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This is a review paper concerned with the global consistency of the quantum dynamics of non-commutative
systems. Our point of departure is the theory of constrained systems, since it provides a unified description of
the classical and quantum dynamics for the models under investigation. We then elaborate on recently reported
results concerned with the sufficient conditions for the existence of the Born series and unitarity and turn,
afterwards, into analyzing the functional quantization of non-commutative systems. The compatibility between
the operator and the functional approaches is established in full generality. The intricacies arising in connection
with the explicit computation of path integrals, for the systems under scrutiny, is illustrated by presenting the
detailed calculation of the Feynman kernel for the non-commutative two dimensional harmonic oscillator.
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I. INTRODUCTION

In this work we shall be concerned with quantum systems
whose dynamics is described by a self-adjoint Hamiltonian
H(Q,P) made up of the Cartesian coordinates Ql , l = 1, . . . ,N
and their canonically conjugate momenta Pj, j = 1, . . . ,N[1].
However, unlike the usual case, coordinates and momenta are
supposed to obey the non-canonical equal-time commutation
rules

[
Ql ,Q j

]
=−2i~θl j, (1a)

[
Ql ,Pj

]
= i~δl

j, (1b)

[Pl ,Pj] = 0. (1c)

The distinctive feature is, of course, that the coordinate oper-
ators do not commute among themselves. The lack of non-
commutativity of the coordinates is parameterized by the real
antisymmetric N ×N constant matrix ‖θ‖[2]. In Refs.[3–7]
the reader will find specific examples of noncommutative sys-
tems whose quantization has been successfully carried out.
While Ref.[3] is concerned with the distortion provoked by
the non-commutativity on the spectrum of the hydrogen atom,
Refs.[4–6] deal with the noncommutative two-dimensional
harmonic oscillator, an exactly solvable model. In Ref.[7] the
authors elaborate about the effects of the non-commutativity
in the case of a multi-particle system: the electron gas.

However, the question on whether non-commutative me-
chanics is, on general grounds, a sound quantum theory re-
mains open. The answer for this question calls for model in-
dependent developments. Our purpose in this work is to sum-
marize and discuss the key contributions that have been made
in this respect[8].

We shall first focus on the implementation of the classical-
quantum transition for non-commutative systems. To the best
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of our knowledge, only the theory of constrained systems fur-
nishes the appropriate tools for this purpose. As a by product,
we shall also verify that non-commutativity always amounts
to non-local interactions. This is our Section II.

Unitarity is at the heart of any quantum theory since it se-
cures probability conservation. For non-commutative models,
a throughout investigation of this property is presented in Sec-
tion III.

In Section IV we take, once more, advantage of the cor-
respondence existing between non-commutative models and
constrained systems to formulate the non-commutative quan-
tum dynamics in terms of path integrals. We also verify here
the compatibility of the operator and functional approaches.

Section V is dedicated to illustrate about the difficulties en-
countered when explicitly computing functional integrals for
non-commutative systems. Being forced by didactics to work
out an exactly solvable model, we restricted ourselves to con-
sider the problem of finding the Feynman kernel for the non-
commutative two-dimensional harmonic oscillator.

The conclusions and final remarks are contained in Section
VI.

II. CLASSICAL-QUANTUM TRANSITION FOR
NONCOMMUTATIVE SYSTEMS

To start with, we notice that the classical counterpart of a
quantum system involving non-commuting coordinates must
be a constrained system[9]. Indeed, the equal time algebra in
Eq.(1a) could not have been abstracted from a Poisson bracket
algebra, simply because the Poisson bracket of two coordi-
nates vanishes.

Now, the problem of finding a constrained system mapping
onto the noncommutative theory specified in (1) has already
been solved[16]. Its classical dynamics is described by the
Lagrangian[17]

L = v j q̇ j − h0(q j,v j) + v̇ j θ jl vl , (2)

where repeated indices are summed from 1 to N. The con-
straint structure of this system reduces to the primary second-
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class constraints Gi ≡ pi − vi ≈ 0 , T i ≡ πi − θi jv j ≈ 0,
where pi (πi) is the momentum canonically conjugate to the
generalized coordinate qi (vi) and the sign of weak equality
(≈) is being used in the sense of Dirac[10]. As for the canon-
ical Hamiltonian, one finds that

h(q, p) = h0(q, p) . (3)

It may also be checked that the Faddeev-Popov matrix turns
out to be unimodular and constant. Then, the computation of
the Dirac brackets (DB) yields

[q j,qk]DB =−2θlk, (4a)

[q j, pk]DB = δ j
k, (4b)

[p j, pk]DB = 0. (4c)

We do not need to compute explicitly the DB’s involving v′s
and/or π′s since, by definition[10–15], within the DB algebra
the constraints hold as strong identities. In fact, at this stage of
the formulation we may eliminate the variables v and π in fa-
vor of q and p. However, q and p may not be referred to as the
physical phase space variables because their DB’s differ from
the corresponding Poisson brackets (PB)[10–15]. Presently,
the construction of the physical phase space variables, (x , k),
in terms of q and p is straightforward. Indeed, one may easily
verify that

x j ≡ q j − θ jl pl , (5a)
k j ≡ p j (5b)

and (4) lead to [ξ j,ξl ]DB = [ξ j,ξl ]PB, for ξ either x or k. All
that remains to be done to erase any remaining trace of the
constraints is to rewrite the Hamiltonian in (3) in terms of the
physical variables, namely,

h(q, p) ≡ h
(

x j +θ jkk k , k j

)
. (6)

One may confirm that the Hamiltonian equations of motion
for the physical variables possess the canonical form.

We turn next into quantizing the classical model described
above. Within the operator framework the quantization is im-
plemented by first promoting q and p into self-adjoint opera-
tors, Q and P, respectively. The classical-quantum correspon-
dence rule demands that they verify the equal-time commuta-
tor algebra abstracted from the corresponding DB’s. Further-
more, up to ordering ambiguities, the Hamiltonian operator
H(Q,P) can be read off from h(q, p) given at Eq.(3). It is then
clear that the noncommutative system (1) is the quantized ver-
sion of the classical constrained system defined in (2).

The quantization procedure also requires the finding of a
realization of the algebra (1) in terms of matrices, i.e., of a
representation. The fact that the coordinates do not commute
among themselves rules out the possibility for the existence
of a set of common Q-eigenvectors. However, the self-adjoint

operators X and K, which arise from the classical-quantum
transition x −→ X , k −→ K, obey, by definition, the algebra
abstracted from the corresponding PB’s, i.e.,

[
X l ,X j

]
= 0 , (7a)

[
X l ,K j

]
= i~δl

j , (7b)

[Kl ,K j] = 0 . (7c)

Hence, the common X-eigenvectors (|~x >≡
|x1, . . . ,xl , . . . ,xN >) provide a basis in the space of states for
representing the algebra (1).

For a Hamiltonian

H(Q,P) =
PlPl

2M
+V (Q) (8)

and, therefore,

H(X l + θl j K j , Kl) =
KlKl

2M
+V (X l +θlk Kk) , (9)

it has been shown elsewhere[4–6] that the time evolution of
the system, in the Schrödinger picture, is described by the
wave equation

− ~
2

2M
∇2

xΨ(x, t)+V (x)?Ψ(x, t) = i~
∂Ψ(x, t)

∂t
, (10)

where ∇2
x designates the Nth-dimensional Laplacian, M is

a constant with dimensions of mass while ? denotes the
Grönewold-Moyal product[18–20], namely,

V (x)?Ψ(x, t) ≡ V (x)

[
exp

(
−i~

←−
∂

∂xl θl j
−−→

∂
∂x j

)]
Ψ(x, t)

= V
(

x j − i~θ jl ∂
∂xl

)
Ψ(x, t) . (11)

It is worth mentioning that in Refs.[3–6] Eq.(10) has been
solved for some specific models.

The non-local nature of the right hand side of Eq.(11)
should be noticed. Hence, as stated in Section I, the quantized
version of non-commutative systems always involve non-local
interactions.

III. BORN SERIES AND UNITARITY IN
NONCOMMUTATIVE QUANTUM MECHANICS

Unitarity is of paramount importance for the consistency
of a quantum theory. Presently, the non locality of the in-
teraction casts doubts on whether the self-adjointness of the
Hamiltonian suffices, by itself, to render the scattering opera-
tor S unitary. A two steps procedure can be adopted to clarify
this issue. First, one proves that, under certain restrictions
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to be imposed on the potential (V ), there exists a convergent
Born series expansion for the matrix elements of the transition
operator T (S ≡ I−2πiT ). For V = gU , with g a dimension-
less coupling constant, the Born series becomes a power series
expansion in g. Then, unitarity will be shown to hold order by
order in g[21].

A. Born series

Let us return, for a while, to commutative quantum mechan-
ics and consider a system whose dynamics is described by the
self-adjoint Hamiltonian operator

H = H0 + V (X) , (12)

where H0 ≡ KlKl/2M will be referred to as the free Hamil-
tonian. Notice that H = H† enforces V = V † since the ki-
netic energy part H0 is, by construction, self-adjoint. From
inspection follows that H0 does not possess bound states and
its continuum energy spectrum is characterized by E > 0. By
assumption, the same applies for the continuum spectrum of
H although this operator may also possess bound states. Fur-
thermore, we shall keep everywhere in this Section ~= 1.

For the quantum system under consideration all observables
can be obtained from the operator T (W ) defined by the inte-
gral equation

T (W ) = V + V G(+)
0 (W )T (W ) , (13)

where G(+)
0 (W ) = [W − H0 + iε]−1 is the free Green function

for outgoing boundary conditions. By iterating the right hand
side of Eq.(13) one obtains T as a series,

T (W ) = V + V G(+)
0 (W )V

+ V G(+)
0 (W )V G(+)

0 (W )V + · · · , (14)

known as the Born series.

The problem of determining the necessary and sufficient
conditions for the Born series to converge was solved by
Weinberg[22] long ago. He considers the eigenvalue problem

G(+)
0 (W )V |ψν(W )〉 = ην(W ) |ψν(W )〉 . (15)

Since the operator G(+)
0 (W )V is not Hermitean, the eigenval-

ues η(W ) may be complex. As for the eigenstates, |ψν(W )〉,
they are assumed to be of finite norm. W is kept negative or
complex and is allowed to approach the positive real axis from
above. From Eqs.(14) and (15) one obtains

T (W ) |ψν(W )〉 =

[
∞

∑
n=0

ηn
ν(W )

]
V |ψν(W )〉 . (16)

It was demonstrated by Weinberg[22] that

|ην(W )| < 1 , ∀ν , (17)

is a necessary and sufficient condition for the Born series to
converge.

We now want to solve the analogous problem for noncom-
mutative quantum mechanics, the essential difference from
above being that instead of V = V (X) we have V = V (X l +
θl j K j). As point of departure, we start by invoking (15) to
cast Eq.(17) as

|〈~k |G(+)
0 (W )V |ψν(W )〉|
|〈~k |ψν(W )〉|

=
1

|W − ~k2

2M + iε|
|〈~k |V |ψν(W )〉|
|〈~k |ψν(W )〉|

=
1

|W − ~k2

2M + iε|
1

|〈~k |ψν(W )〉|

∣∣∣∣
∫

dNk′ 〈~k |V |~k ′〉〈~k ′|ψν(W )〉
∣∣∣∣

< 1 , ∀ν . (18)

Let us concentrate on the linear momentum integral in the right hand side of Eq.(18). Since

∣∣∣∣
∫

dNk′ 〈~k |V |~k ′〉〈~k ′|ψν(W )〉
∣∣∣∣ ≤

∫
dNk′

∣∣〈~k |V |~k ′〉〈~k ′|ψν(W )〉
∣∣ , (19)

one concludes that
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1

|W − ~k2

2M + iε|
1

|〈~k |ψν(W )〉|
∫

dNk′
∣∣〈~k |V |~k ′〉

∣∣ ∣∣〈~k ′|ψν(W )〉
∣∣ < 1 ∀ν (20)

is a sufficient although not necessary condition for the convergence of the Born series. In other words, (20) selects a subset of
potentials for which the Born series certainly converge.

To proceed further on we shall be needing
∣∣〈~k |V |~k ′〉

∣∣. Then, we start by looking for

〈~k |V (X l +θl j K j) |~k ′〉 =
∫

dNxφ?
~k
(~x)V

(
xl − i θl j ∂

∂x j

)
φ~k ′(~x)

=
∫

dNxφ?
~k
(~x)

[
V (~x)?φ~k ′(~x)

]
=

∫
dNxφ?

~k
(~x)?V (~x)?φ~k ′(~x)

=
∫

dNxV (~x)
[
φ~k ′(~x)?φ?

~k
(~x)

]
, (21)

where

φ~k(~x) =
1

(2π)
N
2

ei k jx j
, (22)

is the eigenfunction of the linear momentum ~K, corresponding to the eigenvalue~k. By invoking Eq.(11) one, then, finds

φ~k ′(~x)?φ?
~k
(~x) = φ~k ′(~x)

[
exp

(
−i
←−
∂

∂xl θl j
−−→

∂
∂x j

)]
φ?
~k
(~x) = e− i~k ′∧~k φ~k ′(~x)φ?

~k
(~x) , (23)

where

~k ′ ∧~k ≡ k′l θl j k j . (24)

Clearly, Eqs.(23) and (21) amount to

〈~k |V (X l +θl j K j) |~k ′〉 = e− i~k ′∧~k 〈~k |V (X l) |~k ′〉 (25)

and, as consequence,

∣∣〈~k |V (X l +θl j K j) |~k ′〉
∣∣ =

∣∣〈~k |V (X l) |~k ′〉∣∣ . (26)

This result connects the commutative with the noncommu-
tative regimes. Therefore, if V (X) verifies Eq.(20) so does
V (X l + θl j K j) or, what amounts to the samething, for the re-
stricted subclass of potentials verifying Eq.(20) the conver-
gence of the Born series holds for both, the commutative and
the noncommutative versions of the model.

B. Unitarity in noncommutative quantum mechanics

The scattering amplitude f (~k ′ ,~k) is given in terms of the
T -matrix by

f (~k ′ ,~k) ≡ −4π2M T (~k ′ ,~k) , (27)

where T (~k ′ ,~k) is short for 〈~k ′|T |~k〉. Unitarity demands that

ℑ f (~k ,~k) =
k

4π

∫
dΩ~k ′

∣∣ f (~k
′
,~k)

∣∣2
, (28)

where k = |~k| and dΩ~k ′ is the element of solid angle centered
around~k

′
.

Our purpose here is to check (28) by taking advantage of
the Born series representation for T . It will be assumed that
the potential V contains a dimensionless coupling constant
(g) that enables one to write V = gU . Then, the Born se-
ries in Eq.(14) becomes a power series in g. Correspondingly,
Eq.(28) translates into

4π
k

ℑ f (n)(~k ,~k) =
∫

dΩ~k ′
n

∑
i=1

f (i)?(~k
′
,~k) f (n− i)(~k

′
,~k) ,

(29)
where n is a positive integer,

f (n)(~k
′
,~k) = −4π2M T (n)(~k ′,~k) , (30)

and

T (n)(~k,~k ′) = 〈~k ∣∣
nfactorsV ;(n−1)factorsG(+)

0 (E)︷ ︸︸ ︷
V G(+)

0 (E)V · · ·V G(+)
0 (E)V

∣∣~k ′〉 . (31)
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Let us first analyze the contributions to the scattering am-
plitude for n = 1. Clearly, the right hand side in (29) does
not contain terms of order g1. Then, no term of order g1

should arise in ℑ f (1)(~k ,~k). We know that this is the case
in the commutative version of the theory, since the hermiticity
of V secures ℑ〈~k |V (X l) |~k〉 = 0. As for the noncommutative

case, we observe that for~k ′ = ~k (forward direction) the ex-
ponent in the right hand side of (25) vanishes and, therefore,
ℑ〈~k |V (X l +θl j K j) |~k〉 = ℑ〈~k |V (X l) |~k〉 = 0, as required.

To verify Eq.(29) for arbitrary n we start by claiming that

ℑ
∫

dNk′
T (m)?(~k ′,~k)T (p)(~k ′,~k)

k2

2M − k′ 2
2M + iε

= ℑ
∫

dNk′
T (m+1)?(~k ′,~k)T (p−1)(~k ′,~k)

k2

2M − k′ 2
2M + iε

−M k π
∫

dΩ~k ′
[
T (m)?(~k ′,~k)T (p)(~k ′,~k) + T (p)?(~k ′,~k)T (m)(~k ′,~k)

]
, (32)

whose proof is straightforward but will be omitted for reasons of space. Then, consider

ℑT (n)(~k,~k) = ℑ
∫

dNk′
T (1)?(~k ′,~k)T (n−1)(~k ′,~k)

k2

2M − k′ 2
2M + iε

= ℑ
∫

dNk′
T (2)?(~k ′,~k)T (n−2)(~k ′,~k)

k2

2M − k′ 2
2M + iε

−M k π
∫

dΩ~k ′
[
T (1)?(~k ′,~k)T (n−1)(~k ′,~k) + T (n−1)?(~k ′,~k)T (1)(~k ′,~k)

]
, (33)

where in going from the second to the third term of the equality we have used (32) for m = 1 and p = n−1. It is not difficult to
see that by applying this procedure (n−2) times one ends up with

ℑT (n)(~k,~k) = ℑT (n)?(~k,~k)

−2Mkπ
∫

dΩ~k ′
[
T (1)?(~k ′,~k)T (n−1)(~k ′,~k)+ · · ·+T (n−1)?(~k ′,~k)T (1)(~k ′,~k)

]
, (34)

which, after recalling that ℑT (n)?(~k,~k) = −ℑT (n)(~k,~k), goes into

ℑT (n)(~k,~k) = −M k π
∫

dΩ~k ′
n

∑
i=1

T (i)?(~k
′
,~k)T (n− i)(~k

′
,~k) . (35)

This last equation reproduces Eq.(29) in terms of T -matrix el-
ements and, hence, concludes the purported proof of unitarity.
It applies equally well for the commutative and the noncom-
mutative cases.

IV. THE FUNCTIONAL FORMULATION OF THE
QUANTUM DYNAMICS OF NONCOMMUTATIVE

SYSTEMS

In this Section we develop the functional formulation of the
quantum dynamics of noncommutative systems. To reach this

goal we shall take advantage of the equivalence described in
Section II, since the functional formulation of the dynamics of
constrained systems is, by now, a well known theoretical tool.
In fact, we have already at hand all the ingredients entering the
phase space path integral defining the generating functional of
Green functions (Z[J,S]), which reads[11]
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Z[J,S] = C
∫

[Dq]
∫

[Dv]
∫

[D p]
∫

[Dπ]

{
N

∏
j=1

δ[p j− v j]

}

×
{

N

∏
j=1

δ[π j−θ jkvk]

}
exp

{
i
~

∫ t f

tin
dt

[
p j q̇ j + π j v̇ j − h(q, p)

+ q j J j + p j S j]
}

. (36)

Here, J and S are external sources for q and p, respectively, while C is a normalization constant to be chosen such that Z[J =
0,S = 0] = 1. After performing the functional integrals on π and v one ends up with

Z[J,S] = C
∫

[Dq]
∫

[D p]

× exp
{

i
~

∫ t f

tin
dt

[
p j q̇ j − p j θ jk ṗk − h(q, p) +q j J j + p j S j

]}
. (37)

Thus far we have succeeded in eliminating all the redundant degrees of freedom and, therefore, in expressing Z[J,S] as a
phase space path integral over independent variables. However, this is not the end of the story because, as we already pointed
out, q and p are not canonical phase space variables. On the other hand, a proof of existence for Z[J,S] written as a phase space
path integral over independent canonical variables (x, k) was obtained by Fradkin and Vilkovisky[11]. Presently, we find such
expression by performing the non-canonical transformation (5) which, in turns, allows us to cast Eq.(37) as

Z[J,S|x f , t f ;xin, tin] = C
∫

[Dx]
∫

[Dk]

× exp
{

i
~

∫ t f

tin
dt

[
k j ẋ j − h(x j +θ jlkl ,k j) + x j Vj + k j U j

]}
, (38)

where

Vj ≡ J j , (39a)

U j ≡ S j − θ j k Jk . (39b)

Here, the dependence of Z on the boundary values of x and t has been made explicit.
What remains to be elucidated is whether the path integral and the operator approaches yield equivalent descriptions for the

quantum dynamics. We shall substantiate this proof of equivalence by reconstructing the equal time commutation relations in
Eq.(1) from the path integral approach. Since the equal time commutation relations are not modified by the interaction we may
set, without loosing generality, h(x j +θ jlkl ,k j) equal to the free Hamiltonian, namely,

h(x j +θ jlkl ,k j) =
1

2M
k jk j . (40)

The path integral in Eq.(38) can now be performed explicitly and yields

Z[J,K|x f = 0, t f ;xin = 0, tin] = C ′ (detΩ)−
1
2 exp

{
iM
2~

∫ t f

tin
dt U j(t)U j(t)

−i
2~

∫ t f

tin
dt

∫ t f

tin
dt ′

[
Vj(t)−MU̇ j(t)

]
∆ jl

F (t, t ′)
[
Vj(t ′)−MU̇ j(t ′)

]}
, (41)

where Ω jl(t, t ′) is the local operator

Ω jl(t, t ′) = −M δ jl
d2δ(t− t ′)

dt2 , (42)
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whose correspondent Green function (∆ jl
F (t, t ′)) is readily found to be

∆ jl
F (t, t ′) = δ jl ∆F(t, t ′) , (43)

with

∆F(t, t ′) =
1

M(t f − tin)
[
θ(t− t ′)(t ′− tin)(t f − t)

+ θ(t ′− t)(t− tin)(t f − t ′)
]
. (44)

Also, C ′ and detΩ are constants.
We shall denote by W [J,S|x f , t f ;xin, tin],

W [J,S|x f , t f ;xin, tin] ≡ lnZ[J,S|x f , t f ;xin, tin] , (45)

the generating functional of normalized connected Green functions and by T the chronological time ordering operator. Then,
after some algebra the following two point Green functions are found

〈E0, t f |T
(

Ql(t)Q j(t ′)
)
|E0, tin〉 ≡

(
~
i

)2 δ2W [J,S|x f = 0, t f ;xin = 0, tin]
δJl(t)δJ j(t ′)

∣∣∣∣∣
J=S=0

= i~δl j ∆F(t, t ′) + i~θl j (t− t ′)
(t f − tin)

− i~θl j ε(t− t ′)

− i~M
(
θ2)l j δ(t− t ′) + i~M

(
θ2)l j 1

(t f − tin)
, (46a)

〈E0, t f |T
(

Ql(t)Pj(t ′)
)
|E0, tin〉 ≡

(
~
i

)2 δ2W [J,S|x f = 0, t f ;xin = 0, tin]
δJl(t)δS j(t ′)

∣∣∣∣∣
J=S=0

= i~δl
j M

d∆F(t, t ′)
dt ′

− i~M θl j δ(t− t ′) + i~M2 θl j d2∆F(t, t ′)
dt dt ′

, (46b)

〈E0, t f |T
(
Pl(t)Pj(t ′)

) |E0, tin〉 ≡
(
~
i

)2 δ2W [J,S|x f = 0, t f ;xin = 0, tin]
δSl(t)δS j(t ′)

∣∣∣∣∣
J=S=0

− i~δl j M δ(t− t ′) + i~M2δl j
d2∆F(t, t ′)

dt dt ′
, (46c)

where |E0, t〉 is the ground state energy eigenvector of the
Heisenberg picture, ε(t) is the sign function and tin ≤ (t, t ′)≤
t f . Now, the equal time commutator of any two operators, A(t)
and B(t), say, can be expressed in terms of their chronological
product (T (A(t)B(t ′))) as follows

[A(t) , B(t)] = T (A(t)B(t ′))
∣∣∣∣
t=t ′+

− T (A(t)B(t ′))
∣∣∣∣
t=t ′−

, (47)

which clearly signalizes that the contributions to the commu-
tator arise from the discontinuities of the chronological prod-
uct at t = t ′. Thus, the equal time commutator of two coordi-
nate operators is only contributed by the term in the right hand
side of Eq.(46a) containing the sign function. One finds

〈E0, t f |
[
Ql(t) , Q j(t)

]
|E0, tin〉 = −2i~θl j . (48)

The contribution to the equal time commutator
[
Ql(t) , Pk(t)

]
arises from the discontinuity at t = t ′ exhibited by the first
term in the right hand side of Eq.(46b) and, hence,

〈E0, t f |
[
Ql(t) , Pj(t)

]
|E0, tin〉 = i~δl

j . (49)

Finally, the fact that all terms in the right hand side of Eq.(46c)
are continuous at t = t ′ leads to

〈E0, t f | [Pl(t) , Pj(t)] |E0, tin〉 = 0 . (50)
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It is obvious that the matrix elements of the basic commu-
tators arising from the functional approach are in agreement
with the commutation rules in Eq.(1). We, then, conclude that
the operator and the functional frameworks provide equiva-
lent descriptions of the quantum dynamics for noncommuta-
tive models.

V. THE FEYNMAN KERNEL OF THE TWO
DIMENSIONAL NONCOMMUTATIVE HARMONIC

OSCILLATOR

Our purposes in this section is to exhibit the intricacies aris-
ing along the computation of the Feynman kernel for a non-
commutative system. For reasons of feasibility we shall be

dealing here with an exactly solvable model: the noncommu-
tative two dimensional harmonic oscillator[23]. This will also
allow us to discuss the similarities and discrepancies existing
between the commutative and noncommutative versions of the
theory.

Hence, for the model under scrutiny

h(q, p) =
p j p j

2M
+

ω2

2
q jq j , (51)

where M and ω are, respectively, the mass and the frequency
of the oscillator, while repeated spatial indices only sum from
1 to 2. Correspondingly, the Hamiltonian h(x j + θ jlkl ,k j)
reads

h(x j +θ jlkl ,k j) =
k jk j

2M
+

Mω2

2

(
x jx j +2xiθi jk j +θi jθilk jkl

)
. (52)

Then, as is well known, the Feynman kernel (K(x f , t f ;xin, tin)) is given by the phase space path integral

K(x f , t f ;xin, tin) =
∫

DxDk exp
{

i
~

∫ t f

tin
dt

[
k j ẋ j − h(x j +θ jlkl ,k j)

]}
, (53)

where xin (x f ) denote, as we already said, the values acquired by the coordinates at t = tin (t = t f ). After carrying out the
momentum integrals one arrives at

K(x f , t f ;xin, tin) = C
∫

Dxe
i
~ S[x] , (54)

where C is a constant,

S[x] =
∫ t f

tin
dt L(x(t), ẋ(t)) (55)

denotes the effective action functional and

L(x(t), ẋ(t)) =
1
2

Mθ ẋ j ẋ j − Mθ M ω2 xi εi j ẋ j − 1
2

Mθ ω2 xi xi , (56)

is the effective Lagrangian. We furthermore recall that in two dimensions one can write θ jk = ε jk θ, where ε jk is the antisymmetric
Levi-Civita tensor and θ is a scalar parameterizing the intensity of the noncommutativity. Also, we have introduced the definition

Mθ ≡ M
1+M2ω2θ2 . (57)

As it can be seen, the Lagrangian in Eq.(56) is bilinear in x. Therefore, the functional integral in the right hand side of Eq.(54)
can also be exactly computed and yields

K(x f , t f ;xin, tin) = N e
i
~ S[xcl ] , (58)

where N is another constant and xcl are the solutions of the Lagrange equations of motion deriving from (56), namely,
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ẍ1 + 2θM ω2 ẋ2 + ω2 x1 = 0 , (59a)
ẍ2 − 2θM ω2 ẋ1 + ω2 x2 = 0 . (59b)

One can convince oneself that

S[xcl ] =
1
2

Mθ
[
x j(t f ) ẋ j(t f ) − x j(tin) ẋ j(tin)

]
. (60)

What remains to be done is to find the configurations x j(t) solving the coupled ordinary differential equations of motion (59)
under the boundary conditions x j = x j

in, for t = tin, and x j = x j
f , for t = t f . The corresponding decoupling is easily implemented

by introducing the chiral variable z≡ (x1 + i x2)/
√

2. One, then, finds

x1(t) =
1

sin
[
ω
√

κ(t f − tin)
] {

x1
in sin

[
ω
√

κ(t f − t)
]

cos
[
Mθω2(t− tin)

]

− x2
in sin

[
ω
√

κ(t f − t)
]

sin
[
Mθω2(t− tin)

]

+ x1
f sin

[
ω
√

κ(t− tin)
]

cos
[
Mθω2(t f − t)

]

+ x2
f sin

[
ω
√

κ(t− tin)
]

sin
[
Mθω2(t f − t)

]}
, (61a)

x2(t) =
1

sin
[
ω
√

κ(t f − tin)
] {

x1
in sin

[
ω
√

κ(t f − t)
]

sin
[
Mθω2(t− tin)

]

+ x2
in sin

[
ω
√

κ(t f − t)
]

cos
[
Mθω2(t− tin)

]

− x1
f sin

[
ω
√

κ(t− tin)
]

sin
[
Mθω2(t f − t)

]

+ x2
f sin

[
ω
√

κ(t− tin)
]

cos
[
Mθω2(t f − t)

]}
, (61b)

where

κ≡ 1+M2θ2ω2 . (62)

By substituting Eq.(61) into (60) one arrives at

S[xcl ] =
Mθ
2

ω
√

κ
sin

[
ω
√

κ(t f − tin)
]
{

cos
[
ω
√

κ(t f − tin)
](

x j
f x j

f + x j
inx j

in

)

− 2cos
[
Mθω2(t f − tin)

]
x j

inx j
f +2sin

[
Mθω2(t f − tin)

]
ε jkx j

f xk
in

}
, (63)

which at the commutative limit (θ = 0) reduces, as expected,
to two uncoupled harmonic oscillators[24].

The last term within the curly bracket, in the right hand side
of Eq.(63), describes the most striking effect introduced by the
noncommutativity. It shows that, for θ 6= 0, the coordinates x1

and x2 become mixed. The same effect will of course occur
in the case of the Landau problem since this last mentioned
system can be fully rephrased in terms of a noncommutative
two dimensional harmonic oscillator[6].

VI. CONCLUSIONS AND FINAL REMARKS

This work was primarily intended to review model indepen-
dent results in noncommutative quantum mechanics.

We first presented a unified description of the classical and
quantum dynamics of a generic noncommutative system. The
distinctive feature is that at the classical level one deals with
a constrained system whose quantization leads to the non-
canonical commutation rules in Eq.(1), which act as input
in the formulation of the problem. We can not assert that
the classical-quantum correspondence depicted in Section II
is unique, since one can not rule out the possibility of existing
another constrained system whose DB’s are still those given
in Eq.(4). However, the physical variables for this new system
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may, at the most, differ from x, k by a canonical transforma-
tion.

The fact that non-commutativity does not destroy the Born
series greatly facilitated the proof of unitarity, which is an es-
sential requirement for a quantum theory to make sense.

The work done in Refs.[10–15], in connection with con-
strained systems, paved the way for us to implement the func-
tional formulation of the quantum dynamics of noncommu-
tative systems. We succeeded in recovering the input infor-

mation in Eq.(1) from the functional formalism. As shown
in Section V, in connection with the noncommutative two di-
mensional harmonic oscillator, the main effect induced by the
noncommutativity consists in mixing the degrees of freedom
of the physical system.
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[18] H. J. Grönewold, Physica (Amsterdam) 12, 405 (1946).
[19] J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).
[20] T. Filk, Phys. Lett. B 376, 53 (1996).
[21] F. S. Bemfica and H. O. Girotti, Phys. Rev. D77, 027704 (2008).
[22] S. Weinberg, Phys. Rev. 131, 440 (1963).
[23] B. Dragovich, Theor. Math. Phys. 140, 1299 (2004).
[24] See for instance R. P. Feynman and A. R. Hibbs, Quantum me-

chanics and path integrals (McGraw-Hill, Inc, 1965).


