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Three Dimensional Flow Simulations 
with the Finite Element Technique 
over a Multi-Stage Rocket 
Aerodynamic flow simulations over the first Brazilian satellite launch vehicle, VLS, during 
its first-stage flight are presented. The three dimensional compressible flow is modeled by 
the Euler equations and a Taylor-Galerkin finite element method with artificial dissipation 
is used to obtain the numerical solution. Transonic and supersonic results for zero angle-
of-attack are presented and compared to available experimental results. The influence of 
mesh refinement and artificial dissipation coeffcient on the transonic flow results are 
discussed. The results obtained for the supersonic simulations present good agreement 
with experimental data. The transonic simulation results capture the correct trends but 
they also indicate that this flight condition requires more refined meshes.  
Keywords: Aeronautical engineering, computational fluid dynamics, finite element 
technique, Taylor-Galerkin method, transonic flows, supersonic flows  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 

In the present work, the results obtained for the simulation of 
aerodynamic flows over the first Brazilian Satellite Launcher, VLS, 
on its first-stage flight configuration are presented. The VLS, in this 
configuration, is composed by four strap-on booster arranged 
symmetrically around the central core. Three-dimensional grid 
generation for this configuration is complex and the computational 
fluid dynamics group at Centro Técnico Aeroespacial, CTA, 
decided to approach this problem in two different ways: with 
unstructured tetrahedral meshes and with multiblock hexahedral 
structured meshes grouped together through the Chimera technique. 
The group already obtained very good results with the Chimera 
procedure (Antunes, Basso and Azevedo, 2001; Basso, Antunes and 
Azevedo, 2000a, 2000b) and the present work shows the progress 
obtained with the unstructured grid approach. Furthermore, there 
was also interest in using this opportunity to develop the capability 
of performing such simulations using the finite element method, 
which was not yet explored in the group. 1 

To rapidly reach this objective, a partnership with another 
Computational Fluid Dynamics, CFD, group in Brazil, from 
Universidade Federal do Rio Grande do Sul, UFRGS, was esta-
blished and an existing finite element code was transfered to 
Instituto de Aeronáutica e Espaço, IAE, to start the project. This 
code, which had been developed at UFRGS as the graduate work of 
one of the authors (Teixeira, 1996), is intended to take full 
advantage of vector processing computers and this test over such 
complex geometry was an important opportunity for the 
continuation of its validation process.  

The code is based on the Taylor-Galerkin finite element method, 
which is a solution proposed by Donea (1984) for the problems 
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faced by the finite element community (Chung, 1978; Heinrich et 
al., 1977; Christies et al., 1976) to solve flow problems in a wide 
range of velocities (Löhner, Morgan and Zienkiewicz, 1985). This 
method is an extension of the Lax and Wendroff (1960; 1962; 1964) 
concepts and it is basically a Taylor series expansion of the solution 
where the temporal derivatives are approximated by the spatial 
derivatives according to the partial differential equations that govern 
the problem at hand. Despite the fact that the Lax-Wendroff method 
adds 4th difference artificial dissipation terms, it is necessary to add 
2nd difference terms to stabilize the solution near shocks and, in this 
work, this is performed following the approach proposed on Peraire 
et al. (1988) and Morgan et al. (1991). The spatial derivatives are 
discretized by the Galerkin weighted residuals method (Zienkiewicz 
and Morgan, 1983) using linear and constant shape functions and 
the weak formulation. The boundary conditions are quite simple in 
this work and some diffculties appear only on subsonic flow 
entrance and exit boundaries, where the flux vector splitting 
technique is implemented (Warming, Beam and Hyett, 1975; 
Hughes and Tezduyar, 1984).  

The paper first presents the theoretical formulation of the 
equations and the numerical method, followed by the boundary 
condition formulations. Next, the results and discussion are 
presented with experimental comparisons.  

Nomenclature 

a = speed of sound 
A = Jacobian matrix 
CC =artificial dissipation coeffcient 
CFL = stability limit number 
D = artificial dissipation term 
e = total energy 
E , F , G = inviscid flux vectors 
lk = unit normal vector components 
L = diagonal matrix 



J. L. F. Azevedo et al 

/ Vol. XXVI, No. 2, April-June 2004 ABCM 108 

M =mass matrix 
N =linear shape function 
p =static pressure 
P = constant shape function 
Q = conserved variables vector 
R , S = finite element method integrals 
t = time  
u , v , w = flow velocity components 
x , y , z = cartesian coordinates 
X = eigenvector matrix  
Greek Symbols  
ρ = density 
 γ = ratio of specific heats  
∆t = time step  
Ω = volume  
Γ = face, face area ν numerical pressure sensor  
λ = eigenvalues  
Subscript  
∞ = freestream variable 
0 = reference variable 
e = element variable 
Γ = face variable 
L = lumped 
Superscript  
n = time step counter  

Theoretical Formulation  

A first approach to solve the aerodynamic problem over the 
VLS is to assume the flow to be compressible and inviscid, i.e., it 
can be modeled by the Euler equations. The dimensionless 
conservative form of the Euler equations is  

 

0=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

z
G

y
F

x
E

t
Q , (1) 

 
where 0x/tat ∞=  is the dimensionless time, 

00 xzz ,xyy ,xxxx === 00  are the dimensionless Cartesian 

coordinates, x0 is the reference length, and Q is the vector of 
dimensionless conserved variables, defined as  

 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

ep
wp
vp
up

p

Q . (2) 

 
In these equations, ∞= ρρρ  is the dimensionless density, 

∞∞ == avv ,auu and ∞= aww are the dimensionless Cartesian 

velocity components, 2
∞= aee  is the total energy per unit of mass, 

a is the speed of sound and the subscript ∞ refers to freestream 
quantities.  

The F ,E  and G  are the dimensionless inviscid flux vectors, 
which can be written as 
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In the previous expression, the dimensionless pressure 

2
∞= papp can be obtained from the equation of state for a perfect 

gas as  
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where γ is the fluid ratio of specific heats. In the interest of 
simplifying the nomenclature, the bar that indicates a dimensionless 
variable will be dropped in the forthcoming equations with the 
understanding that, unless otherwise stated, all variables were made 
dimensionless as described.  

Finite Element Approximation  

In this work, the Taylor-Galerkin finite element method was 
used to obtain the numerical solution of the system of equations 
previously presented. The Taylor-Galerkin method can be viewed as 
a Lax-Wendroff method (Lax and Wendroff, 1960, 1962, 1964) for 
the time march with the spatial derivatives discretized with the finite 
element concepts. The Lax-Wendroff method for the Euler 
equations can be written as a predictor-corrector, time-marching 
procedure as  
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is the spatial part of the vectorial form of Eq. (1). These terms have 
to be discretized and this was accomplished by adopting a 
tetrahedral grid and using the finite element technique.  

In the first stage of the predictor-corrector process the variables 
are discretized with constant element shape functions, in order to 
keep this stage explicit. The terms in the beginning of the stage are 
discretized with linear node shape functions and, consequently, the 
result of the second stage of the process has to be discretized with 
this type of shape function too. The spatial discretization 
expressions for the first stage of the method are given by  
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where nnm and nem are, respectively, the total number of nodes and 
elements in the grid, Nj is the linear shape function for node j and Pe 
is the constant shape function for element e. The result of the first 
stage of the predictor-corrector method, after using the spatial 
discretization, is given by  
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where the j-th summation is taken over the 4 nodes that define the 
E-th tetrahedral element and the ∆t is the lowest time interval in the 
mesh, calculated using the CFL number (Strauss and Azevedo, 
1999) and the characteristic length of the tetrahedral element 
(Scalabrin, 2002).  

In the second stage, the necessary spatially discretized terms are  
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where Nj and Pe are as described before. Using this discretization 
and the weak formulation usually taken in finite elements for this 
class of problem (Donea, 1984), one can obtain the expression for 
the second stage of the predictor-corrector Taylor-Galerkin method 
in its matrix form as (Teixeira, 1996) 
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and k  are the components of the unit normal vector to the Γe face. 
It is clear that this stage of the method involves the M matrix 
inversion to obtain the Qn+1 vector. In this work, the Donea and 
Giuliani (1981) approach was utilized to solve for Qn+1 and an 
iterative form for the solution of Eq. (12) was established as follows 
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In the above equation, p is the iteration counter and ML Hinton 

lumped mass matrix which is calculated as 
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where the symbol δei indicates that the summation had to be taken 
only on the elements which contain the node i.  

The flux terms in the R integral are calculated using  
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and the similar terms in the S integral are approximated to the 
surface using the ideas proposed by Argyris, Doltsinis and Friz 
(1989), i.e.,  
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The ( )Γn
kF  term is obtained from the node values and node 

shape functions on the face, ( )en
iF is an arithmetic mean of flux 

node values over the nodes that define the e-th element. The term 
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 , for elements that do not have faces on flow entrances or 

exits is calculated according to Eq. (16). The calculation of this term 
for elements on entrances and exits will be discussed in the 
boundary condition section.  

It is well known that the Lax-Wendroff method implicitly adds 
4th-difference dissipation terms to the problem, but this dissipation 
is not enough to overcome the instability generated in the vicinity of 
shocks. In this work, explicit 2nd-difference dissipation was added 
after the second stage of the predictor-corrector process to stabilize 
the numerical method, as suggested by Morgan et al. (1991) and 
Peraire et al. (1988). This 2nd-order term is turned on only where it 
is necessary, i.e., near the shocks, which is achieved by the use of a 
pressure sensor. The expression for the pressure sensor is given by  
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where the maximum function is taken over the 4 nodes that define 
the e-th tetrahedral element. The damping vector itself, which is 
responsible for adding the artificial dissipation to the problem, is  
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where ∆t is the lowest time step found in the grid, ∆te is the 
maximum possible time step for the e-th element that still keeps the 
stability of the numerical procedure and CC is a constant defined by 
the program user. This damping vector is added to the solution after 
the second stage of the predictor-corretor process by  

 

DMQQ L
nn

damped
111 −++ += . (20) 

Initial and Boundary Conditions  

A well posed mathematical problem needs boundary and initial 
conditions. In this work, freestream conditions are assumed as initial 
condition in the whole field, except on the VLS surface. Along the 
vehicle surface, velocity is forced to be tangent to the wall, whereas 
ρ and e also assume freestream values. The boundary conditions, 
however, demand more detailed explanations.  

In the VLS problem, there are basically four types of boundary 
conditions: wall, symmetry and flow entrance and exit conditions. 
The symmetry boundary condition, in an inviscid flow, is 
established in the same fashion as the wall boundary condition. The 
wall boundary condition, in an Euler context, states that the flow 
must be tangent to the wall, or mathematically  

 

0=u . (21) 
 
The wall and symmetry boundary conditions are applied to the 

nodes at the end of the second stage of the method. This can be 
achieved by decomposing the velocity vector in a local coordinate 
system with the xl axis normal to the boundary node, setting the ux 
component in this local system equal to zero and using the other 
components to return to the global coordinate system. The node 
normal axis is calculated as an arithmetic average of the normal axis 
of the boundary faces which share the node. The calculation of the 
node normal axis for nodes which are in symmetry axes has some 
details which can be found in Teixeira (1996).  

The flow entrance and exit boundary conditions in this work 
were modeled using the flux vector splitting technique (Warming, 
Beam and Hyett, 1975; Steger and Warming, 1981) that takes 
advantage of the homogeneous property of the Euler flux vectors. 
This property states that  
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where dFk/dQ clearly represents the flux Jacobian matrix, Ak, in the 
k-th direction. As the main problem here concerns the boundary 
conditions, it is more adequate to work with the projection of the 
flux vector on the direction normal to the face, i.e.,  
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Here, k  are the components of the unit vector normal to the 
face.  

The A  matrix has a complete set of eigenvalues and, according 
to Warming, Beam and Hyett (1975) and to Hughes and Tezduyar 
(1984), it can be diagonalized by  
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where auauu −=+==== 54321  and , λλλλλ . 
Furthermore, the eigenvector X matrix can be formed as  
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and 
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The eigenvalues of the A matrix can be viewed as a sum of 

positive and negative eigenvalues which define the directions of 
propagation of the characteristics. Therefore, one can decompose 
the diagonal L matrix as 
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where  
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and ( )i diag λ=L . Hence, one can rearrange the A  matrix in 
terms of the positive and negative set of eigenvalues and, using the 
homogeneous property of the flux vectors of the Euler equations, the 
flux vectors can also be divided in two sets according to the sign of 
the eigenvalues (Steger and Warming, 1981). Therefore, one can 
write  
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where  
 

1−++ = XXLA , 

  1−−− = XXLA . (31) 
 
After the definition of the split flux vectors, one can set the 

boundary conditions over flow entrance and exit boundaries in 
accordance with the appropriate characteristic directions. The 
boundary face is assumed subsonic if the flow in the element which 
contains this face is subsonic. The calculation of the Mach number 
in the element uses the properties based on elements, i.e., the 
properties obtained after the first stage of the Taylor-Galerkin 
method. In subsonic flow entrances, the flux on the inlet surface is 
calculated using  
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where Q is the vector of conserved variables for the element at the 
boundary and Q∞ is the vector of conserved variables for the 
freestream. Similarly, for subsonic flow exit boundaries, one has  
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The above expressions are used to evaluate the 
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 in Eq. 

(17) for the elements which have faces on subsonic flow entrance or 
exit boundaries. If the flow in the element is supersonic, the 
boundary face is considered supersonic. For supersonic flow 
entrance and exit boundaries, these calculations are not necessary, 
because all characteristics propagate in one direction. Hence, for a 
supersonic entrance, one can write 

 
( )∞= QFF  (34) 

 
and, for a supersonic exit, 

 
( )QFF = . (35) 

Results and Discussion  

The present work discusses results for the VLS first-stage flight 
configuration at zero angle-of-attack and freestream Mach numbers        
M =0.9 and M =2.0. These flight conditions were chosen 
considering the availability of experimental results, the dominant 
supersonic characteristic of the vehicle flight and the numerical 
difficulties that arise at transonic simulations. Two different 
tetrahedral unstructured grids were used in the simulations and both 
grids took advantage of the symmetry of the problem. This means 
that only one-quarter of the complete geometry has been included in 
the simulation, since only zero angle-of-attack cases are considered. 

 

  
Figure 1. Mesh 1 overview. 

 
Mesh 1 has 581,000 elements and 106,000 nodes, and one 

longitudinal plane of it can be visualized in Fig. 1. The afterbody 
nozzles were omitted, as the flow over this part of the configuration 
cannot be correctly described by an Euler formulation (Strauss and 
Azevedo, 1999). A more detailed view of the nose region can be 
seen in Fig. 2 and a view of the booster nose cap is in Fig. 3. The 
grid near the booster nose cap is clearly not fine enough and this has 
created difficulties for an adequate capturing of all the aerodynamic 
phenomena that occur in this region, as it will be seen later. Figure 4 
presents a schematic view of the outlet plane. In this figure, the 
azimuthal symmetry A plane is indicated. This is the computational 
plane along which comparisons between numerical and 
experimental results are performed.  

The simulation of transonic conditions using mesh 1 did not 
reach satisfactory results. Therefore, a finer mesh was created, with 
1.16 million elements and 212,000 nodes. This more refined mesh is 
compared to the original mesh in Fig. 5, which shows the two 
meshes in the region around the central body nose cap. One can see 
in the figure that, at least near the body wall, mesh 2 has almost 
three times more points than mesh 1. Clearly, the relation between 
the number of grid points does not remain constant throughout the 
flowfield, but Fig. 5 emphasizes that mesh 2 is considerably finer 
than mesh 1 in the more relevant regions of the flow.  

Case 1: M=2.0 and Zero Angle-of-Attack  

The supersonic test case was run only using mesh 1. 
Furthermore, the artificial dissipation coefficient was set to 10 for 
the present simulation. A general view of the pressure contours for 
the converged solution in this case is shown in Fig. 6. A more 
detailed view of the flow around the forebody portion of the vehicle 
central core is presented in Fig. 7. In this latter figure, one can 
clearly see the stagnation region and the rapid expansion over the 
spherical nose cap just downstream of the stagnation region. One 
can also see a slight recompression along the forebody conical 
section, followed by the flow expansion on the forebody cone– 
payload fairing intersection. The expansion in the boattail region is 
also evident in Fig. 7. This last expansion region is terminated by an 
oblique shock wave at the boattail–afterbody cylinder intersection. 
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Figure 2. Mesh 1 -Detail near the central core forebody. 

 
A closer view of the flow around the forebody region of one of 

the boosters is presented in Fig. 8. As before, the main flow features 
in this region are readily identified in Fig. 8, including the booster 
stagnation point and the detached shock wave upstream of the 
booster. The relevant fact concerning this region is the interaction 
among the detached shock waves from the boosters and their 
reflections, which causes the formation of a high-pressure region 
between the boosters and the central core. This high-pressure region 

 

 
Figure 3. Mesh 1 -Detail near the booster nose cap. 

 

 
Figure 4. Outlet plane of the simulation domain. 

 
Figure 5. Comparison between meshes 1 and 2. 

 
forces the flow to deflect outwards, as can be seen in Fig. 9, and it 
causes a low pressure region downstream along the afterbody. There 
is a strong expansion of the flow that crosses the high pressure 
region, as one can see in Fig. 10. This figure shows the pressure 
coefficient distribution along the central body surface in a azimuthal 
symmetry plane between two boosters, the A plane in Fig. 4  

A more detailed view of the pressure coefficient distribution on 
the rocket nose surface can be seen in Fig. 11. This figure indicates 
a very good agreement between the numerical and the experimental 
results for the forebody region. As one can see in Fig. 10, the 
agreement in the afterbody portion of the vehicle is not as good. 
This should come as no surprise since the complexity of the 
phenomena and the various interactions present in the downstream 
portion of the flow account for a much more difficult simulation 
problem than the aerodynamically clean flowfield in the vehicle 
forebody. Nevertheless, it is also clear from Fig. 10 that the present 
simulation is able to qualitatively reproduce many of the features 
observed in the experimental data for this downstream region of the 
flow. Based on the experience in the simulation of a similar problem 
with a different numerical technique (Antunes, Basso and Azevedo, 
2001; Basso, Antunes and Azevedo, 2000a, 2000b), the authors are 
clearly aware that there is a need for mesh refinement in the 
afterbody region in order to improve the correlation between 
numerical and experimental data. However, as this work is part of a 
larger effort to achieve numerical simulation capability over realistic 
configurations, the authors opted to invest the available resources to 
develop adaptive mesh refinement routines (Scalabrin, 2002). 

 

 
Figure 6. Pressure coefficient contours on the domain for M∞ = 2.0 and 
zero angle-of-attack. 
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Case 2: M=0.9 and Zero Angle-of-Attack Using Mesh 1  

The first attempt at the solution of the transonic test case also 
used mesh 1 and a value of the artificial dissipation coefficient (CC) 
of 1.0. It should be observed that this coefficient value is ten times 
lower than the value used on the supersonic test case and this is 
justified by the fact that the shock waves in a transonic flow are 
weaker than the shock waves which appear in a supersonic flow. An 
overview of the pressure coefficient contours on the XZ plane for the 
converged solution in this case is shown in Fig. 12. Figure 13 
presents a closer view of the central core forebody portion, where 
one can see the stagnation region and the subsequent expansion over 
the spherical nose cap. The more relevant feature in this region is 
the supersonic zone over the cylindrical payload fairing, which is 
created by the expansion on the transition from the conical section 
and which is terminated by a shock wave. The expansion in the 
upstream part of the boattail region is also clear from Fig. 13 and, as 
this is a subsonic flow, one can see the recompression along the 
boattail. A slight compression on the transition from the boattail to 
the afterbody cylinder can be seen as well.  

A detailed view of the flow over one of the boosters is presented 
in Fig. 14. In this figure, one can see the stagnation region on the 
booster nose cap, the supersonic zone created on the cylindrical 
booster section after the transition from the booster cone and the 
high pressure region present between the booster and the vehicle 
central body. In Fig. 14, the poor definition of the contour lines is 
evident. This is mostly true in the region between the booster nose 
cap and the vehicle core. At first, the authors attributed this problem 
to a lack of artificial dissipation because of the decreased value of 
the CC coefficient described in the beginning of this sub-section. 

 

 
Figure 7. Pressure coeffcient contours near the central vehicle forebody 
for M∞ = 2.0 and zero angle-of-attack. 

 

 
Figure 8. Pressure coeffcient contours near the booster nose cap for      
M∞ =2.0 and zero angle-of-attack.  

However, tests performed with higher values of the artificial 
dissipation coefficient showed that an increase of the artificial 
dissipation, in this case, deteriorates the results. This is illustrated in 
 

 
Figure 9. Outward deflected streamlines over the rocket afterbody. 

 

 
Figure 10. Pressure coefficient distributions on the vehicle core in a plane 
between two boosters for M∞ = 2.0 and zero angle-of-attack.  

 

 
Figure 11. Detail of the pressure coefficient distributions on the central 
vehicle forebody in a plane between two boosters for M∞ = 2.0 and zero 
angle-of-attack.  
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Figs. 15 and 16, in which the numerical pressure coefficient 
distributions along the central body calculated using mesh 1 and CC 
coefficients equal to 1.0 and 7.5 are presented. This fact encouraged 
the authors to test the mesh refinement influence over the numerical 
results.  

Case 3: M=0.9 and Zero Angle-of-Attack Using Mesh 2  

This test case was studied in order to verify the influence of the 
mesh refinement on the solution of the transonic case. It was run 
using mesh 2, which is globally two times finer than mesh 1 and, in 
aerodynamic relevant regions, it is almost 4 times finer than mesh 1. 
In this case, the artificial dissipation coefficient was set to 1.0, as the 
previous test with the transonic case showed that an increase in this 
value can cause the solution to deteriorate. 

 

 
Figure 12. Pressure coefficient contours on the domain for M∞ = 0.9 and 
zero angle-of-attack.  

 

 
Figure 13. Pressure coefficient contours near the central vehicle forebody 
at M∞ = 0.9 and zero angle-of-attack.  

 
One can see the improvement in solution quality obtained with 

the mesh refinement comparing Figs. 13 and 17. This latter figure 
presents more well defined features, especially the payload fairing 
shock wave and the stagnation region, and smoother contour lines. 
For the flow over the boosters, this improvement is even more 
evident as on can see in Figs. 18 and 19. Here, the perturbation zone 
caused by the booster is smaller than the one present in the results of 
Fig. 14. Furthermore, the aerodynamic phenomena in this region, 
i.e., the stagnation zone, the high pressure region between the 
booster and the vehicle central core and the booster cylindrical 
region shock wave, are better defined. 

 
Figure 14. Pressure coefficient contours near the booster nose cap at    
M∞ = 0.9 and zero angle-of-attack.  

 

 
Figure 15. Effect of the artificial dissipation coefficient on the pressure 
coefficient distribution on the central vehicle surface for a plane between 
two boosters for M∞ = 0.9 and zero angle-of-attack.  

 

 
Figure 16. Detail of the artificial dissipation effect on the pressure 
coefficient distribution over the central vehicle forebody surface for a 
plane between two boosters for M∞ = 0.9 and zero angle-of-attack.  
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Figures 20 and 21 show a comparison between the solutions 
obtained for the central body surface on the A plane using mesh 1 
and mesh 2. The numerical solution using the finer mesh 2 clearly 
provides a better approximation of the experimental pressure curve 
extremes and it also has a better fitting of some trends of the 
pressure coefficient distribution, as one can see in Fig. 21 at 

15.0075.0 ≤≤
L
x . 

 

 
Figure 17. Pressure coefficient contours near the central vehicle forebody 
at M∞ = 0.9 and zero angle-of-attack for calculations with mesh 2.  

 

 
Figure 18. Pressure coefficient contours in the domain for M∞ = 0.9 and 
zero angle-of-attack for calculations with mesh 2.  

 

 
Figure 19. Pressure coefficient contours near the booster nose cap at     
M∞ =0.9 and zero angle-of-attack for calculations with mesh 2.  

 
Figure 20. Comparison of the pressure coefficient distributions on the 
central vehicle surface for a plane between two boosters for M∞ = 0.9 and 
zero angle-of-attack.  

 

 
Figure 21. Detail of the pressure coefficient distributions on the central 
vehicle forebody surface for a plane between two boosters for M∞ = 0.9 
and zero angle-of-attack, indicating the effects of mesh refinement.  

Concluding Remarks  

The paper has presented results for 3-D Euler simulations of the 
flow over the complete first-stage flight configuration of the first 
Brazilian satellite launcher, the VLS. To the authors’ knowledge, 
this is the first time that such detailed simulations of the complete 
VLS system have been performed with an unstructured grid 
approach. The results here presented also indicate the current stage 
of development in the group of the capability of simulating 
complex, three-dimensional flows using unstructured grids. The 
code utilized is based on the Taylor-Galerkin finite element method 
and the spatial discretization uses tetrahedral elements with constant 
element shape functions and linear node shape functions. An 
artificial dissipation term is added to overcome the instability 
generated on strong shocks and the flux vector splitting technique is 
implemented to help define the boundary conditions on flow 
entrances and exits. The code was tested on supersonic and 
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transonic flows over the VLS and studies concerning the artificial 
dissipation coefficient and mesh refinement were undertaken.  

The quality of the supersonic results along the rocket nose was 
very good even for such a fairly coarse mesh. Some problems 
occurred on the vehicle afterbody, and the authors believe that most 
of this problems can be solved with a more refined mesh in this 
region. However, it cannot be discarded that non-modeled physics, 
due to the use of the Euler equations, can be playing an important 
influence on the results in the region in which there is strong 
aerodynamic interaction among the various bodies.  

The transonic problem has required the use of finer grids in 
order to generate acceptable solutions. It was observed that the 
artificial dissipation coefficient has to be decreased in order to 
improve the solution quality when compared to the value used in the 
supersonic test case. This should come as no surprise if one 
remembers that this artificial dissipation term was added to 
overcome the instability generated in strong shock waves. 
Furthermore, it was noted that the mesh refinement has a stronger 
influence on the result quality than the artificial dissipation 
coefficient. Mesh refinement makes the aerodynamic phenomena 
better defined and generates smoother contour lines in the solution.  

The results here presented indicate that further grid refinement 
is still required in order to adequately resolve some features of such 
complex flows. However, the maximum run-time memory available, 
in the computational facilities the authors can access, has already 
been reached by the grids here used. Furthermore, it is clear to the 
authors that, in order to provide a simulation tool with a high degree 
of flexibility to handle different problems, a more automatic form of 
grid refinement is required. Hence, efforts have already been 
initiated in the implementation of an adaptive refinement capability 
in the context of the present flow solver. These efforts, however, are 
beyond the scope of the present paper. The main goals of the paper 
were to demonstrate the capability presently available for flow 
simulation over such complex configurations and to report on the 
first detailed results for the complete VLS configuration using an 
unstructured grid code. The authors believe that these goals have 
been fully accomplished.  
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