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Heterogeneities in Aging Models of Granular Compaction
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Kinetically constrained models (KCM) are systems with trivial thermodynamics but often complex dynamical

behavior due to constraints on the accessible paths followed by the system. Exploring these properties, the Kob-

Andersen (KA) model was introduced to study the slow dynamics of glass forming liquids and later extended

to granular materials. In this last context, we present new results on the heterogeneous character of both in and

out of equilibrium dynamics, further stretching the granular-glass analogy.
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I. INTRODUCTION

In recent years, the analogy between structural glasses and

dense granular systems has become deeper and extensively

explored [1–25]. As temperature is lowered, or density in-

creased, respectively, both systems undergo a glass, or jam-

ming, transition, where the relaxation times dramatically in-

crease. Yet, in spite of all evidence of phenomenological sim-

ilarity, the two systems are fundamentally different, for exam-

ple, in the length scale of its components (molecules versus

macroscopic particles) and the role of thermal energy (none,

in the case of granulars). Because the thermal energy is too

small to induce movement in these macroscopic particles, en-

ergy should be externally supplied, for example, by vibrating,

tapping, shearing, rotating, etc, the system, in order for a gran-

ular system explore its configurational space.

Recently, the role of dynamical heterogeneities in the com-

plex dynamics of glassy systems has been addressed [26–29].

The glass transition seems to be purely dynamical, with no in-

creasing static correlation length as the system approaches the

transition, differently from the usual critical slowing down.

Thus, the increase in relaxation times seems to be related

to a diverging dynamic correlation length [30–36], associ-

ated to the increasing number of particles whose displace-

ments become dynamically correlated, the heterogeneities,

that develop during the evolution of the system. In Ref. [37]

we showed, at the level of a simple, kinetically constrained

model [38], that dynamical heterogeneities seem to play the

same role in granular systems as they do in structural glasses,

with an increasing length scale as the system approaches the

jamming transition. This has also been observed in other re-

cent works [20, 25, 39–41]. However, the precise role played

by these structures and the associated lengths, on the dynam-

ics of granular and colloidal systems, is yet to be understood.

The jamming transition has also been studied in con-

nection with the concept of dynamically available volume

(DAV) [42, 43]. Apart from having enough nearby empty

space [44], a particle is mobile if, for the particular type of

model considered here, the displacement is allowed by the ki-

netic constraints. Empty sites that are able to receive a neigh-

boring mobile particle are called holes. Holes can be classi-

fied as either connected or not, the former being those that,

by allowing a particle to jump into it may eventually facili-

tate the movements of all particles in the system. On the other

hand, nonconnected holes leave a backbone of blocked parti-

cles. Close to dynamical arrest, the density of connected holes

decreases with the density of particles and is related with the

inverse of the bootstrap length [45, 46], the average distance

between two connected holes, in bootstrap percolation. In

turn, this length is associated with the transport properties of

the system [47–49].

Here we make an initial attempt of studying how these holes

behave when the system is externally driven and falls out of

equilibrium, in particular, their role during the compaction

regime of granular systems, what is connected with the voids

distribution measured experimentally [50]. Although we do

not distinguish at this stage connected from disconnected

holes, this would be important in order to fully understand

the microscopic compaction mechanism.

II. KOB-ANDERSEN MODEL

The Kob-Andersen model [51] is one of the simplest mod-

els describing the complex dynamics of glassy and granular

systems. It consists of a lattice gas of N particles, each site

being either empty or occupied by one particle, with no static

interactions between them, i.e., H = 0. In addition, a kinetic

constraint [38] should be satisfied in order to allow the dis-

placement of a particle to an empty neighboring site: there

should be fewer than m occupied nearest neighbors before
and after the move. This kinetic rule is time-reversible and

detailed balance is satisfied. If the constraint is obeyed, the

particle is said to be mobile and the companion vacant site is

said to be a hole. At high densities, the dynamics slows down

because the reduced free-volume makes it harder for a parti-

cle to satisfy the dynamic constraints. These constraints were

introduced to mimic the cage effect where, due to geometri-

cal effects, the displacements of the particles are hindered by

their neighbor particles.

Although on hypercubic lattices this model presents a jam-

ming transition only at full occupancy [48], with a super Ar-

rhenius behavior of the relaxation time, for finite lattices the

bootstrap length may become larger than the system size L.

Thus, for a finite sample, the system may be frozen due to the

lack of connected holes, implying the existence of a dynam-
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ical critical density ρc(L) < 1, slowly increasing with L. At

this point, it is observed that the diffusivity falls to zero as a

power law [51], D(ρ)∼ (ρc−ρ)φ, with ρc depending, in addi-

tion, both on the lattice geometry and on the kinetic constraint

m [37, 51, 52]. Assuming such a power law form for the diffu-

sivity, finite systems, both with and without gravity, are well

described, qualitatively and quantitatively, by a nonlinear dif-

fusion equation [37, 53, 54].

Since much of dynamical properties of both structural

glasses and dense granular materials are dictated by steric con-

straints, we have generalized [22] the Kob-Andersen model by

including a gravitational field. The Hamiltonian now has a one

body term, βH = γ∑i zini, where ni = 0,1 is the occupation

variable of the i-th site whose height is zi, γ = mg/kBT is the

inverse gravitational length and g is the constant gravitational

field acting in the downward direction. We follow a contin-

uous vibration dynamics, assuming that the random diffusive

motion of particles, produced by the mechanical vibrations

of the box, can be modeled as a thermal bath of temperature

T . The particles satisfying the kinetic constraints may always

move downwards while upward movements are accepted with

a probability x = exp(−γ), related to the vibration amplitude.

Particles are confined in a closed box of bcc structure, with

periodic boundary conditions in the horizontal direction. We

set the constraint threshold at m = 5. As the Markov process

generated by the kinetic rules is irreducible on the full config-

uration space [22], the static properties of the model are those

of a lattice-gas of non-interacting particles in a gravitational

field, and these can be easily computed.

III. HETEROGENEITIES

Several measures for quantifying spatial heterogeneities

have been introduced for kinetic models [38]. In particular,

this issue was recently investigated in the KA model [49, 55]

without gravity using fourth-order correlation functions [45,

46]. In Ref. [37] these were extended to include the non-zero

gravity case. In Fig. 1 we plot the dynamical nonlinear re-

sponse

χ4(z, t) = N
(〈

q2(z, t)
〉−〈q(z, t)〉2

)
(1)

where N is the number of sites in the computation, q(z, t) =
C(z, t)/C(z,0) and

C(z, t) =
1

N
∑

i

ni(t)ni(0)−ρ(z, t)ρ(z,0). (2)

For all vibrations considered, the system is in the fluid phase

and is able to achieve the asymptotic state very fast. Notice

that, differently from previous works, here we measure these

quantities separately around each layer of the system (to im-

prove the averages, i runs over all sites in the z, z−1 and z+1

layers). In other words, we are probing horizontal, micro-

scopic heterogeneities, not the macroscopic ones due to the in-

trinsicly inhomogeneous vertical profile. Analogously to what

happens in the KA model without gravity and in other glassy
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FIG. 1: Dynamical response, eq. 1, as a function of time (in MCS) for

different vibrations: x=0.92 (filled symbols) and 0.94 (empty sym-

bols). Different symbols stand for different heights: z = 5,10 and

15 (square, circle, triangle, respectively). The line is the asymptotic

χ4 = 1 behavior [38]. Notice in the figure the presence of two very

close curves: they correspond to different vibrations and heights, but

their density is the same to within numerical accuracy. From [37].

systems, the peak is shifted to higher times and gets larger as

the density increases (the lower is z, the greater is the density),

which is an indication of cooperative dynamics, as larger clus-

ters have more difficulty to respond to a perturbation. As these

measures are done for vibrations above the apparent jamming

threshold, the behavior of the system should not be affected by

the finite size shortcomings discussed above and one is able

to obtain the true, infinite size behavior. Indeed, the growth of

the peak is compatible with the known relaxation time [48],

τ ∼ expexp

(
c

1−ρ

)
(3)

as can be seen in Fig. 2. Analogous results can be obtained

also from the peak of the Kovacs hump [56] and persistence

times distribution. Interestingly, χ4 only depends on z through

its local density, χ4(z, t) = χ4(ρ(z), t): Fig. 1 shows that two

curves corresponding to different heights and vibrations (z and

x), but having almost the same density (within numerical pre-

cision), coincide.

A more direct measure of inhomogeneity comes from the

mobile particles or, equivalently, the holes at different heights,

without distinguishing, at this stage, between connected and

non-connected holes. In the inset of Fig. 3, we show the den-

sity and holes profiles, ρ(z) and ν(z), respectively, still in the

fluid phase, as a function of z for two different vibrations x.

The density decreases with height and the stronger the vibra-

tion, the flatter is the density profile and the broader is ν(z),
that is, the more vertically homogeneous the system is. In-

deed, for x = 1 (no preferential direction) both profiles are

flat. Notice also that as x decreases, the holes concentrate in

the region that will form the interface once the system goes

out of equilibrium. The interesting result that can be seen in

Fig. 3 appears when we eliminate z and plot ν(z) as a function

of ρ(z): the data for different values of x perfectly collapse

onto a single master curve. Moreover, they are on top of the

points for the KA model without gravity. In other words: even
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FIG. 2: Position of the peak in χ4. The growth is compatible with

the known relaxation time [48], Eq. 3 (dashed line).
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FIG. 3: Density of holes as a function of density for x = 0.92 (trian-

gle) and 0.94 (circle), along with the results for the KA model with-

out gravity (line) in a bcc lattice of height 4L, with L = 20. Inset:

holes profile (symbols) along with the corresponding density profiles

(lines). The higher x corresponds to the flatter density profile and to

the broader holes profile.

if the system is no longer homogeneous, the local density of

holes in equilibrium only depends on the local density, and not

on the whole profile, or on the vibration or the height. This,

together with the analogous result for χ4, if general, is an im-

portant property: as some of the quantities depend only on the

local density, not on the whole profile, there is further sup-

port for even simpler, one dimensional models as well as local

density approximations [37, 53, 54]. >From the point of view

of simulation, it is a fast way to obtain, in just one simulation,

the whole profile for systems without gravity.

Upon decreasing the vibration, a finite system enters in the

aging regime and the density profile develops two very dis-

tinct regions [54]: an almost flat plateau at ρc for z < z0 and a

density decreasing region (interface) for z > z0. The position

of this plateau is size dependent and slowly increases with L,

similar to ρc. Analogously, the hole profile also has two cor-

responding regions (see Fig. 4 and the inset): at the interface
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FIG. 4: Hole profile at different times (smaller time at the top). The

profile is made of two clearly separated parts: i) the interface (inset)

contains almost all holes in the system and moves to the left as the

system becomes compact; ii) the bulk has a much smaller hole frac-

tion, that increases linearly with height. Separating these regions we

have a few layers near z = 100 that are almost hole-free. The de-

clivity slowly decreases with time. Notice also the difference on the

vertical scales.

where most holes are localized and in the bulk, where their

number is much smaller. These regions are separated by a

dip with a few layers width, where there are almost no holes,

corresponding to the dense layer seen in the density profile

near the interface, at the top of the granular pile (this region

also seems to become more localized with time), as seen in

Fig. 5. At the interface, the profile is strongly peaked, and

moves to the left, accompanying the interface, as the system

ages (compactifies). On the other hand, in the bulk, the profile

is linear, with a tangent that slowly decreases in time (although

also compatible with the inverse logarithm law, a good fit is

obtained with t−0.25). This evaporation of holes is the direct

mechanism of the compactification process. Also, because of

the almost hole-free layers between the bulk and the interface,

it is very hard to exchange particles between the bulk and the

interface. The interesting result here is that this process is in-

homogeneous: it is faster at the topmost region of the bulk

(just below the dense layer) and slower at the bottom of the

system [57], as seen in Fig. 5. The oddity comes from the

fact that the compaction is faster where the density is higher,

the region where one would expect a slower evolution and a

smaller number of holes. Instead, the evolution is faster and

the number of holes is higher. Finally, it should be remarked

that the small positive gradient seen in the density profile is

consistent with experimental results [1, 13], although its sign

is model dependent [58].

In Fig. 6 the parametric plot of ν versus ρ in the out-of-

equilibrium, aging regime is shown for several vibrations x
along with the equilibrium curve. Notice that despite the fact

of not being stationary, the points, for several times (but the

same x), roughly fall on a master curve, while different vi-

brations no longer collapse onto the same curve. However,

these x-dependent universal curves no longer correspond to

the equilibrium one, and as the vibration increases, there is

a drift toward the equilibrium curve. The two regions seen
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FIG. 5: Bulk density profile at different times (smaller time at the

bottom). The region that compactifies the most is the denser one,

close to the top, due to a larger number of holes.

in the ν profile, Fig. 4, contribute differently for the curve in

Fig. 6: the bulk forms the high ρ, small ν region near the

horizontal axis (enlarged in the inset), while the interface gen-

erates the rest of the curve. In the inset of Fig. 6 we can see

that the bulk behavior is the opposite of what would be ex-

pected at high densities: as the density increases the corre-

sponding holes also increase! This explains why the density

profile evolves faster near the dense layer where the density is

higher: the greater the number of holes, the easier it is to com-

pactify. Moreover, for different times, the curves no longer

collapse (notice that the inset of Fig. 6 shows data for differ-

ent times but same vibration x). Thus, differently from the

holes from the interface, there is no universal curve for the

holes in the bulk. Interestingly, besides having the opposite

ρ dependence, for larger times the curves move away from

the equilibrium one (that is one order of magnitude above).

Even the interface behavior is puzzling: layers whose density

is small would be expected to be in local equilibrium. How-

ever, the hole distribution only coincides with the equilibrium

one for ρ → 0.

IV. CONCLUSIONS

In summary, besides briefly reviewing the first application

of the dynamical susceptibility χ4 in the context of granular

compaction [37], we also extended the notion of dynamically

available volumes for this externally driven, out of equilib-

rium situation. This is an additional similarity between struc-

tural glasses and granular systems, while shedding some light

on the microscopic mechanisms responsible for the slow dy-

namics close to these transitions. Interestingly, the stationary

behavior of the Kob-Andersen model with gravity is charac-

terized by the local density, in spite of the macroscopically in-

homogeneous density profile and the vibration imposed: lay-

ers with the same density presents the the same time depen-

dence of χ4(z, t) as well as the same density of holes. In the
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FIG. 6: Density of holes as a function of density for several values

of x in the aging regime (0.2, circle, and 0.4, triangle), along with

the equilibrium results for the KA model (line). Differently from the

fluid phase, here there is no collapse of the curves onto the equilib-

rium curve. Notice that there are some points with ρ > ρc that come

from the oscillatory/dense layer regions. It is interesting to notice

that in the case without gravity, the number of holes in the high-ρ re-

gion is below the equilibrium one, while here it is above. Inset: Holes

coming from the bulk for x = 0.2 and three different times (from left

to right: t = 1072, 10974 and 99999) as a function of density. Dif-

ferently from what would be expected, this an increasing function

of density. In these plots we do not take into account the oscillating

layers near the bottom and near the dense layer, only the bulk layers

(6 < z < 95).

aging, compaction regime, this is no longer the case, although

there is still a certain degree of universality in the behavior

of the total number of holes from the interface, reflected on

the collapse, at different times (but different densities), of all

points onto a roughly universal curve that depends, in its turn,

on the vibration (temperature). However, how connected and

non-connected holes contribute to these profiles are yet to be

investigated.

In addition, there are still many issues that deserve a closer

inspection. Important information can also be obtained from

the different sectors of the χ4(t) function [36]. However, the

range of time/density considered here is still small to resolve

these different sectors. The distinction between connected and

disconnected holes should also be made, as the former should

be much more important in the compaction mechanism, along

with the study of their spatial distribution [59]. Correlations

may be also defined considering only the holes, with the asso-

ciated dynamical susceptibility.
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