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Neutrino Structure Functions in the QCD Dipole Picture
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In this contribution we present an exploratory QCD analysis of the neutrino structure functions in charged
current DIS using the color dipole formalism. The corresponding dipole cross sections are taken from recent
phenomenological and theoretical studies in deep inelastic inclusive production, including nuclear shadowing
corrections. The theoretical predictions are compared to the available experimental results in the small-x region.
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I. INTRODUCTION

The interaction of high energy neutrinos on hadron tar-
gets are an outstanding probe to test Quantum Chromodynam-
ics (QCD) and understanding the parton properties of hadron
structure. The several combinations of neutrino and anti-
neutrino scattering data can be used to determine the struc-
ture functions, which constrain the valence, sea and gluon par-
ton distributions in the nucleons/nuclei. The comparison be-
tween neutrino and charged-lepton experimental data can be
also used to investigate the universality of the parton distrib-
utions. The differential cross section for the neutrino-nucleon
charged current process νl (ν̄l) + N → l− (l+) + X , in terms
of the Lorentz invariant structure functions FνN

2 , 2xFνN
1 and

xFνN
3 are [1],

dσν, ν̄

dxdy
=

G2
F mN Eν

π

[(
1− y− mNxy

2Eν

)
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+
y2

2
2xF1(x,Q2)± y

(
1− y

2

)
xF3(x,Q2)

]
, (1)

where GF is the weak Fermi coupling constant, mN is the
nucleon mass, Eν is the incident neutrino energy, Q2 is the
square of the four-momentum transfer to the nucleon. The
variable y = Ehad/Eν is the fractional energy transferred to
the hadronic vertex with Ehad being the measured hadronic
energy, and x = Q2/2mNEνy is the Bjorken scaling variable
(fractional momentum carried by the struck quark).

Similarly to the charged-lepton DIS, the deep inelastic neu-
trino scattering is also used to investigate the structure of nu-
cleons and nuclei. In the leading order quark-parton model
(the QCD collinear approach), the structure function F2 is the
singlet distribution, FνN

2 ∝ xqS = x∑(q + q̄), the sum of mo-
mentum densities of all interacting quarks constituents, and
xF3 is the non-singlet distribution, xFνN

3 ∝ xqNS = x∑(q−
q̄) = xuV + xdV , the valence quark momentum density. These
relations are further modified by higher-order QCD correc-
tions. The main theory uncertainties are the role played by
nuclear shadowing in contrast with lepton-charged DIS and

a correct understanding of the low Q2 limit. The first un-
certainty can be better addressed with the future precise data
from MINERνA [2] and neutrino-factory [3]. However, nu-
clear effects are taken into account by using the nuclear ratios
R = FA

2 /AF p
2 extracted from lepton-nucleus DIS, which could

be different for the neutrino-nucleus case. The low-Q2 region
can not be addressed within the pQCD quark-parton model as
a hard momentum scale Q2

0 ≥ 1−2 GeV2 is required in order
to perform perturbative expansion. In what follows, the neu-
trino structure function FνN

2 is investigated within the color
dipole picture at small-x region. The present calculations
are discussed in detail in Ref. [4]. We employ recent phe-
nomenological parton saturation models, which are success-
ful in describing inclusive deep inelastic data. Nuclear effects
are taken into account through Glauber-Gribov formalism and
the results are compared to accelerator data. Afterwards, the
structure function xF3 and the quantity ∆xF3 = xFν

3 − xF ν̄
3 are

also investigated. The latter quantity provides a determina-
tion of the strange-sea parton distribution through charm pro-
duction in charged-current neutrino DIS. Finally, we present a
brief summary of the main conclusions.

II. NEUTRINO STRUCTURE FUNCTION FνN
2

Deep inelastic neutrino scattering can proceed via W± ex-
changes, which corresponds to charged current (CC) interac-
tions. We assume an isoscalar target, N = (p+n)/2 and focus
on the high energy regime, which one translates into small-x
kinematical region. At this domain a quite successful frame-
work to describe QCD interactions is provided by the color
dipole formalism [5], which allows an all twist computation
(in contrast with the usual leading twist approximation) of the
structure functions. The physical picture of the interaction is
the deep inelastic scattering at low x viewed as the result of
the interaction of a qq̄ color dipole, in which the gauge bo-
son fluctuates into, with the nucleon target. The interaction is
modeled via the dipole-target cross section, whereas the bo-
son fluctuation in a color dipole is given by the corresponding
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wave function. The CC DIS structure functions for neutrino-
nucleon scattering in the dipole picture [4] are related to the
cross section for scattering of transversely and longitudinally
polarized W± bosons. That is,

FCC
T,L (x,Q2) =

Q2

4π2

∫
d2r

∫ 1

0
dz|ψW±

T,L (z,r,Q2)|2σdip(x,r), (2)

where r denotes the transverse size of the color dipole, z the
longitudinal momentum fraction carried by a quark and ψW

T,L
are the light-cone wavefunctions for (virtual) charged gauge
bosons with transverse or longitudinal polarizations. The
small-x neutrino structure function FνN

2 is computed from ex-
pressions above taking F2 = FT +FL. Explicit expressions for
the wave functions squared can be found in Ref. [4]. The
color dipoles contributing to Cabibbo favored transitions are
ud̄ (dū), cs̄(sc̄) for CC interactions. The dipole hadron cross
section σdip contains all information about the target and the
strong interaction physics.

We consider an analytical expression for the dipole cross
section, which presents scaling behavior. Namely, one has
σdip ∝ (r2Q2

sat)γ for dipole sizes r2 ≈ 1/Q2
sat and where γ is

the effective anomalous dimension. The so-called saturation
scale Qsat ∝ xλ/2 defines the onset of the parton saturation ef-
fects. In what follows one takes the phenomenological para-
meterization of Itakura-Iancu-Munier (IIM) model [6]. It is
able to describe experimental data on inclusive and diffrac-
tive deep inelastic ep scattering at small-x. The IIM model
smoothly interpolates between the limiting behaviors analyt-
ically under control: the solution of the BFKL equation for
small dipole sizes, r ¿ 1/Qsat(x), and the Levin-Tuchin pre-
diction for larger ones, r À 1/Qsat(x). A fit to the structure
function F2(x,Q2) was performed in the kinematical range of
interest. The IIM dipole cross section is parameterized as fol-
lows,

σIIM
dip (x,r) = σ0

{
N0

(
τ̄2

4

)γeff (x,r)
, for τ̄≤ 2 ,

1− exp
[−a ln2 (b τ̄)

]
, for τ̄ > 2 ,

where τ̄ = rQsat(x) and the expression for rQsat(x) > 2 (sat-
uration region) is an adequate functional form, compatible
with approximate or asymptotic solutions of the high energy
evolution equations. The coefficients a and b are determined
from the continuity conditions of the dipole cross section at
rQsat = 2. The coefficients γsat = 0.63 (the BFKL anomalous
dimension at the saturation border) and κ = 9.9 are fixed from
their LO BFKL values. The IIM parameterization presents
scaling violation since the effective anomalous dimension de-
pends also on the rapidity Y = ln(1/x) for small size dipoles,
γ(x,r)= γsat +

ln(2/rQsat)
κλY . Using the dimensional-cutting rules,

we supplement the dipole cross section with a threshold factor
(1− x)nthres , taking nthres = 5.

The extension of the approach to consider nuclei targets we
take the Glauber-Gribov picture [7], without any new parame-
ter. In this approach, the nuclear version is obtained replacing
the dipole-nucleon cross section by the nuclear one,

σnucleus
dip = 2

∫
d2b

{
1− exp

[
−1

2
TA(b)σnucleon

dip (x̄, r2)
]}

,(3)
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FIG. 1: The structure function FνN
2 as a function of boson virtuality.

where b is the impact parameter of the center of the dipole
relative to the center of the nucleus and the integrand gives the
total dipole-nucleus cross section for a fixed impact parameter.
The nuclear profile function is labeled by TA(b), which will be
obtained from a 3-parameter Fermi distribution for the nuclear
density [8].

Let us compare the color dipole prediction against the FνN
2

structure function. This is shown in Fig. 1. We use the ex-
perimental datasets of the CCFR Collaboration [9, 10], where
filled circles correspond to points in Ref. [10] and triangles up
correspond to points in Ref. [9]. The solid curve is obtained
using scaling property and nuclear shadowing from Glauber-
Gribov formalism is also included (estimated to be of order
20% at small-x). The data description is reasonable up to
x ' 0.0175, just in the border of the expected validity region
of the color dipole approach. For completeness, we show the
larger x data points. The valence content has not been in-
cluded and it could improve the description in that region. It
has been verified in Ref. [4] that the improvement is sizable
at low-Q2. On the other hand, the large Q2 region tends to be
overestimated for x > 0.0175. Thus, a more detailed study of
that region is deserved. It is worth to mention the robustness
of the color dipole formalism as the theoretical curves were
obtained without any tuning of the original model parameters
obtained in ep HERA data. In addition, we have shown in Ref.
[4] that the small-x data on F2 can be used to verify that geo-
metric scaling property is exhibited by experimental results.

III. THE FUNCTIONS xFνN
3 AND THE QUANTITY ∆xFνN

3

Lets now compute the structure functions xFνN
3 within the

color dipole formalism. We concentrate on the the interaction
of the cs̄ color dipole of size r with the target hadron which
is described by the beam- and flavor-independent color dipole
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FIG. 2: The structure function ∆xFνN
3 = xFνN

3 − xF ν̄N
3 as a function

of boson virtuality.

cross section σdip. In the infinite momentum frame, this is
equivalent to the W±-gluon fusion process, W±+g→ cs̄(c̄s).
The analysis for charged current DIS has been addressed in
Refs. [11, 12], where the left-right asymmetry of diffrac-
tive interactions of electroweak bosons of different helicity
is discussed. There, the relevant light-cone wavefunctions
have been evaluated. The contribution of excitation of open
charm/strangeness to the hadron absorption cross section for
left-handed (L) and right-handed (R) W -boson of virtuality
Q2, is given by [4],

σL,R (x,Q2) =
∫

d2r
∫ 1

0
dz ∑

λ1,λ2

|Ψλ1,λ2
L,R (z,r,Q2)|2 σdip (x,r) ,(4)

where Ψλ1,λ2
L,R (z,r,Q2) is the light-cone wavefunction of the cs̄

state with the c quark carrying fraction z of the W+ light-cone
momentum and s̄ with momentum fraction 1− z. The c- and
s̄-quark helicities are λ1 =±1/2 and λ2 =±1/2, respectively.
The diagonal elements of density matrix are computed in Ref.
[11, 12].

The structure function of deep inelastic neutrino-nucleon

xF3 can be defined in terms of σR and σL of Eq. (4) in the
following usual way,

xFνN
3 (x,Q2) =

Q2

4π2

[
σL(x,Q2)−σR(x,Q2)

]
. (5)

where the expression can be interpreted in terms of par-
ton densities as being the sea-quark component of xF3. It
corresponds to the excitation of the cs̄ state in the process
W+g → cs̄, with xF3 differing from zero due to the strong
left-right asymmetry of the light-cone |cs̄〉 Fock state. For
values of Bjorken variable not so small, xF3 contains impor-
tant valence quark contribution. The valence term, xqval , is the
same for both νN and ν̄N structure functions of an iso-scalar
nucleon. The sea-quark (xqsea) term in the xFνN

3 has oppo-

site sign for xF ν̄N
3 , leading to xF ν(ν̄)N

3 = xqval ± xqsea. The
neutrino-antineutrino difference xFν

3 − xF ν̄
3 provides a deter-

mination of the sea (strange) density. In the parton model,
one has xFνN

3 = xqval − 2xc̄(x)+ 2xs(x) and xF ν̄N
3 = xqval +

2xc(x)− 2xs̄(x). Therefore, the neutrino-antineutrino differ-
ence effectively measures the strange density, since the charm
contribution is small in the kinematical region measured by
current experiments. Assuming s(x) = s̄(x) and c(x) = c̄(x)
one obtains, ∆xF3 = xFνN

3 −xF ν̄N
3 = 2xqsea = 4x [s(x)− c(x)].

In Fig. 2 the quantity ∆xF3 as a function of Q2 at fixed x
is shown in comparison with the CCFR result obtained from
νµFe and ν̄µFe differential cross section [13]. The theoreti-
cal curve is obtained from the corresponding equation using
the IIM dipole cross section and Glauber-Gribov shadowing
corrections.

As a summary, an analysis of small-x neutrino-nucleus DIS
is performed within the color dipole formalism. The struc-
ture functions FνN

2 , xFνN
3 and the quantity ∆xFνN

3 are calcu-
lated and compared with the experimental data from CCFR
and NuTeV by employing a recent parameterization for the di-
pole cross section which successfully describe small-x inclu-
sive and diffractive ep DIS data. Nuclear shadowing is taking
into account through Glauber-Gribov formalism. The struc-
ture function F2 is in agreement with an implementation from
saturation models at the region x ≤ 0.02. This is in agree-
ment with the regime of validity of the color dipole approach.
The sea content, described by the quantity ∆xFνN

3 , is well de-
scribed. Although the results presented here are compelling,
further investigations are requested.
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