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Abstract 

This work presents a geometric nonlinear dynamic analysis of plates and shells using 
eight-node hexahedral isoparametric elements. The main features of the present 
formulation are: (a) the element matrices are obtained using reduced integrations with 
hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the 
dynamic analysis, solving the corresponding equations of motion in terms of velocity 
components; (c) the Truesdell stress rate tensor is used; (d) the vector processor 
facilities existing in modern supercomputers were used. The results obtained are 
comparable with previous solutions in terms of accuracy and computational 
performance. 

Keywords: Plates and Shells, Dynamic Analysis, Geometric Nonlinearity, Finite 
Elements. 

  

  

 



Introduction 

Plates and shells are particular cases of three-dimensional solids and can be analyzed by 
the Finite Element Method (FEM) using different formulations. 

Plates analysis can be formulated using Kirchoff hypothesis (1850), which is applied to 
thin plates, or based on Reissner-Mindlin theory (1945-1951), which includes transverse 
shear deformation and is mainly applied to thick plates. In spite of the intense 
development of many specific element formulations for plate bending, based in Kirchoff 
or Reissner-Mindlin theories, plates in the present work are considered as a special case 
of shells. 

Membrane and bending shell theories were formulated by Lamé and Clapeyron (1833) 
and Aron (1874). Love (1927) presented the general bases of the shell theory and was 
followed later on by many authors such as Flügge (1934), Green and Zerna (1954), 
Novozilhov (1959), Timoshenko and Woinowsky-Krieger (1959), Flügge (1960) and 
Gol'denveizer (1961). Closed form analytical solutions were found for simple cases. In 
the last four decades, since the introduction of the FEM, this technique was applied to 
obtain solutions for more complex problems. 

The main type of elements employed in the analysis of shells are: the plane element 
(approximating a curved surface by an assembling of flat elements), the curved 
elements based on shell theories and the curved elements obtained by degeneration of 
three-dimensional solid elements. 

When shells are analyzed using flat elements several problems appear and, sometimes, 
they can lead to wrong solutions. The main problems are: coupling between bending 
and membrane behavior, difficulties to handle with inter-element boundaries in coplanar 
elements and the existence of spurious bending moments in inter-element boundaries. In 
order to improve shell representation many authors have used curved elements based on 
some shell theory and employing curvilinear coordinates. However, some difficulties 
arise in the generalized strain-displacement definition, in selecting a theory in which the 
strain energy is equal to zero for rigid body displacements and in the correct definition 
of angular displacements. 

Three-dimensional solid elements have been also used to model shells and, for this case, 
a particular shell theory is not necessary. In order to reduce the number of degrees of 
freedom and to avoid numerical drawbacks arising when three-dimensional solid 
elements are used, special elements obtained as degeneration of these three-dimensional 
elements were implemented and applied, first by Ahmad et al. (1970) and later by many 
authors such as Bathe (1996), Hughes (1987) and Liao and Reddy (1987), including 
different alternatives and improvements. In these type of elements the zero normal 
stress condition is imposed together with the hypothesis that ‘normals’ to the middle 
surface remain straight (but not necessarily ‘normals’) after the deformation; nodes and 
corresponding nodal unknowns are defined at the middle surface. 

When normal quadrature rules are used in three-dimensional degenerated elements, they 
tend to ‘lock’ in thin shells applications, especially for low-order elements. On the other 
hand, if a selective reduced integration rule is used to prevent shear locking, good 
results can be obtained for thin shells, but in this case rank deficiency (spurious 



‘mechanisms’) may appear and, although sometimes these spurious modes can be 
precluded from globally forming by appropriated boundary conditions, they represent a 
potential deficiency. The situation is even more acute when uniform reduced integration 
rules are used (Hughes, 1987). Another source of problems is the membrane locking. 
Much research has been undertaken to overcome shear and membrane locking in plate 
and shells. Many elements have been implemented and behave well for thin shell 
analysis. It is worthwhile to mention some elements that have been successfully applied 
such as the MITC family formulated by Bathe and co-workers (1996), or the shell 
elements implemented by Mc Neal (1978), Huang and Hinton (1986), Park and Stanley 
(1986), Hughes and Liu (1981), Belytschko, Liu, Ong and Lam (1985) and Belytschko, 
Stolarsky ,Liu, Carpenter and Ong (1985), among others. 

However, in large scale finite element analysis, with many unknowns involved, the 
efficiency is of crucial importance to reduce computational costs and speed-up the 
design procedure. The most efficient elements are those with linear interpolation 
functions and one-point quadrature with hourglass control. One of the first works in this 
direction was presented by Kosloff and Frazier (1978), but in their formulation it is 
necessary to solve 4 systems of 8 equations for distorted three-dimensional elements, 
and this is not cost efficient for dynamic analysis. Flanagan and Belytschko (1981), 
Belytschko (1983), and Belytschko, Ong, Liu and Kennedy (1984) presented a 
systematic and effective way to hourglass control, but in both formulations a parameter, 
to be defined by the user, is required.  

Some shell elements with one-point quadrature were formulated by Belytschko, Lin and 
Tsay (1984), Hallquist, Benson and Goudreau (1986), Liu, Law, Lam and Belytschko 
(1986), Belytschko, Wong and Chiang (1992). Belytschko and Binderman (1993) 
implemented the hourglass control of the eight-node hexahedral element, where the 
stabilization parameter is not required, although the stabilization matrix still depends on 
the Poisson coefficient; the aspect was eliminated by Liu, Hu and Belytschko (1994). 
More recently Zhu and Zacharia (1996) and Key and Hoff (1995) have also presented 
quadrilateral shell elements with the one-point quadrature and the hourglass control 
concept. 

The geometric nonlinear dynamic analysis of plates and shells using underintegrated 
eight-node hexahedral elements with hourglass control is presented in this work. Time 
integration is carried out using an explicit Taylor-Galerkin scheme and the Truesdell 
stress rate tensor is employed for the nonlinear analysis. Advantages arising from vector 
processors are also used. Comparative examples show the effectiveness of this 3-D solid 
element to analyze plates and shells without shear and membrane locking. 

  

The Explicit Taylor-Galerkin Scheme 

The equations of motion are given by the following expression (Hughes, 1987): 

(1) 



where vi are the velocity components,  is the specific mass,  ij are the stress tensor 
components, fi are the components of the body forces per unit volume and  is a 
damping coefficient; t and xi are the time and spatial coordinates respectively and  is 
the domain. 

The boundary conditions are given by: 

(2) 

where are prescribed values of the velocity components,  are prescribed values of 
the surface forces at the part  v of the boundary surface, nj is the cosine of the angle 
formed by the outward normal to the boundary surface   and the coordinate axis xj; 

being  the total boundary surface.  

The initial conditions are: 

(3) 

where ui
0 and vi

0 are the initial values of the displacement and velocity components, 
respectively. 

Expression (1) can be also written, in compact form, as follows: 

(4) 

with 

(5) 

where superposed index T indicates transpose vectors. 

Expanding  v in a Taylor series up to second order terms we obtain: 

(6) 

where indexes n+1 and n correspond to time level t = (n+1)*t and t = (n+1/2)*t, 
respectively, witht being the time step size. 

Taking into account expression (4), Eq. (6) may be written in the following form: 



(7) 

with 

(8) 

In expressions (7) and (8), superposed index n+1/2 corresponds to time level t = 
(n+1/2)*t. 

Introducing the damping term of expression (8) in (7) and taking into account that 
(Sj)

n+1/2 is a function of un+1/2 we can write: 

(9) 

Applying the classical Galerkin weighted residual method, the following matrix 
expression is obtained at element level: 

(10) 

where 

 

(11) 

In expression (11), N is a vector containing the element shape functions, B is a matrix 

involving shape functions derivatives, MC is the consistent mass matrix and 
is the vector of internal forces at the time level t = (n+1/2)*t. 

(12) 

In order to get , it is necessary to compute and this can be made using 
the following expression: 



Equation (10) is modified to obtain the final recurrence expression, wich is given by: 

(13) 

where ML is the lumped mass matrix and the index k is an iteration counter. The term 

changes in each iterative step, until convergence is achieved, but all other terms 
in the right hand side of Eq. (13) remain constant during the iterative process. In 
practical applications no significant differences were obtained in the results when these 
iterations were omitted. 

After assembly, applying boundary conditions and solving (13), velocity and 
displacement components are calculated with the following expressions: 

(14) 

In order to preserve numerical stability, it is necessary to takettcrit where tcrit is 
the critical time step determined by the Courant-Friedrichs-Levy (CFL) stability 
condition (Richtmyer and Morton, 1967). 

The computational procedure is given by the following steps: 

a. Calculate t=(n+1) t; 

b. Calculate ;  

c. Calculate ;  

d. Calculate ; 

e. Calculate ; 

f. Calculate ; 

g. Calculate  
h. is the constitutive matrix. 

i. Calculate obtained in the previous step; 

j. Calculate ; 
k. If t<ttotal then return to (a), otherwise go to (k); 
l. End of the process. 

  

The underintegrated eight-node hexahedrical element with hourglass control 

For an eight-node hexahedrical isoparametric element, the shape functions are given by: 

Nn( , , ) = 1/8(1+  n )(1+ n )(1+ n ) (n=1,..,8) (15) 



where  n,  n and  n are the natural coordinates  , and  of the element node   n  in 
consideration. 

The eight-node hexahedrical element is indicated in Fig. 1 with respect to its local 
system of reference  , and  and with respect to its global system of reference x1,x2 
and x3. 

  

 

  

  

The Jacobian matrix at the element center is given by: 

(16) 

where  , and  are vectors containing nodal coordinates with respect to the referential 
system  , and  and x1,x2 and x3 are the nodal coordinates with respect to the global 
system x1,x2 and x3. It can be shown that |J(0)|=  /8, where |J(0)| is the determinant of 
J(0). 

The matrix Bn(0), which contains the shape functions derivatives for each node   n  at 
the center of the element is given by: 

(17) 



where Nn,xi(0)=  Nn(0)/ xi for i=1,2,3. 

If J(0)-1 is denoted by G, the following expressions for vectors b1, b2 and b3 are 
obtained:  

(18) 

To identify the spurious mode patterns (or zero energy modes or ‘hourglass’ modes for 
the hexahedron) resulting from the non-constant strain field, due to the use of one-point 
quadrature, the following vectors are defined (Flanagan and Belytschko, 1981): 

(19) 

In Figure 2 a sketch of bending, torsion and non-physical displacement modes 
associated to these vectors are shown (Koh and Kikuchi, 1987). 

  

 

  

Strain and displacement components are related by the expression: 

(20) 

where contains the shape functions derivatives for each element node ‘n’ evaluated at 
the integration points and un is a vector which contains displacement components of the 
element node ‘n’.  

Expanding  in a Taylor series about the element center up to bilinear terms and taking 
into account expression (20), it is obtained: 



(21) 

The strain operator may be decomposed in its dilatational and deviatoric part. 

To avoid volumetric locking the dilatational part of the strain operator, is 
evaluated with a one-point quadrature and consequently all linear and bilinear terms 

disappear for this part, but remaining for the deviatoric strain operator . 
Then, expression (21) may be written as follows: 

(22) 

To eliminate shear locking, the deviatoric strain sub-matrices can be written in an 
orthogonal co-rotational coordinate system, rotating with the element. Only one linear 
term is left for shear strain components and thus removing modes causing shear locking.  

In the co-rotational coordinate system components of the strain submatrices, after 
removing volumetric and shear locking, can be written: 

(23.a) 

with similar expressions for . 

(23.b) 

(23.c) 

(23.d) 

As was observed by Belytschko and Bindeman (1993), in order to get that skewed 
elements (evaluated with one-point quadrature) pass the patch test, it is necessary to 
substitute b1n, b2n and b3n, in expression (17), by the uniform gradient matrices b1n, b2n 

and b3n, defined by Belytschko and Flanagan (1981), and given by: 

(24) 

Gradient vectors b1, b2 and b3 satisfy the following relations: 

(25.a) 



(25.b) 

where  ij is the Kronecker delta. 

The final form of matrix  in the co-rotational system, obtained after some algebric 
work and taken into account Eqs. (16) to (24), is given by the following expression: 

(26) 

where  

 

In Eq. (26) is a matrix formed with vectors , computed as indicated in 

Eq. (24), and is the stabilization matrix , which controls the hourglass 
modes. These matrices are evaluated using 4 integration points with coordinates (a,a,a), 

(-a,-a,a), (-a,a,-a) and (a,-a,-a), where .  1,  2, 3 and  4 are stabilization 
vectors. Use of 4 integration points is very important in problems where a plastic front 
exists, because it is difficult to define accurately such plastic front with only one 
integration point. 

Assuming that the determinant of the Jacobian matrix is constant and equal to 1/8 of the 
element volume, the internal force vector, expressed in (11), may be evaluated by the 
following expression: 

(27) 

Expression (27) may be rearranged to a more convenient form and can be written as, 



(28) 

where is the internal force vector evaluated at the four integration points and 
is the stabilization vector. 

The elimination of shear locking in plate or shell elements depends on the proper 
treatment of the shear strain. To this end it is necessary to use a co-rotational coordinate 
system attached to the element and rotating together with this element. Assume that x1, 
x2 and x3 are the coordinate axes of the global system and the 
corresponding coordinates axes in the co-rotational system (these axes will be 
coincident with the local system  , and  for undistorted elements). Two vectors r1 
and r2, coincident with  and  for undistorted elements, are defined as follows: 

(29) 

A correction term rc is added to r2 such that 

(30) 

The orthogonal system is completed with 

(31) 

Normalizing vectors r1, r2 + rc and r3, the elements of the rotation matrix R are 
obtained. The components of R are given by: 

(32) 

The coordinates may be transformed from the global system x to the co-rotational 
system by , where R is a matrix of order 24x24 with sub-matrices R of order 
3x3 in its diagonal blocks and 0 in all the off-diagonal blocks. A similar expression is 
used to transform velocity components. The vector Fint, given in (28), is expressed in the 
co-rotational system and the transformation to the global system is carried out 
multiplying R1 by the internal force vector referred to the co-rotational system. 

  



Constitutive Equations 

The Truesdell stress rate tensor (Prager, 1961) will be used in this work. The 
components of the Cauchy stress rate tensor are given by: 

(34) 

where Cijkl is a fourth order tensor containing are the elastic components of the 
constitutive matrix and 

(35) 

In (34) and (35) the superposed dot indicates derivative with respect to time. Expression 
(34) may be also written as (Hughes and Winget, 1980): 

(36) 

with 

(37) 

and 

(38) 

In matrix form the constitutive equations are given by: 

(39) 

where 

(40)  



In expression (39) , given by (40), correspond to the following order of strain 
rate and rotation rate components: 

(41) 

If the term is neglected in (34), the matrix C becomes a symmetric matrix given 
by:  

(42)  

The constitutive equation, which will be used to obtain the internal force, may be 
written in an incremental form as: 

(43) 

where . 

Expression (43) results in a non symmetric matrix, which is an important drawback in 
the evaluation of the stiffness matrix for static or dynamic analysis. Therefore, it is 
convenient to work with the following constitutive equations: 

(44) 

where T() is a symmetric matrix (also used by Liu, 1981). In expression (45) has the 
same form as C22, but with negative values in the off-diagonal terms. 

The internal force increment is given by: 

(45) 

where 



(46) 

and 

(47) 

In Eq. (47) the last matrix is the initial-stress matrix. 

  

Numerical Results 

Example 1 – Nonlinear transient response of a clamped beam 

The geometry and the finite element mesh of the beam are shown in Fig.3a. The 
material properties used in the example are: E= 2.0683x1011 N/m2 ,  = 2.714x103 
kg/m3 and  = 0. 

  



 

  

The intensity of the step load is P(t)= 2846.72 N and the time step used is t= 0.09 . 
The transient response is presented in Fig. 3b and is compared with the results obtained 
by Liao and Reddy (1987) using three-node beam elements and by Mondkar and Powell 
(1977) employing eight-node plane stress elements. In both References a Total 
Lagrangian formulation with the second Piola-Kirchoff stress tensor were used. 

Example 2 – Nonlinear dynamic analysis of a simply-supported stiffened plate 
subjected to uniform pressure 

The geometry of the stiffened plate is shown in Fig. 4. The material properties are: E= 
2.0683x1011 N/m2 ,  = 2.714x103 kg/m3 and  = 0.3. The intensity of the uniform step 
load is 25850 N/m2 and a time interval t 0.15  sec was adopted. Results are compared 
with those obtained by Liao and Reddy (1987) using nine-node shell elements for the 
plate and three-node beam elements for the stiffeners. 

  



 

  

In order to study the influence of mesh distortion, one quarter of the non-stiffened plate 
was modeled with an undistorted and a non uniform mesh, which are shown in Figs. 5a 
and 5b, respectively. Results obtained with these meshes are shown in Fig. 6. Finally, 
the transient response for the same plate, but with stiffeners, is presented in Fig. 7 and 
compared with the results obtained by Liao and Reddy (1987). 

  

 

  



 

  

 

  

Example 3 – Nonlinear dynamic analysis of a clamped spherical shell under a 
concentrated apex load  

The geometry, material properties and finite element mesh are shown in Fig. 8. The 
nonlinear transient response and a comparison with the results obtained by Bathe et ali. 
(1974), using eight-node axisymmetric elements and an implicit scheme and a Total 
Lagrangian formulation with the Second Piola-Kirchoff stress tensor, is shown in Fig. 9. 

  



 

  

 

  

Conclusions 

Good results were obtained in terms of accuracy and computational performance (about 
800 Mflops in a Cray T-94 supercomputer) for all the examples included in this work. 

In comparison with explicit time integration schemes conventionally employed in 
computational structural dynamics, the Taylor-Galerkin scheme used here is very fast 



and suitable for vectorization . It is not necessary to evaluate u-  in t=0 to start the time 
marching process, as required in the central difference method (Bathe,1996). 

The underintegrated element employed in this work is very efficient to solve 3-D 
problems and it behaves well when applied to the analysis of plates and shells, 
removing shear and membrane locking, which are usual drawbacks when low-order 
elements with reduced integration are used. Furthermore, the stabilization matrix does 
not depend from any parameter defined by the user as works based in Flanagan and 
Belytschko (1981) and on any material property as in the formulation used by 
Belytschko and Binderman (1993). 

The rate-type constitutive equation behaves well and material nonlinearity (plasticity or 
viscoplasticity) may be easily included. This aspect is favored by the fact that four 
integration points have been used, allowing a better representation of plastification 
fronts than those obtained with a one-point quadrature. 

More studies in finite displacement analysis, inclusion of material nonlinearities, the 
analysis of plates and shells of composite materials and the implementation of implicit 
schemes are left for future work. 
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Nomenclature  

= volumetric average of the shape function gradient in xi direction 

= matrix relating strain and spin tensor components to displacements in a co-rotational 
system 

C = constitutive matrix containing material properties 

fi = body force components per unit volume 

Fint = internal force vector 

G = inverse of the Jacobian matrix 

hi = vectors identifying spurious mode patterns  

J(0) = Jacobian matrix evaluated at the element center 

= determinant of the Jacobian matrix 

MC = consistent mass matrix 

ML = lumped mass matrix 

N = vector containing the shape functions 

= surface loads components 



Pf = load vector due to body forces 

Pp = load vector due to surface forces 

R = rotation matrix to transform vector and matrices from the global system of reference 
to the co-rotational system 

t = time 

T = constitutive matrix 

ui = displacement components 

vi = velocity components 

x1, x2, x3 = space global coordinates 

= space co-rotational coordinates 

t = time interval 

ij = strain tensor components 

i = stabilization vectors  

 = curvilinear coordinates 

= damping coefficient 

ij= spin tensor components 

= problem domain 

e = finite element volume 

 = specific mass 

ij= stress tensor components 

ij
dev= deviatoric part of the stress components 

v= part of the surface boundary where velocities are prescribed 

 = part of the surface boundary where loads are prescribed 
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