
Bra zilian Journal of Physics, vol. 38, no. 3A, September, 2008 297

A New Formulation for the Dielectric Tensor for Magnetized Dusty
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A kinetic approach to the problem of wave propagation in dusty plasmas, which takes into account the varia-
tion of the charge of the dust particles due to inelastic collisions with electrons and ions, is utilized as a starting
point for the development of a new formulation, which writes the components of the dielectric tensor in terms
of a finite and an infinite series, containing all effects of harmonics and Larmor radius. The formulation is
quite general and valid for the whole range of frequencies above the plasma frequency of the dust particles,
which were assumed motionless. The formulation is employed to the study of electrostatic waves propagating
along the direction of the ambient magnetic field, in the case for which ions and electrons are described by
Maxwellian distributions. The results obtained in a numerical analysis corroborate previous analysis, about the
important role played by the inelastic collisions between electrons and ions and the dust particles, particularly
on the imaginary part of the dispersion relation. The numerical analysis also show that additional terms in the
components of the dielectric tensor, which are entirely due these inelastic collisions, play a very minor role in
the case of electrostatic waves, under the conditions considered in the present analysis.

Keywords: Langmuir waves; Electrostatic waves; Kinetic theory; Magnetized dusty plasmas; Dust charge fluctuation; Wave
propagation

1. INTRODUCTION

The theoretical analysis of waves and instabilities in dusty
plasmas have may be traced back to the pioneer work by
Bliokh and Yarashenko [1] about waves in Saturn’s rings.
Most of the published works utilized fluid theory to describe
the dusty plasmas, and only a few of them take into account
the collisional charging of the dust particles [2, 3], although
the importance of this effect to the propagation and damping
of the waves is already well known [4, 5].

Although very important studies have been conducted us-
ing an hydrodynamical approach, it must be recognized that
the fluid formulation has an important limitation: it can not
describe purely kinetic effects such as the Landau damping.
This consideration, per se, offers motivation for kinetic stud-
ies on dusty plasmas. Moreover, it has been shown that the
dust charging process must be included in a kinetic approach,
for proper derivation of the wave damping [6]. The reason is
basically that the charging process is one of the most conspic-
uous and important dissipative processes to occur in a dusty
plasma. As argued in Ref. [7], it is not possible to separate the
conventional Landau damping and the damping due to the in-
teraction of ions and electrons with the dust particles, at least

†In Memoriam
∗Electronic address: ziebell@if.ufrgs.br

for ion-acoustic waves.
The kinetic approach has been used in some investigations,

as in the study of instabilities of ion-acoustic waves produced
by current in a collisionless dusty plasma, completely ionized,
appearing in the paper by Rosenberg [8]. This work has estab-
lished a critical drift velocity of electrons, relative to the ions,
for the occurrence of the instability. However, effects of the
variation of the electric charge of the dust particles have not
been taken into account. More recently, an approach based on
moments of the kinetic equation was utilized for investigation
of the effect of dust charge variation on high-frequency elec-
trostatic plasma waves [9], leading to the conclusion that the
grain charging contribute to damping of the Langmuir waves.

A kinetic description has been adopted by ourselves in re-
cent publications which analize low-frequency electromag-
netic waves in dusty plasmas, taking into account the variation
of the dust charges due to inelastic collisions with electrons
and ions [10–13]. The same basic kinetic formulation has also
been used to the study of electrostatic waves in dusty plasmas
[14]. In this kinetic formulation, the components of the di-
electric tensor depend on the frequency of inelastic collisions
of plasma electrons and ions with the dust particles. They can
be connected to other formulations well known and used in
the literature. Particularly, as shown in an appendix appearing
at the end of Ref. [14], the general expressions for the di-
electric tensor appearing in the kinetic formulation which we
have been using can be cast in the form which appears in a
series of papers of Tsytovich et al. [6, 15, 16], if restrictive
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assumptions are made.
In the present paper, we resume the use of the same basic

kinetic approach, and introduce modifications in the mathe-
matical formulation. We obtain expressions for the compo-
nents of the dielectric tensor which are written in terms of an
infinite and a finite summation, formally incorporating effects
of all harmonics and all orders of Larmor radius, keeping ef-
fects due to the charging of the dust particles due to inelastic
collisions with electrons and ions. The formulation is quite
general in terms of frequency range and direction of propaga-
tion, and should be very useful for application to the study of
wave propagation in dusty plasmas. A preliminary approach
to this formulation appeared in the Appendix of Ref. [22],
without any details of derivation.

The structure of the paper is the following. In Section 2 we
briefly outline the model used to describe the dusty plasma. In
Section 3 we present essential features of the kinetic formula-
tion which leads to the dielectric tensor for dusty plasmas, and
present the new formulation which leads to components of the
dielectric tensor expressed in terms of double summations and
a small number of basic integrals. In section 4 we discuss the
particular case of electrostatic waves propagating along the
direction of the ambient magnetic field, and show the deriva-
tion of a dispersion relation assuming Maxwellian distribu-
tions for the electrons and ions in the equilibrium. In Sections
5 some numerical results obtained from the dispersion relation
are presented and discussed. The conclusions are presented in
Section 6. Appendixes A and B are included, providing addi-
tional details of the derivation of some expressions appearing
in the formulation utilized in the present paper. Appendix C
shows details of the evaluation of the basic integrals appearing
in these expressions, for the case of Maxwellian distributions.
Appendix D presents some useful series of Bessel functions,
utilized in the derivation of many expressions in the present
formulation.

2. THE DUSTY PLASMA MODEL

In our general kinetic formulation we consider a plasma in a
homogeneous external magnetic field B0 = B0 ez. In this mag-
netized plasma we take into account the presence of spher-
ical dust grains with constant radius a and variable charge
qd ; this charge originates from inelastic collisions between the
dust particles and particles of species β (electrons and ions),
with charge qβ and mass mβ. Ions are considered as simply
charged, for simplicity.

We consider that the dust grain charging process occurs by
the capture of plasma electrons and ions during inelastic col-
lisions between these particles and the dust particles. Since
the electron thermal speed is much larger than the ion thermal
speed, the dust charge becomes preferentially negative. As a
cross-section for the charging process of the dust particles, we
use expressions derived from the OML theory (orbital motion
limited theory) [17, 18].

Another limiting condition is that we focus our attention on
weakly coupled dusty magneto-plasmas, in which the electro-
static energy of the dust particles is much smaller than their

kinetic energy. This condition is not very restrictive, since a
large variety of natural and laboratory dusty plasmas can be
classified as weakly coupled [19].

Dust particles are assumed to be immobile, and conse-
quently the validity of the proposed model will be restricted to
waves with frequency much higher than the characteristic dust
frequencies. In particular we consider the regime in which
|Ωd | ¿ωpd < ω, where ωpd and Ωd are the plasma frequency
and the cyclotron frequency of the dust particles, respectively.
This condition therefore excludes the analysis of the modes
which can arise from the dust dynamics, as the so-called dust-
acoustic wave.

3. THE COMPONENTS OF THE DIELECTRIC TENSOR
FOR A HOMOGENEOUS MAGNETIZED DUSTY PLASMA

We assume that the distribution function of particles of
species β, in a dusty plasma, satisfies Vlasov’s equation ap-
pended with a term describing binary inelastic collisions with
dust particles,

∂ fβ

∂t
+

p
mβ

·∇ fβ +qβ

[
E+

p
mβc

×B
]
·∇p fβ

=−
∫

σβ
p

mβ
( fd fβ− fd0 fβ0)dq, (1)

where fd0 and fβ0 represent respectively the equilibrium dis-
tribution functions of dust particles and of particles of species
β, with the subscript β = e, i identifying electrons and ions,
respectively. The distribution function for the dust particles,
fd , satisfies the following equation,

∂ fd

∂t
+

∂
∂q

[I(r,q, t) fd ] = 0, (2)

where

I(r,q, t) = ∑
β

∫
d3 p qβ σβ(p,q)

p
mβ

fβ(r,p, t),

is the current of electrons and ions which charge the dust par-
ticles [6]. The presence of the collisional term in these equa-
tions assures the possibility of variation of the electric charge
of the dust particles, due to the inelastic collisions with parti-
cles of species β.

Upon linearization, the perturbed distribution function sat-
isfies the following equation,

∂ fβ1

∂t
+

p
mβ

·∇ fβ1 +qβ

(
p

mβc
×B0

)
·∇p fβ1 +ν0

βd(p) fβ1

=−ν1
βd(r, p, t) fβ0−qβ

[
E1 +

p
mβc

×B1

]
·∇p fβ0, (3)

where

ν0
βd(p) =

∫ 0

−∞
σβ(p,q)

p
mβ

fd0(q)dq,



Bra zilian Journal of Physics, vol. 38, no. 3A, September, 2008 299

ν1
βd(r, p, t) =

∫ 0

−∞
σβ(p,q)

p
mβ

fd1(r,q, t)dq,

and σβ is the charging cross-section, given by [20]

σβ = πa2
(

1− 2qdqβmβ

ap2

)
H

(
1− 2qdqβmβ

ap2

)
. (4)

After use of Fourier-Laplace transform in the system of
equations describing the dusty plasmas, the perturbed distri-
bution function can be written as [21]:

f̂β(p) = f̂ C
β + f̂ N

β , (5)

where

f̂C
β =−qβ

∫ 0

−∞
dτei{k·R−[ω+iν0

βd(p)]τ}

×
(

Ê+
1

mβγβc
p′× B̂

)
·∇p′ fβ0(p⊥, p‖),

f̂ N
β =−

∫ 0

−∞
dτei{k·R−[ω+iν0

βd(p)]τ}ν̂βd(p) fβ0.

One notices that f̂β
C

has the same formal structure as the per-
turbed distribution obtained in the evaluation of the dielectric
tensor of a conventional homogeneous magnetized plasma,
with ω+ iν0

βd(p) instead of ω in the argument of the exponen-
tial function. This part of the perturbed distribution therefore
gives rise to a contribution to the components of the dielectric
tensor that corresponds to the usual form of the components
obtained for dustless magnetized homogeneous plasma, ex-
cept for the modifications due to the presence of the inelastic
collision frequency ν0

βd(p), which is related to the equilibrium
distribution function of dust particles, as shown by Eq. (3).
On the other hand, f̂β

N
features an integrand which is pro-

portional to ν̂βd , and which vanishes in the case of dustless
plasma. The ν̂βd quantity is the Fourier-Laplace transform of
the ν1

βd collision frequency, which is related to inelastic colli-
sions with the fluctuating distribution of dust particles.

Using these two contributions to the perturbed distribution
function, the dielectric tensor for a magnetized dusty plasma,
homogeneous, fully ionized, with identical immobile dust par-
ticles and charge variable in time, could be written in the fol-
lowing way [21, 22]

εi j = εC
i j + εN

i j . (6)

One notices that the separation in the two terms appearing in
Eq. (6) should not be considered arbitrary, since it is moti-
vated by the different nature of the two contributions to the
perturbed distribution function depicted by Eq. (5).

The term εC
i j is formally identical, except for the iz compo-

nents, to the dielectric tensor of a magnetized homogeneous
conventional plasma of electrons and ions, with the resonant
denominator modified by the addition of a purely imaginary

term which contains the inelastic collision frequency of dust
particles with electrons and ions. For the iz components of
the dielectric tensor, in addition to the term obtained with the
prescription above, there is a term which is proportional to
this inelastic collision frequency. Explicit expressions for the
components εC

i j can be found in Refs. [21, 22].
The term εN

i j is entirely new and arises only due to the pro-
cess of fluctuation of the charge of the dust particles. Its form
is strongly dependent on the model used to describe the charg-
ing process of the dust particles. The expression for this term
can be found in Refs. [21, 22].

As already mentioned, we assume a homogeneous dusty
plasma immersed in a homogeneous magnetic field along z
direction, B0 = B0ez. Let us also assume waves propagat-
ing in an arbitrary direction relative to the ambient magnetic
field, with wave vector k = k⊥e1 + k‖ez. For the derivation
of explicit expressions for the components of the dielectric
tensor, we start with the “conventional” part, which in a non-
relativistic approximation can be written as follows [21, 22].

εC
i j = δi j +∑

β

Xβ

nβ0

+∞

∑
n=−∞

∫
d3 p p⊥

ϕ0( fβ0)
Dnβ

(
p‖
p⊥

)δiz+δ jz

Rnβ
i j

−δizδ jz ∑
β

Xβ

nβ0

∫
d3 pL( fβ0)

p‖
p⊥

(7)

+δ jz ∑
β

Xβ

nβ0

+∞

∑
n=−∞

∫
d3 p

[
i
ν0

βd(p)

ω
L( fβ0)

Dnβ

(
p‖
p⊥

)δiz
]

Rnβ
i j ,

where

Dnβ = 1− k‖p‖
mβω

− nΩβ

ω
+ i

ν0
βd(p)

ω
,

Rnβ
xx =

n2

b2
β

J2
n (bβ), Rnβ

zz = J2
n (bβ) ,

Rnβ
xy =−Rnβ

yx = i
n
bβ

Jn(bβ)J
′
n(bβ) ,

Rnβ
xz = Rnβ

zx =
n
bβ

J2
n (bβ), Rnβ

yy = J′2n (bβ) ,

Rnβ
yz =−Rnβ

zy =−iJn(bβ)J
′
n(bβ) ,

ν0
βd(p) =

πa2nd0

mβ

(
p2 +Cβ

)

p
H

(
p2 +Cβ

)
,

ϕ0( fβ0) =
∂ fβ0

∂p⊥
− k‖

mβω
L( fβ0) ,
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L( fβ0) = p‖
∂ fβ0

∂p⊥
− p⊥

∂ fβ0

∂p‖
,

Xβ =
ω2

pβ

ω2 , ω2
pβ =

4πnβ0q2
β

mβ
, Ωβ =

qβB0

mβc
,

bβ =
k⊥p⊥
mβΩβ

, Cβ =−2qβmβqd0

a
,

where the subscript β = e, i identifies electrons and ions re-
spectively, qd0 = εd eZd is the equilibrium charge of the dust
particle (positive, εd = +1, or negative, εd = −1) and H de-
notes the Heaviside function.

In the evaluation of the components εC
i j we need combina-

tions of Bessel functions, as in J2
n , J′2n , and JnJ′n, which can be

given by Eqs. (D1) of Appendix D. It must be noticed that
these quantities, given by Eqs. (D1), depend on |n| and not
on n. However, n appears in other places, as in the resonant
denominator. We can write n = s|n|, with s = ±1, and there-
fore the components of the ‘conventional’ part of the dielectric
tensor may be written as follows,

εC
i j = δi j +δizδ jzezz +N

δiz+δ jz
⊥ χC

i j

= δi j +∑
β

Xβ

nβ0

+∞

∑
n=1

∑
s=±1

∫
d3 p p⊥

ϕ0( fβ0)
Dsnβ

(
p‖
p⊥

)δiz+δ jz

Rsnβ
i j

+∑
β

Xβ

nβ0

∫
d3 p p⊥

ϕ0( fβ0)
D0β

(
p‖
p⊥

)δiz+δ jz

R0β
i j

−δizδ jz ∑
β

Xβ

nβ0

∫
d3 pL( fβ0)

p‖
p⊥

(8)

+δ jz ∑
β

Xβ

nβ0

+∞

∑
n=1

∑
s=±1

∫
d3 p

[
i
ν0

βd(p)

ω
L( fβ0)
Dsnβ

(
p‖
p⊥

)δiz
]

Rsnβ
i j

+δ jz ∑
β

Xβ

nβ0

∫
d3 p

[
i
ν0

βd(p)

ω
L( fβ0)

D0β

(
p‖
p⊥

)δiz
]

R0β
i j ,

where we have introduced the definition of the χC
i j, and in-

troduced N⊥ as the perpendicular component of N = ck/ω.
Correspondingly, N‖ is the parallel component of N. We have
also written n instead of |n|, fom simplicity, since n≥ 1. It is
not necessary to write the |n| because here n is positive and
the sign s appears explicitly.

Let us define the normalized momentum, u = p/(mαv∗),
where v∗ is a characteristic velocity, such that

∫
d3 p f (p) =∫

d3u f (u). For instance, v∗ may be the light speed c, or the
Alfvén speed vA, or the ion sound speed cs. Therefore,

p⊥ϕ0 = p⊥

[(
1− k‖p‖

mαω

)
∂

∂p⊥
+

k‖p⊥
mαω

∂
∂p‖

]

= u⊥

[(
1−N∗

‖u‖
) ∂

∂u⊥
+N∗

‖u⊥
∂

∂u‖

]
≡ u⊥L,

L = p‖
∂

∂p⊥
− p⊥

∂
∂p‖

= u‖
∂

∂u⊥
−u⊥

∂
∂u‖

,

bα =
k⊥p⊥
mαΩα

=
N∗
⊥u⊥

sαYα
,

where we have introduced N∗ = (v∗/c)N, Yα = |Ωα|/ω, sα =
sign(Ωα), and also the operator L. Eq. (8) can be rewritten in
terms of the normalized momentum,

δizδ jzezz +N
δiz+δ jz
⊥ χC

i j = ∑
β

Xβ

nβ0

+∞

∑
n=1

∑
s=±1

∫
d3uu⊥

L( fβ0)
Dsnβ

(
u‖
u⊥

)δiz+δ jz

Rsnβ
i j

+∑
β

Xβ

nβ0

∫
d3uu⊥

L( fβ0)
D0β

(
u‖
u⊥

)δiz+δ jz

R0β
i j

−δizδ jz ∑
β

Xβ

nβ0

∫
d3uL( fβ0)

u‖
u⊥

(9)

+δ jz ∑
β

Xβ

nβ0

+∞

∑
n=1

∑
s=±1

∫
d3u

[
i
ν0

βd(u)

ω
L( fβ0)
Dsnβ

(
u‖
u⊥

)δiz
]

Rsnβ
i j
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+δ jz ∑
β

Xβ

nβ0

∫
d3u

[
i
ν0

βd(u)

ω
L( fβ0)

D0β

(
u‖
u⊥

)δiz
]

R0β
i j ,

where

Dsnβ =

(
1−N∗

‖u‖− snsβYβ + i
ν0

βd(u)

ω

)
.

For the evaluation of the ‘new’ contribution, we start from the expression for the εN
i j in Refs. [21, 22], where it is seen that the

“new” contribution contains the product of two terms, which in a non-relativistic approximation can be written as follows,

εN
i j = UiS j , (10)

with

Ui =−2
a

1
ω+ i(νch +ν1)

∑
β

qβ

m2
β

+∞

∑
n=−∞

∫
d3 p

p⊥σ′β(p) p fβ0

ωDnβ

(
p‖
p⊥

)δiz

Rnβ
iz , (11)

S j = −2πa
ω ∑

β
q2

β

+∞

∑
n=−∞

∫
d3 p

ν0
βd(p)

ω
ϕ0( fβ0)

Dnβ

(
p‖
p⊥

)δ jz

Rnβ
z j

−iδ jz
2πa
ω ∑

β
q2

β

+∞

∑
n=−∞

∫
d3 p

[
ν0

βd(p)/ω
]2

Dnβ

L( fβ0)
p⊥

Rnβ
z j

+δ jz
2πa
ω ∑

β
q2

β

∫
d3 p

ν0
βd(p)

ω
L( fβ0)

p⊥
. (12)

where

νch =−∑
β

qβ

mβ

∫
d3 pσ′β (p) p fβ0 , (13)

ν1 = ∑
β

qβ

mβ

+∞

∑
n=−∞

∫
d3 p

[
iν0

βd(p)/ω
]

Dnβ
σ′β(p) p fβ0Rnβ

zz . (14)

Moreover, σ′β(p)≡ (∂σβ/∂qd)|qd=−Zde, and σβ is the charging cross-section, given by (4).
Effects of charge variation of dust particles occurs in the terms with ν0

βd(p)/ω and effects of presence of dust particles,
introduced via quasi-neutrality relation (ni0 6= ne0), occurs in terms with Xβ ≡ ω2

pβ/ω2.

Changing variables as in Eq. (8), Eqs. (11), (12), (13), and (14) become

Ui =−2
a

v2∗
ω+ i(νch +ν1)

∑
β

qβ

+∞

∑
n=−∞

∫
d3u

u⊥σ′β(u) fβ0 u

ωDnβ

(
u‖
u⊥

)δiz

Rnβ
iz ,

S j = −2πa
ω ∑

β

q2
β

mβv∗

+∞

∑
n=−∞

∫
d3u

ν0
βd(u)

ω
L( fβ0)

Dnβ

(
u‖
u⊥

)δ jz

Rnβ
z j

−iδ jz
2πa
ω ∑

β

q2
β

mβv∗

+∞

∑
n=−∞

∫
d3u

[
ν0

βd(u)/ω
]2

Dnβ

L( fβ0)
u⊥

Rnβ
z j

+δ jz
2πa
ω ∑

β

q2
β

mβv∗

∫
d3u

ν0
βd(u)

ω
L( fβ0)

u⊥
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νch =−v∗∑
β

qβ

∫
d3uσ′β (u) u fβ0 ,

ν1 = v∗∑
β

qβ

+∞

∑
n=−∞

∫
d3u

[
iν0

βd(u)/ω
]

Dnβ
σ′β(u) fβ0 uRnβ

zz .

ν0
βd(u) =

πa2nd0v∗
u

(
u2 +

Cβ

m2
βv2∗

)
H

(
u2 +

Cβ

m2
βv2∗

)
.

Using the definition of Cβ, and qd =−Zde,

ν0
βd(u) =

πa2nd0v∗
u

(
u2 +

2Zdeqβ

amβv2∗

)
H

(
u2 +

2Zdeqβ

amβv2∗

)
.

From Eq. (4), we obtain

σβ = π
a2

u2

(
u2 +

2Zdeqβ

amβcv2∗

)
H

(
u2 +

2Zdeqβ

amβv2∗

)
,

from which we obtain σ′β,

σ′β =−π
a
u2

2qβ

mβv2∗
H

(
u2 +

2Zdeqβ

amβv2∗

)
. (15)

Alternatively, this expression can be written in terms of the inelastic collision frequency,

σ′β =−1
u

2qβ

mβv2∗

1
and0c

(
u2 +

2Zdeqβ

amβv2∗

)−1

ν0
βd(u) . (16)

Using Eq. (15),

Ui =
4πv2∗

ω+ i(νch +ν1)
∑
β

q2
β

mβv2∗

+∞

∑
n=−∞

∫
d3u

fβ0

ωDnβ

u⊥
u

H
(

u2 +
2Zdeqβ

amβv2∗

)(
u‖
u⊥

)δiz

Rnβ
iz , (17)

S j = −2πa
ω ∑

β

q2
β

mβv∗

+∞

∑
n=−∞

∫
d3u

ν0
βd(u)

ω
L( fβ0)

Dnβ

(
u‖
u⊥

)δ jz

Rnβ
z j

−iδ jz
2πa
ω ∑

β

q2
β

mβv∗

+∞

∑
n=−∞

∫
d3u

(
ν0

βd(u)

ω

)2
1

Dnβ

L( fβ0)
u⊥

Rnβ
z j

+δ jz
2πa
ω ∑

β

q2
β

mβv∗

∫
d3u

ν0
βd(u)

ω
L( fβ0)

u⊥
, (18)

νch = (2π)av∗∑
β

q2
β

mβv2∗

∫
d3u fβ0

1
u

H
(

u2 +
2Zdeqβ

amβv2∗

)
, (19)

ν1 =−i(2π)av∗∑
β

q2
β

mβv2∗

+∞

∑
n=−∞

∫
d3u

(
ν0

βd(u)

ω

)
1

Dnβ
fβ0

1
u

H
(

u2 +
2Zdeqβ

amβv2∗

)
Rnβ

zz . (20)

Equations (9) and (17)-(20) are quite general. However, they can be rewritten in a different form, which is possibly more
useful for the evaluation of the dispersion relation. This new formulation shows explicitly the contribution of harmonics and
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Larmor radius terms, leading to general expression which depend on a small number of integrals, which have to be evaluated
depending on the equilibrium distribution function. The procedure is as follows. The Bessel functions which appear in the Ri j,
both in the ‘conventional’ and in the ‘new’ contributions, can be expanded using the expressions which appear in Appendix D,
and therefore it is possible to write the components of the dielectric tensor in terms of double series which contains some general
integrals. For the ‘conventional’ components,

χxx =
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

n2a(|n|,m−|n|)J(n,m,0; fβ0), (21)

χxy = i
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

nma(|n|,m−|n|)J(n,m,0; fβ0). (22)

χyx =−i
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

nma(|n|,m−|n|)J(n,m,0; fβ0). (23)

χxz =
1
z

v∗
c ∑

β

1
rβ

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

na(|n|,m−|n|)
[

J(n,m,1; fβ0)+ iJν(n,m,0; fβ0)
]
, (24)

χzx =
1
z

v∗
c ∑

β

1
rβ

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

na(|n|,m−|n|)J(n,m,1; fβ0). (25)

χyy =
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

b(|n|,m−|n|)J(n,m,0; fβ0), (26)

χyz =−i
1
z

v∗
c ∑

β

1
rβ

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

a(|n|,m−|n|)(m)
[

J(n,m,1; fβ0)+ iJν(n,m,0; fβ0)
]
. (27)

χzy = i
1
z

v∗
c ∑

β

1
rβ

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

a(|n|,m−|n|)(m)J(n,m,1; fβ0). (28)

χzz =
v2∗
c2 ∑

β

1
r2

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

a(|n|,m−|n|)
[

J(n,m,2; fβ0)+ iJν(n,m,1; fβ0)
]
, (29)

ezz =− 1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

∫
d3u

u‖
u⊥

L( fβ0)+
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

a(0,0)
[

J(0,0,2; fβ0)+ i Jν(0,0,1; fβ0)
]
, (30)

where we have defined

J(n,m,h; fβ0)≡ z
∫

d3u
uh
‖u

2(m−1)
⊥ u⊥L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

, (31)

Jν(n,m,h; fβ0) =
∫

d3u
ν̃0

βd(u)uh
‖u

2(m−1)
⊥ u⊥L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

, (32)
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with the dimensionless variables

z =
ω

Ω∗
, q‖ =

k‖v∗
Ω∗

, q⊥ =
k⊥v∗
Ω∗

, rβ =
Ωβ

Ω∗
, ν̃0

βd(u) =
ν0

βd(u)

Ω∗
.

The quantities Ω∗ and v∗ are some characteristic frequency and velocity, respectively. Details on these calculations can be
found in Appendix A.

Further development can be made in the particular case of Maxwellian distributions for ions and electrons,

fβ0(p) =
nβ0

(2π)3/2 p3
β

e−p2/(2p2
β)

, → fβ0(u) =
nβ0

(2π)3/2u3
β

e−u2/(2u2
β)

, (33)

where pβ =
√

mβTβ, and where we have defined uβ = pβ/p∗ = vβ/v∗, with vβ =
√

Tβ/mβ. For these distributions, and indeed for

any isotropic distribution, it is immediate to show that L( fβ0) = 0, with the consequent vanishing of the integral Jν(n,m,h; fβ0).
Therefore

χxx =
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

n2a(|n|,m−|n|)J(n,m,0; fβ0), (34)

χxy = i
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

nma(|n|,m−|n|)J(n,m,0; fβ0). (35)

χxz =
1
z

v∗
c ∑

β

1
rβ

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

na(|n|,m−|n|)J(n,m,1; fβ0). (36)

χyy =
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

b(|n|,m−|n|)J(n,m,0; fβ0). (37)

χyz =−i
1
z

v∗
c ∑

β

1
rβ

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

a(|n|,m−|n|)(m)J(n,m,1; fβ0). (38)

χzz =
v2∗
c2 ∑

β

1
r2

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

(
q⊥
rβ

)2(m−1) m

∑
n=−m

a(|n|,m−|n|)J(n,m,2; fβ0), (39)

χyx =−χxy, χzx = χxz, χzy =−χyz, (40)

ezz =
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

J(0,0,2; fβ0) . (41)

Similar development can be made for the ‘new’ contribution, with details in Appendix B. For general distributions,

Ux =
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

+m

∑
n=−m

(
q⊥
rβ

)2m−1

na(|n|,m−|n|)JU (n,m,0,0; fβ0) , (42)

Uy =−i
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

+m

∑
n=−m

(
q⊥
rβ

)2m−1

ma(|n|,m−|n|)JU (n,m,0,0; fβ0) , (43)
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Uz =
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

a(|n|,m−|n|)JU (n,m,1,0; fβ0) , (44)

Sx =−aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

+m

∑
n=−m

(
q⊥
rβ

)2m−1

na(|n|,m−|n|)JνL(n,m,0; fβ0) , (45)

Sy =−i
aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

+m

∑
n=−m

(
q⊥
rβ

)2m−1

ma(|n|,m−|n|)JνL(n,m,0; fβ0) , (46)

Sz =−aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

a(|n|,m−|n|)
[

JνL(n,m,1; fβ0)+ i Jνν(n,m; fβ0)
]

+
aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

Jν0( fβ0) , (47)

ν̃ch =
aΩ∗
2v∗ ∑

β

ω2
pβ

Ω2∗

1
nβ0

Jch( fβ0) , (48)

ν̃1 =−i
aΩ∗
2v∗ ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

a(|n|,m−|n|)JU (n,m,0,1; fβ0) , (49)

where

JU (n,m,h, l; fβ0) = z
∫

d3u

(
ν̃0

βd

z

)l
fβ0

z−nrβ−q‖u‖+ i ν̃0
βd

uh
‖u

2m
⊥

u
H

(
u2 +

2Zdeqβ

amβv2∗

)
. (50)

JνL(n,m,h; fβ0) = z
∫

d3u
ν̃0

βd

z

uh
‖u

2m−1
⊥ L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

, (51)

Jνν(n,m; fβ0) = z
∫

d3u

(
ν̃0

βd

z

)2
u2m−1
⊥ L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

, (52)

Jν0( fβ0) =
∫

d3u
ν̃0

βd

z
L( fβ0)

u⊥
, (53)

Jch( fβ0) =
∫

d3u fβ0
1
u

H
(

u2 +
2Zdeqβ

amβv2∗

)
, (54)

with ν̃1 = ν1/Ω∗ and ν̃ch = νch/Ω∗ .
For the case of a Maxwellian distribution, the integrals which depend on L( fβ0) will vanish, and we obtain

Ux =
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

+m

∑
n=−m

(
q⊥
rβ

)2m−1

na(|n|,m−|n|)JU (n,m,0,0; fβ0) , (55)
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Uy =−i
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

+m

∑
n=−m

(
q⊥
rβ

)2m−1

ma(|n|,m−|n|)JU (n,m,0,0; fβ0) , (56)

Uz =
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

a(|n|,m−|n|)JU (n,m,1,0; fβ0) , (57)

Sx =−aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

+m

∑
n=−m

(
q⊥
rβ

)2m−1

na(|n|,m−|n|)JνL(n,m,0; fβ0) , (58)

Sy =−i
aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=1

+m

∑
n=−m

(
q⊥
rβ

)2m−1

ma(|n|,m−|n|)JνL(n,m,0; fβ0) , (59)

Sz =−aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

a(|n|,m−|n|)JνL(n,m,1; fβ0) , (60)

with ν̃ch and ν̃1 given by Eqs. (48) and (49), respectively.

4. DISPERSION RELATION FOR THE CASE OF
ELECTROSTATIC WAVES AND PARALLEL

PROPAGATION

In the case of electrostatic waves (ES waves) and parallel
propagation, the dispersion relation is simply given by εzz = 0,
which can be written as follows,

εC
zz + εN

zz = 1+ ezz +UzSz = 0 .

From Eq. (41),

ezz =
1
z2 ∑

β

ω2
pβ

Ω2∗

1
nβ0

J(0,0,2; fβ0).

From Eq. (57), for q⊥ = 0,

Uz =
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2∗

1
nβ0

JU (0,0,1,0; fβ0) ,

where, from Eq. (48),

ν̃ch =
aΩ∗
2v∗ ∑

β

ω2
pβ

Ω2∗

1
nβ0

Jch( fβ0) ,

and from Eq. (49),

ν̃1 =−i
aΩ∗
2v∗ ∑

β

ω2
pβ

Ω2∗

1
nβ0

JU (0,0,0,1; fβ0) .

From Eq. (60), for q⊥ = 0,

Sz =−aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

JνL(0,0,1; fβ0) .

After multiplication by z2 and use of the previous expres-
sions, the dispersion relation can be written as follows,

[
z2 +∑

β

ω2
pβ

Ω2∗

1
nβ0

J(0,0,2; fβ0)

]

−aΩ∗
2v∗

[
∑
β

ω2
pβ

Ω2∗

1
nβ0

JU (0,0,1,0; fβ0)

][
∑
β

ω2
pβ

Ω2∗

1
nβ0

JνL(0,0,1; fβ0)

]

×
[

z+ i
aΩ∗
2v∗ ∑

β

ω2
pβ

Ω2∗

1
nβ0

(
Jch( fβ0)− i JU (0,0,0,1; fβ0)

)]−1

= 0 . (61)
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In the case of Maxwellian distributions for ions and electrons, and using as an approximation the average value of the collision
frequency instead of the actual momentum-dependent value, the J integrals can be evaluated. From Eqs. (C3) and (C6) we obtain

JU (n,m,h, l; fβ0)'−u2
β

(
ν̃β

z

)l

J(n,m−1/2,h; fβ0) ,

JνL(n,m,h; fβ0) =
ν̃β

z
J(n,m,h; fβ0) .

From Eq. (C2),

J(0,0,1; fβ0) = (
√

2)nβ0
(
uβ

)−1 ζ0
β

[
1+ ζ̂0

βZ(ζ̂0
β)

]
.

J(0,0,2; fβ0) = (
√

2)2 nβ0
(
uβ

)0 ζ0
β ζ̂0

β

[
1+ ζ̂0

βZ(ζ̂0
β)

]

From Eq. (C5),

J(0,−1/2,0; fβ0) =
√

π
2

nβ0
(
uβ

)−3 ζ0
β Z(ζ̂0

β) ,

J(0,−1/2,1; fβ0) =
√

πnβ0
(
uβ

)−2 ζ0
β

[
1+ ζ̂0

βZ(ζ̂0
β)

]
.

Using these results, and using also Eq. (C7), the dispersion relation becomes

ΛC +ΛN = 0 , (62)

where

ΛC =

[
z2 +2∑

β

ω2
pβ

Ω2∗
ζ0

β ζ̂0
β

[
1+ ζ̂0

βZ(ζ̂0
β)

]]

ΛN =
aΩ∗
2v∗

√
2π

[
∑
β

ω2
pβ

Ω2∗
ζ0

β

[
1+ ζ̂0

βZ(ζ̂0
β)

]][
∑
β

ω2
pβ

Ω2∗

ν̃β

uβ
ζ0

β

[
1+ ζ̂0

βZ(ζ̂0
β)

]]

×
[

z2− aΩ∗
2v∗ ∑

β

ω2
pβ

Ω2∗

1
uβ

(
−i z

√
2
π

e−(uβ
lim)2/(2u2

β) +
√

π
2

ν̃β ζ0
βZ(ζ̂0

β)

)]−1

.

5. NUMERICAL ANALYSIS

We consider the following parameters, which are in the
range of parameters of interest for stellar winds: ion temper-
ature Ti = 1.0×104 K, ion density ni0 = 1.0×109 cm−3, ion
charge number Zi = 1.0, and ion mass mi = mp, the proton
mass. For the radius of the dust particles, we assume a = 1.0×
10−4 cm. For the classical distance of minimum approach,
measured in cm, we use the value λ = 1.44× 10−7/Ti(eV),
where Ti(eV) means the ion temperature expressed in units of
eV.

Initially, we estimate the magnitude of the contribution of

the ‘new’ terms to the dispersion relation of ES waves, and
compare it with the ‘conventional’ contribution. In order to
do that we assume the occurrence of weakly damped high-
frequency oscillations with ω ' ωpe. As it is known, waves
in this range of frequency are known as Langmuir waves. For
normalization purposes, we use v∗ = cs and Ω∗ = ωpe0|nd0=0,
where ωpe0|nd0=0 is the equilibrium electron plasma frequency
in the absence of dust. For the numerical estimate, we assume
that typical Langmuir waves are such that the normalized fre-
quency is z = (1.1,−1× 10−3). For this value of z, and for
the parameters considered in the previous paragraph, we plot
in Fig. 1 the quantities ΛC and ΛN , namely the ‘conventional’
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and the ‘new’ contributions to the ES dispersion relation, as
defined in Eq. (62), versus normalized wavenumber q and
normalized dust density ε. The upper panels of Fig. 1 show
respectively, from left to right, the real and the imaginary parts
of ΛC, while the bottom panels show from left to right the real
and the imaginary parts of ΛN . It is seen that for most of the
interval of q and ε depicted in the figure the real and imagi-
nary contributions of ΛN are about eight orders of magnitude
smaller than the corresponding contributions of ΛC.

In Fig. 2 we show the quantities ΛC and ΛN vs. q and
ε, for z = (1× 10−2,−2× 10−4). This value of frequency
well below electron plasma frequency was chosen in order to
represent ion-sound waves. For this value of z, and for the
parameters considered in the previous paragraph, the upper
panels of Fig. 2 show respectively, from left to right, the real
and the imaginary parts of ΛC, while the bottom panels show
from left to right the real and the imaginary parts of ΛN . As
in the case of the higher frequency Langmuir waves, it is seen
that for the interval of q and ε where the values of ΛC and ΛN

are finite the real and imaginary contributions of ΛN are much
smaller than the corresponding contributions of ΛC.

We also investigate the relative contributions of the ‘con-
ventional’ and ‘new’ terms of the dispersion relation in the
frequency range of ion-sound waves for electron temperature
higher than ion temperature, case in which ion-sound waves
are expected to be much more significant than in the case of
equal electron and ion temperatures. Figure 3 is obtained for
Te/Ti = 20, and the other parameters and conditions as in Fig.
2. It shows in the upper panels, from left to right, the real and
the imaginary parts of ΛC, while the bottom panels show from
left to right the real and the imaginary parts of ΛN . As in the
case of Fig. 2, for the interval of q and ε where the values of
ΛC and ΛN are finite the real and imaginary contributions of
ΛN are much smaller than the corresponding contributions of
ΛC.

We further explore the role of the dusty plasma and of the
‘new’ contribution for the dispersion relation of ES waves, by
considering Te = Ti and numerically solving Eq. (62) for the
frequency range of Langmuir waves. The upper left panel of
Fig. 4 shows the value of zr as a function of q and ε, consider-
ing ε changing from 0.0 up to 1.0×10−4. The quantity zr ap-
pears to be quite insensitive to the presence of the dust. In the
upper right panel of Fig. 4 we see the corresponding imagi-
nary part. In the scale of the figure, the quantity zi also appears
to be insensitive to the presence of the dust. However, an am-
plified view of the large wavelength region (small q), where
Landau damping is negligible, appears in the bottom panel of
Fig. 4 and shows the occurrence of damping due to the pres-
ence of the dust particles. The bottom panel of Fig. 4 shows
the absolute value of zi for values of q between 1.0× 10−3

and 4.2× 10−3. It is seen that for ε = 0.0 values of |zi| due
to Landau damping of order 10−6 starts to appear only above
q' 0.004. In the region of smaller q (larger wavelengths), the
damping rate is zero for ε = 0.0, but it is seen to increase with
the increase of the dust density, along the ε axis. The panel
shows that the damping due to the dust particles in the large
wavelength region (small values of q) increases linearly with
the dust density, reaching the maximum of |zi| ' 6.0× 10−6

for the maximum value of ε considered in the calculation.
We point out that in Fig. 4 we have plotted the results ob-

tained with the dispersion relation given by Eq. (62) using
red color. We have also plotted in the same figure, using blue
color, the results obtained from a dispersion relation given by
ΛC = 0, obtained by neglecting the ‘new’ contribution to the
dielectric tensor. The results hardly can be distinguished in
the scale of the figure, reflecting the fact that for the range
of frequency and for the parameters utilized the effect of the
‘new’ contribution is negligible in the dispersion relation of
ES waves. In a monochromatic version of Fig. 4 the two dif-
ferent results can hardly be distinguished. In a color version
of Fig. 4, the two different results appear so close that the
curves feature a light purple color, result of the superposition
of the results featured with red color and the results featured
with blue color.

6. CONCLUSIONS

In the present paper we have addressed the problem of wave
propagation in dusty plasmas, starting from a kinetic formu-
lation which takes into account the incorporation of electrons
and ions to the dust particles due to inelastic collisions, and
used this formulation in order to develop general expressions
for the components of the dielectric tensor for magnetized
dusty plasmas, valid for general direction of propagation. The
dielectric tensor can be divided into two parts, one which is
denominated ‘conventional’ and which is formally similar to
the dielectric tensor of dustless plasmas, and another which
appears due to occurrence of the inelastic collisions between
electrons and ions and the dust particles, and which is denom-
inated as the ‘new’ contribution. In the formulation developed
here, both the ‘conventional’ and the ‘new’ contribution were
written in terms of double series, formally containing all har-
monic and Larmor radius contributions. These general expres-
sions depend on a small number of integrals which depend on
the distribution function. We believe that this formulation can
be useful for the study of wave propagation in dusty plasmas
under a large variety of conditions and parameters.

As further development, we have considered the case of
Maxwellian distributions for ions and electrons, and intro-
duced an approximation which uses the average value of the
inelastic collision frequencies of electrons and ions with the
dust particles, instead of the actual momentum dependent ex-
pressions. This approximation was adopted in order to arrive
at a relatively simple estimate of the effect of the charging
of dust particles due to collisions with electrons and ions, ef-
fect which is frequently neglected in analysis of the disper-
sion relation for waves in dusty plasmas. After the choice of
Maxwellian distributions, and after the approximation replac-
ing a fixed average value instead of the momentum dependent
collision frequencies, the integrals which appear in the com-
ponents of the dielectric tensor can be written in terms of the
very familiar Z function, whose analytic properties are well
known. The formulation therefore becomes specially suitable
for numerical analysis.

As an application of the formulation, we have considered
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FIG. 1: (upper left) Real part of the “conventional” contribution to the dispersion relation, vs. q and ε = nd/ni0; (upper right) imaginary part
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FIG. 2: Components of the dispersion relation for the range of S waves, for z = (1.0× 10−2,−2.0× 10−4), using the same conventions and
parameters as those used in the previous figure.
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the case of electrostatic waves propagating in the direction
of the external magnetic field, in a plasma with Maxwellian
distributions for electrons and ions. The dispersion relation
which has been obtained contains the effects of the charge im-
balance due to the capture of charged plasma particles by the
dust particles, and also the effect of the inelastic collisions
with the dust particles, appearing both in the ‘conventional’
and in the ‘new’ contribution to the dielectric tensor. We have
made a numerical investigation comparing the magnitudes of
the ‘conventional’ and of the ‘new’ contributions to the dis-
persion relation, for frequencies in the range of the Langmuir
waves and for frequencies in the range of the ion-sound waves.
To our knowledge, it is the first instance of numerical analy-
sis of the effect of the ‘new’ contribution, which has hitherto
only appeared in formal analysis of wave propagation in dusty
plasmas [7, 10, 14, 21–23]. For this investigation we have
considered parameters which are in the range of parameters

typical of stellar winds, and the results obtained have shown
that the contribution of the ‘new’ components is very small
compared to the ‘conventional‘ contribution.

We have also numerically solved the dispersion for the case
of Langmuir waves, with ω ' ωpe. As in previous analysis,
the results obtained have shown the appearance of a small
damping effect for large wavelength Langmuir waves, where
conventional Landau damping is negligible. This damping ef-
fect at large wavelengths occurs due to the collisional charging
of the dust particles, which contribute to wave absorption be-
cause suffer inelastic collisions from ions and electrons, in the
dissipative process of dust charging. This damping effect van-
ishes if the collisional absorption of charged plasma particles
by dust particles is neglected.

We conclude with the hope that the formulation developed
in the present paper will be useful for further studies on the
problem of wave propagation in dusty plasmas.

APPENDIX A: DETAILS OF THE EVALUATION OF χzz

Here we present some details of the evaluation of the “conventional” part of the zz component of the dielectric tensor, which
is necessary for the dispersion relation for electrostatic waves propagating parallel to the ambient magnetic field. From Eq. (9),
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Using this expansion, and factoring out of the integrals the quantities which don’t depend on the integration variable,
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where we don’t need to use |n| anymore, since n is a positive quantity.
Defining the integrals
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we obtain
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where we identify ezz as
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with a(0,0) = 1.
Let us introduce small modifications in the evaluation of Eq. (A2). We define m′ = m+n, and obtain
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We now modify the limits of the summations, and use again the notation m instead of m′, for simplicity. We also incorporate
again the sign s in the summation index n, such that sn → n, with n assuming positive, negative, and null, values. Moreover, we
arrange the expressions in different form, separating the contributions of χzz and ezz,
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We can write the χC
i j expressions in terms of non-dimensional variables. Let us define
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where Ω∗ and v∗ are some characteristic frequency and velocity, respectively.
For instance, for the study of low-frequency electromagnetic waves we can use:

Ω∗ = Ωi, v∗ = vA,

where vA is the Alfvén velocity. For the study of electrostatic waves, we can use:

Ω∗ = ωpe0|nd0=0, v∗ = cs,

where cs is the ion-sound velocity and ωpe0|nd0=0 is the equilibrium electron plasma frequency in the absence of dust.
Using these dimensionless variables, of course,
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where the J and Jν integrals are defined by Eqs. (31) and (32).
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The Maxwellian distributions for ions and electrons are given by
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where pβ =
√

mβTβ, we have defined uβ = pβ/p∗ = vβ/v∗, with vβ =
√

Tβ/mβ. For such distributions, and indeed for any
isotropic distribution,

L( fβ0) = 0, → Jν(n,m,h; fβ0) = 0.

Therefore, we obtain the zz components of the ‘conventional’ contribution to the dielectric tensor, Eqs. (39) and (41).

APPENDIX B: DETAILS OF THE EVALUATION OF Uz AND Sz

Here we present some details of the evaluation of the “new” part of the zz component of the dielectric tensor, which is
necessary for the dispersion relation for electrostatic waves propagating parallel to the ambient magnetic field. From Eqs. (17)
and (18),

Uz =
4πv2∗

ω+ i(νch +ν1)
∑
β

q2
β

mβv2∗

+∞

∑
n=−∞

∫
d3u

fβ0

ωDnβ

u⊥
u

H
(

u2 +
2Zdeqβ

amβv2∗

)(
u‖
u⊥

)
Rnβ

zz ,

Sz = −2πa
ω ∑

β

q2
β

mβv∗

+∞

∑
n=−∞

∫
d3u

ν0
βd(u)

ω
L( fβ0)

Dnβ

(
u‖
u⊥

)
Rnβ

zz

−i
2πa
ω ∑

β

q2
β

mβv∗

+∞

∑
n=−∞

∫
d3u

(
ν0

βd(u)

ω

)2
1

Dnβ

L( fβ0)
u⊥

Rnβ
zz

+
2πa
ω ∑

β

q2
β

mβv∗

∫
d3u

ν0
βd(u)

ω
L( fβ0)

u⊥
,

where we also need

νch =−v∗∑
β

qβ

∫
d3uσ′β (u) u fβ0

and

ν1 = v∗∑
β

qβ

+∞

∑
n=−∞

∫
d3u

[
iν0

βd(u)/ω
]

Dnβ
σ′β(u) fβ0 uRnβ

zz .

Using the series expansion appearing in Appendix D,
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(
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⊥
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⊥
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. (B2)

ν1 = −i
a
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nβ0

+∞
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∞

∑
m=0

(
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⊥
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1
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⊥
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)
. (B3)

Defining m′ = m+n,

Uz =
1
ω

1
ω+ i(νch +ν1)

∑
β

ω2
pβ

nβ0

+∞

∑
n=−∞

∞

∑
m′=|n|

(
N∗
⊥

Yβ
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×
∫
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⊥

u
H

(
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)
,

Sz = −a
2
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∑
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∞

∑
m′=|n|

(
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⊥
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⊥
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(
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⊥

Yβ

)2m′

a(|n|,m′−|n|)
∫

d3u

(
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βd(u)

ω
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L( fβ0)

Dnβ
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⊥

+
a
2

1
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β

ω2
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nβ0

∫
d3u

ν0
βd(u)

ω
L( fβ0)

u⊥
,

ν1 = −i
a

2v∗ ∑
β

ω2
pβ

nβ0

+∞

∑
n=−∞

∞

∑
m′=|n|

(
N∗
⊥

Yβ

)2m′

a(|n|,m′−|n|)

×
∫
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(
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βd(u)

ω

)
1

Dnβ
fβ0

u2m′
⊥
u

H
(

u2 +
2Zdeqβ

amβv2∗

)
.

We can modify the limits of the summations, and use again the notation m instead of m′, for simplicity,

Uz =
1
ω

1
ω+ i(νch +ν1)

∑
β

ω2
pβ

nβ0

∞

∑
m=0

+m

∑
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(
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⊥

Yβ
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×
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⊥

u
H

(
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)
,

Sz = −a
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(
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⊥
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⊥
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(
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⊥
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∫
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⊥
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. (B4)
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ν1 = −i
a

2v∗ ∑
β

ω2
pβ

nβ0

∞

∑
m=0

+m

∑
n=−m

(
N∗
⊥

Yβ

)2m

a(|n|,m−|n|)

×
∫

d3u

(
ν0

βd(u)

ω

)
1

Dnβ
fβ0

u2m
⊥
u

H
(

u2 +
2Zdeqβ

amβv2∗

)
.

We can write these expressions in terms of the dimensionless variables defined given by Eq. (A7),

Uz =
1
z

1
z+ i(ν̃ch + ν̃1)

∑
β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

a(|n|,m−|n|)JU (n,m,1,0; fβ0) , (B5)

Sz = −aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

a(|n|,m−|n|)
[

JνL(n,m,1; fβ0)+ i Jνν(n,m; fβ0)
]

+
aΩ∗
2v∗

1
z ∑

β

ω2
pβ

Ω2∗

1
nβ0

Jν0( fβ0) , (B6)

ν̃1 =−i
aΩ∗
2v∗ ∑

β

ω2
pβ

Ω2∗

1
nβ0

∞

∑
m=0

+m

∑
n=−m

(
q⊥
rβ

)2m

a(|n|,m−|n|)JU (n,m,0,1; fβ0) ,

where the integrals JU , JνL, Jνν, Jν0, and Jch are those defined by Eqs. (50)-(54), and where we have also introduced

ν̃1 =
ν1

Ω∗
, and ν̃ch =

νch

Ω∗
.

Let us assume Maxwellian distributions for ions and electrons, as in Eq. (33). As we have seen, for a Maxwellian distribution,
and indeed for any isotropic distribution, L( fβ0) = 0. Therefore, we obtain the zz components of the ‘new’ contribution, as in
Eqs. (57), (60), and also obtain Eq. (49).

APPENDIX C: DETAILS OF THE EVALUATION OF INTEGRALS APPEARING IN THE EXPRESSIONS FOR THE
COMPONENTS OF THE DIELECTRIC TENSOR

As we have seen, the ‘conventional’ contributions to the components of the dielectric tensor depend on integrals denoted as
J and Jν, defined by Eqs. (31) and (32). The ‘new’ contribution depends on integrals JU , JνL, Jνν, Jν0 and Jch, defined by Eqs.
(50), (51), (52), (53), and (54). In the case of isotropic distributions, we have seen that the integrals which depend of the operator
L( fβ0) will vanish. It that case, it is only necessary to evaluate integrals J, JU , JνL and Jch, in order to obtain all contributions to
the dielectric tensor.

In what follows, we consider the case of Maxwellian distributions for ions and electrons. Moreover, as an approximation we
assume that the momentum-dependent collision frequency is replaced by the average value. This approximation is adopted in
order to arrive at a relatively simple estimate of the effect of the charging of dust particles due to collisions with electrons and
ions, effect which is frequently neglected in analysis of the dispersion relation for waves in dusty plasmas.

1. Evaluation of the integrals J(n,m,h; fβ0) for the case of Maxwellian distribution, using an average collision frequency

From Eq. (A5),

J(n,m,h; fβ0)≡
∫

d3u
uh
‖u

2(m−1)
⊥ u⊥L( fβ0)

1−nsβYβ−N∗
‖u‖+ i(ν0

βd(u)/ω)

= ω(2π)
∫ ∞

0
du⊥ u⊥u2(m−1)

⊥ u⊥
∫ ∞

−∞
du‖

uh
‖L( fβ0)

ω−nΩβ− v∗k‖u‖+ iν0
βd(u)

.
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Let us assume, for simplicity, that the collision frequency is replaced by the average value,

νβ =
1

nβ0

∫
d3uν0

βd(u) fβ0(u)

J(n,m,h; fβ0) = ω(2π)
∫ ∞

0
du⊥ u2m

⊥
∫ ∞

−∞
du‖

uh
‖L( fβ0)

ω−nΩβ− v∗k‖u‖+ iνβ
.

For a Maxwellian distribution,

L( fβ0) =−u⊥
u2

β
fβ0,

and therefore

J(n,m,h; fβ0) = −ω
1
u2

β
(2π)

∫ ∞

0
du⊥ u⊥u2m

⊥
∫ ∞

−∞
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(2π)3/2u3
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β)

×
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‖/(2u2
β)
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=
ω

v∗k‖

nβ0

(2π)1/2 2m(m!)
(

1
uβ

)3−2m ∫ ∞

−∞
du‖
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where

u‖,res =
ω−nΩβ + iνβ

v∗k‖

Now, let

t =
1
uβ

u‖√
2
, → u‖ =

√
2uβt

J(n,m,h; fβ0) =
ω

v∗k‖

nβ0

(2π)1/2 2m(m!)
(

1
uβ

)3−2m (√
2uβ

)h ∫ ∞

−∞
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where
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(
1
2

1
u2

β

)1/2

u‖,res =
ω−nΩβ + iνβ√

2uβv∗k‖
=

z−nrβ + i ν̃β√
2uβk‖v∗/Ω∗

=
z−nrβ + i ν̃β√

2q‖uβ
= ζ̂n

β.

Therefore,

J(n,m,h; fβ0) =
z

q‖
2m(m!)(

√
2)h−1 nβ0u2m+h−3

β
1√
π

∫ ∞

−∞
dt

th e−t2

t− ζ̂n
β

,

which easily leads to

J(n,m,h; fβ0) = (m!)(
√

2)2m+h nβ0 (uβ)
2(m−1)+hζ0

β
1√
π

∫ ∞

−∞
dt

th e−t2

t− ζ̂n
β

, (C1)

where ζ0
β = z/(

√
2q‖uβ). We note that the integral over u⊥ was made assuming that m is integer.

Let us consider the integral appearing at the end of Eq. (C1).
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For h = 0,

1√
π

∫ ∞

−∞
dt

e−t2

t− ζ̂n
β

= Z(ζ̂n
β).

For h = 1,

1√
π

∫ ∞

−∞
dt

t e−t2

t− ζ̂n
β

=
1√
π

∫ ∞

−∞
dt

(t− ζ̂n
β + ζ̂n

β)e−t2

t− ζ̂n
β

=
1√
π

[∫ ∞

−∞
dt e−t2

+ ζ̂n
β

∫ ∞

−∞
dt

e−t2

t− ζ̂n
β

]

= 1+ ζ̂n
βZ(ζ̂n

β).

For h = 2,

1√
π

∫ ∞

−∞
dt

t2 e−t2

t− ζ̂n
β

=
1√
π

∫ ∞

−∞
dt

t (t− ζ̂n
β + ζ̂n

β)e−t2

t− ζ̂n
β

=
1√
π

[∫ ∞

−∞
dt t e−t2

+ ζ̂n
β

∫ ∞

−∞
dt

t e−t2

t− ζ̂n
β

]

= ζ̂n
β

[
1+ ζ̂n

βZ(ζ̂n
β)

]
.

The result is (for integer m),

J(n,m,0; fβ0) = (m!)(
√

2)2m nβ0
(
uβ

)2(m−1) ζ0
β Z(ζ̂n

β) ,

J(n,m,1; fβ0) = (m!)(
√

2)2m+1 nβ0
(
uβ

)2(m−1)+1 ζ0
β

[
1+ ζ̂n

βZ(ζ̂n
β)

]
, (C2)

J(n,m,2; fβ0) = (m!)(
√

2)2m+2 nβ0
(
uβ

)2(m−1)+2 ζ0
β ζ̂n

β

[
1+ ζ̂n

βZ(ζ̂n
β)

]
.

2. Evaluation of the integrals JU (n,m,h, l; fβ0) and JνL(n,m,h; fβ0) for the case Maxwellian distribution, using an average collision
frequency

From Eq. (50),

JU (n,m,h, l; fβ0) = z
∫

d3u

(
ν̃0

βd

z

)l
fβ0

z−nrβ−q‖u‖+ i ν̃0
βd

uh
‖u

2m
⊥

u
H

(
u2 +

2Zdeqβ

amβv2∗

)
.

Let us assume, for simplicity, that the collision frequency is replaced by the average value, ν̃β. Let us also neglect the effect of
the Heaviside function in the numerator of the integrand. This approximation can be seen from another point of view as follows:
The collision frequency (for electrons) already contains a step function, which therefore don’t need to be written explicitly in
the integrand. Afterwards, we replace the collision frequency by the average value, and obtain

JU (n,m,h, l; fβ0) = z
(

ν̃β

z

)l ∫
d3u

fβ0

z−nrβ−q‖u‖+ i ν̃β

uh
‖u

2m
⊥

u
.

Let us further approximate,

u' u⊥ ,

JU (n,m,h, l; fβ0)' z
(

ν̃β

z

)l ∫
d3u

fβ0

z−nrβ−q‖u‖+ i ν̃β
uh
‖u

2m−1
⊥

JU (n,m,h, l; fβ0)'
(

ν̃β

z

)l

z(2π)
∫ ∞

0
du⊥ u⊥ u2m−1

⊥

∫ ∞

−∞
du‖ uh

‖
fβ0

z−nrβ−q‖u‖+ i ν̃β
.
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On the other hand, from a few steps before Eq. (C1) we find, for a Maxwellian distribution,

J(n,m,h; fβ0) =−ω
1
u2

β
(2π)

∫ ∞

0
du⊥ u⊥u2m

⊥
∫ ∞

−∞
du‖

uh
‖ fβ0

ω−nΩβ− v∗k‖u‖+ iνβ

⇒ J(n,m,h; fβ0) =−z
1
u2

β
(2π)

∫ ∞

0
du⊥ u⊥u2m

⊥
∫ ∞

−∞
du‖

uh
‖ fβ0

z−nrβ−q‖u‖+ i ν̃β
.

Therefore, we obtain

JU (n,m,h, l; fβ0)'−
(

ν̃β

z

)l

(−z)(2π)
∫ ∞

0
du⊥ u⊥ u2(m−1/2)

⊥

∫ ∞

−∞
du‖ uh

‖
fβ0

z−nrβ−q‖u‖+ i ν̃β
.

In other words, the approximated result for the case of a Maxwellian distribution can be written as follows,

JU (n,m,h, l; fβ0)'−u2
β

(
ν̃β

z

)l

J(n,m−1/2,h; fβ0) . (C3)

From Section 1, we have seen that the J(n,m,h; fβ0) function can be written in terms of the Z function. Particularly, for integer
value of m, we have obtained Eq. (C2).

Let us now investigate the case of a half-integer in place of m, namely m−1/2, required by Eq. (C3). From results appearing
before Eq. (C2), we obtain, for a Maxwellian distribution,

J(n,m−1/2,h; fβ0) = −ω
1
u2

β
(2π)

∫ ∞

0
du⊥ u⊥u2(m−1/2)

⊥

∫ ∞

−∞
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1
u2

β
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(2π)3/2u3
β
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∫ ∞

0
du⊥ u2m
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⊥/(2u2

β)

×
∫ ∞

−∞
du‖
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‖/(2u2
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ω−nΩβ− cv∗k‖u‖+ iνβ

=
ω
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(2π)1/2u5
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[
Γ

(
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1
2

) (2u2
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2

]∫ ∞
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1
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β

)2−m ∫ ∞
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‖/(2u2
β)

u‖−u‖,res
.

Now, using the same variable t defined in Section (1),

J(n,m−1/2,h; fβ0) =
ω

v∗k‖

nβ0

(2π)1/2 2m−1/2Γ
(
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1
2

)(
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)2−m (√
2uβ

)h ∫ ∞
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dt

th e−t2
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where t‖,res = ζ̂n
β .

Therefore,

J(n,m−1/2,h; fβ0) =
z
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1
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∫ ∞
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.

J(n,m−1/2,h; fβ0) = Γ
(
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1
2

)
(
√
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(
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. (C4)
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As already seen in Section 1, the integral appearing at the end of Eq. (C4) can be written in terms of the Z function. The result
is

J(n,m−1/2,0; fβ0) = Γ
(

m+
1
2

)
(
√

2)2m−1 nβ0
(
uβ

)2m−3 ζ0
β Z(ζ̂n

β) ,

J(n,m−1/2,1; fβ0) = Γ
(

m+
1
2

)
(
√

2)2m nβ0
(
uβ

)2m−2 ζ0
β

[
1+ ζ̂n

βZ(ζ̂n
β)

]
, (C5)

J(n,m−1/2,2; fβ0) = Γ
(

m+
1
2

)
(
√

2)2m+1 nβ0
(
uβ

)2m−1 ζ0
β ζ̂n

β

[
1+ ζ̂n

βZ(ζ̂n
β)

]
.

We also have to evaluate JνL. From Eq. (51),

JνL(n,m,h; fβ0) = z
∫

d3u
ν̃0

βd

z

uh
‖u

2m−1
⊥ L( fβ0)

z−nrβ−q‖u‖+ i ν̃0
βd

,

using the average value of the collision frequency,

JνL(n,m,h; fβ0) = z
ν̃β

z

∫
d3u

uh
‖u

2m−1
⊥ L( fβ0)

z−nrβ−q‖u‖+ i ν̃β
,

JνL(n,m,h; fβ0) =
ν̃β

z
z
∫

d3u
uh
‖u

2(m−1)
⊥ u⊥L( fβ0)

z−nrβ−q‖u‖+ i ν̃β
,

From Eq. (31),

J(n,m,h; fβ0)' z
∫

d3u
uh
‖u

2(m−1)
⊥ u⊥L( fβ0)

z−nrβ−q‖u‖+ i ν̃β
.

Therefore, for any distribution function, when the collision frequency is approximated by the average value,

JνL(n,m,h; fβ0) =
ν̃β

z
J(n,m,h; fβ0) (C6)

Equations (C6) and (C3), together with Eqs. (C5), show that in the case of a Maxwellian distribution, when the dispersion
relation is approximated by the average value, the JU and JνL integrals can be written as proportional to the J integral, which can
be written in terms of the Z function, according to Eqs. (C2) and (C5).

3. Evaluation of the integrals Jch( fβ0) for the case of Maxwellian distribution

From Eq. (54),

Jch( fβ0) =
∫

d3u fβ0
1
u

H
(

u2 +
2Zdeqβ

amβv2∗

)

= (4π)
∫ ∞
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H
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∫ ∞
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,
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(2π)1/2u3
β

∫ ∞

uβ
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du ue−u2/(2u2
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.

Let

t =
1
2

1
u2

β
u2, dt =

1
u2

β
udu,
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Jch( fβ0) = 2
nβ0

(2π)1/2uβ

∫ ∞

−(uβ
lim)2/(2u2

β)
dt e−t

Jch( fβ0) = 2
nβ0

(2π)1/2uβ
e−(uβ

lim)2/(2u2
β)

, (C7)

where

ue
lim =

(
2Zd(e2/a)

mev2∗

)1/2

, ui
lim = 0 .

APPENDIX D: USEFUL EXPANSIONS

Useful series expansions for Bessel functions (see Ref. [24])

J2
n (ρ) =

∞

∑
m=0

a(n,m)ρ2(|n|+m),

[
J′n(ρ)

]2 =
∞

∑
m=0

b(n,m)ρ2(|n|+m−1),

Jn(ρ)J′n(ρ) =
∞

∑
m=0

a(n,m)(|n|+m)ρ2(|n|+m)−1, (D1)

where

a(n,m) =
(

1
2

)2(|n|+m) (−1)m[2(|n|+m)]!
[(|n|+m)!]2(2|n|+m)!m!

b(n,m) ==

{
a(1,m−2), para n = 0
1
4

[
a(n−1,m)+a(n+1,m−2)−2 |n|+m−1

|n|+m a(n,m−1)
]
,para n > 0

1
(−m)!

= 0, for m≥ 1.

The third equation in Eqs. (D1) is demonstrated as follows,

Jn(ρ)J′n(ρ) =
1
2

∂
∂ρ

J2
n (ρ) =

∞

∑
m=0

a(n,m)(|n|+m)ρ2(|n|+m)−1.
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