevance of these pointsctimbined with a model selection
algorithm capable of building the most suitable non-linegression model to represent
the circuit response.

This chapter presents a novel time-efficient and accuratehbibity aware standard
cell characterization approach. The approach is accutause of twofold: (1) the
use of a new DoE capable of capturing the true statisticairaaif the underlying pro-
cess parameters and (2) the use of a model selection algocéipable of building the
most suitable non-linear regression model to represertitbeit responses. On the other
hand, the approach is time-efficient because the numbeeofriglal simulations is re-
duced by several orders of magnitude comparing to convealtidC and the simulation
effort linear with the number of devices of the gate. Finéitlg DoE and model selection
algorithm described in this manuscript are generic enowghet added on top of con-
ventional Non-Linear Delay and Power Model (CROIX; WONG9I9as well as recent
cell models described by Synopsys (TRIHY, 2008) and IntdEfNEZES; KASHYAP;
AMIN, 2008).

Section 6.1 summarizes the existing state-of-the-art.ti@e®.2 presents the de-
scribed statistical RSM flow and how it compares to the trad#l statistical cell char-
acterization flow. Section 6.3 explains the details of thas8el design, a novel DoE
approach for selecting few points that represent the azigisndom MC points. Section
6.4 presents the automatic model selection flow.

1This chapter describes an invention that has been filed estpatthe European Union and in the United
States of America: (MIRANDA; ROUSSEL; BRUSAMARELLO, 201@nd (MIRANDA; ROUSSEL,;
BRUSAMARELLO, 2011).
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6.1 Background

6.1.1 Design of Experiments

Accurate gate level modeling for delay and power responsmason has become
a major challenge for nano-metric technologies (KELLERMAARIAT, 2008). The
use of RSM techniques in VLSI design for standard cell charaation is not new and
its use was originally proposed in the late 19880's (ALVAR&ZI., 1988; HOCEVAR,;
COX; YANG, 1988). Recently, the use of these technique®daisterest again as an ef-
fective technique to cope with the explosion on the requiretess corners to capture the
combined impact of local and global process variations égate response. Basu (2007)
proposes an analytical function for gate delay is descntagidh is built using RSM after
transforming the correlated components of the output nespanto uncorrelated ones.
More recently, Kim (2007) proposes a fast methodology basesknsitivity analysis for
characterizing transistor level circuit descriptions theen also proposed. In the con-
text of interconnect modeling, the use of RSM techniquesrbperted good speedup
and accuracy when accounting for the impact of processti@mgin interconnect tim-
ing (WANG; GHANTA; VRUDHULA, 2004). In the context of mixedignal design
Mcconaghy (2009) has proposed a regression model for qwakiation of the impact
of circuit parameter changes in the desired circuit respdns providing only relative
accuracy to guide the optimizer, hence not guaranteeingjatesaccuracy.

Maricau (2010) improves on the earlier work using a regassnodel aiming esti-
mating absolute accuracy. Li (2009) employs Least Angler&egon (LAR) substituting
Least Squares (LS) with model selection. While that workppses a method for very
high dimensionality (thousands of variables), we proposese a compact model to re-
duce the dimensionality by orders of magnitude. Also, byngsh+ 1 Brussel Design
points we guarantee a non-linear model with cross-termsiwisi better than the random
selection of points used for both LAR and LS in that paper.

Many of these works suggest the use of conventional DoE mdstlike Central-
Composite-Design, full factorial and/or Box-Behenkenige§MYERS; MONTGOMERY,
2002), which do not consider the statistical nature of tleeess variations parameters for
their design point selection criteria and yet require mamyersimulations than the Brus-
sel Design.

6.1.2 Deterministic Propagation Function

Propagation functions of standard cells have a sparseneftoefficients (LI, 2009)
because usually only few parameters affect the output resppd.e. Vt of the PMOS
transistor barely affects fall delay of an inverter. Alghms for automatic model selec-
tion have been studied by the statistical community in otddmd correct propagation
function describing such propagation functions with maasiables but very sparse ma-
trix (AKAIKE, 1973). Regression output like residuals (swinsquares), t-statistics?,
F-statistic represent the goodness of fit and can be usedv® a@rsearch for the best
model describing the underlying function (VENABLES; RIPY,E2002). Using these
criteria tend to produce over-fitted models without phyksstgpport, thus Akaike (1973;
1974) and Schwarz (1978) proposed model selection algositlriven by Akaike Infor-
mation Criteria (AIC) and Bayesian Information Criterial(B. Both are based on the
model Likelihood, but with an penalization term which is adtion of the number of co-
efficients of the model. This penalization prevents ovebditause models with smaller
number of coefficients have priority over large number offtioents.
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The regression models used in previous model selectionitiges for VLSI design
are usually based on previous knowledge about the funceomgbmodeled such as as-
suming a template knowledge of the target function (foranste assuming the response
to follow a particular polynomial) (ALVAREZ et al., 1988; HCEVAR; COX; YANG,
1988; BASU; VEMURI, 2007; KIM; JONES; HOROWITZ, 2007; MARKU; GIELEN,
2010). The recent work of Li (2009) presents the most adwénuethod, based on LAR,
but even that method cannot handle non-linearity withoastically increasing the sam-
ple size. This is not required by our method as our approatiased on a generic and
efficient algorithm for model selection.

6.1.3 Advantages

A standard cell library that captures statistical inforiroatabout the gates, i.e. proba-
bility distributions, is at the core of Statistical Statieiing Analysis (SSTA), from block-
based SSTA (VISWESWARIAH et al., 2004; HELOUE; ONAISSI; Nv\J2008) to non-
parametric MC-based approaches(IMAI et al., 2008). Thosumate and time-efficient
modeling of delay and power of transistor level circuit dggeons of nano-metric tech-
nologies has become a major challenge (KELLER; TAM; KARI&DP8). As compared
to previous works, the proposed novel approach differéggian the following aspects:

e Variability Aware : Unlike conventional DoE approaches (e.g., full factodat
sign) the Brussel DoE selects only design points that atesstally relevant [NO-
TAR explicar melhor, exemplo] to the parameter domain diation .

e It considersinput Correlations: The Brussel DoE properly captures the existing
correlation between input parameters, hence being abl&gose cross-term de-
pendencies between the input process parameter domairugna gate response.

e The best propagation function is found-the-fly : the polynomial for fitting the
circuit response is selected on-the-fly and is not limited fare-defined template
function. The propagation function can have linear, quécieand cross-terms.

e The approach works undéfon-Normality assumption, e.g. not limited to as-
sumptions of any nature (e.g., Gaussian) underlying thesstal distribution of
the process parameters.

6.2 High-level description of the flow

Figure 6.1.a shows the traditional cell characterizatiowfbased on Monte Carlo
simulations at electric level. The accuracy of the estimgatdtained using this flow is
limited by the number of electrical simulatiods The alternative flow we propose is
presented in figure 6.1.b. The Brussel design of experinisnised as a pre-processing
step to determine a small setN§c artificially generated points that represent the original
sample ofNgge randomAVt andAB. The tremendous speedup of the flow relies on the
fact thatNgoe < N, so the number of electrical simulations is much smallerteAthe
Ngoe Selected electrical simulations, a model selection allyorisearches for an optimal
non-linear regression model relating inputs to outputkarpresenting the outcome of
electrical simulations.

After this, a large sample of MC experiments can be run qyicking the surrogate
model instead of spice, because computing each instandeatgression function is
very fast.
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Brussel Design:
Select Ndoe artificial points
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Electrical simulation
h(vtl,bl,...vtn,bn)

\ 4

Distribution TRUE
dVt/dBeta
of transistors
FALS
Build RSM Fit:

Find optimal function f(vt1,b1,...,xvtn,bn) which
approximates hspice output h(vtl,bl,...,vtn,bn)

i++
i++

Approximation function:
f(vtl,bl,...vtn,bn)

Electrical simulation
h(vtl, b1, ..., vtn, bn)

\ 4

Distribution

dvt/dBeta _ TRUE _ TRUE
of transistors i<N? i<N?
FALSE FALSE
Compute statistical information Compute statistical information
Fit Probability Density Function Fit Probability Density Function
() (b)

Figure 6.1: (a) Traditional Monte Carlo flow for cell charagzation and (b) proposed
flow based on DoE and RSM.

6.3 Design of Experiments: Brussel Design

The first step in order to achieve a good response surfacetditpsrform Design of
Experiments (MYERS; MONTGOMERY, 2002). The goal of thisg&as to findNgee
points which are representative for the n-dimensional irgpace of random variables.
At this stage there is no previous knowledge regarding tlopggation function to be
modeled. The points need to be selected in such a way thattivey as much as possible
the domain of the output distribution.

Problem definition: Let a Monte Carlo ensemblé” of sizeN of the n-dimensional
function be given by

M {{th,ﬁl, . ,th,Bn}]_, e {th,Bl, . ,th,Bn}N}.

Find an alternative ensemhi€ of sizeNdoegiven by

rB — {{Vt]_?BL e 7th,Bn}1, ey {Vt].?BL cee 7th,Bn}Ndoe}

which covers the same sub-domain as the original sample.
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The DoE proposed in this work, the Brussel Design, is a Dokrtiegie which exploits
the existing knowledge about the statistical input vagathbmain to be sampled. This
DoE allows fitting a linear response surface as well as highger approximations (¥
and 39 order) and offers a proper balance between accuracy and vapiable validity
range. Philippe Roussel, from Reliability Group at IMECoposed the Brussel DOE
presented in this section.

To select appropriate points according to the Brussel detsigre are two steps: 1)
build an n-dimensional Probability Density Function (PD&presenting the multivariate
statistic and 2) proper selection oin2 1 DoE points based on the cloud spread. These
steps are detailed respectively in subsections 6.3.0.5.an1.

6.3.0.1 Weighted Multicomponent Multivariate Normal P[2presentation

This section describes a generic formulation for descgltrobability Density Func-
tions (PDF): the Weighted Multicomponent Multivariate N@l. It approximates multi-
dimensional input statistical domains and can reliablydt@many shape of PDF, such as
Normal, Bimodal, Exponential and so on. It consists of divipthe dataset into clusters,
fitting a multivariate Normal distribution to each separeligster and finally aggregating
(and weighting) the Normal distributions. However, thedeashould notice that this
methodology is exceptionally needed in practice, i.e. wihendistribution deviates sig-
nificantly from normality. As the input variability datat and 3 ) shown in this paper
follow normality, they are modelled using a single compdnanltivariate normal PDF.
In this case assume the number of cluskess1.

The first step to build the multinormal n-dimensional PDFagartition the dataset
into k cluster components. Clustering algorithms separatéNtieéeements of the dataset
into k groups, so that the elements of each cluster are similardi ether according to
a robust distance criterion. The most common clusteringréalgns can be divided into
(GAN; MA; WU, 2007):

¢ hierarchical clustering: agglomerative (bottom-up) aiisize (top-down) cluster-
ing methods;

e center-based clustering: k-means algorithm;
e search-based clustering: clustering using genetic dlgos and tabu search;
e model-based clustering: EM algorithm;

e fuzzy clustering: fuzzy k-means.

These and more clustering algorithms are described inldgtaban (2007). Some
algorithms, as for instance k-means, require the user toifypde number of clusters.
In our experience is usually in the range.13. The clustering algorithm also depends
on the distance metric, as for instance Euclidean distaviaehattan distance or Maha-
lanobis distance. However when dimensions mix differeitstnis important to consider
a normalized distance. Our patrtitioning is based upon afteet rescaled Euclidean dis-
tance criterion, which is a robust version of a Mahalanostatice and guarantees good
partitioning in cases where dimensions have differentsuniflethods for automatically
deciding the number of clusters and distance metrics fateling have been much dis-
cussed in the Literature, and Gan (2007) presents a detifiedssion on these topics.
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Once the dataset has been divided into optimal clusters, lavariate Normal dis-
tribution is fitted to each cluster componefMt;, B1,...}i. The PDF of a multivariate
Normal distribution for a single component clusies described as:

. e 3(t—p).§ . (t—p)
I<7HI7S)— (27_[)%\/@

wheret is the multivariate stochastigj is the vector of central value of the variables and
S is the covariance matrix between the variables given by:

(6.1)

012 01202102 *+* P1n010n
P120102 (o) <=+ P2n020n
S= . 2 . (6.2)
PInO10n Pan020n -+  OF

herep, is the correlation between variableandm. Then the multiple PDF’s are accu-
mulated into a proportional sum weighted by cluster compbsize:

Siawfi (6 6, S)
f(f) =
0 SE W

where[i; and§ arefi andSof the variables of the cluster componént; is its size. Each
data cluster generates a different covariance m&trix

(6.3)

6.3.1 Selection of DoE points

Each covariance matri® given by eq. (6.2), is decomposed using the diagonal matrix
of o values for each variable:

S=o0-p-o,with (6.4)
o1 O --- 0
0 oy - 0

o= L , (6.5)
0 o ... On

where o is extracted as the square root of the matrix diagonal, soghaecomes the
corresponding correlation matrix:

1 pi2 - P
pr 1 - pon

p= : . : (6.6)
Pn1 P2 -+ 1
In effect, this standardizes the variables into unit freeson
e 3o ()
(2m)2./[S

Next, a principal value decomposition of the correlatiortnmas performed:

f (€7, = (6.7)

p=R"-E-R (6.8)
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Figure 6.2: Upper-right diagonal: pairwise 2-D distrilmrts and histograms &ft andf3
of an inverter. Brussel DoE points are the large squaresydial: histograms o't and
B. Lower diagonal: correlation coefficients.

whereR is the rotation matrix ané is the diagonal matrix of Eigenvalues as in:

0 ... 0
2 IR (6.9)

and the vector of eigenvalues is given &y- [e;, e, ...,enn. Thus, by substituting eq.
(6.8) in eq. (6.4) the covariance mat®of each cluster component can be decomposed
as:

S=0-R"-E-R-0 (6.10)

This decomposition describes a rotation of the variablesam equivalent set oin-
dependenStudentized variables:

—

=l

R.

N

= (6.11)

il

In the PDF contour plot, the orientation of the rotated séadized axis system corre-
sponds with the principal axes of the ellipsoid contourshef inultivariate PDF descrip-

tion.
. g stoth
f (t,ﬁ,S) = (6.12)

" (2m?/Ello]
where /1S = o|y/TET = M), 0, /MTT_1€.
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In a uni-variate context, the-d limits of a standard Normal distribution encompass
99.73% of the total Cumulative Density Function(CDF). Atession of this conceptis to
find the contour of the underlying PDF encompassing a givecgogage, as for instance
99.73% or higher as specified by the designer, of the total. JBE x2 distribution with
v degrees of freedom gives the distribution of sums of squafresvalues sampled from
a normal distribution, so its CDF can be used to find the totabability covered by a
hyper-sphere with a given radius. Thus, the ellipsoid desag the contour encompassing
a specified percentage of the total distribution is definetldgk-transforming the hyper-
sphere with the radius defined by the inverse CDF ofxthdistribution:

ax’ = \/Zfr‘l (g,o, pa) (6.13)

where fr is the Regularized Gamma Distributiopg = fézxz(t, v)dt with v =1 (one
dimension) andl refers to how many from the center the designer wants to be confident
on the outcome, i.el - g. If | = 3 thenpo ~ 0.9973. Therefore, in terms of total PDF
content, this value is the generalization of tleelBnits in the uni-variate case.

Next, the corresponding ellipsoid contour in the rotatechpeeter space is defined by

6: [O]n
Ellipsoid{ r= qx?(q,n)ve (6.14)
D= R

which represents a-dimensional ellipsoid centered at the origin with semisavadii
ax?(q,n)v/8 aligned with the directiolR, whereqgx?(q,n) is a the Quantile Chi-Square
function for a distance from the center of the distribution amdegrees of freedom.

The Brussel DOE points are then positioned at the intereéc¢tee ellipsoid principal
axes and that PDF contour plus an extra point at the compaoeatgr. A response surface
can be fitted to those points. This approach offers a proplanba between sufficient
accuracy and validity over the input variable range requfoe MC sampling, while still
requiring a limited amount of terms in the generic propagatunction to be fitted. Figure
6.2 presents the position of the Brussel Design of Experisw@ethodology for selecting
the relevant DOE points according to the statistical inmitan inverter. In this case,
the dataset was approximated using a single-componenivaridte Normal distribution
because the sources of variation do not deviate from Notynali

6.4 Fitting the Response Surface

The goal of the previous section was to select an ensembidok points to run
electrical simulations on. Using those runs, we computepgmagpriate regression model
to relate the statistical inputs to the simulated circusipp@nses: delay, power, transition
times, etc.

Problem definition LetY; = H(I'B), for 1 < i < Ndoebe the set of circuit responses
corresponding to thdoeBrussel Design points. Find the optimal regression modsi su
as

F(X1,...,Xp) ® H(X1,...,Xp)

wherep = 2n so thatx; = Vty, X2 = B1,...,Xp—1 = Vitn, Xp = Bn, and the function F is a
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nonlinear function such as

F(X1,...,Xp) = QuaXe + 012X + ... + 0156 + ...+ ApoXb
1.1 1.1 1.1 1,1
+Zl121X1X2 + 51131X1X3 + Zl1 p1X1Xp ot Zp1 p—1, XpXp-1
+{123%1X%0X3 + . .. + {pp—1p—2XpXp—1Xp—2 (6.15)

wherez is the polynomial degree of the approximation functiof, is the coefficient
multiplying variablexij, and Zijk| is the coefficient multiplying the interactioxﬂ X xL
These coefficients are determined by a fitting procedure aadteast Squares Fit.

Both thetrue function H and the best approximation function F are unknowhe
approximation function F will be later employed poedict the outputs for all MC com-
binations ofVt's and’s. For this purpose, using the full form of equation (6.15)aa
approximation function would lead to poor fitting and preitins. In cell characterization
problems, the vector of coefficients of equation 6.15 is \&pgrse, which means that few
parameters are relevant to the fit.

This section presents an algorithm for searching the splgoessible approximations
and, without manual intervention or any previous knowled@yeut the circuit response
(delay, power, etc) , provide the best possible non-lineaction to approximate that
response. The algorithm is divided into the following steps

1. Initial Fit: fit a full linear model to the data;
2. Variable Screening: remove negligible terms;
3. Model Improvement: interactively add non-linear terms and cross-terms.

The next sections are devoted to going into the details cietlséeps.

6.4.1 Assessing Model Quality

The model selection algorithm is driven by the optimizatudra metric representing
the model quality. The residuals (sum of squares), t-siatis-statistic and Likelihood
of the regression can be used, however these metrics tendygest a better model is
achieved as the number of parameters increase, what iesréias risk of over-fit. To
overcome this issue, Schwarz (1978) proposed the Bayasiamiation Criterion (BIC).
BIC uses the model Likelihood but adds a penalty factor tomemsate for the number of
coefficients as in:

BIC = l0g(Ngoe)k — 2IN(L(0)) (6.16)

wherek is the number of unknowng,(0) is the Maximum Likelihood of the model
6 andNgee is the number of simulations. The Maximum Likelihood Estiioa (MLE)
method, implemented in most computer algebra systems,eaarbputed as presented in
Venables (2002). Thus, by adding a penalty to the numberefficents, BIC prioritizes
a model with the minimum number of variables so that the Egjom is meaningful,
reducing the risk of over-fitting.

6.4.2 Initial Fit

The first step to search for the best surrogate model is todistimplest regression
model, which is a linear function with all the terms and nossrderms, as in:

Hi = oy, Xy, + 0o, X, + ... + Op Xp, + & (6.17)
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whereH; is the output of thét", 1 < i < Nyee, Spice run which has the vectoof inputs.
The LS method aims at minimizing the sum of errors giveryb{i°ee?.

6.4.3 Variable screening

Not every variable has an influence on the circuit responseinstance, the rise delay
of an inverter is weakly related ¥t and fluctuations of the NMOS transistor, and thus
excluding those terms from the approximation function &etada better regression model.
Models without physical support should be avoided, and thegpropose a method to
remove unimportant variables.

The variable screening step is very important for the naedr model selection algo-
rithm. Non-relevant variables of the model must be removefdie non-linearities and
cross-terms are inserted into the model mainly becausergssdof fit need minimum
degrees of freedom in order to be relevant. Degrees of freadalefined as:

df = Ndoe— Ncoeff— 1

whereNgeet £ IS the number of coefficients of the regression. This meaaisttie number
of coefficients of the regression model must be smaller thamumber of simulations.
We estimate that the maximum number of coefficients allowedhfe regression must be
around 05 x Nggeand 06 x Nyoe

The variable screening is accomplished by detecting anadverg linear terms that
have negligible contribution to the circuit response. Tisérg of algorithm 1 presents
the procedure to remove negligible linear terms. The metlogists of iteratively check-
ing the model BIC supposing one variable is removed, and tberove the variable for
which removal leads to the best BIC. This iteration is perfed until the model cannot
be improved by removing a variable.

Algorithm 1 Variable screening
repeat
for all variablesx; of function f do
fo < remove termx; of function f
if BIC(fo) <BIC(f) then
storef, in list L sorted byBIC( fy)
end if
end for
f « pick model from list L with lowest BIC
until model does not improve

After executing this procedure, we obtain a linear modehwvaetter BIC than the
full linear model. This reduced model F is at the same tims @snplex and a better
approximation for H, and thus more suitable for prediction.

6.4.4 Model Improvement

A first order representation of the circuit response is ndfigant for predicting the
circuit characteristics with accuracy. Delay, transittone and power of a standard cell
have non-linearities and cross-term.

Algorithm 2 lists the procedure for finding the best non-inenodel for the circuit re-
sponse. It takes as inputs the electrical simulations amdeitiuced linear model. At each
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step, three operations are tried: (1) insert a z-order tdimedr,quadratic, cubic,.Z"),
(2) insert cross-term between two existing terms and (3)orgman existing term. In our
experiencez < 4 gives good results. For each operation, the resulting imsdored in
a list ranked by the model BIC. At each step, the operationl¢aals to the best local BIC
is chosen.

As mentioned earlier, the regression model must be the aglsias possible and
contain the minimum number of coefficients. Thus, the atharimust check the number
of coefficients of the model, and stop adding variables whemumber of coefficients is
around 06 x Ngoe Thus the iterative process stops both when no operatiais ksemodel
improvement or when the number of coefficients gets to theimiamx threshold.

Algorithm 2 Model improvement

repeat
for all variablesx; of function f do
for k=1..z do

fadd < add termxt
storefaqq in list L sorted byBIC( faqq)
end for
fremoves— remove termx;
store fremovein list L sorted byBIC( fremove
for all variablesx; of function f do
feross-term < add termx; x X;
store feross-term iN list L sorted byBIC( feross-term)
end for
end for
if best BIC stored in L< BIC(f) then
f « pick model from list L with lowest BIC
Neoef f < number of coefficients of
end if
until model does not improve ORcpef > 0.6Ngoe

Such a greedy algorithm is feasible for a search of a modél avitery small number
of variables, but it is the simplest possible optimizatigp@ach and can be improved
further. The bottleneck is that for each iteration, one negression model must be fitted
to the data and the BIC must be calculated. Being N the numbear@bles, this al-
gorithm requiresD(N?) iterations when allowing quadratic order terms and cressis,
impplying O(N?) runs of the Least Squares algorithm.

Figure 6.3 presents the comparison between the initialihdar model and the best
model found using the optimization loop, in the case of thiaydef a logic gate. The
residuals of the linear model present a U-shape curve, wiieAns a mismatch in the
tails and is an indication of using the wrong regression rhode

The non-linear model presents a satisfactory fitting: itasstant near O over the
output domain with few outliers in the middle of the domairsd, the maximum residual
of the non-linear model is smaller than the linear modes ¢110° instead of 6< 10~%)
and especially the tails have a better fit.

Figure 6.4 shows the distributions of the residuals of tHeliinear model and the
non-linear model. The residuals of the non-linear moddbfla Normal distribution and
those of the linear one does not. The non-linear model fourdgmts two advantages
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Figure 6.3: Fitted values and residuals of (a) full lineardmloand (b) nonlinear model
proposed by the optimization algorithm .

over the first one: (1) the maximum residual is 1 order of magla smaller and (2) the
residuals occur in both directions.

The final step of the methodology consists of running theNldhte Carlo simulation
interpolating over the function approximating the elestisimulations, i.e. compute the
statistics ofF (x),vx € I'M. The complexity of applying one input vector to function F is
O(1) and is many orders of magnitudes faster than runningetaatrical simulation.

6.5 Discussion

This chapter introduces a Response Surface Methodologyhvighsuitable for substi-
tuting statistical simulation through Monte Carlo at etectevel. The flow is composed
by these phases:

Design of Experiments selects artificial points which are representative of theniMo
Carlo simulation;

Run electrical simulations on the pre-selected points

Model improvement iterates over possible non-linear regression; models poesent
the cell characteristic as a function of its random varigble

Use the surrogate modelinstead of electrical simulation in order to perform Mon&r o
simulation.

The most computer intensive tasks of our RSM are the eletimulations and the
model improvement algorithm. As compared to Monte Carle, tamber of electrical
simulations required by RSM can be reduced by orders of niadi

The model improvement algorithm, however, can potentigip@bpardize the speedup.
In order to prevent long runtime of the model improvemenbathm, an accuracy switch
has been added to the RSM script, as discussed in AppendixBer.numbers for this
option stops the algorithm to use cross-terms and high degers, further speeding up
the model search. A good tradeoff between accuracy and speéedet accuracy_fit as
2 or 3. Option 2 searches for a reduced linear model, in otledsvit runs the variable
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Figure 6.4: Distribution of residuals of the full linear find the non-linear fit with

quadratic and cross-terms of the FF. The residuals of thelinear model are smaller
and the distribution is closer to a Normal distribution.

screening algorithm (algorithm 6.4.3) only. Option 3 rufgoaithm 6.4.3 and the model
improvement algorithm (listing 6.4.4), allowing quadcatierms and linear cross-terms.
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7 STATISTICAL CELL LIBRARY

This section exhibits results of the statistical charaz#ion of a subset of cells from
a 32nm standard cell library, using a statistical compaaehiibrary. The selected subset
of cells is shown in table 7.1. The library generated is cabpawith Synopsys Liberty
Format (.LIB), also supported by Cadence tools. For perfiognthe most comprehensive
benchmark we performed statistical library characterwaby the 3 means:

1. Monte Carlo:reference method with a sample size of 1000;

2. Error propagation using linear sensitivity analysi€nabled by the commercial
statistical library characterization tool which requires 1 runs and performs sen-
sitivity analysis;

3. Non-Linear RSMthe proposed regression-based methodology using the &russ
DoE and model improvement algorithms, which requires-2 runs.

Both the sensitivity analysis and RSM have a number of rupgd@ent on the num-
ber of transistors of the circuit. The number of Monte Cadas, on the other hand, is
not dependent on the number of random variables but on tgettaccuracy. Roughly
the error of a Monte Carlo simulation scales wilfi,/1/N), meaning an accuracy im-
provement ok 3 is achieved when the number of simulations is increasedfagtar of
10.

Thus, the number of simulations required by Monte Carlo balkept constant, as a
reference, through the benchmark. On the other hand, théauohelectrical simulations
of linear sensitivity analysis and RSM are a function of thenber of variables (referred
asn) of the cells. Table 7.1 shows the number of transistors heddspective number of
variables of the cells in the cell library. The number of aates is twice the number of
transistors because for each transistor we consider twaprarvariablesVt andAg /(3.

We set up an experimental framework to allow fair comparisetween Brussel DoE
and linear sensitivity analysis. Both responses given byIR&d the error propagation

| Cell | Number of transistors | Number of variables |
INVERTER 2 4
NAND 4 8
NOR 4 8
XOR 10 20
Flip-Flop type D 24 48

Table 7.1: Number of transistors of the benchmark cell ara
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Figure 7.1: Quantile-quantile plot (Normal distributiana straight line) of the distribu-
tion of FF setup time comparing true response computed M{Dgvith linear sensitivity
analysis (EP) and RSM. Inset shows histogram and PDFs.

are compared against MC simulation using a sample size d.108us, we categorize
the benchmark into two groups. In a first moment we benchnteekésponse distribu-
tions, arriving at the conclusion that our method is on ayera— 10x more accurate
for estimating the 4 moments of the distributions than lirgensitivity performed by a
state-of-the-art commercial tool.

7.1 Analysis of circuit response PDF and CDF

In this section we compare the response distributions oétausing the proposed
methodology with the one given by the commercial tool anddhe obtained by MC.
Figures 7.1, 7.2 and 7.3 present, respectively, the digtabs of setup time, hold time
and clock-to-q delay of the flip-flop cell (FF). In the insetisese figures show the his-
togram of MC (reference), as well as curves representing’bEs obtained using MC
analysis and the non-linear RSM. Linear sensitivity analgsnd the RSM present good
agreement with MC. Nevertheless, combined PDF or histogyaaphs on a linear scale
lacks visual information about the accuracy on the tails: &wlysis of the distribution
with sufficient accuracy this work uses Quantile-Quantdeqj Plot, very widespread
amongst the Statistic community. These figures show g-cs gibthe hold time, setup
time and clk-to-q delay distributions. Using this techracailows us to verify that the
non-linear method has a perfect agreement with MC simulatem the whole domain of
the distribution: both in the center and the tails. On theepttand, the error propagation
using linear sensitivity analysis is less than 1% off on tkater, but it becomes more
inaccurate on the tails of the distribution.
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Figure 7.2: Q-q plot of the FF hold time comparing true resggooomputed using MC
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Figure 7.3: Q-q plot of the FF clock-to-q delay comparingetrasponse computed using
MC with linear sensitivity analysis (EP) and RSM. Inset skdwstogram and PDFs.



96

Table 7.2: Benchmark of std cell library generated usingraathodology as compared
to Monte Carlo.

Response surface methodology Error Propagation
Gate Param Herr | Oerr Serr Kerr | 30err | TUNS | Uerr Oerr Serr Kerr | 30err | runs
(%) | (%) | (%) | (%) | (%) (%) | (%) | (%) | (%) | (%)
delay 0 0.5 | -13.3| 0.7 0 -0.1| -25 | -100| 2.2 | -0.9
INV transition| O 1.7 | -274| 6.2 | -0.2 9 -0.2 | -10.8| -100 | -17.9| -2 5
power -16 | -07 | -75 0 -1.4 NA | NA | NA NA NA
delay 0 09 | -11.9| -45 0 -0.7 | -17.9| -100| 2.2 -3
NAND2 | transition| O 15| 10.8 | 41 | 05 17 | -0.1| 8.8 | -100| 12.2 | 0.3 9
power 04 | -75| -1.1 -5 5.4 NA | NA | NA NA NA
delay -0.1| -24 | -25.8| 3.9 1 0 -46 | -100| -6.8 | 3.7
NOR2 transition| 0.1 | 3.1 | -26.5| -3.1 0 17 0 -43 | -100| -34 | -1.2 9
power -06 | 3.8 | 228 | -0.9 0 NA | NA | NA NA NA
delay 0.1 0 168 | 0.7 | 0.1 0.2 | -6.4|-100| 54 | -05
XOR2 transition| O 34 |-283| 15| 01 | 41 |-02| -86 | -100| 8.4 15 21
power 0 55| -435| 41 | 1.7 NA | NA | NA NA NA
hold -08| 1.1 | -10.7| 22 | 3.9 55| -831 | -100| 4.1 | 11.3
DDFQ setup 0.4 0 -33.1| 02 | 1.1 97 | -39 | -1.6 | -100| -1.9 | 2.3 | 49
CLK-Q 0 14 | -8.6 -1 0.1 -0.5| -75 | -100| -1.5 | 2.7
power 0 25 | -224 ] 5 0 NA | NA | NA NA NA
| [|Average]| (timing) | 0.14 | 1.45] 19.38]| 2.55| 0.64 | |1.04] 692 100 | 6 | 2.67 |

The best way to compare the responses of the cells of the wabelibrary character-
ized using RSM and linear sensitivity analysis method@sgis compared to those of the
reference library characterized using Monte Carlo is by parimg the moments of the
distributions generated using the approximation appresaatith those of the reference
MC, as given in Table 7.2. For each parameter, the table stimv®lative error between
the four first central moments of the distributions: megg{), standard deviationgg,y),
skewness%r) and kurtosis Kerr), which indicate the degree of asymmetry and the tail
weight of the resulting PDF’s respectively. In additiore table presentsd,,, which is
the error of the approximations at 99% of the distribution. It shows the quality of the
approximation at the tail of the distributions.

The last line of Table 7.2 presents the average of the erarddlay and transition
times. Notice that the table presents the absolute errolso Aotice that power is not
taken into account for computing the averages because there power information
for the error propagation. The errors stiandard deviation andmeanare less than 2%
for the Response Surface Methodology, as compared to esfat% when using linear
sensitivity analysis. Notice that the linear sensitivibalysis is also limited to Gaussian
distributions, and so by definition its output is always ledi toS= 3 andK = 0. Also
notice that the commercial tool does not compute statiséistimates of power. Thus,
although the error of kurtosis and skewness can be high erdR3M, it performs better
than linear sensitivity analysis.

The column “runs” is the number of electrical simulationguged by RSM and linear
sensitivity analysis. It is important to notice that for seemethods the number of sim-
ulations is linearly dependent on the number of gates of dwicd. The electrical sim-
ulations are the most time consuming step of Monte Carl@alirsensitivity and RSM.
Also, one simulation takes exactly the same amount of time&zh of these method-
ologies. Hence, the number of electrical simulations isntiust representative metric of
performance. Roughly, 10 times less runs implies 10 times fen-time.
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The number of simulations required by linear sensitivitgd &5M scale linearly with
the number of variablesi+ 1 and 21+ 1, respectively, being the number of variables.
However, the number of Monte Carlo simulations is indepahda the number of inputs.
Our Monte Carlo of reference uses sample size of 1000, beihtiinber can be increased
for higher accuracy.

The run-time of linear sensitivity and RSM increase with thenber of transistors,
in such a way that the speedup is inversely proportional ¢éoghite complexity. This
limits the applicability of RSM for circuits having less thd/4 transistors, where N is
the number of Monte Carlo simulations. Linear sensitivibalysis, on the other hand,
can be used to circuits with up to N/2 transistors.

7.2 Analysis of errors of the predicted values

While section 7.1 focuses on the differences between thistata of the output dis-
tributions, it does not show information about the indiadlerrors of the values pre-
dicted by the models as compared to the reference electiicallation. On the other
hand this section presents a study about the accuracy of ddelsmwhen predicting in-
dividual values. Figure 7.4 presents the distribution @ telative errors (computed as
model/re ference- 1) produced by linear sensitivity and Brussel Design as @egpto
MC. The linear regression model has discrepancies up to 3%paced to MC, and the
mean error isc —0.5, what causes the distribution of errors to be off to the sede of
the reference, as shown in the inset of the plot, indicatysiesnatic error (caused by
the simplistic linear model). The distribution computeéhgsthe non-linear RSM model
has a maximum error of 2% and the average error is 0. Moretiveerrors of the RSM
follow a Normal distribution centered at 0, which means ¢heme no systematic causes of
discrepancies. The conclusion from this figure is that RSMaxzhieve better accuracy to
predict both the central moment of the distribution as welita tails.

7.3 Runtime analysis

The most time consuming step of the flows is the electricaliktion needed to char-
acterize the standard cells. The runtime of Monte Carlo dépen the target error margin
and does not depend on the number of devices. Designersyusomdloy 1¢ — 10* runs.

Unlike Monte Carlo, both the error propagation and the RSMeHmear dependency
on the number of random variables. RSM requires-2 runs, while first order sensitiv-
ity analysis requires + 1 simulations. Thus, when comparing runtime of the eleatric
simulation only, RSM has a penalty okZas compared to linear sensitivity analysis.

Each characterization of the cell library takes approxetya8 minutes running on a
server using 10 processors in parallel. The most timing womsg cell is the flip-flop,
which takes about 90% of the characterization time of thissti Thus, characterizing the
subset of the standard cell library using the MC approach 8000 runs (reference) takes
three minutes multiplied by 1000, totaling 49 hours. Usimg$ame parallel environment,
the characterization takes only a fraction of that time: Rrsdor the linear sensitivity
analysis and 4 hours for the non-linear RSM. Notice that f8IMRthe total runtime is
not taken into account: since only the number of electrigalutations is reported, the
overhead of RSM, e.g. selection of points and the model Beteas not accounted for.

For characterization of standard cell libraries, whichitignand power characteris-
tics has nearly linear relationship with Vt, linear sensiyi analysis offers better tradeoff
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Figure 7.4: Error of linear sensitivity and RSM approaches@ampared to Monte Carlo
using 1000 runs.

between accuracy and runtime than Monte Carlo and Respam$ac& Methodology.
Linear sensitivity analysis tends to be the best approaamvinearity can be assumed.
RSM can be a good approach to model non-linear behavior wsthall number of vari-
ables, e.g. analog circuits. Monte Carlo is a good appraaatodel non-linear behaviour
with large number of variables.

7.4 Impact of aging on the delay of standard cells

This section presents the analysis of the impact of agingtdidBTI on the delay
of an inverter. The inverter is simulated using the 32nm Rte&@ Technology Model
(CAO; MCANDREW, 2007).

The time delay of the inverter can be written as a functionhef ¢lectrical charac-
teristics of the transistors asd(Vty, Vty,...) whereVt, andVt, are the voltage thresh-
old PMOS and NMOS transistors and follow Normal distribngo While the NMOS
transistor is affected only by process variation and notaéd by NBTI, thus/t, =
Vtnprocess the PMOS transistor is affected both by process variataons NBTI, thus
Vtp = Vipprocesst VipneTi. The standard deviation of the inverter delay can be com-
puted through error propagation (PARRAT, 1961):

0Td\?2 0Td\2 oTd\2
2 2 2 2
0Td<t) - <0th> G\/tpprocess+ <0th> G\/tnprocess+ ((9th> G\/tNBTI(t) (7'1)

This means that both the transistors are affected by pro@egsion, while only the
PMOS is affected by the NBTI component. These 2 componests@msidered to be
independent: it is assumed to exist no correlation betweeregs variation (RDF, LER,
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Figure 7.5: Delay PDF as function of time, for both Monte @ahd Error propagation.
Solid lines refer to Monte Carlo results, while the symbaer to error propagation
results.

...) and NBTI.

Figure 7.5 presents the Probability Density Functions (Riferated using the mean
and standard deviate evaluated by EP, compared to the otesexbby MC simulations.
The solid lines refer to Monte Carlo runs while the symboferréo the error propagation.
The figure shows the Normal PDFs for year 0, 5, 10 and 20. At gaein both the
mean and the standard deviate of the delay increase due tb. NNBd dimensions of the
transistors are Ln=Lp=32nm and Wn=Wp=48nm.

Figure 7.6 shows the histogram obtained from MC simulatiomgared to the PDF
plotted usingoTq and urq computed using the proposed approach at the 5th year of
operation of the circuit. The EP curve fits very well to the MiStbgram.

The table 7.3 presents the results for year 0, i.e. right afteuit fabrication, where
the Vtvariations are only due to process variability, upgiair 20, showing the evolution of
the delay degradation due to NBTI. Theyq computed using the methodology proposed
in this paper (EP) is compared g4 computed by Monte Carlo. The columns Err refer
to the difference between EP and MC results (in percent). edoh year, we run MC
with 1000 simulations. For computingyy error propagation requires only 4 electrical
simulations: 2 for computingT d/dVtpmosand 2 for computingTd/dViymwos The
maximum absolute error of the linear sensitivity analygigraach as compared to Monte
Carlo reported in these simulations is 1%. The mean of MCrispgared to the simulation
using the nominal values of Vt for each year (for which onlydcérical simulation). The
maximum error using this approach for approximating themesdue is 0.7%. Then, EP
methodology requires only 5 simulations for computing theam and standard deviate.
Hence a speedup of 200 times is achieved as compared to MC.
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Figure 7.6: Histogram computed by Monte Carlo compared t& EBmputed by Error
Propagation.

Table 7.3: Therrgq and g computed using MC compared to the methodology proposed
Year | o(EP) | o(MC) | Err | u (EP) | u(MC) | Err
(ps) | (ps) | (%) | (ps) | (ps) | (%)
1.32 1.31 | 0.1 | 27.86 | 27.96 | -0.4
1.95 1.96 |-0.7| 31.01| 31.18 | -0.6
203 | 205 |-0.6| 31.43| 31.61|-0.6
2.09 210 |-0.8| 31.70 | 31.89 | -0.6
213 | 2.15 |-0.9| 3191 | 32.11 | -0.6
216 | 2.18 | -1 | 32.08 | 32.28 | -0.6
10 230 | 231 |-04| 32.66 | 32.88 | -0.7
15 2.37 239 | -0.6| 33.04 | 33.27 | -0.7
20 243 | 245 |-0.8| 33.33 | 33.57 | -0.7

QB W N O




101

8 STATISTICAL ANALYSIS OF HOLD TIME VIOLATIONS

One of the major goals of a design flow is to satisfy timing ¢a@ists without sac-
rificing area and power. One of the most important tasks ofgdesptimization is to
identify and remove setup and hold time violations.

Two logically adjacent FFs (namely FF1 and FF2) controllgddbK1 and CLK2
with no logic or with a fast data path between them may be &dteby clock skew. If the
clock skew is large enough—i.e. CLK2 arrives after CLK1 ardeeds the internal race
immunity of the FF—a hold time violation is produced and degd if the output of both
FFs are of the same value at the same time (Q1(t)=Q2(t)) (8&l1,&2008). The internal
race immunity of a FF is given by

R=tcLk—0 —thold

wheretc k—.q is the clock toQ delay andpgq is the hold time of the FF.

Let the clock skew S be given by = tc k2 — tcLk1, Which is the delay difference
between the two clock signals, atyds the delay of the data signal from outgibf FF1
to inputD of FF2.The following definition describes the timing conditidosa hold time
violation:

A hold time violation occurs&< R—S+1t3 <0 (8.1)

Thus hold time violations are dependent of FF race immuniitgt(is inherent to the
FF type and its transistor sizing) and the clock skew of tmeudi. Both race immu-
nity and clock skew are susceptible to process variatiorSHROTRA; BONING, 2001,
ZARKESH-HA; MULE; MEINDL, 1999; CHEN et al., 2005). Histarally they have

been modeled as worst-case scenarios, thus leading tesesepsessimism (VISWESWARIAH,

2003). Since short paths are increasingly becoming dorissnes of ASIC design, this
work addresses a methodology for the analysis and repaioldftime violations. This
work extends the work developed by Neuberger (2007). Théribomions of this work
are:

e analysis of Monte Carlo simulations presenting the distrdn of clock skew of a
commercial ASIC design of a 90nm technology node, conclydlivat under pro-
cess variability clock skew follows a Normal distribution;

e improvement over the methodology for computing the delabeadanserted in or-
der to fix hold time violations. These analytical equationénbeen proposed by
Roberto da Silva.
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Figure 8.1: Measured distribution of the critical clock slse(race immunity) for rising
transitions. The nominal case (mean critical skew) is séip®. Courtesy of Gustavo
Neuberger, as appears in Neuberger (2007).

Section 8.1 presents statistical characterization of raceunity made by Neuberger
et. al and shows that it can also be modeled as a Gaussianmmarat@ble. Section
8.2.2 presents statistical analysis of the clock skew daasored from a commercial
standard cell design, showing that clock skew can be modedeldormal distribution.
Section 8.3 presents comparison of three statistical nsddelhold time violations: i)
considering both race immunity and clock skew as worst:dgsmnsidering clock skew
as worst case and modeling race immunity as a random variadeiii) modeling both
race immunity and clock skew as random variables. SectidrpBsents an extension
of the work developed by Neuberger (2007), statistical méttor computing the exact
delay that is required to be inserted in the data-path to fig time violations.

8.1 Race Immunity: probabilistic approach

Neuberger et al. performed on-chip measurement of race mitynaf flip-flops sub-
ject to process variations and presented the results in@&tgab(2007). A programmable
delay line was developed with resolution of approximatghg IMany experiments were
performed on the fabricated circuits to measure race imtywmn many dies. The ex-
perimental results show that the race immunity can be assuméollow a Gaussian
distribution, with 35 values of up to 15%, as shown in figure 8.1.

Based on these measurements, the next step would be to testiragorobability of
hold time violations taking both race immunity and clockwskato account.
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8.2 Statistical analysis of clock skew

Synchronous digital circuits rely on the distribution oétblock signal from the clock
source to the sequential elements of the circuit. Automateck synthesis tools play
a major role in the design of high-performance designs antCAS Historically clock
synthesis target low area and low dynamic power consumpgpioner reduction through
clock gates, small latency and small deviation from thereddsskew (which is usually
zero, but when using useful skew the delays at certain fisgaired to be smaller (CHIN-
NERY; KEUTZER, 2002)). But since process variability isyateg a major role in skew,
synthesizing clock networks insensitive to process viarahave become as relevant as
other issues(LAM; KOH, 2005).

Zero-skew clock network synthesis tools target at buildirgjock network which the
delays at every sink is the same. Many reasons cause thediés#al zero-skew to be
impossible. The routing of the clock wires impose a chaleeras ffs are distributed over
the chip, rare is the case where two wires at least from thibmwimost buffer to the sink
can have the same delay. Clock schemes such as H-trees ahdsnigsto compensate
the routing issues, but perfect match is never reached.

The synthesis of the clock network and the analysis of thekckignal delays and
skew could be evaluated using corner-based analysis. $naftproach the delays are
computed using extreme cases of the electrical parametansistors voltage threshold,
wires capacitances and resistances). Also, corner-bastid Siming Analysis assumes
all the devices are completely correlated. Because of tteas®ns, corner-based analysis
is excessively pessimistic (VISWESWARIAH, 2003). This giegsm translates into the
latency and skew of the clock network being overestimateds the frequency end up
being unnecessarily smaller than it could be if the estisatere more accurate.

On DSM technologies WD and D2D variations impose the biggeallenge for the
design of reliable clock networks because the variationthefdelays of the logic gates
and the wires of the clock network have been increasing. & hesufacturing variations,
together with noise and NBTI, cause the deldyso be a random variable, for instance
like a Normal distributiond; = N(qi, gqi). Since the clock skew and the clock latency
dictate the maximum frequency of the circuit, the corretineste of these parameters is
essential to verify if the design satisfies its timing coaistis and to estimate the yield of
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the circuit.

Monte Carlo simulation (AMAR, 2006) is appropriate to mothed statistical behavior
of the circuit imposed by process variations. By performimgnte Carlo analysis instead
of corner-based, the WD variations of the devices, whicluarrelated in nature, lead
to paths with uncorrelated delays. This chapter presentiejpth analysis of valuable
information given by Monte Carlo simulations of a clock netk Section 8.2.1 presents
the analysis of the delays from the clock source up to the &-wiell as the skew between
pair of FFs. Section 8.2.2 reports the clock skew modeledrasdom variable.

8.2.1 Delay distribution

Consider the flip-flopg f; fori = {1, ...,n}, thendi is the delay from the clock source
to f fj. The clock latency isatency= maxds, ...,d,) and the clock skew betwedify and
ffj is skew; = di¢ —dj.

Monte Carlo simulations of the clock network of a commeréiajitsu circuit on the
90nm technology node were run. The clock network was dedigiséng a proprietary
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Fujitsu clock synthesis tool. The sample size is 2000, aadtftage thresholdAt) of the
transistors is modeled as a Gaussian random variablepwéthd o characterized for the
process. The environmental parameters VDD and temperatndethe wire capacitance
and resistance are modeled using de-rating factors togepta slow corner.

First we explore the distribution of the delays from the &source up to the sinks in
respect to normality. Figures 8.2.a and 8.2.b show respygtihe kurtosis (PRESS et al.,
1992) (normalized to 0 in relation to Normal distributiomdethe skewness (PRESS et al.,
1992) histograms of the delays at the FFs, considering 2000us. Nearly 37% of the
FFs delays kurtosis are between -0.1 and 0.1, which meass ttave a tail weight close
to a Gaussian distribution. The others have a heavier &l @aussian distribution should
have, up to 1.5, what is too large for Gaussian. The skewrfdbe delays vary from 0.3
up to 0.8, which means that the delays of every FF presentsyanmaetric distribution
which is always positive: skewed to the right tail. Most oémiis in the range 0.55-0.75.

Let’s then explore in detail the delay of two representafi#s. FF1 has kurtosis=0.08
and skewness=0.69, while FF2 has kurtosis 0.08 and skewn®&8s The kernel densities
of the distribution of (normalized) delays at two FFs is shomfigure 8.3. The plot shows
that the delays of these FFs follow a Normal distributionhe teft tail and center, but
fails to follow it in the right tail. The small portion of thegure highlights the difference
between FF1 and FF2, which fits well a Gaussian distribugean in the tails.

Figure 8.4 shows the Quantile-Quantile plot (g-q plot) a& thstribution of delays at
the FFs in the main plot and shows the g-q plot of the skew keiwieem in the smaller
portion. These plots corroborate to the visual informatgiven by the histogram: the
delay at the FFs have a non-symmetry issue in the right taut g8l the difference
between them is symmetrical and fits perfectly with a GaumsBiatribution.

Figure 8.5 reports how the delays of the FFs are distributedorresponds to one
single Monte Carlo iteration, and shows that the delays &t wifd-Fs are very similar, and
thus the skew at most of the FFs is very small. The issue isitfegahce of delays from
the maximum delay to the minimum delay, corresponding tddile of the distribution.
This difference imposes the maximum clock skew between th®iR this iteration, i.e.
for a given set of random variables of the Monte Carlo itematiin this case, the maximum
skew of the iteration is + 0.88=0.12.
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8.2.2 Maximum clock skew

The clock skew of the design is given Bgewhax= max (ds—ds )1, ..., (ds—df )m), for
each of the m pair¢f fs, f fr) of cascaded flip-flops. The maximum difference between
two FFs cascaded (when one is the start-point of the dateapat another as an endpoint)
is the most important constraint for the clock synthesisabee it is closely related to the
maximum frequency of the circuit. Also, smaller clock skeads to smaller setup and
hold time violations, cutting down design time and redudinge-to-market.

Due to process variations, the pair with higher skew and kiesvstself is different
from one circuit to another, i.e. histogram of figure 8.5 ifetent for each die. By run-
ning Monte Carlo simulation one can simulate the distrilmutof the minimum delays
and the distribution of maximum delays from the source toRRs. Figure 8.6 presents
the distribution of the minimum and maximum delays for MC slation with a sample
size of 2000. Although the delay distribution does not fall Gaussian distribution, the
maximum and minimum of the delays fit very well with a Normadtdbution. Figure 8.6
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also presents the quantile-quantile plots for both theidigion of the minimum and the
maximum delay. Both the histogram and the quantile-quaptdt visually indicate Gaus-
sianity. We performed a Shapiro-Wilk test for testing thpdihesis of non-Gaussianity
of the data. For the maximum, Shapiro Wilk test indicalés- 0.9978 andp = 0.0793,
but for the minimumW = 0.9953 andp = 6.37 x 10 . The tests then indicate that the
data of the minimum delays does not seem to come from a Gaudisigibution, while
there is no evidences to state that the maximum does nowfallGaussian distribution.

More important then the distribution of the maximum and mmom delays is the
distribution of the skew, which is the difference betweeanth The distribution of the
clock skew of the circuit under analysis is shown in figure. 8The figure presents the
kernel density, as well with a fit with a Gaussian distribatién the small portion of the
graphic, it is shown an histogram with greater bin sizesptaficm the good symmetry of
the data in relation to a Gaussian distribution. Figure 8@\ the quantile-quantile plot
of the clock skew. It shows that the data follows a Gaussiatridution in the center of
the distribution, but fails to fit in the tails, demonstrafia skewed behavior.

8.3 Models for Hold Time Violations

8.3.1 Hold Time Violation: worst-case approach

A hold time violation occurs when the clock skew is highentliae race immunity.
Assuming both race immunity and clock skew are worst-cakeegadenoted respectively
by Ruorst and Syorst —Which is the scenario usually found in the literature anplpsuted
by EDA tools— with the definition 8.1 for hold time violatioand assumingy = O, the
probability of a hold time violation is as follows:

1 if Syorst < Rworst
p— .
I:110Id(SNorst, Rworst) { 0 if Syorst > Rworst (8 2)

In this caseSyorst aNd Ryorst are the worst case clock skew between the two FFs and
the worst case race immunity of the FF respectively.
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Figure 8.9: (a) Calculation of hold time violation probatyil(cumulative distribution
function). (b) Hold time violation probability considegrtiock skew as a random variable
following a Normal distribution.

8.3.2 Hold Time Violation: race immunity as random variable and clock skew as
worst-case value

If the clock skew is assumed to be a deterministic (fixed)ealod the race immunity
is assumed to follow a Normal distribution according to Nexgier (2007), the probability
of a hold time violation of a short path is the probability bétrace immunity, which is less
than the clock skew. Itis illustrated as the red area in E@u®8.a. From the definition 8.1
of hold time violation and assumirig= 0 the probability of the race immunity (which is
characterized by averagg and standard deviatiaog) to be smaller than the clock skew
(here denoted b$yorst) is given by:

2 ORrV/2

whereerf(x) = —2— [Xet’dt, Sworst is the worst case of the clock skeug andog are
y/(m) 70

the average and standard deviation of race immunity.

Figure 8.10 shows the probability of failure (z-axis) asmadiion of the race immunity,
where race immunity was modeled as a random variable withranllodistribution and
the clock skew is modeled deterministically (worst cas@)c&clock skew is considered
as the worst case, even if the clock skew is very small-laysarly 70ps—a path with an
FF with race immunity of 100ps has nearly 100% chance of cgushold time violation.
As we will see in the next section, this approach is pessiostd if clock skew is also
modeled as random the failure probability computed is senall

1 orst —
Izlnold (SNorsb UR, UR) =5 <1+erf (SW ! UR)) (8-3)

8.3.3 Hold Time Violation: probabilistic approach

Let the race immunity and clock skew be random variables wban be approximated
by Gaussian distributions, which is a good approach as shiowie previous sections.
The probability of hold time violation is the probabilitydhthe clock skew is higher
than the race immunity. In this case, we must evaluate thbamitties for the race
immunity value (normally distributed) being smaller thae tlock skew (also a normally
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Figure 8.10: Probability of hold time violations (z-axisy a function of clock skew (x-
axis represents the worst case) and race immunity (y-apiesents the average of the
Normal distribution)

distributed random variable). This is the convolution @& ttvo Gaussians, also discussed
in Neuberger (2007) and is graphically represented in figL@¢b).

To evaluate the probability, we will assume that the race imity and clock skew fol-
low independent normal random variables. This is a validegxdion since the variations
we are dealing with come from RDF, which makes the transdtave different electrical
characteristics (lik&;) with no correlation. Using this assumption, with the defon of
hold time violation given in 8.1 and assuming tige= 0, the following equation can be
used to calculate the probability of hold time violation:

1 _
Phold(UR, OR, Us, Os) = 5 <1+eff(M)> (8.4)
02+ 03V/2

whereur andor are the average and standard deviation of race immuymitsgnd os are
the average and standard deviation of clock skew,arids the error function.

Figure 8.11 reports the probability of failure (z-axis) aiiaction of race immunity
and clock skew modeled as random variables following Nomlisttibution. The proba-
bilistic model leads to less paths being reported as priggewiblations, although circuit
reliability and performance constraints are satisfied.

8.4 Fixing hold time violations with probabilistic delay insertion

Increasing the data-path del&yby kps for removing hold time violations has the
same effect as reducing the average clock skelpsfor increasing the race immunity by
kps. The probability of hold time violation as a function abck skew with race immunity
being a random variable with Normal Distribution and withadpath delayy as a fixed
value is given by:
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axis represents the average of the Normal distribution)rand immunity (x-axis repre-
sents the average of the Normal distribution).
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Figure 8.12: Probability of violation as a function of the@ath delay.

1 — —t
Phold( LR, OR, Us, Os, tg) = 5 <1+eff(w>> (8.5)
02+ 03v/2

Figure 8.12 shows the dependence of the probability of hiale tviolation on the
time delay of the data-path. This figure represents a pathienthe clock skew average
is 100ps and the FF race immunity average is 150ps. The ho&grobability decreases
exponentially with the data-path delay. Also, figure 8.1@vgfthat the probability of hold
time violations strongly decrease as delay in the datapath FF1 to FF2 increases. In
a back-end design flow, the timing analysis tool evaluatisskblay (referred as negative
slack), and if it is not enough—leading to a hold time viaatithen an optimization algo-
rithm can insert the appropriate amount of extra delay tadathat timing violation. This
method is known as padding.

Padding is the placement of extra delay in the fast logicpttlincrease the race im-
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munity and to prevent hold time violations. This extra detay be achieved by inserting
inverters, buffers, or wire jogs. Padding is the most effeeoivay to prevent digital circuits
against hold time violations. Padding was presented asaitpaee to prevent against hold
time violations in short paths by Shenoy (1993) and is emgaldyy commercial tools to
fix hold time violations. The problem with hold time fixing tisaas it is today is that the
amount of delay to be inserted in the path is computed withraezebased approach. In
that fixed-values scenario, the amount of dejgihat padding must insert in a given path
can be calculated as:

tdyorst = Sworst — Rworst (8.6)

whereSyorst IS the worst-case clock skew aRjorst is the FF race immunity.

We now aim at finding an expression to compute the total dgjap be inserted
into the data-path so that the probabilgy= B,qq( Ur, OR, Us, Os,tq) is less than a given
threshold. Also, assume that we wish the probability of hottk violation to be very
small and thup < 0.1. In order to accomplish that, we have to isolate the vagitjin
equation 8.5. Roberto da Silva proposed an analytical nugatipn to isolatey, aiming at
a closed-form solution (BRUSAMARELLO et al., 2010). Fordlpurpose, consider the
handy numerical approximation for the error functi@n{) presented by Winitzki (2003):

4 1/2
erf(y) = [1—exp<—y23+ay2>]

1+ay?
where in our casg = “25(+thz) The best approximation related to the above equation
OS+0R
is obtained when we sat= 0.147.
Then from equation 8.5 we have:

4 1/2
1-2p= [1—exp<— ﬁ—l-a)?)]

1tay
From this we obtain the fourth degree equation:

0.14%4 + (%+0.147|n[4p(1— p)]) y?+In[4p(1—p)]=0

where making the substitutign= x* becomes a quadratic equation:

0.147%% + <%+O.147In[4p(1— p)]) X+In[4p(l—p)]=0

Solving this equation irx and returning toy = x% we find four candidates for the
solution. Eliminating the solutions that are not valid ire ttange of y and p, we verify
that the solution for y is:

y= —%Tm
where
Do = In(4p—4p?)
Ay = —217.69m—8.01A
N, = 54.4271\/ 1.18mA — 0.5912Ag + 0.0272A% + 16
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Figure 8.13: Data-path delay required to satisfy the yiedstraint due to hold time
violations using the probabilistic approach.

And making the substitutiopn= —#s—ER-%_ e find the suitable formulation fad:

2(08+03)
2(05+0f)
tg = HS—NR+4—HVA1+A2

In a design containing short paths, the probability of one path to present hold time
violation p is related to the design yield loss due to hold time violagias inyield =
(1—p)". Thus, the probability of hold time violation can be comglfeom the yield
goal as in

. 1
P=1-—yieldn
whereyield is the circuit yield andh is the number of short paths.

Figure 8.13 shows the computationtdfrequired to be inserted in the data-path using
the corner-based analysis, the proposed probabilistibodetogy, and the method where
skew is considered worst case while race immunity is prdisaisi On both probabilistic
scenarios the yield is set to 95% with n=100 paths, whichlt®$uP = 5.13x 10~4.

Using worst-case scenario, as opposed to the proposediisha methodology, would
not allow for prediction of the circuit yield.
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9 STATIC RANDOM ACCESS MEMORY (SRAM)

Nowadays most of ASICs and dedicated high-speed circuis a8 microprocessors
present a considerable area devoted to Static Random Atagesries (SRAM).

Part of SRAM success is because it can be fully integratetieddgic part of the
ASIC: it consists of two inverters and two pass transistongchv are processed together
with the rest of the chip. For instance this is not the cas®®AM memories, which need
a special manufacturing process, mainly due to the loadnstdne bit. Thus DRAMs
must be built in a separate die, not so close to the logic,ymglin communication
overhead because the data must pass through a bus.

Dynamic RAM also has the side effect of its load dischargmground after a given
amount of time. This would result in bit-flips, and thus a spkdrcuitry, a refresh circuit,
must be build in order to refresh the bits of a DRAM. Due to thedback loop of its two
inverters, another advantage of SRAM over DRAM is the lackexdd a circuit to refresh
the bits. This implies even more speed advantage.

Mainly due to its implementation being so close to logic, 3R the fastest high-
density storage element existing in today’s technologythdugh latches and FFs can
be actually faster, their area is orders of magnitudes nmt@e SRAM, thus they are not
suitable for high-density.

The first level of cache of microprocessors, which requiregimum speed, is always
an SRAM memory. The area of a state-of-the-art micropramessowadays can be up
to 80% SRAM memory. Depending on the application, ASICs a#sopresent very high
density of SRAM memories. Recent FPGAs also ship with embgé@®&RAM arrays in
order to offer a high-speed memory.

Figure 9.1 illustrates a typical SRAM memory architectulselscussed in Haraszti (2000).
This scheme of memory is composed of

e memory cell array composed bt columns andNrow rows of SRAM cells, and
Nr redundant columns;

e internal timing circuit to generate the control clocks;
e data-in/data-out buffer circuitry;
e register and decoder blocks for thi¢ address commonly referred a®w address

e register and decoder blocks for thrd address commonly referred asolumn
address

SRAM memories present a regular architecture in which mibtteochip area is dedi-
cated to regularly disposed SRAM cells. Consider the meraogy designed withNcop
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Figure 9.1: Scheme of a SRAM memory

columns andNrow rows of SRAM cells, andNg redundant columns. If process fabrica-
tion variability causes at least one memory cell to fail imluenn, that column is replaced,
during circuit test phase, by one of the redundant colummsneSapplications employ-
ing memories sometimes apply binning techniques, as feamte when more thaNg
columns fail, the circuit is re-wired to utilize a reduced @amt of memory. Although
ASIC designs usually do not have that flexibility and needftilememory to work, re-
lying solely on redundancy. In any case, faulty SRAM celldl¢o reduced yield and
reduce profit margins.

Denotingp as the probability of the SRAM cell to work properly in the peace of
process variabilityP-o, = (p)Nrow gives the probability of no cell failure per column. In
addition, the probability of column to be faulty is given QZgOL = 1—(p)Nrow, Next, we
are interested in the probability of successfully manufeeco. working columns, in a
total of Nco. + Nr designed columns. Then, the yield (percentage of workimgsgiof a
SRAM memory design is given by a binomial distribution (MAKNDDI; MUKHOPAD-
HYAY; ROY, 2005):

Neor+NR

+N

PvEM = % (NCOLi R
i=NcoL

In order to offer maximum density, SRAM memory cells are Uisudesigned using
the smallest feature sizes allowed by the technology. Nay&&RAM is the component
of a digital design that benefits most from technology scaliRor SRAM, technology
scaling still guarantees higher density at each new teoigyaiode. However, in the sub-
100nm regime SRAM design must consider variability andatglity aspects in order to
guarantee the reliability of the circuit. The schematid®f most typical design of SRAM,
a 6-T SRAM cell, is shown in figure 9.2.

Computer simulation methodologies for analysis of SRAMd/@ue to process vari-
ations have been the topic of much research in the last ydagdysis of yield of SRAM

) (Peov)' (1 — Peoy)Neor TR (9.1)
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Figure 9.2: 6-transistors SRAM cell

memories using Monte Carlo has been studied by Agarwal (20OQmear sensitivity
analysis at electrical level for yield analysis of SRAM mambas been explored in
Mukhopadhyay (2004) and Mukhopadhyay (2004). These waksgse statistical mod-
els for failures in SRAM cells (access time failure, readuia, write failure and hold
failure). The yield of SRAM array can then be computed as ation of SRAM cell
yield.

9.1 Failuresina SRAM Cell

Failure probability in a SRAM memory array is given in furarti of the number of
columns, number of rows, number of redundant columns, amg@rtbbability of a SRAM
cell to work properly in the presence of variability. Faisrin SRAM cells are due to:

access time violationwhen reading the value stored in a céit, andbit are set to VDD,
and whenwl is set to VDD, one of them discharges (through AL-NL or PR-NR)
The access timeTyc) is defined as the time required to discharge a secure margin
of the bit-line. As the maximum access timByax) is a design input related to
chip frequency, violation occurs whelc of the cell is greater thayax. The
access time is a non-linear function\f, but its inverse can be considered linear
(AGARWAL; NASSIF, 2006a).

read failure when reading the content of a cedif or bit discharges (through AL-NL or
PR-NR). This causes input of one of the inverters (PL-NL ofNR) to be charged
to voltageVreap If maximumVgeapis greater then trip pointy gip of the inverter,
read operation will cause the stored bit to erroneously Tlipe read failures of a cell
can be evaluated by the Read Noise Margin (RNM). Read fadarebe modeled
as a linear function o¥'t (AGARWAL; NASSIF, 2006a).

write failure to write a value to the cellpit andbit are set to the proper values, and
thenwl is set to VDD for a time[Tw in order to the signals to be stored in the
cell. Consider that signal takdg,r T to be written to the cell, then it must apply
TwriTE< Twi, otherwise the signal will not be successfully stored. aitgh write
stability is not linear withVt, its inverse is so (AGARWAL; NASSIF, 2006a).

hold failure although write and read operations are the most critical eramto the
SRAM cell, it can also happen that the cell cannot hold itsteots in a stable
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Figure 9.3: Butterfly Curves

manner. The Static Noise Margin (SNM) of the cell can evaulé cell capability

of holding a stable value . SNM can be considered as beingarlifunction oVt
(AGARWAL; NASSIF, 2006a).

9.2 DC Static Noise Margin (SNM) and Read Noise Margin (RNM)

Noise margin (NM) is the minimum DC voltage that flips the @aritof the cell once
applied to the input of one of the inverters (PL-NL or PR-NR)tlee cell. The noise
margin is a DC metric, which can be computed by applying a Difage to the input
of the inverter and analyzing the inverter response. The NMadpendent of the cell
operation mode, thus there are two important noise margins:

Static Noise Margin (SNM) : during normal static operation (simply storing the bit),
when neither a read or write operation is being performed;

Read Noise Margin (RNM) : read margin during read operation, which is the moment
the cell is more vulnerable to failures. Usually RNM is thailing NM of the cell.

Static Noise Margin (SNM) is computed from the analysis & butterfly curve of
the SRAM cell (BHAVNAGARWALA; TANG; MEINDL, 2001). Figure B presents the
butterfly curve for a SRAM cell designed using 65nm PTM modetiavith the following
sizing: Wy = WL = 100nm We = Wer = 100nm, W = War = 140nm The SNM of
this cell is approximately the bottom line of the largestaguthat can be fit inside the
curves, as drawn in the picture. In this case, the SNM is aqmately 0.3V.

The design of a SRAM cell is a compromise between read, wniteheld stability’s

and read, write and hold speeds. The sizing of SRAM cell isesged as the beta-ratio
(the ratio between width of transistors N over width of A).



Table 9.1: Output of the electrical simulator, stored inlddas VL and VR.

VR or VL

VR=f(VL)

VL=g(VR)

0
50.00000m
100.00000m
150.00000m
200.00000m
250.00000m
300.00000m
350.00000m
400.00000m

899.5610m
899.2891m
898.2426m
894.7680m
884.5981m
858.6611m
801.0821m
673.6515m
319.3079m

899.5610m
899.2891m
898.2426m
894.7680m
884.5981m
858.6611m
801.0821m
673.6515m
319.3079m
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450.00000m| 76.7541m | 76.7541m
500.00000m| 40.7186m | 40.7186m
550.00000m| 24.2140m | 24.2140m
600.00000m| 14.0134m | 14.0134m

650.00000m| 7.3248m 7.3248m
700.00000m| 3.2791m 3.2791m
750.00000m| 1.2485m 1.2485m

800.00000m| 435.0082u | 435.0082u
850.00000m| 165.4791u | 165.4791u
900.00000m| 90.9049u | 90.9049u

Although the cell of figure 9.3 exhibits a reasonable SNM giragimately 0.3, its
low low beta-ratio (0.71) causes the cell to be prone to Wallerres. If width of the pull-
up transistors of the inverter were smaller than the pullnd@nes, and the pull-down
ones were similar to the size of the pass-transistor andtarbetite capability would be
achieved. Write failures can be analyzed by transient amalgstead of DC.

Process-induced variability such as RDF and LER, and teahpariability due to
RTS and NBTI causes the butterfly curve of SRAM cell to shiftdeds a smaller square,
meaning a degradation of SNM and RNM (BHAVNAGARWALA; TANG; BANDL,
2001). But computing NM is not as straightforward as commpitransient parameters of
alogic gate, as for instance rise/fall delays. In order vegtigate the impact of variability
to the cell noise margin, the first problem is defining an awttad methodology for the
computation of NM. This methodology must be fully automdiedause, in order to allow
variability analysis, it must be inserted inside a MC, thesaated many times.

Agarwal (2006a) proposes an accurate and efficient commaérodology for com-
puting SNM and RNM. This method is simple to implement and/\artomated, thus it
is the most appropriate solution for computing NM in a Mon&1G loop. The method
is numerical, in the sense that it employs electrical sitnute to evaluate the circuit and
then uses a post-processing to compute the NM. The firststegsimulate the Butterfly
curve of the SRAM cell in an electrical simulator and therrstitie curve in a database,
as Table 9.1. Notice that in this case f(VL) and g(VR) are thee because this is a
nominal simulation, in a Monte Carlo simulation they woultfet. The first row can be
interpreted as VR (when computing VL) or VL (when computinB)VFunctions fand g
employed from now on are approximated from these numerinallations stored in the
table.

Then, the loop gain of each side of the cell can be computee. |ddp gain of VL
(the equation is similar for VR) is given by (AGARWAL; NASSIB006a):
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AVLIVR
VR=f(VL)

LoopGainVL) = (9.2)

where the partial derivatives are computed numericallynfrihe values stored in the
database (output of the electrical simulation), simplyais = M Then, the min-

imum DC value in the input of inverter PR-NR that flips the @nitof the cell is defined
as

VLtiip = (VL that causes.oopGainVL) = 1) (9.3)

Figure 9.4 shows the analysis of the loop gain of a SRAM cehaid (stand-by)
mode of operation. The sizing WL = WL = 100n0m We = Wer = 100nm, W =
War = 140nm In the exampleY Ly, ~ 0.3. The noise margin of side L is then defined
as (AGARWAL; NASSIF, 2006a):

NML =V Ljip —9(f(VLsiip)) (9.4)

The noise margin of side RYMR is computed similarly, just substituting R and L
in the previous expressions. Then, the noise margin of thésagiven by the minimum
noise margin between the two sides as in (AGARWAL; NASSIFRGA):

NM = Min(NML,NMR) (9.5)

The methodology for computing SNM and RNM was implemented B&ERL script
interfacing with electrical simulations performed by HEFL These scripts are parame-
terized and are easily adaptable to model the impact ofrdiftesources of variation to
the noise margin of SRAM cells. Due to its power, paramedion capabilities and easy
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Figure 9.5: Effect of RTS on the read noise margin of the 65ARSRAM cell.

of use, these scripts have been largely employed in the gosupodeling the impact of
RTS and radiation to SRAM cells.

9.3 Statistical analysis of SRAM cell stability under RTS

The yield of a SRAM cache can be computed as a function of timebeu of cells,
number of redundant cells and the probability of a SRAM ceféil. Failures in SRAM
cell can be due to: read failure, write failure or access to&tion. This section presents
the impact of RTS on the probability of read and write faikiod a SRAM cell.

The instantaneous current fluctuations (modeled as thiegésfottage shifts) caused
by RTS are responsible for performance variability, whiciyncause read and write fail-
ures in SRAM cells. The three different models for the depewe of the amplitude of
threshold voltage shifts on trap position along the chaareinvestigated.

For these simulations the transistor sizing is aligned éattansistor sizings of a con-
ventional SRAM cell disclosed by Ohbayashi (2008)jp= 130mWn= 90nmWa=
90nm Moreover, the transistor length= 65nmandLef f = 245nmaccording to the
minimum transistor length allowed by the technology noderse (CAO; MCANDREW,
2007). The number of traps of the transistors are computemhfimg a Poisson law where
Antr IS in accordance to the transistor area.

9.3.1 Read failures

A read failure can happen when reading the value stored icgheAt this timeBL
or BR (depending on the value stored) discharges through NL-ANRfAR , and this
causes Node L or Node R to be charged to voldgenp If VrReapbecomes greater than
the trip pointVr g p of inverter NL-PR or NR-PR, read operation will cause theexddoit
to erroneously flip.

Figure 9.5 shows the probability density (kernel densiipg®andwidth=1) of 10,000
MC simulations of Read Failures Probabilifgs] caused by RTS is modeled accord-
ing to Agarwal (2006b), which is an appropriate approachfiodelingPr under process
variations and RTSP is computed by considering the DC noise margin of the cel dur
ing a read operation. From integrating the probability dgrfsinctions, the probability
of failures can be computed for the 4 different approacheaiputingVt shifts. Con-
sidering no XL and no XT dependenBg = 0.029%, considering constant dependence
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Pr =4 x 10-1%%, linear dependend& = 4 x 10~1%% and using exponential dependence
Pr = 0.01%.

Please notice that the cache failure probability may beedugh even tough probabil-
ity of a single bit to fail (represented here By) seems very small. This is because cache
memories nowadays usually contain millions of bits.

The differentPr values obtained for the different approaches of compu#ihghifts
clearly shows the importance of detailed statistical asialgf RTS amplitude dependence
on trap position in the oxide and along the channel. The eaheze used are based on
Alexander (2005), where no statistical analysis was peréat, i.e., it corresponds to the
case here called “no xL and no xT dependence”. The statistiadysis of dependence
on trap position in the oxide and along the channel was inired through equations 4.8
and 4.7, respectively.

9.3.2 Write failures

To write a value to the celBL andBR are set to the proper values, and thenis
set to VDD for a timelygriTe in order to the signals to be stored in the cell. The period
TwriTE IS related to the memory clock, in such a way that the writipgration must be
performed in less time thafRyriTe to be successful. One cell requires the timgefor
a value to be properly stored. Thig,, due to process variations, is different from one
cell to another, and can be described as a random variabkrefine for a given cell to
be able to correctly write value$y < TwriTe must hold, otherwise the value will not be
successfully stored. The situation in whi@f > TwriTeis referred to as write failure.

The probability of the cell to fail because of a write failusedescribed aBy. Ry is
modeled according to Agarwal (2006b), as a transient siimmaand the probability of
a write failure to occur is given bRy = P(TwriTe > Tw), WhereTwgiTe is the time in
which the signalVvL stays high.

Figure 9.6 shows the density plots (using bandwidth=1) 60 MC simulations
of the time to write Ty) variations in 6-T SRAM cell caused by RTS. The mean and
standard deviates of the time to write are as follows. In #eeavhere no length and tox
dependence are considerdg, = 72.2psand oy, = 5.3ps constant length dependence
hasTw = 67psandar,, = 3ps linear length dependence preseRts= 67.2psandor,, =
3.6ps exponential length dependence Mg = 68.4psand oy, = 4.5ps Indeed, the
probability of a write failure is dependent of the distritaurt of Tyy and also dependent of
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the time constraintwr|Te.

Thus, the read and write failures probabiliti® éndRy) clearly depend on the shape
of the function modeling Vt shifts as a function of trap pmsit This is an important
finding because points to the fact that the charge densityeatttannel must be taken into
account when analyzing the impact of interface traps taidir@riation.
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10 CONCLUSIONS

This manuscript presents a comprehensive study on stafistnalysis of integrated
circuits. Compact models for circuit simulation of processiability and aging are pro-
posed, and three methodologies are employed for analyzengrtpact of these variations
to three different classes of circuits (standard cell, mgnand clocking circuitry).

The manuscript describes some well-known models of procasability issues such
as Random Dopant Fluctuations (RDF) and Line Edge Roughh&$?). These issues,
as well as other process-related variability issues, aspgty taken into account in the
cell characterization and the clock analysis.

For the statistical cell characterization, partner foynaf IMEC provided variabil-
ity measurements data of a 32nm technology node. These meezsnis were post-
processed to the compact variability model as shiftgtiand 3.

For the clock network analysis, the statistical data wasaeitd from the process
corners defined in the documentation provided by FujitsQisr® technology node. By
using a statistical simulation instead of corner-basedagyh, the simulation gives less
pessimistic and more accurate results. Based on the assmsfitat both the clock skew
and the race immunity of flip-flops can be modelled by a Nornsdtithution, we proposed
a simple and efficient method for computing the probabilitha@ld time violation.

Initially, we proposed a static methodology for simulatafrfRandom Telegraph Sig-
nal (RTS). The model is so called static because in this @gprtheVt is constant during
the transient simulation, in contrast to the dynamic traprap simulation. The static RTS
model gives as output a distribution \ét, which is suitable for representing RTS as yet
another source 0¥t variation, on top of other issues such as RDF and LER. This ap-
proach allows the methodology to be supported by a runniatistital flow with minor
modifications. Later, as discussed below, a dynamic modeglpraposed.

As a case study for the static RTS model, an automated frarkeaothe statistical
analysis of SRAM, based on a state-of-the-art SRAM analysithodology, was imple-
mented. Thus we could study the impact of RTS on the StatiséNidiargin (SNM), Read
Noise Margin (RNM) and write time of the SRAM cell. Our expagnts conclude that
RTS alone, causing maximuft fluctuations around 60mV, can cause variation of nearly
100mV in the read noise margin of the SRAM cell. It is impott@motice that RTS adds
up to other variability phenomena and, if not taken propértp account, read failures
may occur.

Random Telegraph Signal and its relationship to NBTI haverged recently as a
topic of great interest. This is because the classical NBattion-diffusion model cannot
explain certain behaviors found on experimental measun&né\ cooperation between
our group at UFRGS and the Reliability Group at IMEC aims teestigate this rela-
tionship between RTS and NBTI. In this work we have developeaimulation scheme
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modeling both RTS and NBTI as a trap-detrap phenomena. Bedsults of the method-
ology are presented in this manuscript and the implememtatill be important to our
group in order to study the impact of RTS and NBTI on electrdauits in the future.

An ongoing project, in cooperation with Texas Instrumeimgends to employ the
trap-detrap simulation to analyze jitter of oscillatorsieTmethodology was implemented
in NGSPICE, an open-source electrical simulator. We hawveespreliminary results
of the impact of RTS on jitter of ring oscillators, althoudtey are not present in this
manuscript. Our group at UFRGS will continue studying tcsgtrap phenome in the
near future and the methodology present in this work is thyet&ehnology allowing the
simulation of this phenomena.

The trap-detrap simulation also benefits from a researclaperation with Arizona
State University (ASU). The group of Prof. Dragica Vasilesit ASU performed atom-
istic simulations to study the impact of interface traps id5mm by 50nm transistor,
taking into account the interaction between RDF and RTSirFasult is the most accu-
rate simulation data exists nowadays of the impact of orexfente trap to th&/'t of the
transistor. These state-of-the-art data contributeddatituracy of our simulations.

This work has employed three simulation methodologies fopagating variability
and reliability models to the circuit level. We vastly empldonte Carlo method, which
is the most common statistical simulation method. Howeveargropagation and re-
sponse surface methodology were developed in order to noerfariability simulation
with speedup of many orders of magnitude, while accuracyparable to Monte Carlo
is achieved.

We were among the pioneers to employ the classical erroiggaton formulation us-
ing linear sensitivity analysis for variability simulati@f special purpose circuits, such as
SRAM, in 2005. By performing n+1 simulation, being n the nienbf random variables,
error propagation using sensitivity analysis gives ameste of the standard deviation of
the circuit response. It is the simplest and most efficientho to perform statistical
analysis of circuit blocks. Error propagation is so sucfiddbat nowadays commercial
EDA suites provide support for variability analysis thrdugear sensitivity analysis out
of the box.

This work describes a novel methodology based on Resporac8Methodology
for statistical characterization of circuit blocks. A neesign of experiments, the Brussel
design, is paired with a model selection algorithm, allayvétcurate representation of the
non-linear relationship between the input variabilityclswasVt variation, to the circuit
response, such as delay and power. The methodology, of wiedRhD proponent is co-
inventor, is protected under patents in the Europeans UanadrUnited States of America,
with title "Response Characterization of an electronideysunder variability effects”.

Error propagation using linear sensitivity analysis andvR$how average errors of
less than 2% compared to MC for statistical characterinatiioa production level 32nm
standard cell library. Unlike MC, the number of simulatiorguired by RSM and sensi-
tivity analysis is a function of the number of devices of tlirewit. Being n the number
of random variables, RSM requires 2n+1 electrical simaladiand error propagation
requires n+1. Thus the speedup of RSM and linear sensitwigr Monte Carlo is in-
versely proportional to the number of transistor of the @it.c Roughly, RSM and error
propagation are recommended for circuits with up to one hech@100) devices. For
larger circuits Monte Carlo is the best all-around geneoicson, although ad-hoc solu-
tions usually present better accuracy-runtime tradeo#méwailable, e.g Statistical Static
Timing Analysis.
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Support for statistical analysis of integrated circuits laproved tremendously in the
last decade, and our group has been in the right track progasethodologies to speed
up the time consuming Monte Carlo. Moreover, new issuestiagaimpacting the reli-
ability of devices have been imposing new challenges foddsegn of integrated circuits.
In this work we propose new models to deal with some of theseeis Reliability mod-
eling and statistical analysis of digital circuits stillgigres manual intervention, ad-hoc
methods and expertise from the designer, since it is far fagmush-of-a-button process.
We hope this work can contribute to the advance of the mieatednics industry and to
the scientific community with small but important steps.
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APENDICEA MODELAGEM DE CONFIABILIDADE E VA-
RIABILIDADE DE TRANSISTORES EM NIVEL ELETRICO

Tradicionalmente, projetistas de circuitos integrad@s)ldigitais contavam com ni-
veis de abstrag&o onde variabilidade no processo de fghoexa intrinsecamente levada
em consideracao, contudo ficava escondida do projetistadefiornar o fluxo de projeto
mais simples. Uma vez que o projetista desenhasse o cimmitconformidade com as
regras de projeto, 0s casos extremos de comportamentoadit@ipoderiam ser simula-
dos com os modelos fornecidos. O designer poderia espegar chup funcionasse dentro
das especificagOes definidas pelandry. Na verdade, o projetista esperava que @it
porcentagende chips atendesse aos requisitos, enquanto o concerendienentoera
implicito ao projetista e era de responsabilidade da foundr

Entretanto, considerando-se que as dimensdes dos taaasiatuais esta na escala de
dezenas de nano-metros, pequenos desvios das caramerikiidispositivo em relacéo
ao caso nominal podem levar a falhas no circuito. Em tecmadagano-métricas, estes
desvios podem acontecer ndo somente devido a defeitogelarproducédo, mas também
acontecem devido a impossibilidade do controle exato dectanisticas dos equipamen-
tos (por exemplo a profundidade exata na etapa de implantagica), e cada vez mais
a variabilidade intrinseca devido a discretude da matérizatse predominante. Esses
trés fatores (defeitos, variabilidade dos equipamentoariahilidade intrinseca) fazem
com que as caracteristicas elétricas dos transistoresndsentratadas como variaveis
aleatorias. Essa mudanca de paradigma, onde o comportasiétitco do circuito ndo
€ deterministico mas sim estatistico, imp&e novos desadits @ projeto de circuitos
analdgicos e digitais.

Conforme ilustra a figura 1.1, a variabilidade dos paransegtétricos dos transistores
pode ser decomposta em duas componentes: espacial e tempora

A variabilidade espacial pode ser ainda decomposta em pai@sngue apresentam
variacoes entre pastilhas (D2D, do ingtfie-to-dig e parametros que apresentam va-
riabilidade dentro da pastilha (WD, do inglésthin-die )(ZUCHOWSKI et al., 2004)
(ORSHANSKY et al., 2002). Variabilidade D2D pode acontetmrido a assimetria nos
equipamentos (como assimetria na distribuicdo do gasaldatuma camara e gradientes
de temperatura em um forno) ou imperfeicbes na operacaowdpagnentos e no fluxo
de processo. Essas assimetrias afetam a média de um parémtedrpastilhasyaferou
lote.

Variabilidade nos parametros WD pode ainda ser decoompeostduas componen-
tes: variabilidade sistematica e variabilidade aleat(wia intrinseca). Variacbes WD
aleatdrias sao originarias de inumeras fontes relacianaslaaracteristicas quanticas dos
materiais, tais como a discretude da matéria e energia ¢(&tal@ dopante, fétons, etc).
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Variabilidade
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Entre pastilhas

RDF, LER, Process Gradients, NBTI, HCI, SET/SEU, RTS,

Figura A.1: Classificacédo de variabilidade em temporal @ae@spsegundo Wirth (2010).

Em tecnologias atuais a variabilidade intrinseca alemj@rdomina as outras fontes de
variabilidade e devido a tendéncia de miniaturizacdo este de tornar cada vez mais
importante.

A componente temporal pode ser dividida em envelhecimevdoiacdes transitorias.
As principais razGes para a variabilidade temporal sdoafpjura e emisséo de elétrons
por armadilhas no silicio e na interface entre silicio e 6xii@ silicio dos dispositivos
e 2) particulas de radiacao atingindo o dispositivo. O dmemento € a degradacdo
sistematica das caracteristicas do transistor, como @onebo a corrente maxima de um
transistor PMOS ficando mais fraca ao longo do tempo devidstabilidade acelerada
por temperatura e tensdo (NBTI). Variabilidade transit&do mudancas instantaneas ou
intermitentes na corrente do dispositivo, que pode serackupor radiagdo ou sinais
aleatorios telegraficos (RTS).

A demanda da industria para projetar circuitos em tecnakbgano-métricas exige
pesquisa em duas areas relacionadas a integracédo da tparedderramentas de CAD:
1) modelagem de confiabilidade de transistores e 2) metgidsipara analise de circui-
tos integrados considerando confiabilidade. A secdo de 8légeém e Simulagdo” do
Roteiro Internacional dos Semicondutores 2009 (ASSOGDN,I2009) aponta para a
necessidade de modelos para fenbmenos de captura e emasdétrahs por armadilhas
como RTS e NBTI. O ITRS também aposta a necessidade neatssidanetodologias
de simulacéo de confiabilidade de circuitos CMOS.

Neste trabalho de doutorado foram estudados e propostosas/aestas duas areas
inter-relacionadas de pesquisa: modelagem de confiatbdidanetodologias de simula-
cao de variabilidade. Esta tese apresenta novos modeddistsds de RTS e NBTI. Estes
modelos estatisticos sdo aplicados a circuitos para edtidaso. Além disso, essa tese
propde metodologias eficientes de simulacdo estatisticgpagacao de incertezas utili-
zando derivadas numéricas e metodologia de superficiesgesta sdo implementadas e
suas eficiéncias sdo avaliadas em relacdo a simulacfes Marte
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A.1 Variabilidade temporal causada por emissao e captura poar-
madilhas de interface

No dominio tempo, capturas e emissdes de elétrons por dhaadcargas positivas)
no silicio e na interface entre silicio e o 6xido de siliciddmsistor causam flutuacées na
sua corrente ao longo do tempo, mesmo mant&gke V dsconstantes. Estas flutuacdes
sao discretas: quando a armadiiteaptura um elétron, a corrente Ids diminui &has;.

O estado de todas as armadilhas na interface somam-se paax #flutuacao total da
corrente em um dado instante de tempo.

A figura A.2(a) mostra a currente do transistor variando die\dos sinais aleatorios
telegéaficos (RTS, do inglés Random Telegraph Signals). RZ$dm que a corrente do
transistor, e portanto os parametros elétricos relaciomadcorrente como por exemplo
tensao de limiar, oscilem em niveis discretos intermitaeiae ao longo do tempo. Insta-
bilidade acelerada por temperatura e tensao (NBTI, dosng&gative Bias Temperature
Instability ) contudo, trata-se do aumento sistematico tmV seja, diminui¢cao da cor-
rente do transistor, ao longo do tempo. Essa degradacaddefaatze pela temperatura
e, especialmente, pela tensdo aplicada no gate do trangtmecanismo de NBTI é
dito ter duas fases: stress, quando tenséo é aplicada negatiperacédo, com tenséo
nula. Na fase de stress percebe-se que o0 Vt do transistoménemquanto na fase de
recuperacao o Vt diminui parcialmente. A figura A.2(b) masjue NBTI apresenta uma
componente semelhante a RTS, segundo Kaczer (2011). Até, entnodelo mais aceito
para NBTI tem sido o modelo de reacao-difusdo, o qual expli8al como sendo cau-
sado pela quebra das ligacdes entre hidrogénio e silicintadace entre o silicio e 6xido
de silicio. O modelo de reacao-difusdo, apesar de amplanagiotado, tem problemas
ao explicar a rapida recuperagdo que acontece assim quess étremovido, como nas
medidas da figura A.2(b).

Wirth (2011) apresenta analises tedricas e simulacbeseMoeario do componente de
captura e emissao responsavel por BTI. O trabalho apresamtaodelo analitico valido
para as fases de stress e de recuperacdo. A teoria assumedgueupnao existir um
mecanismo de geracdo de novas armadilhas na interface dgmdontempo. Pode haver
geracao de novas cargas positivas devido a quebra dasdgdethidrogénio, conforme
assumia a teoria classica de NBTI, modelo de reacéo-difuSaatudo, existe possibi-
lidade de que muitos traps que causam NBTI sejam traps copotemddio de captura
e emissdo muito longos. Assim, uma parte das armadilhaslmantio para NBTI sé&o
armadilhas com comportamento semelhante a armadilhas®asScom uma diferenca
importante:

e as armadilhas causando NBTI tém diferencas de varias odéensgmgnitude com
relacdo a suas probabilidades de captura e emisséo;

e enquanto as armadilhas que contribuem para o ruido RTS tébalpitidades de
captura e emissao de mesma ordem de magnitude.

Essa secdo mostra a metodologia de simulacdo proposta é¢m(@04.1), a qual é
valida para simular RTS e NBTI. Cada transistor contém umia s& armadilhas, que
em um dado instante de tempo podem estar ocupadas ou vazpendzndo do seu
estado atual, cada armadilha tem uma probabilidade deraaptw emitir um elétron no
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Figura A.2: (a) Representacdo do impacto de sinais aleattelegéficos na corrente do
transistor e como pode ser modelado com flutuacdes em Vt egthipiacs de instabilidade
acelerada por tenséo e temperatura em um dispositivo de 90 nn? realizadas por
Kaczer (2011).

estado seguintepge pc) dadas por:

pc=Pr(ai(t) =0—1) = §
pe=Pr(Gi()=1-0) = = (A1)

ondeAt é o intervalo de tempa, e 1. Sd0 0s tempos médios de emissao e captura, que
por sua vez séo calculados como:

: Ei —E
Te=10"P'(1+exp :< T S
b
- E—E
T = 10P (1 + exp———1) (A.2)
KpT

onde para a carga positiyay, € a constante de Boltzmai € a temperatura do disposi-
tivo em Kelvin,E¢ é o nivel de Fermi do transista, € o nivel de energia da armadilha
i e p; € a constante de tempo da armadilha. As armadilhas tém migeinergia dentro
do bandgap proibido e a distribuicdo de sua energia segualistniduicdo em foma de
U (WIRTH et al., 2009; WIRTH; SILVA; KACZER, 2011). O nivel deermi depende da
tensao nos terminais de transistor e € precisamente cadceta nosso modelo através de
ajuste de funcao.

A figura A.3 mostra 100 simulagbes Monte Carlo referentesez@gdes do modelo
dindmico (Cadeias de Markov) de RTS ao longo de 2us. Cada caixesponde a uma
rodada da Cadeia de Markov (durante 2us) inicializada cowr sgmente aleatoria dife-
rente. E importante ressaltar a necessidade de se rodarionuagio Monte Carlo de
Cadeias de Markov: uma rodada apenas néo seria repregamtatcomportamento do
transistor, pois cada rodada trata-se de um transistor ¢onero de armadilhas, constan-
tes de tempo @évti distintos. Assim, a figura mostra que, para os parametrbzaatos,
RTS pode causar variacdes de mais de 250mV.

A simulacao se refere a um modelo de tecnologia de 45nm (P®M)a dimensio-
namento L = 45nm e W= 50nm , e tensao entre bulk e source Vbs = Dédia é de
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Figura A.3: Distribui¢cdes do Vth do transistor ao longo d@ $tnulacdes Monte Carlo
das Cadeias de Markov.

overlineV = 515mV, e seu desvio padréo € dg; = 59mV. Essa simulacao refere-se
RTS e ndo a NBTI porque 1) ndo ha mecanismo de geracéo de trdgsgo do tempo
e 2) as constantes de tempo das armadifiiastdo no intervalo [-5, -8]. Para simular
NBTI, valores menores de pi deveriam ser permitidos.

Nessa simulacédo o niumero médio de armadilhas interface éa®@day;, = 80), o
qual esta de acordo com dados de Wirth (2005), linearmerdgsaalados para as dimen-
sbes do dispositivo aqui simulado. A distribuicéo das flges causadas por uma Unica
armadilhadvt; foram obtidas através de simulacfes atomisticas despora€amargo
(2010).

A.2 Modelos de Simulacao

Dada a natureza estatistica do processo de fabricacaotesésticas elétricas como
Vt (tenséo de limiar) A3 /B (variacdo na corrente) dos transistores podem ser modelada
como variaveis aleatorias. Este trabalho visa modelar aatgdas flutuagdes estatisticas
deVt e AB/B em circuitos elétricos. Para isso, foram utilizadas tréodwmogias para
propagar as incertezas das entradas e avaliar seu impaatocodo elétrico: Monte
Carlo, propagacéo de erros (EP) e metodologia de supetiéaiesposta (RSM).

Monte Carlo é a metodologia mais comumente empregada pawesiao de variabi-
lidade em circuitos elétricos. Simulacdo Monte Carlo (SYABY'S, 2005) é comumente
empregada para calcular a funcao de densidade de prolaledPDF) de alguma res-
posta do circuito (atraso, poténcia, corrente de fuga, Mas para isso € necessario
um grande namero de simulacdes elétricas, pois o erro enmlagjbrs Monte Carlo é
O(1/,/Nsample- E 0 método mais simples de implementar e mais preciso, domaguer
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maior tempo de simulagdo. Métodos alternativos a MonteoGsib de grande interesse
para a indastria, a fim de reduzir os tempos de simulacéo.aBegao de erros usando
derivadas lineares esta comecando a ser empregado naiagastferramentas de CAD
comerciais. A Metodologia de Superficie de Resposta (RSWgsentada a seguir foi
proposta e desenvolvida no ambito deste doutorado.

A.2.1 Propagacao de erros

As respostas do circuito (as saidas da simulacado), tais desempenho e poténcia,
sao variaveis aleateatorias e podem ser modeladas utitzamétodo da propagacéao de
incertezas (PARRAT, 1961). A fim de usar essa abordagem,silymsices devem ser
feitas:

1. as variaveis aleatorias de entrada seguem uma dis&ddigrmal;

2. a funcéo de propagacéao pode ser aproximada por uma fuing@o ha regido de
interesse.

A partir desses pressupostos entdo a saida da simulag@sn(pbr exemplo) pode ser
aproximada como uma variavel aleatéria Normal, e seus mtwa@odem ser calculados
analiticamente. A partir dos desvios padr@gs e gz de cada transistdr calcula-se
1) a simulacdo nominabverlinese 2) as derivadas parciais de cada resposta para cada
parametro de entrada, ou seja, Sgi, que sao calculadas numericamente como em:

f(\/—'[l,,Vh-i-S,,th, 1,...,Bn>—§

Svti =

f(Vi,....Vin,B1,....Bi+€&....Bn) =35
S = (Vi th, B1 : B Bn) (A3)

ondef (Vty,...,Vi, B1, ..., Bn) SA0 as caracteristicas da célula (tais como atrasos de su-
bida e descida, tempos de transicéo, poténcia, etc), quersgdes das variacoes ent

e 3 dosn transistores. A partir da simulacdo nominal e das derivadagais, a funcéo

de propagacao pode ser aproximada por uma funcéo linear:

n
¥i =5+ Zl [sviiAVt + S5 AB ] (A.4)
i=
Sendo assim a resposta do circuitode ser considerada uma distribuicdo normal

com média e variancia dadas por (BRUSAMARELLO, 2006; BRUSYRELLO et al.,
2008):

Hp~'S
{ GFZ) ~ Zinzl [(S’\/tiO-Vti>2+ (Sﬁiaﬁi)z] (A.5)

A.2.2 Metodologia de Superficie de Resposta

LA invencg&o descrita neste capitulo esta protegida por fest@a Unido Européia (MIRANDA; ROUS-
SEL; BRUSAMARELLO, 2010) e Estados Unidos da América (MIRBA! ROUSSEL; BRUSAMA-
RELLO, 2011).
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A fim de obter precisdo semelhante a Monte Carlo com ganho siengeenho de
ordens de magnitude, este capitulo apresenta o uso de Ntej@dde Superficie de Res-
posta. A metodologia é dividida em duas etapas. O primessgaonsiste em um novo
Projeto de Experimentos (Brussel) que realiza a selecapaiu®s do espaco de entra-
das e garante a relevancia estatistica desses pontos. gloptejexperimentos Brussel é
combinado com um algoritmo de selecdo de modelo. Esse @mgoencontra a fungao
nao-linear de regressao mais adequada para represensgoateedo circuito em funcao
das variaveis aleatorias.

O primeiro passo da metodologia de superficie de respostalizar projeto de ex-
perimentos (MYERS; MONTGOMERY, 2002). O objetivo destapaté encontralyoe
pontos que sao representativos para o espaco n-dimendewatiaveis aleatérias. Nesta
fase ndo ha nenhum conhecimento prévio sobre a funcdo dagargfo a ser modelada.
Os pontos precisam ser selecionados de tal maneira quenttdnédo quanto possivel o
dominio da distribuicdo da entrada. A seguir € apresentgmoaedimento proposto por
Philippe Roussel para a selecéo dos pontos.

Seja um ensamble Monte Cafid' com uma amostra de tamanhbda funcéo de
n-dimensodes representado pela mditiz n:

VtizL Bl; Vtzz 32; Vté/z B&ZZ
Vit Vit .V
o | VE R VE B Ve B (A.6)
vl gNoved gL Vtg'/2 nN/Z

ondey; corresponde &ésima rodada Monte Carlo e j correspondg-@sima variavel
aleatdria. A seguir sera explicado o procedimento de seldpd pontos sem fazer a
"cobertura” do dominio de entrada por algum método de saaéiz da PDF, como por
exemplo o método das Multiplas Gaussianas que é utilizasoétodo descrito por Bru-
samarello (2011), do dominio de entrada.

Inicialmente calcula-se um vetor das médias das colunastt&rde entrada, o qual é
dado portt = {1, o, . .., Un }. Similarmente calcula-se uma matriz diagonal dos desvios
padrbes das variaveis (cada coluna da matjzle entrada:

o1 0O --- 0
0 gy - 0

o=\ . . . . (A.7)
0 o --. On

Entdo pode-se facilmente calcular também a matriz de eg&elcomo em:

1 p12 - Pin
1 ...
p= p:21 A p:zn (A-8)
Pni P2 - 1

ondepm, € a correlacdo entre as variaveis m, por exempldv/t de um dado transistor
comVt do outro transistor. A seguir calcula-se a matriz de autest
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e 0 - 0
0 . 0

0 B (A.9)
0O 0 - €n

e 0 vetor de autovalores= [ej,ey,...,6en)n. Pode-se entdo contruir uma estrutura de
dados Ellipsoid:

c= [On
Ellipsoid{ 7= qx?(g,n)veé (A.10)
A= E

o qual representa o elipsdide dalimensdes, com centro na origem, raio do eixo dado
porgx?(q,n)v/ésendagy?(q,n) a funcdo quantil Qui-Quadrado para uma distanaia
centro da distribuicéo a graus de liberdade, alinhado com os angWlod?or exemplo

g = 0.997 é o equivalente a uma distancia de ¢ média no caso de= 1. A seguir
constroi-se uma matriz de dimensd@st2l x n que sera usada posteriormente:

ri 0 0
0 ) 0
M=| 0 o M (A.11)
—I1 0 0
0 —I2 0
0 0 - —rn

E finalmente calcula-se a matiz de dimensdes de n colunas (variaveis)net+2l
linhas, sendo que cada linha representa uma simulacao:

B=(MAG+1)" (A.12)

Assim, a matriB, com A+ 1 linhas € uma selecdo de pontos artificialmente criados
para representar a matriz da simulagcéo Monte JaloO ganho de performance obtido
pela metodologia esta no fato de tfé tem N linhas, e para um nimero pequeno de
variaveis (como € o caso em circuitos especificos como sélidaima biblioteca, célula
de memodria SRAM, etc N >> 2n+ 1. A figura A.4 mostra 0s pontos selecionados pela
metodologia para um inversor.

O proximo passo da metodologia consiste em rodaf 2 simulacdes elétricas. Apds
a execucao das simulacoes, faz-se um ajuste de funcéo a froag@mar uma funcéo que
relacione as variaveis aleatorias com o resultado das agdes$ (atraso, poténcia, etc). O
ajuste e selecdo de modelo ndo-linear é dividido em tréagtap

1. Ajuste inicial: fazer ajuste linear aos dados;
2. Reducéo de varidveisremover termos insignificantes;

3. Melhoria do modelo: interativamente adicionar termos nao lineares e termaos cru
zados.
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Figura A.4: Diagonal superior: pares de distribuicée¥ tle 3 de um inversor. Os pontos
maiores sdo 0s pontos propostos pelo Brussel DoE, enqusipantos pequenos corres-
pondem aos 1,000 pontos de Monte Carlo. Diagonal infermeficientes de correlacao.
Diagonal: histogramas.

Inicialmente é feito um ajuste linear de forma que:
Hi = ag, Xg, + 02, X0, + ...+ Oy Xny + &i (A.13)

ondeH; é a saida da-ésima simulacéo elétrica sendo<li < 2n+ 1, sendox; a va-
riavel onde 1< j < n. O Método dos Minimos Quadrados busca minimizar a soma dos
quadrados dos residuos conforp@ ! e2.

Foi desenvolvido um algoritmo interativo que remove vagiawque nao tornam o fit
melhor. Por exemplo, o atraso de subida de um inversor ndcefagéo (ou pode-se dizer
que tem uma relacdo tao baixa que € desprezivel) com o Vtugistar NMOS. O algo-
ritmo é baseado no Critério de Informacao Bayesiano (Bl@p@sto por Schwarz (1978).

A listagem A.1 apresenta o algoritmo de reducéo de variaveis

repetir {
para cada variavelx da funcédof {
fo<— remove termox da funcao f
Se BIC(fo) <BIC(f) {
armazenaf, na lista L ordenada pomBIC(fy)
}
}

f— seleciona modelo da lista L com menor BIC
}até modelo ndao melhorar

Listing A.1: Reducéo de variaveis
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O resultado da execucéo do algoritmo A.1 é uma fun¢éo desdjnstr que contém
menos termos do que o modelo linear completo descrito pelaAel. Além de mais
compacto, sendo o algoritmo guloso, a funcéo apresenta umelfitor do que o fit inicial,
segundo o critério de informacéo bayesiano.

O passo seguinte da metodologia é uma continuagdo do passmmano sentido
que se busca uma fungao de ajuste com BIC ainda melhor. O BI€ g melhorado
ainda mais através da insercao de termos quadraticos e daltamordem, assim como
termos cruzados (um termo linear multiplicando outro tefimear, assim como termos
quadraticos multiplicando termos lineares e assim portd)anA listagem A.2 mostra
0 método utilizado para melhoria da funcao de ajuste. O noégoitbso para de inserir
termos quando nao é possivel obter um fit com BIC melhor oudpuamimero de termos
ultrapassa um limite pré-determinado: o numero de termdarzio de ajuste deve ser
menor do que o tamanho da amostra (2n+1).

repetir{
para cada variavelx da funcao f{
para k=1..z {

faga+— adiciona termoxt
guarda faqg na lista L ordenado pomBIC(faqq)
}
fremoves— remove termox;
guarda fremove Na lista L ordenado pomIC(fremove
para cada variavelx; da funcéao f{
feross-term+— adiciona termox xX;
guarda feossterm Na lista L ordenado pomBIC(feoss-term)
}
}
se ( melhor BIC guardado em k BIC(f)){
f<— escolhe modelo de L com menor BIC
Neoeff < nUmero de coeficientes dé

}

} até modelo ndo melhorar OWgeess> 0.6Ngoe

Listing A.2: Melhoria do modelo

A.3 Caracterizacao de Biblioteca de Células

Esta secdo apresenta resultados da caracterizacdo de oamjsuibo de células de
uma biblioteca para um né tecnoldgico de 32nm. As célulaceriadas sdo apresen-
tados na tabela A.1. As bibliotecas geradas pelas ferramesdo compativeis com o
formato Liberty da Synopsys (.LIB), o qual as ferramentadedae também dao suporte.
A caracterizagdo da biblioteca estatistica foi realizasindo as 3 metodologias de ana-
lise:

1. Monte Carlo:método de referéncia, sendo 1000 o tamanho da amostra;

2. propagacédo de erro usando analise de derivada lineaxige n +1 simulacfes e
calcula o desvio padréao através de propagacao de erroadas\sao calculadas
numericamente;
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Tabela A.1: Comparacéo de Propagacao de Erros e Metodaledtuperficie de Res-
posta com Monte Carlo.

Metodologia de Superficie de Respostg Propagacéo de Erros
Porta Param Herr Oerr Serr Kerr | 30err r. Herr Oerr Serr Kerr 30err r.
(%) | (%) | (%) | (%) | (%) (%) | (%) | (%) | (%) | (%)
delay 0 0.5 | -13.3| 0.7 0 -0.1| -25 | -100| 2.2 -0.9
INV transition| O 1.7 | -274 ] 6.2 | -02 | 9 | -0.2 | -10.8| -100 | -17.9| -2 5
power -16 | -0.7| -7.5 0 -1.4 NA NA NA NA NA
delay 0 09 | -11.9| 45 0 -0.7 | -17.9| -100| 2.2 -3
NAND2 | transition| O 15| 10.8 | 4.1 05 | 17| -01| 8.8 | -100| 12.2| 0.3 9
power 04 | -75]| -11 -5 5.4 NA NA NA NA NA

delay -0.1| -24 | -25.8| 3.9 1 0 -46 | -100| -6.8 3.7
NOR2 transition| 0.1 | 3.1 | -26.5 | -3.1 0 17 0 -43 | -100| -34 | -1.2 | 9
power -06 | 3.8 | 228 | -0.9 0 NA NA NA NA NA

delay 0.1 0 16.8 | 0.7 | 0.1 02| -64 | -100| 54 | -05
XOR2 transition| O 34 | -28.3| 15 01 (41| 02| -86 | -100| 8.4 15 | 21

power 0 55| -435] 41 1.7 NA NA NA NA NA

hold -0.8| 1.1 | -10.7| 2.2 3.9 55| -31 | -100| 4.1 | 11.3
DDFQ setup 0.4 0 -33.1| 0.2 1.1 | 97| -39 -16 | -100| -1.9 | 2.3 | 49

CLK-Q 0 1.4 | -8.6 -1 0.1 -05] -75 | -100] -15 | 2.7

power 0 25| -224| 5 0 NA NA NA NA NA

[ [IMédia| (tempo) | 0.14] 1.45] 19.38] 2.55 | 0.64 |

1.04] 692] 100 | 6 [ 2.67 |

3. Non-Linear RSMmetodologia de superficie de resposta, usando Brussel DoE e
método para busca de fit ndo linear.

Cada uma das iteracOes de caracterizacao da bibliotecdulasdéva aproximada-
mente trés minutos em um servidor com 10 processadores. ubaagle consome mais
tempo é o flip-flop, o qual leva cerca de 90% do tempo da caizat&io do grupo. Assim,
o tempo total de caracterizacdo das 1000 iteracdes de Manie &€de 49 horas. Usando
0 mesmo ambiente paralelo, a caracterizacao leva apenafagéa desse tempo para
as alternativas: 2 horas para a propagacao de erros usariads numeéricas e 4 horas
para o RSM néo-linear.

Atabela A.1 mostra a comparacao entre os momentos davdisies geradas usando
os 3 diferentes métodos de caracterizacao citados acinma.cRda parametro, a tabela
mostra o erro relativo entre os quatro momentos das digtibs: médiaerr), desvio-
padrao fgrr ), assimetria®r ) € curtose Kerr). O terceiro e quarto momentos indicam
respectivamente o grau de assimetria e 0 peso da cauda deBlifamte. Além disso,
a tabela apresenta®,; , que € o erro de as aproximacoes a uma distancia #7990
da média da distribuicdo. Esse dado mostra o qualidade daia@acédo na cauda das
distribui¢des.

A ultimalinha da Tabela 7.2 apresenta a média dos erroswtbsale tempos de atraso
e de transicdo. A poténcia ndo é levada em conta para calaslmédias, porque esta
informacgé&o ndo é disponivel para a propagacao de errosr@stedesvio padraoe me-
dia sdo abaixo de 2% para a Metodologia Superficie de RespdSh)(Rm comparagéo
com os erros de 7% quando se utiliza propagacéo de erro (BRBgrée que EP limita
a distribuicdo a ser tratada como Normal, e assim, por déafnia sua saida € sempre
limitada aS= 3 eK =0.
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7 s

A coluna “r” é o nimero de simulacdes elétricas necessadaRBM e EP. E impor-
tante notar que para ambos os métodos o numero de simuldétiesas € linearmente
dependente do namero de transistores do dispositivo, atmoanumero de simulacéo
Monte Carlo é arbitrario. As simulacdes elétricas sdo opasss demorado de Monte
Carlo, EP e RSM. Uma simulacao leva exatamente a mesma dadatile tempo para
cada uma dessas metodologias. Assim, o nimero de simukléfrisas € a métrica mais
representativas de desempenho. O numero de simulacfessaeas por EP e RSM é
n+1e M+ 1, respectivamente, sendo W$ numero de variaveis. Embora, o numero de
rodadas Monte Carlo é independente do nimero de entradasalkeferéncia usa tama-
nho da amostra de 1000, mas este niumero poderia ser aumpatadoaior precisao.

Sendo o tempo de execucdo de EP e RSM linear nimero de toaesjst aceleracdo
destes sobre Monte Carlo € inversamente proporcional ale@idpde da porta. Con-
siderando 2 variaveis por transist®t(e 3), isso limita a aplicabilidade de RSM para
circuitos com menos dil/4transistoresonde N € o numero de simula¢des de Monte
Carlo. Contudo propagacéo de erros apresenta ganho depseonsobre Monte Carlo
para circuitos com atll /2 transistores.

A figura A.5 apresenta a distribuicdo de tempo de espera {imoéJ do flip-flop (FF).
No inset do gréafico é mostrado o histograma de Monte Carler@atia), bem como as
curvas que representam os PDFs obtidas usando propagae@&osie RSM ndo-linear.
Como PDF e histograma em escala linear ndo tém informacaoesué a respeito da
cauda da distribuicdo, o grafico principal mostra o Quagu#éntil plot (g-q plot), uma
ferramenta muito difundida entre a comunidade de Esteais® eixo x mostra o quantil
da distribuicéo, i.e. distancia em desvios padrdes da médaeixo y mostra o tempo
de espera (hold time). Usando esta técnica permite-noficeerijue o0 RSM nao-linear
tem concordancia perfeita com as simulagdes de Monte Carlefdréncia em todo o
dominio da distribuicdo: no centro e as caudas. Por outim lagropagacao de erros
usando analise de derivadas linear nesse caso apresenteuaide aproximadamente
-1 % na média da distribuicdo (quantil zero), mas torna-sie imgrecisa nas caudas da
distribui¢ao.

A.4 Conclusoes

Este trabalho de doutorado apresenta um estudo sobreeaestiistica de circuitos
integrados. Metodologias para simulacdo de variabilidhaprocesso, ruido e envelhe-
cimento sdo propostos e testados em circuitos estudo de caso

Diferentes metodologias de simulacdo sdo empregadas paliaaa 0 impacto das
variagOes a diferentes classes de circuitos (células debibtiateca, caminhos logicos,
memoria e arvore de clock). Contudo, este resumo em poragésenta somente dois
dos topicos abordados no doutorado:

e modelagem dinamica em tempo de simulacao de fenébmenos tlgacapemissao
de elétrons por armadilhas de interface e

e metodologias de caracterizacdo estatistica de bibliadeceélulas considerando
variabilidade no processo de fabricagéo.

A possibilidade de relacéo entre sinais aleatorios telegisa (RTS) e instabilidade
acelerada por temperatura e tensdo (NBTI) surgiram recemte a partir da possibili-
dade de se explicar o comportamento de NBTI com modelosgh@stcidos de RTS. Isso
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Figura A.5: Grafico quantil-quantil e histograma do tempasdpera (hold time) do flip-
flop.

se deve ao fato de que os modelos de NBTI existentes, baseadonsdelo de reacao-
difusdo, ndo sdo capazes de explicar medidas experimeNtaistrabalho de cooperacéo
entre 0 Nosso grupo de pesquisa e o grupo de confiabilidaddiBG tomecou-se a in-
vestigar essa relacdo e propds-se um modelo capaz de ardespmelhor aos dados
experimentais.

A implementacdo de RSM foi integrada as ferramentas desangditatistica do IMEC.
O fluxo de RSM para a caracterizagao do circuito € protegithopstente nos Estados
Unidos da América e na Unido Européia, das quais o propoulesta tese de doutorado
€ co-inventor. Propagacéo de erros utilizando derivadagnoas e RSM apresentaram
erros médios abaixo de 2% em relagdo a Monte Carlo para a@earacdo de uma bibli-
oteca de tecnologia de 32nm, com um ganho de performancelemate 16.
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APPENDIX B INTEGRATION OF RESPONSE SURFACE
METHODOLOGY FLOW INTO CELL CHARACTERIZATION
USING VAM (DOCUMENTATION AND USER GUIDE)

B.1 RSM Flow for cell library characterization

Vaccinate netlists } genvelc
Brussel Design: -
brussel_design.m
- Select Ndoe artificial points } - g
[
Vaccinatg j++
Netlist
Al Electrical simulation
h{vtl.bl,...vtn.bn)
ELC (run.rsm.elc)
Distribution TRUE
dvt/dBeta
of transistors rS m S h
FALSE } collectsistorm

Build R5M Fit: )
Find optimal function f(vt1.b1,...xvtn.bn) which model_fit.r &
approximates hspice output hivtl,bl,...,vtn.bn) modelimprovement.r

v i++

Approximation function:
f(vtl.bl,...wtn.bn)

FALSE

model_fit.r

Compute statistical information
Fit Probability Density Function

B.2 RSMfiles
B.2.1 Top-level files

run_rsm.sh: wrapper script kept in the same directory of the vaccinatersig.m; setups
variables and calls rsm.sh.
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rsm.sh: top-level flow bash script. It takes input setup parametedsaaitomatically calls
all the required steps.

gen_brussel_patch.sh:patch mode for regenerating Brussel Design points part 1.

fit_patch.sh: patch mode part, for fitting regression and sampling fronppgation func-
tion.

B.2.2 Main algorithms

brussel_design.m:Mathematica code for generating Brussel DoE points.

model_fit.r: R code for reading brussel design inputs and outputs, Moat @puts,
reading configuration for model fit, and generates the MC wupbased on the
propagation function computed). Iterates over all thewirmetrics. Full Linear
and simplified linear models are generated by this script.

modelimprovement.r: R code that takes a full linear model and a simplified lineadeto
and, by iterativelly adding quadratic, adding cross-temsioving terms, finds the
best surrogate model to the circuit metrics.

B.2.3 Auxiliary files

convert_brussel_csv_lib.pl: Perl code for converting csv files into VAM’s parameters
dib.

parse_lib.pl: Perl code to to convert vaccinated dVt and dBeta in .lib ta..cs

B.3 Running the RSM flow for cell characterization

B.3.1 Required files in the vaccinate directory

Create a new directory, as would create for running coneeati VAM characteri-
zation flow. Copy the required files: clean, sourceme, elaefigron.setup (setup file),
part2.elc, preamble.elc, compactmodel.xml, runl.csh,sm.sh (top-level for rsm flow).

B.3.2 Editrun_rsm.sh

Manually edit the configuration variables:
rsm_dir: directory containing the RSM files mentioned in section “R&lEk”.
vam_dir: directory containing VAM code.

base_dir: vaccinate top-level folder (created in “Required files ie traccinate direc-
tory”).

geos: geometries to apply RSM (matched, c2c). Enter list of gedewbetween paren-
thesis separated by space; e.g. (matched c2c) or (matched)

configm: VAM configuration file.

sigma_distance_brussel [float 0-inf:] Controls the distance of the DoE points from the
average. Lower number gives a better approximation in timecef the distribu-
tion, higher gives a better approximation in the tails. Reotended: 3.
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accuracy_brussel_doH-2]: an integer either 1 or 2 specifying the number of DOE
points generated in relation to the number of variable n:

1. n+1 points, allows sufficient accuracy only for full limgagopagation model,

2. 2n+1 points, allows sufficient accuracy for quadratic elddcluding cross-
terms.

accuracy_fit [1-5 :] an integer between 1 and 5 to control accuracy of the prataig
function, 1 is fastest and 5 is most accurate:

Full linear;
Reduced linear model;
Quadratic terms;

Quadratic terms and allows insertion of linear terms whéarching quadratic
ones;

o NP

5. Quadratic and cross-terms.

ncpu: number of cpus to be used for the model selection algorithime dlgorithm is
massively parallel and speed scales linearly with numbepat. Recommended:
use all cpus available in the machine.

B.3.3 Patch options (re-run)

Patch[0-1]: 0 is normal mode and 1 means patch Brussel design points nkmlee
used if ELC failed to characterize some runs of a circuit.dppens because for a
given combination of Vt and Beta ELC cannot compute someimetnd a liberty
file is not generated for that Brussel run.

patch_ckt: circuit to be patched.
patch_runs: runs that failed, to be patched.
patch_g: geometry to be patched.

patch_sigma_distance_brussel_doe [float O-sigma_distan brussel_doe] Controls
the distance of the DoE points from the average for the patnh kower number
gives a better approximation in the center of the distrimytihigher gives a better
approximation in the tails. As a simulation has alreadyefdilising the previous
sigma_distance_brussel_doe use a smaller value, recodethed or 1.
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